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Abstract of the Dissertation 

A family-based likelihood ratio test for general pedigree structures 

that allows for missing data and genotyping errors  

by 

Yang Yang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2007 

 

The purpose of this work is to design a likelihood ratio test (LRT) that uses the 
information of both affected and unaffected individuals from a general pedigree to test 
association between marker and disease. The null hypothesis is that of equal marker 
penetrances, and the alternative hypothesis implies the presence of both allelic 
association and linkage between the disease and marker loci. The test is based on a 
conditional likelihood, which is a product of two factors: the first factor, FounderL , uses 
founder’s genotypes and phenotypes to estimate population frequencies of marker 
genotypes. The second factor, NonfounderL , evaluates disequilibrium in transmission of 
marker alleles from parents to offspring. The test statistic built on this conditional 
likelihood allows for two problems: (1) missing parental genotypes, and (2) random 
genotyping errors. Derivations of the conditional likelihoods are given for trios (two 
parents and a child), general nuclear families, multiple-marriage nuclear families, and 
zero-looped three- and four-generation pedigrees. For example, the following 
scenarios are considered for a general nuclear family: complete parental genotype 
data and no genotyping errors; only one genotyped parent and no genotyping errors; 
no parental genotype data and no genotyping errors; and with genotyping errors in the 
previous three scenarios. A robust algorithm grid-UOBYQA is used to locate 
log-likelihood maxima under the null and alternative hypotheses as well as to estimate 
marker penetrances and population genotype frequencies.  

The results of a null simulation study suggest that the test statistic appears to 
follow a central chi-square distribution with one degree of freedom under the null 
hypothesis, even in the presence of missing data and genotyping errors. The power 
comparison based on a 23 factorial design shows that this LRT is more powerful than 
the original TDT, even when 20% genotypes in trios are missing and 1% genotypes 
are mistyped. Including the information of unaffected children in the likelihood 
calculation appears to increase the power to test marker-disease association. Finally, 
the application of this LRT to an idiopathic scoliosis dataset and a psoriasis dataset 
successfully identifies the significant associations between the markers and the 
disease that were previously published.  



I dedicate this work to my parents Guangming Yang and Jinfeng Wang, and 
my fiancé, Maohua Lu
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Chapter 1  Introduction 
 
1.1 History of transmission disequilibrium test and the other family-based 
tests 
 

Spielman et al. (1993) proposed the transmission disequilibrium test (TDT), 
which was designed to test for linkage between a genetic marker and a 
disease-susceptibility locus (DSL) for a trait of interest, provided that there is allelic 
association. Allelic association (or linkage disequilibrium) is defined as the excessive 
co-occurrence of certain combinations of alleles in the same gamete because of tight 
linkage, or for other reasons (Sham, 1997). The TDT uses data from case-parent trios 
to evaluate the transmission of the associated marker allele from a heterozygous 
parent to an affected offspring. Under the null hypothesis of no linkage in the 
presence of allelic association, the number of alleles that are transmitted to the 
affected offspring is determined by Mendel’s law. If the observed number of the 
transmitted alleles is significantly different from the number of those expected in 
Mendelian transmissions, a DSL appears to be associated and closely linked to the 
marker locus.  

Since both linkage and allelic association between the marker locus and the 
DSL have to be present for the TDT to reject the null hypothesis, the TDT is also valid 
as a test of allelic association for case-parent trios provided that there is linkage. The 
linkage analysis typically identifies large candidate regions, while the evidence of 
allelic association in the presence of linkage may indicate which markers in the region 
are closest to a disease locus (Martin et al, 1997). This makes the TDT more valuable 
than linkage studies in pinpointing a narrower region where a DSL might lie. As a test 
of allelic association, the TDT is particularly suited for markers that may be at a DSL 
or very close to a DSL (Lander and Kruglyak, 1995; Risch and Merikangas, 1996). 
The TDT is not sensitive to the allelic association caused by admixture and/or 
population stratification (Spielman and Ewens 1998). As a nonparametric test, the 
TDT is robust to misspecification of the disease model or trait distribution (Laird and 
Lange, 2006).  
     The family-based design for TDT uses complete and errorless genotype data 
from the case-parent trios. To extend the family-based test to more general situations 
in linkage and association studies, numerous methodological extensions, as reviewed 
in Laird and Lange (2006), have been developed to allow for: specific mode of 
inheritance, arbitrary pedigree structures, complex phenotypes, missing parental 
genotypes and genotyping errors.  

Schaid and his colleagues (Schaid and Sommer, 1994; Schaid, 1996) examined 
the power of the association tests under different genetic mechanisms (for example, 
dominant, recessive, and multiplicative mode of inheritance) leading to disease. These 
results demonstrate substantial gains in power for statistical tests designed to detect 
specific genetic mechanisms. The application of these tests was limited to 
independent case-parent trios. Martin et al. (1997) proposed two test statistics that 
focus on the set of transmissions from a parent to his/her affected offspring, rather 
than focusing on the individual transmissions to each offspring. They explored the test 
statistics for independent nuclear families with two affected offspring. Their tests are 
valid under the null hypothesis of no allelic association or no linkage, and generally 
are more powerful than the original TDT. Laird and her colleagues (Rabinowitz and 
Laird, 2000; Laird et al, 2000) developed a broad class of family-based association 
tests (FBAT) that adjust for admixture for either dichotomous or complex phenotypes. 
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The FBAT score statistic is based on the covariance of genotype and phenotype. 
Although genotypes of unaffected children are used to infer parental genotypes when 
parental genotypes are incomplete, the genotypes of the unaffected children are not 
incorporated in the score statistic. Also, under the null hypothesis of no linkage and no 
allelic association, the FBAT does not provide a valid test for allelic association in the 
presence of linkage for general nuclear families beyond trios. Therefore, Lake et al. 
(2000) updated the FBAT by incorporating an empirical variance in the score statistic 
to provide a valid test for allelic association. Under such a scenario, the null 
hypothesis of FBAT becomes no allelic association in the presence of linkage. Allison 
(1997) developed five tests for use with quantitative phenotypes such as body-mass 
index or blood pressure. These tests are based on the assumption that the residual 
distribution is normal or the sample size is large, allowing reliance on the central limit 
theorem. The test for quantitative phenotypes proposed by Rabinowitz (1997) needs 
no parametric assumptions on the distribution of the traits. 

One of the most important issues regarding robustness of the family-based tests 
is incomplete parental genotype data. When one or both parental genotypes are 
missing, the resulting trio with incomplete genotype data must be discarded to ensure 
validity of the TDT, thereby sacrificing information. Curtis and Sham (1995) showed 
that the computation of the TDT statistic on trios in which one parental genotype is 
unknown increases the type I error rate of the statistic. Spielman and Ewens (1998) 
proposed the S-TDT that extends the original TDT to multiplex nuclear families 
whose parental genotypes are unknown. It compares the marker genotypes in affected 
and unaffected sibs instead of using marker data from their parents. However, there is 
a requirement on the sib-ship configuration when using the S-TDT. The smallest 
sib-ships that can give information for the S-TDT should contain exactly one affected 
and one unaffected sib, with different marker genotypes. Sun et al. (1999) proposed 
the 1-TDT that uses genotypes of affected children and only one available parent for 
each affected child. Weinberg (1999) generalized the work by Schaid and Sommer 
(1993) and set the missing parental genotype problem in a likelihood framework. Her 
likelihood ratio test (LRT) based on a log-linear model for genetic data is not sensitive 
to allelic association that is due to genetic admixture and is robust enough to maintain 
good power. Under a strict null hypothesis that the allele under study is neither linked 
to nor associated with the disease, the relative risks associated with inheriting one or 
more copies of the variant allele equals 1. When used as a test of allelic association, 
her LRT can be regarded as an alternative to the TDT. However, her LRT only 
considered case-parent trios.   

Another issue for family-based tests is the presence of genotyping errors. 
Gordon et al. (2001) demonstrated that, when the TDT is applied to data in which 
Mendelian-inconsistent trios are removed, the detected genotyping errors can 
significantly increase the type I error rate. Their simulation showed that random 
genotyping errors that result in Mendelian-consistent genotype data for trios also 
cause an increase in type I error when their data are analyzed with the TDT. Therefore, 
they introduced TDTae, a family-based likelihood method allowing for random errors 
in the genotype data of trios. Considering both the missing parental genotype data and 
the genotyping errors, Gordon et al. (2004) extended the TDTae to involve general 
pedigrees. It is valid to test for linkage in the presence of allelic association. More 
recently, Cheng and Chen (2007) proposed a simple family-based association test that 
is not only robust against population stratification, but is also robust against 
genotyping error with error rates varying across families. However, these extensions 
of the TDT that allow for genotyping errors consider only affected offspring in the 
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families.  
 

1.2 Brief introduction of my work  
 

Among the more recent developments in family-based test is including 
estimated penetrance values for general pedigrees (Lange et al., 2005). The concept is 
to use all phenotype and genotype information in the pedigree rather than just using 
genotype information on affected children. The purpose of this work is the 
development of a likelihood-based method that uses information of both affected and 
unaffected individuals in a general pedigree and allows for random genotyping errors. 
It tests for marker-disease association by penetrance estimation, and is robust to 
missing genotype and/or phenotype data and random genotyping errors in general 
pedigrees. This test can be used for candidate-gene studies or a genome-wide 
association studies. It is also valid as a test of linkage in the presence of allelic 
association.  

First, I derive the likelihood functions under all possible scenarios for trios, 
nuclear families, and three- and four-generation pedigrees. Based on these likelihood 
functions, I apply the grid-UOBYQA algorithm to locate the maximum log-likelihood 
under each hypothesis. To assess the null distribution of the test statistic and the type I 
errors, I perform null simulations on different types of families. Then I compare the 
power of the original TDT and this LRT with a 23 factorial design by Monte-Carlo 
simulation. Finally I apply the LRT to two previously published genetic studies and 
compare the results with those obtained by other family-based tests.  

Chapter 2 includes comprehensive derivations of likelihood functions, null 
simulation, power calculation, and information of two real datasets. Chapter 3 
introduces the grid-UOBYQA algorithm and describes the two-step search procedure. 
Chapter 4 lists the results of null simulation, power comparison, and the real 
applications of this LRT. Chapter 5 discusses the likelihood functions, missing 
parental genotype problem, genotyping errors, and maximization algorithms.  
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Chapter 2  Methods 
 
     This chapter begins with the notation that will be used in the subsequent 
chapters. This work only considers the bi-allelic situation, so that the 
disease-susceptibility locus (DSL), with alleles id coded as + (low-risk) or d 
(high-risk), has three possible genotypes: ++, +d, and dd. The bi-allelic marker locus 
with alleles jm coded as a or b, also has three possible genotypes: aa, ab, and bb. 
 
Genetic parameters 

=DSLg genotype of one individual at a DSL.  
=g genotype of one individual at a marker locus, with the coding 0, 1, or 2 defined as 

the number of b alleles in the marker genotype. If the marker genotype is 
unknown, Missg = . 

=gr the set of marker genotypes of a family. 
=Cgr the set of children’s marker genotypes of a family. 

=Obsgr the set of observed marker genotypes of a family. 
=Truegr one possible set of consistent marker genotypes of a family corrected 

from Obsgr with one Mendelian inconsistency. 

=G
r

genotypes of multiple families involved in the LRT. 
=p phenotype, or the affection status of one individual, with Ap = for an individual 

being affected, Up = for an individual being unaffected and Missp = for an 
individual with missing affection status.  

=pr the set of phenotypes of a family. 
=Cpr the set of children’s phenotypes of a family. 

=P
r

phenotypes of multiple families involved in the LRT. 
=if disease penetrance, defined as the probability of an individual being affected 

given that his/her genotype at the DSL is i ( 0=i for the ++ genotype, 1=i for 
the d+ genotype, and 2=i for the dd genotype).   

=iR genotype relative risk at the DSL. 011 ffR = and 022 ffR = , where 0f is the 
reference disease penetrance.   

=iφ marker penetrance (or marker effect), defined as the probability of an individual 
being affected given that his/her genotype at the marker locus is i (Nielsen and Weir, 
2001) ( 0=i for the aa  genotype, 1=i for the ab genotype, and 2=i for the bb 
genotype).   

=iR genotype relative risk at the marker locus. 012 φφ=R and 022 φφ=R , where 0φ is 
the reference marker genotype penetrance.   

=iπ population frequency of a marker genotype. 0=i for the aa  genotype, 1=i for 
the ab genotype, and 2=i for the bb genotype. Also, 1210 =++ πππ .  

=D a measure of linkage disequilibrium (LD) (Robbins, 1918), defined as 
)Pr()Pr(),Pr( 1111 +==−+=== damdamD . It measures the deviation of the 

observed haplotype frequencies from the expected frequencies. 
='D the proportion of maximum LD (Lewontin and Kojima, 1960). max' DDD = when 

0≥D and min' DDD = when 0<D , where )}Pr()Pr(),Pr()min{Pr(max badD += and 
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)}Pr()Pr(),Pr()Pr(max{min abdD +−−= . It is a normalized value that lies between 0 
and 1.  
 
Notation for family members 

=)(,,,,,, CorCMFMMFMMFFF
r

paternal grandfather, paternal grandmother, 
maternal grandfather, maternal grandmother, father, mother and a child (or a set of all 
children), respectively. This work uses subscripts for a given set to indicate individual 
members of the set. For example, if C

r
represents the set of children in a nuclear family, 

then rC refers to the thr child.  
=Cin . number of children with marker genotype i in a family. 0=i for the aa  

genotype, 1=i for the ab genotype, and 2=i for the bb genotype.   
 
Notation for frequently used likelihood functions 

=TriosL the likelihood factor from a trio 
=aTriosL . the likelihood factor from a trio with complete parental genotypes 
=bTriosL . the likelihood factor from a trio with one untyped parent and one typed parent 
=cTriosL . the likelihood factor from a trio with two untyped parents 
=NuclearL the likelihood factor from a nuclear family 
=aNuclearL . the likelihood factor from a nuclear family with complete parental 

genotypes 
=bNuclearL . the likelihood factor from a nuclear family with one untyped parent and one 

typed parent 
=cNuclearL . the likelihood factor from a nuclear family with two untyped parents 

 
Genotyping error parameters 

=η probability for a homozygote incorrectly coded as a heterozygote. 
=γ probability for a heterozygote incorrectly coded as a homozygote. 
=ε error rate of the simplified DSB error model (Douglas et al., 2002), in 

which γηε == . 
 
2.1 Null hypothesis and assumptions 
 
2.1.1 Null hypothesis 
 
     This family-based likelihood method is designed to test the association of a 
candidate gene (or a marker) and disease. Under the null hypothesis of no association, 
the marker penetrances should be equal ( 210 φφφ == ). Rejecting the null hypothesis 
implies an association of marker with disease, which exists only when the marker is 
both linked and associated with a DSL affecting the trait. (Schaid and Sommer, 1993). 
     Because both linkage and allelic association should be present to reject the null 
hypothesis, this likelihood method can be used to (1) test linkage or allelic association 
for candidate-gene or genome-wide association studies, or to (2) test linkage in the 
presence of allelic association for the follow up of case-control association studies.  
However, like the original TDT, this likelihood method may not be valid as a test of 
allelic association in the presence of linkage for families with more than one affected 
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offspring (Martin et al., 2003).  
 
2.1.2 Assumptions 
 
The following assumptions are given in this work:  
a. Hardy-Weinberg equilibrium (HWE) 

If p is defined as the frequency of allele a and q as the frequency of another 
allele b for a trait controlled by a pair of alleles, then HWE will give Hardy-Weinberg 
proportions 22 )(,2)(,)( qbbppqabppaap === (Hardy, 1908; Weinberg, 1908).  

The implications of HWE are: (1) the frequencies of alleles in a population will 
remain constant from generation to generation; (2) the genotype frequencies will 
remain constant from generation to generation; (3) the Hardy-Weinberg proportions 
will be reached in a single generation of random mating.  
 
b. Random mating between parental gametes 

Let 2211 : mdmd denotes a parental gamete pair. Under the assumption of random 
mating between parental gametes, the joint probability of the gamete pair can be 
decomposed into the product: )Pr()Pr():Pr( 22112211 mdmdmdmd = (Martin et al, 1998).  
 
c. Multiplicative mode of inheritance 
     This work assumes multiplicative mode of inheritance at the DSL: 20

2
1 fff =  

(or equivalently, 2
12 RR = ). Multiplicative mode of inheritance is also known as the 

log-additive gene model (Schaid and Sommer, 1994). Fitting a multiplicative model is 
a reasonable and simple start for this association test, since in general, the change in 
risk on the ‘induced’ relative risk is approximately multiplicative regardless of the 
mode of inheritance at the true disease locus (e.g., dominant or recessive) (Siegmund 
and Gauderman, 2001). Under assumptions (a) and (b), multiplicative penetrances at 
the DSL will result in multiplicative penetrances at the marker locus: 20

2
1 φφφ = (see 

Appendix I). This reduces the number of parameters to be estimated in this work. 
Under the multiplicative model, the null test statistic should follow a central 2χ  
distribution with one degree of freedom.  
     Note that this likelihood method allows the flexibility to remove this 
assumption.  
 
d. No parental imprinting 
     Parental imprinting describes the phenomenon of differential gene function 
based on whether the transmission of an allele was from the mother or the father 
(Chaudhuri and Messing, 1994). This work assumes that there is no parental 
imprinting. Let 21dd denote the disease genotype of a child, where 1d is transmitted 
from father, and 2d is transmitted from mother. If there is no parental imprinting, 
disease genotypes +d and d+ have the same gene effect on the phenotype of the child.  
 
e. Independence of parental genotypes (i.e. no assortative mating) 
     This work assumes that paternal genotype is independent of maternal genotype. 
That is, )Pr()Pr(),Pr( MFMF gggg = . The assumption is made to reduce the number 
of parameters to be estimated.  
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f. Independence of marker genotypes and phenotypes 
     The individuals’ phenotypes are conditionally independent given their 
genotypes. Children’s genotypes are conditionally independent given the parental 
mating type and the children’s phenotypes.  
     This assumption is required to make the likelihood function valid for families 
with multiple affected sibs (Schaid and Sommer, 1993).   
 
g. Missing at random (MAR) 
     The missing data for a variable X are “missing at random” if the probability of 
missing data on X is unrelated to the value of X (Little and Rubin, 2002). This work 
assumes that phenotypes and marker genotypes are MAR, so that the probability of 
missing data on phenotype or marker genotype is unrelated to the values of phenotype 
or marker genotype. The MAR assumption also indicates that an individual’s missing 
phenotype information is independent of missing marker genotype information, and 
vice versa.  
 
h. Each nuclear family contains at most one Mendelian inconsistency 
     To simplify the likelihood computation for pedigrees with genotyping errors, 
Ehm et al. (1996) assumes at most one error per pedigree. Douglas et al. (2002) 
calculated the error rates in nuclear families by assuming that there is exactly one 
genotyping error per family. To allow small to moderate mistyping rates, this work 
assumes that each nuclear family (or a nuclear family decomposed from a general 
pedigree) contains at most one Mendelian inconsistency. Gordon et al. (1999, 2000) 
calculated the error detection rates for Mendelian inconsistent pedigrees. They found 
that the error detection rates are very low. 
 
i. Independent and random genotyping errors, no phenotyping errors 
     As in Gordon and Ott (2001) and Gordon et al. (2004), this work assumes that 
genotyping errors are introduced randomly and independently into alleles at a 
bi-allelic locus and that there are no phenotyping errors.   
 
2.2 The likelihood function of a family possibly with missing data but with 
no genotyping errors 
 

In this work, the likelihood functions for nuclear families with complete 
parental genotypes are similar to those previously published (Tu et al., 2000; 
Whittemore and Tu, 2000) (See Chapter 5 Discussion: 5.1 The likelihood function). I 
use the complete-data likelihood conditional on the observed data to compute the 
likelihood factor for a nuclear family with incomplete parental genotypes.  

Letθ denote the parameter (or a vector of parameters) of interest, obsY denote the 
observed data and misY the missing data, and );,( θmisobs YYL denote the complete-data 
likelihood that would have been constructed had there been no missing data. 
Conditional on obsY , misY takes on J  possible values: Jmisjmismis yyy ..1. ...... , 
where J depends on the family structure and missing data pattern. The complete-data 
likelihood conditional on the observed data (Lyles et al., 2001; Schafer and Graham, 
2000) for discrete missing data problems can be written as: 

)1(.)|Pr();,(
1

..∑
=

==
J

j
obsjmismisjmismisobs YyYyYYL θ  
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In this work, },,,{ 2010 φφππθ = , obsY denotes the observed genotype and phenotype data, 
and misY denote the missing parental genotype data. Note that estimates of 2π and 1φ  
can be inferred from 1210 =++ πππ and 20

2
1 φφφ = . 

     As discussed in Section 5.2 of Chapter 5, the likelihoods as in equation (1) are 
not restricted to MAR problems (Schafer and Graham, 2000).  
 
2.2.1 Conditional likelihood function of trios 
 
Complete parental genotype data 

From assumption (f) that one individual’s phenotype is independent of the other 
individuals’ phenotypes conditional on their genotypes, and assumption (e) that there 
is no assortative mating, the conditional likelihood function for one trio with complete 
parental marker genotype data is:  

).,,|Pr(
)Pr()Pr(

)|Pr()|Pr()Pr()Pr(
),,|Pr()|Pr()|Pr(

),,|Pr(),|,Pr(.

MFCC
MF

MMFFMF

MFCCMMFF

MFCCMFMFaTrio

ggpg
pp

gpgpgg
ggpgpgpg

ggpgppggL

=

=
=

(2) 

The probability of an individual being affected is: 

∑∑
==

=====
2

0

2

0

)Pr()|Pr()Pr(
i

ii
i

igigAAp πφ , 

and the probability of an individual being unaffected is: 

∑∑
==

−=====
2

0

2

0

)1()Pr()|Pr()Pr(
i

ii
i

igigUUp πφ . 

For an individual with genotype data but missing affection status, under the 
assumption of MAR, )Pr()|Pr( FFF gMisspg == or )Pr()|Pr( MMM gMisspg == if 
the individual is a parent, and ),|Pr(),,|Pr( MFCMFCC gggggMisspg == if a child. 
     There are four possible types of children based on the availability of genotype 
and phenotype information. 

In the first type, the child has both genotype and phenotype data. If the child is 
affected and igC = , where 2,1,0 ori =  

.
),|Pr(

),|Pr(

),|Pr()|Pr(

),|Pr()|Pr(

),Pr(),|Pr(),,|Pr(

),Pr(),|Pr(),,|Pr(
),,Pr(

),,,Pr(
),,|Pr(

2

0

2

0

2

0

∑

∑

∑

=

=

=

=

==

===

====

===

====

=
===

==

j
MFCj

MFCi

j
MFCCC

MFCCC

j
MFMFCMFCC

MFMFCMFCC

MFC

MFCC

MFCC

ggjg

ggig

ggjgjgAp

ggigigAp

ggggjgggjgAp

ggggigggigAp
ggAp

ggigAp
ggApig

φ

φ

  (3) 
In equation (3), )|Pr(),,|Pr( igApggigAp CCMFCC ===== from the assumption 
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of independence of marker genotypes and phenotypes. The conditional probabilities 
),|Pr( MFC ggg often referred to as transmission probabilities (Demenais and Elston, 

1981), are listed in Table 1.  
     As an example, Figure 1 shows a case-parent trio, with marker genotypes 

1=Fg , 1=Mg , and 1=Cg . The left white square (male) indicates an unaffected father, 
the right black circle (female) indicates an affected mother, and the middle black 
square indicates an affected male child. The two letters (in Figure 1, ‘a b’) below each 
square or circle are two marker alleles for each individual. 

Figure 1: A case-parent trio with complete parental genotypes 

 
The conditional probability of the child’s genotype given his affection status is: 

.
2
2

4
1

2
1

4
1

2
1

)1|2Pr()1|1Pr()1|0Pr(
)1|1Pr(

)1,|1Pr(

210

1

210

1

210

1

φφφ
φ

φφφ

φ

φφφ
φ

++
=

++
=

===+===+===
====

====

MFCMFCMFC

MFC

MFCC

ggggggggg
ggg

ggApg

The conditional probabilities ),,|Pr( MFCC ggApg = for all parent-child genotype 
configurations are listed in Table 2. 

Similarly, if the child is unaffected and igC = , for 2,1,0 ori = , the conditional 
probability is given by: 

.
),|Pr()1(

),|Pr()1(),,|Pr( 2

0
∑

=

=−

=−===

j
MFCj

MFCi
MFCC

ggjg

ggigggUpig
φ

φ   (4) 

The values in equation (4) for all parent-child genotype configurations are specified in 
Table 3.  

In the second type, the child has genotype data but no phenotype data. Under 
the assumption of MAR, the likelihood factor from the child is 

).,|Pr(),,|Pr( MFCMFCC gggggMisspg ==  
The conditional probabilities ),|Pr( MFC ggg are given in Table 1. 

In the third type, the child has phenotype data but no genotype data. Under the 
assumption of MAR, the marginal probability can be used for the observed data 
(Little and Rubin, 2002). The marginal likelihood factor contributed by the child 
without genotype data is: 

1),,|Pr( =∑
Cg

MFCC ggpg , 

indicating that no information is contributed by a child with only phenotype data to 
this association test.  

In the fourth type, the child has neither genotype nor phenotype data. It is 
obvious that a child with no genetic information has no contribution to the likelihood. 

a ba b

a b
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Incomplete parental genotype data: one parental genotype is missing 

Consider a trio with one missing parental genotype, without loss of generality, I 
specify that the paternal genotype is missing. If the child’s genotype is also unknown, 
the marginal likelihood factor of such trio is 

).|Pr(),,|Pr()|Pr()|Pr(

),,|Pr()|Pr()|Pr(

MM
g

MFCC
g

FFMM

g g
MFCCMMFF

pgggpgpgpg

ggpgpgpg

CF

F C

== ∑∑

∑∑
 

That is, such trio can only contribute its maternal information to the likelihood. From 
assumption (f) that the individuals’ phenotypes are conditionally independent given 
their genotypes, I have ),,|Pr(),,,,|Pr( FCMFCMFCMF pgggpppggg = . If the child’s 
genotype is observed but not the father’s, the likelihood factor is 

),,,|Pr(),,,,,|(

),,,,|Pr(),,,,,|(

),|Pr(),|(

.

.

..

FCMF
g

CMFCMFaTrio

CMFCMF
g

FCMFCMaTrio

Y
obsmismisobsaTriobTrio

pgggpppgggL

pppggggpppggL

YYYYLL

F

F

mis

∑

∑

∑

=

=

=

θ

θ

θθ

 

where },,,,{ CMFCMobs pppggY rv
rr= , }{ Fmis gY = and  

.
),,,Pr(

),,,Pr(),,|Pr(
∑ =

=

i
FCMF

FCMF
FCMF pggig

pgggpggg   (5) 

Note that the maternal and the child’s phenotypes do not enter in equation (5) to 
compute the conditional probability ),,|Pr( FCMF pggg .  

As an example, Figure 2 shows a case-parent trio with marker genotypes 
MissgF = , 1=Mg , and 0=Cg . The ‘?’ below the black square indicates that the 

genotype of the affected father is unknown.  
Figure 2: A case-parent trio with only maternal genotype 

 
Based on the maternal and the child’s genotypes, the missing paternal genotype must 
be either 0 or 1. To compute conditional probabilities ),,|Pr( FCMF pggg for such a 
trio, I first compute 

.
44

1

)1,1|0Pr()1Pr()1|Pr()1Pr(
),0,1,1Pr(
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22

1
)1,0|0Pr()1Pr()0|Pr()0Pr(
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1
2
1
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100

φππφπ

φπππφπ
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MFCMFFF
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MFCMFFF
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gggggApg
Apggg

gggggApg
Apggg

 

a b?

a a
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Then based on equation (5), I have: 

.
24/2/

4/),0,1|1Pr(

and,
2

2
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2
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In the event that the father were unaffected in the trio, I would have 

.
)1()1(2
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11
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00
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In the event that the paternal phenotype were unknown in the trio, 

10

1

10

0

2
),0,1|1Pr(

and,
2

2),0,1|0Pr(

ππ
π

ππ
π

+
=====

+
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Misspggg

Misspggg
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     For any possible paternal phenotype, the conditional probabilities can be 
written as 

,
2

),0,1|1Pr(

and,
2

2),0,1|0Pr(

1100

11

1100

00

ηπηπ
ηπ
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where                   

.
1
1
⎪
⎩

⎪
⎨

⎧

=
=−
=

=
Misspif
Upif
Apif

F

Fi

Fi

i φ
φ

η  (6) 

The conditional probabilities ),,|Pr( FCMF pggg for an arbitrary trio with 
untyped father are listed in Table 4. 
 
Incomplete parental genotype data: both parental genotypes are missing 
     Consider a trio without parental genotypes. If the child’s genotype is also 
unknown, the marginal likelihood factor 

1),,|Pr()|Pr()|Pr( =∑∑∑
F M Cg g g

MFCCMMFF ggpgpgpg
 

This implies that such a trio cannot contribute any information to the likelihood. It is 
also the reason why this likelihood method only considers families with at least one 
genotyped individual. From assumption (f) that the individuals’ phenotypes are 
conditionally independent given their genotypes, I have =),,,|,Pr( CMFCMF pppggg  

),,|,Pr( MFCMF ppggg . If the child’s genotype data is available, the likelihood is 

∑∑

∑∑

∑
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=
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g
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g
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g
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g
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..
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where },,,{ CMFCobs pppgY = , },{ MFmis ggY = , and  

.
),,,,Pr(

),,,,Pr(),,|,Pr(
∑∑ ==

=

i j
MFCMF

MFCMF
MFCMF ppgjgig

ppgggppggg    (7) 

     As an example, Figure 3 shows a case-parent trio with MissgF = , MissgM = , 
and 0=Cg . 

Figure 3: A case-parent trio with unknown parental genotypes 

 
Based on the child’s genotype 0=Cg , his parental genotypes },{ MF gg must be {0, 0}, 
{0, 1}, {1, 0}, or {1, 1}. First I compute 
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Then based on equation (7), I have 
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and,
)1()1(2)1(2)1(4
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For any possible combination of parental phenotypes, the conditional 
probability ),,0|0,0Pr( MFCMF ppggg === for example, can be written as 

),1(),1(),0(),1(2),1(),0(2),0(),0(4
),0(),0(4

2
10110

2
0

2
0

MFMFMFMF
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pppppppp
pgpg

ΘΘ+ΘΘ+ΘΘ+ΘΘ
=Θ=Θ
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i

φ
φ

.  (8) 

For example, if both parental phenotypes were unknown in the trio, I would have 
1),( ===Θ Misspig FF and 2,1,0,1),( ====Θ iMisspig MM . Then 
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Table 5 lists the conditional probabilities ),,|,Pr( MFCMF ppggg for an arbitrary 
trio without parental information. Since there are several conditional probability 
situations that need to be considered for a full development of this method, I list the 
conditional probabilities ),,|,Pr( MFCMF ppggg in Table 6. 
 
2.2.2 Conditional likelihood function of general nuclear families 
 
Complete parental genotype data 

Similar to equation (2), the conditional likelihood function of a nuclear family 
with complete parental genotype data is 

.),,|Pr(
)Pr()Pr(

)|Pr()|Pr()Pr()Pr(
),,|Pr()|Pr()|Pr(

}{

.

∏
=

=

=

r

rr
CC

MFCC
MF

MMFFMF

MFCCMMFFaNuclear

ggpg
pp

gpgpgg
ggpgpgpgL

r

rr
rr

  (9) 

Here ∏
=

=
}{

),,|Pr(),,|Pr(
r

rr
CC

MFCCMFCC ggpgggpg
r

rr
rr is from assumption (f) that the 

children’s genotypes are conditionally independent given the children’s phenotypes 
and the parental mating type.  

Based on the availability of genotype and phenotype information, each child in 
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a nuclear family can be placed into one of four disjoint sets: 
1C
v

: Children with both genotype and phenotype data, where r is the index for affected 
children and s for unaffected children; 

2C
v

: Children with genotype data but no phenotype data, where t is the index; 

3C
v

: Children with phenotype data but no genotype data; 

4C
v

: Children with neither genotype nor phenotype data. 
The likelihood factor from 1C

v
is 

∏∏ =⋅==
s

MFCC
r

MFCCMFCC ggUpgggApgggpg
ssrr

),,|Pr(),,|Pr(),,|Pr(
111111

rv
rr . 

The likelihood factor from 2C
r

is: 

).assumption MAR (from  ),|Pr(
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2

2222

∏
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t
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ggg

ggMisspgggpg

t

tt
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rr

 

The likelihood factor from set 3C
r

and 4C
r

is 1, which implies that untyped children do 
not enter in the likelihood calculation. 
     For example, Figure 4 shows a large nuclear family with two genotyped parents 
and six children, four genotyped and two untyped. The father is affected with 0=Fg , 
and the mother is unaffected with 1=Mg . Note that the six children can be partitioned 
into four sets 41,...,CC

rv
, where },,{ 5321 CCCC =

r
with 3,2=r and 5=s , }{ 42 CC =

r
with 

4=t , }{ 13 CC =
r

, and }{ 64 CC =
r

. The grey square and the grey circle with a ‘?’ in the 
middle indicate that the affection status of these two children is unknown.  

Figure 4: A nuclear family of size 8 with complete parental genotypes 

 
The conditional likelihood factor from the parents (founders): =FounderL  
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Therefore, the likelihood factor from the nuclear family with complete parental data 
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Using the partitioning of children into four disjoint sets 41,...,CC
rv

, equation (9) 
can be written as: 
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where the values of ),,|Pr(

11 MFCC ggApg
rr

= , ),,|Pr(
11 MFCC ggUpg

ss
= and 

),|Pr(
2 MFC ggg

t
can be found from Table 2, Table 3 and Table 1, respectively.  

 
Incomplete parental genotypes: one parental genotype is missing 

Consider a nuclear family with one untyped parent. As before, I specify that the 
paternal genotype is missing. If all the children are untyped, one can only use the 
maternal information to infer the estimates. That is, )|Pr(. MMbNuclear pgL = . From 
assumption (f) that the individuals’ phenotypes are conditionally independent given 
their genotypes, I have ),,|Pr(),,,,|Pr( FCMFCMFCMF pgggpppggg rrr

rrr = . If at least one 
child is genotyped, the likelihood factor from the nuclear family is 
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∑ =

=

i
FCMF

FCMF
FCMF pggig
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r
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r r

r
r    (10) 

     For example, Figure 5 shows a nuclear family with one untyped parent. The 
nuclear family has Cn .1 children with genotype 1, and Cn .2 children with genotype 2. 
The father is affected and untyped, and the mother is unaffected with 1=Mg .  

Figure 5: A large nuclear family with one parental genotype missing 

 
Based on the maternal and children’s genotypes, the paternal genotype must be either 
1 or 2. First I compute: 

?  a b 

a b a b b b
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b b

Cn .1 Cn .2
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Then based on equation (10), I have 
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If the father were unaffected, and Figure 5 were otherwise the same, I would have 
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If the paternal phenotype were unknown in Figure 5,  
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     For any possible paternal phenotype, the conditional probabilities are 
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where iη is defined as in equation (6). 
The conditional probabilities ),,|Pr( FCMF pggg v

r for an arbitrary nuclear family 
with untyped father are listed in Table 7.  
 
Incomplete parental genotypes: both parental genotype data are missing 
     Consider a nuclear family without parental genotypes. When at least one child 
is genotyped, the likelihood factor from the nuclear family is 



 17

,),,|,Pr(),,,,,;(.. ∑∑=
F Mg

MFCMF
g

CMFCMFaNuclearcNuclear ppgggpppgggLL vrv
rrrθ

  where 

.
),,,,Pr(

),,,,Pr(
),,|,Pr(
∑∑ ==

=

i j
MFCMF

MFCMF
MFCMF ppgjgig

ppggg
ppggg

v

v
v r

r
r     (11)

      Suppose both parental genotypes in the nuclear family in Figure 5 were 
unknown. Based on the children’s genotypes, the mating type of the parents },{ MF gg  
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For any possible combination of parental phenotypes, the conditional 
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where ),( pgΘ can be computed by equation (8). For example, if the parental 
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     Table 8 lists the conditional probabilities ),,|,Pr( MFCMF ppggg r
r for an arbitrary 

nuclear family with two untyped parents. 
 
2.2.3 Conditional likelihood function of multiple-marriage nuclear families 
 
     A “multiple marriage” is a nuclear family in which one parent parented 
offspring with multiple distinct mates, both of whom are in the pedigree (Schäffer, 
2000). An f-multiple marriage is one in which the multiply married spouse (MMS) is 
a founder. An n-multiple marriage is one in which the MMS is not a founder in the 
pedigree (Schäffer, 2000). This work only considers f-multiple marriages. An example 
is shown in Figure 6. 
     The f-multiple marriage in Figure 6 is a nuclear family from a previously 
published psoriasis dataset (Helms et al., 2003). The figure is drawn by HaploPainter 
developed by Thiele and Nürnberg (2005). Unlike earlier figures, this one does not 
contain any genotype information. The number below each square or circle represents 
each individual. Individual 3 (ID3 for short) is the MMS. She is a founder and has one 
affected child (ID1) with a male (ID2) whose affection status is unknown. She has 
two affected children (ID4 and ID6) fathered by an unaffected male (ID5).  

Figure 6: An f-multiple marriage 

 
I start with the f-multiple marriage where the MMS has 2 mates (as the one in 

Figure 6). The f-multiple marriage is decomposed into two nuclear families 
( 1Nuclear and 2Nuclear ) at the MMS.

1NuclearL denotes the likelihood factor from 

1Nuclear (the MMS, one mate and their children), and
2NuclearL denotes the likelihood 

factor from 2Nuclear (the MMS, the other mate and their children). Let MMSg and 

MMSp denote the genotype and phenotype of the MMS, respectively. I consider the 
following scenarios to derive the likelihood factor from a nuclear family with two 
multiple marriages.  

 
The genotype of the multiply married spouse is available 

The likelihood factor from such f-multiple marriage with genotyped MMS is 
.)|Pr(

21. MMSMMSNuclearNuclearaMM pgLLL =    (12) 
Notice that since the information of the MMS is used both in

1NuclearL and
2NuclearL , 

equation (12) removes the duplicated factor by dividing by )|Pr( MMSMMS pg .  
 
The genotype of the multiply married spouse is unknown 
     If MissgMMS = , I use the available genotypes in the f-multiple marriage to infer 
the possible genotype of the MMS. Let }{ 1.MMSg and }{ 2.MMSg denote two sets of 

Nuclear2Nuclear1
MSS 
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possible genotypes of the MMS determined by the observed genotypes from 1Nuclear  
and 2Nuclear , respectively. The set of possible genotypes of the MMS inferred by the 
observed genotypes from the f-multiple marriage is }{}{}{ 2.1. MMSMMSMMS ggg ∩= . Then 
the likelihood factor from the f-multiple marriage can be approximated by 

,
21. NuclearNuclearbMM LLL =    (13) 

where 2,1,}{| == iLL
MMSii gNuclearNuclear is the complete-data likelihood of iNuclear , with 

}{ MMSg the set of possible genotypes of the MMS. When }{}{ 2.1. MMSMMS gg = , the 
computation of 2,1, =iL

iNuclear in equation (13) follows the procedures described in 
Section 2.2.2. 

The likelihood functions (12) and (13) can be extended to nuclear families with 
more than two multiple marriages. Suppose the MMS has k mates. Let 

},...,2,1{, kiL
iNuclear ∈ denotes the likelihood factor from the i-th nuclear family 

decomposed from the f-multiple marriage. The likelihood factor from the f-multiple 
marriage is 

1

1
. )|Pr( −

=
∏= k

MMSMMS

k

i
NuclearaMM pgLL

i
if MMSg is available; 

∏
=

=
k

i
NuclearbMM i

LL
1

. if MMSg is unknown. 

In bMML . , },...,2,1{,}{| kiLL
MMSii gNuclearNuclear ∈= is the complete-data likelihood of the i-th 

decomposed nuclear family, with }{}{}{ .1. kMMSMMSMMS ggg ∩∩= L the set of possible 
genotypes of the MMS. },...,2,1{},{ . kig iMMS ∈ denotes a set of possible genotypes of 
the MMS determined by the observed genotypes from the i-th decomposed nuclear 
family. The likelihood bMML . here is also an approximation.  
 
2.2.4 Conditional likelihood function of zero-looped three- and four-generation 
pedigrees 
 

A pedigree will be termed looped, or zero-looped, according to whether it has, 
or has not, any cycles (Berge, 1962). Cannings et al. (1978) defined a zero-looped 
pedigree to be a tree of individuals and marriages, such as the one shown in Figure 7. 

Figure 7: A zero-looped three-generation pedigree 
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Four related nuclear families, denoted as 3,2,1 NNN and 4N , are decomposed 
from the three-generation pedigree in Figure 7. I define a decomposed nuclear family 
from a three-generation pedigree as a high-level nuclear family if it contains the 
information about the first generation and as a low-level nuclear family if it contains 
information about the third generation. In one decomposed nuclear family, a 
nonfounder that has offspring in the pedigree is defined as a node. In Figure 
7, 1N and 2N are high-level nuclear families, and 3N and 4N are low-level families. 
There are three nodes denoted as Node1, Node2 and Node3 in this three-generation 
family. Node1 is the mother in 3N and a child in 1N . Node2 is the mother in 4N and a 
child in 1N . Node3 is the father in 4N and the child in 2N . 
     When a large proportion of grandparental and the parental genotypes are 
missing in a large three- or four-generation pedigree, the likelihood function will be 
very complicated. The LRT will take prohibitively long. Under these circumstances, 
pedigree splitting is often used to approximate the likelihood (Blanton et al., 1991; 
Hasstedt, 1993; Lake et al., 2000). One method to compute the likelihood for three- 
and four- generation pedigrees is to decompose them into multiple nuclear families. 
However, the likelihood on the decomposed nuclear families involves duplicated 
information from the nodes. When applied to a small sample of large pedigrees, the 
likelihood will lead to a substantial loss of information and power, and may risk 
inflation of type I errors (Allen-Brady et al., 2006).    

For example, I calculate the likelihood of the three- and four-generation 
pedigrees that occurred in two datasets: (1) Psoriasis data (Helms et al., 2003) (2) 
Idiopathic scoliosis (IS) data for CHD7 gene (Gao et al., 2007). Both datasets contain 
many zero-looped three- and four- generation pedigrees such as those in Figure 8 and 
Figure 9.  
Figure 8: Pedigree A from psoriasis data set: a zero-looped three-generation pedigree 

 
 

Figure 9: Pedigree B from IS data set: a zero-looped four-generation pedigree 

 
     The zero-looped three-generation pedigree (Pedigree A) in Figure 8 is from the 
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psoriasis data set. The grandparents (ID2 and ID3) have 5 affected children, two, ID11 
and ID1, are nodes. There are one high-level family and two low-level families in this 
pedigree. 

The zero-looped four-generation pedigree (Pedigree B) in Figure 9 is from the 
IS data set. Since it contains four generations, I call the nuclear family composed of 
individuals from the middle two generations the middle-level nuclear family. 
Grandparents (ID2 and ID3) have 4 affected children, with ID1 a node. ID1 and ID4 
have two affected children, with ID6 being the second node of the pedigree. With 
mate ID13, ID6 has an affected child (ID12), which is the fourth generation of this 
pedigree.   

To derive the likelihood functions of three- and four-generation pedigrees, I 
start with a simple zero-looped three-generation pedigree with one high-level family 
such as the one in Figure 10. There, FF, MF, F and M denote paternal grandfather, 
paternal grandmother, father and mother, respectively. The five children of the second 
generation F and M are denoted as C1, … , C5.     

Figure 10: A simple zero-looped three-generation pedigree 

 
The pedigree can be decomposed into a high-level trio (FF, MF and F), and a 

low-level nuclear family of size 7 with F, M and their five children. 
Let TrioL and NuclearL denote the likelihood factors from the high-level trio and the 
low-level nuclear family, respectively. There are seven possible scenarios describing 
the availability of parental genotypes and grandparental genotypes. 

 
The paternal genotype and at least one grandparental genotype are available 

Since the information of the father is duplicated, I divide the product of 
TrioL and NuclearL by )|Pr( FF pg . The pedigree likelihood factor is 

,)|Pr(. FFNuclearTrioaPedigree pgLLL ⋅=  
where ),,,,,(. FFMFFFMFFFaTrioTrio pppgggLL = when both grandparental genotypes are 
available, ),,,,(. FFMFFFFFbTrioTrio pppggLL = when only one grandparental genotype is 
available (without loss of generality, I specify that FFg is available), and 

),,,,,(. CMFCMFaNuclearNuclear pppgggLL rr
rr= when the maternal genotype is available, 

),,,,(. CMFCFbNuclearNuclear pppggLL rr
rr= when the maternal genotype is unknown.  

 
The paternal genotype is unknown, but the maternal genotype and both grandparental 
genotypes are available 
     The likelihood factor under this scenario is approximated by the product of 

)|Pr()|Pr( MFMFFFFFTrio pgpgL = and NuclearL , where NuclearL is not bNuclearL . in Section 

F                       M  

FF MF 

C1   C2   C3   C4   C5 

8.c 
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2.2.2. In bNuclearL . , the possible paternal genotypes are only determined by the maternal 
and children’s genotypes. The grandparental genotypes, however, should also be 
considered to determine the possible paternal genotypes. Therefore, the likelihood 
factor is 

,),,,,|Pr(),,,,,(

)|Pr()|Pr(

.

.

∑×

=

Fg
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     Consider the three-generation pedigree in Figure 10 with ApF = , 
1== MFFF gg , MissgF = , 1=Mg , 1

321
=== CCC ggg and 2

54
== CC gg ( 3.1 =Cn and

2.2 =Cn ). From the grandparental genotypes, Fg must be 0, 1 or 2; from the maternal 
and children’s genotypes, Fg must be 1 or 2. Therefore, from all the observed 
genotypes in the pedigree, Fg must be 1 or 2. I first compute  
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Then based on equation (14), I have 
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There are some special cases under which 1),,,,|Pr( == FCMMFFFF pggggig r
r . 

For example, when }0,2{},2,0{},0,0{},{ =MFFF gg and }2,2{ , Fg must be 0, 1, 1, and 2, 
respectively. When }2,1{},{ =MFFF gg or }1,2{ , 0=Mg and }0{}{ =Cg r

r (all the children 
are genotyped 0), Fg must be 1. Table 9 and Table 10 list the conditional probabilities 

),,,,|Pr( FCMMFFFF pggggg r
r for all possible combinations of CMMFFF gggg r

r,,, and Fp . 
 

8.c 
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The parental genotypes are unknown, but both grandparental genotypes are available 
     Similar to the calculation of bPedigreeL . , I first compute the likelihood factors for 
the decomposed nuclear families )|Pr()|Pr( MFMFFFFFTrio pgpgL = and NuclearL . Then I 
multiply these two values as an approximation to the likelihood factor from the 
three-generation pedigree. The possible parental genotypes are determined not only by 
the children’s genotype but also by the grandparental genotypes. The likelihood factor 
from such three-generation pedigree is 
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     Table 11 lists ),,,,|,Pr( MFCMFFFMF ppggggg r
r  for all possible combinations of 

FCMMFFF pgggg ,,,, r
r and Mp . 

 
The paternal genotype is unknown, but the maternal genotype and one grandparental 
genotype are available  
     If the paternal genotype is unknown, and without loss of generality, FFg is 
available, I have )|Pr( FFFFTrio pgL = . The likelihood factor from the pedigree can be 
approximated by 
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     Consider the three-generation pedigree in Figure 10 with UpMF = and ApF = . 
In the event that 1=FFg , MissgMF = , MissgF = , 1=Mg , 0.0 =Cn , 0.1 >Cn and 

0.2 >Cn (at least one child is genotyped 1, at least one child is genotyped 2, but no 
child is genotyped 0), Fg must be either 1 or 2. First I compute 
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Then based on equation (16), I have 

and,
2)]1(2)1([])1()1()1[(2

])1()1()1[(2
2
1

2
1)]1(2)1([

4
1

4
1

2
1)1(

2
1

4
1

2
1)1(

2
1

),,,,|1Pr(

222111221100

1221100

2
2
122111

2
1221100

1
2
1221100

.2

.2.1.2.1

.2.1

φφπφπφπφπφπφ
φπφπφπφ

φπφπφπφπφπφπφπ

φπφπφπφπ

C

CCCC

CC

n

nnnn

nn

FMFCMFFF ApUpgggg

−+−+−+−+−
−+−+−=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−+−+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−−−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−−−

=

=== r
r

 

222111221100

22211
.2

.2

2)]1(2)1([])1()1()1[(2
2)]1(2)1([

),,,,|2Pr(

φφπφπφπφπφπφ
φφπφπ

C

C

n

n

FMFCMFFF ApUpgggg

−+−+−+−+−
−+−=

=== r
r

. 

If the paternal grandmother were affected,  

,
2)2()(2

)(2),,,,|1Pr(
222111221100

1221100
.2 φφπφπφπφπφπφ

φπφπφπφ
CnFMFCMFFF ApApgggg

++++
++==== r

r

and 

.
2)2()(2

2)2(),,,,|2Pr(
222111221100

22211
.2

.2

φφπφπφπφπφπφ
φφπφπ

C

C

n

n

FMFCMFFF ApApgggg
++++

+==== r
r

If the phenotype of the paternal grandmother were unknown,  

and,
2)2(2

2),,,,|1Pr(
2211

1
.2 φππφ

φ
CnFMFCMFFF ApMisspgggg

++
==== r

r
 

.
2)2(2

2)2(),,,,|2Pr(
2211

221
.2

.2

φππφ
φππ

C

C

n

n

FMFCMFFF ApMisspgggg
++

+==== r
r

 

Table 12 and Table 13 only list ),,,,|Pr( Missppgggg MFFCMFFF =r
r due to space 

limitations. Similar probabilities can be easily derived for ApMF = and UpMF = . 
 

The parental genotypes are unknown, but one grandparental genotype is available  
     Without loss of generality, I specify that FFg is available. First I have 

)|Pr( FFFFTrio pgL = . Similar to equation (15), the possible parental genotypes are 
determined not only by the children’s genotypes but also by FFg . Then the likelihood 
factor from such a three-generation pedigree is approximated as 

,),,,,|,Pr(),,,,,(

)|Pr(

.

.

∑∑×
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F Mg g
MFMFCFFMFCMFCMFaNuclear

FFFFePedigree

pppggggpppgggL

pgL
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where 
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     The conditional probability ),,,,|,Pr( MFMFCFFMF ppMisspgggg =r
r can be 

obtained from Table 11 by setting MissgMF = .  
 
Both grandparental genotypes are unknown 

In this case, the three-generation pedigree is reduced to a nuclear family. The 
likelihood factor is 

,. NuclearfPedigree LL =  
where ),,,,,(. CMFCMFaNuclearNuclear pppgggLL rr

rr= when both parents are genotyped; 
),,,,(. CMFCFbNuclearNuclear pppggLL rr

rr= when father is genotyped but mother is 
untyped; ),,,,(. CMFCMbNuclearNuclear pppggLL rr

rr= when father is untyped but mother is 
genotyped; ),,,(. CMFCcNuclearNuclear pppgLL rr

rr=  when both parents are untyped. 
 
     Now consider a complex three-generation pedigree such as Pedigree A in 
Figure 8. I denote the likelihood factor from Pedigree A by PedAL . The high-level 
nuclear family decomposed from this pedigree is a large nuclear family of size 7, 
consisting of ID2, ID3, ID8, ID7, ID11, ID4, and ID1. It contains five affected 
children (ID8, ID7, ID11, ID4, and ID1), with nodes ID1 and ID11 being the fathers 
of two low-level families, respectively. HighNuclearL . ,

1.LowNuclearL and
2.LowNuclearL denote the 

likelihood factors from the high-level and the low-level families, respectively.  
If the genotypes of ID1 and ID11 are available, the likelihood factor contributed 

by Pedigree A is  

,
)|Pr()|Pr(

),(),(),(

111111

... 222111

pgpg
pgLpgLpgL

L LowLowLowNuclearLowLowLowNuclearHighHighHighNuclear
PedA

rrrrrr

=  

where },,,,,,{ 14117832 ggggggggHigh =r
, },,,,,,{ 14117832 ppppppppHigh =r

, 
},,,{ 910511

gggggLow =r , },,,{ 910511
pppppLow =r , 

},,,{ 12136112
gggggLow =r , and }.,,,{ 12136112

pppppLow =r  
     If one node’s genotype is unknown (without loss of generality, Missg =11 ), and 
the genotype of his mate ( 6g ) and the grandparental genotypes ( 32 , gg ) are available, 
the approximate likelihood factor contributed by Pedigree A is 

,
)|Pr(

),(),(),(

11

... 222111

pg
pgLpgLpgL

L LowLowLowNuclearLowLowLowNuclearHighHighHighNuclear
PedA

rrrrrr

=  

where  
.),,,,,|Pr(),,,,(

11

222 111213632111213611.. ∑=
g

LowLowNuclearLowNuclear pggggggpggggLL r  (17) 

For other possible scenarios considering the availability of 2g , 3g and 6g , formulas 
similar to equation (17) can be derived. 
     If both genotypes of ID1 and ID11 are unknown, and 2g , 3g , 5g and 6g are 
available, the approximate likelihood factor contributed by Pedigree A is   
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),,(),(),(
222111 ... LowLowLowNuclearLowLowLowNuclearHighHighHighNuclearPedA pgLpgLpgLL rrrrrr=  

where 
  ,),,,,,|Pr(),,,,(

1

111 1910532191051.. ∑=
g

LowLowNuclearLowNuclear pggggggpggggLL r (18) and 

  .),,,,,|Pr(),,,,(
11

222 111213632111213611.. ∑=
g

LowLowNuclearLowNuclear pggggggpggggLL r
 (19)  

For other possible scenarios considering the availability of 2g , 3g , 5g and 6g , formulas 
similar to equations (18) and (19) can also be derived.  
     For a three-generation pedigree with one high-level family, if an untyped node 
has siblings and at least one sibling’s genotype is available, one should include the 
available siblings’ genotypes to infer the possible genotypes of the node and the 
relevant conditional probabilities. To simplify the likelihood calculations, this work 
does not consider the sibling’s genotypes. 

The likelihood computation of Pedigree B in Figure 9 is similar to that of 
Pedigree A, except that the fourth generation is included in the likelihood calculation. 

PedBL denotes the likelihood factor from this pedigree. HighNuclearL . , MiddleNuclearL . and 

LowNuclearL . denote the likelihood factors from the high-level nuclear family (consists of 
ID1, ID2, ID3, ID9, ID10, ID11, ID8, and ID1), the middle-level nuclear 
family(consists of ID4, ID1, ID5, ID7, and ID6) and the low-level nuclear family 
(consists of ID13, ID6, and ID12), respectively. Node ID1 is the mother of the 
middle-level nuclear family, and node ID6 is the mother of the low-level nuclear 
family.  

If the genotypes of ID1 and ID6 are available, the likelihood factor of Pedigree 
B is 

,
)|Pr(

),(
)|Pr(

),(),(
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.

11

..

pg
pgL

pg
pgLpgL

L LowLowLowNuclearMiddleMiddleMiddleNuclearHighHighHighNuclear
PedB

rrrrrr

⋅=  

where },,,,,,{ 181110932 gggggggg High =r
, },,,,,,{ 181110932 ppppppppHigh =r

, 
},,,,{ 67514 ggggggMiddle =r , },,,,{ 67514 ppppppMiddle =r , 

},,{ 12613 gggg Low =r , and }.,,{ 12613 ppppLow =r  
     In the event that the genotype of ID1 is available, the genotype of ID6 is 
unknown, and the genotypes of ID6’s mate (ID13) and parents (ID1 and ID4) are 
available, the approximate likelihood factor of Pedigree B is 

),,(
)|Pr(

),(),(
.

11

..
LowLowLowNuclear

MiddleMiddleMiddleNuclearHighHighHighNuclear
PedB pgL

pg
pgLpgL

L rr
rrrr

⋅=  

where 
.),,,,|Pr(),,,(

6

6121341612613.. ∑=
g

LowLowNuclearLowNuclear pgggggpgggLL r  (20) 

For other possible scenarios considering the availability of 13g , 1g and 4g , formulas 
similar to equation (20) can be derived. 
     In the event that the genotype of ID6 is available, the genotype of ID1 is 
unknown, and the genotypes of ID1’s mate (ID4) and parents (ID2 and ID3) are 
available, the approximate likelihood factor of Pedigree B is then 

,
)|Pr(

),(),(),(
66

.
.. pg

pgLpgLpgLL LowLowLowNuclear
MiddleMiddleMiddleNuclearHighHighHighNuclearBPed

rr
rrrr ⋅=  

where 
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.),,,,,,|Pr(),,,,,(
1

1675432167514.. ∑=
g

LowMiddleNuclearMiddleNuclear pgggggggpgggggLL r (21) 

For other possible scenarios considering the availability of 4g , 2g and 3g , formulas 
similar to equation (21) can be derived. 
     In the event that the genotypes of ID1 and ID6 are unknown, and the genotypes 
of ID1’s parents (ID2 and ID3), ID1’s mate (ID4), and ID6’s mate (ID13) are 
available, the approximate likelihood factor of Family 14 is then 

),,(),(),( ... LowLowLowNuclearMiddleMiddleMiddleNuclearHighHighHighNuclearPedB pgLpgLpgLL rrrrrr=  
where

and,),,,,,,|Pr(),,,,,(
1

1675432167514.. ∑=
g

LowMiddleNuclearMiddleNuclear pgggggggpgggggLL r

.),,,|Pr(),,,(
6

612134612613.. ∑=
g

LowLowNuclearLowNuclear pggggpgggLL r  (22) 

For other possible scenarios considering the availability of 2g , 3g , 4g and 13g , formulas 
similar to equation (22) can be derived. 
  
2.2.5 Conditional likelihood function for CEPH pedigrees 
      

Another typical pedigree structure is shown in Figure 11, which consists of four 
grandparents (FF, MF, FM, and MM), two parents (F and M), and multiple offspring 
( },...,,{ 521 CCCC =
r

) (Chakravarti, 1991). Such a pedigree is an example of a Centre 
d’Etude du Polymorphisme Humain (CEPH) pedigree. Since a CEPH pedigree is not 
commonly used for dichotomous trait genetic studies, I could not find a data set 
containing CEPH pedigrees for an application of this likelihood method. The pedigree 
in Figure 11 (Pedigree C) generates the additional complexity of grandparental 
information from both father and mother.  

Figure 11: Pedigree C: a CEPH pedigree 

 
The parents F and M are the nodes in Pedigree C. I denote the left high-level 

trio in Figure 11 by T1, and the right high-level trio by T2. Let 1TL and 2TL denote the 
likelihood factor from T1 and T2, respectively.    
In the event that Fg is available and two grandparents in T1 are genotyped,  

),,,,,(.1 FMFFFFMFFFaTrioT pppgggLL = ; 
In the event that Fg is available and only one grandparent in T1 is genotyped (without 
loss of generality, FF is genotyped), 

),,,,(.1 FMFFFFFFbTrioT pppggLL = . 
In the event that Fg is unknown and two grandparents in T1 are genotyped,  
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)|Pr()|Pr(1 MFMFFFFFT pgpgL = ; 
In the event that Fg is unknown and only one grandparent in T1 is genotyped (without 
loss of generality, FF is genotyped), 

)|Pr(1 FFFFT pgL = . 
The calculation of 2TL is similar to that of 1TL under the four scenarios. 

There are three possible scenarios considering the availability of Fg and Mg . 
 

Both parental genotypes are available 
     For a CEPH pedigree with two genotyped parents and at least one genotyped 
grandparent each high-level trio, the likelihood factor is
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     In the event that the grandparents from a high-level trio are untyped (without 
loss of generality, Missgg MFFF == ) and at least one grandparental genotype in the 
other high-level trio is available, the CEPH pedigree is reduced to a three-generation 
pedigree with one high-level trio, as in Figure 10. The likelihood factor is then 

).,,|Pr()|(2. MFCCFFTaCEPH ggpgpgPLL rr
rr⋅=  

     If the event that all four grandparental genotypes are unknown, the CEPH 
pedigree is reduced to a general nuclear family with complete parental genotype 
information. The likelihood factor is 

).,,|Pr()|()|(. MFCCMMFFaCEPH ggpgpgPpgPL rr
rr=  

 
One parental genotype is unknown, and the other parental genotype is available  
     Consider a CEPH pedigree with one genotyped parent (without loss of 
generality, MissgF = ). If the genotypes of the paternal grandparents are available, the 
possible genotypes of the father are determined by FFg , MFg , Mg and Cg r

r . In the event 
that at least one maternal grandparent is genotyped, the likelihood factor is 

.
)|Pr(

),,,,|Pr(),,,,,(.

21.
MM

g
FCMMFFFFCMFCMFaNuclear

TTbCEPH pg

pgggggpppgggL
LLL F

∑
=

rrr
rrr

 The division by )|Pr( MM pg is necessary to remove the duplicated information of the 
mother in the likelihood calculation. The conditional probabilities 

),,,,|Pr( FCMMFFFF pggggg r
r are listed in Table 9 and Table 10. In the event that no 

maternal grandparent is genotyped, the likelihood factor is 
.),,,,|Pr(),,,,,(.1. ∑=

Fg
FCMMFFFFCMFCMFaNuclearTbCEPH pgggggpppgggLLL rrr

rrr

 Since the information of the mother is only used in ),,,,,(. CMFCMFaNuclear pppgggL rr
rr , 

the division by )|Pr( MM pg is not included in this likelihood function.  
     If only one paternal grandparent is genotyped (without loss of generality, FFg is 
available), possible genotypes of the father are determined by FFg , Mg and Cg r

r . In the 
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event that at least one maternal grandparent if genotyped, the likelihood factor is 

)|Pr(

),,,,|Pr(),,,,,(.

21.
MM

g
FMFCMFFFCMFCMFaNuclear

TTbCEPH pg

ppggggpppgggL
LLL F

∑
=

rrr
rrr

, 

where ),,,,|Pr( FMFCMFFF ppgggg r
r is given by equation (16). The division by 

)|Pr( MM pg removes the duplicated information of the mother in the likelihood 
calculation. The conditional probabilities ),,,,|Pr( FMFCMMFF pMisspgggg =r

r are 
listed in Table 12 and Table 13. In the event that no maternal grandparent is genotyped, 
the likelihood factor is 

.),,,,|Pr(),,,,,(.1. ∑=
Fg

FMFCMFFFCMFCMFaNuclearTbCEPH ppggggpppgggLLL rrr
rrr  

     If both genotypes of the paternal grandparents are unknown, the CEPH pedigree 
is reduced to a three-generation pedigree with one high-level trio, like the one in 
Figure 10. In the event that at least one maternal grandparent is genotyped, the 
likelihood factor is 

.
)|Pr(

),,|Pr(),,,,,(.

21.
MM

g
FCMFCMFCMFaNuclear

TTbCEPH pg

pgggpppgggL
LLL F

∑
=

rrr
rrr

 

In the event that no maternal grandparent is genotyped, the likelihood factor is 
.),,|Pr(),,,,,(.1. ∑=

Fg
FCMFCMFCMFaNuclearTbCEPH pgggpppgggLLL rrr

rrr  

The values of ),,|Pr( FCMF pggg r
r are listed in Table 7. 

 
Both parental genotypes are unknown 
     In the event that four grandparental genotypes are available and both parental 
genotypes are unknown, the possible parental genotypes are determined by the 
grandparental and children’s genotypes. The likelihood function is given as 

,),,,,,,|,Pr(),,,,,(
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∑∑⋅
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F Mg g
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where  
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This work uses an approximation to the likelihood in equation (23): 

 }),{},{|,,,(
),|,Pr(),|,Pr(

.

.

MFCMFCcNuclear

MMFMMMFMMFFFMFFFcCEPH

ggpppgL
ppggppggL

rr
rr×

=

   

  (24) 

where }),{},{},{|,,,(. MFMFCMFCcNuclear ggggpppgL rr
rr denotes the likelihood of the 

low-level nuclear family with two untyped parents. The calculation of 
}){},{|,,,(. MFCMFCcNuclear ggpppgL rr

rr  is similar to that of ),,,(. CMFCcNuclear pppgL rr
rr , 

except that the set of possible parental genotypes in the former likelihood 
is },{}}{}{{ MFMF gggg ∩× , where }{ Fg denotes a set of the possible paternal 
genotypes inferred FFg and MFg , }{ Mg  a set of the possible maternal genotypes 
inferred from FMg and MMg , and },{ MF gg  a set of the possible parental genotypes 
inferred from Cg r

r . 
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     In the event that one grandparental genotype is unknown (without loss of 
generality, MissgMF = ) and the other three grandparental genotypes are available, and 
both parental genotypes are missing, the approximate likelihood is similar to equation 
(24): 

}).{},{|,,,(),|,Pr()|Pr( .. MFCMFCcNuclearMMFMMMFMFFFFcCEPH ggpppgLppggpgL rr
rr=

 

(25) 
The possible paternal genotypes }{ Fg in equation (25) are determined by FFg , and the 
possible maternal genotypes }{ Mg are determined by FMg and MMg .  
     In the event that the grandparental genotypes from a high-level trio are 
unknown (without loss of generality, Missgg MMFM == ) and the other two 
grandparental genotypes are available, and both parental genotypes are missing, the 
CEPH pedigree is reduced to the small three-generation pedigree in Figure 10, with 
the likelihood 

∑⋅
=

Fg
MFCMFFFMFCMFCMFaNuclear

MFFFMFFFcCEPH

ppgggggpppgggL
ppggL

),,,,|,Pr(),,,,,(
),|,Pr(

.

.

rrr
rrr , 

where the values of ),,,,|,Pr( MFCMFFFMF ppggggg r
r are listed in Table 11.

      In the event that two grandparental genotypes from the different high-level trios 
are unknown (without loss of generality, Missgg MMMF == ) and the other two 
grandparental genotypes are available, and both parental genotypes are missing, 
similar to equations (24) and (25), the likelihood factor is 

}).{},{|,,,()|Pr()|Pr( .. MFCMFCcNuclearFMFMFFFFcCEPH ggpppgLpgpgL rr
rr=  

The possible paternal genotypes }{ Fg are determined by FFg , and the possible 
maternal genotypes }{ Mg are determined by FMg . 
     In the event that only one grandparental genotype is available (without loss of 
generality, FFg is available), and both parental genotypes are missing, the CEPH 
pedigree is reduced to the small three-generation pedigree in Figure 10, with the 
likelihood 

,),,,,|,Pr(),,,,,(
)|Pr(

.

.

∑⋅
=

Fg
MFMFCFFMFCMFCMFaNuclear

FFFFcCEPH

pppggggpppgggL
pgL
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rrr

 
where ),,,,|,Pr( MFMFCFFMF ppMisspgggg =r

r can be computed from Table 11 by 
setting MissgMF = . 
     In the event that all the four grandparental genotypes are unknown, and both 
parental genotypes are missing, the CEPH pedigree is reduced to a general nuclear 
family with unknown parental genotypes, with likelihood 

).,,,(.. CMFCcNuclearcCEPH pppgLL rr
rr=  

 
2.3 Incorporating the Mendelian inconsistencies into the likelihood 
function   
 

Mendelian consistency is arguably the most important and common criterion 
for identifying genotyping errors (Zou et al., 2003). Families that are not 
Mendelian-consistent are often checked for genotyping errors. Three assumptions (see 
assumptions (h) and (i)) are given in this section: (1) there is at most one 
inconsistency in a nuclear family, (2) the genotyping errors are independent and 
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random and (3) there are no phenotyping errors. This work does not identify and 
adjust the errors in families displaying Mendelian consistency.  

The error model (Table 14) used here is based on Douglas et al. (2002). I set 
εγη == in the R program to avoid failure of identifiability. Tests that only consider 

Mendelian-inconsistencies cannot give correct estimates of error rates since families 
displaying Mendelian consistency may also have genotyping errors (Gordon et al., 
2001). 
 
2.3.1 The likelihood function of a nuclear family with at most one genotyping 
inconsistency  
 

Similar to the complete-data likelihood conditional on the observed data in 
equation (1), the likelihood function for one nuclear family (including the one with 
missing parental genotype data) with at most one inconsistency is:  

∑=
Trueg

ObsTrueerrorTrueerror MggpgLL
r

rrrr ),|(Pr);,( θ  (26) 

where Obsgr refers to the observed genotype data in a nuclear family with at most one 
inconsistency, Truegr refers to any possible set of genotypes corrected from Obsgr , 
with 1),|(Pr =∑

Trueg
ObsTrueerror Mgg

r

rr , and M is an indicator for Mendelian consistency. 

If 1=M , the nuclear family is Mendelian-consistent. Then ObsTrue gg rr = , and 
1)|(Pr)1,|(Pr === ObsObserrorObsTrueerror ggMgg rrrr . Equation (26) is written as 

);,( θpgLL Obserror
rr= , which is the likelihood function of a nuclear family without 

genotyping errors (see Section 2.2.2).  
If 0=M , the nuclear family has exactly one Mendelian inconsistency. Let 

m be the number of Mendelian consistent genotype sets for the family in which 
exactly one genotype has been corrected. I reorder the observed genotypes for the n 
family members so that correcting the first observed genotype can make the family 
Mendelian-consistent. That is, the observed and the corrected genotypes are reordered 
as },...,,{ .2.1.
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where )|Pr()|Pr()|Pr()|Pr( ..2.2.1.1.
..

ni
obs

ni
true

i
obs

i
true

i
error

i
trueiObsiTrue gggggggg L

rr = . Table 15 lists 
the values of 
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)Pr()|Pr()|Pr( 2
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=

k
truetrueobs

truetrueobs
obstrue

kgkgg

ggggg  (28) 

Recall that this work does not consider phenotyping errors.  
In the following example and discussions, xObsg . and xTrueg . denote the observed 

and the corrected genotype of x respectively, where x is the specified family member 
(F, M or INCC whose genotypes are inconsistent) . For example, consider a nuclear 
family of size n. The observed parental genotypes 0. =FObsg and Missg MObs =. . The 
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second child with observed genotype 2 is denoted as INCC . The observed genotypes of 
the remaining 3−n children are 1’s. There are two possible consistent sets of 
genotypes for the nuclear family, with (1) 1. =FTrueg corrected from 0. =FObsg , or 
(2) 1. =

INCCTrueg corrected from 2. =
INCCObsg . Based on equations (27) and (28), I first 

compute 
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Then the likelihood factor from this family is 
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     Consider all possible scenarios for one nuclear family with at most one 
inconsistency: 
a. }0,0{},{ .. =MObsFObs gg  

If 2.1 ≥Cn , then 2=m : (1) 1. =FTrueg , or (2) 1. =MTrueg .  
If 1.1 =Cn , then 3=m : (1) 1. =FTrueg , (2) 1. =MTrueg , or (3) 0. =

INCCTrueg corrected 
from 1. =

INCCObsg . 
b. }1,0{},{ .. =MObsFObs gg or }0,1{},{ .. =MObsFObs gg  

If 2.2 ≥Cn , then 1=m : 1. =FTrueg when }1,0{},{ .. =MObsFObs gg , or 1. =MTrueg when 
}0,1{},{ .. =MObsFObs gg . 

If 1.2 =Cn , then 2=m : (1) 1. =FTrueg when }1,0{},{ .. =MObsFObs gg , or 1. =MTrueg  
when }0,1{},{ .. =MObsFObs gg , or (2) 1. =

INCCTrueg corrected from 2. =
INCCObsg . 

c. }2,0{},{ .. =MObsFObs gg or }0,2{},{ .. =MObsFObs gg  
If 1.0 ≥Cn and 1.1 ≥Cn , then 1=m : 1. =MTrueg when }2,0{},{ .. =MObsFObs gg , or 

1. =FTrueg when }0,2{},{ .. =MObsFObs gg . 
If 2.0 ≥Cn and 0.1 =Cn , then 1=m : 1. =MTrueg when }2,0{},{ .. =MObsFObs gg , or 

1. =FTrueg when }0,2{},{ .. =MObsFObs gg . 
If 1.1 ≥Cn and 1.2 ≥Cn , then 1=m : 1. =FTrueg when }2,0{},{ .. =MObsFObs gg , or 

1. =MTrueg when }0,2{},{ .. =MObsFObs gg . 
If 0.1 =Cn and 2.2 ≥Cn , then 1=m : 1. =FTrueg when }2,0{},{ .. =MObsFObs gg , or 

1. =MTrueg when }0,2{},{ .. =MObsFObs gg . 
If 1.0 =Cn and 0.1 =Cn , then 2=m : (1) 1. =MTrueg when }2,0{},{ .. =MObsFObs gg , or 

1. =FTrueg when }0,2{},{ .. =MObsFObs gg , or (2) 1. =
INCCTrueg corrected from 
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0. =
INCCObsg . 

If 0.1 =Cn and 1.2 =Cn , then 2=m : (1) 1. =FTrueg when }2,0{},{ .. =MObsFObs gg , or 
1. =MTrueg when }0,2{},{ .. =MObsFObs gg , or (2) 1. =

INCCTrueg corrected from 
2. =

INCCObsg .  
d. }2,1{},{ .. =MObsFObs gg or }1,2{},{ .. =MObsFObs gg  

If 2.0 ≥Cn , then 1=m : 1. =MTrueg when }2,1{},{ .. =MObsFObs gg , or 1. =FTrueg when 
}1,2{},{ .. =MObsFObs gg .  

If 1.0 =Cn , then 2=m : (1) 1. =MTrueg when }2,1{},{ .. =MObsFObs gg , or 1. =FTrueg  
when }1,2{},{ .. =MObsFObs gg , or (2) 1. =

INCCTrueg corrected from 0. =
INCCObsg . 

e. }2,2{},{ .. =MObsFObs gg  
If 2.1 ≥Cn , then 2=m : (1) 1. =FTrueg , or (2) 1. =MTrueg . 
If 1.1 =Cn , then 3=m : (1) 1. =FTrueg , (2) 1. =MTrueg , or (3) 2. =

INCCTrueg corrected 
from 1. =

INCCObsg . 
f. 0. =FObsg and Missg MObs =. , or Missg FObs =. and 0. =MObsg  
 If 2.2 ≥Cn , then 1=m : 1. =FTrueg when 0. =FObsg , or 1. =MTrueg when 0. =MObsg . 

If 1.2 =Cn , then 2=m : (1) 1. =FTrueg when 0. =FObsg , or 1. =MTrueg when 0. =MObsg , 
or (2) 1. =

INCCTrueg corrected from 2. =
INCCObsg . 

g. 2. =FObsg and Missg MObs =. , or Missg FObs =. and 2. =MObsg  
 If 2.0 ≥Cn , then 1=m : 1. =FTrueg when 2. =FObsg , or 1. =MTrueg when 2. =MObsg . 

If 1.0 =Cn , then 2=m : (1) 1. =FTrueg when 2. =FObsg , or 1. =MTrueg when 2. =MObsg , 
or (2) 1. =

INCCTrueg corrected from 0. =
INCCObsg .  

Note that a nuclear family with one parent untyped and the other parent genotyped 1 
is always Mendelian consistent, so is a nuclear family without parental genotypes.          

Table 16 lists the conditional probabilities )0,|(Pr .. =Mgg iObsiTrueerror
rr for an 

arbitrary nuclear family with one inconsistency.  
 
2.3.2 The likelihood function of a three- or four-generation pedigree with one or 
more genotyping inconsistencies  
      

Some association tests (such as the FBAT) remove the pedigree with one or 
more genotyping inconsistencies from the analysis. Instead of sacrificing all the 
information from the pedigree, I first check the consistency of the high-level nuclear 
family. If it contains one inconsistency, I remove or adjust the genotypes of the 
subjects that cause the inconsistency using the Mendelian protocol given next. If one 
node’ genotype in the high-level nuclear family is removed, I consider the node as 
untyped when checking the consistency and/or correcting the genotypes of a 
lower-level nuclear family where the node is one parent. The procedure is repeated 
until I correct all the inconsistencies from the pedigree.  

Consider such a pedigree: it contains one or more inconsistencies, but each 
nuclear family decomposed from the pedigree contains at most one inconsistency. 

MF , and INCC denote the father, the mother and the child whose genotypes are 
inconsistent. These three subjects are from a high-level, a middle-level or a low-level 
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nuclear family that contains exactly one inconsistency. Since I use equations in 
section 2.2.4 and 2.2.5 to compute the likelihood of the pedigree with the corrected 
genotypes, I use Fg , Mg and

errCg instead of FTrueg . , MTrueg . and
errCTrueg . . 

a. }0,0{},{ .. =MObsFObs gg  
If 2.1 ≥Cn , I set MissgF = and MissgM = .  
If 1.1 =Cn , I set MissgF = and MissgM = . For INCC with 1. =

INCCObsg , I set 
Missg

INCC = . 
b. }1,0{},{ .. =MObsFObs gg or }0,1{},{ .. =MObsFObs gg  

If 2.2 ≥Cn , I set 1=Fg if }1,0{},{ .. =MObsFObs gg , or 1=Mg if }0,1{},{ .. =MObsFObs gg . 
If 1.2 =Cn , I set MissgF = if }1,0{},{ .. =MObsFObs gg , or MissgM = if 

}0,1{},{ .. =MObsFObs gg . For INCC with 2. =
INCCObsg , I set Missg

INCC = . 
c. }2,0{},{ .. =MObsFObs gg or }0,2{},{ .. =MObsFObs gg  

If 1.0 ≥Cn and 1.1 ≥Cn , I set 1=Mg if }2,0{},{ .. =MObsFObs gg , or 1=Fg if 
}0,2{},{ .. =MObsFObs gg . 

If 2.0 ≥Cn and 0.1 =Cn , I set 1=Mg if }2,0{},{ .. =MObsFObs gg , or 1=Fg if 
}0,2{},{ .. =MObsFObs gg . 

If 1.1 ≥Cn and 1.2 ≥Cn , I set 1=Fg if }2,0{},{ .. =MObsFObs gg , or 1=Mg if 
}0,2{},{ .. =MObsFObs gg . 

If 0.1 =Cn and 2.2 ≥Cn , I set 1=Fg if }2,0{},{ .. =MObsFObs gg , or 1=Mg if 
}0,2{},{ .. =MObsFObs gg  . 

If 1.0 =Cn and 0.1 =Cn , I set MissgM = if }2,0{},{ .. =MObsFObs gg , or MissgF = if 
}0,2{},{ .. =MObsFObs gg . For INCC with 0. =

INCCObsg , I set Missg
INCC = . 

If 0.1 =Cn and 1.2 =Cn , I set MissgF = if }2,0{},{ .. =MObsFObs gg , or MissgM = if 
}0,2{},{ .. =MObsFObs gg . For INCC with 2. =

INCCObsg , I set Missg
INCC = .  

d. }2,1{},{ .. =MObsFObs gg or }1,2{},{ .. =MObsFObs gg  
If 2.0 ≥Cn , I set 1=Mg if }2,1{},{ .. =MObsFObs gg , or 1=Fg if 

}1,2{},{ .. =MObsFObs gg .  
If 1.0 =Cn , I set MissgM = if }2,1{},{ .. =MObsFObs gg , or MissgF = if 

}1,2{},{ .. =MObsFObs gg . For INCC with 0. =
INCCObsg , I set Missg

INCC =  
e. }2,2{},{ .. =MObsFObs gg  

If 2.1 ≥Cn , I set MissgF = and MissgM = . 
If 1.1 =Cn , I set MissgF = and MissgM = . For INCC with 1. =

INCCObsg , I set 
Missg

INCC = . 
f. 0. =FObsg and Missg MObs =. , or Missg FObs =. and 0. =MObsg  
 If 2.2 ≥Cn , I set 1=Fg if 0. =FObsg , or 1=Mg if 0. =MObsg . 

If 1.2 =Cn , I set MissgF = if 0. =FObsg , or MissgM = if 0. =MObsg . For INCC with 
2. =

INCCObsg , I set Missg
INCC = . 

g. 2. =FObsg and Missg MObs =. , or Missg FObs =. and 2. =MObsg  
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 If 2.0 ≥Cn , I set 1=Fg if 2. =FObsg , or 1=Mg if 2. =MObsg . 
If 1.0 =Cn , I set MissgF = if 2. =FObsg , or MissgM = if 2. =MObsg . For INCC with 

0. =
INCCObsg , I set Missg

INCC = .  

A more exact analysis would generate m consistent genotype sets that have only 
one genotyping correction from the observed genotypes and then weight these 
consistent genotype sets in the likelihood function as in section 2.3.1. This will be a 
subject of my future work.  
 
2.4 The likelihood ratio test statistic 

 
The likelihood ratio test statistic for N families with observed marker 

genotypesG
r

and phenotypes P
r

is: 

)]ˆ̂,ˆ̂,ˆ̂;,(ln)ˆ,ˆ,ˆ,ˆ;,([ln2 0102010 φππφφππ PGLPGLLRT errorerror

rrrr
−=  (29) 

where ∏
=

=
N

l
llerrorerror pgLPGL

1

;*),(;*),( rrrr
and the likelihood factor from one family 

;*),( llerror pgL rr may be found in equation (26). In equation (29), 2010
ˆ,ˆ,ˆ,ˆ φφππ are the 

estimates of 2010 ,,, φφππ under the alternative hypothesis, and 010
ˆ̂,ˆ̂,ˆ̂ φππ are the estimates 

under the null hypothesis.  
 
2.5 Null simulation 

 
I simulate nine sets of 500 null replicates with full or missing genotypes and 

phenotypes. Seven sets have no genotyping error, and two contain genotyping errors.       
Each replicate in the first set contains 200 case-parent trios, for a total of 600 

individuals. The replicate in the second set contains 200 quartets (two parents, one 
affected child and one unaffected child), for a total of 800 individuals. All the 
replicates in these two sets are 100% genotyped and do not contain genotyping errors. 
I set marker allele frequencies to 9.0)Pr( =a and 1.0)Pr( =b , disease allele frequencies 

88.0)Pr( =+ and 12.0)Pr( =d , and the proportion of maximum linkage disequilibrium 
95.0' =D . I specify equal disease penetrances 1.0210 === fff . Recombination 

fraction is set at 0.5, indicating that the marker is unlinked to the DSL. The simulation 
program SLINK program (Weeks et al, 1990) is used to simulate the parental 
phenotypes and marker genotypes when fixing the affection status of the children.  

Each replicate in the third set contains 100 quartets, with 75% affected sib pairs 
and 25% sib pairs with discordant affection status. I set marker allele 
frequencies 6.0)Pr( =a and 4.0)Pr( =b . The SIMULATE program (Terwilliger and Ott, 
1994) is used to simulate the null data. Note that only the marker allele frequencies 
are used to simulate the genotype data since the SIMULATE program ignores the 
DSL specifications in simulation. All the replicates in the third set are 80% genotyped 
and do not contain genotyping errors. An R function is written to remove randomly 
20% phenotypes and 20% genotypes from the simulated data.  

The fourth to the sixth sets use 92 fixed nuclear family structures with a total of 
366 individuals in each replicate. 46 nuclear families derived from a previously 
published IS study (Gao et al., 2007) are replicated twice in each null data replicate. 
The largest nuclear family contains 7 individuals, while the smallest has 3. The 
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median size of these nuclear families is 4. I set marker allele frequencies 6.0)Pr( =a  
and 4.0)Pr( =b . The fourth set uses 100% genotyped data, and the fifth and the sixth 
sets use 80% genotyped data. I also randomly insert genotyping errors with error 
rate 01.0=ε in the sixth set. The SIMULATE program is used to simulate the 
genotypes, and an R function is written to randomly insert genotyping errors and then 
remove genotypes.  

In the last three sets, 53 fixed multiplex IS families with a total of 313 
individuals are used for each replicate. The largest family contains 18 individuals, 
while the smallest contains 3. The median family size is 6. I set marker allele 
frequencies 6.0)Pr( =a and 4.0)Pr( =b . The SIMULATE program is used to simulate 
the null data. The seventh set uses 100% genotyped data, and the eighth and the ninth 
sets use 80% genotyped data. I also randomly insert genotyping errors with error 
rate 01.0=ε in the ninth set.  

I use the Kolmogorov-Smirnov (KS) goodness of fit test (Kolmogoroff, 1941; 
Smirnov, 1939) to determine whether the null distribution of the LRT for each setting 
fits well to a central 2χ with one degree of freedom. The decision rule is that a 
p-value 05.0> of KS test statistic indicates that the data comes from a central 

2χ distribution with one degree of freedom. 
 
2.6 Power comparison 
       

To compare the power of the TDT and this LRT, I perform an unrepeated 23 
factorial design with three factors: disease genotype relative risk 011 ffR = (1.75 or 2), 
marker allele frequency )(bp (0.1 or 0.2), and number of trios or quartets (125 or 175). 
Note that this work assumes multiplicative mode of inheritance, so that 2

12 RR = . The 
disease allele frequency )Pr(d is 0.12 or 0.24 when marker allele frequency )Pr(b is 0.1 
or 0.2, with 95.0'=D . Recombination fraction is set at 0. For each setting, I first 
compare the power of the TDT and the power of this LRT on the same number of 
case-parent trios. To test the statistical significance of main and two-way interaction 
effects on the power difference (power of the LRT – power of the TDT), ANOVA is 
used for the parsimonious model after removing the non-significant effects at 10% 
significant level. Then I compare the power of the LRT on the same number of trios 
and quartets (two parents, one affected child and the other unaffected). I also compare 
the power of the LRT on the same number of trios or quartets when the simulated 
parental phenotype data is used or not. Finally, I perform power calculation of the 
LRT on trios with 80% available genotypes, and trios with 1% genotyping errors and 
80% available genotypes. The power of the TDT is calculated analytically using the R 
package powerpkg developed by Weeks (2005), based on the asymptotic power 
formula of Abel and Muller-Myhsok (1998). The power of the LRT is calculated via 
Monte Carlo computer simulation with 500 replicates. The data for each replicate is 
simulated by the SLINK program.  
 
2.7 Applications 
 
Idiopathic scoliosis data for CHD7 gene 

I apply the likelihood method to a previously published genetic study for 
idiopathic scoliosis (IS), a common disease of children displaying a complex 
inheritance pattern but lacking known causative genes. In that study, a follow-up 
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analysis of genome-wide linkage scans provided supporting evidence of linkage to 
human chromosome 8q12 in a total cohort of 53 multiplex families in which 130 
individuals were affected. A fine-mapping study of the CHD7 candidate gene encoded 
in the 8q12 candidate region was subsequently performed by genotyping 25 single 
nucleotide polymorphic (SNP) loci evenly spaced throughout the ~93 kb region. Two 
of the 25 SNPs were not sufficiently polymorphic and were dropped. Application of 
TDT methods produced significant results for ~19 of the 23 SNPs. Re-sequencing 
conserved regions underlying the peak of association identified a potential functional 
SNP, rs4738824, which was also significant in tests of transmission disequilibrium. 
These data identified CHD7 as the first candidate gene for IS (Gao et al., 2007).  
     I first study the 92 nuclear families derived from 53 IS families. The median 
family size is 4, and there are 352 individuals (including duplicated individuals after 
decomposition), of whom 145 were affected. While there are no genotype 
inconsistencies in this data, there were 58.8% individuals with missing phenotype 
information, and approximately 30% individuals with missing genotype data on each 
SNP locus. I apply the likelihood method to test association between each of the 23 
SNPs and IS. I compare the results with those obtained by TDTae under the 
multiplicative mode of inheritance.  
     Then I apply this LRT to the cohort of 53 IS families with 313 individuals. 
Among these individuals, 133 were affected with IS while the phenotypes of the 
remaining 180 were unknown. The largest family size is 16. The median family size is 
5. The data contains 3 four-generation pedigrees, 18 three-generation pedigrees, and 
32 nuclear families, among which 3 are f-multiple marriages. I apply the likelihood 
method to test association between each of the 23 SNPs and IS. I compare the results 
with those reported by Gao et al. (2007).  
 
Psoriasis data on chromosome 17q25 

The second application is to a psoriasis study. The data contains 79 SNPs and 
29 polymorphic microsatellites from chromosome 17q25 at an average resolution of 
80kb genotyped in 242 psoriasis families with multiple affected and unaffected 
individuals each family. There are 1056 individuals, of whom 596 (56.4%) were 
affected and 221 (20.9%) were unaffected. The largest family size is 13. The median 
family size is 4. The data contains 6 three-generation pedigrees, and 236 nuclear 
families, among which 4 are f-multiple marriages. The previously published study 
identifies significant linkage for multiple SNPs and two peaks of strong association 
with psoriasis in 17q25 region on Chromosome 17 (Helms et al., 2003). Gordon et al. 
(2004) further studied 16 SNPs in this region. They found that two SNPs displayed 
significant evidence of linkage at the 5% significance level after correction for 
multiple testing via the false discovery rate method (Benjamini and Hochberg, 1995). 
Gordon et al. (2004) also detected inconsistent genotypes at each of these SNPs.  

I apply this LRT for 13 of the SNPs to test association between each SNP and 
psoriasis. Approximately 30% individuals were untyped on each of the 13 SNPs. I 
compare the results with those by the TDTae under multiplicative mode of inheritance 
and the FBAT using additive coding (Laird, 2006). Note that the additive coding in 
FBAT reflects an underlying additive or multiplicative mode of inheritance (Laird, 
2006). I also compare the genotype relative risks estimated by the TDTae and this 
LRT. To detect the genotyping errors, I write an R function that can identify families 
with genotype inconsistencies. The FBAT removes the inconsistent families from the 
analysis, while the LRT and the TDTae incorporate the inconsistencies into the 
likelihood functions.   
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Chapter 3  Grid-UOBYQA algorithm 
 
     Gordon et al. (2004) applied a two-stage optimization procedure to locate the 
maximum log-likelihoods under each hypothesis. They used Powell’s quadratically 
convergent algorithm as implemented in the ‘Numerical Recipes in C’ text (Press et 
al., 2002). Their results suggest that the grid search and Powell algorithm, both of 
which are direct search algorithms, work efficiently for their likelihood-based method 
for general pedigrees with missing parental genotypes and genotyping errors.  

Many direct search algorithms, including line search methods, the restriction of 
vectors of variables to discrete grids, the use of geometric simplexes, conjugate 
direction procedures, and true region algorithms that form linear or quadratic 
approximations to the objective function, have been proposed for optimization 
calculations that do not require the calculation of derivatives (Powell 1998). Among 
these algorithms, Powell’s quadratically convergent method (Powell, 1964), denoted 
as Powell in Gordon et al. (2004), was widely used and extended with 927 citations to 
date. However, the problem of linear dependence in this algorithm may make the 
search procedure end with the maximum/minimum of the objective function only over 
a subspace of the full n -dimensional case (Press et al., 2002). The linear dependence 
problem was fixed by a singular value decomposition algorithm (Press et al., 2002).  

The UOBYQA (Unconstrained Optimization BY Quadratic Approximation), 
another derivative-free method developed by Powell (2000) for general unconstrained 
optimization, uses multivariate quadratic Lagrange interpolations to approximate the 
objective function and uses the trust region technique (Celis et al., 1985) to ensure 
convergence. It uses two trust region radii. The first radius is similar to the trust 
region radius in the standard trust region method, while the second radius is used as a 
stopping criterion to control the goodness of the quadratic model. Numerical results 
and theoretical analyses show that the UOBYQA algorithm is globally convergent for 
general objective functions when the second trust region radius converges to zero. It 
has also displayed quadratic convergence in numerical experiments (Powell, 2000; 
Han and Liu, 2004). I implement the fixed Powell algorithm in R and compare its 
convergence rate with that of UOBYQA by R package powell (Powell, 2000). Results 
of numerical experiments show that the UOBYQA appears to have a faster 
convergence rate. 

Since UOBYQA is specifically designed for unconstrained optimization 
calculation in multi-dimensions, one strategy to apply it to constrained optimization 
problems is to constrain the search region by setting an infinite value to the objective 
function when the search reaches beyond the parameter space bounded by the lower 
and upper limits for each parameter. Since the discrete grid method was specifically 
proposed for variables bounded by constraints (Torczon, 1997), on the constrained 
search region, the discrete grid method can be used to identify several starting points 
around which the optimal point may lie. Motivated by the simplicity of the discrete 
grid search and the advantage in convergence of the UOBYQA, this work uses a grid 
search in the first stage and the UOBYQA in the second stage similar to the two-stage 
maximization procedure applied in the TDTae (Gordon et al., 2004). The composite 
algorithm is called grid-UOBYQA.  

The grid-UOBYQA algorithm parameters are a superset of those for the grid 
selection and UOBYQA. At each grid point, the values of the objective function are 
computed and then compared. Those grid points corresponding to the first few 
largest/lowest values of the objective function are selected as the starting points for 
the UOBYQA optimization. For each starting point, UOBYQA determines the local 
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fit-statistic maximum/minimum. The largest/smallest of all observed maxima/minima 
is then considered as the global fit-statistic maximum/minimum. The advantage of 
Grid-UOBYQA is that it can provide a thorough sampling of the parameter space. For 
a continuously differentiable objective function like the log-likelihood in this work, 
this combined algorithm can make full use of the advantages of both grid search and 
UOBYQA. It is good for situations where the best-fit parameter values are not easily 
determined a priori, and where there is a high probability that false maxima/minima 
would be found if one-shot techniques such as UOBYQA are used instead (Freeman 
et al., 2001). However, the biggest disadvantage is that it can be very slow, especially 
when the number of grid points is large.  

In this work, grid-UOBYQA is applied to maximize the log-likelihoods under 
each hypothesis. First I identify the K best starting points for the parameters 

},,{ 010 φππ under the null hypothesis 210 φφφ == , selecting from 3G grid points on a 
3-dimensional rectangle. From each of these K starting points, UOBYQA optimization 
will end with a local maximum of log-likelihood together with the corresponding 
estimates Kkkk ,...,1},ˆ,ˆ{ 10 =ππ . Then I use these estimates as the starting values for 
the genotype frequency estimation. I start with 2KG grid points to find the optimal 
value for },,,{ 2010 φφππ . That is, for each of the K estimates Kkkk ,...,1},ˆ,ˆ{ 10 =ππ , I 
examine 2G rectangular grid points for },{ 20 φφ . I select the K best starting points 
from the 2KG grid points. As in the null hypothesis likelihood maximization 
procedure, the UOBYQA algorithm will find the local maximum of log-likelihood 
under the alternative hypothesis starting from each of the K best points. If 
the K searches under each hypothesis locate the same local maximum, I consider this 
local maximum to be the global maximum under that hypothesis. If this condition is 
not met, I try a larger G and a larger K . In the event of failure of a common 
maximum, I report the largest observed log-likelihood and the corresponding 
parameter estimates under each hypothesis.  

For example, suppose that I use a grid search for the 6=K best starting points 
for the parameters },,{ 010 φππ using 5=G values starting from 0 and ending at 1, with 
an increment of 0.25. The log-likelihood will be computed 12553 = times and the grid 
search will end with 6 starting points corresponding to the six largest log-likelihood 
values under the null. If, for each of the six searches, the UOBYQA finds the same 
local maximum log-likelihood, I denote the local maximum as the global maximum, 
and record the corresponding estimate }ˆ,ˆ,ˆ{ 010 kkk φππ . Then for each of the six 
estimated pairs }ˆ,ˆ{ 10 kk ππ , each of the parameters },{ 20 φφ is tested at 5 values: [0, 
0.25, 0.5, 0.75, 1]. Starting from the six best starting points out of 15056 2 =× , the 
UOBYQA search will give the local maxima under the alternative. If the six searches 
under the null or the alternative hypothesis do not converge to the same maximum, I 
use 8=K and 10=G . If new search fails to locate the same maximum, I denote the 
largest among the eight local maximums as the maximum under the null and the 
alternative hypotheses.  

This work uses the Powell package (Powell, 2000) for the UOBYQA search 
procedures. The R program to implement the grid-UOBYQA maximization is 
available on http://www.ams.sunysb.edu/~yayang. 
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Chapter 4  Results 
 
4.1 Null simulations 
 

Table 17 lists the p-values from the KS goodness of fit test for each simulation 
and the empirical type I error rates and their 95% confidence intervals. These results 
suggest that, for these simulated data sets, the empirical distribution of LRT appears to 
fit to a central 2χ distribution with one degree of freedom at the 5% significance level. 
Specifically, this LRT is valid as a test of linkage in the presence of allelic association, 
or as a test of linkage or allelic association.  
 
4.2 Power comparison 
 

Table 18 lists the powers of the TDT and this LRT based on the 23 factorial 
design. The results suggest that the LRT is better than the original TDT (compare 
columns labeled TDT and LRTb), even in the presence of 20% missing genotype data 
and 1% genotyping errors (compare columns labeled TDT, LRTc, and LRTd). Since 
the parental phenotypes are simulated in the SLINK, removing the parental phenotype 
information will decrease the power to test association of marker with disease. That is 
the reason why the values in columns labeled LRTa and LRTe are smaller than those in 
any other column. The values in columns labeled LRTe and LRTf are larger than those 
in columns labeled LRTa and LRTb, respectively, indicating that including information 
of the unaffected children in the LRT appears to increase power of the family-based 
association test.  

Table 19 displays the ANOVA table of the unrepeated three-level design for the 
power difference of the TDT and the LRT (see values in columns labeled TDT and 
LRTb in Table 18). The three main effects, genotype relative risk at the disease locus 
(GRRD), marker allele frequency (MAF), and number of trios (NT), and the 
interaction of GRRD and NT are significant at the 10% significance level. Only the 
main effects are significant at the 5% significance level.  
 
4.3 Application to real datasets 
 
Idiopathic scoliosis data for CHD7 gene 

The results of this LRT and the TDTae for the 92 IS nuclear families are 
compared in Figure 12, which shows 10log− (p-value) for each test. The results of the 
LRT are consistent with those by TDTae. Specifically, p-value 05.0< is equivalent 
to 10log− (p-value) 3.1> . Seven of the 23 SNPs have p-values that are less than 0.001 
(or equivalently, 10log− (p-value) 3> ). They are, from with the smallest p-value to the 
largest, rs7843033, rs7000766, hcv509504, rs1038851, hcv509505, hcv148921, and 
rs7842389. The marker with the largest LRT of 12.96 (p-value 000319.0= ; 

10log− (p-value) 50.3= ) is rs7843033. This marker is the most significant marker in 
the TDTae analysis. For marker rs7843033, the estimated genotype relative risks at 
the marker locus are 40.2ˆˆˆ

011 == φφR and 77.5ˆˆˆ
022 == φφR , consistent with the 

strong genetic effect observed for this marker locus in the previous study (Gao et al., 
2007).     

Figure 13 compares the results of this LRT and other family-based tests in Gao 
et al. (2007) for the 53 multiplex IS families. Table 20 lists more detailed results, 
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including the marker genotype relative risks estimated by the TDTae and the LRT. 
The results of the LRT are similar to those of the haplotype-based haplotype relative 
risk (HHRR) association test (Terwilliger and Ott, 1992), the affected sib pair (ASP) 
linkage test (Terwilliger, 1995) and the TDTae. Eight of the 23 SNPs have LRT 
p-values that are less than 0.001 (or equivalently, 10log− (p-value) 0.3> ). From with 
the smallest p-value to the largest, these eight SNPs are rs1483207, rs7843033, 
rs4392940, rs7000766, rs4237036, rs1038351, hcv148921, and rs7017676. The most 
significant marker identified by the HHRR, the TDTae and the ASP are rs7017676, 
rs7843033, and rs7000766, respectively. All of them are among the eight most 
significant SNPs identified by this LRT.  
Figure 12: The TDTae and LRT p-values ( 10log− transformed) on 23 SNPs in CHD7 

gene for the 92 IS nuclear families 
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Figure 13: The HHRR, ASP, TDTae and LRT p-values ( 10log− transformed) for 23 
SNPs in CHD7 gene for the 53 multiplex IS families 
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Psoriasis data on chromosome 17q25   

Figure 14 compares the results of the FBAT, the TDTae and this LRT on 13 
SNPs, as indicated by 10log− (p-value). More detailed results are listed in Table 21, 
including the genotype relative risks estimated by the TDTae and the LRT. At the 5% 
significance level, the FBAT and the TDTae identifies 11 significant markers while 
the LRT finds 7 significant markers. The three most significant markers by the FBAT, 
locus#59, locus#62, and locus#65, also display significant association with the disease 
using the TDTae and the LRT. Specifically, locus#65 is the second most significant 
marker identified by the TDTae. Locus#65 is the most significant marker, and 
locus#59 is the second most significant marker by the LRT. For locus#59, the FBAT 
p-value is 0.0015, the TDTae p-value is 0.0116, and the LRT p-value is 0.0009, with 
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estimated relative risk of the marker genotypes 47.1ˆ
1 =R and 16.2ˆ

2 =R . For locus#65, 
the FBAT p-value is 0.0020, the TDTae p-value is 0.0053, and the LRT p-value is 
0.00086, with 47.1ˆ

1 =R and 17.2ˆ
2 =R . The LRT gives quite different results from the 

other two methods on locus#58, locus#60, locus#64 and locus#67. The FBAT and the 
TDTae have significant results on the four SNPs, while the LRT p-values are greater 
than 0.05. I conjecture that one reason for the different results may be that the 
genotypes of the unaffected individuals are incorporated into the test statistic of the 
LRT. As reviewed in Chapter 1, the TDTae considers only affected offspring. 
Although the FBAT uses genotypes of unaffected offspring to infer the incomplete 
parental genotypes, the test statistic does not contain the genotypes of the unaffected 
children. Another possible reason is that the FBAT does not use the information from 
the inconsistent families while the LRT and the TDTae incorporate the inconsistencies 
into the likelihood functions. The Mendelian check on genotypes finds that there are 
two or more families (6 at most) with inconsistent genotypes at each of these SNP 
loci.  
Figure 14: The FBAT, TDTae and LRT p-values ( 10log− transformed) for 13 SNPs on 

chromosome 17q25 for 242 psoriasis families 
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Chapter 5  Discussion 
 
5.1 The likelihood function 

 
The overall likelihood for a pedigree is 
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where founderg denotes a founder’s genotype, fg , mg and cg denote genotypes for father, 
mother and a child, and ip and ig the phenotype and genotype for the ith individual in 
the pedigree of size n . The likelihood function consists of three factors from left to 
right: (1) probability of founder genotypes, (2) probability of children’s genotypes 
given parental genotypes, and (3) probability of phenotypes given genotypes for all 
individuals in a pedigree (Sham, 1997). Since the likelihood requires intensive 
computation, many algorithms have been proposed to speed the calculation (Elston 
and Stewart, 1971; Lander and Green, 1987; Kruglyak and Lander, 1998).  

One of the most widely used algorithms for likelihood computation is the 
Elston-Stewart algorithm (Elston and Stewart, 1971). Their algorithm works 
efficiently for larger but simple pedigrees and a small number of markers. It computes 
the likelihood as a function of the recombination fraction between a disease and 
marker locus. That is, their likelihood algorithm is designed to test for linkage 
whether or not there is an association (Gordon et al., 2004). Weeks suggests that 
likelihood method based on the overall pedigree likelihood conditional on the parental 
marker genotypes can be used as an alternative to the TDT (personal communication 
through email).  

There are other conditional likelihood methods that are proposed to test 
association as extensions of the TDT (Spielman et al., 1993; Schaid and Sommer, 
1993; Whittemore and Tu, 2004). Schaid and Sommer presented two likelihood 
methods to test association between marker and disease for trios of two parents and 
one affected child: (1) a likelihood method appropriate when HWE holds and (2) a 
likelihood method conditional on parental genotypes when HWE does not hold. The 
first Schaid-Sommer likelihood for n trios is  
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where the constant ⎟⎟
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from mating type i (see Table 1), and ijx the number of affected children from mating 
type i with j mutant alleles b .Their results for the relative efficiency of these two 
likelihood methods suggest that their second likelihood method may at times be 
preferable, even when HWE holds.  

Based on Schaid and Sommer’s work, Whittemore and Tu (2000) use the 
likelihood function for a family at locus t,  
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Their likelihood is defined as the probability of the family’s observed marker 
genotypes gr , given the family’s genealogical structure R, the vector of phenotypes pr , 
and that t is a DSL. Let DSLgr denote the vector of genotypes at a DSL. They have 
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after suppressing the dependence of the probabilities both on the family structure 
R and on the particular locus t . Here∑
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denotes summation over all possible 

genotype vector DSLgr . Substitution of the equation above into WTL gives the conditional 
likelihood as 
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That is, the following likelihood of marker genotypes given the phenotypes and the 
family structure R can be used to test association for general nuclear families:  
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The likelihood function in this work has two factors. The first factor, 
),|,Pr( MFMFFounder ppggL = , uses founder’s genotypes and phenotypes to estimate 

population frequencies of parental marker genotypes (under HWE, it can be used to 
estimate population frequencies of marker genotypes for all generations). The second 
factor, ),,|Pr( CMFCNonfounder pgggL rr

rr= , evaluates disequilibrium in transmission of 
marker alleles from parents to offspring. It follows the approach of the second 
likelihood function in Schaid and Sommer (1993). The product of these two factors 
gives the likelihood factor from a general nuclear family with complete parental 
genotypes:  

),,|Pr(),|,Pr( CMFCMFMFNonfounderFounderYY pgggppggLLL rr
rr== . 

I use a different notation YYL here to denote this likelihood for the convenience of 
comparison of these likelihood functions.  

Based on the review of the likelihood methods to test association (Schaid, 1996; 
Clayton, 1999; Whittemore and Tu, 2000), Laird and Lange (2006) concluded that 
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with parental data, all information on association is contained in NonfounderL and 
likelihood-ratio tests based on NonfounderL are optimal. Therefore, the LRT based on 

YYL also contains the information needed to test association.  
Note that YYL will be equivalent to *WTL  if the following two equations hold: 
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For a child, one can prove that 

).,,|Pr(
),,Pr(

),,,Pr(
)|Pr(),|Pr(),Pr(

)|Pr(),|Pr(),Pr(

)|Pr(),|Pr()|Pr()|Pr(),Pr(
)|Pr(),|Pr()|Pr()|Pr(),Pr(

),,,,Pr(
),,,,,Pr(),,,,|Pr(

CFMC
CFM

CFMC

g
CCFMCFM

CCFMCFM

g
CCFMCMMFFFM

CCFMCMMFFFM

CFMFM

CFMFMC
CFMFMC

pggg
pgg

pggg
gpggggg

gpggggg

gpggggpgpgg
gpggggpgpgg

pppgg
pppgggpppggg

C

C

===

=

=

∑

∑

Also, given the mating type, the children’s genotypes are assumed to be conditionally 
independent. That is, 
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Therefore, equation (30) holds.  
Equation (31) holds if one individual’s phenotype is dependent solely on his/her 

marker genotype so that the parental phenotypes are sufficient to determine the 
probability of the parental genotypes. However, the assumption will be violated under 
the following scenarios:  
 
The parental phenotypes are unavailable 

Since this work assumes that the phenotypes are MAR, I have 
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is not necessarily true. Actually, Schaid and Sommer (1993) have derived that the 
conditional likelihood 
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When 210 φφφ == , equation (31) holds. When the marker penetrances are unequal, 
)|,Pr( Dpgg CMF = is not necessarily equal to ),Pr( MF gg . The implication is that the 

mating type is not independent of the child’s phenotype.  
 
The parental phenotypes are available 

Weeks shows that children’s phenotypes can be used to infer the mating type 



 46

of their parents, even when the parental phenotypes are available (personal 
communication by email). Consider two trios with unaffected parents, one with an 
unaffected child, and the other with an affected child. Suppose the marker allele a is 
quite frequent. If there is linkage disequilibrium between the marker and a DSL so 
that the db and +a haplotypes are the most frequent, then the unaffected child is more 
likely to be +a/+a; and so that the mating type of the first trio is more likely to be 

aaaa × at the marker. In contrast, the affected child is more likely to be +a/db, and so 
that the mating type of the second trio is more likely to be abaa × at the marker.  

The violation of the assumption that supports equation (31) indicates that YYL  
is not necessarily equal to *WTL especially under the alternative hypothesis. But since 

YYL contains information on association, it can be used as an approximation of *WTL . 
Also, the results of null simulation and power calculation suggest that LRT based 
on YYL is appropriate for the association test. Another advantage of YYL is that the LRT 
based on YYL can be readily extended for large pedigrees with missing data and 
genotyping errors with affordable computation complexity while *WTL will be 
computationally inefficient when missing data and genotyping errors appear in large 
pedigrees.  
       
5.2 Missing parental genotype data 
 

When the Elston-Stewart algorithm is applied to compute likelihoods for 
pedigrees with missing parental genotype data, it always ends up including a 
summation over all underlying complete phenotype and marker genotype vectors that 
are consistent with the observed phenotype and genotype data (personal 
communication with Weeks). That is, the derivation of the conditional likelihood for 
pedigrees with missing parental genotype data is 

∑=
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r

rrrrr )|,Pr()|Pr( . 

Although it may be feasible to apply this marginal likelihood conditional on the 
observed phenotypes to this work, the calculation of likelihood for large pedigrees 
with substantial missing data will be computationally expensive (Nyholt, 2002). 
Another disadvantage of the marginal likelihood is that it cannot be used to infer the 
estimates when the genotypes are missing not at random (MNAR) (Little and Rubin, 
2002). Purcell et al. (2007) proposed a test for nonrandom genotyping failure with 
respect to genotype. They find that if the assumption of MAR is violated, one would 
often expect to see an association between missingness and flanking haplotypes 
(Purcell et al., 2007). That is, when marker genotypes are MNAR, the likelihood built 
on the assumption of MAR (such as the marginal likelihood mentioned by Weeks) 
may result in a biased test. Although this work assumes MAR for genotypes and 
phenotypes for easy start, the conditional expectation of the complete-data likelihood 
for nuclear families with missing parental genotype data can also be used if the MAR 
is violated.  
 
5.3 Genotyping errors 
 

Optimal performance of genetic analyses relies on accurate and efficient 
genotypes as genotyping errors reduce power to detect and map genetic effects. Even 
at low error rates (< 2%), genotyping errors, of which 25% are Mendelian consistent, 
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can result in biased test results (Douglas et al., 2000). Even worse, the 
Mendelian-consistent errors are difficult to detect, Badzioch et al. (2003) found that 
even when the error rate is assumed to be as high as 10%, only 50% of the 
Mendelian-consistent genotyping errors can be found.  

Another problem is the computational complexity to perform the LRT for 
families with potential Mendelian-inconsistent and -consistent errors. It is difficult to 
infer the estimate of error rate for large and complex pedigrees since the computation 
time is exponential in the number of individuals when considering Mendelian- 
consistent errors throughout the family members. I have written an R function to 
perform the LRT for trios with potential genotyping errors (both consistent and 
inconsistent), without any constraints on the number of errors per trio. The 
computation is quite slow, and the likelihood tends to increase when the grid- 
UOBYQA algorithm searches around the parameter limits (0 or 1). This results in 
unreasonable parameter estimates. Therefore, I only consider Mendelian 
inconsistencies and assume at most one inconsistency per nuclear family. Actually, 
most studies for genotyping errors considered only Mendelian-inconsistent errors in 
their models (Gordon et al., 2004; Ehm et al., 1996) or assumed that there was exactly 
one genotyping error per family (Douglas et al., 2002) due to the computational 
complexity.   

In the real application of this LRT, I found that in the psoriasis data, there were 
a couple of families with a strong evidence of paternal inconsistency. I check the 
consistency of the genotypes for each family on each of the 13 SNP being tested and 
detect inconsistencies of the paternal genotype with the genotype of one specific child 
in at least 5 nuclear families. For example, the paternal genotypes of one psoriasis 
family were inconsistent with those of the child with ID 1 on all 13 SNPs. When 
removing these nuclear families with paternal inconsistency from the analysis, there is 
no inconsistency or very few inconsistencies in the remaining families. To make use 
of the information from families with paternal inconsistency, one strategy is to 
remove the paternal genotypes from those families for all the markers, and then use 
the likelihood function for families with missing parental genotypes to compute the 
likelihood factors contributed by other individuals. That suggests the use of equation 
(26), which is similar to the complete-likelihood function (see equation (1)), to 
compute the likelihood factor for the family with one inconsistency.  

 
5.4 Maximization algorithms 

 
For simple family structures such as case-parent trios with complete or missing 

parental genotype data, the expectation and maximization (EM) algorithm (Dempster 
et al., 1977) is normally used to maximize the log-likelihood under the hypotheses of 
association (Schaid DJ, 1996; Weinberg, 1999). However, it is not easy to extend the 
EM algorithm to allow for larger families due to the difficulty in deriving the 
expectation and maximization functions for arbitrary pedigree structures, especially 
when there are missing data and genotyping errors in the pedigree. Besides the 
difficulty in implementing the EM algorithm, this work applies grid-UOBYQA for the 
following reasons. First, the theoretical convergence rate for EM algorithm is linear 
(Dempster et al., 1977). When the associated model is complicated, it converges more 
slowly than the UOBYQA since the later has a faster quadratic convergence rate while 
being globally convergent (Powell, 2000). Second, the EM algorithm may converge to 
a local optimum, while the grid-UOBYQA can provide a thorough sampling of the 
parameter space, which makes it easy to locate the global maximum of the 
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log-likelihood.  
The biggest disadvantage of grid-UOBYQA is that the computation complexity 

increases exponentially in the number of grids. This makes the computation very slow 
whenG is large. Therefore, we set 5=G to search for 6=K best starting points under 
the two hypotheses.  

The experience in performing the simulations and applying the likelihood 
method to the real data sets is that the maximization is reasonably fast when the data 
are from nuclear families with little/no missing information. The computational effort 
increases when considering more general pedigrees and/or pedigrees with more 
missing data and inconsistencies. These results are similar to those observed with the 
TDTae.  
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Table 1: ),|Pr( MFC ggg , the probability of a child’s genotype conditional on the 
parental genotypes 

 
 

aThe mating types are consistent with those in Schaid and Sommer (1993). 
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Table 2: ),,|Pr( Apggg CMFC = , the probability of a child’s genotype conditional 
on the parental genotypes and child being affected 
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Table 3: ),,|Pr( Upggg CMFC = , the probability of a child’s genotype conditional on 
parental genotypes and child being unaffected 
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Table 4: ),,|Pr( FCMF pggg for a trio with untyped father  
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Table 5: ),,|,Pr( MisspMisspggg MFCMF == for a trio without parental data 
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Table 6: ),,|,Pr( MFCMF ppggg for a trio with two untyped parents 
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Table 7: ),,|Pr( FCMF pggg r
r  for a nuclear family with untyped father 

}}{,{ CM gg r
r  ),,|0Pr( FCMF pggg r

r= ),,|1Pr( FCMF pggg r
r= ),,|2Pr( FCMF pggg r

r=

{0, {0}} 
1100

00
.0

.0

2
2

ηπηπ
ηπ
+C

C

n

n

 
1100

11
.02 ηπηπ

ηπ
+Cn  0 

{0, {1}} 0 
2211

11
.12 ηπηπ

ηπ
Cn+

 
2211

22
.1

.1

2
2

ηπηπ
ηπ
C

C

n

n

+
 

{0, {0,1}} 0 1 0 

{1, {0}} 
1100

00
.0

.0

2
2

ηπηπ
ηπ
+C

C

n

n

 
1100

11
.02 ηπηπ

ηπ
+Cn  0 

{1, {1}} 
221100

00

ηπηπηπ
ηπ

++
 

221100

11

ηπηπηπ
ηπ

++
 

221100

22

ηπηπηπ
ηπ

++
 

{1, {2}} 0 
2211

11
.22 ηπηπ

ηπ
Cn+

 
2211

22
.2

.2

2
2

ηπηπ
ηπ
C

C

n

n

+
 

{1, {0,1}} 
1100

00
.0

.0

2
2

ηπηπ
ηπ
+C

C

n

n

 
1100

11
.02 ηπηπ

ηπ
+Cn  0 

{1, {0,2}} 0 1 0 

{1, {1,2}} 0 
2211

11
.22 ηπηπ

ηπ
Cn+

 
2211

22
.2

.2

2
2

ηπηπ
ηπ
C

C

n

n

+
 

{1, {0,1,2}} 0 1 0 

{2, {1}} 
1100

00
.1

.1

2
2

ηπηπ
ηπ
+C

C

n

n

 
1100

11
.12 ηπηπ

ηπ
+Cn  0 

{2, {2}} 0 
2211

11
.22 ηπηπ

ηπ
Cn+

 
2211

22
.2

.2

2
2

ηπηπ
ηπ
C

C

n

n

+
 

{2, {1,2}} 0 1 0 

In this table, 
⎪
⎩

⎪
⎨

⎧

=
=−
=

=
Misspif
Upif
Apif

F

Fi

Fi

i

1
1 φ
φ

η . The first column labeled }}{,{ CM gg r
r lists the 

maternal genotypes and the set of children’s genotypes.  
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Table 8: ),,|,Pr( MFCMF ppggg r
r for a nuclear family with untyped parents 

},{ MF gg  }0{}{ =Cg r
r  }1{}{ =Cg r

r  }2{}{ =Cg r
r  

{0, 0} 
0

2
0 ),0(),0(2 .0

D
pp MF

n C ΘΘπ  0 0 

{0, 1} 
0

10 ),1(),0(
D

pp MF ΘΘππ  
1

10 ),1(),0(
D

pp MF ΘΘππ  0 

{0, 2} 0 
1

20 ),2(),0(2 .1

D
pp MF

n C ΘΘππ  0 

{1, 0} 
0

01 ),0(),1(
D

pp MF ΘΘππ  
1

01 ),0(),1(
D

pp MF ΘΘππ  0 

{1, 1} 
0

2
1 ),1(),1(2 .0

D
pp MF

n C ΘΘ− π  
1

2
1 ),1(),1(

D
pp MF ΘΘπ  

2

2
1 ),1(),1(2 .2

D
pp MF

n C ΘΘ− π  

{1, 2} 0 
1

21 ),2(),1(
D

pp MF ΘΘππ  
2

21 ),2(),1(
D

pp MF ΘΘππ  

{2, 0} 0 
1

02 ),0(),2(2 .1

D
pp MF

n C ΘΘππ  0 

{2, 1} 0 
1

12 ),1(),2(
D

pp MF ΘΘππ  
2

12 ),1(),2(
D

pp MF ΘΘππ  

{2, 2}  0 0 
2

2
2 ),2(),2(2 .2

D
pp MF

n C ΘΘπ  

},{ MF gg  }1,0{}{ =Cg r
r  }2,1{}{ =Cg r

r  }2,1,0/{}2,0{}{ =Cg r
r  

{0, 0} 0 0 0 

{0, 1} 
01

0 ),1(),0(2 .0

D
pp MF

n C ΘΘπ  0 0 

{0, 2} 0 0 0 

{1, 0} 
01

0 ),0(),1(2 .0

D
pp MF

n C ΘΘπ  0 0 

{1, 1} 
01

1 ),1(),1(
D

pp MF ΘΘπ  
12

1 ),1(),1(
D

pp MF ΘΘπ
 

1 

{1, 2} 0 
12

2 ),2(),1(2 .2

D
pp MF

n C ΘΘπ  0 

{2, 0} 0 0 0 

{2, 1} 0 
12

2 ),1(),2(2 .2

D
pp MF

n C ΘΘπ  0 

{2, 2}  0 0 0 
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Legend of Table 8 

 

In this table, .2,1,0,
1
1),( =
⎪
⎩

⎪
⎨

⎧

=
=−
=

=Θ i
Misspif
Upif
Apif

pi i

i

φ
φ

 
}0{}{ =Cg r

r indicates that all the children in the family are genotyped 0. Similarly, 
}1{}{ =Cg r

r and }2{}{ =Cg r
r indicate that all the children are genotyped 1 and 2. Also,
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2
2

1221
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MFMFMF
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pp

ppppppD
C

C

ΘΘ+

ΘΘ+ΘΘ+ΘΘ= −
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πππππ

 

);,1(),1()],0(),1(),1(),0([2 1001
.0

MFMFMF
n ppppppD C ΘΘ+ΘΘ+ΘΘ= ππ  

)].,1(),2(),2(),1([2),1(),1( 0112
.2

MFMF
n

MF ppppppD C ΘΘ+ΘΘ+ΘΘ= ππ
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Table 9: ),,,,|Pr( FCMMFFFF pggggg r
r for a pedigree with untyped father and 

genotyped paternal grandparents: Part A 
},{ MFFF gg  0=Fg  1=Fg  2=Fg  

}}0{,0{}}{,{ =CM gg r
r

 
{0, 0} 1 0 0 

{0, 1}/{1, 0} 
),1(),0(2

),0(2
.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(),0(2
),1(

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 1} 
),1(2),0(2

),0(2
.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(2),0(2
),1(2

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 2}/{2, 1} 0 1 0 
}}1{,0{}}{,{ =CM gg r

r
 

{0, 1}/{1, 0} 0 1 0 

{1, 1} 0 ),2(2),1(2
),1(2

.1
F

n
F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(2
),2(2

.1

.1

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

{1, 2}/{2, 1} 0 
),2(2),1(

),1(
.1

F
n

F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(
),2(2

.1

.1

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

{2, 2} 0 0 1 
}}1,0{,0{}}{,{ =CM gg r

r
 

{*, *} 0 1 0 
}}0{,1{}}{,{ =CM gg r

r
 

{0, 1}/{1, 0} 
),1(),0(2

),0(2
.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(),0(2
),1(

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 1} 
),1(2),0(2

),0(2
.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(2),0(2
),1(2

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 2}/{2, 1} 0 1 0 
}}1{,1{}}{,{ =CM gg r

r
 

{0, 1}/{1, 0} 
),1(),0(

),0(

FF

F

pp
p
Θ+Θ

Θ  
),1(),0(

),1(

FF

F

pp
p
Θ+Θ

Θ  0 

{1, 1} ),2(),1(2),0(
),0(

FFF

F

ppp
p

Θ+Θ+Θ
Θ  

),2(),1(2),0(
),1(2

FFF

F

ppp
p

Θ+Θ+Θ
Θ  

),2(),1(2),0(
),2(

FFF

F

ppp
p

Θ+Θ+Θ
Θ  

{1, 2}/{2, 1} 0 
),2(),1(

),1(

FF

F

pp
p
Θ+Θ

Θ  
),2(),1(

),2(

FF

F

pp
p
Θ+Θ

Θ  

}}2{,1{}}{,{ =CM gg r
r

 {0, 1}/{1, 0} 0 1 0 

{1, 1} 0 
),2(2),1(2

),1(2
.2

F
n

F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(2
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

{1, 2}/{2, 1} 0 
),2(2),1(

),1(
.2

F
n

F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

In this table, .2,1,0,
1
1),( =
⎪
⎩

⎪
⎨

⎧

=
=−
=

=Θ i
Misspif
Upif
Apif

pi i

i

φ
φ

 
{*, *} in the first column labeled },{ MFFF gg denotes all possible mating types of the 
paternal grandparents. }}{,{ CM gg r

r indicates the maternal genotypes and the set of 
children’s genotypes.
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Table 10: ),,,,|Pr( FCMMFFFF pggggg r
r for a pedigree with untyped father and 

genotyped paternal grandparents: Part B 
},{ MFFF gg  0=Fg  1=Fg  2=Fg  

}}1,0{,1{}}{,{ =CM gg r
r

 

{0, 1}/{1, 0} ),1(),0(2
),0(2

.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(),0(2
),1(

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 1} 
),1(2),0(2

),0(2
.0

.0

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(2),0(2
),1(2

.0
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 2}/{2, 1} 0 1 0 
}}2,1{,1{}}{,{ =CM gg r

r  
{0, 1}/{1, 0} 0 1 0 

{1, 1} 0 ),2(2),1(2
),1(2

.2
F

n
F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(2
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

{1, 2}/{2, 1} 0 ),2(2),1(
),1(

.2
F

n
F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

}}2,1,0{,1/{}2,0{,1{}}{,{ =CM gg r
r

 {*, *} 0 1 0 
}}1{,2{}}{,{ =CM gg r

r  

{0, 1}/{1, 0} 
),1(),0(2

),0(2
.1

.1

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(),0(2
),1(

.1
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 1} 
),1(2),0(2

),0(2
.1

.1

FF
n

F
n

pp
p

C

C

Θ+Θ
Θ  

),1(2),0(2
),1(2

.1
FF

n
F

pp
p

C Θ+Θ
Θ  0 

{1, 2}/{2, 1} 0 1 0 
}}2{,2{}}{,{ =CM gg r

r  
{0, 1}/{1, 0} 0 1 0 

{1, 1} 0 ),2(2),1(2
),1(2

.2
F

n
F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(2
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

{1, 2}/{2, 1} 0 ),2(2),1(
),1(

.2
F

n
F

F

pp
p

C Θ+Θ
Θ  

),2(2),1(
),2(2

.2

.2

F
n

F

F
n

pp
p

C

C

Θ+Θ
Θ  

}}2,1{,2{}}{,{ =CM gg r
r

 {*, *} 0 1 0 

In this table, .2,1,0,
1
1),( =
⎪
⎩

⎪
⎨

⎧

=
=−
=

=Θ i
Misspif
Upif
Apif

pi i

i

φ
φ

  
{*, *} in the first column labeled },{ MFFF gg denotes all possible mating types of the 
paternal grandparents. }}{,{ CM gg r

r indicates the maternal genotypes and the set of 
children’s genotypes.
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Table 11: ),,,,|,Pr( MFCMFFFMF ppggggg r
r for a pedigree with untyped parents and 

genotyped paternal grandparents 
},{ MF gg  }0{}{ =Cg r

r  }1{}{ =Cg r
r  }2{}{ =Cg r

r  

{0, 0} 
0

00 ),0(),0(2 .0

D
pp MF

n C ΘΘπω  0 0 

{0, 1} 
0

10 ),1(),0(
D

pp MF ΘΘπω  
1

10 ),1(),0(
D

pp MF ΘΘπω  0 

{0, 2} 0 
1

20 ),2(),0(2 .1

D
pp MF

n C ΘΘπω  0 

{1, 0} 
0

01 ),0(),1(
D

pp MF ΘΘπω  
1

01 ),0(),1(
D

pp MF ΘΘπω  0 

{1, 1} 
0

11 ),1(),1(2 .0

D
pp MF

n C ΘΘ− πω  
1

11 ),1(),1(
D

pp MF ΘΘπω  
2

11 ),1(),1(2 .2

D
pp MF

n C ΘΘ− πω  

{1, 2} 0 
1

21 ),2(),1(
D

pp MF ΘΘπω  
2

21 ),2(),1(
D

pp MF ΘΘπω  

{2, 0} 0 
1

02 ),0(),2(2 .1

D
pp MF

n C ΘΘπω  0 

{2, 1} 0 
1

12 ),1(),2(
D

pp MF ΘΘπω  
2

12 ),1(),2(
D

pp MF ΘΘπω  

{2, 2}  0 0 
2

21 ),2(),2(2 .2

D
pp MF

n C ΘΘπω  

},{ MF gg  }1,0{}{ =Cg r
r  }2,1{}{ =Cg r

r  }2,1,0/{}2,0{}{ =Cg r
r  

{0, 0} 0 0 0 

{0, 1} 
01

10 ),1(),0(2 .0

D
pp MF

n C ΘΘπω  0 0 

{0, 2} 0 0 0 

{1, 0} 
01

01 ),0(),1(2 .0

D
pp MF

n C ΘΘπω  0 0 

{1, 1} 
01

11 ),1(),1(
D

pp MF ΘΘπω  
12

11 ),1(),1(
D

pp MF ΘΘπω  1 

{1, 2} 0 
12

21 ),2(),1(2 .2

D
pp MF

n C ΘΘπω  0 

{2, 0} 0 0 0 

{2, 1} 0 
12

12 ),1(),2(2 .2

D
pp MF

n C ΘΘπω  0 

{2, 2}  0 0 0 
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Legend of Table 11 
 

In this table, .2,1,0,
1
1),( =
⎪
⎩

⎪
⎨

⎧

=
=−
=

=Θ i
Misspif
Upif
Apif

pi i

i

φ
φ

  
}0{}{ =Cg r

r  indicates that all the children in the family are genotyped 0. Similarly, 
}1{}{ =Cg r

r and }2{}{ =Cg r
r indicate that all the children are genotyped 1 and 2, 

respectively. Also,  
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ΘΘ+ΘΘ+ΘΘ=
− πω

πωπωπω
 

),1(),2(),0(),2(2

),2(),1(),1(),1(
),0(),1(),2(),0(2),1(),0(
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),1(),1()],0(),1(),1(),0([2 11011001
.0

MFMFMF
n ppppppD C ΘΘ+ΘΘ+ΘΘ= πωπωπω  

)],1(),2(),2(),1([2),1(),1( 12211112
.2

MFMF
n

MF ppppppD C ΘΘ+ΘΘ+ΘΘ= πωπωπω  
The coefficient }2,1,0{, ∈iiω varies with genotypes of paternal grandparents as 
follows: 

},{ MFFF gg  0ω  1ω  2ω  
{0, 0} 1 0 0 

{0, 1}/{1, 0} 0.5 0.5 0 
{0, 2}/{2, 0} 0 1 0 
{1, 2}/{2, 1} 0 0.5 0.5 

{2, 2} 0 0 1 
{0, ?}/{?, 0} 10 5.0 ππ +  215.0 ππ + 0 
{1, ?}/{?, 1} 10 25.05.0 ππ + 0.5 21 5.025.0 ππ +  
{2, ?}/{?, 2} 0 10 5.0 ππ + 215.0 ππ +  

“?” in the first column labeled },{ MFFF gg indicates that the parental genotype is 
missing. 
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Table 12: ),,,,|Pr( FMFCMFFF pMisspgggg =r
r for a pedigree with untyped father and 
paternal grandmother: Part A 

FFg  0=Fg  1=Fg  2=Fg  
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Legend of Table 12 

In this table, 
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η . ‘*’ in the first column labeled FFg denotes all 

possible mating types of the paternal grandparents. }}{,{ CM gg r
r indicates the maternal 

genotypes and the set of children’s genotypes.
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Table 13: ),,,,|Pr( FMFCMFFF pMisspgggg =r
r for a pedigree with untyped father and 
paternal grandmother: Part B 
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Table 14: Error model )|Pr( TrueObs gg  

 0=Trueg  1=Trueg  2=Trueg  

0=Obsg  η−1  γ5.0  0 

1=Obsg  η  γ−1  η  

2=Obsg  0 γ5.0  η−1  
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Table 16: )0,|(Pr .. =MGG iObsiTrueerror

rr
for inconsistent nuclear families 
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Legend of Table 16 
 

In this table, ‘?’ indicates that the paternal genotype or the maternal genotype is 
missing in the observed parental genotypes },{ .. MObsFObs gg . In the last two columns, 
‘---’ indicates that the probability )0,|(Pr .. =Mgg iObsiTrueerror

rr is not available.  
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Table 17: Results of null simulation 

Set 10% Signif. levelj 5% Signif. level 1% Signif. level KS (P-value)
1a 0.110 [0.085, 0.140] 0.058 [0.041, 0.082] 0.010 [0.004, 0.023] 0.050 (0.1646) 

2b 0.112 [0.087, 0.143] 0.048 [0.032, 0.070] 0.010 [0.004, 0.023] 0.047 (0.2179) 

3c 0.114 [0.089, 0.145] 0.058 [0.041, 0.082] 0.010 [0.004, 0.023] 0.035 (0.5704) 

4d 0.118 [0.093, 0.149] 0.058 [0.041, 0.082] 0.024 [0.014, 0.041] 0.043 (0.3145) 

5e 0.112 [0.087, 0.143] 0.076 [0.056, 0.103] 0.018 [0.009, 0.034] 0.031 (0.7218) 

6f 0.122 [0.096, 0.154] 0.068 [0.049, 0.094] 0.022 [0.012, 0.039] 0.059 (0.0606) 

7g 0.110 [0.085, 0.140] 0.052 [0.036, 0.075] 0.006 [0.002, 0.017] 0.057 (0.0761) 

8h 0.114 [0.089, 0.145] 0.064 [0.046, 0.089] 0.010 [0.004, 0.023] 0.055 (0.0929) 

9i 0.114 [0.089, 0.145] 0.048 [0.032, 0.070] 0.008 [0.003, 0.020] 0.042 (0.3395) 
a200 trios, 600 individuals, 100% genotyped, no genotyping errors; 
b200 quartets, 800 individuals, 100% genotyped, no genotyping errors; 
c100 mixed quartets, among which 25% contain affected sib pairs while 75% contain sib pairs 
with discordant affection status, 80% genotyped, no genotyping errors; 
d92 nuclear families, 366 individuals, 100% genotyped, no genotyping errors; 
e92 nuclear families, 366 individuals, 80% genotyped, no genotyping errors; 
f92 nuclear families, 366 individuals, 80% genotyped, 1% genotyping errors; 
g53 multiplex families, 313 individuals, 100% genotyped, no genotyping errors; 
h53 multiplex families, 313 individuals, 80% genotyped, no genotyping errors; 
i53 multiplex families, 313 individuals, 80% genotyped, 1% genotyping errors; 

j95% Wilson confidence intervals in brackets determined using binomial distribution as 
implemented by function binconf in R (written by Rollin Brant).   
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Table 18: Power comparison of the TDT and this LRT at 05.0=α  

1R  )Pr(d , )Pr(b  N  TDT LRTa LRTb LRTc LRTd LRTe LRTf 

125 0.612 0.518 0.726 0.704 0.664 0.552 0.736 0.12, 0.10 175 0.740 0.654 0.842 0.826 0.788 0.696 0.862 
125 0.774 0.700 0.854 0.857 0.820 0.778 0.892 1.75 

0.24, 0.20 175 0.885 0.838 0.958 0.952 0.930 0.856 0.960 
125 0.792 0.754 0.896 0.890 0.870 0.810 0.914 0.12, 0.10 175 0.899 0.842 0.968 0.954 0.930 0.882 0.970 
125 0.915 0.888 0.974 0.954 0.932 0.924 0.978 2.00 

0.24, 0.20 175 0.974 0.946 0.996 0.988 0.992 0.974 0.998 
aTrios, without using information of parental phenotypes, 100% genotyped 
bTrios, using information of parental phenotypes, 100% genotyped 
cTrios, using information of parental phenotypes, 80% genotyped 
dTrios, using information of parental phenotypes, 80% genotyped, 1% genotyping errors 
eQuartets, without using information of parental phenotypes, 100% genotyped 
fQuartets, using information of parental phenotypes, 100% genotyped 
 

The label of the first column, ‘ 1R ’, stands for the genotype relative risk at the disease 
locus defined as 01 ff . Under the multiplicative mode of inheritance, 2

1022 RffR == . 
The label of the second column, ‘ )Pr(d , )Pr(b ’, stands for the population frequency 
of the disease allele d and the population frequency of marker allele b. The label of 
the third column, ‘N”, stands for the number of families in the power calculation. 
 
 
 
Table 19: ANOVA table of the unrepeated 23 factorial design on the power difference 

of the TDT and the LRT 
Response: Difference in Power 

Factor DF Sum of 
Square 

Mean Sum 
of Square F-value Pr(>F) Signif. 

Codesa 

GRRD 1 0.00165312 0.00165312 44.1324 0.006950 ** 
MAF 1 0.00300312 0.00300312 80.1724 0.002939 ** 
NT 1 0.00103512 0.00103512 27.6340 0.013410 * 

GRRD:NT 1 0.00035112 0.00035112 9.3737 0.054921 . 
Residuals 3 0.00011237 0.00003746    

aSignificance Codes: [0, 0.001]: '***', (0.001, 0.01]: '**', (0.01, 0.05]: '*' , (0.05, 0.1]: '.' ,  
(0.1, 1]: ' '.   
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Table 20: Results of four family-based tests (ASP, HHRR, TDTae and LRT) for 
23 SNPs in CHD7 gene 

P-value  GRRMa 

(TDTae) 
GRRM  
(LRT) ID SNP 

ASP HHRR TDTae LRT 
1R̂  2R̂  1R̂  2R̂  

1 rs4738813 0.016 0.39 0.009 0.003 1.900 3.609 1.989 3.955 
2 rs1254430 0.005 0.004 0.002 0.011 2.373 5.627 1.843 3.396 
3 rs9643371 0.002 0.006 0.0007 0.003 2.478 6.139 1.962 3.848 
4 rs1017861 0.05 0.008 0.002 0.005 2.084 4.342 1.894 3.586 
5 rs1325602 0.500 0.184 1.000 0.795 1.000 1.000 1.154 1.332 
6 rs4288413 0.284 0.046 0.030 0.006 1.755 3.079 1.969 3.877 
7 rs7000766 0.0002 0.003 0.0005 0.0005 2.701 7.294 2.334 5.448 
8 hcv148921 0.013 0.008 0.0008 0.0007 2.196 4.820 2.092 4.378 
9 rs1483207 0.004 0.486 0.007 0.0003 2.222 4.933 2.442 5.965 
10 rs1483208 0.006 0.002 0.003 0.003 2.284 5.216 2.133 4.551 
11 rs1038351 0.0008 0.004 0.0002 0.0007 3.059 9.355 2.385 5.689 
12 rs7843033 0.001 0.002 0.0002 0.0004 2.994 8.961 2.469 6.095 
13 rs7002806 0.002 0.013 0.009 0.027 2.049 4.200 1.693 2.867 
14 rs7842389 0.0004 0.003 0.001 0.001 2.518 6.341 2.194 4.812 
15 rs7017676 0.009 0.0007 0.0003 0.0008 2.860 8.182 2.332 5.440 
16 hcv509505 0.035 0.001 0.0008 0.001 2.455 6.028 2.233 4.986 
17 rs4392940 0.0006 0.002 0.0003 0.0004 2.909 8.460 2.410 5.810 
18 rs4237036 0.008 0.002 0.002 0.0006 2.340 5.476 2.344 5.494 
19 rs13280978 0.006 0.003 0.004 0.002 2.105 4.431 2.151 4.626 
20 rs4301480 0.004 0.001 0.003 0.011 2.498 6.240 1.907 3.638 
21 rs10957159 0.5 0.084 1.000 0.620 1.000 1.000 1.154 1.332 
22 rs10092214 0.019 0.50 0.434 0.169 1.181 1.395 1.332 1.774 
23 rs3763591 0.027 0.50 0.288 0.052 1.289 1.660 1.531 2.344 

aGenotype relative risks at the marker locus (GRRM) are estimated under the multiplicative mode 
of inheritance 
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Table 21: Results of three family-based tests (FBAT, TDTae, and LRT) for 13 SNPs 
on chromosome 17q25 for 242 psoriasis families 

Locus FBAT 
p-value 

TDTae 
p-value 

LRT  
p-value 1R̂  

2R̂  #INCa 

#57 0.0071 0.0228 0.0082 1.359 1.848 4 
#58 0.0047 0.0162 0.1793 1.172 1.374 6 
#59 0.0015 0.0116 0.0011 1.468 2.156 3 
#60 0.0089 0.0342 0.1327 1.190 1.417 3 
#61 0.0085 0.0408 0.0201 1.308 1.710 3 
#62 0.0065 0.0328 0.0038 1.392 1.937 4 
#63 0.0016 0.0038 0.0371 1.172 1.373 5 
#64 0.0146 0.0391 0.1114 1.203 1.448 3 
#65 0.0020 0.0053 0.0009 1.474 2.173 3 
#66 0.0082 0.0087 0.0590 1.001 1.001 5 
#67 0.0037 0.0376 0.1247 1.192 1.420 5 
#69 0.2560 0.4270 0.0574 1.553 2.412 3 
#70 0.0737 0.2464 0.0443 1.314 1.726 2 

             aNumber of inconsistencies in the genotype data
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Appendix 
 
Under the following assumptions: 

(1) HWE on the marker locus: )Pr()Pr()Pr( 2121 mmmm = ,  
(2) random mating between the parental gamete:  

)Pr()Pr():Pr( 22112211 mdmdmdmd = , and 
(3) multiplicative penetrances at the DSL:
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For a di-allelic marker locus, the marker penetrances 
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where )|Pr(1)|Pr( ⋅+−=⋅d . 
Note that the conditional probabilities above are the respective probabilities of 

disease allele id given the marker allele jm . For example, )|Pr( a+ is the probability of 
the low risk disease allele + given that the marker’s allele is a. It is obvious that these 
marker penetrances are also multiplicative: 20

2
1 φφφ = . 
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