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Abstract of the Dissertation

Applications of 3D Front Tracking to Multi Phase
Fluid

by

Wurigen Bo

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

We make improvements for the 3d front tracking method. First, we apply a

3 component grid based reconstruction method to solve the moving surface-solid

wall interaction problem. A moving contact curve on the wall is explicitly tracked.

A drop falling problem is studied by the new algorithm. Secondly, we present an

improved, robust, locally grid based method for reconstruction of tangled interfaces.

This method improves the handling of topological change of the surface mesh in the

3D simulations. The primary breakup of a high speed jet is studied numerically in

3D using the front tracking method. The breakup in the liquid jet is presented in

the simulations. The nozzle flow is also studied to determine the cavitation within

the nozzle and the level of turbulence occurring at the nozzle exit. The turbulence

intensity from the simulations is compared with experimental and theoretical results.

We also apply 3D simulations to the hydrodynamic and MHD processes in a liquid
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mercury target for the Muon Collider/Neutrino Factory, which include a mercury jet

interacting with protons in a longitudinal magnetic field. Surface instabilities are

observed in the simulations. The stabilizing effect of magnetic field on the growth

of filaments are observed. The growth of filaments are compared with experimental

results.
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Chapter 1

Introduction

Many methods have been proposed to evolve the fluid-gas interface; of these

VOF, level set and front tracking methods are the most popular. A complete review

is beyond the scope of this thesis. Readers are referred to the papers of Sethian [52],

Scardovelli and Zaleski [45], Glimm et al. [11, 13], and Tryggvason et al. [54].

We use front tracking methods to solve the free surface flow. Front tracking

has many advantages for the problems dominated by a geometrically complex and

dynamically moving interface. It was used to simulate the Rayleigh-Taylor instability

and gave impressive results [33, 34], including agreement with experiments in the

overall growth rate as defined by the mixing growth parameter α. Since moving

surfaces are tracked by marker particles, front tracking methods are able to model the

interface accurately without any numerical diffusion across the interface, in contrast

to capturing methods [9]. They also differ from marker particles methods in that

particles are located only on the interface, rather than in a volume region near the

interface. Geometrical information such as the surface normal and curvature is also

easily computed in front tracking methods, as are surface related physical processes

such as surface diffusion, surface tension, and surface mediated chemical reactions,

because of the explicit representation of the interface by its own mesh.
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The front tracking method is implemented in the code FronTier. In this chapter,

we begin with a background review of interface tracking methods, the front tracking

in FronTier.

1.1 Front Tracking Method in FronTier

The front tracking method is an adaptive computational method that provides

sharp resolution of a wave front by tracking the interfaces between distinct materi-

als. It represents interfaces explicitly as lower dimensional meshes moving through

a rectangular grid. The states of fluids are located in the centers of each grid cell.

Extensive work on front tracking method and its application in 2D space has been

done by J. Glimm and his coworkers [15]. Great effort has been made for its extension

to 3D space [12, 13]. The major challenge in 3D front tracking lies in the maintenance

of the evolving fluid interface, which requires the ability to detect and resolve changes

in the topology of a moving interface. The method has been implemented in the code

FronTier. We will give a brief introduction of the FronTier code in this section.

1.1.1 Equations of the System

In FronTier The states in fluid are solved by conservation laws. The basic

variables are density, momentum and total energy. The conservation laws for these

variables can be written as

Ut +∇ · F(U) = S . (1.1)

where

U =




ρ

ρv

ρE




F(U) =




ρv

ρvv + pI

ρE + pv




, (1.2)
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are the conservative variables and their corresponding flux. ρ, the density, v, the

velocity, E = e + v · v/2, the specific total energy, e, the specific internal energy. p,

the pressure, I, an identity matrix. S represents the source terms for the equations

which are used to model many physical effects such viscosity, gravity, mass diffusion

and heat transfer. To close the system of equations, an equation of state p = p(e, ρ)

must be given. There can be moving surfaces inside the domain which represent

physical waves such as contacts, shocks or the edges of rarefaction waves.

The equations (1.2) need to be written in a coordinate system. Far away from

a surface, we write the equations (1.2) in a Cartesian coordinates system and seek

a weak solution for the equations. On a surface, by assuming the surface is second

order differentiable, we can find a local orthogonal coordinate system which has a

normal direction N and tangential directions T. the equations (1.2) can be rewritten

in the coordinate system as

Ut +∇T · F(U) +∇N · F(U) = ST + SN , (1.3)

where the ∇T and ∇N represents the normal and the tangential components of the

divergence operator ∇. SN and ST represent the normal and the tangential parts of

the source term S.

1.1.2 Representation of Interface

In FronTier, a package called the interface library is used for the description and

manipulation of interfaces. Details about this package can be found in [12–14]. We

only give a brief summary of some basic terminology here.

The discontinuity in the numerical solution is described by an interface, which

is a set of discrete representations of points, curves and surfaces. The boundaries of
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surfaces are curves, while boundaries of curves are called nodes. A curve is comprised

of connected line segments. Each line segment in the curve is called a bond, which are

connectors between two adjacent points. A surface is a connected oriented piecewise

linear collection of triangles; each triangle contains 3 points. Both bonds and trian-

gles are linking objects in the sense that they contains pointers to their neighbors.

Each bond points to both the previous and following bonds that share its endpoints.

Similarly, triangles share a common side with their neighbors and contain pointers to

that neighbor’s address. During front propagation, front intersections are produced

due to wave interactions and require special treatment to resolve the interaction and

untangle the interface. Figure 1.1 gives the representation of Interface in FronTier.

Figure 1.1: The representation of interface in FronTier

For the 3D flows considered here, we assume the interface is represented by a

triangular mesh which is embedded in a rectangular domain. The interface divides the

domain into a set of domains. The interface together with the fixed boundaries of the
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rectangular domain form the boundaries of domains. Each domain is assigned by a

component which is determined from the orientation of the surfaces in the interface.

Topological consistency requires that all components be identical for every surface

side bounding a given domain.

1.1.3 Front Tracking Method in FronTier

Front tracking method is implemented in FronTier by the following main steps

1. interface propagation.

2. interpolation reconstruction.

3. interior states update.

In the interface propagation step, a local Riemann problem is solved with initial

states interpolated from either side of the interface point. Then, a new position for

the interface point is determined by using.

xn+1 = xn + V ∆tn. (1.4)

where xn,xn+1 are the old and the new positions of the point, V is the wave speed,

n is the normal direction on the point and ∆t is the time step size. The left and the

right states on the interface are updated by the solution of the Riemann problem.

Then the following equations on the tangent plane on each side of the interface are

solved.

Ut +∇T · F(U) = ST . (1.5)

In the equations 1.5, we update the states on the interface without changing the

positions of each point.
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After all points in the interface are propagated, we get a new interface at a new

time level. The interface may be badly distorted or have self-intersections. Methods

are implemented in FronTier to resolve the topologically change and to optimize all

triangles in the interface: grid free tracking, grid based tracking and locally grid based

tracking. The details of the algorithm will be given in the following chapters.

In interpolation reconstruction step, the components in the cell center of all

interior points are determined from the propagated interface. First, the crossings

between the underlaying Cartesian grid and the interface are calculated. Then, the

components in cell centers are determined from these crossings. During this step, a

ray casting algorithm in x, y and z directions is applied to find unphysical crossings.

After this step, A component is uniquely assigned in each cell center.

In interior states update step, A Strang splitting is applied and three 1D equa-

tions are solved consecutively. All the states on cell centers are updated by a finite

difference scheme. If the stencil of the finite difference scheme does not cross any

interface, the states in the stencil are given by the cell center values. Otherwise, a

ghost cell method [16] is used to fill the states on the points on the other side of the

interface. A new conservative front tracking scheme [32] has been implemented in

FronTier recently, which eliminates the need for ghost cells.

1.2 Dissertation Organization

The rest of my thesis is organized as follows: In Chapter 2 We present two im-

provements for the 3d front tracking methods. We first briefly describe three existing

methods: grid free tracking, grid based tracking and locally grid tracking, then we

present the improved locally grid based method and prove the newly implemented

method ensure a topologically valid interface. We also use a 3 component grid based

6



reconstruction to solve the problems which have a moving surface and a wall. In

Chapter 3 we explore the applications of our method in the numerical study of diesel

spray. In Chapter 4, we present the study of numerical simulations for proton-mercury

jet interaction.
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Chapter 2

Improvements for 3D Front Tracking Methods

In this chapter, we first introduce a robust locally grid based method. We prove

that the reconstructed interface is always topologically valid. Then we use a three

component grid based front tracking method to solve the moving surface and wall

interaction problems.

2.1 Robust Locally Grid Based Method

We are using the 3D front tracking method [9] in which the phase boundary be-

tween the liquid and gas is tracked by a triangulated mesh. In each time step the code

first propagates all the points on the phase boundary. Then the code redistributes

the triangular mesh to maintain the mesh quality and resolves all the tangled parts

of the mesh.

2.1.1 The Existing 3D Front Tracking Methods

We have three existing 3D interface tracking methods in FronTier. The point

propagation part is common for all three methods, the equation (1.4) is used to prop-

agate all the points on the interface. FronTier has three different ways to optimize

the propagated interface.
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Grid Free Method

The grid-free tracking method consists of two parts, interface redistribution and

interface untangle.

Interface redistribution

Similar to ALE methods, periodic redistribution of the interface is used to main-

tain uniformity of the triangular mesh. At a frequency specified by users, the triangles

with size out of range (either too large or too small) or with a bad aspect ratio with

respect to a set of user defined tolerances are put into a queue. Several basic op-

erations (splitting, flipping, deleting) are applied iteratively to the triangles in the

queue until no triangles need to be redistributed. During each iteration: (1) large

triangles are divided by splitting them along their longest side. At the same time

the neighboring triangle (or bond if the split side lies on a surface boundary curve)

is also split. The split triangles are removed from the queue, and the resulting new

triangles are added to the processing queue. (2) The adjacent pairs of small triangles

with a common short side will identified and the indicated side is collapsed and the

degenerated triangles are deleted. (3) An additional elementary operation is to flip

the interior edge of two adjacent triangles (which thus forms a diamond), so that the

diamond with its four vertices is not changed, but its connectivity is reversed. In

practice the processing queue will be empty after a relatively few iterations.

Grid-free untangle

The second part of the grid-free algorithm is to resolve any intersections that

have been produced during front propagation. It contains three main steps: (1) use a

robust and efficient triangle intersection detection algorithm to find the intersecting

triangle pairs [18]. A topological grid is introduced to avoid the check for intersecting
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triangles that are spatially distant from each other. This considerably speeds up the

algorithm. (2) retriangulate intersected triangles. For each intersecting triangle on

the two intersecting surfaces, the intersection divides it into two polygonal parts each

bounded by the bonds of the crossing curve and the original triangle sides. We tri-

angulate these polygonal parts using the constrained planar Delauney triangulation

method. For the details of this algorithm please refer to the paper of Chew [6]. (3)

delete the unphysical surfaces. After the first two steps, we can get an untangled

interface that satisfies all the requirements for a valid interface except for the con-

sistency of its embedding into the computational domain. That is because of the

surfaces meeting along the intersection curves, the components of the common side

of the surfaces meeting at this curve are inconsistent. It is thus impossible to assign

components to the regions of the computational domain defined by this interface. The

only thing needed to get a consistent untangled interface is to delete the unphysical

surfaces. Methods are designed to identify the unphysical surfaces and delete them

[13].

Grid Based Method

Another method to resolve changing interface topology is to reconstruct the in-

terface by using the underlaying rectangular grid block cells. The scheme is divided

into three steps: (1) compute the crossings of the interface and the grid block edges.

At each crossing of the interface and the grid block edges, we assign components on

both sides of the interface. (2) Determine components at the grid block corners and

eliminate inconsistent crossings. The crossings divide each edge into a set of subinter-

vals. In regions where the interface is tangled, some subintervals will have different

components at their two endpoints. We process each grid block edge to eliminate

crossings that produce inconsistent components on the grid corners. (3) Reconstruct
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a new interface using the remaining interface crossings. The reconstruction process

consists of two steps: The reconstruction of an interface segment within a grid cell and

the assembling of the single block surface elements into global surfaces. A detailed

description of this method can be found in [13].

Locally Grid Based Method

Both the grid-free and the grid-based method described above have advantages

as well as deficiencies. The grid-free method produces a high quality distribution

of triangle size shapes and accurately controls numerical diffusion. It suffers from

being complex and subject to failure when the interface is complex. The grid-based

method is over-diffusive, it tends to over-smooth the interface and produces poorly

conditioned triangles due to the constraint of reconstructing the surface within a

single grid block. On the other hand, it is quite robust and always reconstructs a

topologically valid interface.

To reduce the GB interpolation error, locally grid based tracking has been pro-

posed, which combines the advantages of both methods. The LGB algorithm thus

identifies some bad triangles of the propagated surface. It isolates these, and preserves

the intersections of the surface with the grid cell edges to allow a GB reconstruction

locally near the bad region. Triangles neighboring the bad region are removed, and

so there is a gap, separating the good part of the interface from the reconstruction of

the bad part of the interface. The major step is then to re-seal this gap. The details

of the method can be found in [9].

2.1.2 Robust Locally Grid Based Method

The locally grid based method reduces the use of the Eulerian reconstruction to

a minimum. It reduces interface interpolation errors and minimizes the unphysical
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disappearance of consistent components of the material after bifurcation. However,

the correctness of the method is not proved and it can also generate a topologically

invalid interface when the interface is very complex. When LGB fails to untangle the

interface. the GB reconstruction is used to keep the code running robustly. For the

primary breakup of jet we are studying, very thin filaments and small droplets are

continuously generated from the jet core. The GB reconstruction greatly reduces the

resolution of the interface and thus dumps the growth of filaments. We need a robust

locally grid based method which always generates a topologically valid interface. In

this section, We first describe the topology of a surface mesh. Then we introduce our

method.

Topology of a Surface Mesh

We first introduce our notations on a triangular mesh. Let P be a set of points

in 3D

P = {p|p ∈ R3} . (2.1)

A triangle t is defined as a point set comprised of three points for P

t = {pk, k = 1, 2, 3|pk ∈ P} . (2.2)

A surface S is represented by a triangular mesh which is defined as a set of triangles.

We use T to denote the set of triangles on a surface S.

To study the topology of a surface mesh, we introduce the following two defi-

nitions. A triangle t̂ is the neighbor of another triangle t if and only if they have a

common edge: ∃p1,p2, such that p1,p2 ∈ t and p1,p2 ∈ t̂. We use the notation t ∼ t̂

if t, t̂ are neighbors. Given a triangle t on the surface and a point p on the triangle,

the triangle list around p is defined as a set of triangles T (t,p) = {t̂}, where t̂ ∈ T
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satisfies: p ∈ t̂ and ∃tk ∈ T, k = 1, 2, · · ·n, such that t ∼ t1 ∼ t2 ∼ · · · ∼ tn ∼ t̂.

In order to keep the triangular mesh topologically valid, we have three assump-

tions for the set of triangles T .

(1) For any t ∈ T , there is one and only one neighboring triangle on each side of t.

(2) For any t ∈ T and p ∈ t, the triangle set {t̂|t̂ ∈ T,p ∈ t̂} forms only one triangle

list around p.

(3) The surface constructed by T is an orientable surface.

Figure 2.1 shows two examples of the invalid cases. Under the first two assumptions,

the surface S constructed by the triangle set T represents a 2D-manifold. We can

prove this by checking if all points on S is homeomorphic to an open subset in a

2D plane. For any point p on S, if p is in the interior of a triangle t, a neighbor

of p must lie in the 2D plane expanded by t. If p is on an edge or on a vertex of

a triangle, the assumptions (1) and (2) ensure there exists a neighbor of p which is

homeomorphic to an open subset in a 2D plane. With the third assumption, we can

define the orientation of each triangle. We then arrange three points in a triangle in

an order such that p1p2 × p2p3 points to the positive side of the surface.

When some triangles are removed from T , some of the remaining triangles in

T may not have neighboring triangles. We define the boundary of T to be a set of

orientated line segments as follows

B(T ) = {papb | pa,pb ∈ t, t ∈ T, t has no neighboring triangle on side papb} (2.3)

We consider B(T ) as a directed graph [23] where the vertices and the directed line

segments in B(T ) are the vertices and the edges of the graph. To further study the

properties of B(T ), we introduce some concepts of a graph. For a vertex, the number
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Figure 2.1: Two examples of invalid cases. In left figure, edge ab is associated with
3 triangles and assumption (1) is violated. In the right figure, vertex v is associated
with two triangle lists and assumption (2) is violated.

of head endpoints adjacent to a vertex is called the indegree of the vertex and the

number of tail endpoints is its outdegree. A simple circle is a graph with no other

repeated vertices than the starting and ending vertices. A directed simple circle is

a directed Eulerian circuit which has no repeated vertices aside from the start/end

vertex. A directed Eulerian path is a path in a graph which visits each edge exactly

once. A directed Eulerian circuit is a directed Eulerian path which starts and ends

on the same vertex. Euler’s theorem [23] can be used to check if a directed graph has

a directed Eulerian circuit: If a directed graph is connected and every vertex has the

same indegree and outdegree, then it at least has one Eulerian circuit. Using Euler’s

theorem, we can prove the following theorem.

Theorem 2.1.1 T is a set of triangle which satisfies the assumptions (1)-(3). T1

is a subset of T which contains a finite number of triangles. Then, B(T \ T1) has a

directed Eulerian circuit.

Proof : We use mathematical induction. The number of triangles in set T1 is n. If
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n = 1, the conclusion is true. Let t be a triangle in T1 and T2 be a set of triangle

defined as T2 = T \ (T1 \ t). Then, B(T \ T1) = B(T2 \ t). Assuming B(T2) has a

directed Eulerian circuit, we will show that B(T2 \ t) also has a directed Eulerian

circuit. We count the indegree and the outdegree of a vertex p2 ∈ t. There are three

cases:

(1) If t has two neighboring triangles on the edge p1p2 and p2p3, both the inde-

gree and the outdegree of p2 increase by one after t is removed from T2. Thus p2 has

the same indegree and outdegree after t is removed from T2.

(2) If the edge p1p2 (p2p3) has a neighboring triangle but the edge p2p3 (p1p2)

does not, the indegree and the outdegree of p2 is unchanged after t is removed from T2.

(3) If t has no neighboring triangles on the edge p1p2 and the edge p2p3, the

indegree and the outdegree of p2 is decreased by one after t is removed from T2. Thus

p2 has the same indegree and outdegree after t is removed from T2.

Similarly, we can show that the indegree and the outdegree of p1 and p3 are

equal after t is removed from T2. From Euler’s theorem, B(T2 \ t) has a directed

Eulerian circuit.

Robust Locally Grid Based Method

We introduce an improved LGB reconstruction of the interface to handle topo-

logical changes. The essential feature of the improvement is to reduce the size of the

GB region, which previously was the smallest rectangular solid containing a tangled

set; and in the case of overlaps, the smallest rectangular solid containing the over-
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lap, etc. This improvement is required in our study of the atomization process, as

it turned out that the recursively defined bounding rectangular solids were typically

too large.

Figure 2.2: The substeps of the LGB resealing algorithm.

We describe the main procedures for the robust LGB reconstruction algorithm.

See Figure 2.2 for a schematic description. The moving interface is represented by

a surface S comprised of triangles. B is a 3D rectangular box. S is tangled inside

box B. Let S1 be a subsurface of S which is comprised of all the triangles inside or

intersecting B.

(a) S1 is removed from S. We rename S to stand for S \ S1. Polygonal holes form

on S after this step.

(b) If a vertex is common for two or more polygonal holes of S, the vertex is

separated so that the polygonal holes are merged. This step is repeated until

16



there are no common vertices for the polygonal holes. We use B1 to denote the

set of the sides of the polygonal holes after this step.

(c) S1 is reconstructed in B using the GB algorithm. We use S2 to denote the

reconstructed surface. The boundary of S2 consists of polygons due to the GB

reconstruction [13]. The set of the sides of the polygons are denoted as B2.

(d) A new surface S3 is constructed to connect S and S2 using the following method:

For any two sides p1p2 ∈ B1 and p′1p
′
2 ∈ B2, we make a pair of triangles p1p2p

′
1

and p′2p
′
1p2 and add them to S3 if the following two constraints are satisfied.

(i) There exists three vertices out of p1,p2,p
′
1,p

′
2 which lie in the same triangle

from S1.

(ii) If triangles p1p2p
′
1 and p′2p

′
1p2 are added to S3, the connected surface

S
⋃

S2

⋃
S3 satisfies the constraints (1) and (2).

This step is repeated until no new pair of triangles can be added to S3.

(e) S, S2 and S3 are connected to form a new surface S4. For each polygonal hole

on S4, if two consecutive sides are two sides of a triangle, the triangle is removed

from S4.

(f) Each polygonal hole on S4 is sealed by a constrained triangulation considering

the constraints (1) and (2). The triangulation only adds new triangle edges and

does not add new vertices. We use S5 to denote the resulting surface.

Let T1 be the set of triangles on the surface S1 and T5 be the set of triangles

on the surface S5. We will show that if T1 satisfies the assumptions (1)-(3), T5 also

satisfies the assumptions (1)-(3). In other word, if the input surface is a 2D manifold,

the output surface is also 2D manifold.
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We first study the surface S2. Let T2 be the set of triangles in surface S2, we will

show B(T2) only consists of directed simple circles. If S2 is constructed inside only

one grid cell, there are only 13 cases [13]. For each case, it is easy to check B(T2) only

consists of directed simple circles. If S2 is constructed inside two adjacent grid cells,

we count the indegree and the outdegree on the common edges of the two grid cells.

There are only 4 different configurations on the common face of the two grid cells,

see Figure 2.3. In each case, the indgree and the outdegree are one on all the vertices

on the common edge of the two grid cells. Therefore B(T2) only consists of directed

simple circles. If T2 is constructed from more than two grid cells, we can show that

B(T2) only consists of directed simple circles by using the same method.

Figure 2.3: Four configurations on the common face of two adjacent grid cells from
grid based reconstruction. The dashed lines are the edges of the the common face.
The thin solid lines are the edges of the triangles on the first grid cell. The thick solid
lines are the edges of the triangles on the second grid cell. The dotted lines are the
edges of the triangles on the common face.

The robustness of the algorithm means all the operations in the algorithm are

realizable and the resulting surface is topologically valid. The following theorem

shows the improved LGB algorithm ensures the robustness of the algorithm.
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Figure 2.4: The two cases in the step (d) of the LGB reconstruction algorithm, Upper:
After a pair of triangles is added, two directed simple circles are merged into one.
Lower: After a pair of triangles is added, one directed simple circle becomes two.

Theorem 2.1.2 Let T be the set of the triangles in the surface S which satisfies

the assumptions (1)-(3). The LGB algorithm (a)-(f) reaches the step (f). Moreover,

let T5 be the set of the triangles of the surface S5. T5 also satisfies the assumptions

(1)-(3).

Proof : Let T1 be the set of the triangles in the surface S1. After step (a), B1 =

B(T \ T1) which contains a directed Eulerian circuit from theorem 2.1.1. For each

vertex p in B1, p has the same indegree and outdegree. Let the indegree of p be

n. If n > 1, p is separated into n different vertices p1,p2, · · · ,pn after step (b) and

the indegree and the outdegree of p1,p2, · · · ,pn are one. Therefore, the indegree

and the outdegree of all vertices in B1 are one. It means B1 contains only directed

simple circles. We now consider step (c). Since B2 is the boundary of the set of

the triangles of the grid based surface S2. B2 only contains directed simple circles

from the above discussion. In step (d), let the set of the triangles of S
⋃

S2

⋃
S3 be

19



T3. At the beginning of step (d), T3 = ∅, thus B(T3) contains only directed simple

circles. After a pair of triangles t1 and t2 are added into T3 at step (d), it connects two

directed simple circles into one simple circle or separates one directed simple circle

into two directed simple circles, see Figure 2.4. The procedure is repeated in step

(d). Therefore B(T3) consists only directed simple circles after step (d). Step (e)

only changes the number of edges in each directed simple circle. The boundary of S4

consists only directed simple circles, we can perform a constrained triangulation on

these directed simple circles. Since no edge is connected with more than 2 triangles

in each substep and no vertex is connected with more than 2 triangle lists after step

(b), T5 also satisfies the assumptions (1)-(3).

2.2 Three-Component Grid Based Front Tracking Method

for Moving Interface

In this chapter, we use a three component grid based reconstruction algorithm

to solve the moving surface and wall interaction. The construction of 3-component

problems is more complex than that of 2-component problems, where there are at

most 3 surfaces and two curves in a grid cell.

In physics, when 3 different materials meet, the three different materials exist

around a single curve. We call this curve a triple curve. From the viewpoint of

computational geometry, when we use 2 functions f(x, y) and g(x, y) to divide three

materials into three regions. The triple curve is the curve on the grid face which

satisfies the functions of both f(x, y) and g(x, y). The template has been found by

Jia et.al. [26]. He implemented a method to solve a problem which contains one fixed

triple curve [26].

In this section, we first give an introduction to the 3 component reconstruction
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algorithm. Then, we apply the method for moving surface and wall interaction where

a moving triple curve exists on a solid wall.

2.2.1 Three-Component Algorithm

Similar to 2-component grid based reconstruction algorithm, the 3-component

algorithm uses the crossing points between the interface and the grid edges to recon-

struct the interface. The interface is first reconstructed in each grid cell, which are

then connected to the adjacent grid cells to form the entire interface. We use three

colors to represent 3 different materials. Each corner of a grid cell has 3 color choices

and there are totally 38 = 6561 different kinds of grid cells. Considering rotation and

reflction symmetry of a grid cell, we have 57 different kinds of grid cells. If two end

points on an edge have different components, there is at least one crossing point on

that edge. Assuming there is at most one crossing point on each edge of one grid

cell, we can construct the interface in the grid cell by using these crossing points. See

Figure 2.5 for an example.

The difference from the 2-component reconstruction is that a triple curve may

appear after the reconstruction. We call a crossing point between a triple curve and

the face of a grid cell a curve crossing point. We assume there exists at most one

curve crossing on each face. Moreover we assume we get a curve crossing if and only

if the following assumptions are satisfied:

(1) Exactly three distinct components are found.

(2) Two components at the diagonal positions must be different.

Under the above assumptions, the curve crossings appear in only one case: See Figure

2.6 for details.
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Figure 2.5: An example for the 3 component grid based reconstruction on a grid cell.
The black lines are the edges of the triangles on the interface and the red line is a
bond on a triple curve.

Figure 2.6: Two cases of a curve crossing point on the face of a grid cell. The green
line represents the surface of a wall, the black line represents the physical surface, the
red square represents a curve crossing point, the black square represents edge crossing
points.
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2.2.2 The Algorithm for Moving Surface-Wall Interaction

We simulate the surface-wall interaction problem. The computational domain

is rectangular and there are some solid walls in the computational domain. These

walls separate the computational domain into several subdomains. One subdomain

contains two materials which are separated by a moving surface. The intersection

between the moving surface and the solid wall forms a triple curve. When the surface

is moving, the triple curve is also moving along the wall.

The 3 component algorithm can be used to handle the moving surface-wall in-

teraction. Since there is a triple curve on the solid wall, the triple curve must be

propagated along the wall. In an operator splitting scheme, the equations in the

normal direction is first solved. Since the triple curve is moving along the wall, the

propagating direction must be tangential to the wall. A 5-point stencil for the point

propagation algorithm is schematically shown in Figure 2.7. All 5 points are on the

solid wall and the 5 states s−2, s−1, · · · s2 come from a linear interpolation from the

states on the wall. There are two tangential directions; the first is normal to the wall.

The tangential point propagation in this direction is equivalent to a normal point

propagation on the wall. Another direction is along the triple curve, the tangential

point propagation gets states on a stencil from those on the triple curve.

The propagated interface must be reconstructed in order to resolve tangles. The

summary of the algorithm implementation is as follows.

(1) All the edges on the computational domain are classified as 3 types: INSID-

EWALL, ONWALL and OUTSIDEWALL. INSIDEWALL means the edge is

completely on the domain occupied by the two materials. ONWALL means

the edge has an intersection with the wall. OUTSIDEWALL means the edge is

completely behind the wall.
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(2) The crossing points between the surface which separates the two materials (we

call it the physical surface) and the grid edges are computed. The components

for the grid corners lying within the two materials are determined from the

physical surface. Multiple crossing points are removed on each edge to ensure

one edge contains only one crossing points. A ray casting algorithm is used here

which is the same as that used in 2 component grid based algorithm [13] except

that the algorithm is performed for all the edges labeled as INSIDEWALL.

(3) For the edges labeled as ONWALL, all the crossing points generated from the

physical surface are removed, thus only the crossing points generated from the

interaction between the wall and the grid remain. After this step, each grid

edge has at most one crossing point on it.

(4) For each face of a grid cell, we check the 4 components on the 4 corners of the

face. If the conditions (1) and (2) in Section 2.2.1 are satisfied, there must be

one curve crossing point on the face. There are only two configurations for a

face crossing point as is shown in Figure 2.6. The face crossing point is the

point of a intersection between the triple curve and the face of a grid cell. If

more than one point is found on a face, only one is picked as the curve crossing

point.

(5) On each grid cell, the 3 component algorithm is used to reconstruct the triangles

and the bonds on it. At common faces of the grid blocks, the reconstructed

triangles are connected to form the wall surfaces and the physical surface; the

bonds are also connected at the common point to form the triple curve.
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Figure 2.7: A schematic graph of a stencil for the normal point propagation algorithm
for the triple curve. The red line represents the triple curve, the blue and the green
triangles are the surfaces of the solid wall.

2.2.3 Numerical Test: Falling Droplet Problem

To test our algorithm for the moving surface-wall interaction. We solve a falling

droplet problem. The setup of the problem is as follows. A spherical drop with a

diameter 0.4cm is put in a rectangular container in the initial time. The system is

solved in Cartesian coordinates. The dimension of the container is [−0.5cm, 0.5cm]×
[−0.5cm, 0.5cm] × [0, 2cm]. The center of the droplet is (0, 0, 1cm). The material of

the droplet is heavy gas. The container is filled with light gas. The density ratio is

3 : 1. Polytropic equation of states [37] are used to model the gas properties for both

the light and the heavy gas. A constant gravity which has a magnitude 200m/s2

and is directed in the negative z direction is imposed on the system. The mesh is

40 × 40 × 80. Figure 2.8 shows the snapshots when the droplet falls down. As the

droplet hits the bottom of the container, it splashes and then hits the four vertical
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walls of the container. During the procedure, the light gas is trapped between the

heavy gas and the container and produces several triple curves on the wall of the

container. After all the kinetic energy are converted into heat, the heavy gas lies on

the bottom of the container. The test problem shows our algorithm not only handles

the topological change of the surface but also that of the triple curves.
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Figure 2.8: The snapshots of the falling droplet problem.
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Chapter 3

Diesel Spray Simulations

3.1 Introduction

The mechanism of the atomization process of a high speed jet has been stud-

ied extensively in theory [30, 43, 44] and experiments [31, 35]. Primary jet breakup

remains a challenging research topic due to the large range of scales (spatial and tem-

poral), and the complex flow regimes involved. Experimental observations are difficult

because the droplets in the spray from the breakup obscure the spray interior and

the liquid core.

Numerical simulation appears to be a promising method to study the details of

the breakup process of the liquid jet. However, the physical process of atomization

poses difficulties for numerical algorithms. First, as the fuel has a much higher density

than the ambient air, an accurate algorithm to deal with the interface between these

two is required. Secondly, since the growth of perturbations on the interface is one

of the important mechanisms in atomization [43], the algorithm should have small

numerical diffusion so as not to suppress this process. Since one of the characteristics

of atomization is topological change, such as breakup and merging of the interface, the

algorithm must also resolve topological change robustly. During atomization, droplets
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whose diameter is much less than that of the nozzle are generated, and consequently, a

high resolution algorithm is required to resolve small droplets. Third, liquid cavitation

occurs inside the nozzle, mitigating pressure disturbances and influencing turbulence

in the flow, as well as atomization [59].

From linear stability theory, the flow leading to liquid jet breakup is divided

roughly into four parameter regions, according to the flow Reynolds number and

Weber number [29]. Here we are concerned with high speed jets, well within the

fourth of these regimes, called the second wind driven regime. Generally, jet breakup

and atomization in this regime is caused by the growth of waves originated at the

nozzle exit, which eventually break up the jet core when the amplitude reaches a

certain value [30]. Since the initial disturbance of the jet is provided by the flow in

the nozzle. The initial flow condition inside the nozzle also has great contribution to

jet breakup [21], which include the nozzle geometry, cavitation and turbulence within

the nozzle, and relaxation of the boundary layer as the fluid flows out of the nozzle.

In this chapter, we first study the flow inside the nozzle. The development of the

turbulence and the cavitation inside the nozzle is investigated numerically. We then

study the primary breakup of the high speed liquid jet numerically. The breakup of

the jet tip is observed in our simulations.

3.2 The Nozzle Flow Simulations

We first study the nozzle flow in a 3D space. Besides the fluid properties such as

density and viscosity, the flow in the nozzle is significantly affected by the geometry

of nozzle. The first parameter we consider is the nozzle length L, more specially, the

length and diameter ratio L/d. The second parameter we consider is the shape of the

nozzle inlet. A sharp inlet corner usually produce a larger cavitation zone than does a
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round one [57]. If the inlet corner of our nozzle is sufficiently sharp, the flow detaches

from the nozzle wall and cavitation appears in the low pressure region at the inlet

corner. When the pressure difference between the nozzle inlet and outlet increases

the cavitation region extends and enhances the turbulence level at the nozzle outlet.

Experimental studies suggest that cavitation enhances spray breakup unless super

cavitation occurs in the nozzle [21].

We model cavitations by homogeneous nucleation theory [4]. Vapor bubbles form

in a region where the pressure of the liquid falls sufficiently below its vapor pressure,

a value given by the tensile strength of the liquid. Two phases (liquid and vapor)

are involved in the nozzle cavitation, as well as two equations of state (EOS), or

two branches of a common EOS. The free surface between vapor and liquid as well

as that between the liquid and the ambient gas (with its own EOS) are modeled in

FronTier. We refer to the cavitation model proposed in [59]. This model involves

two numerical parameters, the vapor bubble size and the bubble spacing at the time

of bubble insertion, and one physical parameter, the critical pressure below which a

vapor bubble will be inserted.

Homogeneous nucleation theory [4] is applied to determine the critical pressure

Pc(T ). Assuming the probability for fluid to cavitate within a given time interval is

one half under the critical pressure, we can compute Pc(T ) by using the following

formula

Pc(T )
.
= −

(
16πσ3

3kBT ln(Γ0V t/ ln 2)

)1/2

, (3.1)

where σ is the surface tension of the liquid, kB is the Boltzmann’s constant, T is the

absolute liquid temperature, V 1/3 is the averaged distance between the centers of two

bubbles, t is the duration of time considered, and Γ0 is a factor of proportionality
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Table 3.1: Summary of parameters for jet simulation.
fluid density 0.66 g/cm3 ambient density 0.004 g/cm3

density ratio 165 nozzle diameter 0.0178 cm
nozzle length 0.1 cm Inflow pressure 500 bar
mesh size 2.225 µm surface tension 23g/s2

fluid viscosity 0.013 Poise ambient pressure 1.0 bar
Reynolds number (Re) 30,000 Weber number (We) 5.5× 104

Ohnesoge number (Oh) 0.02

defined as

Γ0 = N

(
2σ

πm

)1/2

, (3.2)

where N is the number density of the liquid which has a unit molecules/cm3 and m

is the mass of a molecule. We consider n-heptane in our simulations and the bubble

spacing is 6µm, formula 3.1 gives Pc = −50 bar.

3.2.1 Problem Setup

Figure 3.1: The configuration for the 3D nozzle flow simulation. A inflow boundary
condition is imposed in the right side.

In our nozzle flow simulations, only a quarter of the nozzle is simulated due to
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Figure 3.2: The inflow pressure profile from the 2D simulation in steady state.

the rotation symmetry of the nozzle. Moreover, the states from the 2D simulations

are used as an inflow boundary conditions at the nozzle inlet. Since we want to

study the nozzle flow in steady state, we use inflow data in a steady state from the

2D simulation. See Figure 3.2 for the inflow pressure profile. A no-slip Neumann

boundary condition is used along the nozzle wall. Figure 3.1 shows the geometry of

the nozzle. Physical parameters are given in Table 3.1. In the table, the dimensionless

parameters are defined as

We =
ρLU2

Ld

σ
, Re =

ρLULd

µ
, Oh =

µ√
ρLdσ

, (3.3)

where ρL is the density of the liquid, UL is the averaged velocity of the liquid, µ

is the the liquid dynamic viscosity, σ is the surface tension coefficient between n-

heptane and vapor and d is the diameter of the nozzle. The mesh in our simulations
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is 110× 110× 500. We performs two simulations. In the first simulation, the flow in

the nozzle is assumed to be purely liquid (the bubble insertion algorithm is turned

off). In the second simulation, the discrete vapor bubble insertion algorithm is used.

Usually, cavitation parameters such as the nuclei density for the bubble growth need

to be determined through experiments. For the present problem we study, these data

are not available. Previous simulations for 2D flow show that the flow pattern in the

nozzle is insensitive to the critical bubble radius r and the bubble spacing parameter

h [59]. A similar study was also performed in [49] for the case of cavitation of mercury

under large external energies. The results of [49] are insensitive to the two parameters.

We use a fixed critical bubble radius r = 6 microns and bubble spacing h = 6 microns

which are used in the 2D simulations [55, 59].

3.2.2 Simulation Results

We first simulate the nozzle flow without the bubble insertion algorithm. We

compare the streamwise velocity profiles along a radial direction just upsteam of the

nozzle outlet when both 2D [55] and 3D flows achieve the steady state, see Figure 3.3.

The Reynolds number Re = 3×104 greatly exceeds the critical value for transition to

turbulence. The boundary layer for the 3D simulation is thinner than that for the 2D

simulation, and there are small perturbations in the 3D velocity profile, which implies

that the 3D flow has stronger fluctuations than the 2D flow does. Two mechanisms

affect the turbulence level in the nozzle outlet: The first is the velocity fluctuation

produced at the sharp corner of the nozzle inlet. Since L/d = 5 for our nozzle, the

turbulence in the nozzle outlet is greatly influenced by the sharp corner upstream [57].

The second is the development of boundary layer. The distance from the nozzle inlet

to the location where transition to turbulent flow is first fully developed constitutes
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the theoretical initial length of the laminar flow and its magnitude is approximately

l = 0.03d×Re, (3.4)

where d is the nozzle diameter [51]. For Re
.
= 104, it is about 300 nozzle diameters

which is much larger than L/d for our nozzle, transition to fully turbulent flow is not

expected. The turbulence in our simulations is mainly produced by the sharp corner

of the nozzle inlet.
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Figure 3.3: The comparison of the streamwise velocity profiles along a radial direction
just upsteam the exit of the nozzle.

The difference between 2D and 3D results is expected by turbulence theory [25].

Consider the equation for vorticity,

∂Ω

∂t
+ u · ∇Ω = Ω · ∇u + ν∇2Ω, (3.5)

where Ω denotes vorticity, u, velocity and ν, viscosity. The left side of the equality
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represents the convection of vorticity. The first term on the right hand side represents

a stretching effect which is responsible for changes in both the magnitude and direction

of the vorticity vector. The second term in the right hand side represents the viscous

diffusion of vorticity due to viscosity.

For the 2d flow, voriticity is directed in the z direction and the vortex stretching

term is zero. The stretching effect does not act in a 2D flow. Since the viscosity

is very small in our simulations, the vorticity is convected and is not changed by

the flow. The initial voritcity is simply deformed by the flow in the 2D plane. This

fact can be noticed in the vorticity plot in Figure 3.4. For the 3D flow, a ring of

vorticity is generated at the nozzle inlet. Such a vortical ring is unstable and breaks

down. Further downstream, smaller filaments of vorticities are generated due to the

stretching effect, see Figure 3.5. Figure 3.6 shows the cross-sectional velocity fields

on a upstream cross section and a downstream cross section. It shows that smaller

structures are produced downstream which leads to intense random vorticity.

Figure 3.4: The vorticity contour in a 2D nozzle flow simulation [55].

Without the cavitation model, strong rarefaction waves are observed in the nu-

merical simulations. This is unphysical since fluid will evaporate and produce cavita-

tion. Figure 3.7 shows the cavitations inside the nozzle at steady state. The cavitation

bubbles are first produced at the sharp corner. Further downstream, a cavitation film

forms an annulus structure that extends in flow direction along nozzle walls. This is

consistent with the experiments for nozzle flow [5]. Some bubbles are produced near

the center line of the nozzle, but most of them disappear further downstream due
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Figure 3.5: |Ω| = 10s−1 Isosurface for vorticity in the 3D nozzle flow simulation. The
nozzle inlet is on the right side.

Figure 3.6: The radical and angular velocity fields in an upstream and downstream
cross sections in the 3D simulation.
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to the condensation of vapor bubbles. Figure 3.8 shows the pressure profile near the

nozzle wall. The pressure rises up to the ambient pressure in the nozzle outlet after

it drops below the vapor pressure of the fluid at the nozzle inlet.

To calculate the averaged streamwise velocity profile and the streamwise turbu-

lence intensity, we first collect data in a cylindrical coordinate system (r, ϕ, z) where

the z-axis is the center line of the nozzle. Then we average the results over ϕ direction

so that all the data are functions of r, z and the time t. The averaged streamwise

velocity u(r, z) over a time interval T1 and T2 is defined as

u(r, z) =
1

T2 − T1

∫ T2

T1

u(r, z, t)dt . (3.6)

The streamwise turbulence intensity is defined as

I(r, z) =
u′(r, z)

u(r, z)
, (3.7)

where u′(r, z) is the streamwise velocity fluctuation

u′(r, z) =

[
1

T2 − T1

∫ T2

T1

[u(r, z, t)− u(r, z)]2dt

]1/2

. (3.8)

Figure 3.9 shows the averaged streamwise velocity profile in in the nozzle outlet. The

results has been averaged over 100 time steps after the flow reaches a steady state.

Figure 3.10 shows the turbulence intensity plotted vs. radical distance for a fixed z

at the nozzle outlet. The simulation without the cavitation model is influenced by

strong pressure waves. When the cavitation bubbles appear in the nozzle, the large

tensile force induced by strong rarefaction waves are relaxed [49], thus the turbulence

intensity is smaller than that without the cavitation model. Heukelbach et.al. [20]

measured the turbulence intensity with Re = 8500 in experiments. They found the
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the turbulence intensity is between 1% and 2% near the center of nozzle and is about

3 near the nozzle wall. Koo et.al. [28] performed some similar measurement with

Re = 15, 000 and L/d = 4. They found the turbulence intensity is between 2% to

4%. For fully developed channel flow, the turbulence intensity for Re = 30, 000 is 7%

[56]. The turbulence intensity in our simulations is in a reasonable range considering

the small L/d ratio of our nozzle.

Figure 3.7: The surface of cavitation zone inside the nozzle at steady state. The
nozzle inlet is on the right side.
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Figure 3.8: The pressure profile near the nozzle wall at steady state. The nozzle inlet
is on the right side.
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3.3 Simulations for Primary Jet Breakup

Primary breakup plays an important role in the performance of a diesel engine.

Fluid mechanisms leading to primary breakup are still debated [10]. Aerodynamic

theory [42, 53] was first proposed to explain primary breakup. This theory postulated

that primary break is due to aerodynamic interaction between the liquid and the gas

leading to unstable wave growth on the liquid jet surface. The drop size is proportional

to the the wave length of the unstable surface waves. Reitz et al. [43, 44] reported

several experimental investigations where the spray angle was measured. The effect of

ambient pressure, density ratio, and viscosity ratio were studied. They found results

that were consistent with aerodynamic theory. Wu et al. [58] and Sallam et al. [46]

proposed that the primary breakup is initialized by the turbulence of the liquid jet.

They assume that the onset ligament diameter is equal to the onset eddy size and

droplets are formed due to Rayleigh breakup of the corresponding ligaments. They

derived the correlation

D

Λ
= 133

(
WeL

Λ

d

)−0.74

(3.9)

where D is the Sauter mean diameter of the droplet at the point of breakup initiation,

Λ the integral radial spatial scale of turbulence, WeL the Weber number and d the

nozzle diameter. Parker and Rainaldi [40] measured the droplet diameters near the

injector tip using infrared laser diagnostics. Under atmospheric pressure and room

temperature, the Sauter mean diameter ranged from 5.4 to 7.8 µm, which is in the

range of Wu’s model based on equation (3.9). Arcoumanis et al. [1] found that

cavitation induced in the nozzle enhances the turbulence level near the nozzle exit

and thus helps the breakup of the liquid core. Dumouchel [10] summarized many

experiments. He concluded that the internal flow has a strong influence on the primary

breakup in the second wind-induced and atomization regimes. Aerodynamic forces
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are unimportant in primary breakup for high density ratios. The exact influence of

cavitation on primary breakup is not fully identified and conclusions on this point

differ from one investigation to another.

Numerical simulations are performed to study the details of primary breakup.

Due to the small time and length scales, these simulations still remain very challeng-

ing. Only in recent years, some results are achieved. Using VOF-LES simulations,

Bianchi et al. [3] performed simulations under both laminar and turbulent conditions

with grid width 4 µm. The results conform the role of turbulence on determining

the onset of jet surface breakup. However, the mean droplet size is 12 µm, larger

than that predicted by the turbulence theory of Sallam [46]. Using a refined level set

grid method, Herrmann [19] simulated primary breakup with several levels of grid.

Although the resulting drop-size distributions were of log normal type for different

grid sizes, the distributions are quite different, which means that the grid indepen-

dence of drop-size distribution was not achieved. Desjardins et al. [7] reported some

results for turbulent jet atomization using a conservative level-set method coupled

with a ghost-fluid method. Menard et al. [36] employed the CLSVOF method to

study the breakup of turbulent jet. Unfortunately, neither of them gave quantitative

comparison to experimental data.

3.3.1 Problem Setup

We perform a simulation with the 3D computational domain 4d×4d×24d, where

d is the nozzle diameter. All the parameters come from the experiments performed

at Argonne National Laboratory [35], summarized in Table 3.1. The whole region is

discretized by using a uniform cartesian mesh 160 × 160 × 1280. As a result, a cell

width is 4.2 µm. At the beginning of the simulation, the domain is filled with air at a

constant state specified in Table 3.1. On the top of the region is a turbulence inflow
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boundary condition where the fully developed pipe flow states are given by a filter

based generator [27]. All other five faces are flow out boundaries.

Figure 3.11: The jet interface at the tip of the jet at We = 5× 104.

3.3.2 Simulation Results

Figure 3.12 and 3.13 shows the snapshots of the jet simulations. The jet surface

is smoother for large Weber number. Linear stability theory predicts that surface

tension always tends to stabilize the jet interface in the second wind induced breakup

regime [30, 44]. The jet has an intact core near the nozzle exit, which is noticed in

the X-ray image [41].

Surface waves appear along the jet surface and the jet breaks up at the tip.

Filament growth on the jet tip is observed in our simulation which is also observed in

Sallam and Wu et.al.’s experiments [46, 58]. Many droplets detach from the filaments,

see Figure 3.11 for details. The mean droplet diameter is larger than that from Parker

et.al.’s experiments [40]. This is mainly due to the low resolution of our simulations.
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Figure 3.12: Snapshots of jet interface at We = 5× 104.
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Figure 3.13: Snapshots of jet interface at We = 5× 103.
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Chapter 4

Muon Collider Targetry Simulations

4.1 Introduction

Neutrino factories require a large number of muons, which are obtained from the

decay of pions. Efficient production of pions can be achieved ay colliding an intense

proton beam with a mercury jet. The mercury jet contains a series of mercury jet

pulses of about 1 cm in diameter and 30 cm in length. Each pulse is shot at a velocity

of 20 m/s into a magnetic field up to 15T. When the jet reaches the center of the

magnet, it is hit by a 2 ns proton pulse. Every pulse will deposit about 100 J/g

energy in the mercury jet. The schematic setup of the experiment is shown in Figure

4.1 from [17]. The large tensile force developed within the target induced by the

proton pulse greatly exceeds the vapor pressure of mercury and cavitation occurs.

Without a magnetic field, the mercury jet quickly breaks up after interacting with

proton pulse. Figure 4.2 from [39] shows the the mercury target after interaction with

a proton beam. Numerical simulation can reduce the amount of costly experiments

and help to optimize the target parameters. To simulate the target-proton interaction,

cavitation should be considered in our front tracking method. When MHD process is

simulated, the numerical methods to solve MHD equations in moving domains with
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complex geometries are required.

Figure 4.1: Schematic picture of muon collider target setup [17].

Two models are proposed to handle cavitations [49] in our front tracking method.

The first is the homogenized model [50]. Suitable averaging is performed over the

length scale which is large compared to the distance between bubbles and the mix-

ture is treated as a pseudofluid that obeys an equation of state of a single component

flow. The homogenized model is easy to implement and its computational cost is

low. However, it is unable to resolve spatial scales comparable to the distance be-

tween bubbles. The second is the heterogeneous model (or discrete bubble insertion

algorithm) we introduced in Chapter 3, which models liquid-vapor a system of one

phase domains separated by free interfaces. Although computationally intensive, the

heterogeneous model is very accurate. It allows to handle drag, surface tension and

phase transitions on the interfaces. The following system of MHD equations [24] are

used to model MHD effects in the mercury target with a constant external magnetic
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Figure 4.2: Mercury jet breakup after interaction with proton pulse [39].

field.

∂ρ

∂t
+∇ · (ρu) , (4.1)

ρ

(
∂

∂t
+ u · ∇

)
u = −∇P + ρg +

1

c
(J×B) , (4.2)

ρ

(
∂

∂t
+ u · ∇

)
e = −P∇ · u + ρu · g +

1

c
J2 , (4.3)

∇ ·B = 0 . (4.4)

P = P (ρ, e) . (4.5)

where u, ρ, e are the velocity, density and the specific internal energy of the fluid, P

is the pressure, g is the gravitational acceleration, B is the magnetic field induction,

J is the current density distribution, σ is the fluid conductivity, and c is the speed of

light. Equation (4.5) is the equation of state. J can be obtained from Ohm’s law

J = σ

(
−∇ϕ +

1

c
u×B

)
, (4.6)
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where ϕ is the electric field potential and satisfies the Poisson equation

∇ · (σ∇ϕ) =
1

c
∇ · σ(u×B) . (4.7)

The electric potential must satisfy the following Neumann boundary condition

∂ϕ

∂n
=

1

c
(u×B) · n . (4.8)

where n is a normal vector at the fluid surface.

For a 2D axis symmetric flow, ∇· (u×B) = 0 and (u×B) ·n = 0, which implies

ϕ = const and we do not need to solve the Poisson equation (4.7). For a 3D flow, an

embedded boundary method for the elliptic problem is applied to solve the electric

field potential [47].

In [48], numerical methods for free surface MHD flows have been developed in

a 2D space. A Stiffened gamma law was used to model the equation of state of

mercury. The instability of the jet surface is caused by the multiple reflections of

pressure waves from the mercury-ambient interface. Magnetic fields up to 20T are

used in the simulations. It was found that a 10T magnetic field is able to stabilize the

jet during the period of times typical for the jet breakup at zero magnetic field. In [50]

and [49], cavitation bubbles are modeled by homogenized and heterogeneous models

after interaction with the proton pulse. Strong rarefaction waves are mitigated by

expanding cavitation bubbles. The calculated jet velocities of expansion are in the

range of experimentally measured values. In [8], 3D simulations with MHD effect

and the homogenized model for cavitations are performed. All the 3D simulations

give the same expansion velocities as the corresponding 2D simulations. However, no

surface instability is observed in these simulations.

We solve the same problem in a 3D space. The equations (4.1)-(4.8) are solved
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by using the embedded boundary method proposed in [47]. Cavitation bubbles are

modeled by the heterogeneous model. Magnetic field with B ranging from 0T to 15T

cases were simulated and compared with experimental results from [39].

4.2 Problem Setup

To avoid unnecessary cost, a segment of the jet is simulated. The segment is

long enough to avoid an artificial boundary effect. In the first simulations, the length

of the jet is 8 cm and the radius is 0.795 cm. The dimension of the computational

domain is [3.5 cm, 3.5 cm, 10.5 cm]. The mesh is 100× 100× 300. Since the photos

from all experiments only provide the shape of the jet in a projected plane, we do

not know the shape of the jet in a 3D space. We also simulate an elliptic jet. The

length of the jet is 8 cm, the major radius is 0.795 cm and the minor radius is 0.375

cm. The dimension of the computational domain is [1.5 cm, 3 cm, 9 cm]. The mesh

is 60× 120× 360.

After interaction with the proton pulse, energy is deposited in the mercury jet

as its own internal energy. The actual energy deposition is calculated using a Monte-

Carlo code MARS [38]. In [8], the energy deposition profile is approximated by a

2D Gaussian function in cylindrical coordinates. To model the energy deposition

accurately, we use the the results from Striganov’s calculation. The characteristics of

the proton beam in his simulations are summarized in Table 4.1. We use a stiffened

gamma law [37] to model the equation of state of mercury,

p + γp∞ = (γ − 1)ρ(e + e∞) , (4.9)

where the adiabatic coefficient γ = 2.866, the stiffening constant p∞ = 9.8 · 104bar

and e∞ = 7300cm2/ms2. The polytropic gamma law [37] gas is used for the ambient
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Table 4.1: Characteristics of the proton beam in Striganov’s calculation.

Cases Beam energy Horizontal length Vertical length Energy deposition
(GeV) (mm) (mm) density (J/g)

Circular jet 24 1.34 0.78 100
Elliptic jet 24 3.3 2.7 100

gas. We can calculate the change of pressure with the change of internal energy by

using

∆p = (γ − 1)ρ∆e . (4.10)

At the initial time, we can get ∆p = 35, 000bar with (4.10) and the energy deposition

density given in Table 4.1. Such a large pressure produces strong rarefaction waves

and cavitates the mercury jet. The critical pressure calculated from homogeneous

nucleation theory [4] is −100bar. Figure 4.3 shows the contour plot of the initial

pressure distribution inside the jet at x = 0 plane.

Figure 4.3: The contour plot of the initial pressure distribution inside the jet at x = 0
plane.
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4.3 Simulation Results

We first consider the simulations without the magnetic field. Figure 4.4 shows

the surface filaments at 160 µs after the proton-jet interaction. Figure 4.5 shows

the snapshots of the density at x = 0 plane at different times. The expansion of

the jet and the growth of the filaments on jet surface are noticed in the simulations.

This is consistent with experimental observation. The filaments on the left side of

the jet surface are longer than those on the right side (Figure 4.5), which means

that the surface instabilities have the memory of the initial energy deposition. We

evaluate the length and the velocity of the fastest growing filament, see Figure 4.6.

The filaments reach their maximal velocity when they first protrude out of the jet

surface. The average filament velocity evaluated from the simulation is 35 m/s, less

than Park’s measurement [39] for the corresponding case (45 m/s). There can be

several reasons: First, the simulation has 40 cells across the jet diameter, the relatively

coarse grid can introduce numerical diffusion which dumps the growth of the filaments.

Second, the unknown parameters such as beam spot size and the energy deposition

at the viewpoint may affect the observed velocity in the experiments. Last, there

can be discrepancy between Striganov’s results and the real energy deposition in the

experiments. The delay of filament growth found in experiments is not observed in the

simulations. Since the physics of the observed delay of the jet disruption is unknown

[39], we may need to develop a new numerical method to model it.

Figuue 4.7 shows the surface filaments at 140 µs after the proton-jet interaction

for the elliptic jet. Figure 4.8 shows the length of the fastest growing filament. The

velocity is smaller compared to the cylindrical case as the initial energy profile is much

flatter. We also found the filament velocity along minor axis is much larger than that

along the major axis. Figure 4.9 shows the distribution of the angles between the
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Figure 4.4: The surface filaments for the circular jet at 160 µs after the proton-jet
interaction.

Figure 4.5: The snapshots of the contour plot of density at x = 0 plane at time 30,
130, 200, 250 µs.
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Figure 4.6: The growth of the fastest growing filament. The left figure is the length.
The right figure is the velocity from the simulation and the corresponding experiment.

Table 4.2: The filament velocities from the simulations and the experiments.
Magnetic field 5T 10T 15T
Experiments 54 m/s 50 m/s 35 m/s
Simulations 36 m/s 27 m/s 22 m/s

filaments and the jet surface. Most filaments grow along the normal direction of the

jet surface.

Figure 4.10 shows the jet surface at 150 µs after adding longitudinal magnetic

fields. Both the interior velocity and the surface velocity of the jet are decreasing

with the increasing magnetic field. The MHD stabilizing effect is weaker than the

corresponding 2D simulations where circular current exists in filaments [8]. The length

and the velocity of the fastest growing filaments are evaluated from the simulations,

see Figures 4.11 and 4.12. We found that a 10T magnetic field is able to stabilize the

jet during period of times typical for the jet breakup at zero magnetic field, which

is found in experiments [39]. The filament velocity in the simulations is about 25%

smaller than the experimental value (see Table 4.2). It is possible due to the low

resolution of the 3D simulations.
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Figure 4.7: The surface filaments of the elliptic jet at 160 µs. Left: viewed from the
major axis, Right viewed from the minor axis.
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Figure 4.8: The length of the fastest growing filament on the elliptic jet.
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Figure 4.10: The jet surface at 150 µs under the longitudinal magnetic field B=0,
5T, 10T, 15T.
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Chapter 5

Conclusions

We make improvements for the 3d front tracking method. First, we apply a 3

component grid based reconstruction method to solve the moving surface-solid wall

interaction problem. The moving contact curve on the wall are explicitly tracked.

A drop falling problem is studied by the new algorithm. Secondly, we present an

improved, robust, locally grid based method for reconstruction of tangled interfaces.

This method improves the handling of topological change of the surface mesh in the

3D simulations. We prove the method produces a topologically valid interface, thus

it is suitable for large scale simulations.

The primary breakup of a high speed jet is studied numerically in a 3D space

using the front tracking method. The breakup in the liquid jet is presented in the

simulations. The sizes of droplets and ligaments are studied and compared with

experimental and theoretical results. The nozzle flow is also studied to determine the

cavitation within the nozzle and the level of turbulence occurring at the nozzle exit.

The results are in the range of experimental results. We found the cavitation model

is crucial in the simulations.

We also apply 3D simulations to the hydrodynamic and MHD process in liquid

mercury target for muon collider/neutrino factory, which includes mercury jet inter-
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acting with protons in a longitudinal magnetic field. Surface instabilities are observed

in the simulations. The stabilizing effect of magnetic field on the growth of filaments

is observed. The growth of filaments is compared with experimental results.
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Appendix A

Redistribution Algorithm for a 3D Surface Mesh

When a interface is moving, some triangles can be elongated and some may be
contracted. To keep the regularity of the interface, Dynamic adaption for the interface
is needed. In the previous FronTier code, redistribution is periodically applied to the
3D triangular mesh. If a triangle is too large, we split the longest edge into two
and replace both this triangle and one sharing the long edge by four new elements.
Similarly, triangles are deleted two at a time by collapsing the shortest edge into
a point. Sometimes we also reconnect the points by swapping edges to make the
triangles better shaped. The method improves the quality of the surface mesh, but
it can not resolve all the bad cases which appear in the interface. For example, sharp
edges or corners may appear in the interface. Also, there are forbidden cases for the
edge collapsing algorithm.

In this Section, a improved redistribution algorithm is described. Since there
is no forbidden cases for the algorithm, the quality of the surface mesh is always
ensured. We follow the idea from T. Baker’s work [2] with some modifications. Baker
implemented a cycle of mesh adaption by the following steps: First, each point on
the mesh is mapped to a new position and each component of the 3D displacement
of vector satisfies the Laplacian equation. In this step, the interface is smoothed and
the connectivity of each point is unchanged. Then, mesh coarsening is carried out
to remove small triangles. Finally, mesh enrichment serves to create a mesh whose
triangles are comparable to those of the mesh at the initial time.

Instead of solving Laplacian equations, we use a revised Laplacian smoothing
in the first step. The position pi of a vertex i is replaced with the average of the
positions of adjacent vertices. We have

pi =

{
α 1
|adj(i)|

∑
j∈adj(i) qj + (1− α)qi i ∈ Vvar

qi i ∈ Vfix
(A.1)

where qi is the original position of pi, adj(i) is the set of the adjacent vertices of
vertex i. Vvar is the set of moveable vertices and Vfix is the set of fixed vertices. We
construct Vvar as follows. We first compute the angle between two adjacent triangles
on their common edge. If the angle is less than 20◦, two ending points of the edge is
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added to Vvar. 0 < α < 1 is a irrational number. The convergence for the algorithm
is proved in [22].

In the second step, we consider two cases. Let the set of triangles on the surface
is T . Supposing we want to collapse the edge PQ, all triangles associated with points
P and Q are denoted as a set T1. The bounding points for T1 are P1, P2, · · · , Pn. Case
(1): P1, P2, · · · , Pn are distinct. We collapse PQ into a point. Case (2): There are
common points in P1, P2, · · · , Pn. T1 forms a pipe and collapsing PQ will lead to a
topological change, see step A in figure A.1. We remove T1 from the interface. From
theorem 2.1.2, B(T \T1) must be a directed Eulerian circuite. If a vertex in B(T \T1)
has a indegree greater than 1, after we separate the vertex into several vertices,
B(T \ T1) becomes many directed simple circles. We then perform a constrained
triangulation on each simple circle. The operation leads to a bifurcation in the surface
mesh, see figure A.1 for the substeps.

The third step remains the same as before. We split the longest edge of large
triangles. This operation is always realizable and the resulting surface is topologically
valid.

Figure A.1: Topological change happens when collapsing a edge. A: The red edge
is going to collapse. B: All the triangles associated with two ending points of the
edge are removed, where the thick lines represent the boundary. C: The point with
indegree greater than one is separated. D: the directed simple circles are sealed by
the triangulation.
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Appendix B

Reflection Boundary for the Front Tracking

Method

The 3D simulation is computational expensive. When the flow has reflective
symmetry, the total computational cost can be decreased by half when a reflection
boundary condition is applied. It is found to be very useful in our numerical study
for diesel spray simulations. Without any moving surface on the reflective plane, we
simply reflect all the states on cell centers from the computational domain to the
buffer zone across the reflective plane. When a moving surface intersects with the
reflective plane. We reflect the surface and reconnect it to the original one. Assuming
we need to reflect an interface I across the plane xi = Xi (i = 1, 2, 3 represent x, y, z
directions) plane, we perform the reflection by the following steps, see figure B.1.

(1) compute the intersections between all the edges on the interface I and the plane
xi = Xi − hi/2, where hi is the grid size in xi direction.

(2) Retriangulate all the triangles which have intersections on their edges.

(3) Remove all triangles which lie on the other side of the plane xi = Xi − hi/2.
After this step, the boundary of all surfaces contains several directed Eulerian
circuite from theorem 2.1.1. We separate all vertices on the boundary which
have a indegree greater than one. Then, the boundary only contains simple
circles.

(4) Reflect all the boundary points on the plane xi = Xi − hi/2 across the plane
xi = Xi. Construct a strip of triangles by using the reflected points and the
original points on the boundary and add the strip into I,

(5) Reflect I across the plane xi = Xi and reconnect the reflected interface with I
along the common strip of triangles.

If the procedure is applied every time step, many small triangles may be produced
after step (1). To avoid the problem, the algorithm is used every 20 steps and a
redistribution of interface is performed each time the interface is reflected.
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Figure B.1: The substeps to reflect a interface in the front tracking method. The
vertical line in (1) represents the plane xi = Xi − hi/2
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