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Abstract of the Dissertation
A family-based likelihood ratio test for general pedigree structures
that allows for missing data and genotyping errors
by
Yang Yang
Doctor of Philosophy
in
Applied Mathematics and Statistics
(Statistics)
Stony Brook University
2007

The purpose of this work is to design a likelihood ratio test (LRT) that uses the
information of both affected and unaffected individuals from a general pedigree to test
association between marker and disease. The null hypothesis is that of equal marker
penetrances, and the alternative hypothesis implies the presence of both allelic
association and linkage between the disease and marker loci. The test is based on a
conditional likelihood, which is a product of two factors: the first factor, L uses

Founder >
founder’s genotypes and phenotypes to estimate population frequencies of marker
genotypes. The second factor, L evaluates disequilibrium in transmission of

‘Nonfounder >
marker alleles from parents to offspring. The test statistic built on this conditional
likelihood allows for two problems: (1) missing parental genotypes, and (2) random
genotyping errors. Derivations of the conditional likelihoods are given for trios (two
parents and a child), general nuclear families, multiple-marriage nuclear families, and
zero-looped three- and four-generation pedigrees. For example, the following
scenarios are considered for a general nuclear family: complete parental genotype
data and no genotyping errors; only one genotyped parent and no genotyping errors;
no parental genotype data and no genotyping errors; and with genotyping errors in the
previous three scenarios. A robust algorithm grid-UOBYQA is used to locate
log-likelihood maxima under the null and alternative hypotheses as well as to estimate
marker penetrances and population genotype frequencies.

The results of a null simulation study suggest that the test statistic appears to
follow a central chi-square distribution with one degree of freedom under the null
hypothesis, even in the presence of missing data and genotyping errors. The power
comparison based on a 2’ factorial design shows that this LRT is more powerful than
the original TDT, even when 20% genotypes in trios are missing and 1% genotypes
are mistyped. Including the information of unaffected children in the likelihood
calculation appears to increase the power to test marker-disease association. Finally,
the application of this LRT to an idiopathic scoliosis dataset and a psoriasis dataset
successfully identifies the significant associations between the markers and the
disease that were previously published.
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Chapter 1 Introduction

1.1 History of transmission disequilibrium test and the other family-based
tests

Spielman et al. (1993) proposed the transmission disequilibrium test (TDT),
which was designed to test for linkage between a genetic marker and a
disease-susceptibility locus (DSL) for a trait of interest, provided that there is allelic
association. Allelic association (or linkage disequilibrium) is defined as the excessive
co-occurrence of certain combinations of alleles in the same gamete because of tight
linkage, or for other reasons (Sham, 1997). The TDT uses data from case-parent trios
to evaluate the transmission of the associated marker allele from a heterozygous
parent to an affected offspring. Under the null hypothesis of no linkage in the
presence of allelic association, the number of alleles that are transmitted to the
affected offspring is determined by Mendel’s law. If the observed number of the
transmitted alleles is significantly different from the number of those expected in
Mendelian transmissions, a DSL appears to be associated and closely linked to the
marker locus.

Since both linkage and allelic association between the marker locus and the
DSL have to be present for the TDT to reject the null hypothesis, the TDT is also valid
as a test of allelic association for case-parent trios provided that there is linkage. The
linkage analysis typically identifies large candidate regions, while the evidence of
allelic association in the presence of linkage may indicate which markers in the region
are closest to a disease locus (Martin et al, 1997). This makes the TDT more valuable
than linkage studies in pinpointing a narrower region where a DSL might lie. As a test
of allelic association, the TDT is particularly suited for markers that may be at a DSL
or very close to a DSL (Lander and Kruglyak, 1995; Risch and Merikangas, 1996).
The TDT is not sensitive to the allelic association caused by admixture and/or
population stratification (Spielman and Ewens 1998). As a nonparametric test, the
TDT is robust to misspecification of the disease model or trait distribution (Laird and
Lange, 2006).

The family-based design for TDT uses complete and errorless genotype data
from the case-parent trios. To extend the family-based test to more general situations
in linkage and association studies, numerous methodological extensions, as reviewed
in Laird and Lange (2006), have been developed to allow for: specific mode of
inheritance, arbitrary pedigree structures, complex phenotypes, missing parental
genotypes and genotyping errors.

Schaid and his colleagues (Schaid and Sommer, 1994; Schaid, 1996) examined
the power of the association tests under different genetic mechanisms (for example,
dominant, recessive, and multiplicative mode of inheritance) leading to disease. These
results demonstrate substantial gains in power for statistical tests designed to detect
specific genetic mechanisms. The application of these tests was limited to
independent case-parent trios. Martin et al. (1997) proposed two test statistics that
focus on the set of transmissions from a parent to his/her affected offspring, rather
than focusing on the individual transmissions to each offspring. They explored the test
statistics for independent nuclear families with two affected offspring. Their tests are
valid under the null hypothesis of no allelic association or no linkage, and generally
are more powerful than the original TDT. Laird and her colleagues (Rabinowitz and
Laird, 2000; Laird et al, 2000) developed a broad class of family-based association
tests (FBAT) that adjust for admixture for either dichotomous or complex phenotypes.



The FBAT score statistic is based on the covariance of genotype and phenotype.
Although genotypes of unaffected children are used to infer parental genotypes when
parental genotypes are incomplete, the genotypes of the unaffected children are not
incorporated in the score statistic. Also, under the null hypothesis of no linkage and no
allelic association, the FBAT does not provide a valid test for allelic association in the
presence of linkage for general nuclear families beyond trios. Therefore, Lake et al.
(2000) updated the FBAT by incorporating an empirical variance in the score statistic
to provide a valid test for allelic association. Under such a scenario, the null
hypothesis of FBAT becomes no allelic association in the presence of linkage. Allison
(1997) developed five tests for use with quantitative phenotypes such as body-mass
index or blood pressure. These tests are based on the assumption that the residual
distribution is normal or the sample size is large, allowing reliance on the central limit
theorem. The test for quantitative phenotypes proposed by Rabinowitz (1997) needs
no parametric assumptions on the distribution of the traits.

One of the most important issues regarding robustness of the family-based tests
is incomplete parental genotype data. When one or both parental genotypes are
missing, the resulting trio with incomplete genotype data must be discarded to ensure
validity of the TDT, thereby sacrificing information. Curtis and Sham (1995) showed
that the computation of the TDT statistic on trios in which one parental genotype is
unknown increases the type I error rate of the statistic. Spielman and Ewens (1998)
proposed the S-TDT that extends the original TDT to multiplex nuclear families
whose parental genotypes are unknown. It compares the marker genotypes in affected
and unaffected sibs instead of using marker data from their parents. However, there is
a requirement on the sib-ship configuration when using the S-TDT. The smallest
sib-ships that can give information for the S-TDT should contain exactly one affected
and one unaffected sib, with different marker genotypes. Sun et al. (1999) proposed
the 1-TDT that uses genotypes of affected children and only one available parent for
each affected child. Weinberg (1999) generalized the work by Schaid and Sommer
(1993) and set the missing parental genotype problem in a likelihood framework. Her
likelihood ratio test (LRT) based on a log-linear model for genetic data is not sensitive
to allelic association that is due to genetic admixture and is robust enough to maintain
good power. Under a strict null hypothesis that the allele under study is neither linked
to nor associated with the disease, the relative risks associated with inheriting one or
more copies of the variant allele equals 1. When used as a test of allelic association,
her LRT can be regarded as an alternative to the TDT. However, her LRT only
considered case-parent trios.

Another issue for family-based tests is the presence of genotyping errors.
Gordon et al. (2001) demonstrated that, when the TDT is applied to data in which
Mendelian-inconsistent trios are removed, the detected genotyping errors can
significantly increase the type I error rate. Their simulation showed that random
genotyping errors that result in Mendelian-consistent genotype data for trios also
cause an increase in type I error when their data are analyzed with the TDT. Therefore,
they introduced TDTae, a family-based likelihood method allowing for random errors
in the genotype data of trios. Considering both the missing parental genotype data and
the genotyping errors, Gordon et al. (2004) extended the TDTae to involve general
pedigrees. It is valid to test for linkage in the presence of allelic association. More
recently, Cheng and Chen (2007) proposed a simple family-based association test that
is not only robust against population stratification, but is also robust against
genotyping error with error rates varying across families. However, these extensions
of the TDT that allow for genotyping errors consider only affected offspring in the



families.
1.2 Brief introduction of my work

Among the more recent developments in family-based test is including
estimated penetrance values for general pedigrees (Lange et al., 2005). The concept is
to use all phenotype and genotype information in the pedigree rather than just using
genotype information on affected children. The purpose of this work is the
development of a likelihood-based method that uses information of both affected and
unaffected individuals in a general pedigree and allows for random genotyping errors.
It tests for marker-disease association by penetrance estimation, and is robust to
missing genotype and/or phenotype data and random genotyping errors in general
pedigrees. This test can be used for candidate-gene studies or a genome-wide
association studies. It is also valid as a test of linkage in the presence of allelic
association.

First, I derive the likelihood functions under all possible scenarios for trios,
nuclear families, and three- and four-generation pedigrees. Based on these likelihood
functions, I apply the grid-UOBY QA algorithm to locate the maximum log-likelihood
under each hypothesis. To assess the null distribution of the test statistic and the type I
errors, I perform null simulations on different types of families. Then I compare the
power of the original TDT and this LRT with a 2° factorial design by Monte-Carlo
simulation. Finally I apply the LRT to two previously published genetic studies and
compare the results with those obtained by other family-based tests.

Chapter 2 includes comprehensive derivations of likelihood functions, null
simulation, power calculation, and information of two real datasets. Chapter 3
introduces the grid-UOBY QA algorithm and describes the two-step search procedure.
Chapter 4 lists the results of null simulation, power comparison, and the real
applications of this LRT. Chapter 5 discusses the likelihood functions, missing
parental genotype problem, genotyping errors, and maximization algorithms.



Chapter 2 Methods

This chapter begins with the notation that will be used in the subsequent
chapters. This work only considers the bi-allelic situation, so that the
disease-susceptibility locus (DSL), with alleles d, coded as + (low-risk) or d
(high-risk), has three possible genotypes: ++, +d, and dd. The bi-allelic marker locus
with alleles m; coded as a or b, also has three possible genotypes: aa, ab, and bb.

Genetic parameters
gps. =genotype of one individual at a DSL.
g = genotype of one individual at a marker locus, with the coding 0, 1, or 2 defined as

the number of b alleles in the marker genotype. If the marker genotype is
unknown, g = Miss .

g =the set of marker genotypes of a family.

g =the set of children’s marker genotypes of a family.

Zo» = the set of observed marker genotypes of a family.

Zr.. = One possible set of consistent marker genotypes of a family corrected

from g, with one Mendelian inconsistency.

G = genotypes of multiple families involved in the LRT.

p =phenotype, or the affection status of one individual, with p = A4 for an individual
being affected, p=U for an individual being unaffected and p = Miss for an
individual with missing affection status.

p =the set of phenotypes of a family.

P =the set of children’s phenotypes of a family.

P =phenotypes of multiple families involved in the LRT.

f; =disease penetrance, defined as the probability of an individual being affected
given that his/her genotype at the DSL is i (i=0for the ++ genotype, i=1for
the + d genotype, andi = 2 for the dd genotype).

R, = genotype relative risk at the DSL.R = f,/f, and R, = f,/f, , where f;is the
reference disease penetrance.

¢, =marker penetrance (or marker effect), defined as the probability of an individual
being affected given that his/her genotype at the marker locus is i (Nielsen and Weir,
2001) (i=0for the aa genotype, i=1for the ab genotype, and i=2for the bb
genotype).

R, = genotype relative risk at the marker locus. R, = ¢ /@, and R, = ¢, /¢, , where g, is
the reference marker genotype penetrance.

7, = population frequency of a marker genotype. i=0forthe aa genotype, i=1for

the ab genotype, and i =2 for the bb genotype. Also, 7, + 7, + 7, =1.

D= a measure of linkage disequilibrium (LD) (Robbins, 1918), defined as
D =Pr(m, =a,d, =+)—Pr(m =a)Pr(d,=+) . It measures the deviation of the
observed haplotype frequencies from the expected frequencies.

D'=the proportion of maximum LD (Lewontin and Kojima, 1960). D'= D/D,_when

D>0and D'=D/D,, whenD <0, where D, = min{Pr(d)Pr(a),Pr(+)Pr(b)} and

min



D, = max{—Pr(d)Pr(b),— Pr(+)Pr(a)}. It is a normalized value that lies between 0
and 1.

Notation for family members

FF MF,FM , MM ,F .M ,C (or 6‘) = paternal grandfather, paternal grandmother,
maternal grandfather, maternal grandmother, father, mother and a child (or a set of all
children), respectively. This work uses subscripts for a given set to indicate individual
members of the set. For example, if C represents the set of children in a nuclear family,
then C, refers to the 7" child.

n,. =number of children with marker genotype i in a family. i=0for the aa

genotype, i=1for the ab genotype, andi = 2 for the bb genotype.

Notation for frequently used likelihood functions
L, =the likelihood factor from a trio
L

Trios

=the likelihood factor from a trio with complete parental genotypes

Trios.a
L., =the likelihood factor from a trio with one untyped parent and one typed parent
L

Trios.c

=the likelihood factor from a trio with two untyped parents

Lyoieer =the likelihood factor from a nuclear family
L

= the likelihood factor from a nuclear family with complete parental

Nuclear.a

genotypes

Lyiear» = the likelihood factor from a nuclear family with one untyped parent and one
typed parent

L =the likelihood factor from a nuclear family with two untyped parents

Nuclear.c

Genotyping error parameters
n =probability for a homozygote incorrectly coded as a heterozygote.

¥ = probability for a heterozygote incorrectly coded as a homozygote.

€ =error rate of the simplified DSB error model (Douglas et al., 2002), in
whiche=n=y.

2.1 Null hypothesis and assumptions

2.1.1 Null hypothesis

This family-based likelihood method is designed to test the association of a
candidate gene (or a marker) and disease. Under the null hypothesis of no association,
the marker penetrances should be equal (¢, =@ =¢,). Rejecting the null hypothesis

implies an association of marker with disease, which exists only when the marker is
both linked and associated with a DSL affecting the trait. (Schaid and Sommer, 1993).

Because both linkage and allelic association should be present to reject the null
hypothesis, this likelihood method can be used to (1) test linkage or allelic association
for candidate-gene or genome-wide association studies, or to (2) test linkage in the
presence of allelic association for the follow up of case-control association studies.
However, like the original TDT, this likelihood method may not be valid as a test of
allelic association in the presence of linkage for families with more than one affected



offspring (Martin et al., 2003).

2.1.2 Assumptions

The following assumptions are given in this work:
a. Hardy-Weinberg equilibrium (HWE)

If p is defined as the frequency of allele a and g as the frequency of another
allele b for a trait controlled by a pair of alleles, then HWE will give Hardy-Weinberg
proportions p(aa) = p*, p(ab) =2 pq, p(bb) = q° (Hardy, 1908; Weinberg, 1908).

The implications of HWE are: (1) the frequencies of alleles in a population will
remain constant from generation to generation; (2) the genotype frequencies will
remain constant from generation to generation; (3) the Hardy-Weinberg proportions
will be reached in a single generation of random mating.

b. Random mating between parental gametes

Letd,m, : d,m,denotes a parental gamete pair. Under the assumption of random
mating between parental gametes, the joint probability of the gamete pair can be
decomposed into the product: Pr(d,m, : d,m,) = Pr(d,m,) Pr(d,m,) (Martin et al, 1998).

c. Multiplicative mode of inheritance
This work assumes multiplicative mode of inheritance at the DSL: £, = f, f,

(or equivalently, R, = R]). Multiplicative mode of inheritance is also known as the
log-additive gene model (Schaid and Sommer, 1994). Fitting a multiplicative model is
a reasonable and simple start for this association test, since in general, the change in
risk on the ‘induced’ relative risk is approximately multiplicative regardless of the
mode of inheritance at the true disease locus (e.g., dominant or recessive) (Siegmund
and Gauderman, 2001). Under assumptions (a) and (b), multiplicative penetrances at
the DSL will result in multiplicative penetrances at the marker locus: ¢’ = ¢,@, (see
Appendix I). This reduces the number of parameters to be estimated in this work.
Under the multiplicative model, the null test statistic should follow a central ¥’
distribution with one degree of freedom.

Note that this likelihood method allows the flexibility to remove this
assumption.

d. No parental imprinting

Parental imprinting describes the phenomenon of differential gene function
based on whether the transmission of an allele was from the mother or the father
(Chaudhuri and Messing, 1994). This work assumes that there is no parental
imprinting. Letd,d,denote the disease genotype of a child, whered, is transmitted

from father, andd,is transmitted from mother. If there is no parental imprinting,
disease genotypes +d and d+ have the same gene effect on the phenotype of the child.

e. Independence of parental genotypes (i.e. no assortative mating)
This work assumes that paternal genotype is independent of maternal genotype.
That is,Pr(g,,g,,) =Pr(g,)Pr(g,, ). The assumption is made to reduce the number

of parameters to be estimated.



/- Independence of marker genotypes and phenotypes

The individuals’ phenotypes are conditionally independent given their
genotypes. Children’s genotypes are conditionally independent given the parental
mating type and the children’s phenotypes.

This assumption is required to make the likelihood function valid for families
with multiple affected sibs (Schaid and Sommer, 1993).

g. Missing at random (MAR)

The missing data for a variable X are “missing at random” if the probability of
missing data on X is unrelated to the value of X (Little and Rubin, 2002). This work
assumes that phenotypes and marker genotypes are MAR, so that the probability of
missing data on phenotype or marker genotype is unrelated to the values of phenotype
or marker genotype. The MAR assumption also indicates that an individual’s missing
phenotype information is independent of missing marker genotype information, and
vice versa.

h. Each nuclear family contains at most one Mendelian inconsistency

To simplify the likelihood computation for pedigrees with genotyping errors,
Ehm et al. (1996) assumes at most one error per pedigree. Douglas et al. (2002)
calculated the error rates in nuclear families by assuming that there is exactly one
genotyping error per family. To allow small to moderate mistyping rates, this work
assumes that each nuclear family (or a nuclear family decomposed from a general
pedigree) contains at most one Mendelian inconsistency. Gordon et al. (1999, 2000)
calculated the error detection rates for Mendelian inconsistent pedigrees. They found
that the error detection rates are very low.

i. Independent and random genotyping errors, no phenotyping errors

As in Gordon and Ott (2001) and Gordon et al. (2004), this work assumes that
genotyping errors are introduced randomly and independently into alleles at a
bi-allelic locus and that there are no phenotyping errors.

2.2 The likelihood function of a family possibly with missing data but with
no genotyping errors

In this work, the likelihood functions for nuclear families with complete
parental genotypes are similar to those previously published (Tu et al.,, 2000;
Whittemore and Tu, 2000) (See Chapter 5 Discussion: 5.1 The likelihood function). I
use the complete-data likelihood conditional on the observed data to compute the
likelihood factor for a nuclear family with incomplete parental genotypes.

Let @ denote the parameter (or a vector of parameters) of interest, Y , denote the

>~ obs

the missing data, and L(Y,,,Y . ;6)denote the complete-data

bs >~ mis >

observed data andY

likelihood that would have been constructed had there been no missing data.
Conditional on Y, , Y, takes on J possible values: y, . .V, Vs »

where J depends on the family structure and missing data pattern. The complete-data
likelihood conditional on the observed data (Lyles et al., 2001; Schafer and Graham,
2000) for discrete missing data problems can be written as:

J
Z L(Yobs H Ymis = ymi&j 5 9) Pr(szLv: ymi&j | Yobs ) (1)
Jj=1



In this work, 0 = {7, 7,,9,.0,},Y,, denotes the observed genotype and phenotype data,
andY _denote the missing parental genotype data. Note that estimates of 7,and¢,
can be inferred from 7z, + 77, + 7z, = land @] = ¢, .

As discussed in Section 5.2 of Chapter 5, the likelihoods as in equation (1) are
not restricted to MAR problems (Schafer and Graham, 2000).

2.2.1 Conditional likelihood function of trios

Complete parental genotype data

From assumption (f) that one individual’s phenotype is independent of the other
individuals’ phenotypes conditional on their genotypes, and assumption (e) that there
is no assortative mating, the conditional likelihood function for one trio with complete
parental marker genotype data is:

Ly = Pr(g.,gy, |pF9pM)Pr(gC | pC’gF’gM)
=Pr(g, | pr)Pr(gy | Py ) PI(gc | Py &rr8ir) (2)
_ Pr(g;) Pr(gy ) Pr(py | 81) Pr(py | 1)

Pr(p;)Pr(p,,)
The probability of an individual being affected is:

2 2
Pr(p=A)= Pr(A|g=i)Pr(g=i)=) 7, ,
i=0 i=0
and the probability of an individual being unaffected is:
2 2
Pr(p=U)=) Pr(U|g=i)Pr(g=i)=D (1-¢)x, .
i=0 i=0

For an individual with genotype data but missing affection status, under the
assumption of MAR, Pr(g, | p. = Miss)=Pr(g,) or Pr(g,, | p,, = Miss)=Pr(g,,) if

Pr(gc | pes&r»&u)-

the individual is a parent, and Pr(g .. | p. = Miss,g,,g,, ) =Pr(g. | g-.g, )if a child.

There are four possible types of children based on the availability of genotype
and phenotype information.

In the first type, the child has both genotype and phenotype data. If the child is
affected and g. =i, wherei =0,1,0r2

Pr(gc =i|pc=4,8r.8y)

_ Pr(pc =A4,8c =i,8r,8y)
Pr(pe =4,87,8y)
Pr(p.=A418c=1,8r8u)Pr(gc =i18r>81) Pr(gr,&u)

2
D Pr(pe=Algc=j.8r &) Pr(gc = | &r &) Pr(gr.&y)

J=0

Pr(p.=A|g.=)Pr(g. =il g, gy)

2
D Pr(p.=A|g.=j)Pr(g.=jlgr &)

Jj=0

__ O Pr(g =ilgr.8u)

jzo¢jpr(gczj|gFﬁgM) 3)

In equation (3),Pr(p.=4|g.=i,2.,2,)=Pr(p.=A4|g.=i)from the assumption




of independence of marker genotypes and phenotypes. The conditional probabilities
Pr(g.|g,g, )often referred to as transmission probabilities (Demenais and Elston,

1981), are listed in Table 1.
As an example, Figure 1 shows a case-parent trio, with marker genotypes
gr=1,g,,=1,and g. =1. The left white square (male) indicates an unaffected father,

the right black circle (female) indicates an affected mother, and the middle black
square indicates an affected male child. The two letters (in Figure 1, ‘a ) below each
square or circle are two marker alleles for each individual.

Figure 1: A case-parent trio with complete parental genotypes

ab ab

ab

The conditional probability of the child’s genotype given his affection status is:
Pr(g. =1lp.=4,8, =gy =1
— ¢ Pr(g-=1lgr =gy =1
¢ Pr(g.=0[g, =g, =D+¢Pr(g.=1g, =g, =D+, Pr(g.=21g, =g, =1

1
%
1,1 1 g+24+0,
by th e,

The conditional probabilities Pr(g. |p.=4,g,,g,,) for all parent-child genotype
configurations are listed in Table 2.

Similarly, if the child is unaffected and g. =i, fori =0,1,0r2, the conditional
probability is given by:

Pr(gc :i|pc =U’gF’gM): 2(1_¢i)Pr(gC :i|gFagM) ) (4)
Z(l_¢j)Pr(gC =Jj18r &)

The values in equation (4) for all parent-child genotype configurations are specified in
Table 3.

In the second type, the child has genotype data but no phenotype data. Under

the assumption of MAR, the likelihood factor from the child is
Pr(ge | pe =Miss, g, 8, ) =Pr(gc (&> 8))-
The conditional probabilities Pr(g. | g,,g,,) are given in Table 1.

In the third type, the child has phenotype data but no genotype data. Under the
assumption of MAR, the marginal probability can be used for the observed data
(Little and Rubin, 2002). The marginal likelihood factor contributed by the child
without genotype data is:

ZPr(gC |pC’gF7gM)=1a

&c
indicating that no information is contributed by a child with only phenotype data to
this association test.
In the fourth type, the child has neither genotype nor phenotype data. It is
obvious that a child with no genetic information has no contribution to the likelihood.



Incomplete parental genotype data: one parental genotype is missing
Consider a trio with one missing parental genotype, without loss of generality, I
specify that the paternal genotype is missing. If the child’s genotype is also unknown,
the marginal likelihood factor of such trio is
D D Pr(g, [p)P(gy | Py PH(E | Pes&r8u)

&r 8&c

=Pr(gy, |pM)zPr(gF |pF)ZPr(gC | Pes&r>8u) =Pr(gy | Pu)-

&F 8c
That is, such trio can only contribute its maternal information to the likelihood. From
assumption (f) that the individuals’ phenotypes are conditionally independent given

their genotypes, I have Pr(g, | g,,.8c>Pr>Puy>Pc) =Pr(gr | €y»8c» Pr) - If the child’s
genotype is observed but not the father’s, the likelihood factor is

Tm)b ZLTrtaa(9| obs > mm)Pr(Ymu| obs’e)

ZZLTrim(0|gMagCapFapMapCagF)Pr(gF | &u>&c>Pr>Pu»Pc)

8&r

:ZLTrio4a(6|gFﬁgM’gC’pF’pM’pC)Pr(gF | s8¢ Pr)

8F
WheI‘CYObS {gM;gcapFapMﬂpC}> mis {gF}and
Pr(gF:gMagC&pF) (5)
zPr(gF lgM’gC’pF)

Pr(g, | gy>8c>Pr)

Note that the maternal and the child’s phenotypes do not enter in equation (5) to
compute the conditional probability Pr(g. | g,,,8c, Pr)-

As an example, Figure 2 shows a case-parent trio with marker genotypes
gr=Miss,g,, =1, andg,. =0. The ‘?” below the black square indicates that the

genotype of the affected father is unknown.
Figure 2: A case-parent trio with only maternal genotype

? ab

aa

Based on the maternal and the child’s genotypes, the missing paternal genotype must
be either 0 or 1. To compute conditional probabilities Pr(g, | g,,,&.,p ) for such a
trio, I first compute

Pr(g,=0,g,, =1g.=0,p, = 4)

=Pr(g, =0)Pr(p, =A4| g, =0)Pr(g, =1)Pr(g.=0|g, =0,g,, =1

=TT\P, 7T, % = %l%,and

Pr(g, =18, =18-=0,p, =4)

=Pr(g, =DPr(p, =A4|gr =1)Pr(g, =DPr(g. =0[g, =12, =1
1 (z)l

=TT,
o=
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Then based on equation (5), I have:

T 7T,0, 12 27,9
Pr(g, =0 =1,g,=0,p, =A)= 0170 = 070 and
S = e e g 2+ mg 13 g, +
”12¢1/4 _ ﬂl¢l

Pr =1 :1, :07 =4)= B .
(gr | &y &c Pr ) 7[07z'l¢0/2+ﬂ'12¢1/4 27\ + 7@,

In the event that the father were unaffected in the trio, I would have
2r,(1-¢,)
27[0(1 - ¢0) + 7[1(1 - ¢1)
r(l-¢)
Pr =1 =1l,g,.=0,p,=U)= L L .
(gr=1lgy =1gc=0,p, =U) =00+ (=)
In the event that the paternal phenotype were unknown in the trio,
2r,

Pr(g. =0|g, =L g, =0, pp = Miss) =——,and
2z, + 7,

Pr(g, =0]g, =1g-=0,p, =U)=

. T
Pr(g, =1|gy =18 =0, p, = Miss) = ——
27, + 7,

For any possible paternal phenotype, the conditional probabilities can be
written as

27
Pr(g, =01 g, =L g =0, p,) == and
2z, + 7 n,
n
Pr(g, =1|g, =1,.gc =0,p,) = —2h
(gr | &y gc Pr) 2T + 7,

where
2 if pr=4
m=31-¢, if p,=U . (6)
1 if pp=Miss
The conditional probabilities Pr(g, | g,,,8.,pr) for an arbitrary trio with
untyped father are listed in Table 4.

Incomplete parental genotype data: both parental genotypes are missing
Consider a trio without parental genotypes. If the child’s genotype is also

unknown, the marginal likelihood factor

DD > Pr(g | pr)Pr(gy | Py ) Pr(ge | Pesrsgi) =1

8r 8m 8c
This implies that such a trio cannot contribute any information to the likelihood. It is
also the reason why this likelihood method only considers families with at least one
genotyped individual. From assumption (f) that the individuals’ phenotypes are
conditionally independent given their genotypes, I have Pr(g,.,g,, | €c»>PrsPuy»Pc) =

Pr(g..g. 1 &c>Pr» Py ) - If the child’s genotype data is available, the likelihood is
LTrioAc = Z LTriaAa (0 | Y:;hs s Ymis ) Pr(Ymis | K)bs )
Yn s

= Zszo.a(e;gc’pF’pM’pcagF’gM)Pr(gFagM | &csPrs>Prrs> Pe)

8r 8&m

= Zszo.a(e;gF’gM’gc,pF’pM’pc)Pr(gFagM | &csPrs>Pur)

8r 8m

11



WhereYabs :{gC>pF>pM’pc}a Y. = {gF’gM}’ and
Pr(g:,81s8&c»Pr»>Pur) 7
D D Pr(g, =i,8y = J>&crPrPu)
i

Pr(gF’gM |gC>pF’pM) =

As an example, Figure 3 shows a case-parent trio with g, = Miss , g,, = Miss ,
andg.=0.
Figure 3: A case-parent trio with unknown parental genotypes

Based on the child’s genotype g. =0, his parental genotypes{g,g,, } must be {0, 0},
{0, 1}, {1, 0}, or {1, 1}. First I compute

Pr(g, =0,g,, =0, =0,p. =4,p, =U)

=P(g;=0,8), =0)P(pp =A4|g; =0)P(p, =U| gy =0)Pr(g. =0]g, =0,g,, =0)
:”5%(1_%)’1,

Pr(g,=0,g,, =Lg-=0,p, =4,p, =U)

=P(g; =0,gy, =DP(p, =A[ g, =0)P(py, =U|g, =DPr(g.=0| g, =0,g, =1

1
:7[07[1¢0(1—¢1)5,
Pr(gF =19gM =OagC :O’pF :AapM =U)
:P(gF:LgMZO)P(pF:A|gF:1)P(pM :U|gM:0)Pr(gc:O|gF:1agM =0)
1
=”1”0¢1(1_¢0)5,3nd
Pr(g, =gy, =18c-=0,p, =4,p, =U)
=P(gy =g, =DP(p. =A4|g, =DP(p,, =U|g, =DPr(g.=0[g, =1,g, =1
1
:7[12¢1(1_¢1)Z~
Then based on equation (7), I have
Pr(g,=0,g,, =0|g.=0,p, =4,p, =U)
_ 741~ 9)
1 1 1
”§¢o(l_¢0)+”0”1¢0(1_¢)1)5+ﬂ'17[0¢1(1_¢0)5+”12¢1(1_¢1)Z

— 4”5%(1_%)
47[5%(1_¢0)+27[07[1%(1_¢1)+2ﬂ-17[0¢1(1_¢0)+7[12¢1(1_¢1)’

Pr(g, =0,g, =1/g.=0,p, =4,p, =U)

_ 27[07[1¢0(1_¢1)

- 47[3% (- ¢0) + 27[07[1% (1- ¢1) + 27[17[0¢1 (- ¢0) + 7[12¢1 (- ¢1) ,

12



Pr(g, =18, =0[g.=0,p. =4,p, =U)
— 27[17[0¢1(1_¢0)

4r;9,(1— ) + 27,74, (1 — 9 + 27, b (1 — ) + 7w 8, (1 -
Pr(g, =1g, =1gc=0,pr =4,p, =U)
— 7[12¢)1 (1 - ¢1)

47[5%(1 - ¢0) + 27[07[1%(1 - ¢1)+ 271-172-0¢1 (1 - ¢0) + 72'12¢)1 (1 - ¢|) '

For any possible combination of parental phenotypes, the conditional
probability Pr(g,. =0,g,, =0| g. =0, p., p,,) for example, can be written as
4”§®(g =0,p:)0(g=0,p,)

47,0(0, p)O(0, p,, ) +27,m,0(0, p)O(, p,, ) + 27,01, p)O(0, p,, )+ 77O, p,)O(1, p,,)
where

,and
)

?, if p=4
1 if p=Miss

For example, if both parental phenotypes were unknown in the trio, I would have
O(g, =i,p, =Miss)=1andO(g,, =i, p,, = Miss)=1,i=0,1,2. Then

27,
2my +2mom + 27

Pr(g, =0,g,, =0| g, =0, p,. = Miss, p,, = Miss) =

T, 7T,
2 -1_2°
2wy + 2wy + 27 W,

Pr(g,. =0,g,, =1| g, =0, p. = Miss, p,, = Miss) =

”1”0
27 + 27y, + 27
277}
27 +2mym + 27 )
Table 5 lists the conditional probabilities Pr(g,.,g,, | g€¢, P, P, ) for an arbitrary

trio without parental information. Since there are several conditional probability
situations that need to be considered for a full development of this method, I list the

conditional probabilities Pr(g,.,g,, | g¢,Pr» P, ) in Table 6.

and

Pr(g, =18, =0|gc =0, pp = Miss, p\, = Miss) =

Pr(g, =18, =11gc =0, pp = Miss, p,, = Miss) =

2.2.2 Conditional likelihood function of general nuclear families

Complete parental genotype data
Similar to equation (2), the conditional likelihood function of a nuclear family

with complete parental genotype data is
LNuclear.a = Pr(gF | pF)Pr(gM | pM)Pr(gé | ﬁC’gF’gM)

:Pr(gF)Pr(gM)Pr(pF | &r) Pr(py | 81) HPl‘(gc | Pc,»8F>&n): ®)

Pr(p;)Pr(p,,) C={(C,}
Here Pr(g;: | P &€rs8u) = HPr(gCr | Pc »8r»&y )18 from assumption (f) that the
Cc={C,}

children’s genotypes are conditionally independent given the children’s phenotypes

and the parental mating type.
Based on the availability of genotype and phenotype information, each child in

13



a nuclear family can be placed into one of four disjoint sets:

C, : Children with both genotype and phenotype data, where r is the index for affected
children and s for unaffected children;

6’2 : Children with genotype data but no phenotype data, wherezis the index;

6'3 : Children with phenotype data but no genotype data;

C , - Children with neither genotype nor phenotype data.

The likelihood factor from C, is

Pr(gq |ﬁ@lagpng):HPr(gqr |pqr :A’gF’gM)'HPr(gCIS |pC1S =U,8r:8u)-

The likelihood factor from C, is:
Pr(gcz | 1352 8> 8u) = HPr(gcz, | Pc, = Miss, g, &)
t

= H Pr(g., [ gr»&)y) (from MAR assumption).
t

The likelihood factor from set 6’3 and 6'4 is 1, which implies that untyped children do

not enter in the likelihood calculation.
For example, Figure 4 shows a large nuclear family with two genotyped parents
and six children, four genotyped and two untyped. The father is affected withg, =0,

and the mother is unaffected with g,, =1. Note that the six children can be partitioned
into four setsC,,...,C,, whereC, ={C,,C,,C,} withr =23ands =5, C, ={C,}with

t= 4,63 ={C,}, and 64 ={C,}. The grey square and the grey circle with a “?’ in the
middle indicate that the affection status of these two children is unknown.
Figure 4: A nuclear family of size 8 with complete parental genotypes

Cl C2 C3 Cc4 (o8) c6
2|
? ab aa aa ab ?

The conditional likelihood factor from the parents (founders): L

Founder —

Pr(g, =0)Pr(g, =) Pr(p, =A4|g, =0)Pr(p, =U|g, =1
Pr(p, = A)Pr(p,, =U)

Pr(gy | pr)Pr(gy | Py) =

7,70,(1-9) .
(7[0% +ﬂ'1¢1 +7[2¢2)(1 7[0¢0 _7[1¢1 _7[2¢2)

The conditional likelihood factor from the children (nonfounders): L

Nonfounder =

HPr(gc | P, =4 gF,gM)HPr(gcl | P, =U.8rs8u)" HPr(gcz |&r>8u)-1°1

[Pr(gc _1|pc2 A gF,gM)Pr(gC _O‘pc3 =4 nggM)Pr(gc _l‘pc5 =U gF’gM)]
'Pr(gq, =0[g,.8y)

:{ 26,(1-9) }1: ao-0)
0,60 2=0,-0)] 2 26,40 2~6,~9)

14



Therefore, the likelihood factor from the nuclear family with complete parental data
L =L

Nuclear.a Founder LNorzfounder

=—T,T, #4014 5 :
2 (7@ + 70,0, + 70,0, ) A =70,y — 1 — 7,0, NP, + )" (2— 0y — )
Using the partitioning of children into four disjoint sets @1,...,54, equation (9)
can be written as:

LNuclemca =Pr(gF |pF)Pr(gM |pM).HPr(gC]r_ |pC17_ :A,gFagM)

JIPr(ec, 1P, =U.gr 20) 1 Priec, |2 8u),
N t

where the values of Pr(g. |p, =4,g7.8y) » Pr(gc P, =U,gr,g)) and

Pr(gc, |gr,8) ) can be found from Table 2, Table 3 and Table 1, respectively.

Incomplete parental genotypes: one parental genotype is missing

Consider a nuclear family with one untyped parent. As before, I specify that the
paternal genotype is missing. If all the children are untyped, one can only use the
maternal information to infer the estimates. That is, Ly, .., = Pr(g, | p,). From
assumption (f) that the individuals’ phenotypes are conditionally independent given
their genotypes, I have Pr(g . | g,/, 8z, Pr» Par> Pe) = Pr(gr | 81 - &¢» Pr) - If at least one
child is genotyped, the likelihood factor from the nuclear family is

Lyvetears = ZLNuclear,u(H;gFagMagéapFapM)ﬁ@)Pr(gF | gM,géapFapMaZ’@)

&r

=ZLNuc/ear.a(e;gF’gM’gé’pF’pM’l_jé)Pr(gF |gM’§é’pF)’

8F
where

Pr(gF’gM’gé’pF)
ZPr(gF :i,gMag(j:pF)

Pr(gF|gM’§6’pF): (10)

For example, Figure 5 shows a nuclear family with one untyped parent. The
nuclear family hasn, . children with genotype 1, andn, .children with genotype 2.

The father is affected and untyped, and the mother is unaffected with g,, =1.
Figure 5: A large nuclear family with one parental genotype missing

B——O

? ab

ab ab bb bb

Based on the maternal and children’s genotypes, the paternal genotype must be either
1 or 2. First I compute:
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Pr(gF :LgM :LgéapF :A):
Pr(g, =L g, =1 Pr(p, :A|gF =1)

X[Pr(g. =1]g, =1,g, =D]"“[Pr(g. =2| g, =1, g, =D]"*
1 nc 1 (Ol
-wof3) (5] me
Pr(gF :2’gM :lagé’pF =A):
Pr(gp = 2’gM =1)Pr(pF =A| 8r = 2)
X[Pr(g. =1|g, =2,g,, =D]"“[Pr(g. =2| g, =2,g,, =D]"*

1 m.c 1 n.c
:7[27[1¢2(5j (E)

Then based on equation (10), I have
Pr(g, =1]gy =1,§@app = A)

7[2¢ 1 m.c l m.c
_ \2) \4 T
1 n.c 1 m.c 1 n.c 1 m.c 7Z'¢ +2”2.C7z-¢ ’
dla) () mmels) )

2”2.c 71-2 ¢2
e + 2™ 7,9,
If the father were unaffected, and Figure 5 were otherwise the same, I would have

Pr(gF =2|gM =1’§éapF =A4)=

- 7, (1-¢,)
Pr(g, =18y =18z pr=U) = T »an
(gr =118y EcPr ) z7,(1-9)+2"m,(1-¢,)

- 2" x,(1-¢,)
Pr(g, =2 =Lg.,p-=U)= - -
(8 =28 = e =) e (=g
If the paternal phenotype were unknown in Figure 5,

- . T
Pr(g. =1|g, =18, Pr :Mzss)zm,and
1 2

2"
Pr(g, =2 =1,g.,p, = Miss) =———2—,
(&r =218y =18 Pr ) z 2T,
For any possible paternal phenotype, the conditional probabilities are

. zn
Pr(g,. =1 =1g-, = L ,and
(gr=118x =L8¢.Pr) P Ty

_ 2”2.C T 77
PI‘ = 2 = 19 ok = -~ ?
(gF | Eu 8¢ pF) T, + e 7T,

where 7, is defined as in equation (6).

The conditional probabilities Pr(g, | g,,,&:, p) for an arbitrary nuclear family
with untyped father are listed in Table 7.

Incomplete parental genotypes: both parental genotype data are missing

Consider a nuclear family without parental genotypes. When at least one child
is genotyped, the likelihood factor from the nuclear family is
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LNuclemﬂc = ZZLNucleana(e;gFﬂgM’gé‘ﬂpF’pM’p(f)Pr(gF’gM | gé’ pF7pM)9

&r 8m
where

Pr(gF’gM’gé’pF’pM)
ZZPr(gF =1,8y =J,8¢Pr>Pu)
J

i

Pr(g;. 8y | 8> Pp»Pu) = (11)

Suppose both parental genotypes in the nuclear family in Figure 5 were
unknown. Based on the children’s genotypes, the mating type of the parents {g,,g,,}
must be {1, 1}, {1, 2} or {2, 1}. First I compute
Pr(gF =Lgy, = l’gé’pF =4,py, = U)
=Pr(g, =1gy =D Pr(p, =A|gr =) Pr(p, =U|g, =1)

[Pr(g. =1|g, =1g, =D]"“[Pr(g. =2| g, =1 g, =D]"*

:”12¢1(1_¢1( jl(( )
2

Pr(gF_lgMz g‘, —APM_U)
=Pr(gF :LgM =2)Pr(pF _A|gF _1)Pr(pM _U|gM =2)
[Pr(ge =11 gr =18y =2)]"[Pr(g. =21g, =1, =2)]"¢

— (-9, )@ @ and
1

R 1 m.c m.c
Pr(g,=2,8,, =18, pr =4, py =U)=”1”2¢2(1_¢1)(5j (Ej .

Then based on equation (11), I have

g ﬂ¢(1_¢1)
Pr(gp =1.gy =118, pr = A.py =U) = T e :
r e P P e = 0) + 2 (1= 9) + 2 (1)
- 2”2(:” 1_
Pr(gF:LgM:2|gé,pF:A,pM:U)— Z¢1( ¢2)

o (1-¢)+ 2™ 7,0(1-¢,)+ 2me 7,0,(1-¢) ’
and
2" mp,(1-¢)
) (1- ¢1) +2%¢ T, (1- ¢2) +2"¢ 7,0, (1- ¢1) ‘
For any possible combination of parental phenotypes, the conditional
probability Pr(g, =1,g,, =1[ gz, Pr» P), ) can be written as

70 =1p:)0(g=Lp,)
71'18(1, Pr )0, Pu )+2%¢ 7[2@(1, Pr )O(2, Pu )+2%¢ 71'26(2, Pr )0, Pu ) ’
where O(g, p) can be computed by equation (8). For example, if the parental
phenotypes and genotypes were unknown in Figure 5, I would have
”1 ”1

Pr =1, =1|g.,p,. = Miss, = Miss) = = ,
(gr Em | 8¢» Pr Pu ) T2t 2T, 7 +2"“‘H7Z'2

Pr(g, =2,g, :1|§5’p1? =4,p, =U)=

2”2.071-
Pr(g.=1,g,=2|8-, p, = Miss, p,, = Miss) =———2— and
(gr Eu |gc Pr Py ) ”1+2,12'C+1ﬂ_2
_ ) ) 2”2.(77[2
Pr(g, =2,g, =1|8s, pr = Miss, p,, = Miss) = —=—.
+2""r,
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Table 8 lists the conditional probabilities Pr(g,,g,, | &> Py, P, ) for an arbitrary

nuclear family with two untyped parents.
2.2.3 Conditional likelihood function of multiple-marriage nuclear families

A “multiple marriage” is a nuclear family in which one parent parented
offspring with multiple distinct mates, both of whom are in the pedigree (Schaffer,
2000). An f~multiple marriage is one in which the multiply married spouse (MMS) is
a founder. An n-multiple marriage is one in which the MMS is not a founder in the
pedigree (Schaffer, 2000). This work only considers f~multiple marriages. An example
is shown in Figure 6.

The f-multiple marriage in Figure 6 is a nuclear family from a previously
published psoriasis dataset (Helms et al., 2003). The figure is drawn by HaploPainter
developed by Thiele and Niirnberg (2005). Unlike earlier figures, this one does not
contain any genotype information. The number below each square or circle represents
each individual. Individual 3 (ID3 for short) is the MMS. She is a founder and has one
affected child (ID1) with a male (ID2) whose affection status is unknown. She has
two affected children (ID4 and ID6) fathered by an unaffected male (ID5).

Figure 6: An f-multiple marriage

I start with the f~multiple marriage where the MMS has 2 mates (as the one in
Figure 6). The f-multiple marriage is decomposed into two nuclear families
( Nuclear, and Nuclear, ) at the MMS. L, denotes the likelihood factor from

Nuclear,(the MMS, one mate and their children), and L,,,,,, denotes the likelihood
factor from Nuclear, (the MMS, the other mate and their children). Letg,,, and

Pus denote the genotype and phenotype of the MMS, respectively. I consider the

following scenarios to derive the likelihood factor from a nuclear family with two
multiple marriages.

The genotype of the multiply married spouse is available
The likelihood factor from such f~multiple marriage with genotyped MMS is

LMM.a = LNuc/earI LNuc/earz /Pr(gMMS | pMMS) : (12)

Notice that since the information of the MMS is used both inZy,,,, andL

equation (12) removes the duplicated factor by dividing by Pr(g,,s | Pans) -

Nuclear, >

The genotype of the multiply married spouse is unknown
Ifg,,.s = Miss, I use the available genotypes in the f-multiple marriage to infer

the possible genotype of the MMS. Let{g,,,} and {g,,,,} denote two sets of
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possible genotypes of the MMS determined by the observed genotypes from Nuclear,
and Nuclear, , respectively. The set of possible genotypes of the MMS inferred by the
observed genotypes from the f-multiple marriage is {g,,,s} = {€sms.1 N {&€uuss 2 - Then
the likelihood factor from the f~multiple marriage can be approximated by

Lyyy=L LNm‘learz > (13)

=1,2is the complete-data likelithood of Nuclear,, with

Nuclear;
=L
{gyms+ the set of possible genotypes of the MMS. When{g,,<.} ={g€ms.}, the

where L

Nuclear; Nuclear;|{ s} ° l

computation of L

Section 2.2.2.

The likelihood functions (12) and (13) can be extended to nuclear families with
more than two multiple marriages. Suppose the MMS has & mates. Let
Lyuciear »1 € {1,2,...,k} denotes the likelihood factor from the i-th nuclear family

decomposed from the f~multiple marriage. The likelihood factor from the f~multiple
marriage is

i=121in equation (13) follows the procedures described in

Nuclear; >

k
Ly o = HLNuclear, /Pr(gMMS | pz\/st)k_1 if g5 1s available;

i=1

k
Ly = HLNM,W if g,,s 1S unknown.
i=1

InL L

decomposed nuclear family, with{g,, <} ={Zyus i} NN {Zyus s the set of possible

1»1€{1,2,...,k}is the complete-data likelihood of the i-th

MM .b > "~ Nuclear; = LNuclearLHgM‘,,S
genotypes of the MMS. {g,,.s,}.i € {L.2,...,k} denotes a set of possible genotypes of

the MMS determined by the observed genotypes from the i-th decomposed nuclear
family. The likelihood L,,,, , here is also an approximation.

2.2.4 Conditional likelihood function of zero-looped three- and four-generation
pedigrees

A pedigree will be termed looped, or zero-looped, according to whether it has,
or has not, any cycles (Berge, 1962). Cannings et al. (1978) defined a zero-looped
pedigree to be a tree of individuals and marriages, such as the one shown in Figure 7.

Figure 7: A zero-looped three-generation pedigree
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Four related nuclear families, denoted as N1, N2, N3and N4, are decomposed

from the three-generation pedigree in Figure 7. I define a decomposed nuclear family
from a three-generation pedigree as a high-level nuclear family if it contains the
information about the first generation and as a low-level nuclear family if it contains
information about the third generation. In one decomposed nuclear family, a
nonfounder that has offspring in the pedigree is defined as a node. In Figure
7, Nland N2 are high-level nuclear families, and N3and N4 are low-level families.
There are three nodes denoted as Nodel, Node2 and Node3 in this three-generation
family. Nodel is the mother in N3 and a child in N1. Node?2 is the mother in N4 and a
child in N1. Node3 is the father in N4 and the child in N2.

When a large proportion of grandparental and the parental genotypes are
missing in a large three- or four-generation pedigree, the likelihood function will be
very complicated. The LRT will take prohibitively long. Under these circumstances,
pedigree splitting is often used to approximate the likelihood (Blanton et al., 1991;
Hasstedt, 1993; Lake et al., 2000). One method to compute the likelihood for three-
and four- generation pedigrees is to decompose them into multiple nuclear families.
However, the likelihood on the decomposed nuclear families involves duplicated
information from the nodes. When applied to a small sample of large pedigrees, the
likelihood will lead to a substantial loss of information and power, and may risk
inflation of type I errors (Allen-Brady et al., 2006).

For example, I calculate the likelihood of the three- and four-generation
pedigrees that occurred in two datasets: (1) Psoriasis data (Helms et al., 2003) (2)
Idiopathic scoliosis (IS) data for CHD7 gene (Gao et al., 2007). Both datasets contain
many zero-looped three- and four- generation pedigrees such as those in Figure 8 and
Figure 9.

Figure 8: Pedigree A from psoriasis data set: a zero-looped three-generation pedigree

B0

2 3

11 6

o o ol

13 12 10 9

Figure 9: Pedigree B from IS data set: a zero-looped four-generation pedigree
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The zero-looped three-generation pedigree (Pedigree A) in Figure 8 is from the
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psoriasis data set. The grandparents (ID2 and ID3) have 5 affected children, two, ID11
and ID1, are nodes. There are one high-level family and two low-level families in this
pedigree.

The zero-looped four-generation pedigree (Pedigree B) in Figure 9 is from the
IS data set. Since it contains four generations, I call the nuclear family composed of
individuals from the middle two generations the middle-level nuclear family.
Grandparents (ID2 and ID3) have 4 affected children, with ID1 a node. ID1 and 1D4
have two affected children, with ID6 being the second node of the pedigree. With
mate ID13, ID6 has an affected child (ID12), which is the fourth generation of this
pedigree.

To derive the likelihood functions of three- and four-generation pedigrees, |
start with a simple zero-looped three-generation pedigree with one high-level family
such as the one in Figure 10. There, FF, MF, F and M denote paternal grandfather,
paternal grandmother, father and mother, respectively. The five children of the second
generation /" and M are denoted as Ci, ..., Cs.

Figure 10: A simple zero-looped three-generation pedigree
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The pedigree can be decomposed into a high-level trio (FF, MF and F), and a
low-level nuclear family of size 7 with F, M and their five children.
Letl, andL denote the likelihood factors from the high-level trio and the

low-level nuclear family, respectively. There are seven possible scenarios describing
the availability of parental genotypes and grandparental genotypes.

Trio Nuclear

The paternal genotype and at least one grandparental genotype are available
Since the information of the father is duplicated, I divide the product of
L..andL, , byPr(g.|p;).The pedigree likelihood factor is

LPedigree.a = LTrio ’ LNuclear /Pr(gF | pF) H
where Ly, = Ly, (&4 &y &> Pew> Pras» Pr) When both grandparental genotypes are

Trio
available, L,,,, = L. ,(€rr»&r» Prr> Pry» Pr) When only one grandparental genotype is
available (without loss of generality, I specify that g,. is available), and
= Lycteara(&r>&u»&¢>Pr»>Pu» D) When the maternal genotype is available,

Nuclear

= Lyictears (&r >8> Pr» Py » Pz) When the maternal genotype is unknown.

Nuclear

The paternal genotype is unknown, but the maternal genotype and both grandparental
genotypes are available
The likelihood factor under this scenario is approximated by the product of

L = Pr(gFF | pFF)Pr(gMF | pMF) and LNuclear > Where LNuclear iS nOt LNLtclearAh in SeCtion

Trio
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22.2.InLy,...»» the possible paternal genotypes are only determined by the maternal

and children’s genotypes. The grandparental genotypes, however, should also be
considered to determine the possible paternal genotypes. Therefore, the likelihood
factor is

LPedigree.b =Pr(gFF |pFF)Pr(gMF |pMF)
XZLNuclear‘a(gF’gM’gé’pF’pM’ﬁé)Pr(gF |gFF’gMF’gM’g6’pF)’

&Fr
where

Pr(gFFagMFagFagMagéapF)

Pr(g, |gFF’gMF’gM5§@5pF)= 2 (14)

ZPr(gFFagMFagF =1,84-8>Dr)

=0
Consider the three-generation pedigree in Figure 10 with p. =4 ,

8rr = &ur =1, 8r =Miss , gy, :1:gc, =8¢, = &, :landgq =8¢, =2(m=3and
n, . =2). From the grandparental genotypes, g, must be 0, 1 or 2; from the maternal
and children’s genotypes, g. must be 1 or 2. Therefore, from all the observed
genotypes in the pedigree, g, must be 1 or 2. I first compute
Pr(gp =L gy =18, =18y =186, Pr = 4)
=Pr(gp =1L gy =D Pr(g, =1[gp =18y =D Pr(g,, =1)
xPr(gcgr =18y =D Pr(p, = A[ g, =1)

1 1 n.c 1 m.c
= 7[12 Eﬂ'] (Ej tz) ¢1,and

Pr(g =L gy =1.gr =2,8y =1,§@,Pp = A)
=Pr(g =1 gyr =DPr(g, =2 g =1, gy =) Pr(g,, =1
XPr(g. gy =2,8, =DPr(p, =A4| g, =2)

1 1”].(7 1 n.c
-Aelz) (3] e

Then based on equation (14), [ have
Pr(g, =11gm =L gur =1 8y =17§59p1-‘ = A)

1 1 m.c 1 nc
”12 = T ¢1
272 4 29,

n = 2¢ 5 ¢ ,and
1 1 .c 1 m.c 1 1 m.c 1 m.c + m.c
0"'7[12 27[1(2j (4j ¢1 "'72'12 47[1(2j [2) ¢2 1 ’

2"cg,
26, +2"9,
There are some special cases under whichPr(g, =i|gur,8r>81»8>Pr) =1.
For example, when{g,,,g,,}=1{0,0},{0,2},{2,0} and {2,2} , g, must be 0, 1, 1, and 2,
respectively. When{g,,,g,,} =112} or{2,1}, g, =0and{g.} = {0} (all the children

Pr(g, =218 =L8yr =18y =18z, pp =A4) =

are genotyped 0), g, must be 1. Table 9 and Table 10 list the conditional probabilities
Pr(g, | &> &urs8&u»&g» Py for all possible combinations of g -, €/, &), 8- and p..
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The parental genotypes are unknown, but both grandparental genotypes are available

Similar to the calculation of L., , | first compute the likelihood factors for

the decomposed nuclear families L,,,, = Pr(g . | prr) Pr(gy | Pyr) and Ly, ;.. - Then 1

multiply these two values as an approximation to the likelihood factor from the
three-generation pedigree. The possible parental genotypes are determined not only by
the children’s genotype but also by the grandparental genotypes. The likelihood factor
from such three-generation pedigree is

LPedigree.c =Pr(gu | Prr) Pr(gyir | Poir)
XZZLNzlc'lear.a(gFagM7§C~apF,pM7l_jé)Pr(gF,gM |gFF7gMFﬂgM’§C"pF’pM)’

8r &m
where

Pr(gFF’gMF’gF’gM’gC5pF’pM) (15)

Pr(g., g, ‘gFFagMF’géspF’pM): 2
z Pr(grr, &urs & =1,8y = J>&8¢> Pr> D)

2
i=0 j=0

Table 11 lists Pr(g,, &, | €rr»>&ur»>&e» Prs Py ) for all possible combinations of
Grr>&urs &> Prand py, .

The paternal genotype is unknown, but the maternal genotype and one grandparental
genotype are available
If the paternal genotype is unknown, and without loss of generality, g, is

available, I have L, =Pr(g,, | p.-). The likelihood factor from the pedigree can be

Trio
approximated by
LPedigre&d =Pr(gFF |pFF)
XZLNuc'leai:a(gFﬂgM7§é7pF7pM7ﬁ(j)Pr(gF |gFF7gM7§éﬂpMFﬂpF)’

&r

where
ZPr(gFF’gMF’gF’gM’§@>pMF’pF)
Pr(gF|gFF’gM’g6’pMF’pF)= 2 S . (16)
ZOZPr(gFF’gMF’gF =1,8y>8¢> Pur» Pr)
i=0 gy

Consider the three-generation pedigree in Figure 10 with p,,. =U and p,. = 4.
In the event that g,. =1, g,, =Miss, g. =Miss , g, =1,n,.=0,n,.>0and
n, . > 0(at least one child is genotyped 1, at least one child is genotyped 2, but no
child is genotyped 0), g, must be either 1 or 2. First I compute

ZPr(gFF =1L, 8y & =L 8y zl’gé’pMF =U,pp=4)

Emr
2
=Pr(g.» ZI)Z[Pr(gMF = PDPr(pyr =U [ gyr = NDP(Gr =1 & =1, & = J)]
=0
xPr(g, =DPr(g.|lgr=1gy =)Pr(p, =4[ g, =1

=nln -4y om0 pema-ow (5] (5] o

1

1 5 m.c 1 m.c
= 5(1_7[0% _7[1¢1 _7[2¢2)7[1 (5) (Zj ¢1aand

23



ZPr(gFF =L gur & =28y =18z Pur =U,pr = 4)

Eur

2
= Pr(g zl)zpr(gMF = DPr(pyr =U 1 84 = DPr(gr =218p =1, 84 = J)

Jj=0

xPr(g, =1)Pr(g. g, =2,g,, =) Pr(p, =A| g, =2)

:7[1[73'0(1—¢0)~O+7‘L’1(1_¢1)%+”2(1_¢2)%].ﬂ_l(%} Gj Y

1 1 n.c 1 n.c
= Z[ﬂ'l(l -¢)+2m,(1- ¢2)]7r12(§j (Ej .
Then based on equation (16), I have
Pr(g, =1|gFF’gM’§é’pMF =U,pr=4)
1 1 m.c 1 m.c
5(1_770% - _”2¢2)ﬂ'12£2} (4] é

1 1 1 1

- 1 R e e 1 2| L e L e
Lemp-mo-rgon (zj m (/51+4[ﬂ1(l—¢1)+27r2(l—¢2)]m(J (2] 0,

— 2[(1_%)”0 +(1—¢1)7Z'1 +(1_¢2)”2]¢1 and
2[(1_%)7[0 +(1_¢1)”1 +(1_¢2)”2]¢1 +[”1(1_¢1)+2”2(1_¢2)]2nz’c ¢2 ’

Pr(g, =2| gFF’gM’§E7pMF =U,p,=4)

_ [7[1 (1_¢1)+2”2(1_¢2)]2n2'6 ¢2 .
2[(1_%)7[0 +(1_¢1)7[1 +(1_¢2)752]¢1 +[7[|(1_¢1)+27[2(1_¢2)]2n20¢2

If the paternal grandmother were affected,

2(¢07Z'0 + ¢17Z.1 + ¢2ﬂ-2 )¢]
2oty + 7, + G,70) 4, + (7,6, +27,8,)2" 4,

Pr(g, :1|gFF5gM’§@’pMF =A,p,=4)=

and

- (7@ +27,4,)2" ¢,
Pr =2 <SP S = A, =A)= .
(gr | &rrs> & 8es Pur Pr ) 2,7, 7 )6+ (70, 2”2¢2)2n2'c o,

If the phenotype of the paternal grandmother were unknown,

2
¢ - ,and
2¢1 + (7[1 + 27[2)2 e ¢2
e . (7, + 27[2)2n2’c [
Pr =2 - PN =Miss,p, = A) = .
(&r =218pr>81>8¢> Pur pr=4) 20, + (7 +27.)2" g,
Table 12 and Table 13 only listPr(g, | gxr>&y»&¢s Pr»> Py = Miss) due to space

Pr(g, :1|gFF5gM’§C’pMF = Miss, pp = 4) =

limitations. Similar probabilities can be easily derived for p,,, = Aand p,,. =U .

The parental genotypes are unknown, but one grandparental genotype is available
Without loss of generality, 1 specify that g,. is available. First I have

L

Trio

determined not only by the children’s genotypes but also by g,,. . Then the likelihood

=Pr(g, | prr) . Similar to equation (15), the possible parental genotypes are

factor from such a three-generation pedigree is approximated as
LPedigree.e = Pr(gFF | pFF)

XZZLNuclear.a(gF’gMagéa pF,pM’ﬁé)Pr(gFagM | gFFuQCﬁ pMF’pF’pM)’

8r 8m
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where
zPr(gFFﬂgMFﬂgFﬂgM’gé’pMFﬂpF’pM)

EMF

Pr(gFagM|gFF:§5=pMF>pF:pM)= ) .
ZZZPT(gFFngF’gF =0,8y =J>8¢s Pur>Prs Pur)

i=0 j=0 gyp

The conditional probability Pr(g,,g, | &sr>&z» Pyr = Miss, py, ) can be
obtained from Table 11 by setting g,,. = Miss .

Both grandparental genotypes are unknown
In this case, the three-generation pedigree is reduced to a nuclear family. The
likelihood factor is

LPedigree.f = LNuclear H

Where LNuclear = LNucleur.a (gF 3gM 3gé H pF H pM H ﬁé) When bOth parents are genOtyped;
L
untyped; L

= Lyictears (&rs8z»PrsPu»Pg) When father is genotyped but mother is

Nuclear

= Lyuctears (&> &> Pr» Py » Pe) When father is untyped but mother is

Nuclear

genotyped; L = Lyucteare (&> Pr»> P> Pz) When both parents are untyped.

Nuclear

Now consider a complex three-generation pedigree such as Pedigree A in
Figure 8. I denote the likelihood factor from Pedigree A byL,, . The high-level
nuclear family decomposed from this pedigree is a large nuclear family of size 7,
consisting of ID2, ID3, IDS§, ID7, ID11, ID4, and ID1. It contains five affected

children (IDS, ID7, ID11, ID4, and ID1), with nodes ID1 and ID11 being the fathers
of two low-level families, respectively. L L and L denote the

likelihood factors from the high-level and the low-level families, respectively.
If the genotypes of ID1 and ID11 are available, the likelihood factor contributed
by Pedigree A is

Nuclear.High > "~ Nuclear.Low, Nuclear.Low,

_ LNuc[ear.High (gHigh 4 pHigh )LNucleanLow] (gLowl 4 pLowl )LNucleahLowz (gLowz > pLowz )

et Pr(g, | p)) Pr(g, | pyy)
where gHigh =1{€,,43-85,87:&1184-81} ’Z)High ={P2>P3:Ds> P1> 11> P> Pr} »
gLow1 = {gl’gS’gIO’g9}’ﬁLowl ={Pi>Ds> Pro> Do} »

Zrow, =181186- &3 &t and py,. ={py\, Pe, P13 Pia}-
If one node’s genotype is unknown (without loss of generality, g,, = Miss ), and

L

b

the genotype of his mate ( g,) and the grandparental genotypes ( g,,g;) are available,
the approximate likelihood factor contributed by Pedigree A is

L _ LNuc[ear.High (gHigh 4 pHigh )LNucleanLow] (gLowl 4 pLowl )LNucleahLowz (gLowz b pLowz )

Pr(g, | py)

b

where
LNuclear.Low2 = ZLNuclear.Lawz (gll’g67gl39g129ﬁLawz)Pr(gll | g29g3’g6’g13’g129p11)‘ (17)

811

For other possible scenarios considering the availability ofg,, g;and g,, formulas

similar to equation (17) can be derived.
If both genotypes of ID1 and ID11 are unknown, and g,, g,, gsand g, are

available, the approximate likelihood factor contributed by Pedigree A is
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LPedA = LNuc/ear.High (§High H l_jHigh )LNucleanLowI (gLowI H I_jLowl )LNuclear.Lowz (é:Low2 b ﬁLowz )9
where
LNucleanLow1 = Z LNuclea)zLowl (gl > gS > glO’ g9’ ﬁ[,owl ) Pr(gl | g2 ’ g3 > gS B glO s gg B pl )’ (1 8) and

&1
LNuclear.Lowz = ZLNuczeanLowz (gll’g6’g13’glzﬁﬁLowz)Pr(gll 1825855865 &13>&12> P11)- (19)
&1

For other possible scenarios considering the availability of g, , g,, g;and g, formulas

similar to equations (18) and (19) can also be derived.

For a three-generation pedigree with one high-level family, if an untyped node
has siblings and at least one sibling’s genotype is available, one should include the
available siblings’ genotypes to infer the possible genotypes of the node and the
relevant conditional probabilities. To simplify the likelihood calculations, this work
does not consider the sibling’s genotypes.

The likelihood computation of Pedigree B in Figure 9 is similar to that of
Pedigree A, except that the fourth generation is included in the likelihood calculation.
L,,,; denotes the likelihood factor from this pedigree. LNudem,AHl.gh s Lvetoar viiaare A0d

Lycroar 1w denote the likelihood factors from the high-level nuclear family (consists of

ID1, ID2, ID3, ID9, ID10, ID11, ID8, and IDI1), the middle-level nuclear
family(consists of ID4, ID1, IDS5, ID7, and ID6) and the low-level nuclear family
(consists of ID13, ID6, and ID12), respectively. Node IDI1 is the mother of the
middle-level nuclear family, and node ID6 is the mother of the low-level nuclear
family.
If the genotypes of ID1 and ID6 are available, the likelihood factor of Pedigree
Bis
L _ LNuclear.High (gHigh’Z?High )LNucleahMiddle (gMiddle’ﬁMidd/e) . LNuclearAan(éLowﬂ Z)Low)

edB T
Pedh Pr(g, | p)) Pr(g | pe)
where g ., ={2,.83:89-810581185-81}+ Priigh = {P2> D35 Po>Pio> Pi1s P> Pi} »
Eviaaie = 184281>85-87>86} > Pusiaaie = {Pas Pr> Ps> P15 Ds} »

gLow = {g13’g6’g12} H andﬁLow = {plb pﬁﬁplz}-

In the event that the genotype of ID1 is available, the genotype of ID6 is
unknown, and the genotypes of ID6’s mate (ID13) and parents (ID1 and ID4) are
available, the approximate likelihood factor of Pedigree B is

b

_ LNuclear.High (gHigh ’ pHigh )LNucleanMiddle (gMiddle H pMidd/e) L

Lposs =
Pr(g, | py)

Nuclear.Low (gLaw s pLaw )’

where
LNucleanLow = zLNuclear.Law(gB7g6’g12’Z?Low)Pr(gé | gl’g4’g13’g12’p6)' (20)
&6

For other possible scenarios considering the availability ofg,;, g andg,, formulas
similar to equation (20) can be derived.

In the event that the genotype of ID6 is available, the genotype of IDI is
unknown, and the genotypes of ID1’s mate (ID4) and parents (ID2 and ID3) are
available, the approximate likelihood factor of Pedigree B is then

L,,,=L

) . LNuclear.Low (gLuw ° ﬁLuw)

Pr(g, | pg)

PedB Nuclear.High (gHigh H pHigh )LNuclea)cMiddle (gMiddle 4 pMiddle 4

where
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Lyctear ssidate = ZLNuclear,Middle(g47gl’gS’g7’g6’pLow)Pr(gl 125,85, 84585587 6> P1)-(21)

81
For other possible scenarios considering the availability ofg,,g, and g;, formulas
similar to equation (21) can be derived.

In the event that the genotypes of ID1 and ID6 are unknown, and the genotypes
of ID1’s parents (ID2 and ID3), ID1’s mate (ID4), and ID6’s mate (ID13) are
available, the approximate likelihood factor of Family 14 is then

LPedB = LNucleanHigh (gHigh K ﬁHigh )LNuclear.Middle (gMiddle s ﬁMiddle )LNuclear.Low (gLow ’ ﬁLow )’
where

LNuclearAMiddle = ZLNuclealﬂMiddle(gétﬂglﬂg57g7’g6’pLow)Pr(gl | g29g3’g47g59g7’g65 pl)ﬂand

&1

LNuclearALow = ZLNucleanLow(gB’g63g12’ﬁLow)Pr(gé | g4’g13’g12’p6)' (22)

&6

For other possible scenarios considering the availability of g, , g,, g, and g,;, formulas
similar to equation (22) can be derived.

2.2.5 Conditional likelihood function for CEPH pedigrees

Another typical pedigree structure is shown in Figure 11, which consists of four
grandparents (FF, MF, FM, and MM), two parents (F and M), and multiple offspring

(é ={C,,C,,...,Cs}) (Chakravarti, 1991). Such a pedigree is an example of a Centre

d’Etude du Polymorphisme Humain (CEPH) pedigree. Since a CEPH pedigree is not
commonly used for dichotomous trait genetic studies, I could not find a data set
containing CEPH pedigrees for an application of this likelihood method. The pedigree
in Figure 11 (Pedigree C) generates the additional complexity of grandparental
information from both father and mother.

Figure 11: Pedigree C: a CEPH pedigree

FF MF M MM

TI T2

DLO“O

cr C C3 C+ CGCs
The parents F and M are the nodes in Pedigree C. I denote the left high-level
trio in Figure 11 by 7/, and the right high-level trio by 72. Let L,, and L., denote the
likelihood factor from 7'/ and 72, respectively.
In the event that g,.is available and two grandparents in 7'/ are genotyped,

Ly =Ly, (&rrs&uvir&rs Prr> Purs Pr) 5
In the event that g, is available and only one grandparent in 77 is genotyped (without
loss of generality, FF is genotyped),
Ly = L1y, (&rp>&rs Prrs Pyrs Pr) -
In the event that g,. is unknown and two grandparents in 7'/ are genotyped,
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Ly =Pr(gpr | Pre) Pr(&uir | Pair) s
In the event that g . is unknown and only one grandparent in 7/ is genotyped (without
loss of generality, FF is genotyped),
Ly =Pr(gp | Prr) -
The calculation of L., is similar to that of L,, under the four scenarios.
There are three possible scenarios considering the availability of g, and g, .

Both parental genotypes are available
For a CEPH pedigree with two genotyped parents and at least one genotyped
grandparent each high-level trio, the likelihood factor is

LNucleana(gF’gM’gC’pF’pM’ﬁC)
Pr(g, [ pr)Pr(gy | Py)
Pr(gr | Pr)Pr(gy | Py ) Pr(&e | Pes8rs8u)
Pr(g, [ pr)Pr(gy | Py)
=L, Ly, Pr(g(j | ]_557 8r>8u)-

In the event that the grandparents from a high-level trio are untyped (without
loss of generality, g, = g, = Miss ) and at least one grandparental genotype in the
other high-level trio is available, the CEPH pedigree is reduced to a three-generation
pedigree with one high-level trio, as in Figure 10. The likelihood factor is then

Legprra =Lry - P(&F | pF)Pr(gé | ﬁé’gF’gM )-

If the event that all four grandparental genotypes are unknown, the CEPH
pedigree is reduced to a general nuclear family with complete parental genotype
information. The likelihood factor is

Legpro = P(&r | Pp)P(8y | Py ) PP(&e | Dis &8s &1 )-

L

cerd.a — it

=Ly Ly,

One parental genotype is unknown, and the other parental genotype is available
Consider a CEPH pedigree with one genotyped parent (without loss of
generality, g = Miss ). If the genotypes of the paternal grandparents are available, the
possible genotypes of the father are determined by g, , g,->&,, and g . In the event
that at least one maternal grandparent is genotyped, the likelihood factor is
ZLNuclear.a(gF’gM’gé’pF’pM’i)E')Pr(gF | gFF’gMF’gM’gé’pF)

_ gr
LCEPH.b - LTlLT2

Pr(g, | py)
The division by Pr(g,, | p,,)1s necessary to remove the duplicated information of the
mother in the likelihood calculation. The conditional probabilities
Pr(g, | 8rr>&ur>&u>8&s» Pr) are listed in Table 9 and Table 10. In the event that no
maternal grandparent is genotyped, the likelihood factor is

Legpyp = LTIZLNuclear,a(gFﬁgM’géﬂpFDPMDﬁé)Pr(gF | gFFagMFagMagéaPF)-

&Fr

Since the information of the mother is only used in Ly, ... (€r>&y>85s Prs P> D) »

the division by Pr(g,, | p,,)1s not included in this likelihood function.
If only one paternal grandparent is genotyped (without loss of generality, g, is
available), possible genotypes of the father are determined by g, , g, and g. In the
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event that at least one maternal grandparent if genotyped, the likelihood factor is
ZLNuclear.a (gF7gM 7§é’pF7pM ’Z)C_‘)Pr(gF | gFF7gM 7§éﬁpMF 7pF)

_ gF
LCEPHJ; - LTILTZ s

Pr(g, [ py)
where Pr(g, | g4r>81>8¢> Pur»>Pr) 18 given by equation (16). The division by

Pr(g,, | p,,) removes the duplicated information of the mother in the likelihood
calculation. The conditional probabilities Pr(g | g» &> &z» Pur = Miss, p) are

listed in Table 12 and Table 13. In the event that no maternal grandparent is genotyped,
the likelihood factor is
Legpn sy = LT]ZLNucleana(gF’gM’gC’pF’pM’ﬁC)Pr(gF | gFF’gM9§5’pMF’pF)‘
&F
If both genotypes of the paternal grandparents are unknown, the CEPH pedigree
is reduced to a three-generation pedigree with one high-level trio, like the one in
Figure 10. In the event that at least one maternal grandparent is genotyped, the
likelihood factor is

ZLNuclear.a(gF’gM’géﬁpF’pM’Z?C‘)Pr(g[f |gM’§éﬁpF)

_ 8r
LCEPHAh - LTILTZ

Pr(g, | py)
In the event that no maternal grandparent is genotyped, the likelihood factor is
Legpry = Ly ZLNuclear.a(gF’gM’gé’ PrsPus Pe) Pr(8r | &u> & Pr)-
&r

The values of Pr(g, | g,,, &z, pr)are listed in Table 7.

Both parental genotypes are unknown

In the event that four grandparental genotypes are available and both parental
genotypes are unknown, the possible parental genotypes are determined by the
grandparental and children’s genotypes. The likelihood function is given as

Legpy e =Pr(&rr> Eur | Prrs Do) Pr(&enve> ame | Pras s Poane)
'ZZLNuczeana(gFagMagévvapMapc)Pr(angM | &> &uir> &rra» e » &> Pro Py

8r &m
where

), (23)

Pr(gFﬂgM’gFF’gMF’gFM’gMM’gé’pF’pM)
z Pr(ngi:gM:j’gFFngF’gFM’gMM’géva’pM)
J

This work uses an approximation to the likelihood in equation (23):
Legprre = Pr(&prs & | Prrs Paae ) Pr(& rns > &vana | Prass Paana)
X Luciear (8 Prs Pars P 11855181 )5
where Ly, e (&c> Prs Par> Pe | {85 181 1> {8F, &) }) denotes  the likelihood of the
low-level nuclear family with two untyped parents. The calculation of
LNuclearAc(gé’pFﬂpMﬂﬁé |{gr},1g)}) is similar to that of LNucleam(g@,pFapMaﬁé) )

except that the set of possible parental genotypes in the former likelihood
is {{g .} x{g,}n{g,.g, ), where {g,} denotes a set of the possible paternal

24)

genotypes inferred g, and g,,., {g,,} a set of the possible maternal genotypes
inferred fromg,, andg,,,, and{g,.,g,,} a set of the possible parental genotypes
inferred from g .
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In the event that one grandparental genotype is unknown (without loss of
generality, g,,- = Miss ) and the other three grandparental genotypes are available, and
both parental genotypes are missing, the approximate likelihood is similar to equation
(24):

Legp e =Pr(&pr | Pre) P& rar> &une | Pt > Pasn M onictearc (8 Prs Pars P 1485 358w })- (25)
The possible paternal genotypes {g .} in equation (25) are determined by g, , and the
possible maternal genotypes {g,, } are determined by g,,, and g,,,, .

In the event that the grandparental genotypes from a high-level trio are

unknown (without loss of generality, g,,, =g,, =Miss ) and the other two

grandparental genotypes are available, and both parental genotypes are missing, the
CEPH pedigree is reduced to the small three-generation pedigree in Figure 10, with
the likelihood

Legprre = Pr(Grr>&uir | Prrs Paar)
'ZLNuclear.a(gF’gMagéapFaPM aﬁ@)Pr(gmgM | gFF’gMF7§C'~>pF’pM) ’

2,
where the values of Pr(g,, g, | &5r> &> 8> Pr» Py ) are listed in Table 11.

In the event that two grandparental genotypes from the different high-level trios
are unknown (without loss of generality, g,, = g,,, = Miss ) and the other two
grandparental genotypes are available, and both parental genotypes are missing,
similar to equations (24) and (25), the likelihood factor is

Legprr e = Pr(&rp | Prr) Pr(&rns | P ) onctear (géﬂ PrsPuy> ﬁ@ [{gr}:{gu )

The possible paternal genotypes {g,} are determined by g,, , and the possible
maternal genotypes {g,, } are determined by g, .

In the event that only one grandparental genotype is available (without loss of
generality, g, is available), and both parental genotypes are missing, the CEPH
pedigree is reduced to the small three-generation pedigree in Figure 10, with the
likelihood

Legpr =Pr(gpr | Pir)
'ZLNuclemaa(gF,gM ,géapFapMaZ’@)Pr(gFagM |gFF3g(jﬂpMF’pF’pM ),
g5

where Pr(g,, gy, | €r» 855 Par = Miss, py, p,,) can be computed from Table 11 by

setting g,,- = Miss .

In the event that all the four grandparental genotypes are unknown, and both
parental genotypes are missing, the CEPH pedigree is reduced to a general nuclear
family with unknown parental genotypes, with likelihood

LCEPHL‘ = LNucleanc (gé sPrsPus ﬁé)

2.3 Incorporating the Mendelian inconsistencies into the likelihood
function

Mendelian consistency is arguably the most important and common criterion
for identifying genotyping errors (Zou et al, 2003). Families that are not
Mendelian-consistent are often checked for genotyping errors. Three assumptions (see
assumptions (h) and (i)) are given in this section: (1) there is at most one
inconsistency in a nuclear family, (2) the genotyping errors are independent and
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random and (3) there are no phenotyping errors. This work does not identify and
adjust the errors in families displaying Mendelian consistency.

The error model (Table 14) used here is based on Douglas et al. (2002). I set
n =7y =¢€in the R program to avoid failure of identifiability. Tests that only consider
Mendelian-inconsistencies cannot give correct estimates of error rates since families

displaying Mendelian consistency may also have genotyping errors (Gordon et al.,
2001).

2.3.1 The likelihood function of a nuclear family with at most one genotyping
inconsistency

Similar to the complete-data likelihood conditional on the observed data in
equation (1), the likelihood function for one nuclear family (including the one with
missing parental genotype data) with at most one inconsistency is:

Ler‘ror = ZL(gTrue’ﬁ;e) Prermr (gTrue | gObs ’M) (26)
&rue

where g, refers to the observed genotype data in a nuclear family with at most one
inconsistency, g,,,, refers to any possible set of genotypes corrected from g,,. ,

with ZPrmor (€1 | 8on»M)=1, and M is an indicator for Mendelian consistency.
&

If M =1, the nuclear family is Mendelian-consistent. Then g, . =g, , and
Pr, .. (€rue | ops-M =1)=Pr, (804 | €os) =1 . Equation (26) is written as
L,. =L(gy,,p;0), which is the likelihood function of a nuclear family without

genotyping errors (see Section 2.2.2).

IfM =0, the nuclear family has exactly one Mendelian inconsistency. Let

mbe the number of Mendelian consistent genotype sets for the family in which

exactly one genotype has been corrected. I reorder the observed genotypes for the n

family members so that correcting the first observed genotype can make the family

Mendelian-consistent. That is, the observed and the corrected genotypes are reordered

as gobé‘l = {g;'rlror’gtl)'li"“’g:)zs} and gTrue.i = {gtlr'llte’gtlrlje""’gtlrse} > i=1,2"“’m * In eaCh

gTrue.i ’ gtlrtlte is the genotype CorreCted from g;llrul ( g;rie # gérlmr ) but g;rie = gtl)li s
k =2,...,n . The conditional probability

o o Pr(_’mei g vi) :
Prerror (gTrue,i | gOhs.i’M = 0) = m & ' | g0b~- > l= 1’

z Pr(nge.j | gob&j)

Jj=1

wom,  (27)

il i2

Where Pr(gTruej | gObsj) = Pr(gz;ue | gérlrm) Pr(gt;;ue | g(l)li* ) T Pr(g;;une | g:::v) . Table 15 1iSts
the values of

Pr( oDS Vue) Pr( rue)
PGy | g ) = Bt | 8ine) P, L @8)
Z Pr(gobs | gtrue = k) Pr(gtrue = k)

k=0
Recall that this work does not consider phenotyping errors.

In the following example and discussions, g,,. . and g;... denote the observed
and the corrected genotype of x respectively, where x is the specified family member
(F, M orC,,.whose genotypes are inconsistent) . For example, consider a nuclear

family of size n. The observed parental genotypesg,,. » =0andg,, ,, = Miss. The
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second child with observed genotype 2 is denoted as C,,.. The observed genotypes of

the remaining n —3 children are 1’s. There are two possible consistent sets of
genotypes for the nuclear family, with (1) g, =1corrected fromg,, .=0, or

() &rec,,, =1corrected fromg,, . =2. Based on equations (27) and (28), I first

compute
P, (&1t | g ons.1sM =0)
Pr(ger =11 &onsr =0) Pr(grme.c,,\( =2| Sobs.cpe = 2)

Pr(g e r =11 &oper =0) Pr(gTrue.C,W =2| Eovs.cpe = 2)+Pr(grer =018 onr =0) Pr(ngue.C,M~ =1| 8obs.cpe = 2)

_ 0.5yx, -A=m)7, __"
057’7[1 '(1_77)7[2+(1_77)”0'0~5}7[1 Ty + 7T,
— . - . T
Prerror (gTrue.2 | gObs.Z ’M = 0) = 1 - Prerror (gTrue.l | gObS.l ’M = O) = . .
T, + 7,

Then the likelihood factor from this family is

2
Lermr = z L(gTrue.i 4 ﬁ’ 0) Prermr (gTrue.i | g()bs.i H M = 0)

i=1

T, . .
= L( <{gTrueAF = 1’ gTrue,M = MISS, gTrue,Cl = 1’ gTrue,C,NC = 2’ nge.Q = 1""ng‘ueACﬂ,z = 1} > Ps 0)
T, + 7,
ﬂ’O . e
+ T+ L( {gTrue'.C,‘-\V(; = 1’ gTrue.F = 0’ gTrue.M = MZSS’ gTru&C, = 1’ gTruezQ = 1""g‘True'.C”,z = 1} > D5 6)
0 2

Consider all possible scenarios for one nuclear family with at most one

inconsistency:
a. {€onsr>&onsir s = 10,0}
IfnIAC 2 2 4 thenm = 2 . (l)ngaF = l > or (2)gTrueAM = 1 .

Ifn =1, thenm=3: (1) gp,.r =1, ) &puerr =1, OF (3) &, =0 corrected

fromg Obs.Cpe —

b. {8ows.r>8opsir} =10, 1} 01 {00 s &opens § = 1, 0}

If”ZAC 2 2 b thenm = 1 :gTrueAF = IWhen {gOh.&F’gOh.&M} = {OJ 1} ’ OrgTrueAM = 1 When

{&ons.r>8ows.r § =11, 0} .

If nZ.C =1 b then m= 2 : (l) gTrue.F = 1 When {gObS.F’gObS.M} = {0’ 1} , Or gTrue.M =1

when{g g, r»&opar} =1L 0}, o1 (2) 8ruecy, =1 corrected from g Obs.Cpe —

C. 8oms.r»&onsar § =105 23 0T {G 00, s &opsns § = 12, 0}

Ifny.=land n .21, thenm=1:g, ., =1when {g,. .20} =10,2},

nge.F = 1 Whel’l {gObs.F b gObs.M} = {2’ 0} .

If nOAC 2 2 and nlAC = 0 H then m :1 : gTrueAM :1 When {gObsAF’gObSAM} = {07 2} s

Srmer =1Whenigy, .. gn 1} =12, 0}.

If nlAC 21 and nZC 21 b then m =1 : nge‘F :1 When {gObsAF’gObSAM} = {07 2} s

rmers = 1When{g, -, 80511 =12, 05

Ifn.=0and n,. 22, thenm=1: g, . =1when {g, .,gu .} =10,2},

gTrue.M = IWhen {gObs.FﬂgOb&M} = {2’ 0} N

Ifn,.=landn . =0, thenm=2: (1) gs..., =1 When{g,, .80t =10,2}, or

Srmer =1 When {g,, 1,800} =12,04 , or (2) &recy. =1 corrected  from
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Sovs.cpe =
Iftn, . =0andn, =1, thenm=2: (1) g, =1when {g,, &0} =10,2}, or

Srens =1 When {go, 80,00 =12,04 , or (2) ETrue.Cpye =1 corrected from

obscpe =

d. {8owsr>&onsirt =1 2100 {g0s s &0t =12, 1}
Ifn,. 22, thenm=1:g;,,, =1when{g,, »,&op =1, 2}, org;, » =1when
{&ons.r>&omsar t =12, 1}
Ifnye =1, thenm=2: (1) g,y =1 When{go,, r.&opu} =1L 2}, Orgs,. =1
when {g, r»&opsar =12, 1}, 01 (2) g True.Cpe = 1 corrected from g Obs.Cpe —

€. {8on.rs8oms.at =12,2}
Ifn, .22, thenm=2:(1)gp.r =100 (2)gpon =1.
Ifn o =1, thenm=3: (1) gpuer =1, (2) &ruess =1, 08 3) &1, =2 corrected
from obs.cpe =

S &onr =0andg,, ,, = Miss, org,, , = Missand g,, ,, =0
Ifn,.2>2,thenm=1:g,, . ,.=1wheng, ,.=0,0rg,. ., =lwheng, , =0.
Ifn,.=1,thenm=2:(1) g, » =1Wheng,, » =0, 0rg;,, =1when g, , =0,
or (2) 8rriecy. = 1 corrected from 8oms.cpe =

8 Zopr =2andgy, ,, =Miss,org,, , =Missand g, ,, =2
Ifn,. 22, thenm=1:g;,, . =1wheng,, . =2,0rgy,, =1wheng,, , =2.
Ifn,c =1, thenm=2: (1) gp,,.r =1Whengy, =2, orgy,,,, =lwhengg, , =2,
or (2) &pec,, =1corrected fromg,, . =

Note that a nuclear family with one parent untyped and the other parent genotyped 1
is always Mendelian consistent, so is a nuclear family without parental genotypes.
Table 16 lists the conditional probabilities Pr,, (&;...|&o»M =0) for an

arbitrary nuclear family with one inconsistency.

rror

2.3.2 The likelihood function of a three- or four-generation pedigree with one or
more genotyping inconsistencies

Some association tests (such as the FBAT) remove the pedigree with one or
more genotyping inconsistencies from the analysis. Instead of sacrificing all the
information from the pedigree, I first check the consistency of the high-level nuclear
family. If it contains one inconsistency, I remove or adjust the genotypes of the
subjects that cause the inconsistency using the Mendelian protocol given next. If one
node’ genotype in the high-level nuclear family is removed, I consider the node as
untyped when checking the consistency and/or correcting the genotypes of a
lower-level nuclear family where the node is one parent. The procedure is repeated
until I correct all the inconsistencies from the pedigree.

Consider such a pedigree: it contains one or more inconsistencies, but each
nuclear family decomposed from the pedigree contains at most one inconsistency.
F,M and C,, denote the father, the mother and the child whose genotypes are

inconsistent. These three subjects are from a high-level, a middle-level or a low-level
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nuclear family that contains exactly one inconsistency. Since I use equations in
section 2.2.4 and 2.2.5 to compute the likelihood of the pedigree with the corrected

genotypes, [use g, g, andg Cy instead of g7, 1 » Gy ANA & True.C,, *

a. {&ovs.rs&onsa t = 10,0}
Ifn, . 22,1setg, = Missand g,, = Miss .
Ifm =1, 1 set g, =Miss and g,, =Miss . For Cjy. with g,, - =1, I set
8c,, =Miss.

b. {8ows.r>8opsary =10, 130100 s Copens § = {1, 0}
Ifn, 22, 1setg, =1if{gyy s &onns s =10, 1}, 0r gy, =1if{goy vr&opeas b = 11, 0}
If n,.,=1, 1 set g.=Miss if {g,. rCoprt=10,1} , or g, =Miss if
{&ons.rs8ons.r § =11, 0} . For C - with Sovs.cpe = 2, Iset 8cpe = Miss .

C. 8oms.r»&omsar § =105 21 0TG4, s oms.ns § = 12, 0}
If nyo=21and n .21, I set g, =11if {g,. r>8on s =10,2} , or g, =11if
{&obs.rs8oms. § =12, 0}
Ifn,.,22and n,.=0, I set g, =11f{g,.r>8onnrt =10,2} , or g.=11if
{gOb&F’gObs.M} = {2’ 0} .
Ifn,.2land n,. 21, I set g, =11f {g,. r>&op st =10,2} , or g, =1if

{8 obs.rs8ons.r } =12, 0}
Iftn,.=0and n,. 22, 1 set g.=11f {g,.r>&oprst =10,2} , or g, =11if

{8ons.r>&onsn =12,0}1 .
Ifn,. =landn, . =0, 1 setg,, = Missit{g,, r»Qoprt =10,2}, or g, =Missif
{8 ons.rs8oms. } =12, 0} . For ) with ovs.Cpe = 0, Iset 8c,, =Miss.
Ifn, . =0andn,. =1, I set g, =Missif{g,,. r>&op 1} =10,2}, org, = Missif
{&ons.rsovs.r § =12, 0} . For €y with ovs.Cpe = 2, Iset 8c,, =Miss.

d. {&onsr>&opsmt =1 2100 {g0s s Gops et =12, 1}
If nye22 , 1 set g, =1 if {gurm&8opnt=12 , or gy.=1 if
{&oss.r&onsn $ =12, 1}
If nj,=1, 1 set g, =Miss if {g,r>onenrs =12} , or g.=Miss if
{&ons.rs8ovs.r } =12, 1} . For C - with Sovs.cpe = 0, Iset 8cpe = Miss

€. {8on.rs8oms.a ) =12,2}
Ifn, . 22,1setg, =Missand g,, = Miss .
Ifm =1, 1 set g, =Miss and g, =Miss . For Cjy. with g,, - =1, I set
8¢, =Miss.

S &onr =0and gy, \, = Miss, org,, , =Missand g,, ,, =0
Ifn,.22,Isetg, =1ifg,, .=0,0rg, =1lifg,, ,, =0.
Ifn,. =1, I set g, =Missifg,, =0, org,, =Missifg,, ,, =0. ForC,, with
8ovsc,, =2, 1setg. —=Miss.

g Zopr =2andg,, ,, =Miss,org,, . =Missand g, , =2
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Ifn,.=22,Isetg, =1ifg,, .=2,0rg, =1lifg,, ., =2.
Ifn,. =1, 1 set g.=Missifg,, =2, org,, =Missifg,, , =2. ForC,, with
8obs.Cpe = 0, Iset 8¢, = Miss .

A more exact analysis would generate m consistent genotype sets that have only
one genotyping correction from the observed genotypes and then weight these
consistent genotype sets in the likelihood function as in section 2.3.1. This will be a
subject of my future work.

2.4 The likelihood ratio test statistic

The likelihood ratio test statistic for N families with observed marker
genotypes G and phenotypes P is:

LRT =2InL,, (G, P:%,.%.0y.0,)~InL,, (G, P %), #.4,)]  (29)

error

= N
where L, (G, P;*):HLW(g,, p;;*)and the likelihood factor from one family
=1

L,. (g,p;*)may be found in equation (26). In equation (29), 7%0,;%1,430,(;32 are the

estimates of 7, 77, #,, ¢, under the alternative hypothesis, and 7:[0,7:[1,&0 are the estimates
under the null hypothesis.

2.5 Null simulation

I simulate nine sets of 500 null replicates with full or missing genotypes and
phenotypes. Seven sets have no genotyping error, and two contain genotyping errors.

Each replicate in the first set contains 200 case-parent trios, for a total of 600
individuals. The replicate in the second set contains 200 quartets (two parents, one
affected child and one unaffected child), for a total of 800 individuals. All the
replicates in these two sets are 100% genotyped and do not contain genotyping errors.
I set marker allele frequencies to Pr(a) = 0.9 and Pr(b) = 0.1, disease allele frequencies

Pr(+) = 0.88 and Pr(d) = 0.12, and the proportion of maximum linkage disequilibrium
D'=0.95. 1 specify equal disease penetrances f, = f, = f, =0.1. Recombination

fraction is set at 0.5, indicating that the marker is unlinked to the DSL. The simulation
program SLINK program (Weeks et al, 1990) is used to simulate the parental
phenotypes and marker genotypes when fixing the affection status of the children.
Each replicate in the third set contains 100 quartets, with 75% affected sib pairs
and 25% sib pairs with discordant affection status. I set marker allele
frequencies Pr(a) = 0.6 and Pr(b) = 0.4 . The SIMULATE program (Terwilliger and Ott,

1994) is used to simulate the null data. Note that only the marker allele frequencies
are used to simulate the genotype data since the SIMULATE program ignores the
DSL specifications in simulation. All the replicates in the third set are 80% genotyped
and do not contain genotyping errors. An R function is written to remove randomly
20% phenotypes and 20% genotypes from the simulated data.

The fourth to the sixth sets use 92 fixed nuclear family structures with a total of
366 individuals in each replicate. 46 nuclear families derived from a previously
published IS study (Gao et al., 2007) are replicated twice in each null data replicate.
The largest nuclear family contains 7 individuals, while the smallest has 3. The
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median size of these nuclear families is 4. I set marker allele frequencies Pr(a) = 0.6
and Pr(b) = 0.4. The fourth set uses 100% genotyped data, and the fifth and the sixth
sets use 80% genotyped data. I also randomly insert genotyping errors with error
rate £ =0.01in the sixth set. The SIMULATE program is used to simulate the
genotypes, and an R function is written to randomly insert genotyping errors and then
remove genotypes.

In the last three sets, 53 fixed multiplex IS families with a total of 313
individuals are used for each replicate. The largest family contains 18 individuals,
while the smallest contains 3. The median family size is 6. I set marker allele
frequencies Pr(a) = 0.6 and Pr(b) = 0.4. The SIMULATE program is used to simulate

the null data. The seventh set uses 100% genotyped data, and the eighth and the ninth
sets use 80% genotyped data. I also randomly insert genotyping errors with error
rate £ = 0.011n the ninth set.

I use the Kolmogorov-Smirnov (KS) goodness of fit test (Kolmogoroff, 1941;
Smirnov, 1939) to determine whether the null distribution of the LRT for each setting
fits well to a central y°with one degree of freedom. The decision rule is that a
p-value > 0.05 of KS test statistic indicates that the data comes from a central

’ distribution with one degree of freedom.

2.6 Power comparison

To compare the power of the TDT and this LRT, I perform an unrepeated 2’
factorial design with three factors: disease genotype relative risk R, = f,/ f, (1.75 or 2),

marker allele frequency p(b) (0.1 or 0.2), and number of trios or quartets (125 or 175).

Note that this work assumes multiplicative mode of inheritance, so that R, = R}. The
disease allele frequency Pr(d)is 0.12 or 0.24 when marker allele frequency Pr(d) is 0.1

or 0.2, with D'=0.95. Recombination fraction is set at 0. For each setting, I first
compare the power of the TDT and the power of this LRT on the same number of
case-parent trios. To test the statistical significance of main and two-way interaction
effects on the power difference (power of the LRT — power of the TDT), ANOVA is
used for the parsimonious model after removing the non-significant effects at 10%
significant level. Then I compare the power of the LRT on the same number of trios
and quartets (two parents, one affected child and the other unaffected). I also compare
the power of the LRT on the same number of trios or quartets when the simulated
parental phenotype data is used or not. Finally, I perform power calculation of the
LRT on trios with 80% available genotypes, and trios with 1% genotyping errors and
80% available genotypes. The power of the TDT is calculated analytically using the R
package powerpkg developed by Weeks (2005), based on the asymptotic power
formula of Abel and Muller-Myhsok (1998). The power of the LRT is calculated via
Monte Carlo computer simulation with 500 replicates. The data for each replicate is
simulated by the SLINK program.

2.7 Applications
Idiopathic scoliosis data for CHD7 gene
I apply the likelihood method to a previously published genetic study for

idiopathic scoliosis (IS), a common disease of children displaying a complex
inheritance pattern but lacking known causative genes. In that study, a follow-up
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analysis of genome-wide linkage scans provided supporting evidence of linkage to
human chromosome 8ql12 in a total cohort of 53 multiplex families in which 130
individuals were affected. A fine-mapping study of the CHD7 candidate gene encoded
in the 8q12 candidate region was subsequently performed by genotyping 25 single
nucleotide polymorphic (SNP) loci evenly spaced throughout the ~93 kb region. Two
of the 25 SNPs were not sufficiently polymorphic and were dropped. Application of
TDT methods produced significant results for ~19 of the 23 SNPs. Re-sequencing
conserved regions underlying the peak of association identified a potential functional
SNP, rs4738824, which was also significant in tests of transmission disequilibrium.
These data identified CHD?7 as the first candidate gene for IS (Gao et al., 2007).

I first study the 92 nuclear families derived from 53 IS families. The median
family size is 4, and there are 352 individuals (including duplicated individuals after
decomposition), of whom 145 were affected. While there are no genotype
inconsistencies in this data, there were 58.8% individuals with missing phenotype
information, and approximately 30% individuals with missing genotype data on each
SNP locus. I apply the likelihood method to test association between each of the 23
SNPs and IS. I compare the results with those obtained by TDTae under the
multiplicative mode of inheritance.

Then I apply this LRT to the cohort of 53 IS families with 313 individuals.
Among these individuals, 133 were affected with IS while the phenotypes of the
remaining 180 were unknown. The largest family size is 16. The median family size is
5. The data contains 3 four-generation pedigrees, 18 three-generation pedigrees, and
32 nuclear families, among which 3 are f-multiple marriages. I apply the likelihood
method to test association between each of the 23 SNPs and IS. I compare the results
with those reported by Gao et al. (2007).

Psoriasis data on chromosome 1725

The second application is to a psoriasis study. The data contains 79 SNPs and
29 polymorphic microsatellites from chromosome 17q25 at an average resolution of
80kb genotyped in 242 psoriasis families with multiple affected and unaffected
individuals each family. There are 1056 individuals, of whom 596 (56.4%) were
affected and 221 (20.9%) were unaffected. The largest family size is 13. The median
family size is 4. The data contains 6 three-generation pedigrees, and 236 nuclear
families, among which 4 are f-multiple marriages. The previously published study
identifies significant linkage for multiple SNPs and two peaks of strong association
with psoriasis in 17g25 region on Chromosome 17 (Helms et al., 2003). Gordon et al.
(2004) further studied 16 SNPs in this region. They found that two SNPs displayed
significant evidence of linkage at the 5% significance level after correction for
multiple testing via the false discovery rate method (Benjamini and Hochberg, 1995).
Gordon et al. (2004) also detected inconsistent genotypes at each of these SNPs.

I apply this LRT for 13 of the SNPs to test association between each SNP and
psoriasis. Approximately 30% individuals were untyped on each of the 13 SNPs. I
compare the results with those by the TDTae under multiplicative mode of inheritance
and the FBAT using additive coding (Laird, 2006). Note that the additive coding in
FBAT reflects an underlying additive or multiplicative mode of inheritance (Laird,
2006). I also compare the genotype relative risks estimated by the TDTae and this
LRT. To detect the genotyping errors, I write an R function that can identify families
with genotype inconsistencies. The FBAT removes the inconsistent families from the
analysis, while the LRT and the TDTae incorporate the inconsistencies into the
likelihood functions.
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Chapter 3 Grid-UOBYQA algorithm

Gordon et al. (2004) applied a two-stage optimization procedure to locate the
maximum log-likelihoods under each hypothesis. They used Powell’s quadratically
convergent algorithm as implemented in the ‘Numerical Recipes in C’ text (Press et
al., 2002). Their results suggest that the grid search and Powell algorithm, both of
which are direct search algorithms, work efficiently for their likelihood-based method
for general pedigrees with missing parental genotypes and genotyping errors.

Many direct search algorithms, including line search methods, the restriction of
vectors of variables to discrete grids, the use of geometric simplexes, conjugate
direction procedures, and true region algorithms that form linear or quadratic
approximations to the objective function, have been proposed for optimization
calculations that do not require the calculation of derivatives (Powell 1998). Among
these algorithms, Powell’s quadratically convergent method (Powell, 1964), denoted
as Powell in Gordon et al. (2004), was widely used and extended with 927 citations to
date. However, the problem of linear dependence in this algorithm may make the
search procedure end with the maximum/minimum of the objective function only over
a subspace of the full #n -dimensional case (Press et al., 2002). The linear dependence
problem was fixed by a singular value decomposition algorithm (Press et al., 2002).

The UOBYQA (Unconstrained Optimization BY Quadratic Approximation),
another derivative-free method developed by Powell (2000) for general unconstrained
optimization, uses multivariate quadratic Lagrange interpolations to approximate the
objective function and uses the trust region technique (Celis et al., 1985) to ensure
convergence. It uses two trust region radii. The first radius is similar to the trust
region radius in the standard trust region method, while the second radius is used as a
stopping criterion to control the goodness of the quadratic model. Numerical results
and theoretical analyses show that the UOBY QA algorithm is globally convergent for
general objective functions when the second trust region radius converges to zero. It
has also displayed quadratic convergence in numerical experiments (Powell, 2000;
Han and Liu, 2004). I implement the fixed Powell algorithm in R and compare its
convergence rate with that of UOBYQA by R package powell (Powell, 2000). Results
of numerical experiments show that the UOBYQA appears to have a faster
convergence rate.

Since UOBYQA is specifically designed for unconstrained optimization
calculation in multi-dimensions, one strategy to apply it to constrained optimization
problems is to constrain the search region by setting an infinite value to the objective
function when the search reaches beyond the parameter space bounded by the lower
and upper limits for each parameter. Since the discrete grid method was specifically
proposed for variables bounded by constraints (Torczon, 1997), on the constrained
search region, the discrete grid method can be used to identify several starting points
around which the optimal point may lie. Motivated by the simplicity of the discrete
grid search and the advantage in convergence of the UOBYQA, this work uses a grid
search in the first stage and the UOBY QA in the second stage similar to the two-stage
maximization procedure applied in the TDTae (Gordon et al., 2004). The composite
algorithm is called grid-UOBYQA.

The grid-UOBYQA algorithm parameters are a superset of those for the grid
selection and UOBYQA. At each grid point, the values of the objective function are
computed and then compared. Those grid points corresponding to the first few
largest/lowest values of the objective function are selected as the starting points for
the UOBYQA optimization. For each starting point, UOBYQA determines the local
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fit-statistic maximum/minimum. The largest/smallest of all observed maxima/minima
is then considered as the global fit-statistic maximum/minimum. The advantage of
Grid-UOBYQA is that it can provide a thorough sampling of the parameter space. For
a continuously differentiable objective function like the log-likelihood in this work,
this combined algorithm can make full use of the advantages of both grid search and
UOBYQA. It is good for situations where the best-fit parameter values are not easily
determined a priori, and where there is a high probability that false maxima/minima
would be found if one-shot techniques such as UOBYQA are used instead (Freeman
et al., 2001). However, the biggest disadvantage is that it can be very slow, especially
when the number of grid points is large.

In this work, grid-UOBYQA is applied to maximize the log-likelihoods under
each hypothesis. First 1 identify the K best starting points for the parameters
{7,,7,,@,}under the null hypothesis@, =@ =¢,, selecting from G’ grid points on a

3-dimensional rectangle. From each of these K starting points, UOBY QA optimization
will end with a local maximum of log-likelihood together with the corresponding
estimates {7,,,7,, }, k =1,..., K . Then I use these estimates as the starting values for

the genotype frequency estimation. I start with KG” grid points to find the optimal
value for{r,,7,,0,,¢,}. That is, for each of the K estimates{7,,,7,},k=1..,K, I

examine G rectangular grid points for{@,,¢,}. I select the K best starting points

from the KG’grid points. As in the null hypothesis likelihood maximization
procedure, the UOBYQA algorithm will find the local maximum of log-likelihood
under the alternative hypothesis starting from each of the K best points. If
the K searches under each hypothesis locate the same local maximum, I consider this
local maximum to be the global maximum under that hypothesis. If this condition is
not met, I try a larger G and a larger K. In the event of failure of a common
maximum, [ report the largest observed log-likelihood and the corresponding
parameter estimates under each hypothesis.

For example, suppose that I use a grid search for the K = 6 best starting points
for the parameters {r,,7,,0,} using G = 5 values starting from 0 and ending at 1, with

an increment of 0.25. The log-likelihood will be computed 5° =125 times and the grid
search will end with 6 starting points corresponding to the six largest log-likelihood
values under the null. If, for each of the six searches, the UOBYQA finds the same
local maximum log-likelihood, I denote the local maximum as the global maximum,

and record the corresponding estimate {ﬁOk,ﬁlk,éOk}. Then for each of the six
estimated pairs{7%,,, 7, }, each of the parameters {¢,,9,}is tested at 5 values: [0,

0.25, 0.5, 0.75, 1]. Starting from the six best starting points out of 6x5” =150, the
UOBYQA search will give the local maxima under the alternative. If the six searches
under the null or the alternative hypothesis do not converge to the same maximum, I
use K =8and G =10. If new search fails to locate the same maximum, I denote the
largest among the eight local maximums as the maximum under the null and the
alternative hypotheses.

This work uses the Powell package (Powell, 2000) for the UOBYQA search
procedures. The R program to implement the grid-UOBYQA maximization is
available on http://www.ams.sunysb.edu/~yayang.
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Chapter 4 Results

4.1 Null simulations

Table 17 lists the p-values from the KS goodness of fit test for each simulation
and the empirical type I error rates and their 95% confidence intervals. These results
suggest that, for these simulated data sets, the empirical distribution of LRT appears to

fit to a central y° distribution with one degree of freedom at the 5% significance level.

Specifically, this LRT is valid as a test of linkage in the presence of allelic association,
or as a test of linkage or allelic association.

4.2 Power comparison

Table 18 lists the powers of the TDT and this LRT based on the 2% factorial
design. The results suggest that the LRT is better than the original TDT (compare
columns labeled TDT and LRTb), even in the presence of 20% missing genotype data
and 1% genotyping errors (compare columns labeled TDT, LRT¢, and LRT). Since
the parental phenotypes are simulated in the SLINK, removing the parental phenotype
information will decrease the power to test association of marker with disease. That is
the reason why the values in columns labeled LRT* and LRT® are smaller than those in
any other column. The values in columns labeled LRT® and LRT" are larger than those
in columns labeled LRT® and LRT®, respectively, indicating that including information
of the unaffected children in the LRT appears to increase power of the family-based
association test.

Table 19 displays the ANOVA table of the unrepeated three-level design for the
power difference of the TDT and the LRT (see values in columns labeled TDT and
LRT® in Table 18). The three main effects, genotype relative risk at the disease locus
(GRRD), marker allele frequency (MAF), and number of trios (NT), and the
interaction of GRRD and NT are significant at the 10% significance level. Only the
main effects are significant at the 5% significance level.

4.3 Application to real datasets

Idiopathic scoliosis data for CHD7 gene
The results of this LRT and the TDTae for the 92 IS nuclear families are

compared in Figure 12, which shows—log,, (p-value) for each test. The results of the
LRT are consistent with those by TDTae. Specifically, p-value<0.05is equivalent
to—log,, (p-value) >1.3. Seven of the 23 SNPs have p-values that are less than 0.001
(or equivalently, —log,, (p-value) > 3). They are, from with the smallest p-value to the

largest, rs7843033, rs7000766, hcv509504, rs1038851, hcv509505, hev148921, and
rs7842389. The marker with the largest LRT of 12.96 (p-value =0.000319 ;
—log,, (p-value)=3.50) is rs7843033. This marker is the most significant marker in

the TDTae analysis. For marker rs7843033, the estimated genotype relative risks at
the marker locus are R, = él / ¢30 =2.40 and R, = ¢?2 / ¢30 =5.77, consistent with the

strong genetic effect observed for this marker locus in the previous study (Gao et al.,
2007).

Figure 13 compares the results of this LRT and other family-based tests in Gao
et al. (2007) for the 53 multiplex IS families. Table 20 lists more detailed results,
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including the marker genotype relative risks estimated by the TDTae and the LRT.
The results of the LRT are similar to those of the haplotype-based haplotype relative
risk (HHRR) association test (Terwilliger and Ott, 1992), the affected sib pair (ASP)
linkage test (Terwilliger, 1995) and the TDTae. Eight of the 23 SNPs have LRT
p-values that are less than 0.001 (or equivalently,—log,, (p-value)>3.0). From with
the smallest p-value to the largest, these eight SNPs are rs1483207, rs7843033,
rs4392940, rs7000766, rs4237036, rs1038351, hcv148921, and rs7017676. The most
significant marker identified by the HHRR, the TDTae and the ASP are rs7017676,
rs7843033, and rs7000766, respectively. All of them are among the eight most
significant SNPs identified by this LRT.

Figure 12: The TDTae and LRT p-values (—log,, transformed) on 23 SNPs in CHD7
gene for the 92 IS nuclear families
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Figure 13: The HHRR, ASP, TDTae and LRT p-values (—log,, transformed) for 23
SNPs in CHD7 gene for the 53 multiplex IS families
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Psoriasis data on chromosome 17g25
Figure 14 compares the results of the FBAT, the TDTae and this LRT on 13
SNPs, as indicated by —log,, (p-value). More detailed results are listed in Table 21,

including the genotype relative risks estimated by the TDTae and the LRT. At the 5%
significance level, the FBAT and the TDTae identifies 11 significant markers while
the LRT finds 7 significant markers. The three most significant markers by the FBAT,
locus#59, locus#62, and locus#65, also display significant association with the disease
using the TDTae and the LRT. Specifically, locus#65 is the second most significant
marker identified by the TDTae. Locus#65 is the most significant marker, and
locus#59 is the second most significant marker by the LRT. For locus#59, the FBAT
p-value is 0.0015, the TDTae p-value is 0.0116, and the LRT p-value is 0.0009, with
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estimated relative risk of the marker genotypesl’%1 =1.47 andl'LQ2 =2.16. For locus#65,
the FBAT p-value is 0.0020, the TDTae p-value is 0.0053, and the LRT p-value is

0.00086, With]%l =1.47 and 1%2 =2.17. The LRT gives quite different results from the

other two methods on locus#58, locus#60, locus#64 and locus#67. The FBAT and the
TDTae have significant results on the four SNPs, while the LRT p-values are greater
than 0.05. I conjecture that one reason for the different results may be that the
genotypes of the unaffected individuals are incorporated into the test statistic of the
LRT. As reviewed in Chapter 1, the TDTae considers only affected offspring.
Although the FBAT uses genotypes of unaffected offspring to infer the incomplete
parental genotypes, the test statistic does not contain the genotypes of the unaffected
children. Another possible reason is that the FBAT does not use the information from
the inconsistent families while the LRT and the TDTae incorporate the inconsistencies
into the likelihood functions. The Mendelian check on genotypes finds that there are
two or more families (6 at most) with inconsistent genotypes at each of these SNP
loci.

Figure 14: The FBAT, TDTae and LRT p-values (- log,, transformed) for 13 SNPs on

chromosome 17925 for 242 psoriasis families
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Chapter 5 Discussion
5.1 The likelihood function

The overall likelihood for a pedigree is
L:Z...Z HPr(gfounder) H Pr(gc |gfﬂgm)HPr(pl |gi)’
2, g, founder {c,f,m} i

where g ,,...- denotes a founder’s genotype, g, ,g, and g, denote genotypes for father,

mother and a child, and p, and g, the phenotype and genotype for the ith individual in

the pedigree of sizen. The likelihood function consists of three factors from left to
right: (1) probability of founder genotypes, (2) probability of children’s genotypes
given parental genotypes, and (3) probability of phenotypes given genotypes for all
individuals in a pedigree (Sham, 1997). Since the likelihood requires intensive
computation, many algorithms have been proposed to speed the calculation (Elston
and Stewart, 1971; Lander and Green, 1987; Kruglyak and Lander, 1998).

One of the most widely used algorithms for likelihood computation is the
Elston-Stewart algorithm (Elston and Stewart, 1971). Their algorithm works
efficiently for larger but simple pedigrees and a small number of markers. It computes
the likelihood as a function of the recombination fraction between a disease and
marker locus. That is, their likelihood algorithm is designed to test for linkage
whether or not there is an association (Gordon et al., 2004). Weeks suggests that
likelihood method based on the overall pedigree likelihood conditional on the parental
marker genotypes can be used as an alternative to the TDT (personal communication
through email).

There are other conditional likelihood methods that are proposed to test
association as extensions of the TDT (Spielman et al., 1993; Schaid and Sommer,
1993; Whittemore and Tu, 2004). Schaid and Sommer presented two likelihood
methods to test association between marker and disease for trios of two parents and
one affected child: (1) a likelihood method appropriate when HWE holds and (2) a
likelihood method conditional on parental genotypes when HWE does not hold. The
first Schaid-Sommer likelihood for  trios is

n Pr(ge.pe =A4.87:8u)
L, _H Ll e :HPr(gF’gM | pe, = A Pr(ge, | Pe, =A4,8r,81)
i=1

i=1 Pr(pc, =4)
where
Pr(gq =k,PC‘ =A4,8r:8u) _ A Pr(gc‘ =k|gr8u)Pr(gr.8u) k=01 0r2
Pr(p. = A) Q7o + T, + 9,7, o

The second Schaid-Sommer likelihood is

o E X2 E X21
Lo (R,R)=C| =2 _
cmy-d g | ()

y EZ X4 2E X4 1 X40
R,+2R +1) \R,+2R +1) \R,+2R +1) ~
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n, \(n n
where the constantC :( ? j( ! ]( ’ jwith n,the number of affected children

X0 NXoXq1X40 N\ Xs)
from mating type i(see Table 1), and x; the number of affected children from mating

typei with j mutant allelesd .Their results for the relative efficiency of these two

likelihood methods suggest that their second likelihood method may at times be
preferable, even when HWE holds.
Based on Schaid and Sommer’s work, Whittemore and Tu (2000) use the
likelihood function for a family at locus ¢,
Pr(g)Pr(p| &, R,1)

L,.=Pr(g|R,p,t)=
wr (g|R,p,t) Pr(p | R.1)

Their likelihood is defined as the probability of the family’s observed marker
genotypes g, given the family’s genealogical structure R, the vector of phenotypes p ,

and that ¢ is a DSL. Let g, denote the vector of genotypes at a DSL. They have
Pr(p|g) = ZPI‘(i) | & ps ) Pr(€psz | &)

g’DSL
after suppressing the dependence of the probabilities both on the family structure
Rand on the particular locus ¢. HereZ:g denotes summation over all possible

DSL

genotype vector g, . Substitution of the equation above into L, gives the conditional
likelihood as
- NPl 8rs)p s s
Pr = Pr ———=—="Pr .
(&1p) (g); by TCos | B)
When the marker locus is at the DSL (g,, =g ) or near to the DSL,
Pr(g, | ) equals or approaches 1. The likelihood for a family

=15 = Pr(p| gps = Pr(p| gps = =
PG )= Pr@) X S0 1= Pr(G ) S0 = i | 7).

That is, the following likelihood of marker genotypes given the phenotypes and the
family structure R can be used to test association for general nuclear families:
LWT* = Pr(g | ﬁ,R) = Pr(gFagM 7§6 | pFapMal_ié)

=Pr(gs.8u | PrsPu aﬁ@)Pr(gé |gF’gMﬁpF7pM7ﬁé)

The likelihood function in this work has two factors. The first factor,
Lyoir =Pr(gr,84 | Prs Py ), uses founder’s genotypes and phenotypes to estimate
population frequencies of parental marker genotypes (under HWE, it can be used to
estimate population frequencies of marker genotypes for all generations). The second
factor, Ly, junier = P1(&z | &7>&1»Pz) » €valuates disequilibrium in transmission of
marker alleles from parents to offspring. It follows the approach of the second

likelihood function in Schaid and Sommer (1993). The product of these two factors
gives the likelihood factor from a general nuclear family with complete parental

genotypes:
LYY = LFounderLNonfounder = Pr(gF’gM | pF’pM)Pr(gé | 8r-8um ’ﬁ@) .
I use a different notation L,, here to denote this likelihood for the convenience of

comparison of these likelihood functions.
Based on the review of the likelihood methods to test association (Schaid, 1996;
Clayton, 1999; Whittemore and Tu, 2000), Laird and Lange (2006) concluded that
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with parental data, all information on association is contained in L and

Nonfounder

likelihood-ratio tests based onLy,,;,...are optimal. Therefore, the LRT based on

L,, also contains the information needed to test association.

Note that L,, will be equivalent to L. if the following two equations hold:

Pr(gé | gF’gMal_jc) = Pr(g'@ | gpagM’pFapMal_jc) (30)
Pr(gM »8F | Py 3pF) = Pr(gM »8F | Pu 3pF’ﬁ(j) (31)

For a child, one can prove that

)= Pr(8c,8u >8> PusPrs>Pc)

Pr(g,,&r>PysPrsPc)
_ Pr(gy.gr)Pr(pp | gp)Pr(py |81 ) PT(gc 1818, PT(Pc | 8c)
Zpr(gM &) Pr(pr | &) Pr(py 184 ) Pr(8e | 8- 81 ) Pr(pe | 86)

&c
_ Pr(gy.gr)Pr(gc 18>8, Pr(Pc18c) _ Pr(gc.8u>8r-Pc)
D Pr(g, g )Pr(gc | gy 2 )Pr(pe |8e)  Pr(gy,grpe)

8c

Pr(ge | €y >&rs P> PrsPe

=Pr(gc |1y >&r>Pc)-

Also, given the mating type, the children’s genotypes are assumed to be conditionally
independent. That is,

PG |8y 8rsPu-PrrBe) = IPr(&c | €1>&rPois ProPe) > and

Pr(g. | 8u-8r>Pe) =[] Pr(gc | 8u>&rsPc)-

Therefore, equation (30) holds.

Equation (31) holds if one individual’s phenotype is dependent solely on his/her
marker genotype so that the parental phenotypes are sufficient to determine the
probability of the parental genotypes. However, the assumption will be violated under
the following scenarios:

The parental phenotypes are unavailable
Since this work assumes that the phenotypes are MAR, I have

Pr(g, & | Py = Miss,p, = Miss,p.) =Pr(g,,&, | p-)and
Pr(g,.gr | Py = Miss, p,. = Miss)=Pr(g,,,g,). If equation (31) is right, I have
Pr(g,.gy | Pc) =Pr(g,,g, ) when parental phenotypes are unavailable. However, it

is not necessarily true. Actually, Schaid and Sommer (1993) have derived that the
conditional likelihood

Pr(pc =D|g..8y)
Pr(p. =D)

2
ZQ-PI‘(gC =i|gr &u)
=Pr(g,.gy) =0

Pr(g,.gy | pc =D)=Pr(g,,g,)

70y + O, + Dy 7Ty
When ¢, = ¢, = ¢,, equation (31) holds. When the marker penetrances are unequal,
Pr(g,,g, | pc = D)is not necessarily equal toPr(g,,g,,). The implication is that the
mating type is not independent of the child’s phenotype.

The parental phenotypes are available
Weeks shows that children’s phenotypes can be used to infer the mating type
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of their parents, even when the parental phenotypes are available (personal
communication by email). Consider two trios with unaffected parents, one with an
unaffected child, and the other with an affected child. Suppose the marker allele a is
quite frequent. If there is linkage disequilibrium between the marker and a DSL so
that the db and +a haplotypes are the most frequent, then the unaffected child is more
likely to be +a/+a; and so that the mating type of the first trio is more likely to be
aa X aa at the marker. In contrast, the affected child is more likely to be +a/db, and so
that the mating type of the second trio is more likely to be aa x ab at the marker.

The violation of the assumption that supports equation (31) indicates thatZ,,

is not necessarily equal to L,,,.especially under the alternative hypothesis. But since
L,, contains information on association, it can be used as an approximation of L. .

Also, the results of null simulation and power calculation suggest that LRT based
onL,, is appropriate for the association test. Another advantage of L,, is that the LRT

based onL,, can be readily extended for large pedigrees with missing data and
genotyping errors with affordable computation complexity while L. will be

computationally inefficient when missing data and genotyping errors appear in large
pedigrees.

5.2 Missing parental genotype data

When the Elston-Stewart algorithm is applied to compute likelihoods for
pedigrees with missing parental genotype data, it always ends up including a
summation over all underlying complete phenotype and marker genotype vectors that
are consistent with the observed phenotype and genotype data (personal
communication with Weeks). That is, the derivation of the conditional likelihood for
pedigrees with missing parental genotype data is

Pr(gobs | l_j) = ZPr(gohs’gmis | ﬁ) .
g

Although it may be feasible to apply this marginal likelihood conditional on the
observed phenotypes to this work, the calculation of likelihood for large pedigrees
with substantial missing data will be computationally expensive (Nyholt, 2002).
Another disadvantage of the marginal likelihood is that it cannot be used to infer the
estimates when the genotypes are missing not at random (MNAR) (Little and Rubin,
2002). Purcell et al. (2007) proposed a test for nonrandom genotyping failure with
respect to genotype. They find that if the assumption of MAR is violated, one would
often expect to see an association between missingness and flanking haplotypes
(Purcell et al., 2007). That is, when marker genotypes are MNAR, the likelihood built
on the assumption of MAR (such as the marginal likelihood mentioned by Weeks)
may result in a biased test. Although this work assumes MAR for genotypes and
phenotypes for easy start, the conditional expectation of the complete-data likelihood
for nuclear families with missing parental genotype data can also be used if the MAR
is violated.

5.3 Genotyping errors
Optimal performance of genetic analyses relies on accurate and efficient

genotypes as genotyping errors reduce power to detect and map genetic effects. Even
at low error rates (< 2%), genotyping errors, of which 25% are Mendelian consistent,
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can result in biased test results (Douglas et al., 2000). Even worse, the
Mendelian-consistent errors are difficult to detect, Badzioch et al. (2003) found that
even when the error rate is assumed to be as high as 10%, only 50% of the
Mendelian-consistent genotyping errors can be found.

Another problem is the computational complexity to perform the LRT for
families with potential Mendelian-inconsistent and -consistent errors. It is difficult to
infer the estimate of error rate for large and complex pedigrees since the computation
time is exponential in the number of individuals when considering Mendelian-
consistent errors throughout the family members. I have written an R function to
perform the LRT for trios with potential genotyping errors (both consistent and
inconsistent), without any constraints on the number of errors per trio. The
computation is quite slow, and the likelihood tends to increase when the grid-
UOBYQA algorithm searches around the parameter limits (0 or 1). This results in
unreasonable parameter estimates. Therefore, 1 only consider Mendelian
inconsistencies and assume at most one inconsistency per nuclear family. Actually,
most studies for genotyping errors considered only Mendelian-inconsistent errors in
their models (Gordon et al., 2004; Ehm et al., 1996) or assumed that there was exactly
one genotyping error per family (Douglas et al., 2002) due to the computational
complexity.

In the real application of this LRT, I found that in the psoriasis data, there were
a couple of families with a strong evidence of paternal inconsistency. I check the
consistency of the genotypes for each family on each of the 13 SNP being tested and
detect inconsistencies of the paternal genotype with the genotype of one specific child
in at least 5 nuclear families. For example, the paternal genotypes of one psoriasis
family were inconsistent with those of the child with ID 1 on all 13 SNPs. When
removing these nuclear families with paternal inconsistency from the analysis, there is
no inconsistency or very few inconsistencies in the remaining families. To make use
of the information from families with paternal inconsistency, one strategy is to
remove the paternal genotypes from those families for all the markers, and then use
the likelihood function for families with missing parental genotypes to compute the
likelihood factors contributed by other individuals. That suggests the use of equation
(26), which is similar to the complete-likelihood function (see equation (1)), to
compute the likelihood factor for the family with one inconsistency.

5.4 Maximization algorithms

For simple family structures such as case-parent trios with complete or missing
parental genotype data, the expectation and maximization (EM) algorithm (Dempster
et al., 1977) is normally used to maximize the log-likelihood under the hypotheses of
association (Schaid DJ, 1996; Weinberg, 1999). However, it is not easy to extend the
EM algorithm to allow for larger families due to the difficulty in deriving the
expectation and maximization functions for arbitrary pedigree structures, especially
when there are missing data and genotyping errors in the pedigree. Besides the
difficulty in implementing the EM algorithm, this work applies grid-UOBY QA for the
following reasons. First, the theoretical convergence rate for EM algorithm is linear
(Dempster et al., 1977). When the associated model is complicated, it converges more
slowly than the UOBY QA since the later has a faster quadratic convergence rate while
being globally convergent (Powell, 2000). Second, the EM algorithm may converge to
a local optimum, while the grid-UOBYQA can provide a thorough sampling of the
parameter space, which makes it easy to locate the global maximum of the
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log-likelihood.

The biggest disadvantage of grid-UOBYQA is that the computation complexity
increases exponentially in the number of grids. This makes the computation very slow
when G is large. Therefore, we set G = 5to search for K = 6 best starting points under
the two hypotheses.

The experience in performing the simulations and applying the likelihood
method to the real data sets is that the maximization is reasonably fast when the data
are from nuclear families with little/no missing information. The computational effort
increases when considering more general pedigrees and/or pedigrees with more
missing data and inconsistencies. These results are similar to those observed with the
TDTae.
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Table 1: Pr(g.|gr.g, ), the probability of a child’s genotype conditional on the
parental genotypes

Mating Type"  {gs.&y}  Pr(gs.gy) & =0 gc=1 g.=2

6 {0, 0} r,’ 1 0 0

5 {0, 1}/{1, 0} 27,7, 12 12

4 {0,2}/{2,0}  2m,m, 0 1

3 {1, 1} 7 1/4 1/2 1/4
2 {1,2}/{2,1} 27,7, 0 12 12
1 (2,2} r,’ 0 0 1

“The mating types are consistent with those in Schaid and Sommer (1993).
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Table 2: Pr(g.|g;.8.,Pc = 4), the probability of a child’s genotype conditional
on the parental genotypes and child being affected

{8r 8} g-=0 gc=1 gc-=2
(0,0} 1 0 G
4 4
O.LALOE 5y &+ 0
{0,21/{2, 0} 0 1 5
. 4 2, 9,
WU S0 vs, 042040, 62010,
9 5
L2y o 4+, 0+9,
{2,2} 0 0 1
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Table 3: Pr(g.|gr.g,,P- =U), the probability of a child’s genotype conditional on
parental genotypes and child being unaffected

{gr>8u} g&=0 gc=1 g8c=2
{0, 0} 1 0
1- 0 1- 1
{0’ 1}/{1, 0} 2_¢0¢_¢1 2_¢o¢_¢1 0
{0, 2}/{2, 0} 0 1 0
L1 1-9, 2(1-9¢) 1-¢,
U 4T 2029, 4-9,-20-0, 4-0,-20-0,
1_¢1 1_¢2
th 23/, 1) 0 2-9,-9, 2-0 -9,
{2,2} 0 0 1
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Table 4: Pr(g. |g,,,8c,p,)for a trio with untyped father

{gu-gc} Pr(gr=0lg,,8c.pr) Prg.=1lgy.8c-Pr) Pr(g,=21g,,8c.Pr)

271, 7,
0, 03 27y, +mmn, 27y, + 7w, 0
{0, 1} 0 7\, 27,1,
0, + 27,11, 1, + 27,11,
(1,0 2741, 7, 0
27,n, + 7w, 27,n, + 7,
(1,1 U 7T\, Ty,
Tl + 7017, + 7057], oMy + 70\, + 70,17, Ty + 70\, + 72,11,
(1,2} 0 7, 27,11,
7,1, + 27,17, 1, + 27,17,
2,13 27/t i 0
2ron, +my, 2ron, + i,
7\, 271,
2.2} 0 1, + 27,17, 700, + 270,17,
&, if pp=4

In this table, 7, =<1-¢, if p, =U
1 if p.=Miss

52



Table S: Pr(g..g, |gc,pr =Miss, p,, = Miss) for a trio without parental data

{gr-8u} g&c=0 gc =1 8c =2
4m;
10,03 Az, +4x,m, + 7} 0 ’
0.1}/{1,0 A7 — 0
{0, 1}/{1, 0} 4”§+47[0”] +7Z'12 2z, 7z, +4n, 7, +7r12 +2r,7,
2z, 7,
{0, 2}/(2, 0} 0 TR P Y 0
o 7 7 7
’ 471'§+47Z'07l'1+7l'12 27[071'1 "'471-0”'2"'7[12 +27[1ﬂ'2 7[124-471-1”2-'-472.22
T dr,x
{1,2}/ {2’ 1} 0 172 5 5 1772 5
2y, +4rn,z, + 7y + 217, 7 +Amm, +4r,
4r?
(2,2} 0 0 v

7} +aAnm, +4r;
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Table 6: Pr(g,..g, | gc, Py, P, ) for atrio with two untyped parents

{gr8u} gc=0 gc=1 8c=2
27.0(0, p,)O(0,
0
{O 1} ﬂoﬂle(o’plf)@(l’pM) ﬂoﬂlg(o’pF)g(lapM) 0
’ DO Dl
27, 7,0(0, 02,
{0, 2} 0 70, 0( ZI;F) (2,py) 0
1
{1 0} ﬂlﬂoe(lﬂpF)e(O’pM) ﬂlﬂog(lzpF)G(Oan) 0
’ DO Dl
an 'm0, p)O0,py) O p)OWLp,) 2776, p )0, p,,)
: D, D, D,
(1,2} 0 77,0, pr)O2, py) 77,004, pr)O2, py)
: D, D,
27,7,0(2, p.)O(0,
2,0} 0 2 70,O( gF) 0, py) 0
1
21 0 7[27[16(2apF)®(1>pM) 7[27[16(2=pF)®(1apM)
{ b } D1 D2
27[229(2, pF )9(29 pM)
{2, 2} 0 0 D,
&, if p=4
In this table, ©(i,p)=41-¢, if p=U ,i=0,1,2.
1 if p=Miss

In the event thatp, = p,, = Miss, ©(, p,.)=0(, p,,)=1and Table 6 is reduced to
Table 5.
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Table 7: Pr(g.|g,.&»pr) foranuclear family with untyped father

{gM’{gé}} Pr(gF:0|gM’gé>pF) Pr(gF:”gM’gC’pF) Pr(gF:2|gMa§5>pF)
2", r
0y o R 0
2" ,n, +mn, T, + 7,
ﬂ. 2’11,(:'”
(0, {13} 0 — e
Tn, + z,n, T +2",n,
{0, {0,1}} 0 1 0
2"0.07[ T
oy o 0
2% mon, + @, Ty + 70,77,
(1, {1 oMy i 7,0,
’ Tl + 7m0, + 7,00, o]y + 72,1, + 70,17, Ty + 70,0, + 7,00,
T 2”2.671-
{0, 2} 0 o 65
T+ 7T,, mn, +2"%C m,n,
2"0.07[ /n
Loy e 0
20w, + 7, ZoTlo + 747,
{1, {0,2}} 0 1 0
V4 2’72,Cﬂ-
{1, {123} 0 o 65
Tn + 7,1, T, +2"m,n,
{1, 10,1,2}} 0 1 0
2”1.(‘ T T
oy g 0
2" on, +mmn, T, + T,
T 2"2.07[
{2a {2}} O 2]’721 "2.2:72
T, + T, 7T, + 27 7y,
{2, {1,2}} 0 1 0
[ if pp=4

In this table, 1, =41-¢. if p,=U

1 if pr=Miss

. The first column labeled {g,, ,{g}} lists the

maternal genotypes and the set of children’s genotypes.
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Table 8: Pr(g,.g, |€:,Pr,P) ) for anuclear family with untyped parents

{gr:8u} {g:1=10} {g:1=1{ {g:1=12
2" 720(0, 0(0,
0, 0} 7,000, p,)090,p,,) 0 0
D,
0, 1} 7,700, p.)O(, p,,) 7,700, p)O(, p,,) 0
’ D, D,
2" 7,000, pr )02, p),)
{0, 2} 0 D, 0
(1,0} 77,0, )OO, p,) 77,0, p)O(0, p,,) 0
’ D, D,
0 27" 1O, p)O, ) 70, p)O0 p,) 27" 101, p)O, )
’ D, D, D,
(1,2} 0 77,090, p)O2, p,,) ”1”29(17Pp)®(2,PM)
’ D, D,
2" m,m,0(2, pr)O(0, py, )
{2,0} 0 D, 0
2.1 0 7,102, pr)O, py) 7,m02, pr)O(, py,)
’ D, D,
2" 120(2, O(2,
{2’ 2} 0 0 7[2 ( DpF) ( pM)
2
{8r:8u) {g:1=1{01} {g:1 =12} {g:1=10,2}/{0,1,2}
{0, 0} 0 0 0
D,
{0, 2} 0 0 0
D,
(.1 70, p)O p,,) 7O, p)O(, py) !
’ D, D,
2me 7[26(1’ pF)@(za Pu )
{1, 2} 0 D, 0
{2, 0} 0 0 0
2,02, p )0, p,,)
2 1 2 F M
{2,1} 0 D, 0
{2,2} 0 0 0
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Legend of Table 8

¢ if p=4
In this table, O, p)=41-¢. if p=U ,i=0,1,2.
1 if p=Miss

{g:} =1{0}indicates that all the children in the family are genotyped 0. Similarly,

{g oy =1{l}and{ g &+ =12} indicate that all the children are genotyped 1 and 2. Also,

D, =2"<7;0(0, p.)O(0, p,, )+ 7,m,0(0, p, YO, p,, )+ 7, 7,01, p,. )O(0, p,, )
+27 720, p, )0, pyy );

Dy =7y7,0(0, p)O(, py ) + 2" 7,7,0(0, p)O(2, pyy ) + 7,78,0(L, p - )OO0, py, )
+ 77001, p )0, py ) + 77,001, p)O2, p))
+2"¢ 7,7,0(2, p, )OO0, p, )+ 7,7,0(2, p, O, p,y )

D, =27 70(, p)O(, p, )+ 7,7,0(1, p )02, p, ) + 7,702, p)O(, p,,)
+2"° 1302, )02, Py );

Dy, =2"7,[O(0, p)O(, p,, ) + O, p. )OO, p,, )]+ 7,0(1, p)OU, p,,);

Dy, =m©(1, p)O(, py, ) +2" 7,[O(, pr)O2, py )+ O(2, p)O(, pyy )]
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Table 9: Pr(g, | gsr>&ur»&u» &8¢ Pr) for a pedigree with untyped father and
genotyped paternal grandparents: Part A

{gFF7gMF} g-=0 gr =1 gr=2
{g1-18:11=10,{0}}
{0, 0} 1 0 0
2"< (0, p,.) o, pr)
1
OHALO e p+0p) 27 00,p,)+60,p,) 0
- 2"¢ 090, p,) 20(L, pr) 0
’ 2" 0(0, pp)+20(, p,) 2700, pr)+20(1, py)
(1,2)/{2, 1} 0 1 0
{gu-1g:11 =10, {1}}
{0, 1}/11, 0} 0 1 0
0 0 20(1, py) 2" 02, py)
’ 201, pp)+2"O2, pr) 20(1, p)+2"< 02, p,)
Q] M.c
(1,212, 1} 0 (l’pf) 2"°0Q.pr)
O, py)+2"0OQ2,py) 0, pp)+2" 02, pr)
12,2} 0 0 1
{gM>{g6}}= {07 {071}}
*, *1 0 1 5
{gu-18:11 =1,{0}}
2@ ol
{0, 11/{1,01 : (0,[7F) _ ( pF) 0
270 @(0,[7,;)"1‘@(1,]?,:) 2 o.c@(opr)+®(1,pF)
01 2"<0(0,p) 20(1, pr) 0
’ 2"<0(0,py)+20(1, p,) 2"<0(0, p,)+20(, p,)
11,2}/{2, 1} 0 1 0
{gM’{gé}} = {15 {1}}
00, p,) o1, py)
OHALO a0, b+ e py) (0. p,)+O(L py) ‘
. 0. p,) 2001, p,) o2, p,)
L 80,7200, p,) 02 pr) O0.p) 2000, + 02 pr) 0. pr)+26(L p,) + 02, py)
o(, pF‘) 02, PF)
e 0 oL, p,)+ 02 py) oL, p,)+0(2. py)
tgu-18:11 =1, 12}}
{0, 1}/{1, 0} 0 1 0
w1 0 20(L, pr) 2" (2, pr)
: 20(L,p,)+2 02 p,) 200, p,)+2" O p,)
@ 1 e
L2 0 (’{)F) 202, pr)
O p )42 02 p,) O p,)+2" 02 p,)
9, if p=4
In this table, ©(i,p)=41-¢, if p=U ,i=0,1,2.
1 if p=Miss

{*, *} in the first column labeled {g ., g, } denotes all possible mating types of the
paternal grandparents. {g,,{g}} indicates the maternal genotypes and the set of

children’s genotypes.
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Table 10: Pr(g; | &> 8> &u»&¢» Pr) for a pedigree with untyped father and
genotyped paternal grandparents: Part B

{gFF7gMF} gF=O gr=1 gF=2
PR TETRTYTH
27 0(0.p,) o(.p,)
O BALOY a0 )+ 0p) 200, p,)+ 000 py) 0
- 2700, p, ) 20 p,) .
’ 2"¢0(0,p)+20(,p,)  2"0(0,p,)+20(, pr)
{gy:18:11=1,112}}
10, 1141, 0} 0 1 0
. . 2001, p,) 25002, p, )
L1 200 p,) + 2 O2.p,) 200 pr) 2 O py)
o, py) 202, py)
1.2)42. 1 0 O p,)+2" 02 py) O p,)+2" 02 py)
1&u-18:11=11,{0,2}/{1,{0,1,2} }
{8 18- =12, {1}}
2700, ) o(.p,)
O BALOY 0. )+ 0p,) 2700, pr)+ O pr) 0
. 2" 0(0, py) 20(L pr) 0
B 001200 p,) 27 0(0.p,) + 2001, pyr)
{gu-18:11=12,{2}}
10, 1111, 0} 0 1 0
1 1 0 2®(lapF) 2’12(‘ @(27pF)
.1 200 p,) + 2 O2.p,) 200 pr) 2 02 py)
o, p,) 2002, p, )
1.2)42, 1 0 O p,)+2" 02 py) O p,)+27 02 py)
{gMa{gé}} = {2’ {192}}
5 0 ] 0
9, if p=4
In this table, ©(i,p)=41-¢, if p=U ,i=0,1,2.
1 if p=Miss

{*, *} in the first column labeled{g,.,g,, } denotes all possible mating types of the
paternal grandparents. {g,,{g}} indicates the maternal genotypes and the set of
children’s genotypes.
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Table 11: Pr(g,,g, | &rr>&ur»>&:» Pr»> Py ) fOr a pedigree with untyped parents and
genotyped paternal grandparents
{8r &} {g:} =10} g1 =11} {g:1 =12}
{O, O} 2 . wO”OQ(OD’pF )8(07 pM) 0 0
0
@700, p )0, py, ) @,7,0(0, p)O(, p,,)
{0, 1} D, D, 0
0,2} 0 2" w,m,0(0, pr)O(2, py) 0
Dl
(1,0 0,701, p )00, p,,) 07,0, p)O(0, p,,) 0
DU Dl
Ly Zremelp)elp,)  @rOhpIOhpy) 2" @m(pr)Odpy)
D, D, D,
07,0, pr )02, py) 07,00, pr)OQ2, p,,)
{1,2} 0 D, D,
2,0} 0 2", ©12, p. )OO0, p,,) 0
Dl
2,1 0 @,70(2, p)O, py) @,7,0(2, p)O(, py,)
’ } Dl DZ
2”1(' 0)171'26(2, Pr )6(27 Pu )
(2,2} 0 0 )
8r .8} {81 =101 {81 =112} {g:1=10.2}/{0,1,2}
{0, 0} 0 0 0
{0’ 1 } 2 ¢ w[)ﬂ'lg(%pf)@(lb pM) 0 0
01
{0, 2} 0 0 0
{1’ 0} 2 Ovcva)lﬂoe(zpF)e(oﬂpM) 0 0
01
(1 @701, pr)O1, py) @70, pr)O(, py,) 1
’ D()l D12
{1’2} 0 22(‘@”28(17PF)®(2JPM) 0
D]Z
{2, 0} 0 0 0
2,1} 0 2" w,r0(2, p, )0, p,,) 0
D12
{2,2} 0 0 0
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Legend of Table 11

9, if p=4
In this table, ©(i,p)=41-¢, if p=U ,i=0,1,2.
1 if p= Miss

{g:} =10} indicates that all the children in the family are genotyped 0. Similarly,
{g:} =11} and {g.} = {2} indicate that all the children are genotyped 1 and 2,
respectively. Also,
D, =2"< @ym,©0(0, p;)O(0, p,,) + 0,7, O(0, p)O(L, p,, ) + &4 7,0(L, p- )OO0, p,,)
+2"omO(l, pr)O(, py)
D, = o,m,0(0, p)O, p),) +2"< 0, 75,0(0, p)O(2, p), ) + & 7,0(1L, pr)O(0, p), )
+om0(, p)O(, py,) + @m0, pr)O2, p),)
+2" 0,102, pr )00, pyy ) + @, O(2, p)O(, py,)
D, =2 om0, p)O(, p,,) + 07,0(, pr)O(2, p),) + @, 7,02, pr)O(, py,)
+2"™ 7,002, p.)O2, p,y)
Dy, = 2" [@,1,0(0, p,)O(1, p )+ &1,0(1, p )OO0, p, )]+ 7O, p,)O(, p, )
D, = @m0(L p,)O(, p,) +2" [07,0(L p, )02, p,) + 2,702, p, O p,, )]
The coefficient @,, i€ {0, 1,2} varies with genotypes of paternal grandparents as

follows:
{8rr>8ur) @, 2 @,

{0, 0} 1 0 0

{0, 1}/{1, 0} 0.5 0.5 0

{0, 2}/42, 0} 0 1 0

{1,2}/{2, 1} 0 0.5 0.5
{2,2} 0 0 1

{0, ?}/{?, 0} 7, +0.57, 0.57z, + 7, 0

{1,23/42,1}y  0.57,+0.257, 0.5 0.257, +0.57,

{2,73/{?,2} 0 7w, +0.57, 0.57, + 7,

“?” in the first column labeled {g,,,g,,} indicates that the parental genotype is
missing.
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Table 12: Pr(g, | g4r> 8y »&¢» Pur = Miss, p,) for a pedigree with untyped father and

paternal grandmother: Part A

8rr gr=0 gr =1 gr =2
181 -18:11=10,{0}}
20 (0, + s ram,
0 0
no.c 7 7 o c s T
2 (ﬂ0+71)770+(71+7r2)77, 2 (ﬁo+7‘)m+(7‘+7rz)m
n T
2" (7, +7‘>77n n,
1 e T, 0
2 (g + 20, 4, AR
2 0 1 0
{gy- 1811 =10, {1I}}
0 0 1 0
n 2ne (v,
1 0 771+2””' (ﬂ+”2)n2 n ¢ ﬂ-l
2 771 +2 (7*’”2)”2
T
(o + =0, 2 (Zramm,
5 0 2 2
wo T
(o + 0, + 27 (), n+2m e,
{gx-18:11=1{0,{0,1}}
* 0 1 0
{8y 181} = {1, {0}}
2me (1, +%)770 (%Hrz)m
0 0
y V4 V4 e V4 V4
2" (72 + M, + (-4 7)1, 2" (my + Iy + (Z+ 7)),
2 2 2 2
o T
2" (7, +7‘)770 Ul
1 Ny ¢ ”l
27,05(”0_'_%)”0_‘_771 2 (”0+7)770+771
2 0 1 0
{8 18:1 1 =1L{1}}
T T
(”o"’?l)’]o (71'*'7[2)771
0 0
T T T T
(7[0"’7])770"'(7]"'”2)771 (”0+7])770+(71+”z)771
T T
(7 o+ 71)770 m (71"'”2)772
1 T, T,
T z + D), +m, + (4 z z
o omg e+ Cremn, MM G T e+ (e,
(zy+ 00, e,
2 0
T T T T
{81811 =1, {2}}
0 0 1 0
2 2ne (v mm,
1 0 me
’7[+2 (7+”2)’72 nl+2”2(‘(%+ﬂ-2)772
T ny o T
(”o+7|)771 2" (7]"'”2)772
2 0

3 e T
(7, +71)771 +2 (7]"'7[2)772

V4 e o T
(”0+7])771+2 : (71"'7[2)772
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Legend of Table 12

&, if pp=4
In this table, 17, =41-¢, if p, =U . “*’in the first column labeled g, denotes all
1 if pr=Miss
possible mating types of the paternal grandparents. {g,,,{g}} indicates the maternal
genotypes and the set of children’s genotypes.
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Table 13: Pr(g, | g4r> 8y »&¢» Pur = Miss, p,) for a pedigree with untyped father and

paternal grandmother: Part B

8rr gr=0 gr=1 gr=2
8ui1ge1=1{01}}
o T T
27+ )y & +mm,
0 0
n T, T ” T T
2 0'((”0+71)770+(71+7[2)771 2 0'((”0+71)770+(71+7[2)771
ny ¢ T
2% (7, +71)770 Ul
1 T
noc T 2™ (1, +*I)770 +7,
210 (7 += )y 11 2
2 0 1 0
8o 18t =1, {L2}}
0 0 1 0
ny e T
771 2%¢ (71"'”2)772
1 0 +2"¢ (£+7r ) z
n 2 27, m 20 (71"'”2)772
T /2
(7o += ) 28T,
2 0
T e 7T e 7T
(”0 +71)771 +2" (71"'”2)772 (”0 +71)771 +2 (71"'7[2)772
18w :18:11=1,{0,2}}/{1,{0,1,2}}
* 0 1 0
{gu-18:11=12.{1}}
o T T
2" (g + D), (S-+m)m,
0 2 2 0
e u 4 e u 4
20Ty + 7y + k) 20 (i + (),
n e 4
20 (7, +71)770 U
1 T 0
n T 2n"c(” +*])77 +17
20 (7[0 +7I)7]0 +77, 0 2 0
2 0 1 0
{ga.18:11=12,{2}}
0 0 1 0
nye T
Ui 2% (71‘*'7[2)772
! 0 +2me(Pitr,) 7
g 2 2 7, +2"¢ (71"'”2 .,
V3 o TT
(7, +71)771 2% (71”52)772
2 0
T nye T T nye T
(7[0"'71)771"'2 : (71"'”2)772 (”0+71)771+2 (71"'”2)772
{gy 8.1 =12, {1,2}}
* 0 1 0

9, if pr=A4

In this table,n, =<1-¢. if p,=U . “*’ in the first column labeled g, denotes all

1 if pp=Miss

possible mating types of the paternal grandparents. {g, ,{g}} indicates the maternal

genotypes and the set of children’s genotypes.
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Table 14: Error model Pr(g,,, | £7,..)

gTrue = 0 gTrue =1 gTrue = 2

gop =0 1-7n 0.5y 0
Cops =1 n -y n
Cops =2 0 0.5y -7

Table 15: Pr(g,,.. | 2o, )

8ons =0 Zops =1 8ows =2
_ (I-mz, nr,
gTrue - O 0
(-mz,+0.5y,  nrz,+(1- )7, +17,
g -1 0-577[1 (1_7)7[1 0'577[1
i (1_77)7[0 +0-5W1 17, +(1_7)”1 T, 057“1 +(1—7])7Z'2
1-nrx
. 2 . n, (-,

nr, +(1_ 7’)7[1 +777[2 0'577[1 + (1_77)7[2
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Table 16: Pr,_ (G

error True.i

| (#?Ob“. ,M = 0) for inconsistent nuclear families

{8ops s Gops s + =10, 0}

8 obs.¢ &rrier =1 8opsr =0 Eruer =1 8onsr =0 Erruec =0,8opc =1
22 172 Vs -
- 0.57(1- 7 0.57(1- )z n(-mrm;
a yYA=pa; +n-mz,  y(l-pz +n(-mz;,  y1-pz +nl-mnz,
{8ossr>&onsnr t =10, 11/41, 04/{0, 7}/{?, 0}
nge.F = 1’ gObs.F = 0/
~ = 1’ = 2 —_—
gob&c ng&M — 1’ gObS‘M — 0 gTrueAC gObs,C
Nyo 22 1 - —
T TT
nye=1 — —— -
7, +7, 7, +7,
{8 ovs.r>&onsat + =105 2} /{2, 0}
g . Erier =L &oper =2/ &rec =L 8opsc =0/ Errier =1 &oper =0/
ome Erruemr =L &opsr =2 8ruec =L 8opc =2 Eruemt =1 &opnr =0
Ny 21, | . N
n .21
Hye 22, |
me=0
n-21,
L.C 0 . 1
n,e 21
n.,.=0,
1.c 0 . |
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Legend of Table 16

In this table, ‘?” indicates that the paternal genotype or the maternal genotype is
missing in the observed parental genotypes{g,,, »»&os - 10 the last two columns,

‘---” indicates that the probability Pr, (€., | €os:»M =0)is not available.
Whenn =y,

0.5y(1- )z} _0.57} and n(-nr} 7

i

_ = i=00r2.
W-pm+nl-mr: z+r  pl-pr+nl-ma®  m+z
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Table 17: Results of null simulation

Set  10% Signif. level 5% Signif. level 1% Signif. level KS (P-value)
1* 0.110[0.085,0.140]  0.058 [0.041,0.082] 0.010[0.004, 0.023] 0.050 (0.1646)
2®  0.112[0.087,0.143]  0.048 [0.032,0.070] 0.010 [0.004, 0.023] 0.047 (0.2179)
3¢ 0.114 10.089, 0.145] 0.058 [0.041, 0.082] 0.010[0.004, 0.023] 0.035 (0.5704)
49 0.118[0.093,0.149]  0.058 [0.041, 0.082] 0.024 [0.014,0.041] 0.043 (0.3145)
5¢ 0.11210.087, 0.143] 0.076 [0.056,0.103] 0.018 [0.009, 0.034] 0.031 (0.7218)
6" 0.12210.096, 0.154]  0.068 [0.049, 0.094] 0.022[0.012,0.039] 0.059 (0.0606)
78 0.110[0.085,0.140]  0.052[0.036,0.075] 0.006 [0.002,0.017] 0.057 (0.0761)
8" 0.114[0.089,0.145]  0.064 [0.046,0.089] 0.010 [0.004, 0.023] 0.055 (0.0929)
9! 0.114[0.089, 0.145]  0.048 [0.032,0.070] 0.008 [0.003,0.020] 0.042 (0.3395)

200 trios, 600 individuals, 100% genotyped, no genotyping errors;
®200 quartets, 800 individuals, 100% genotyped, no genotyping errors;

100 mixed quartets, among which 25% contain affected sib pairs while 75% contain sib pairs

with discordant affection status, 80% genotyped, no genotyping errors;

992 nuclear families, 366 individuals, 100% genotyped, no genotyping errors;
€92 nuclear families, 366 individuals, 80% genotyped, no genotyping errors;
92 nuclear families, 366 individuals, 80% genotyped, 1% genotyping errors;

£53 multiplex families, 313 individuals, 100% genotyped, no genotyping errors;

%‘53 multiplex families, 313 individuals, 80% genotyped, no genotyping errors;

'53 multiplex families, 313 individuals, 80% genotyped, 1% genotyping errors;

95% Wilson confidence intervals in brackets determined using binomial distribution as
implemented by function binconf'in R (written by Rollin Brant).
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Table 18: Power comparison of the TDT and this LRT ata = 0.05

R Pr(d),Pr(h) N TDT LRT* LRT® LRT® LRT® LRT® LRT'
125 0.612 0.518 0.726 0.704 0.664 0.552 0.736

1.75 0.12,0.10 175 0.740 0.654 0.842 0.826 0.788 0.696 0.862
0.24. 020 125 0.774 0.700 0.854 0.857 0.820 0.778 0.892

’ 175 0.885 0.838 0.958 0.952 0.930 0.856 0.960

0.12. 0.10 125 0.792 0.754 0.896 0.890 0.870 0.810 0.914

200 ’ 175 0.899 0.842 0968 0.954 0.930 0.882 0.970
0.24.0.20 125 0915 0.888 0974 0.954 0932 0.924 0.978

175 0974 0946 0.996 0988 0.992 0974 0.998
*Trios, without using information of parental phenotypes, 100% genotyped

*Trios, using information of parental phenotypes, 100% genotyped

“Trios, using information of parental phenotypes, 80% genotyped

Trios, using information of parental phenotypes, 80% genotyped, 1% genotyping errors
°Quartets, without using information of parental phenotypes, 100% genotyped

fQuartets, using information of parental phenotypes, 100% genotyped

The label of the first column, ‘ R, ’, stands for the genotype relative risk at the disease
locus defined as f;/ f, . Under the multiplicative mode of inheritance, R, = f,/f, = R .
The label of the second column, ‘ Pr(d), Pr(b) ’, stands for the population frequency

of the disease allele d and the population frequency of marker allele 5. The label of
the third column, ‘N”, stands for the number of families in the power calculation.

Table 19: ANOVA table of the unrepeated 2° factorial design on the power difference

of the TDT and the LRT
Response: Difference in Power
Sum of Mean Sum Signif.
Factor DF Square of Square Frvalue Pr(>F) Codes”
GRRD 1 0.00165312 0.00165312  44.1324  0.006950 *E
MAF 1 0.00300312 0.00300312  80.1724  0.002939 **
NT 1 0.00103512 0.00103512  27.6340  0.013410 *
GRRD:NT 1 0.00035112 0.00035112  9.3737  0.054921
Residuals 3 0.00011237  0.00003746

3Significance Codes: [0, 0.001]: ***', (0.001, 0.01]: "**, (0.01, 0.05]: "*', (0.05, 0.1]: ',
(0.1, 1]:"".
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Table 20: Results of four family-based tests (ASP, HHRR, TDTae and LRT) for
23 SNPs in CHD7 gene

value GRRM® GRRM
. NP (TDTae) (LRT)
ASP  HHRR TDTae LRT R R, R R,

rs4738813 0.016 0.39 0.009 0.003  1.900 3.609 1989 3.955
rs1254430 0.005 0.004 0.002 0.011 2373 5.627 1.843 3.396
rs9643371 0.002 0.006  0.0007 0.003 2478 6.139 1962 3.848
rs1017861 0.05 0.008 0.002 0.005 2.084 4342 1.894 3.586
rs1325602 0.500 0.184 1.000 0.795 1.000 1.000 1.154 1.332
rs4288413 0.284 0.046 0.030 0.006 1.755 3.079 1969 3.877
rs7000766  0.0002  0.003  0.0005 0.0005 2.701 7.294 2.334 5448
hev148921 0.013 0.008  0.0008 0.0007 2.196 4.820 2.092 4.378
rs1483207 0.004 0.486 0.007  0.0003 2.222 4933 2442 5965
rs1483208 0.006 0.002 0.003 0.003 2.284 5216 2.133 4.551
rs1038351  0.0008 0.004 0.0002 0.0007 3.059 9.355 2.385 5.689
rs7843033 0.001 0.002  0.0002 0.0004 2994 8961 2.469 6.095
rs7002806 0.002 0.013 0.009 0.027 2.049 4200 1.693 2.867
rs7842389  0.0004  0.003 0.001 0.001 2.518 6.341 2.194 4.812
rs7017676 0.009  0.0007 0.0003 0.0008 2.860 8.182 2332 5.440
hev509505 0.035 0.001  0.0008 0.001 2455 6.028 2.233 4.986
rs4392940  0.0006 0.002  0.0003 0.0004 2909 8460 2410 5.810
rs4237036 0.008 0.002 0.002  0.0006 2.340 5476 2344 5494
rs13280978  0.006 0.003 0.004 0.002 2.105 4.431 2.151 4.626
rs4301480 0.004 0.001 0.003 0.011 2.498 6.240 1.907 3.638
rs10957159 0.5 0.084 1.000 0.620  1.000 1.000 1.154 1.332

22 rs10092214  0.019 0.50 0.434 0.169 1.181 1395 1332 1.774

23 183763591 0.027 0.50 0.288 0.052 1.289 1.660 1.531 2.344
*Genotype relative risks at the marker locus (GRRM) are estimated under the multiplicative mode
of inheritance

DN DN = = = = = = e e e
— S 0P AN R L= ORXINN KW~
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Table 21: Results of three family-based tests (FBAT, TDTae, and LRT) for 13 SNPs
on chromosome 17q25 for 242 psoriasis families

Locus FBAT TDTae LRT ILZ ILZ HINC
p-value p-value p-value 1 2

#57  0.0071 0.0228 0.0082 1.359 1.848 4
#58 0.0047 0.0162 0.1793 1.172 1.374 6
#59 0.0015 0.0116 0.0011 1.468 2.156 3
#60  0.0089 0.0342 0.1327 1.190 1.417 3
#61  0.0085 0.0408 0.0201 1.308 1.710 3
#62  0.0065 0.0328 0.0038 1.392 1.937 4
#63  0.0016 0.0038 0.0371 1.172 1.373 5
#64  0.0146 0.0391 0.1114 1.203 1.448 3
#65  0.0020 0.0053 0.0009 1.474 2.173 3
#66  0.0082 0.0087 0.0590 1.001 1.001 5
#67  0.0037 0.0376 0.1247 1.192 1.420 5
#69  0.2560 0.4270 0.0574 1.553 2.412 3
#70  0.0737 0.2464 0.0443 1314 1.726 2

“Number of inconsistencies in the genotype data
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Appendix

Under the following assumptions:
(1) HWE on the marker locus: Pr(m,m,) = Pr(m,)Pr(m,),

(2) random mating between the parental gamete:
Pr(d,m, :d,m,)="Pr(d,m,)Pr(d,m,), and
(3) multiplicative penetrances at the DSL: f, dzz = faa S aa, >
the marker penetrance is given by

D, = ZZfdldz Pr(d\m, :d,m, | mm,) = ZZfdldz Pr(d,m,) Pr(d,m,)/ Pr(m,m,)
d,

dy dy d

=33 fou.[Pr(d,m))/ Pr(m,)[Pr(d,m,) /i’r(mz )]

=33 [ fia S, [Pr(dm,)/ Pr(m,) [Pr(d,m, ) / Pr(m,)]

= Z\[fd,dl Pr(d, | ml)z \/fdzdz Pr(d, | m,) (Morris, 2003)
For a di—alllelic marker locus, tile marker penetrances
0y =0, =1\ for Pr(+| @)+ £, Pr(d | )]’ =[{/, Pr(+| @)+ £, Pr(d | a)]’
6, =0y, =[N [\ Pr(+| @) +[ [y Pr(d | )]\ £, Pr(+|B)+4/f,, Pr(d |b)]
=y Pr(+| @) +[f; Pr(d | )]/ f, Pr(+|b)+4/f, Pr(d | b)]

0, =B =V fo Pr(H D)+ 4y Pr(d | DT = [ £, Pr(+|B) 44/ f, Pr(d | DT,
where Pr(d |-) =1-Pr(+]).

Note that the conditional probabilities above are the respective probabilities of
disease allele d, given the marker allelem . For example, Pr(+]a) is the probability of

the low risk disease allele + given that the marker’s allele is a. It is obvious that these
marker penetrances are also multiplicative: ¢ = @,4, .
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