Stony Brook University

OFFICIAL COPY

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Comparative Analysis of Argonaute-Dependent Small RNA Pathways in Drosophila

A Dissertation Presented

by

Ikuko Hotta

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

In

Molecular and Cellular Biology

Stony Brook University

August 2009

Stony Brook University The Graduate School

Ikuko Hotta

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation.

Dr. Greg Hannon - Dissertation Advisor Professor, HHMI, Cold Spring Harbor Laboratory Graduate Program in Molecular and Cellular Biology, Stony Brook University

Dr. Yuri Lazebnik - Chairperson of Defense Professor, Cold Spring Harbor Laboratory Graduate Program in Molecular and Cellular Biology, Stony Brook University

Dr. Adrian R. Krainer Professor, Cold Spring Harbor Laboratory Graduate Program in Molecular and Cellular Biology, Stony Brook University

Dr. A. Wali Karzai Associate Professor, Graduate Program in Molecular and Cellular Biology, Stony Brook University

Dr. Rui-Ming Xu, Investigator, Institute of Biophysics, Chinese Academy of Sciences

This dissertation is accepted by the Graduate School

Lawrence Martin Dean of the Graduate School

Abstract of the Dissertation

Comparative Analysis of Argonaute-Dependent Small RNA Pathways in Drosophila

by

Ikuko Hotta

Doctor of Philosophy

in

Molecular and Cellular Biology

Stony Brook University

2009

The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. I have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in *Drosophila* S2 cells. I identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA, and miRNA pathways. These studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes.

Table of Contents

List of Figuresvi		
List of Tablesvii		
Chapter 1 1 Introduction 1 Small RNA-mediated silencing 2 The Ago/Piwi protein family 3 The miRNA pathway 6 miRNA targets 8 Translation inhibition by microRNA 9 RNA degradation by miRNA 10		
RNA degradation by miRNA		
Crossing the miRNA and siRNA boundary19 Questions and purpose of the experiment		
Chapter 2 Introduction 31 Results 32 Assay systems to monitor the siRNA/miRNA pathways 32 Comprehensive identification of siRNA/miRNA pathway components 32 Candidate genes identified from the Screens 35 Placing candidates within the siRNA/miRNA pathway 37 Validation of Belle as a bona fide RNAi pathway component 38 Ribosomal proteins associate with the RNAi machinery 42 Discussion 42 Experimental procedures 45 Supplemental data 51		
Chapter3Overview perspective		

Compre	ehensive list of references10	0
Append <i>L</i>	lix Drosophila Ago1 binding protein purification11	.0

List of figures

Chapter1

•	1.1: Small RNA silencing pathways in drosophila	4
	1.2: microRNA regulation in <i>C.elegans</i> developmental pathway	9

Chapter2

2.1. Candidates identified from the screens	
2.2. Mapping candidates along the small RNA pathway	
2.3. bel ⁶ flies are defective in RNAi	
2.4. Bel and RpL22 interact with components of the RISC	41

List of tables

5
7
1
3
34
5

Appendix

A1: Proteins pre	cipitated with Droso	phila Ago1	.113	3
------------------	----------------------	------------	------	---

Acknowledgements

First, I would like to thank everyone who supported and guided me during my studies at Cold Spring Harbor lab.

I would like to thank DRSC and Norbert Perrimon for providing the opportunity to collaborate on the Drosophila screen. I would also like to thank my collaborator, Rui Zhou. Our collaboration began as a result of the small RNA reporter assay system I developed in S2 cells. Rui contributed to the screening, which was performed at Harvard medical school with the help of DRSC. He also performed in vivo analysis in *Drosophila*, and some part of biochemistry experiments, and assisted with northern blotting analysis. The screening and validation experiments could not be done without sharing our information and experiences.

I am grateful to Ahmet Denli for his help in developing the small RNA assay system. During his time in the lab, Ahmet was always supportive, and he was like everyone's brother. I thank Ben Czech , Julius Brennecke, and Colin Malone for sharing the endo-siRNA information.

I am very grateful to Oliver Tam for his help with the writing of this thesis. I appreciate his kind consideration of the limited time and pressure I had. I want to thank Astrid Haase for being great bench mate and for her support on several occasions.

Special thanks to the music group members of Jellyfish explosion and Macumba, for having a great time together. The music gave me a lot of energy, and sharing the time with music members was precious.

I'd like to thank my friends, Yoselin Benitez Alfonso, Otazu Gonzalo, Yuri Yamasaki and Laurence Denis for being supportive and for understanding me.

I am thankful to my committee members, Yuri Lazebnik, Adrian Krainer, Wali Karzai and Rui-Ming Xu for their guidance.

I am grateful to Greg for spending time to support and help me for the progress. It was a great pleasure to have been a part of the Hannon lab. Our lab is always energetic, and there are always exciting things happening.

At last, I would like to my parents for their great support.

Chapter 1

Introduction

Small RNA-mediated silencing

Small RNA-mediated silencing is a gene regulatory mechanism that is conserved throughout animal, plants, and fungi. In this pathway, small RNAs are incorporated into Argonaute (Ago)-containing effector complexes, known as RNA-induced silencing complexes or RISCs. The RISCs then use these small RNAs as a guide to find their targets, leading to sequence-specific gene silencing.

There are several core components in the small RNA-mediated silencing pathway; small RNAs that serve as the guide to the target mRNAs, catalytic enzymes that generate and load these small RNAs, and the effector complexes that suppress the target mRNAs. The small RNA components are comprised of single-stranded (ssRNA) or double-stranded RNA (dsRNA) molecules ranging from 20-30 nucleotides in length, and are classified into three species based on their biogenesis and mechanism of activity: microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNA (piRNAs).

Another key component of the small RNA-mediated silencing pathway is the myriad of proteins that are involved in the biogenesis of the small RNAs. These include Drosha and Dicer (Dcr-1/Dcr-2), important catalytic enzymes shown to be involved in the generation of small RNAs from dsRNA precursors. They are accompanied by a group of accessory proteins, such as Pasha, Loquacious (Loqs) and R2D2, which provide specificity or stability to the small RNAs being generated.

The last key component of the small RNA-mediated silencing pathway comprises the various effector complexes, each with a member of the Argonaute family at its core. In *Drosophila*, the Argonaute family is subdivided into two clades, the Ago subfamily and the Piwi subfamily, and associates with different small RNA components. Their mechanisms

of action vary from translational inhibition or sequestration of mRNAs to cleavage of target transcripts.

In *Drosophila*, RNA-mediated silencing can be subdivided into three separate pathways based on the small RNAs that act in each mechanism: the miRNA pathway, the siRNA (or classical RNAi) pathway, and the piRNA pathway. Each has different small RNA species and protein complexes that function almost exclusively within their respectively pathway (though there are exceptions). Although this thesis will concentrate on the miRNA and siRNA pathways, a better understanding of all of these silencing pathways would allow researchers to reconstruct the complex small RNA-based regulatory network, and perhaps manipulate the system to their advantage.

The Ago/Piwi protein family

Aside from the small RNAs, the key effector component of small RNA-mediated silencing is the Argonaute family. In *Drosophila* and mammals, the Argonaute family can be divided into two subfamilies based upon their sequence similarity; the PIWI subfamily and the eIF2C/Ago subfamily ¹. PIWI subfamily genes have 28.3–50.2% identity in their amino acid sequences and are expressed mainly in gonads, whereas the eIF2C/Ago subfamily genes have 77.6 % 77.6–83.6% identity and are expressed ubiquitously.

Figure 1.1. Argonaute-dependent small RNA silencing pathways in Drosophila

In *Drosophila*, there are two Argonaute-dependent small RNA silencing pathways; the small interfering RNA (siRNA) and microRNA (miRNA) pathways. **a** | Long dsRNA precursors are processed by DCR-2 to generate siRNA duplexes. DCR-2 and the dsRNA-binding protein R2D2 load the duplex into Argonaute2 (AGO2). The siRNA directs AGO2 to the target RNA and triggers target cleavage. **b** | miRNAs are transcribed from the genome as primary transcripts (pri-miRNAs). The transcribed primiRNAs have long stem-loop structures (hairpins). These precursors are processed in the nucleus into ~65-70 bp hairpins (pre-miRNAs) by the Drosha/ Pasha complex. pre-miRNAs are exported from the nucleus to the cytoplasm by Exportin-5(Exp-5), and are further processed by DCR-1 to generate mature miRNAs are loaded into AGO1. The miRNA guides translational repression and mRNA destabilization of target gene by the AGO1 complex. In *Drosophila*, five Argonaute proteins (Piwi, Aubergine, dAgo1 and dAgo2, dAgo3) have been identified ². dAgo1 and dAgo2 are assigned to Ago family whereas Piwi, Aubergine, dAgo3 belong to Piwi family. (Table 1) *Drosophila* Ago1 is most similar to mammalian Ago2 amongst the *Drosophila* Argonaute members, and they are considered as homologues ¹.

Subfamily	Protein	Small RNA	Length of small RNA	Function
Ago	AGO1	miRNA	21-23nt	Translation repression, mRNA degradation
1150	AGO2	siRNA	~21nt	RNA cleavage
	PIWI	piRNA	24-27nt	
Piwi	AGO3	piRNA	24-25nt	Repression of transposable element
	AUB	piRNA	23-26nt	

Table 1. Type of small RNA and Argonaute protein in Drosophila

Drosophila Piwi family proteins associate with piRNAs, and are required for germ line development. Piwi contributes to the self-renewal of germ line stem cells and underlies transposon mobility control ^{3,4}, and Aubergene (Aub) is important for pole-cell formation ⁵. Unlike siRNAs and miRNAs, piRNAs do not require Dicer for processing. Piwi proteins have demonstrated slicing activity, cleaving the target complementary to position 10 and 11

of the piRNA, and might be involved in piRNA generation. A proposed hypothesis on their function is that Aub and Piwi-associated piRNAs guide the complexes to cleave targets. The products of these reactions are incorporated into Ago3 and are used to guide and cleave of Aub-Piwi-associated piRNA precursors ^{6,7}. The Argonaute clade is -100kD in size and part of a highly conserved protein subfamily.

The Argonaute subfamily is characterized by two common domains, known as PAZ domains and PIWI domains⁸. The PAZ domain is named after the proteins Piwi, Argonaut and Zwille, and has an OB fold structure that is involved in single-stranded DNA or RNA binding⁹. The PAZ domain from Ago2 can bind to two-nucleotide overhangs at the 3' end of small RNAs, and is thought to distinguish siRNA from degraded RNAs through this mechanism.

Drosophila Ago2 was isolated as a component of RISC complex ¹⁰, and was shown to co-fractionate with the *Drosophila* homolog of the fragile X mental retardation protein (FMRP), Drosophila Fragile X related protein (dFXR), and VIG (Vasa intronic gene). In size exclusion chromatography, fractions around ~500-kD and show RISC activity ¹¹. In contrast, the majority of miRNAs appeared around the ~250-kD fraction, and co-fractionate with Ago1 protein. Co-fractionation was observed in both size fractionation and ion exchange. Knock down of Ago2 causes decreased target cleavage activity for siRNAs, but Ago1 depletion has no effect. This result implies that Ago1 and Ago2 have different roles for specified part of RNAi, as shown by their association with the miRNA and siRNA pathways respectively.

The miRNA pathway

MicroRNAs (miRNAs) are double-stranded RNAs approximately 22 nucleotide in length. They are generated from ~70nt RNA precursors which form stem loop structures ¹². These stem-loop structures are themselves the product of a long primary transcript. The active strand (guide strand) of miRNAs functions to guide the effector complex to target mRNA. The miRNA recognizes the target through imperfect complementarity to sites in 3' untranslated regions, UTRs, This binding is required for the negative regulation of the target gene, through mechanisms such as translational repression and mRNA destabilization. Although the majority of miRNAs targets are found at 3'UTR sites, the 5' UTR and protein-coding sequences can also be the targets of miRNAs, e.g. as is observed for Nanog, Oct4 and Sox2 in mouse ^{13,14}.

More than 1000 miRNAs have been identified in organisms as diverse as *C. elegans*, *Drosophila*, *Arabidopsis thaliana* and mammals ¹⁵. Many miRNAs are highly conserved between species, with ~55 % of *C. elegans* miRNAs having homologues in humans ¹⁶. Like protein-coding genes, each miRNA gene has a different expression pattern that is dependent on the cell type and developmental timepoint. miRNAs have been shown to have important roles in the control of developmental timing, cell proliferation, differentiation and apoptosis, and organ development ¹⁷.

miRNAs are transcribed from the genome as primary transcripts (pri-miRNAs), with \sim 40% of miRNA genes being located in intergenic regions and 10% being found in exonic regions of non-coding transcription units ¹⁸. While the majority of pri-miRNAs are

7

generated by RNA polymerase II (Pol II)^{19,20}, a minor group of miRNAs associated with Alu repeats can be transcribed by RNA Pol III²¹.

The transcribed pri-miRNAs are usually several kilobases in size, and have long stem-loop structures (hairpins). These long precursors are processed in the nucleus into \sim 65-70 bp hairpins (pre-miRNAs) by a 130-160kD RNase III enzyme, Drosha. The enzyme interacts with a dsRNA-binding protein partner called Pasha (DGCR8 in human) and is found in the nucleoplasm and the nucleolus ^{6,22}. The Drosha/Pasha complex is known as the microprocessor, and is involved in the generation of most pre-miRNAs.

A small group of pre-miRNAs has been shown to be generated without the aid of Drosha. These pre-miRNAs (found in flies, worms and mammals) are embedded in short introns and are called mirtrons. Their precursors are produced by the splicing machinery ²³⁻²⁶. When these introns are spliced out, a lariat-debranching enzyme opens the lariat structure, to generate mirtron pre-miRNAs. miRNAs can also be derived from other non-coding RNAs, such as tRNAs or small nucleolar RNAs (sno RNAs)²⁷.

Processed pre-miRNAs are exported to the cytoplasm, a process mediated by the nuclear transport receptor, exportin5 (EXP5) ²⁸⁻³⁰. The pre-miRNAs are then cleaved by Dicer 1 (Dcr-1), an Rnase III enzyme, into mature miRNAs. After Dicer cleavage, small dsRNAs are loaded into the Ago protein complex. The guide strand (miRNA) remains in this complex, whereas the passenger strand (miRNA*) is degraded ³¹.

The widely accepted functions of miRNAs are translational inhibition and exonucleolytic mRNA decay. However, translational activation ³² and heterochromatin formation ³³ have also been reported.

miRNA targets

Bioinformatic predictions of miRNA targets suggest that at least 20-30% of animal transcripts have one or more conserved miRNA binding sites in their 3'UTR ³⁴⁻³⁶. Although some mRNAs in animals have sequences with high complementarity to miRNAs (and these might lead to mRNA cleavage), the majority of miRNA target sites have imperfect complimentary sequences. There is an important sequence, known as the seed region, spanning nucleotide positions 2-8 at 5' end of miRNAs. This region shows high complementarity with target mRNAs, and pairing of the seed region with the target is crucial for miRNA-mediated regulation ¹⁷. At nucleotide position 9-12, miRNAs and mRNA targets generally have imperfect complimentary sequences, resulting in bulged structures. This prevents endo-nucleolytic decay, and leads to translational inhibition and exo-nucleolytic mRNA decay ³⁷.

Figure 1.2. microRNA regulation in *c.elegans* developmental pathway

miRNAs can function as regulatory switches to control the timing of developmental transitions. *Let-7* and *lin-4* were the first miRNAs to be discovered. They were uncovered in *C. elegans* through genetic screens ³⁸. Mutants in these miRNAs lack the ability to control developmental timing. It was later shown that *lin-4* negatively regulates the level of

LIN-14 protein (coding for a transcription factor) promoting the termination of the first larval stage (L1) and progression into the second larval stage (L2) ³⁹. (Figure 1.2) Multiple sequences complementary to *lin-4* were found in the 3' untranslated region of *lin-14* mRNA.

Translation inhibition by microRNA

The major miRNA-mediated effector function is translational inhibition of target mRNAs. SILAC (Stable isotope labeling by amino acids in cultured cells) analysis showed that transfection of mature miRNA into Hela cells lead to strong changes in proteins levels, frequently accompanied by slight decreases in transcript levels ⁴⁰. For example, for mammalian Dicer (a target of let-7b), translation rates increased by more than 4-fold when let-7b was blocked, while its mRNA level increased by only 30%. This implies that translational inhibition is a major mechanism of miRNA mediated silencing, although the exact route through which this occurs is still being debated.

Accumulating evidence suggests that miRNAs might block translation initiation. Several groups have shown that 5' cap structure (m7G) and 3' polyA tail, but not an IRES or non-functional ApppN cap, are necessary for the miRNA-mediated repression ^{41,42}. In addition, tethered eIF-4E and eIF-4G (which promotes cap-independent translation), alleviates miRNA-mediated repression of a reporter ^{41,42}. This suggests that miRNA mediated repression might interfere upstream of eIF-4E's recruitment of eIF-4G.

One mechanism of translation initiation control is polysome loading on the mRNA. Using polysome gradient experiments, one group reported that upon let-7 miRNA binding or hAgo2 tethering to a target site, mRNA was shifted to lighter fractions in a polysome gradient ⁴¹. This suggests that polysome recruitment to mRNA is blocked, and mRNA is released from the ribosome. This result supports the idea that miRNA mediated repression occurs during translation initiation.

However, there are conflicting observations that raise the possibility of post-initiation translational repression. Extracts from *C. elegans* L1 and L2 larvae were analyzed by sucrose gradient, with polyribosomes from both L1 and L2 stages remaining associated with the *lin-14* mRNA ^{43,44}. However, LIN-14 protein was down regulated approximately12 to 15-fold. Another group also showed similar results with KRAS mRNA, a target of let-7 miRNA. Three endogenous miRNAs and KRAS were co-fractionated with polysomes ⁴⁵. These results implied that translation regulation occurs after translational initiation.

Since binding of a single miRNP (microRNA ribonucleoprotein) to mRNA frequently has no significant repressive effect, co-fractionation of mRNA, miRNP and polysomes does not necessarily imply repression. Therefore, it has been suggested that those conflicting studies do not disprove the initiation-repression hypothesis ^{41,46}. However, the possibility of post-initiation repression is still possible, since reduction in the translational elongation and termination rates mediated by miRNPs could lead to changes in protein levels.

Another possibility is a rapid destruction of the nascent protein. However, pulsechase experiments, were unable to show either the labeled full-length peptide or labeled nascent polypeptide chains from a miRNA-targeted transcript ⁴⁷. In addition, when reporter proteins were targeted to endoplasmic reticulum (ER), which sequestered the nascent protein from proteolysis, reporter activity remained repressed by miRNAs. Suppression

11

levels were also unchanged by the proteasome inhibitors, MG132 and Z-Leu-Leu-Leu-al⁴¹. These results strongly argue against the possibility of posttranslational degradation of the completed polypeptide chain.

The mechanism of miRNA-mediated repression remains unclear, and heavily debated. There are contradictory data, but it should be noted that initiation and post initiation repression may not be mutually exclusive. It is possible that the target mRNA might have different status according to the cell environment and cell status, leading to different modes of translational repression.

RNA degradation by miRNA

Although miRNAs generally lead to decreased levels of target proteins through translational inhibition, they are also associated with mRNA destabilization ⁴⁸. In most cases, miRNAs do not cause endo-nucleolytic cleavage but target mRNA can be degraded by the general mRNA-decay machinery.

In eukaryotes, mRNA degradation occurs in cytoplasmic foci, called P-bodies (mRNA-processing body). Degradation begins with the shortening of poly(A) tail followed by removal of 5' cap structure by a decapping enzyme (Dcp1p and Dcp2p). Then, mRNAs are degraded from 5' to 3' by an exonuclease, Xrn1p ⁴⁹. One protein that accumulates in the P-body is GW182, which is essential for p-body integrity. Argonaute proteins have been shown to co-localize and interact with GW182, and that this is required for miRNA mediated mRNA repression. Mutations in PAZ domain of Argonaute lead to a failure to localize in P-body and to suppress the target ^{39,50}.

A proposed model suggests that the recruitment of Argonaute proteins to the P-body leads to mRNA degradation, as GW182 promotes mRNA deadenylation by recruiting the CCR4-NOT deadenylation complex ⁵¹. In addition, Dcp1p and Dcp2p are also found in the P-body, and might be involved in decapping of target mRNA. Depletion of CCR4-NOT complex or decapping proteins, DCP1 and DCP2 prevents miRNA mediated mRNA decay.

Regulation of miRNAs

Since miRNAs can be important regulators of numerous cellular processes, it is important to be able to control their levels and activities. In addition to transcriptional regulation of primary transcripts, miRNA activity can be regulated by: 1) controlling miRNA biogenesis, 2) competitive binding to 3' UTR, or 3) target mimicry.

As components of the microprocessor, Drosha and DGCR8/Pasha can be regulated to control miRNA biogenesis. In mammals, a negative feedback loop occurs where DGCR8 up-regulates Drosha by stabilizing the protein via protein-protein interaction. When Drosha and DGCR8 levels are high, the Drosha/DGCR8 complex down-regulates DGCR8 by cleaving a hairpin structure that exists in the DGCR8 mRNA. This would destabilize and reduce Drosha transcripts, lowering microprocessor activity ⁵². Genetic observations suggest that there is an intricate homeostasis of DGCR8 levels in the cell, with *Dgcr8* heterozygous cells (with one functional copy of the gene) maintaining DGCR8 levels comparable to those of wild-type cells. Most of miRNAs are unaffected in *Dgcr8* heterozygous mice ⁵³. This regulatory mechanism of the microprocessor might control miRNA production in the cells, and help in maintaining a homeostatic level of miRNA-mediated repression.

Dicer, a key component of multiple small RNA pathways, has been shown to be negatively regulated by let-7. Mammalian Dicer has let-7 target site in 3'UTR, and transfection of *let-7* precursor molecules can reduce Dicer protein levels in cultured 293T cells ⁵⁴. Since let-7 itself is a product of dicer, depletion of Dicer protein reduces let-7 levels and the associated suppression. This dicer/let-7 negative feedback loop might contribute to regulation of mature miRNA expression levels.

In plants, Ago1 is controlled by a miR168 negative feed back loop through three miR168 target sites. Mutants with decreased Ago1/miR-168 complementarity at the target site exhibited increases in Ago1 mRNA, leading to developmental defects. The mutants also show decreased miRNA levels, and a corresponding accumulation of miRNA targets. miRNAs that are complementary to the mutant Ago1 can rescue the developmental defects caused by the mutant ⁵⁵.

Direct interference with miRNA biogenesis can also exert control over miRNA activity. In humans, Lin28, a RNA-binding protein, suppresses let-7 production by blocking let-7 maturation ⁵⁶⁻⁵⁸. This is achieved by the uridylation of the precursor let-7 at its 3['] end. The uridylated pre-let-7 is unable to be cleaved by Dicer and undergoes degradation ⁵⁹. Interestingly, let-7 can target Lin-28 and reduce its protein level, thus potentially up-regulating let-7 activity.

Examples of positive regulators of miRNAs are transforming growth factor- β (TGF- β) and bone morphogenetic protein (BMP). Both can enhance the Drosha-mediated processing of pri-miR-21 into pre-miR-21, leading to an increase in mature miR-21⁶⁰. TGF- β and BMP signal through SMAD proteins, which interact with RNA helicase p68 (also known as DDX5), a component of the DROSHA microprocessor subunit. TGF-beta-

and BMP-specific SMAD signal transducers are recruited to microprocessor by p68, and facilitate pre-miR-21 accumulation through enhancement of its processing rate.

Competition for binding at the 3'UTR can serve as a useful regulatory mechanism for miRNA activity. In humans, miR-122 is a liver-specific miRNA and translationally represses CAT1, an amino-acid transporter involved in argentine hydrolysis. During liver regeneration, CAT1 activity needs to be up-regulated to provide sufficient amino acids for protein synthesis ⁶¹. HuR has been shown to bind to 3'UTR of CAT1 RNA during amino acid starvation or other kind of stress, and prevents CAT1 inhibition by miR-122 ⁶².

An alternative to miRNA regulation is to mimic the target transcript and remove the miR from the cytoplasm. In *Arabidopsis*, Induced by phosphate starvation1 (IPS1) has a 23-nt miR-399 complementary sequence. However, IPS1 cannot be degraded by miR-399 due to mismatches at the critical positions in the target site. Instead, by mimicking the miR-399 target site, overexpression of IPS1 soaks up miR-399 and allow its targets to accumulate ⁶³.

The siRNA pathway

The siRNA pathway (known as the classical RNAi pathway) was the first small RNA-mediated pathway to be uncovered. This pathway led to cleavage events caused by the introduction of exogenous dsRNAs targeting endogenous genes. These exogenous dsRNAs were processed into siRNAs, which are 21-25 nt dsRNAs (dsRNAs) that form a 19 base-pair overlap, with 2 nt overhanging at the 3' ends. siRNAs can also be derived from long dsRNAs from exogenous transposons and viruses ^{10,64-66}.

Whatever their source, these long dsRNAs are processed in *Drosophila* into small dsRNAs by the Rnase III enzyme, Dicer-2 (Dcr-2). Mammals lack Dcr-2, with the mammalian Dcr-1 able to generate both miRNA and siRNAs. The RNA binding protein, R2D2, functions as a partner of Dcr-2, and forms a complex that distinguishes the active strand (guide strand) and non-active strand (passenger strand) of the siRNA. This is achieved by sensing the thermodynamic stability of the siRNA duplexes, with R2D2 binding to more thermostable end and Dcr-2 binding to the other end ⁶⁷. The Dcr-2/R2D2 complex then recruits Ago2 through the interacting PAZ domains of Dcr-2 and Ago2. This complex then loads the siRNAs, preventing the siRNAs from freely diffusing in the cytoplasm. Once associated with siRNAs, Ago2 cleaves the passenger strand, with the guide strand directing Ago2 to the target RNA.

Endogenous siRNAs

Endogenous siRNAs (Endo-siRNAs) were first discovered in plants and *C. elegans*, with recent studies demonstrating their existence in a broader spectrum of animals, including *Drosophila* and mammals. In flies, endo-siRNAs can be detected in cultured cells, somatic and germline tissues ⁶⁸⁻⁷⁴. These endo-siRNAs are ~21nt and are derived from longer dsRNA precursors.

The endo-siRNA pathway shares several common components with the exogenous siRNA pathway. For example, depletion of Dcr-2 and Ago2 caused substantial reductions of endo-siRNA levels in S2 cells and flies, with Ago2 shown (by immunoprecipitation) to associate with the endo-siRNAs ^{69,71}. Depletion of other small RNA associated factors, including Drosha, Pasha, Dcr-1, or Ago1, does not affect siRNA levels significantly. In

dcr-2 and ago-2 *Drosophila* mutants, mRNA expression of endogenous transposons increases, suggesting a role for the endo-siRNA pathway in their silencing ^{70,71,73}.

Interestingly, the processing of endo-siRNAs depends on the dsRNA-binding protein Loquacious (Loqs), which was previously identified as the co-factor for Dcr-1 in the miRNA pathway. While *loqs* mutant flies show only modest defects in the maturation of miRNAs, they show strong reductions in endo-siRNA levels. In contrast, depletion of the canonical Dcr-2 partner, R2D2, appears to have only minor effects on endo-siRNAs⁷¹.

In *Drosophila*, endo-siRNAs can arise from bidirectionally transcribed loci and structured loci ⁶⁹⁻⁷¹. Bidirectionally transcribed loci generate regions of complementarity where two transcripts overlap, leading to dsRNA formation. These loci can overlap either at the transcriptional start sites, 3'UTR sites or in coding regions, with 3' UTR overlaps being most common. The structured loci give rise to long transcripts that contain extended inverted repeats. These are capable of forming hairpins of up to 400nt and of giving rise to siRNAs from the one genomic strand. There are three major structured loci in the fly genome; esi-1, esi-2, and esi-4. esi-2 has high sequence complementary to the DNA-damage response gene, mutagen-sensitive-308 (mus308), and its activity leads to a reduction of mus308 mRNA. The guide strands of *Drosophila* endo-siRNAs have 2'-*O*-methyl modifications at their 3' ends, generated by the *S*-adenosyl methionine-dependent methyltransferase HEN1 (also known as piRNA methyltransferase, PIMET).⁷⁰

One interesting observation is that a highly expressed siRNA loci, CG7739, has sequences complementary to dAgo2⁷¹. Thus far, there is no clear evidence that Ago2 is controlled by this siRNA, but as shown by let-7 downregulation of mammalian Dicer, it is possible that the endo-siRNA pathway could be regulated by its own products.

17

So far, mammalian endo-siRNAs have been only found in mouse oocytes ^{75,76}. Their origin has been traced to transposons, genic and intergenic regions. Interestingly, some endo-siRNAs appear to originate from antisense pseudogene transcripts. These were shown to have the capacity to pair with the sense mRNA transcripts to form long dsRNAs, which can be cleaved by Dicer to make endo-siRNAs. Loss of mammalian Dicer leads to an upregulation of genes, with the degree of increase corresponding roughly to the number of endo-siRNAs found targeting the mRNA ⁷⁵. The most intriguing observation is the abundance of endo-siRNAs targeting microtubule-related genes, as Dicer-depleted oocytes show spindle organization defects ⁷⁷. This suggests a possible role for endo-siRNAs in contributing to the mutant phenotype in Dicer-deficient oocytes.

In *C. elegans* and plants, the biogenesis of endo-siRNAs depends on RNA-dependent RNA polymerase (RdRP). RdRP recognizes 3' ends of cleaved primary siRNAs, and produces secondary siRNAs ⁷⁸⁻⁸⁰ downstream of the primary siRNAs. This produces a pool of 22nt siRNAs that are antisense to the original target transcript and capped by 5' triphosphates ^{80,81}. These siRNAs are then loaded into secondary Argonaute (SAGO) ⁸², which lacks amino acid residues that are conserved in the cleavage active site, and might act in a cleavage-independent manner ⁸³. Thus far, RdRP and SAGOs are not found in other animals, suggesting that this endo-siRNA biogenesis pathway might be specific to *C. elegans* and plants.

siRNA-mediated cleavage

In contrast to most miRNAs, siRNAs regulate gene expression post-transcriptionally by directing sequence-specific endonuclease cleavage of the target mRNA, known as "slicer" activity. During a slicing event, one strand of the double-stranded duplex (the guide strand) directs the binding of effector complex to the target site. The target RNA is cleaved at the complementary position between the tenth and eleventh base from the 5' end of the guide ⁸⁴. The PIWI domain has been shown to be involved in target cleavage, and has Rnase-H-like fold and an anchor site for the 5' phosphate of the RNA guide strand ⁸⁵. Similar to other Rnase-H like enzymes, the cleavage products generated from slicer contain 3'-OH and 5'-phosphate groups. In vitro analyses of human Ago1, Ago2, Ago3 and Ago4 demonstrated that only Ago2 possesses this cleavage activity ^{6,86,87}, and that an siRNA-Ago2 complex is sufficient to recapitulate slicer function⁸⁸. Mutations in the RnaseH domain of hAgo2 prevent siRNA-mediated cleavage, and this observation is further supported by similar mutations that are intrinsic in hAgo1 and hAgo4 (both are noncleaving). In contrast, cleavage activity is more common among different Drosophila Ago proteins, withAgo1, Ago2 and Piwi all showing slicer activity⁸⁹⁻⁹¹.

Crossing the miRNA and siRNA boundary

Although the miRNA and siRNA pathways appear to have distinct mode of biogenesis and effector actions, there is increasing evidence that substrate from one pathway could be recruited into the other. Several studies have revealed that by changing the degree of complementarity between the small RNA and its target, the effector mechanisms of siRNAs and miRNAs are interchangeable ⁹²⁻⁹⁴. Experiments have demonstrated that the structure of small RNA duplex dictates their loading partner protein and mechanism of activity. If the duplex contains bulges, mismatches, or GU wobble pairs, they are preferentially loaded into Ago1 and functions in miRNA pathway. In contrast, perfectly matched duplexes are loaded into Ago2, and fed into the siRNA pathway. This has been shown to be due to the higher affinity of Ago2/R2D2 for duplexes with high complementarity compared with those possessing mismatches at the center.

The interchange between the miRNA and siRNA pathways has been shown in both *Drosophila* and mammals. In mammalian tissue culture, exogenous siRNAs can repress the translation of (instead of cleaving) a target mRNA if the target site has partially complementary binding sites in its 3' UTR ⁹³ In *Drosophila*, let-7 and bantam have typical miRNA structure with mismatches, and are predominantly loaded into Ago1. In contrast, miR-277 duplex has high complementarity at central region, resembling an siRNA structure. Consequently, miR-277 is preferentially loaded into Ago2 ⁹⁵.

The miRNA (Ago1) and siRNA (Ago2) pathways are likely to be competing against each other for small RNAs, leading to the preferential sorting of dsRNA duplexes with differing complementarity into different complexes. It has been shown that loading of dsRNA into one pathway lead to decreased association with the other pathway. Since for efficient endonuclease cleavage, base-pairing at the nucleotide position 10 and 11 is important, this may act as a mechanism for deciding which mechanism of action is chosen, and therefore which Ago is loaded. miRNAs and siRNAs complexes might also have similar components to mediate RNAi gene silencing ⁹². Considering this, common

components like RNA binding proteins or RNA helicases, would be included in both siRNA and miRNA complexes, allowing them to perform the other's function ^{11,92,96}. Although dAgo1 possesses endonucleolytic cleavage activity toward perfectly matched target RNAs, the efficiency of cleavage is much less than is observed with dAgo2 ^{95,97,98}. The preference of binding small RNA partner and cleavage efficiency might have led to the specialized function of Ago1 and Ago2.

Questions and purpose of the experiment

Small RNA mediated silencing decreases levels of RNAs or proteins through a myriad of mechanisms. However, it is difficult to identify the steps most critical to the operation of each small RNA pathway. There are several steps in each pathway where slight changes in efficiency could translate into observable silencing effects. These include;

(1) Transcription of small RNA precursors or uptake of long dsRNA

(2) RNA processing in the nucleus (miRNA)

(3) RNA transport

(4) Dicer Cleavage

(5) Ago/RISC loading

(6) Translation inhibition, RNA exo-nucleolytic cleavage, endo-nucleolytic cleavage

The list is not exhaustive, and although a great deal of progress has been made in deciphering small RNA-based regulatory networks, it is clear that there are many additional components awaiting identification and functional characterization. Even for the steps listed above, there are many unanswered questions. What are the different components doing at each step? How do these components co-operate at different stages? What are the

differences between the siRNA, endo-siRNA and miRNA pathways and their components?

Genome-wide screens for components of siRNA or miRNA pathways identified several common components ⁹⁹⁻¹⁰⁴ but none have addressed endo-siRNA pathways, nor have they attempted comparative studies in the same experimental model. Here, I report the results from several comparative and comprehensive RNAi screens that identify components of the Argonaute-dependent small RNA pathways (siRNA, miRNA, and endo-siRNA) in cultured *Drosophila* cells.

References

1. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. *Nat Rev Genet* **10**, 94-108 (2009).

2. Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome small star, filled. *Genomics* **82**, 323-30 (2003).

3. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. *Genes Dev* **16**, 2733-42 (2002).

4. Kalmykova, A. I., Klenov, M. S. & Gvozdev, V. A. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. *Nucleic Acids Res* **33**, 2052-9 (2005).

5. Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a piwidependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. *Genetics* **166**, 1313-21 (2004).

6. Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. *Development* **128**, 2823-32 (2001).

7. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. *Cell* **128**, 1089-103 (2007).

8. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. *Genes Dev* 20, 2214-22 (2006).

9. Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. *Trends Biochem Sci* **25**, 481-2 (2000).

10. Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. *Nat Struct Biol* **10**, 1026-32 (2003).

11. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. *Science* **293**, 1146-50 (2001).

12. Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. *Genes Dev* **16**, 2491-6 (2002).

13. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. *Nat Rev Mol Cell Biol* **6**, 376-85 (2005).

14. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. *Cell* **136**, 215-33 (2009).

15. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. *Nature* **455**, 1124-8 (2008).

16. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. *Nature* **455**, 1193-7 (2008).

17. Ibanez-Ventoso, C., Vora, M. & Driscoll, M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. *PLoS ONE* **3**, e2818 (2008).

18. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**, 281-97 (2004).

19. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. *Embo J* **21**, 4663-70 (2002).

20. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. *Embo J* 23, 4051-60 (2004).

21. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. *Rna* **10**, 1957-66 (2004).

22. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. *Nat Struct Mol Biol* **13**, 1097-101 (2006).

23. Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. *Cell* **130**, 299-308 (2007).

24. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. *Cell* **130**, 89-100 (2007).

25. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. *Nature* **448**, 83-6 (2007).

26. Glazov, E. A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. *Genome Res* **18**, 957-64 (2008).

27. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. *Mol Cell* **28**, 328-36 (2007).

28. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. *Science* **308**, 118-20 (2005).

29. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. *Science* **303**, 95-8 (2004).

30. Lee, S. K. et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. *Blood* **106**, 818-26 (2005).

31. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. *Rna* **10**, 185-91 (2004).

32. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. *Cell* **123**, 607-20 (2005).

33. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? *Nat Rev Genet* **9**, 102-14 (2008).

34. Kim, D. H., Saetrom, P., Snove, O., Jr. & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. *Proc Natl Acad Sci U S A* **105**, 16230-5 (2008).

35. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* **120**, 15-20 (2005).

36. Krek, A. et al. Combinatorial microRNA target predictions. *Nat Genet* **37**, 495-500 (2005).

37. Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. *Genome Res* **17**, 1850-64 (2007).

38. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. *Genetics* **96**, 435-54 (1980).

39. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. *Cell* **75**, 843-54 (1993).

40. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. *Nature* **455**, 58-63 (2008).

41. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. *Science* **309**, 1573-6 (2005).

42. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. *Proc Natl Acad Sci U S A* **102**, 16961-6 (2005).

43. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. *Dev Biol* **216**, 671-80 (1999).

44. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. *Dev Biol* **243**, 215-25 (2002).

45. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. *Nat Struct Mol Biol* **13**, 1102-7 (2006).

46. Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. *Mol Cell* **22**, 553-60 (2006).

47. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. *Mol Cell* **21**, 533-42 (2006).

48. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. *Proc Natl Acad Sci U S A* **103**, 4034-9 (2006).

49. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. *Nat Struct Mol Biol* **11**, 121-7 (2004).

50. Liu, J. et al. A role for the P-body component GW182 in microRNA function. *Nat Cell Biol* **7**, 1261-6 (2005).

51. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. *Genes Dev* **20**, 1885-98 (2006).

52. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. *Cell* **136**, 75-84 (2009).

53. Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. *Nat Genet* **40**, 751-60 (2008).

54. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. *Carcinogenesis* **29**, 2073-7 (2008).

55. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. *Genes Dev* **18**, 1187-97 (2004).

56. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. *Rna* **14**, 1539-49 (2008).

57. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. *Science* **320**, 97-100 (2008).

58. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. *Nat Cell Biol* **10**, 987-93 (2008).

59. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. *Mol Cell* **32**, 276-84 (2008).

60. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. *Nature* **454**, 56-61 (2008).

61. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. *Cell* **125**, 1111-24 (2006).

62. Huang, J. et al. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. *J Biol Chem* **282**, 33632-40 (2007).

63. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. *Nat Genet* **39**, 1033-7 (2007).

64. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. *Nature* **391**, 806-11 (1998).

65. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* **101**, 25-33 (2000).

66. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. *Science* **286**, 950-2 (1999).

67. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. *Science* **306**, 1377-80 (2004).
68. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicerdependent small RNAs. *Genes Dev* 22, 2773-85 (2008).

69. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. *Nature* **453**, 803-6 (2008).

70. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. *Nature* **453**, 793-7 (2008).

71. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. *Nature* **453**, 798-802 (2008).

72. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. *Science* **320**, 1077-81 (2008).

73. Chung, W. J., Okamura, K., Martin, R. & Lai, E. C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. *Curr Biol* **18**, 795-802 (2008).

74. Okamura, K., Balla, S., Martin, R., Liu, N. & Lai, E. C. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. *Nat Struct Mol Biol* **15**, 581-90 (2008).

75. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. *Nature* **453**, 534-8 (2008).

76. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. *Nature* **453**, 539-43 (2008).

77. Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. *Genes Dev* **21**, 644-8 (2007).

78. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. *Cell* **127**, 1193-207 (2006).

79. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. *Science* **315**, 241-4 (2007).

80. Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. *Science* **315**, 244-7 (2007).

81. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. *Cell* **123**, 1279-91 (2005).

82. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. *Cell* **127**, 747-57 (2006).

83. Faehnle, C. R. & Joshua-Tor, L. Argonautes confront new small RNAs. *Curr Opin Chem Biol* **11**, 569-77 (2007).

84. Tolia, N. H. & Joshua-Tor, L. Slicer and the argonautes. *Nat Chem Biol* **3**, 36-43 (2007).

85. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. *Nat Rev Mol Cell Biol* **9**, 22-32 (2008).

86. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. *Science* **315**, 1587-90 (2007).

87. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. *Mol Cell* **15**, 185-97 (2004).

88. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. *Nat Struct Mol Biol* **12**, 340-9 (2005).

89. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. *Science* **305**, 1437-41 (2004).

90. Hock, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. *EMBO Rep* **8**, 1052-60 (2007).

91. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. *Nature* **434**, 663-6 (2005).

92. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. *Science* **297**, 2056-60 (2002).

93. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. *Genes Dev* 17, 438-42 (2003).

94. Zeng, Y. & Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. *Nucleic Acids Res* **32**, 4776-85 (2004).

95. Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. *Cell* **130**, 287-97 (2007).

96. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. *Genes Dev* **16**, 720-8 (2002).

97. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. *Genes Dev* **18**, 1655-66 (2004).

98. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. *Genes Dev* **19**, 2837-48 (2005).

99. Dorner, S. et al. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. *Proc Natl Acad Sci U S A* **103**, 11880-5 (2006).

100. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNAmediated gene silencing. *Genes Dev* **21**, 2558-70 (2007).

101. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. *Science* **308**, 1164-7 (2005).

102. Parry, D. H., Xu, J. & Ruvkun, G. A whole-genome RNAi Screen for C. elegans miRNA pathway genes. *Curr Biol* **17**, 2013-22 (2007).

103. Saleh, M. C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. *Nat Cell Biol* **8**, 793-802 (2006).

104. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. *J Biol Chem* **281**, 14370-5 (2006).

Chapter 2

Comparative Analysis of Argonaute-Dependent Small RNA Pathways in Drosophila

Rui Zhou^{1, 5}, Ikuko Hotta^{2, 3, 5}, Ahmet M. Denli², Pengyu Hong⁴, Norbert Perrimon¹, and Gregory J. Hannon²

The screen experiments in this chapter were performed by collaboration with Rui Zhou.

¹ Department of Genetics Harvard Medical School Howard Hughes Medical Institute Boston, MA 02115, USA

² Watson School of Biological Sciences Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724, USA

³ Graduate Program in Molecular and Cellular Biology State University of New York at Stony Brook Stony Brook, NY 11794, USA

⁴Department of Computer Science Brandeis University, MS018 Waltham, MA 02454, USA

⁵ These authors contributed equally to this work

Introduction

Despite similarities in their form and overall function, small RNAs that bind Argonaute (Ago) proteins in *Drosophila* arise from compartmentalized biogenesis pathways and join effector complexes with specialized properties ¹⁰⁵. *Drosophila* small interfering RNAs (siRNAs) are most often generated from exogenously introduced double-stranded RNAs (dsRNAs), though the replication products of RNA viruses can enter this pathway ¹⁰⁶. Double-stranded RNA can also be produced from the *Drosophila* genome itself, either from loci encoding extensively structured RNAs or by hybridization of convergently transcribed mRNAs ⁶⁹⁻⁷². These bind Ago2 to form a complex that can efficiently cleave complementary targets. miRNAs are generated via a two-step processing pathway from endogenously transcribed primary miRNAs (pri-miRNAs). miRNAs guide Ago1 via a 5' "seed" sequence to mRNA targets, which are primarily repressed at the translational level ¹⁷.

A great deal of progress has been made in deciphering small RNA-based regulatory networks; however, it is clear that many additional components are pending identification and functional characterization. Genome-scale screens for components of siRNA or miRNA pathways have been carried out, with some overlap between components identified ⁹⁹⁻¹⁰⁴. However, none of these screens have addressed endo-siRNA pathways, nor have they attempted comparative studies in the same experimental model. Here, we report comparative and comprehensive RNAi screens that identify components of the Argonaute-dependent small RNA pathways (siRNA, miRNA, and endo-siRNA) in cultured *Drosophila* cells.

Results

Assay systems to monitor the siRNA/miRNA pathways

We constructed robust assay systems that allowed us to interrogate the miRNA and siRNA pathways individually. For probing the siRNA pathway, we created an S2 cell line (RZ-14) stably expressing both the Renilla luciferase and a 688 bp perfect inverted repeat that directs Renilla silencing (Figure S1A available online). To identify components of the miRNA pathway, we embedded an artificial miRNA sequence (CXCR4) into the Bantam pri-miRNA (Figure S1B). This construct was transiently introduced into S2 cells together with an expression construct for a Renilla luciferase gene with multiple imperfect CXCR4 complementary sites in its 3′ UTR ⁹³. In both assays, an expression construct for the firefly luciferase gene served as a normalization control. To prevent the half-life of reporter proteins from confounding our analysis, all transgenes were expressed from the inducible metallothionein promoter.

Both assays systems performed as expected upon knockdown of known components of either pathway. Silencing of Dcr-2 or Ago2 caused significant derepression of siRNA reporters, whereas dsRNAs against *Drosha*, *Dcr-1*, or *Ago1* had no effect (Figure S1C). Conversely, depletion of *Drosha* or *Ago1* led to a marked decrease in miRNA-mediated gene silencing, while treatment with dsRNAs against LacZ, *Dcr-2*, or *Ago2* had no effect (Figure S1D).

Comprehensive identification of siRNA/miRNA pathway components

We screened a collection of 21,000 dsRNAs for those that impacted the siRNA and miRNA pathways. To assess reproducibility, dsRNAs targeting each positive emerging

from the two primary screens were resynthesized and tested multiple times using both assay systems. To minimize potential off-target effects, we also generated additional independent dsRNAs targeting each gene and assessed their impacts on the siRNA and miRNA pathways. Only genes represented by two or more independent consistently scoring dsRNAs were selected as final candidates. We found that *Dcr-2* and *Ago2* were among the siRNA pathway genes, whereas *Drosha* and *Ago1* were among the miRNA pathway candidates (Figure 1C and Table S1), providing an internal validation of each screen.

Recently, an extensive collection of endogenous siRNAs has been characterized in *Drosophila*⁶⁹⁻⁷². The biogenesis and function of these endo-siRNAs depend upon canonical RNAi pathway components, including Dcr-2 and Ago2. In some cases, endosiRNA production depends much more heavily on Loquacious rather than on the canonical Dcr-2 partner, R2D2^{69,71}. We tested all candidates emerging from the miRNA and siRNA pathway screens for their impacts on a sensor for an abundant endo-siRNA, esi-2.1 (Figure S1E). In summary, 177 candidates were identified that affected at least one of the three pathways when knocked down (Figure 2.1A). Among the 116 candidates for the siRNA pathway, 84 also altered the endo-siRNA pathway, and 70 altered the miRNA pathway. Significant overlap (69) was also observed between the endo-siRNA (132) and miRNA pathway (98) candidates. Notably, 54 candidates affected all three pathways.

Figure 2.1. Candidates identified from the screens

(A) A Venn diagram showing the impact of the candidates on the siRNA, endo-siRNA, and miRNA assays.

(B) Candidates were sorted into various categories based on their annotated/verified function.

(C) A heat map of the candidates and their scoring patterns in multiple assays. The scores assigned to individual genes in a given assay reflect the relative activity of the pathway upon knockdown of candidate gene expression. Red indicates an increase in silencing, and green indicates a decrease. As each candidate is represented by multiple independent dsRNAs, presented are the average scores from all independent dsRNAs targeting a given gene. Scores for individual dsRNAs are shown in Table S1.

Candidate genes identified from the screens

Based on their annotations, candidates that affect small RNA pathways could be functional categories. Notably, genes encoding RNAassigned to several binding/processing factors and translation factors were enriched by 10-fold (Figure 2.1B), since only 2% of all *Drosophila* genes belong to this class ¹⁰⁷. These included splicing factors, RNA helicases, and proteins involved in polyadenylation. Splicing factors could have scored in the siRNA pathway screen because the artificial hairpin transcript, which triggers silencing, carries an intron. However, neither the miRNA expression construct nor the endo-siRNA triggers contain intronic sequences, yet most splicing factors still impacted their function. Moreover, in a screen for RNAi pathway components in C. elegans, a number of splicing factors, as well as the ortholog of the U1-associated factor, PSI, were identified ¹⁰¹.

Many candidates emerging from the screens showed direct protein-protein interactions, fit into functional modules, or joined known multiprotein complexes (Tables S1 and S2). For example, six U2 snRNP proteins displayed a similar scoring pattern in the screen. We also observed common behavior for two U1 snRNP proteins, snRNP70K and CG5454, and for PSI, which physically and functionally interacts with snRNP70K ^{108,109}

Knockdown of several ribosomal proteins impacted small RNA pathways. While this effect could be indirect, some ribosomal proteins have been implicated in the siRNA pathway. For example, RpL11 and RpL5 have been shown to reside in a protein complex containing FMR, Dmp68, and Ago2 in S2 cells ¹¹⁰.

Figure 2.2. Mapping candidates along the small RNA pathway

(A) A heat map of steady-state pri-miRNA and miRNA levels upon knockdown of candidates. Steady-state levels of CXCR4 and those of endogenous miR-2b upon knockdown of 43 selected candidates were examined by northern blotting and semiquantitative RT-PCR (q-PCR). miRNA levels were quantified and normalized first against U6 RNA levels and then against the average of multiple controls (cells treated with dsRNA against LacZ). Also shown are steady-state levels of pri-CXCR4 measured by q-PCR and the relative miRNA pathway activities associated with the representative dsRNA. Red indicates an increase in RNA levels or an increase in the activity of the miRNA pathway, and green indicates a decrease. Presented are the average from two to four independent northern blotting experiments and results from individual independent q-PCR assays. The scores associated with each candidate were from experiments involving one representative dsRNA targeting that gene (Table S3).

(B) A heat map of endo-siRNA levels upon knockdown of candidates. Steady-state levels of esi-2.1 upon knockdown of 36 selected candidates were examined by q-PCR using multiple independent RNA samples. Quantification was performed as described in (A). Also shown are the relative esi-2.1-mediated gene silencing activities. The scores associated with each candidate were from experiments involving one representative dsRNA (Table S4).

Silencing a number of proteasomal components consistently impacted all three small RNA pathways. Indeed, a regulatory subunit, Pros45, has previously been

implicated in RNAi ¹⁰⁴. We find that knockdown of Tbp-1, CG12000, or l(2)05070 led to a decrease in miRNA-mediated silencing and a concomitant reduction in miRNA levels (Figure 2.2A). It is not yet clear whether these effects are direct or indirect.

Placing candidates within the siRNA/miRNA pathway

Candidates affecting the miRNA pathway could impact miRNA biogenesis/stability or miRNA effector functions. To map candidates along the pathway, we examined the effects of their knockdown on steady-state levels of the CXCR4 miRNA mimetic, on endogenous miR-2b, and on those of pri-CXCR4. Knockdown of several candidates led to consistent alterations in mature miRNA levels that paralleled effects on miRNA-mediated silencing (Figure 2.2A and Table S3). For example, Drosha and Ago1 silencing reduced both miRNA levels and miRNA function, and Drosha silencing also led to a coincidental accumulation of pri-CXCR4. This class of positives likely affects miRNA processing and/or stability. Unexpectedly, silencing of Ago1 also had an impact on pri-miRNA levels. While this could represent a feedback mechanism, it is also possible that a miRNA indirectly regulates the metallothionein promoter used to express the pri-CXCR4 in this study. Another set of candidates (such as CG5514, CG3814, and CG2807) impacted miRNA-mediated repression without corresponding effects on mature miRNA levels. These positives most likely impact directly or indirectly effector steps within the pathway.

We also examined steady levels of esi-2.1 upon knockdown of candidates. As shown in Figure 2.2B, knockdown of a group of candidates (e.g., *CG7185* and *snRNP70K*) caused a decrease in esi-2.1-mediated gene silencing, which correlates with a

38

reduction in esi-2.1 levels. This suggests involvement in siRNA production and/or stability. In contrast, knockdown of *ubi-p63E*, *CG11700*, or *CG12000* caused a change in esi-2.1 activity that did not correlate with alterations in esi-2.1 RNA levels. Considered together, our analyses of the steady-state levels of small RNAs and their precursors following candidate knockdown provide clues on the placement of candidates within small RNA pathways.

Validation of Belle as a bona fide RNAi pathway component

belle (bel) emerged from our screen and from other studies as an RNAi pathway candidate ^{101,104}. It encodes a DEAD-box RNA helicase, which is required for viability and in the germ line ¹¹¹. We chose to validate bel both in animals and through biochemical approaches.

In order to assess RNAi efficiency in flies, we used transgenics carrying an inverted repeat of the *white* (*w*) gene under the control of the eye-specific *GMR* promoter (*GMR-wIR*; Figure 2.3). These flies display a pale eye color due to strong suppression of white. Because *bel* is essential, we used an eye-specific mitotic recombination system to generate mosaics in which we could assay the impact of a *bel* allele (*bel*⁶) on w silencing in clones ¹¹². As previously described, eye cells homozygous for a Dcr-2 mutation, *Dcr-2*^{*fsL811X*}, display a dark red color, indicating loss of silencing (Figure 2.3D) ¹⁹. Eyes predominantly homozygous for *bel*⁶ are rough and small, suggesting that *bel* is required for cell viability. Importantly, patches of cells with increased pigmentation are observed in homozygous *bel*⁶ clones (Figure 2.3G, arrowheads). We examined *hsc70-4* mutant eyes, which are also small and rough, and found pigmentation to be unaffected,

suggesting that the bel^6 phenotype is specific (Figure 2.3H). These observations suggest that bel^6 mutant clones are defective in RNAi.

Figure 2.3. bel⁶ flies are defective in RNAi
Eye phenotypes of the corresponding genotypes are shown.
(A) Ore^R
(B) w¹¹¹⁸
(C) w+,GMR-wIR/yw; dcr-2^{L811fsX},FRT42D/CyO; EGUF/+
(D) w+,GMR-wIR/yw; dcr-2^{L811fsX},FRT42D/FRT42D,GMR-hid,Cl; EGUF/+
(E) w+,GMR-wIR/yw; EGUF/+; FRT82B/FRT82B,Cl,GMR-hid
(F) w+,GMR-wIR/yw; EGUF/+; bel⁶,FRT82B/TM2
(G) w+,GMR-wIR/yw; EGUF/+; bel⁶,FRT82B/FRT82B,Cl,GMR-hid
(H) w+,GMR-wIR/yw; EGUF/+; hsc70-4^{54.1},FRT82B/FRT82B,Cl,GMR-hid

Next, we tested whether Bel associates with RNAi components. Cytoplasmic extract was prepared from S2 cells and fractionated by gel filtration. Individual fractions were immunoblotted using antibodies against Bel and components of RISC, including VIG, FMR, Ago2, or Ago1. The majority of Bel cofractionates with Ago1, whereas a smaller fraction coelutes with Ago2, FMR, and VIG, components of the siRISC (Figure 2.4A). We also immunoprecipitated FLAG-tagged Bel from S2 cells and found robust coprecipitation of Ago2, FMR, or VIG (Figure 2.4B). RNase treatment reduced interaction with Ago2 and VIG, but not as substantially with FMR (Figure 2.4B).

To test interactions of Bel with small RNAs, we expressed FLAG-tagged Bel or known components of the RISC together with an artificial siRNA (CXCR4) generated from a perfectly complementary hairpin expression construct. As expected, robust CXCR4 signals could be detected in the Ago2 or VIG complexes (Figure 2.4C). Importantly, CXCR4 was also present in the Bel immunoprecipitate, as was esi-2.1, though they are probably bound directly to another protein in the complex. We conclude that Bel likely acts directly as part of the RNAi machinery, as it resides in a complex that also contains both protein and RNA components of RISC. Interestingly, more CXCR4 siRNA was present in the Ago1 immunoprecipitate than was detected in the Ago2 sample (Figure 2.4C). While this could be attributed to some intrinsic characteristics of the CXCR4 siRNA mimetic, it is also possible that the coupling between miRNA processing and loading steps accounts for this observation.

Figure 2.4. Bel and RpL22 interact with components of the RISC

(A) Cytoplasmic extract from S2-NP cells was fractionated by size exclusion chromatography, and the fractions were immunoblotted using antibodies against Bel and components of the RNAi pathway, as indicated. The elution profile of molecular markers is shown on top of the panel.

(B) FLAG-tagged proteins (as labeled above the panel) were expressed in S2-NP cells, and anti-FLAG immunoprecipitates were prepared. The samples were evenly split, and one set was treated with RNase, while the other served as control. The samples were immunoblotted sequentially using antibodies against VIG, Ago2, FMR, Ago1, and FLAG.

A small amount of cell extract was processed in parallel as input control. Nonspecific bands are marked with an asterisk. Note that the images shown in lanes 9 through 12 and 23 through 24 of the anti-FLAG panel were from films that were subjected to different exposure times from the rest due to differences in expression levels.

(C) Small RNAs are enriched in the Bel and ribosomal protein immunoprecipitates. Expression constructs for FLAG-tagged proteins together with that for the CXCR4 siRNA mimetic were transfected into S2-NP cells. Total RNA was extracted from FLAG immunoprecipitates and subjected to northern blotting using probes against Bantam, esi-2.1, and CXCR4. To avoid signal saturation, 25% of the RNA recovered from the Ago1 and Ago2 samples was loaded compared to the rest of the samples. Total RNAs recovered from 10% of the cell extracts were processed in parallel as input control.

Ribosomal proteins associate with the RNAi machinery

We found that RpL22, a candidate from the screen, could coimmunoprecipitate components of the siRISC, including VIG, FMR, and Ago2, suggesting either a direct or indirect interaction. Similar behavior was observed for several other ribosomal proteins (Figure 2.4B). These interactions seemed to display different degrees of dependence on RNA. For example, RNase treatment caused a moderate decrease in the levels of Ago2 in the RpL22 immunoprecipitate, whereas the levels of FMR and VIG remained unaffected (Figure 2.4B). Similar observations were also made for the RpS7 and RpL21 samples. Moreover, both CXCR4 and esi-2.1 are present in the immunoprecipitates of a number of ribosomal proteins, including RpL22, RpS7, RpL21, and Rp49 (Figure 2.4C). These observations indicate that these ribosomal proteins reside in large RNA protein complex(es) that also contain core components of the RNAi machinery.

Discussion

In Drosophila, siRNA and miRNA pathways have been viewed as being biochemically compartmentalized. However, the boundary between these pathways has been blurred by recent observations that, depending on the configuration of their precursors, miRNAs (and possibly siRNAs) can be partitioned between Ago1 and Ago2 ^{22,95}. Moreover, Loquacious plays roles both in miRNA biogenesis and in the production of some endo-siRNAs ^{69,71}. Intimate connections between siRNA and miRNA pathways are also suggested by the observation that knockdown of Ago2 leads to more pronounced silencing by miRNAs (Figure 2.1C), possibly by increasing the access of Ago1 to miRNAs or other limiting components that were previously bound by Ago2.

Analysis of miRNA and siRNA screens shows extensive overlap between genes that impact these pathways. Suppression of many candidates reduces the efficiency of the target small RNA pathways, indicating that those genes might be components of siRNAor miRNA-mediated responses. Silencing of a roughly equal number of genes increases silencing, indicating that they encode negative regulators of small RNA pathways. These so-called "enhancer of RNAi" phenotypes might indicate attractive targets for genetic manipulation or small molecule inhibitors that could increase the activity of RNAi in either experimental or therapeutic settings. It is worth noting that our analysis of steadystate levels of small RNAs upon candidate knockdown revealed that, for some, enhanced silencing is correlated with increased levels of the small RNA silencing trigger, as is the case for the miRNA pathway candidates such as CG32721, mule, TH1, or flfl (Figure 2.2A). In contrast, while knocking down CG2807 led to markedly enhanced silencing by the miRNA mimetic CXCR4, the steady-state levels of both CXCR4 and miR-2b significantly decreased. While these effects on the small RNA pathways could be indirect, these observations suggest that some of these negative regulators of RNAi are primarily

involved in the biogenesis and/or stability of the small RNA silencing trigger, while others are implicated in the downstream effector steps.

Each pathway was uniquely or differentially affected by a number of genes (Figure 2.1C). For example, knockdown of one class of genes (*caf1*, *CG17293*, and genes encoding ribosomal proteins L5, L21, L22, and S15) led to decreased silencing by exogenous siRNAs but enhanced silencing by endo-siRNAs. Suppression of such a class of genes might enhance the production or loading of endo-siRNAs into RISC, thereby depleting the pool available for products of exogenously introduced dsRNAs, a model that has been previously proposed for some loci in C. elegans ¹¹³. Knockdown of another group of genes (*hsc70-4*, *CG3825*, and *CG2577*) decreased silencing by miRNAs but enhanced silencing by endo-siRNAs. A number of possibilities, including effects on small RNA sorting, might account for these observations.

We validated Bel as a bona fide component of the RNAi pathway. Bel most likely functions at step(s) downstream of siRNA processing and loading, as neither steady-state levels of esi-2.1 nor the levels of Ago2-bound esi-2.1 are affected by Bel knockdown (Figures S2 and S3). Interestingly, Ago1 and Bantam are also present in the Bel immunoprecipitate, consistent with the cofractionation of Bel with miRISC (Figures 2.4B and 2.4C). Thus, Bel may also participate in the miRNA pathway. While none of the *bel* dsRNAs met the scoring criteria in the miRNA assay, they did trend consistently (Table S1).

Ago1 and Bantam were present in a number of ribosomal protein immunoprecipitates, and the association between Ago1 and these ribosomal proteins was abolished by RNase treatment (Figures 2.4B and 2.4C). These observations are consistent

45

with the notion that miRISC associates with the translation machinery. Both protein and RNA components of the siRISC are also present in these immunoprecipitates, and that knockdown of a number of ribosomal proteins consistently leads to enhanced silencing by endo-siRNAs (Table S1). Thus, the integrity and function of the translational machinery as a whole may be impacting the small RNA pathways.

In summary, our comparative genome-wide screens (Table S5) generate a rich resource for further study of the three Argonaute-dependent small RNA regulatory pathways in Drosophila. These studies not only point to extensive overlap and interplay among small RNA directed silencing machineries in flies but also highlight specific players in each of the three pathways.

Experimental procedures

DNA constructs and cell culture

Detailed description of DNA constructs can be found in the Supplemental Experimental Procedures. S2-NP cells were maintained in Schneider's medium (Invitrogen) supplemented with 10% FBS and 1% pen-strep (Invitrogen). To generate the RZ-14 stable cell line, S2-NP cells were transfected with pRmHa-3-Firefly-long, pRmHa-3-Renilla, and pRmHa-3-Renilla-hairpin together with pHS-neo, using Effectene (QIAGEN). Transfected cells were selected and maintained in growth medium supplemented with 400 µg/ml G418.

RNAi screening

Detailed description of the RNAi screening and bioinformatic analysis can be found in the Supplemental Experimental Procedures.

46

RNA isolation, Northern blotting, and q-PCR Assays

S2-NP cells were transiently transfected with DNA constructs for the miRNA assay (pMT-Renilla-CXCR4-6B, pMT-D05, and pRmHa-3-Firefly-long). Two days after transfection, 3×106 cells were incubated in 1.5 ml serum-free Schneider's medium containing 10 µg of candidate dsRNAs in 6-well plates, and 3 ml serum-containing medium was added 45 min later. After 3 days of dsRNA treatment, cells were induced with 200 mM CuSO₄ for 24 hr. A small aliquot of cells were subjected to luciferase assays to examine the effect of dsRNA treatment on reporter activity. Total RNAs were extracted from the rest of the samples using Trizol (Invitrogen). Northern blotting was performed as previously described ⁷¹. miRNA signals were normalized against that of the U6 RNA. A score was assigned to each sample based on the average results from two or four independent experiments. To quantify steady-state levels of pri- and mature miRNAs, semiquantitative RT-PCR (q-PCR) assays were performed (Applied Biosystems) using primers specific for pri-Bantam, CXCR4, and U6.

Immunoprecipitation of proteins and RNAs

Cells were transfected with expression constructs for epitope-tagged proteins, induced with 500 μ M CuSO₄ 2 days after transfection, and harvested another 24 hr later. Immunoprecipitation was performed as described ⁷¹. For RNase treatment, the immunoprecipitates were split into two sets, and one was incubated in lysis buffer with 100 μ g/ml RNase A at 4°C for 15 min prior to washing. For RNA immunoprecipitation, cells were transfected with protein expression constructs together with pMT-F12, an expression vector for CXCR4 derived from a perfectly base-paired precursor, and induced with 500 μ M CuSO₄ 2 days after transfection. Cells were harvested and cell

lysates prepared 24 hr later. About 80% of the cell lysates were subject to immunoprecipitation using M2 agarose beads. After washing, 10% of the immunoprecipitates were analyzed by western blotting to verify the expression of the epitope-tagged proteins. Total RNAs were extracted from the remaining immunoprecipitates and cell lysates and analyzed by northern blotting.

Size exclusion chromatography

S2-NP cells were lysed in hypotonic buffer (20 mM HEPES [pH 7.0], 2 mM MgCl₂, 0.2 mM CaCl₂, 1 mM DTT) and spun at $30,000 \times g$ for 20 min. The supernatant was spun at $200,000 \times g$ for 2.5 hr, and the resulting pellet was subsequently resuspended in buffer A (20 mM HEPES [pH 7.0], 2 mM MgCl₂, 0.2 mM CaCl₂,1 mM DTT, 0.5% octyl glucoside, 400 mM KCl) and spun at $200,000 \times g$ for another 2.5 hr. The supernatant was fractionated on Superose-6 HR10/10 (Pharmacia).

Fly stocks

bel mutant flies (*bel*⁶) were from the Bloomington stock center and from Dr. Paul Lasko; *EGUF* flies were from the Bloomington stock center and from Drs. Thomas Schwarz and Stephen Stowers; and the *GMR-wIR* and *dcr-2*^{L811fsX} flies were from Drs. Richard Carthew and Sara Cherry.

Acknowledgments

We thank members of the Hannon and Perrimon labs, especially Sara Cherry for helpful discussion and Julius Brennecke, Ben Czech, and Colin Malone for sharing unpublished data and reagents. We also thank the DRSC staff for technical support, the Bloomington stock center, and Drs. Paul Lasko, Thomas Schwarz, Stephen Stowers, Richard Carthew,

and Sara Cherry for fly stocks. We are grateful to Dr. Phillip Sharp for the CXCR4 constructs and to Dr. Paul Lasko for the Bel antibody. We are indebted to Drs. Bernard Mathey-Prevot and Richard Binari for critically reading the manuscript. R.Z. is supported by a Special Fellowship from the Leukemia and Lymphoma Society. This work was supported by grants from the NIH (P.H., N.P., and G.J.H.) and by a kind gift from K.W. Davis (G.J.H.). N.P. and G.J.H. are investigators of the Howard Hughes Medical Institute.

References

- 1. Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. *Science* **309**, 1519-24 (2005).
- 2. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. *Science* **312**, 452-4 (2006).
- 3. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. *Nature* **453**, 798-802 (2008).
- 4. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. *Science* **320**, 1077-81 (2008).
- 5. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. *Nature* **453**, 793-7 (2008).
- 6. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. *Nature* **453**, 803-6 (2008).
- Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* 116, 281-97 (2004).
- 8. Dorner, S. et al. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. *Proc Natl Acad Sci U S A* **103**, 11880-5 (2006).
- 9. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. *Genes Dev* **21**, 2558-70 (2007).
- 10. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. *Science* **308**, 1164-7 (2005).
- 11. Parry, D. H., Xu, J. & Ruvkun, G. A whole-genome RNAi Screen for C. elegans miRNA pathway genes. *Curr Biol* **17**, 2013-22 (2007).
- 12. Saleh, M. C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. *Nat Cell Biol* **8**, 793-802 (2006).
- 13. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptormediated endocytosis in Drosophila S2 cells. *J Biol Chem* **281**, 14370-5 (2006).
- 14. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. *Genes Dev* **17**, 438-42 (2003).
- 15. Lasko, P. The drosophila melanogaster genome: translation factors and RNA binding proteins. *J Cell Biol* **150**, F51-6 (2000).

- Labourier, E., Adams, M. D. & Rio, D. C. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. *Mol Cell* 8, 363-73 (2001).
- 17. Salz, H. K. et al. The Drosophila U1-70K protein is required for viability, but its arginine-rich domain is dispensable. *Genetics* **168**, 2059-65 (2004).
- 18. Ishizuka, A., Siomi, M. C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. *Genes Dev* **16**, 2497-508 (2002).
- 19. Johnstone, O. et al. Belle is a Drosophila DEAD-box protein required for viability and in the germ line. *Dev Biol* 277, 92-101 (2005).
- 20. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. *Genetics* **152**, 1631-9 (1999).
- 21. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. *Embo J* 23, 4051-60 (2004).
- 22. Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. *Cell* **130**, 287-97 (2007).
- 23. Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. *Cell* **130**, 299-308 (2007).
- 24. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. *Cell* **124**, 343-54 (2006).

Supplemental data

Supplemental experimental procedures

DNA constructs

A 688-bp DNA fragment was PCR-amplified from a *Renilla* luciferase cDNA and cloned into pWIZ using compatible XbaI/AvrII sites to generate pWIZ-*Renilla*-Reverse. Subsequently, an XbaI/T4/EcoRI fragment from pWIZ-*Renilla*-Reverse was cloned into pRmHa-3 using BamHI/T4/EcoRI sites to generate pRmHa-3-*Renilla*-Reverse. Finally, the same *Renilla* PCR product was cloned into pRmHa-3-*Renilla*-Reverse using compatible XbaI/NheI sites to generate pRmHa-3-*Renilla*-hairpin. A SalI/BgIII fragment from pGL3-Basic (Promega) was cloned to pRmHa-3 using SalI/BamHI sites to generate pRmHa-3-Firefly-long. A DNA fragment containing the coding region of the *Renilla* luciferase gene was amplified by PCR and cloned into pRmHa-3 using BamHI/EcoRI sites to generate pRmHa-3-*Renilla*. A pair of oligos containing two perfect binding sites for esi-2.1 were annealed and cloned into pRmHa-3-*Renilla* using BamHI/SalI sites to generate sensor constructs for esi-2.1.

The pMT-D05 construct carries a DNA fragment derived from a modified short pri-Bantam (pri-banCX) where the secondary structure remains the same as pri-Bantam except that the stem sequence has been modified to generate CXCR4. The pri-banCX fragment was amplified by PCR from a template made by ligation of synthesized DNA fragments, and cloned into pMT (Invitrogen) using EcoRI and XhoI restriction sites. The pMT-F12 construct was generated using a similar strategy except that the CXCR4 region in the pri-banCX is perfectly basepaired. **Template sequence for pMT-D05:**

CGCTCAGATGCAGATGTTGTTGATGTTATAAAGACCACGATCGAAAGAGGA AAAACGGAAAAACGAACGAAAAGCGTTTGTAACTCCAATGATTTGACTACGAG ACGTTTTCACTCGTGCTAACTACTGTTTTTCATACAAGTTGTTAGCTGGAGTG AAAACTTCTTGTCAATGAATACCACATTCCACATTCCGATGGTCGATTTTTGT TGTTTGGTGTGCCTACACAGATATAGCGATATCGTGTAACAAAGCTTTGAAC TTATGCCGACCGATC

Template sequence for pMT-F12:

CGCTCAGATGCAGATGTTGTTGATGTTATAAAGACCACGATCGAAAGAGGA AAAACGGAAAAACGAACGAAAAGCGTTTGTAACTCCAATGATTTGACTACGAG AAGTTTTCACTCCAGCTAACAACTGTTTTTCATACAAGTTGTTAGCTGGAGTG AAAACTTCTTGTCAATGAATACCACATTCCACATTCCGATGGTCGATTTTTGT TGTTTGGTGTGCCTACACAGATATAGCGATATCGTGTAACAAAGCTTTGAAC TTATGCCGACCGATC

Cloning Primers:

Bantam-CXCR4 EcoRI fwd

TTCACGTGAATTC CGCTCAGATGCAGATGTTGTTGATG

Bantam-CXCR4 XhoI rev

TTCACGTCTCGAG GATCGGTCGGCATAAGTTCAAAGCTTTG

The Renilla luciferase reporter construct carrying CXCR4 target sites (pMTRenilla-

CXCR4-6B) was subcloned from the RL-CXCR-6-bulge reporter plasmid

into pMT using EcoRI and XhoI sites 93.

RNAi screening

The screens were performed in 384-well plates. To screen for components of the siRNA pathway, 10 µL of RZ-14 cells (suspended in serum-free Schneider's medium at a density of $2X10^6$ cells/mL) were dispensed to each well containing 5 µL dsRNA (~150-250 ng in total), incubated at room temperature for 45 minutes, then supplemented with 30 µL growth medium containing FBS. Three days after dsRNA treatment, cells were induced with 25 µM CuSO₄ and luciferase assays were performed another two days later using Dual-Glo luciferase reagents (Promega). To screen for components of the miRNA pathway, a transient transfection approach was employed. Approximately 100ng plasmid DNA (a mixture of 5 ng pMT-Renilla-CXCR4-6B, 93 ng pMT-D05 and 2 ng pRmHa-3-Firefly-long) was mixed with 0.8 µl Enhancer in 15 µl EC (Qiagen) and incubated at room temperature for 5 minutes. Then 0.35 µl of Effectene reagent was added and the mixture was immediately dispensed into each well containing ~80-120 ng of dsRNAs. After incubation at room temperature for 10 minutes, 40 µl S2-NP cells (106 cells/mL) were added to each well. Cells were induced with 200 mM CuSO₄ 3 days after transfection, and luciferase assays were performed 24 hours later. For each well, the ratio of *Renilla* luciferase to firefly luciferase, referred to as relative luciferase unit (RLU), was calculated. For each individual plate, the mean RLU (RLUmean) was calculated, and each well received a score based on the ratio of RLUsample/RLUmean. For the siRNA pathway primary screen, cutoff values of 1.5/0.6 were used to select candidates, whereas cutoff values of 1.6/0.6 were used for the miRNA pathway primary screen. For the secondary screen, candidate dsRNAs were re-synthesized using the MegaScript kit (Ambion) and arrayed in 384-well plates. Each assay plate also contains 24-48 wells containing *LacZ* dsRNAs as controls. The plates were subsequently assayed in 3 to 4 independent experiments using the corresponding siRNA/miRNA assay systems. Each sample was assigned a score as fold change in RLU relative to the average of RLUs derived from the control samples (cells treated with dsRNA against LacZ). The cutoff values for the secondary screens were 1.2/0.8 for the siRNA pathway screen, and 1.4/0.75 for the miRNA pathway screen, respectively. To minimize potential off-target effects associated with long dsRNAs, for candidate dsRNAs that scored in the secondary screen, one or more additional independent dsRNAs were synthesized and tested in a similar setting. Only genes represented by two or more independent consistently scoring dsRNAs were selected as final candidates.

To screen for dsRNAs that impacted the endogenous siRNA pathway, a sensor construct for esi-2.1 was employed to screen the composite collection of candidate dsRNAs emerging from the siRNA and miRNA primary screens. The experimental setting was the same as described in the miRNA primary screen except that a mixture of 98 ng pRmHa-3-*Renilla*-esi-2.1-sensor and 2 ng pRmHa-3-Firefly-long was transfected into each well. The cutoff values for the endosiRNA pathway screen were 1.2/0.8.

Bioinformatic analysis of the screening results

To generate Figure 1C, the average fold change in reporter activity for multiple independent dsRNAs targeting the same gene was calculated, and the reciprocals of the average fold change in reporter activity were log(2) transformed. The resulting values reflect the relative activities of each small RNA pathway in a given sample. The values were subjected to Hierarchical clustering (average linkage analysis) using the Cluster software. As for Figure 2A, the miRNA pathway activity (determined by the procedure

described above) associated with selected dsRNAs targeting a given gene, the relative CXCR4 and miR-2b RNA levels (as an average from 2 to 4 independent Northern blotting experiments), and the relative levels of mature and pri-CXCR4 (from 3 independent q-PCR experiments) were subject to Hierarchical clustering. The resulting image was re-arranged to generate the final figure. Similar procedure was followed to generate Figure 2B.

Supplemental figure legends:

Figure S1. Assay systems for monitoring the siRNA, miRNA, and endosiRNA pathways in cultured *Drosophila* cells

(A) Schematic representation of the RNAi pathway reporter system (RZ-14 cells) in which a perfectly complementary hairpin induces *Renilla* luciferase silencing.

(**B**) Schematic representation of the miRNA pathway reporter system. An artificial miRNA (CXCR4) embedded in pri-Bantam silences a *Renilla* luciferase transcript carrying multiple imperfect CXCR4-binding sites in the 3' UTR. (**C**) RZ-14 cells were treated with indicated dsRNAs by soaking, and gene expression was induced with CuSO4 3 days after dsRNA treatment. Luciferase activity was measured after another 48 hours. The ratio of *Renilla* luciferase/Firefly luciferase (Relative luciferase unit, or RLU) was calculated and normalized against RLU from cells treated with dsRNA against *LacZ*. Error bars represent standard deviation ($n\geq4$). (**D**) S2-NP cells were transfected with the CXCR4 miRNA expression vector and reporter plasmids together with various dsRNAs, and treated with CuSO₄ 3 days after transfection to induce transgene expression.

Luciferase assays were conducted after another 24 hours and analyzed and plotted as described in **C**. (**E**) Schematic representation of the endo-siRNA pathway reporter system. An endogenous siRNA (esi-2.1) silences a *Renilla* luciferase transcript carrying two perfect esi-2.1-binding sites in the 3' UTR.

Figure S2. Knockdown of Bel does not affect steady-state levels of esi-2.1

S2-NP cells were treated with various dsRNAs (as labeled on top of the panel). Total RNAs were extracted and subjected to Northern blotting analysis using probes against Bantam and esi-2.1. 2S RNA serves as loading control.

Figure S3. Knockdown of Bel does not affect levels of Ago2-bound esi-2.1

(A) S2-NP cells were first transfected with an expression construct for FLAGtagged Ago2, then treated with various dsRNAs (as labeled on top of the panel). Cells were harvested and cell lysates were prepared. Approximately the same amount of total cell lysates were subjected to immunoprecipitation using anti-FLAG agarose beads. Total RNAs were subsequently extracted from the immunoprecipitates and subjected to Northern blotting analysis using a probe against esi-2.1. RNAs purified from an equivalent of ~25% of the cell lysates employed in the immunoprecipitation experiment were processed in parallel to serve as control for input material. (B) Approximately 1% of the input cell lysates and 5% of the immunoprecipitates were subjected to anti-FLAG immunoblotting to show the relative amount of the input material, and the membrane carrying cell lysates was re-probed with the Bel antibody to show effective knockdown.

Reference

1. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. *Genes Dev* **17**, 438-42 (2003).

Table S1. List of candidate genes identified from the screen. Candidate genes, corresponding dsRNAs (listed as amplicons), and their scores in the siRNA, endo-siRNA, and miRNA assays are shown. For any gene to be considered a candidate in a given assay, at least two independent dsRNAs have to score. A "–1" represents negative regulators of a given pathway, whereas a "1" represents positive regulators and "0" means "did not score." Information in the columns labeled as "Eukaryotic clusters" and "Eukaryotic orthologous groups" were based on annotations in the COG database(http://www.ncbi.nlm.nih.gov/COG/). Each candidate gene was also assigned to

a functional category based on the information from the COG database and the Flybase (http://www.flybase.org/). Detailed information on individual amplicons is listed at the DRSC website (http://www.flyrnai.org/).

Amplic on	Gene	Fold change siRNA reporter	Fold change endo- siRNA reporter	Fold change miRNA reporter	siRNA candid ate	endo- siRNA candid ate	mi RNA candid ate	Eukary otic cluster s	Eukary otic ortholo gous groups	Brief description from the flybase and the COG database	Category
DRSC0 5912	AGO1	1.036	1.381	4.999	0	0	1	ACDH -P-	KOG1 041	miRISC component	RNA binding/proc
DRSC3 0761	AGO1	0.994	1.033	5.592							essing
DRSC3 0762	AGO1	0.749	0.812	4.197							
DRSC1 0847	AGO2	3.109	9.145	0.763	1	1	-1	ACDH -P-	KOG1 041	siRISC component	RNA binding/proc
DRSC3 1768	AGO2	3.164	7.321	0.599							cosing
DRSC3 1769	AGO2	3.214	8.159	0.743							
DRSC1 6555	bel	1.273	1.781	1.270	1	0	0	ACDH YPE	KOG0 335	ATP-dependent RNA helicase	RNA binding/proc
DRSC3 1929	bel	1.213	1.110	1.357							8
DRSC3 1930	bel	1.477	0.964	1.226							
DRSC2 7666	Bx42	1.051	1.003	0.598	-1	-1	0	ACDH YP-	KOG2 441	mRNA splicing factor/probable chromatin binding snw family nuclear protein	RNA binding/proc essing
DRSC3 2295	Bx42	0.580	0.646	1.090							

DRSC3 Bx42	0.574	0.545	0.950							
DRSC1 Cbp20 6601	1.601	2.473	1.748	1	1	1	ACDH YPE	KOG0 121	Nuclear cap-binding protein complex, subunit CBP20 (RRM superfamily)	RNA binding/proc essing
DRSC3 Cbp20	1.269	2.683	2.434							
DRSC3 Cbp20 2000	1.530	2.674	3.003							
DRSC1 Cbp80 8450	2.133	2.300	1.781	1	1	1	ACDH YP-	KOG1 104	Nuclear cap-binding complex, subunit NCBP1/CBP80	RNA binding/proc essing
DRSC3 Cbp80 2001	1.735	2.323	1.593							
DRSC3 Cbp80 2002	1.963	2.898	1.721							
DRSC3 CG106 4871 30	1.283	0.998	0.979	1	1	0		None	Double-stranded RNA binding	RNA binding/proc essing
DRSC3 CG106 4872 30	1.653	1.208	1.396							-
DRSC0 CG106 9757 30	1.353	2.205	1.467							
DRSC1 CG119 4460 85	0.671	0.775	0.735	-1	-1	-1	ACDH -P-	KOG3 485	Splicing factor 3B subunit 10	RNA binding/proc essing
DRSC3 CG119 1771 85	0.713	0.620	0.661							0
DRSC3 CG119 1770 85	0.359	0.719	0.696							
DRSC3 CG139 6192 00	0.525	0.627	0.829	-1	0	0	ACDH YPE	KOG1 898	Splicing factor 3b, subunit 3, U2 snRNP component	RNA binding/proc essing
DRSC0 CG139 8370 00	0.753	0.853	0.650							
DRSC1 CG169 5166 41	0.703	0.821	0.664	-1	-1	-1	ACDH YP-	KOG0 007	Splicing factor 3a, subunit 1, U2 snRNP component	RNA binding/proc essing
DRSC3 CG169 1838 41	0.759	0.658	0.403							
DRSC3 CG169 1839 41	0.733	0.622	0.484							
DRSC2 CG172 1723 93	1.319	0.969	3.663	1	-1	1	ACDH YPE	KOG1 446	Histone H3 (Lys4) methyltransferase complex and RNA cleavage factor II complex, subunit SWD2	RNA binding/proc essing
DRSC3 CG172	1.972	0.707	3.166							
DRSC3 CG172	1.225	0.793	2.890							
DRSC0 CG185 2680 91	2.009	1.775	0.760	1	1	0	ACDH YPE	KOG1 774	Small nuclear ribonucleoprotein E	RNA binding/proc
DRSC3 CG185	1.383	1.225	0.993							Cosnig
DRSC3 CG185	1.740	2.001	0.954							
DRSC0 CG187 6787 4	0.670	0.472	0.825	-1	-1	0	ACDH YPE	KOG1 831	CCR4-Not complex component, Not1	RNA binding/proc essing
DRSC3 CG187	0.771	0.398	0.640							
DRSC3 CG187	0.998	0.473	0.790							

2357	4										
DRSC0 6794	CG188 4	0.742	0.601	0.713	-1	-1	0	ACDH YPE	KOG1 831	CCR4-Not complex component, Not1	RNA binding/proc essing
DRSC3 0775	CG188 4	0.844	0.466	0.935							
DRSC3 0776	CG188 4	0.767	0.419	1.067							
DRSC0 0535	CG280 7	0.934	0.873	0.426	-1	0	-1	ACDH YPE	KOG0 213	Splicing factor 3b, subunit 1	RNA binding/proc essing
DRSC3 1841	CG280 7	0.587	0.718	0.474							
DRSC3 1840	CG280 7	0.369	0.869	0.555							
DRSC0 0619	CG360 5	0.827	0.916	0.611	-1	-1	-1	ACDH YPE	KOG2 330	Splicing factor 3b, subunit 2, U2 snRNP component	RNA binding/proc essing
DRSC3 1846	CG360	0.348	0.773	0.517							
DRSC3	CG360	0.446	0.602	0.632							
DRSC1 5804	CG545 4	1.946	4.163	1.471	1	1	1	ACDH YPE	KOG3 454	U1 snRNP-specific protein C	RNA binding/proc essing
DRSC3	CG545 4	2.022	3.391	2.087							
DRSC3 0974	CG545 4	2.065	3.863	1.871							
DRSC1 0597	CG616 9	0.616	0.353	0.396	-1	-1	-1	ACDH YPE	KOG2 937	Decapping enzyme complex, predicted pyrophosphatase DCP2	RNA binding/proc essing
DRSC3	CG616 9	0.685	0.303	0.423							
DRSC3 4891	CG616 9	0.581	0.256	0.415							
DRSC1 0781	CG718 5	2.052	3.906	2.577	1	1	1	-CDH- 	KOG4 849	mRNA cleavage factor I subunit/CPSF subunit	RNA binding/proc essing
DRSC3 4892	CG718 5	2.279	4.012	2.656							
DRSC3 4893	CG718 5	1.608	4.740	2.095							
DRSC0 6992	Dcr-2	1.447	4.322	0.904	1	1	0	ACDH -P-	KOG0 701	dsRNA-specific nuclease Dicer and related ribonucleases	RNA binding/proc essing
DRSC3	Dcr-2	2.052	3.841	1.207							
DRSC3	Dcr-2	2.178	4.737	1.035							
DRSC0 7607	drosha	0.977	0.740	1.955	0	-1	1	- CDHY P-	KOG1 817	Ribonuclease	RNA binding/proc essing
DRSC3 5708	drosha	0.923	0.528	1.848							
DRSC2 7807	glo	0.876	0.753	1.657	0	-1	1	ACDH 	KOG4 211	Splicing factor hnRNP-F and related RNA-binding proteins	RNA binding/proc essing
DRSC1 6145	glo	0.924	0.989	1.886							
DRSC3	glo	1.040	0.783	1.341							

4656										
DRSC1 gw 7135	0.972	0.997	0.509	0	-1	-1		None	RNA recognition motif, RNP-1	RNA binding/proc essing
DRSC3 gw 4234	1.228	0.709	0.476							
DRSC3 gw 4235	0.890	0.711	0.564							
DRSC1 Hrb98 6709 DE	1.494	2.789	2.697	1	1	1	ACDH YPE	KOG0 118	RRM domain	RNA binding/proc essing
DRSC3 Hrb98	0.927	1.727	2.432							-
DRSC3 Hrb98 4919 DE	1.264	2.075	2.059							
DRSC0 hrg 7502	1.122	1.691	0.946	0	1	0	ACDH YPE	KOG2 245	Poly(A) polymerase and related nucleotidyltransferases	RNA binding/proc essing
DRSC3 hrg 1961	1.143	1.278	0.900							
DRSC0 nito 5943	0.650	0.682	0.626	-1	-1	-1	-CDH- 	KOG0 1	Large RNA-binding protein (RRM superfamily)	RNA binding/proc essing
DRSC3 nito 5891	0.470	0.356	0.690							
DRSC2 noi 6152	0.859	0.926	0.495	-1	0	-1	ACDH YPE	KOG2 636	Splicing factor 3a, subunit 3, U2 snRNP component	RNA binding/proc essing
DRSC3 noi	0.421	0.717	0.598							
DRSC3 noi 1861	0.468	0.882	0.684							
DRSC2 pcf11 3350	1.121	1.709	0.666	-1	1	0	ACDH YPE	KOG2 071	mRNA cleavage and polyadenylation factor I/II complex, subunit Pcfl 1	RNA binding/proc essing
DRSC3 Pcf11	0.567	1.297	0.811							
DRSC3 Pcf11 4273	0.586	1.038	0.869							
DRSC0 Psi 7519	2.239	1.491	3.341	1	1	1	ACDH	KOG1 676	K-homology type RNA binding proteins	RNA binding/proc essing
DRSC3 Psi 4932	2.046	2.251	2.304							
DRSC3 Psi 4931	1.157	1.268	1.157							
DRSC1 Rrp6 6223	1.658	1.751	1.739	1	1	1	ACDH Y-E	KOG2 206	Exosome 3'-5' exoribonuclease complex, subunit PM/SCL-100 (Rrp6)	RNA binding/proc essing
DRSC3 Rrp6 2600	1.075	1.298	1.928							
DRSC3 Rrp6 2601	1.379	1.415	2.073							
DRSC2 sbr 0368	1.043	0.808	0.625	-1	-1	-1	- CDHY P-	KOG3 763	mRNA export factor TAP/MEX67	RNA binding/proc essing
DRSC2 sbr	1.055	1.150	0.612							
DRSC3 sbr 3351	0.610	0.629	0.588							

DRSC3 sbr 3352	0.537	0.774	0.823							
DRSC0 snRNP 9800 69D	1.732	1.610	0.762	1	1	0	ACDH YPE	KOG3 428	Small nuclear ribonucleoprotein SMD1 and related snRNPs	RNA binding/proc essing
DRSC3 snRNP 1709 69D	1.214	1.536	0.985							
DRSC0 snRNP 3612 70K	1.016	1.219	1.221	1	1	1	ACDH YP-	KOG0 113	U1 small nuclear ribonucleoprotein (RRM superfamily)	RNA binding/proc essing
DRSC2 snRNP 8803 70K	1.989	3.610	1.674							
DRSC2 snRNP 2071 70K	2.650	4.087	2.169							
DRSC3 snRNP 4939 70K	1.969	3.981	2.301							
DRSC3 snRNP 4940 70K	3.532	4.261	1.996							
DRSC0 spen 0839	0.870	0.819	0.732	-1	-1	-1	ACDH YPE	KOG0 123	Polyadenylate-binding protein (RRM superfamily)	RNA binding/proc essing
DRSC3 spen 4301	0.630	0.561	0.689							
DRSC3 spen 4302	0.631	0.723	0.806							
DRSC1 su(s) 8839	2.605	1.546	6.541	1	1	1	ACDH YPE	KOG1 040	Polyadenylation factor I complex, subunit, Yth1 (CPSF subunit)	RNA binding/proc essing
DRSC3 su(s) 4942	2.543	0.991	6.063							
DRSC3 su(s) 4941	2.838	2.264	4.592							
DRSC0 U2A 6445	0.495	0.908	0.541	-1	-1	-1	ACDH YP-	KOG1 644	U2-associated snRNP A' protein	RNA binding/proc essing
DRSC3 U2A	0.844	0.631	0.661							
DRSC3 U2A 1825 DRSC3 U2A 1826	0.844 0.629	0.631 0.600	0.661 0.738							
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704	0.844 0.629 1.589	0.631 0.600 0.671	0.661 0.738 0.732	1	-1	0	ACDH YPE	KOG1 732	60S ribosomal protein L21	Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240	0.844 0.629 1.589 1.376	0.631 0.600 0.671 0.655	0.661 0.738 0.732 0.818	1	-1	0	ACDH YPE	KOG1 732	60S ribosomal protein L21	Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241	0.844 0.629 1.589 1.376 1.078	0.631 0.600 0.671 0.655 0.590	0.661 0.738 0.732 0.818 1.017	1	-1	0	ACDH YPE	KOG1 732	60S ribosomal protein L21	Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707	0.844 0.629 1.589 1.376 1.078 1.555	0.631 0.600 0.671 0.655 0.590 0.716	0.661 0.738 0.732 0.818 1.017 0.938	1	-1	0	ACDH YPE ACDH YPE	KOG1 732 KOG3 434	60S ribosomal protein L21 60S ribosomal protein L22	Ribosomal protein Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707 DRSC2 RpL22 5025	0.844 0.629 1.589 1.376 1.078 1.555 1.369	0.631 0.600 0.671 0.655 0.590 0.716 0.443	0.661 0.738 0.732 0.818 1.017 0.938 0.736	1	-1	0	ACDH YPE ACDH YPE	KOG1 732 KOG3 434	60S ribosomal protein L21 60S ribosomal protein L22	Ribosomal protein Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707 DRSC2 RpL22 5025 DRSC0 RpL5 3801	0.844 0.629 1.589 1.376 1.078 1.555 1.369 1.294	0.631 0.600 0.671 0.655 0.590 0.716 0.443 0.622	0.661 0.738 0.732 0.818 1.017 0.938 0.736 1.024	1	-1 -1	0 0 0 0	ACDH YPE ACDH YPE ACDH YPE	KOG1 732 KOG3 434 KOG0 875	60S ribosomal protein L21 60S ribosomal protein L22 60S ribosomal protein L5	Ribosomal protein Ribosomal protein Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707 DRSC2 RpL22 5025 DRSC0 RpL5 3801 DRSC3 RpL5 2562	0.844 0.629 1.589 1.376 1.078 1.555 1.369 1.294 1.738	0.631 0.600 0.671 0.655 0.590 0.716 0.443 0.622 0.610	0.661 0.738 0.732 0.818 1.017 0.938 0.736 1.024 0.729	1	-1	0 0 0 0	ACDH YPE ACDH YPE ACDH YPE	KOG1 732 KOG3 434 KOG0 875	60S ribosomal protein L21 60S ribosomal protein L22 60S ribosomal protein L5	Ribosomal protein Ribosomal protein Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707 DRSC2 RpL22 5025 DRSC0 RpL5 3801 DRSC3 RpL5 2562 DRSC0 RpS13 3419	0.844 0.629 1.589 1.376 1.078 1.555 1.369 1.294 1.738 0.883	0.631 0.600 0.671 0.655 0.590 0.716 0.443 0.622 0.610 0.407	0.661 0.738 0.732 0.818 1.017 0.938 0.736 1.024 0.729 0.667	1	-1 -1 -1	0 0 0 0 0 0 0	ACDH YPE ACDH YPE ACDH YPE ACDH YPE	KOG1 732 KOG3 434 KOG0 875 KOG0 400	60S ribosomal protein L21 60S ribosomal protein L22 60S ribosomal protein L5 40S ribosomal protein S13	Ribosomal protein Ribosomal protein Ribosomal protein
DRSC3 U2A 1825 DRSC3 U2A 1826 DRSC0 RpL21 3704 DRSC3 RpL21 2240 DRSC3 RpL21 2241 DRSC1 RpL22 8707 DRSC2 RpL22 5025 DRSC0 RpL5 3801 DRSC3 RpL5 2562 DRSC0 RpS13 3419 DRSC3 RpS13 2575	0.844 0.629 1.589 1.376 1.078 1.555 1.369 1.294 1.738 0.883 0.883	0.631 0.600 0.671 0.655 0.590 0.716 0.443 0.622 0.610 0.407 0.470	0.661 0.738 0.732 0.818 1.017 0.938 0.736 1.024 0.729 0.667 1.210	1	-1	0 0 0 0 0 0	ACDH YPE ACDH YPE ACDH YPE	KOG1 732 KOG3 434 KOG0 875 KOG0 400	60S ribosomal protein L21 60S ribosomal protein L22 60S ribosomal protein L5 40S ribosomal protein S13	Ribosomal protein Ribosomal protein Ribosomal protein Ribosomal protein

2576											
DRSC0 7151	RpS15	1.059	0.533	0.553	0	-1	0	ACDH YPE	KOG0 898	40S ribosomal protein S15	Ribosomal protein
DRSC3 2256	RpS15	1.726	0.448	1.084							
DRSC0 3420	RpS26	1.039	0.516	0.632	-1	-1	0	ACDH YPE	KOG1 768	40s ribosomal protein S26	Ribosomal protein
DRSC3 0693	RpS26	0.629	0.491	1.006							
DRSC3 0694	RpS26	0.557	0.441	0.941							
DRSC1 8258	RpS28 b	0.834	0.450	0.643	0	-1	0	ACDH YPE	KOG3 502	40S ribosomal protein S28	Ribosomal protein
DRSC3 2590	RpS28 b	0.547	0.434	0.795							
DRSC2 6355	RpS30	0.985	0.473	0.635	0	-1	0	ACDH YPE	KOG0 009	Ubiquitin-like/40S ribosomal S30 protein fusion	Ribosomal protein
DRSC3 2262	RpS30	0.585	0.389	0.862							
DRSC1 8712	RpS6	0.956	0.452	0.697	0	-1	-1	ACDH YPE	KOG1 646	40S ribosomal protein S6	Ribosomal protein
DRSC3 7989	RpS6	1.532	0.458	0.706							
DRSC1 5394	RpS7	1.081	0.408	0.806	0	-1	0	ACDH YPE	KOG3 320	40S ribosomal protein S7	Ribosomal protein
DRSC2 8468	RpS7	1.050	0.508	0.688							
DRSC3 2264	RpS7	0.970	0.351	0.871							
DRSC3 2263	RpS7	0.673	0.488	0.792							
DRSC1 1273	RpS9	0.884	0.444	0.725	-1	-1	0	ACDH YPE	KOG3 301	Ribosomal protein S4	Ribosomal protein
DRSC3 2598	RpS9	0.741	0.430	0.818							
DRSC3 2599	RpS9	0.632	0.560	1.194							
DRSC0 8463	ago	1.039	1.968	2.919	-1	0	1	ACDH YPE	KOG0 274	Cdc4 and related F-box and WD-40 proteins	Proteolysis
DRSC3 0817	ago	0.579	1.182	1.928							
DRSC3 0818	ago	0.771	1.119	1.968							
DRSC2 3384	CG117 00	0.876	1.012	1.441	1	1	1	ACDH YPE	KOG0 001	Ubiquitin and ubiquitin- like proteins	Proteolysis
DRSC1 7794	CG117 00	1.434	2.165	2.412							
DRSC3 1545	CG117 00	1.285	1.296	2.548					WOGO	200	N . 1 .
DRSC1 2186	CG120 00	1.640	1.692	1.701	1	1	1	ACDH YPE	KOG0 185	20S proteasome, regulatory subunit beta type PSMB4/PRE4	Proteolysis
DRSC3	CG120	1.521	0.915	1.511							
DRSC3	CG120	1.531	1.277	1.345							
2029 00											
---------------------------	--------	-----------------	-------	----	----	----	-------------	-------------	--	-------------	
DRSC0 CG1 2603 31	73 1.7	81 1.604	1.681	1	0	1	ACDH YPE	KOG0 177	20S proteasome, regulatory subunit beta type PSMB2/PRE1	Proteolysis	
DRSC3 CG1	73 1.4	94 1.107	1.880								
1562 31 DRSC3 CG1	73 1.4	52 1.164	1.643								
DRSC2 CG9	77 0.8	20 0.710	0.565	-1	-1	-1	-CDH-	KOG2	SCF ubiquitin ligase, Skp2	Proteolysis	
8203 2								120	component		
DRSC1 CG9 2329 2	77 0.8	34 0.585	0.518								
DRSC3 CG9 3294 2	77 0.6	85 0.643	0.609								
DRSC3 CG9 3295 2	77 0.7	53 0.656	0.640								
DRSC1 CSN 1859	0.8	10 0.414	0.678	-1	-1	-1	ACDH -P-	KOG2 582	COP9 signalosome, subunit CSN3	Proteolysis	
DRSC3 CSN	3 0.5	00 0.262	0.667								
2997 DRSC3 CSN 2998	3 0.5	84 0.474	0.877								
DRSC0 CSN 6808	0.8	60 0.458	0.558	0	-1	-1	A-DH- P-	KOG3 250	COP9 signalosome, subunit CSN7	Proteolysis	
DRSC0 CSN	7 0.7	23 0.386	0.668								
6807 DRSC3 CSN	7 0.9	02 0.491	0.728								
4904 DRSC1 hyd 6971	1.2	16 1.083	1.493	1	0	1	-CDH- 	KOG0 943	Predicted ubiquitin-protein ligase/hyperplastic discs protein, HECT superfamily	Proteolysis	
DRSC3 hyd	1.1	76 1.269	1.688								
4921 DRSC3 hyd 4922	1.2	04 1.068	1.486								
DRSC0 1(2)0 7159 70	50 1.3	96 1.136	1.668	1	0	1	ACDH YPE	KOG0 174	20S proteasome, regulatory subunit beta type PSMB6/PSMB9/PRE3	Proteolysis	
DRSC3 1(2)0 2140 70	50 1.4	23 0.800	2.011								
DRSC3 1(2)0 2139 70	50 1.8	07 0.858	1.595								
DRSC0 lwr 0828	0.6	65 0.844	1.111	-1	-1	0	ACDH YPE	KOG0 424	Ubiquitin-conjugating enzyme, E2	Proteolysis	
DRSC3 lwr 4570	0.7	21 0.766	1.183								

DRSC3 4571	lwr	0.950	0.660	1.138							
DRSC1 0509	mule	0.961	0.737	0.608	-1	-1	-1	ACDH -P-	KOG1 865	Ubiquitin carboxyl- terminal hydrolase	Proteolysis
DRSC3 0860	mule	0.590	0.693	0.706							
DRSC3 0861	mule	0.496	0.777	0.867							
DRSC1 1256	Pros26	1.981	1.680	1.855	1	1	1	ACDH YPE	KOG0 179	20S proteasome, regulatory subunit beta type PSMB1/PRE7	Proteolysis
DRSC3 2168	Pros26	2.073	1.671	1.664							
DRSC3 2169	Pros26	1.488	1.063	1.699							
DRSC2 5012	Pros26 .4	1.139	1.139	1.613	0	0	1	ACDH YPE	KOG0 726	26S proteasome regulatory complex, ATPase RPT2	Proteolysis
DRSC3 2051	Pros26 4	1.424	0.869	1.859							
DRSC3 2052	Pros26 .4	0.892	0.972	1.476							
DRSC0 3401	Pros35	1.512	1.261	1.451	1	1	1	ACDH YPE	KOG0 863	20S proteasome, regulatory subunit alpha type PSMA1/PRE5	Proteolysis
DRSC3 2172	Pros35	1.622	1.170	1.859							
DRSC3 2173	Pros35	1.938	1.255	1.543							
DRSC0 7516	Prosalp ha7	1.681	1.238	1.570	1	1	1	ACDH YPE	KOG0 184	20S proteasome, regulatory subunit alpha type PSMA3/PRE10	Proteolysis
DRSC3 2176	Prosalp ha7	2.068	1.269	1.771							
DRSC3 2177	Prosalp ha7	1.396	0.880	1.502							
DRSC1 6801	Prosbet a3	1.791	1.019	1.121	1	0	0	ACDH YPE	KOG0 180	20S proteasome, regulatory subunit beta type PSMB3/PUP3	Proteolysis
DRSC3 2180	Prosbet a3	1.519	0.855	1.388							
DRSC3 2181	Prosbet a3	1.802	1.293	1.415							

DRSC0 7517	Prosbet a5	1.806	1.312	1.605	1	1	1	ACDH YPE	KOG0 175	20S proteasome, regulatory subunit beta type PSMB5/PSMB8/PRE2	Proteolysis
DRSC3 2182	Prosbet a5	1.619	1.400	1.701							
DRSC3 2183	Prosbet a5	1.454	1.101	2.004							
DRSC0 7514	ProsM A5	1.637	1.327	1.487	1	1	1	ACDH YPE	KOG0 176	20S proteasome, regulatory subunit alpha type PSMA5/PUP2	Proteolysis
DRSC3 2184	ProsM A5	2.271	1.157	1.680							
DRSC3 2185	ProsM A5	2.022	1.541	1.829							
DRSC0 3422	Rpn11	1.651	1.168	1.347	1	0	0	ACDH YPE	KOG1 555	26S proteasome regulatory complex, subunit RPN11	Proteolysis
DRSC3 2195	Rpn11	1.366	0.666	1.028							
DRSC1 6839	Rpn2	1.622	1.217	1.663	1	1	1	ACDH YPE	KOG2 062	26S proteasome regulatory complex, subunit RPN2/PSMD1	Proteolysis
DRSC3 2198	Rpn2	1.456	1.281	1.152							
DRSC3 2199	Rpn2	1.216	1.086	1.511							
DRSC1 6841	Rpn7	1.732	1.074	1.147	1	0	0	ACDH YPE	KOG0 687	26S proteasome regulatory complex, subunit RPN7/PSMD6	Proteolysis
DRSC3 2204	Rpn7	1.164	0.916	1.429							
DRSC3 2205	Rpn7	1.398	1.094	1.339							
DRSC0 7542	Rpt1	1.627	1.166	1.934	1	0	1	ACDH YPE	KOG0 729	26S proteasome regulatory complex, ATPase RPT1	Proteolysis
DRSC3 0799	Rpt1	1.018	1.058	1.979							
DRSC3 0800	Rpt1	1.502	0.840	1.780							

DRSC0 smt3 3611	0.640	0.476	1.027	-1	-1	0	ACDH YPE	KOG1 769	Ubiquitin-like proteins	Proteolysis
DRSC3 smt3 3355	0.713	0.695	1.929							
DRSC3 smt3 3356	0.774	0.565	1.018							
DRSC2 Tbp-1 6269	1.588	0.965	1.782	1	0	1	ACDH Y-E	KOG0 652	26S proteasome regulatory complex, ATPase RPT5	Proteolysis
DRSC1 Tbp-1	1.584	0.917	1.611							
DRSC3 Tbp-1	1.162	0.812	2.076							
DRSC3 Tbp-1 3361	1.377	0.847	2.202							
DRSC3 ubi- 3366 p63E	1.286	2.060	3.428	1	1	1	ACDH YPE	KOG0 001	Ubiquitin and ubiquitin- like proteins	Proteolysis
DRSC0 ubi- 8703 p63E	1.568	1.805	2.481							
DRSC1 Bap60 9337	0.675	0.594	0.602	-1	-1	0	ACDH YPE	KOG2 570	SWI/SNF transcription activation complex subunit, Brahma complex subunit	Chromatin factors
DRSC3 Bap60	0.671	0.719	0.975							
2656 DRSC3 Bap60	0.783	0.496	0.951							
DRSC0 barr	1.236	1.668	1.484	1	0	1	A-	KOG2	Chromosome	Chromatin
3488							DHYP E	328	condensation complex Condensin, subunit H	factors
DRSC3 barr 4869	1.170	1.116	1.717							
DRSC3 barr 4870	1.227	1.130	1.468							
DRSC1 brm 1330	0.553	0.434	0.689	-1	-1	-1	ACDH YP-	KOG0 386	Chromatin remodeling complex SWI/SNF, component SWI2 and related ATPases (DNA/RNA helicase superfamily), Brahma complex subunit	Chromatin factors

DRSC3 brm 0902	0.366	0.376	0.638							
DRSC1 Cafl 6596	1.401	0.795	1.473	1	-1	1	ACDH YPE	KOG0 264	Nucleosome remodeling factor, subunit CAF1/NURF55/MS11	Chromatin factors
DRSC3 Caf1	1.392	0.871	1.704							
DRSC3 Cafl	1.408	0.751	1.701							
DRSC0 dom 4559	0.742	0.670	0.562	-1	0	0	АС- НҮР-	KOG0 391	SNF2 family DNA- dependent ATPase	Chromatin factors
DRSC3 dom	0.409	0.910	0.860							
DRSC3 dom 1606	0.453	1.053	1.002							
DRSC0 E(bx) 8583	1.000	2.057	4.447	1	1	1	ACDH	KOG1 473	Nucleosome remodeling factor, subunit NURF301/BPTF	Chromatin factors
DRSC0 E(bx) 8509	2.783	2.495	3.393							
DRSC3 E(bx) 4907	2.736	2.009	4.993							
DRSC3 E(bx) 4908	2.871	1.752	4.545							
DRSC1 gpp 2515	1.339	0.884	1.134	0	-1	0	- CDHY 	KOG3 924	Putative protein methyltransferase involved in meiosis and transcriptional silencing (Dot1)	Chromatin factors
DRSC3 gpp 4915	0.878	0.698	1.264							
DRSC3 gpp 4916	0.937	0.748	1.369							
DRSC2 His2A: 1264 CG316	0.938	0.735	1.414	0	-1	1	AC- HYPE	KOG1 756	Histone 2A	Chromatin factors
DRSC3 His2A: 1121 CG316 18	0.365	0.683	1.676							
DRSC2 His3:C 1267 G3161 3	0.861	0.413	1.260	0	-1	0	ACDH YPE	KOG1 745	Histones H3 and H4	Chromatin factors
DRSC2 His3:C 7099 G3161 3	0.850	0.403	1.153							
DRSC1 His4r 6703	0.885	0.377	1.273	0	-1	0	ACDH YPE	KOG3 467	Histone H4	Chromatin factors
DRSC3 His4r 1002	0.844	0.462	0.816							

DRSC0 Iswi 7446	1.840	1.119	1.518	1	0	1	ACDH Y-E	KOG0 385	Chromatin remodeling complex WSTF-ISWI, small subunit	Chromatin factors
DBSC2 Jawi	1 217	1 220	1 472							
4923 DRSC3 Iswi	1.506	1.103	1.472							
4924 DRSC2 Nipped 2386 -A	0.575	1.012	0.897	-1	-1	0	ACDH YPE	KOG0 889	Histone acetyltransferase SAGA, TRRAP/TRA1 component, PI-3 kinase superfamily	Chromatin factors
DRSC0 Nipped 4883 -A	0.774	1.152	1.093							
DRSC3 Nipped 1823 -A	0.752	0.672	0.969							
DRSC3 Nipped 1824 -A	0.943	0.693	0.928							
DRSC1 Su(var) 6873 3-9	0.803	0.775	1.305	0	-1	0	ACDH -P-	KOG1 082	Histone H3 (Lys9) methyltransferase SUV39H1/Clr4, required for transcriptional silencing	Chromatin factors
DRSC1 Su(var) 3081 3-9	1.216	0.499	1.967							
DRSC2 Su(var) 7837 3-9	0.949	0.457	1.326							
DRSC2 Cka 2858	1.690	1.181	0.889	1	1	0	- CDHY P-	KOG0 642	Cell-cycle nuclear protein, contains WD-40 repeats	Cell Cycle
DRSC3 Cka	1.549	1.339	1.752							
DRSC3 Cka 4541	1.356	1.204	1.175							
DRSC0 CycE 3296	0.759	0.302	0.689	-1	-1	-1	-CDH- 	KOG0 655	G1/S-specific cyclin E	Cell Cycle
DRSC3 CycE 0675	0.841	0.302	0.630							
DRSC3 CycE 0676	0.743	0.658	0.722							
DRSC1 stg 7071	0.959	0.526	0.481	-1	-1	-1	ACDH YPE	к од 3 772	M-phase inducer phosphatase	Cell Cycle
DRSC3 stg 2775	0.477	0.577	0.645							

DRSC3 stg 2776	0.603	0.501	0.713							
DRSC1 CG257 9863 7	0.881	0.733	2.516	0	-1	1	-CDH- 	KOG1 163	Casein kinase (serine/threonine/tyrosine protein kinase)	Signaling
DRSC2 CG257 6322 7 DRSC2 CC257	0.861	0.643	1.520							
2890 7	0.013	0.837	1.110							
DRSC2 CkIIbe 0230 ta	0.631	0.560	0.654	-1	-1	0	ACDH YPE	KOG3 092	Casein kinase II, beta subunit	Signaling
DRSC3 CkIIbe	0.793	0.618	0.774							
DRSC3 CkIIbe 3297 ta	0.674	0.659	1.008							
DRSC1 Dsor1 8462	0.852	0.654	0.677	-1	-1	-1	ACDH YP-	KOG0 581	Mitogen-activated protein kinase kinase (MAP2K)	Signaling
DRSC3 Dsor1 1052	0.606	0.452	0.644							
DRSC3 Dsor1 1051	0.600	0.666	1.090							
DRSC1 Gprk2 6682	0.846	0.386	0.555	0	-1	0	-CDH- 	KOG0 986	G protein-coupled receptor kinase	Signaling
DRSC3 Gprk2	1.010	0.709	0.902							
DRSC3 Gprk2 1001	0.729	0.746	1.073							
DRSC1 raptor 8359	0.758	0.610	0.574	-1	-1	-1	ACDH YP-	KOG1 517	Regulatory associated protein of TOR	Signaling
DRSC3 raptor	0.645	0.453	0.599							
DRSC3 raptor 1050	0.592	0.470	0.574							
DRSC2 Sos 3624	0.839	0.931	0.680	0	-1	0	- CDHY PE	KOG3 417	Ras1 guanine nucleotide exchange factor	Signaling
DRSC3 Sos 0698	0.925	0.677	0.990							
DRSC3 Sos 0697	0.785	0.623	0.873							
DRSC0 bic 7584	0.853	0.789	1.938	0	-1	0	ACDH YP-	KOG2 240	RNA polymerase II general transcription factor BTF3 and related proteins	Transcriptio n

DRSC3 7934	bic	0.513	0.615	1.165							
DRSC0 4085	CG109 55	0.795	0.603	0.904	0	-1	0	ACDH YPE	KOG2 402	Paf1/RNA polymerase II complex, RTF1 component (involved in regulation of TATA box- binding protein)	Transcriptio n
DRSC3 0728	CG109 55	1.002	0.789	0.958							
DRSC2 6715	CG122 52	0.829	0.576	0.745	0	-1	0	ACDH YPE	KOG0 323	TFIIF-interacting CTD phosphatases, including NLI-interacting factor	Transcriptio n
DRSC3	CG122	0.756	0.630	1.154							
DRSC2 8718	CG178 36	0.810	0.632	0.275	-1	-1	-1		None	HMG-I and HMG-Y, DNA-binding	Transcriptio n
DRSC3	CG178	0.483	0.521	0.402							
DRSC3	CG178	0.526	0.630	0.579							
2081 DRSC1	30 CG178	0.887	0.631	0.315							
DRSC1 7734	CG327 21	0.945	0.714	0.711	0	-1	-1		None	negative regulation of transcription from RNA polymerase II promoter	Transcriptio n
DRSC3	CG327	0.524	0.780	0.631							
DRSC1 2567	CG330 97	0.779	0.377	1.140	-1	-1	0	ACDH -P-	KOG0 155	Transcription factor CA150	Transcriptio n
DRSC3	CG330	0.737	0.452	0.780							
4879 DRSC3	97 CG330	0.821	0.524	0.989							
4880 DRSC1 0612	CG627 2	0.882	0.972	0.440	0	0	-1	-CDH- 	KOG3 119	Basic region leucine zipper transcription factor	Transcriptio n
DRSC3 7966	CG627 2	0.642	0.920	0.481							

DRSC2 Deaf1 2786	1.623	1.715	2.569	1	0	0	-CDH- 	KOG4 333	Nuclear DEAF-1 related transcriptional regulator (suppressin) and related SAND domain proteins	Transcriptio n
DRSC3 Deaf1 4906	1.253	0.877	0.994							
DRSC1 dei 6931	0.811	0.749	0.629	0	-1	0		None	Helix-loop-helix DNA- binding	Transcriptio n
DRSC3 dei 7977	0.645	0.798	1.080							
DRSC1 ear 5675	0.893	0.793	0.623	0	0	-1	ACDH YPE	KOG3 149	Transcription initiation factor IIF, auxiliary subunit	Transcriptio n
DRSC3 ear 7978	0.679	0.865	0.661							
DRSC0 Elongi 7423 n-C	0.744	0.916	0.628	-1	0	0	ACDH YP-	KOG3 473	RNA polymerase II transcription elongation factor Elongin/SIII, subunit elongin C	Transcriptio n
DRSC2 Elongi 9393 n-C	0.414	0.669	0.764							
DRSC1 Ets96B 6127	0.791	0.636	0.733	-1	-1	0	-CDH- 	KOG3 806	Predicted transcription factor	Transcriptio n
DRSC3 Ets96B 7979	0.691	0.778	1.012							
DRSC1 HLH1 1182 06	1.301	1.091	0.991	1	0	0	- CDHY P-	KOG2 588	Predicted DNA-binding protein	Transcriptio n
DRSC3 HLH1	1.496	0.882	1.112							
DRSC3 HLH1 1627 06	1.608	0.834	1.019							
DRSC1 kay 6977	1.528	0.752	1.212	1	-1	0	ACDH YP-	KOG1 414	Transcriptional activator FOSB/c-Fos and related bZIP transcription factors	Transcriptio n
DRSC3 kay 1021	1.243	0.796	1.160							

DRSC3 1022	kay	1.487	0.674	1.065							
DRSC2 0346	l(1)10 Bb	1.937	1.791	1.775	1	1	1	ACDH YPE	KOG3 404	G10 protein/predicted nuclear transcription regulator	Transcriptio n
DRSC3	l(1)10	1.203	1.356	1.567							
1943 DRSC3 1944	Bb l(1)10 Bb	1.281	1.163	1.541							
DRSC2 2981	MED2 5	1.175	2.143	1.701	0	1	1		None	RNA polymerase II transcription mediator	Transcriptio n
DRSC3	MED2	0.663	1.540	1.790							
DRSC3 2497	MED2 5	0.827	1.327	1.636							
DRSC1 1217	MTF-1	1.157	1.654	0.994	0	1	0		None	Zinc finger, C2H2- type/integrase, DNA- binding	Transcriptio n
DRSC2 1341	MTF-1	1.100	1.475	1.067							
DRSC1 0567	Nelf-E	0.917	0.709	0.637	0	-1	-1		None	negative regulation of transcription from RNA polymerase II promoter	Transcriptio n
DRSC3 4575	Nelf-E	1.393	0.504	0.499							
DRSC2 7025	Sox14	0.976	0.757	0.613	0	0	-1	- CDHY P-	KOG0 527	HMG-box transcription factor	Transcriptio n
DRSC3 7990	Sox14	1.295	1.071	0.747							
DRSC0 7556	Spt5	0.672	0.295	0.500	-1	-1	-1	ACDH YPE	KOG1 999	RNA polymerase II transcription elongation factor DSIF/SUPT5H/SPT5	Transcriptio n
DRSC3	Spt5	0.637	0.278	0.431							
DRSC3 1820	Spt5	0.469	0.248	0.418							
DRSC2 6497	Su(Tpl)	0.916	1.216	1.389	0	1	0	-CDH- 	KOG4 796	RNA polymerase II elongation factor	Transcriptio n
DRSC1 0954	Su(Tpl)	1.094	1.651	1.441							

DRSC2 Taf12 8181	0.800	1.099	0.580	-1	-1	-1	ACDH YPE	KOG1 142	Transcription initiation factor TFIID, subunit TAF12 (also component of histone acetyltransferase SAGA)	Transcriptio n
DRSC3 Taf12 3205	1.005	0.570	0.572							
DRSC3 Taf12 3204	0.776	0.673	1.014							
DRSC3 TH1 4600	1.267	0.738	0.547	1	-1	-1		None	negative regulation of transcription from RNA polymerase II promoter	Transcriptio n
DRSC3 TH1 4601	1.576	0.580	0.556							
DRSC2 TH1 0289	0.874	0.772	0.647							
DRSC0 eIF-4a 3526	1.230	1.306	0.938	1	1	0	ACDH YPE	KOG0 327	Translation initiation factor 4F, helicase subunit (eIF-4A) and related helicases	Translation
DRSC3 eIF-4a 4260	1.715	1.789	1.293							
DRSC2 eIF5 0165	0.701	0.552	1.333	0	-1	0	ACDH YPE	KOG2 767	Translation initiation factor 5 (eIF-5)	Translation
DRSC3 eIF5 4909	0.836	0.368	1.102							
DRSC3 eIF5 4910	0.867	0.416	1.221							
DRSC0 l(2)014 6854 24	1.151	1.467	0.945	1	1	0	ACDH YPE	KOG0 401	Translation initiation factor 4F, ribosome/mRNA-bridging subunit (eIF-4G)	Translation
DRSC3 l(2)014	1.301	1.207	1.235							
3055 24 DRSC3 1(2)014	1.371	2.163	1.454							
DRSC2 caz 3280	0.749	0.612	0.695	-1	-1	-1	ACDH	KOG1 995	Conserved Zn-finger protein	Miscellaneo us
DRSC2 caz 9957	0.603	0.654	0.703						-	

DRSC3	caz	0.517	0.502	0.852							
1434 DRSC3 1435	caz	0.482	0.483	0.856							
DRSC2 4394	CG103 44	0.893	0.998	1.771	0	-1	0	ACDH YPE	KOG1 311	DHHC-type Zn-finger proteins	Miscellaneo us
DRSC3 2807	CG103 44	0.923	0.652	1.029							
DRSC3 2806	CG103 44	0.566	0.707	1.062							
DRSC0 8145	CG108 63	0.836	0.682	0.540	0	-1	0	ACDH YPE	KOG1 577	Aldo/keto reductase family proteins	Miscellaneo us
DRSC3 7937	CG108 63	1.740	0.773	1.150							
DRSC1 7804	CG121 02	1.104	1.224	1.317	0	1	0	ACDH YPE	KOG0 393	Ras-related small GTPase, Rho type	Miscellaneo us
DRSC2 8919	CG121 02	1.069	1.340	1.066							
DRSC1 5175	CG171 19	1.792	0.913	1.427	1	0	1	ACDH Y	KOG3 145	Cystine transporter Cystinosin	Miscellaneo us
DRSC3 3257	CG171 19	1.274	1.144	1.533							
DRSC3 3258	CG171 19	1.570	1.061	1.632							
DRSC0 8562	CG246 9	0.957	0.441	0.714	0	-1	0	ACDH YPE	KOG2 002	TPR-containing nuclear phosphoprotein that regulates K(+) uptake	Miscellaneo us
DRSC3 7953	CG246 9	0.764	0.505	0.848							
DRSC2 8677	CG319 17	1.008	0.675	0.463	0	-1	0	ACDH YP-	KOG3 362	Predicted BBOX Zn- finger protein	Miscellaneo us
DRSC3 1149	CG319 17	0.689	0.658	0.861							
DRSC0 6853	CG381 4	0.920	1.101	1.808	-1	0	1	ACDH YP-	KOG2 322	N-methyl-D-aspartate receptor glutamate-binding subunit	Miscellaneo us
DRSC3	CG381	0.696	0.815	1.483							
7961 DRSC3 7962	4 CG381	0.478	0.625	0.837							
7962 DRSC0 2774	CG473 8	1.561	0.834	1.101	1	0	0	ACDH	KOG4 521	Nuclear pore complex, Nup160 component	Miscellaneo us
DRSC3 4518	CG473 8	1.463	0.647	1.085							

DRSC3	CG473	1.364	0.843	1.269							
DRSC3 4888	CG496 3	0.799	0.780	1.070	0	-1	0	ACDH YP-	KOG0 760	Mitochondrial carrier protein MRS3/4	Miscellaneo us
DRSC3 4889	CG496 3	0.971	0.654	0.834							
DRSC2 9623	CG759 7	0.739	0.679	1.207	0	-1	0	ACDH YPE	KOG0 600	Cdc2-related protein kinase	Miscellaneo us
DRSC2 3323	CG759 7	0.834	0.678	2.296							
DRSC0 3159	CG922 6	1.442	1.251	1.218	1	0	0	A-DH- P-	KOG2 919	Guanine nucleotide- binding protein	Miscellaneo us
DRSC3 4900	CG922 6	1.636	0.899	0.974							
DRSC0 7402	Dp	0.703	0.268	0.603	-1	-1	-1	ACDH E	KOG2 829	E2F-like protein	Miscellaneo us
DRSC3 0793	Dp	0.905	0.289	0.678							
DRSC3 0792	Dp	0.447	0.257	0.726							
DRSC1 6667	FK506 -bp1	1.030	0.884	0.601	-1	-1	0	A-D- YP-	KOG0 552	FKBP-type peptidyl-prolyl cis-trans isomerase	Miscellaneo us
DRSC3	FK506	0.733	0.564	0.785							
3030 DRSC3	-bp1 FK506	0.577	0.684	0.797							
DRSC1 6474	flfl	0.817	0.299	0.385	-1	-1	-1	ACDH YP-	KOG2 175	Protein predicted to be involved in carbohydrate metabolism	Miscellaneo us
DRSC3	flfl	0.772	0.536	0.714							
0990 DRSC3 0991	flfl	0.694	0.491	0.675							
DRSC0 0353	hoel	0.918	0.731	0.574	-1	-1	0	A-DH- 	KOG2 639	Sodium sulfate symporter and related arsenite permeases	Miscellaneo us
DRSC3	hoe1	0.606	0.838	0.982							
0623 DRSC3 0624	hoe1	0.503	0.758	0.936							
DRSC2 9729	Hsc70- 4	0.895	0.644	1.397	0	-1	1	ACDH YPE	KOG0 101	Molecular chaperones HSP70/HSC70, HSP70 superfamily	Miscellaneo us

DRSC1 Hsc70-	0.905	0.635	1.987							
6/11 4 DRSC3 Hsc70-	1.005	0.779	2.156							
DRSC3 Hsc70-	1.103	1.038	1.812							
DRSC0 1(2)37	0.951	1.108	1.723	0	0	1	ACDH	KOG3	Prohibitin	Miscellaneo
DRSC2 1(2)37 7403 Cc	1.299	0.855	1.489				11	005		us
DRSC2 Lcp4 5329	0.967	1.141	1.552	0	0	1		None	structural constituent of chitin-based cuticle	Miscellaneo us
DRSC2 Lcp4 5194	1.169	0.990	1.649							
DRSC0 Mdr49 7466	0.954	0.769	1.428	-1	-1	0	ACDH YP-	KOG0 055	Multidrug/pheromone exporter, ABC superfamily	Miscellaneo us
DRSC3 Mdr49	0.533	0.632	0.828							
DRSC3 Mdr49 3061	0.558	0.583	0.854							
DRSC0 mus20 7653 9	0.812	0.353	0.571	0	-1	-1	ACDH YPE	KOG1 636	DNA polymerase delta processivity factor (proliferating cell nuclear antigen)	Miscellaneo us
DRSC3 mus20 3327 9	0.838	0.366	0.820							
DRSC3 mus20 3328 9	0.684	0.328	0.743							
DRSC1 Nrx-1 6184	0.929	0.759	0.473	-1	-1	0	-CDH- 	KOG3 514	Neurexin III-alpha	Miscellaneo us
DRSC3 Nrx-1 2755	0.592	0.615	1.017							
DRSC3 Nrx-1 2756	0.634	0.623	0.916							
DRSC1 nudC 1096	1.004	1.050	1.407	0	0	1	ACDH -PE	KOG2 265	Nuclear distribution protein NUDC	Miscellaneo us
DRSC3 nudC 5899	0.617	0.920	1.490							
DRSC1 Pep 1252	1.337	1.628	2.347	0	1	0		None	Zinc finger, C2H2-type	Miscellaneo us
DRSC3 Pep 7986	0.970	1.990	1.205							
DRSC0 pk 6178	1.381	4.137	0.817	1	1	0	- CDHY P-	KOG1 704	LIM domain	Miscellaneo us
DRSC3 pk 4930	1.573	4.515	0.618							
DRSC2 PTP- 3325 ER	0.989	0.948	1.776	-1	-1	0	ACDH YP-	KOG0 789	Protein tyrosine phosphatase	Miscellaneo us

DRSC3 PTP-	0.473	0.642	1.341							
0738 ER DRSC3 PTP-	0.767	0.754	1.201							
0737 ER	2 202	1.2(2	1.02.4	1	0		A CDU	KOGA		NC II
0364	2.303	1.363	1.234	1	0	0	ACDH YPE	KOG0 096	GTPase Ran/TC4/GSP1 (nuclear protein transport pathway), small G protein superfamily	us
DRSC3 ran	1.260	0.977	1.355							
DRSC1 Sbf	1.455	0.884	1.117	1	0	0	-CDH-	KOG1	Predicted dual-specificity	Miscellaneo
6852 DRSC3 Shf	1 539	1 129	1 125					090	phosphatase	us
4937	1.007	1.220	1.150							
DRSC3 Sbf 4938	1.369	1.329	1.153							
DRSC1 Snap 1285	1.406	1.242	1.795	1	0	1	ACDH YP-	KOG1 586	Protein required for fusion of vesicles in vesicular transport, alpha-SNAP	Miscellaneo us
DRSC3 Snap	1.306	1.155	2.128							
1261 DRSC2 SNF1	0.952	0.898	1.426	0	-1	1	ACDH	KOG0	Serine/threonine protein	Miscellaneo
8055 A							YPE	583	kinase	us
DRSC3 SNF1	1.139	0.714	1.560							
DRSC3 SNF1 1401 A	0.777	0.724	1.388							
DRSC2 tlk 2926	0.662	0.300	0.496	-1	-1	-1	ACDH	KOG1 151	Tousled-like protein kinase	Miscellaneo us
DRSC3 tlk 7991	0.665	0.220	0.491							
DRSC2 up	0.969	0.585	0.473	0	-1	0	-CDH-	KOG3	Troponin	Miscellaneo
DRSC2 up	0.721	0.691	1.203					054		us
DRSC0 ush 0843	0.888	0.795	1.885	-1	0	1	ACDH YPE	KOG1 721	Zinc finger, C2H2-like	Miscellaneo us
DRSC3 ush	0.618	0.820	1.456							
2226 DRSC3 ush 2227	0.724	0.826	1.513							
DRSC1 wds 8852	1.391	0.993	1.620	1	0	1	ACDH YP-	KOG0 266	WD40 repeat-containing protein	Miscellaneo us
1										

DRSC3	wds	1.685	1.110	1.508							
4944 DRSC3 4945	wds	1.657	1.112	1.198							
DRSC2 3606	CG109 15	0.854	0.807	0.724	-1	-1	-1	-CDH- 	KOG1 103	Predicted coiled-coil protein	Unknown
DRSC3	CG109	0.556	0.512	0.801							
DRSC3	15 CG109	0.739	0.582	0.657							
DRSC1	CG118	0.728	0.432	0.450	0	-1	0	-CDH-	KOG4	FERM domain-containing	Unknown
4405	48								335	protein KRITT	
DRSC3 7940	CG118 48	0.816	0.795	1.372							
DRSC0 1920	CG132 43	1.314	1.609	1.869	I	0	0		None		Unknown
DRSC3 3879	CG132 43	1.264	1.126	0.955							
DRSC0 8329	CG137 20	1.593	3.421	0.749	1	0	0		None		Unknown
DRSC3 3933	CG137 20	1.324	1.005	0.832							
DRSC1 0142	CG141 37	0.875	0.616	0.575	0	-1	0		None		Unknown
DRSC2 5376	CG141 37	0.537	0.677	1.052							
DRSC0 6664	CG173	0.956	0.702	0.696	0	-1	0		None		Unknown
DRSC3 4977	CG173 85	0.708	0.602	1.396							
DRSC2	CG320	0.755	0.479	0.624	-1	-1	-1		None		Unknown
DRSC3 7958	CG320 21	0.473	0.391	0.666							
DRSC1 5493	CG353 2	0.876	0.658	0.701	0	-1	0		None		Unknown
DRSC3 5289	CG353 2	0.610	0.726	0.989							
DRSC2 6013	CG382 5	0.963	0.333	1.621	0	-1	1		None		Unknown
DRSC0 4422	CG382	1.097	0.431	1.600							
DRSC3 2067	CG382	1.045	0.501	1.666							
DRSC3 2068	CG382 5	1.262	0.494	1.762							
DRSC0 4460	CG429 4	1.429	1.130	1.844	1	1	0		None		Unknown
DRSC3 4516	CG429 4	1.323	1.572	1.335							
DRSC3 4517	CG429 4	1.578	1.424	1.352							
DRSC0 0668	CG478 5	1.597	1.921	3.260	1	1	1		None		Unknown
DRSC3 4884	CG478 5	1.569	3.159	2.295							
DRSC3 4885	CG478 5	0.936	1.126	1.603							
DRSC2 4273	CG551 4	1.328	0.937	1.656	0	0	1		None		Unknown
DRSC3 2938	CG551 4	1.079	0.870	1.587							
DRSC3	CG551	0.919	0.914	2.053							

2939	4										
DRSC2	CG572	1.602	1.291	4.100	1	1	1		None		Unknown
5145 DRSC0 6946	6 CG572	1.813	1.319	5.018							
DRSC3 4394	CG572 6	1.002	1.258	1.203							
DRSC1	CG689	0.977	1.345	1.749	0	0	1		None		Unknown
0744 DRSC3 7968	7 CG689 7	0.611	1.153	1.866							
DRSC2 4716	CG690 3	0.961	0.642	0.708	0	-1	0	A-DH- 	KOG4 683	Uncharacterized conserved protein	Unknown
DRSC3	CG690	0.793	0.559	0.931							
7969 DRSC1 8405	3 CG690 3	0.895	0.718	0.777							
DRSC1	CG706	1.092	0.856	1.756	0	0	1		None		Unknown
DRSC3 5474	5 CG706 5	0.577	0.830	1.570							
DRSC0 4893	CG784 3	3.792	2.280	5.829	1	1	1	ACDH -P-	KOG2 295	C2H2 Zn-finger protein	Unknown
DRSC3	CG784	3.208	2.412	7.087							
4894 DRSC3 4895	3 CG784 3	3.101	1.440	4.376							
DRSC2 5065	CG810 8	0.755	0.442	0.507	-1	-1	-1		None	Zinc finger, C2H2-type	Unknown
DRSC0	CG810	0.572	0.913	0.322							
DRSC3	o CG810 8	0.725	0.380	0.458							
DRSC3 0845	CG810 8	0.580	0.395	0.431							
DRSC0	CG871	1.325	1.156	1.177	1	0	0		None		Unknown
DRSC3	0 CG871	1.378	1.151	1.299							
4896 DRSC3 4897	0 CG871 0	1.563	0.788	1.379							
DRSC1 6485	CG938 6	1.670	1.412	3.040	1	0	1	- CDHY P-	KOG3 790	Uncharacterized conserved protein	Unknown
DRSC3 4902	CG938 6	1.298	0.874	1.446							
DRSC3 5612	CG954 8	0.630	0.650	0.727	0	0	1	ACDH YP-	KOG1 705	Uncharacterized conserved protein, contains CXXC motifs	Unknown
DRSC0	CG954 8	0.803	0.959	0.557							
DRSC0	lilli	0.779	1.265	0.604	0	1	0		None		Unknown
0708 DRSC3	lilli	0.822	1.587	0.951							
2745 DRSC3 2746	lilli	0.801	1.435	0.888							

DRSC1 Mat89 6733 Bb	1.324	1.578	2.457	0	1	1	-CDH- 	KOG3 711	Uncharacterized conserved Unknown protein
DRSC3 Mat89 6476 Bb	1.062	1.251	1.818						
DRSC2 noe 2747	1.000	1.173	1.875	0	0	1		None	unknown Unknown
DRSC3 noe 5896	0.567	0.756	1.616						

Table S2. Protein-protein interaction and functional interaction among candidate gene products. These conclusions were based on annotations from the BioGRID database (http://www.thebiogrid.org/). The following annotations were considered as indications of protein-protein interactions: affinity capture-western; cofractionation; affinity capture-MS; reconstituted complex or two-hybrid. Phenotypic enhancement or phenotypic suppression were considered as an indication of genetic interaction.

Physical Inte	raction	Genetic Inter	Genetic Interaction					
Protein 1	Protein 2	Gene 1	Gene 2					
su(s)	CG17293	Dsor1	PTP-ER					
RpL22	RpL22	elF-4a	Dp					
Ckllbeta	dei	CycE	Dp					
Bap60	brm	CycE	ago					
lwr	mus209	CycE	brm					
CG4785	elF-4a	CycE	Hsc70-4					
snRNP70K	Psi	CycE	stg					
Pros35	Prosalpha7	CycE	spen					
Iswi	Caf1	Dp	brm					
Iswi	E(bx)	Dp	spen					
mus209	mus209	brm	dom					
CG7185	Cbp20	Su(var)3-9	His3:CG31613					
AGO2	AGO2	stg	His3:CG31613					
CSN3	noi							
noi	CG16941							
noi	RpS7							
noi	RpL5							
Caf1	E(bx)							

Table S3. Steady-state pri-miRNA and miRNA levels upon knockdown of candidate genes. Steady-state levels of CXCR4 and those of endogenous miR-2b upon knockdown of 43 selected candidate genes were examined by northern blotting and semiquantitative RT-PCR (q-PCR). For the northern blotting experiment, miRNA levels were quantified and normalized first against U6 RNA levels and then against the average results from multiple control samples (cells treated with dsRNA against LacZ). The results were subsequently log(2) transformed. As for the q-PCR assays, to measure steady-state levels of mature CXCR4, miR-2b, and pri-CXCR4, the $\Delta\Delta$ Ct values ([CtU6 – CtmiRNA]sample – [CtU6 – CtmiRNA]control) are shown. Results from northern blotting assays represent average values from two to four independent batches of RNA samples, whereas results from independent q-PCR experiments using the same batch of RNAs are shown. The reciprocals of the "fold change of miR reporter" values were log(2) transformed to generate the "miR scores." One representative dsRNA for each candidate gene was employed in the assay.

		miR	CXC R4 Nort	miR- 2b North	Pri- CXCR 4 qPCR	Pri- CXCR 4 qPCR	Pri- CXCR 4 qPCR	CX CR4 qPC R	CX CR4 qPC R	CXCR4 qPCR
Gene	Amplicon	score	hern	ern	1st	2nd	3rd	1st	2nd	3rd
AGO1	DRSC05912	-2.32	-1.99	-0.55	-1.80	-1.78	-1.51	- 1.97	- 2.70	-2.07
brm	DRSC11330	0.54	0.91	-0.18	1.74	1.85	2.11	2.07	1.45	1.03
CG11985	DRSC14460	0.44	0.22	-0.23	-0.56	0.44	0.08	0.19	0.36	-0.02
CG12000	DRSC12186	-0.77	-0.71	-0.71	0.69	0.71	0.99	- 0.18	0.86	-0.43
CG2807 C G3	DRSC00535	1.23	-1.61	-1.34	-0.27	-0.66	-0.13	0.77	2.00	-1.36
20	DRSC23926	0.68	0.50	-0.01	1.15	1.20	2.22	1.17	0.79	1.01
CG32721	DRSC17734	0.49	1.03	0.47	0.57	0.37	1.81	1.11	1.36	1.06
CG3814	DRSC06853	-0.85	0.46	0.19	1.02	0.91	0.16	1.03	1.09	0.95
CC4795		1 70	0.41	0.01	1.57	1 1 2	0.97	0.19	-	0.72
CG5514	DRSC24273	-1.70	0.41	-0.07	_ 1.37 _	1.10	0.07	0.10	0.23	0.75
CG6169	DRSC10597	1 34	0.50	-0.11	-0.01	0.01	-0.52	1 54	0.64	0.56
000100	Bricerosor	1.01	0.00	0.11	_ 0.01 _		_ 0.02 _	-	0.01	0.00
CG6272	DRSC10612	1.19	0.29	0.27	0.09	-0.08	-0.48	0.08	0.64	0.41
CG7185	DRSC10781	-1.37	0.58	0.06	2.26	1.45	0.56	0.65 -	0.42	0.54
CG7843	DRSC04893	-2.54	0.01	-0.16	1.72	1.52	1.69	0.18	0.35	0.47
CG8108	DRSC25065	0.98	0.55	-0.17	1.67	1.28	2.04	1.00	0.80	0.81
CG9386	DRSC16485	-1.60	0.39	0.08	0.89	0.95	0.99	1.02	0.39	1.35
CSN3	DRSC11859	0.56	0.47	0.16	0.71	0.59	0.92	0.03	0.27	0.72
drosha	DRSC07607	-0.97	-0.44	-0.58	3.34	2.47	3.45	- 2.23	- 2.21	-2.81
E(bx)	DRSC08583	-2.15	-0.62	-0.67	-0.68	-0.58	-1.31	0.62	0.94	-0.77
flfl Hic2A:	DRSC16474	1.38	0.63	0.11	0.83	0.71	2.96	2.73	1.21	1.59
CG31618	DRSC21264	-0.50	0.65	0.04	1.05	2.07	0.80	1.22	0.07	1.17
Hrb98DE	DRSC16709	-1.43	0.16	-0.20	1.34	0.64	1.06	0.66	0.26	0.31
l(2)05070	DRSC07159	-0.74	-0.87	-0.52	2.11	2.13	1.64	- 0.78	- 1.32	-0.69
MED25	DRSC22981	-0.77	-0.84	-0.36	-0.94	-0.71	-1.75	- 0.17	- 1.27	-0.89

DRSC10509	0.72	0.66	0.47	0.26	0.45	1.21	1.10	0.53	1.25
DRSC07653	0.81	0.31	-0.59	0.12	0.23	0.61	0.33	0.21	0.07
DRSC10567	0.65	0.43	-0.19	1.56	0.95	2.23	1.71	1.23	1.65
DRSC25012	-0.69	-0.35	-0.75	1.85	0.84	1.32	- 0.31	- 0 49	-0 17
DRSC07519	-1 74	0.00	0.05	0.80	1 38	0.81	0.37	0.13	0.78
DRSC18712	0.52	1 01	0.00	2.43	1.00	1 43	0.07	0.06	0.75
DI(0010712	0.52	1.01	0.77	2.40	1.45	1.45	0.52	-	0.55
DRSC07542	-0.95	-0.67	-0.41	1.87	1.37	1.65	0.16	1.03	-0.11
DDCC00000	0.74	0.00	0.00	4.55	0.4.4	4.50	-	0.05	0.00
DRSC29803	0.71	0.33	0.32	-1.55	-2.14	-1.59	0.13	0.25	0.00
DRSC28055	-0.51	0.38	-0.54	1.31	0.54	0.96	1.45	1.14	0.46
DRSC22071	-1.12	-0.09	-0.10	1.44	0.96	0.36	- 0.99	- 0.43	-0.29
DRSC27025	0.71	0.31	0.29	0.92	0.81	0.63	1.02	1.25	0.20
DRSC00839	0.45	0.96	0.69	0.54	-0.78	-0.78	0.60	1.15	0.55
DRSC07556	1.00	0.75	0.12	0.32	-0.08	0.83	0.44	0.16	0.69
DRSC18839	-2.71	0.22	-0.05	1.29	1.62	1.13	1.50	0.24	1.07
DRSC28181	0.78	0.35	-0.08	1.35	1.21	1.77	1.10	1.56	0.96
DDCCCCCC	0.02	0.77	1.00	1.00	0.50	1.10	-	-	0.75
DRSC26269	-0.83	-0.77	-1.00	1.09	0.56	1.10	0.30	0.78	-0.75
DRSC20289	0.63	1.34	0.38	0.39	0.31	1.00	0.92	1.24	1.36
DRSC08703	-1.31	-0.48	-0.62	3.46	3.21	1.45	- 0.32	- 0.30	0.45
DRSC00843	-0.91	0.48	0.07	1.69	1.42	1.46	0.89	0.48	1.45
	DRSC10509 DRSC07653 DRSC10567 DRSC25012 DRSC07519 DRSC18712 DRSC07542 DRSC29803 DRSC29803 DRSC28055 DRSC28055 DRSC2071 DRSC27025 DRSC0839 DRSC07556 DRSC18839 DRSC28181 DRSC28181 DRSC26269 DRSC20289	DRSC10509 0.72 DRSC07653 0.81 DRSC10567 0.65 DRSC25012 -0.69 DRSC07519 -1.74 DRSC18712 0.52 DRSC07542 -0.95 DRSC28055 -0.51 DRSC27025 0.71 DRSC27025 0.71 DRSC07542 -0.95 DRSC28055 -0.51 DRSC28055 -0.51 DRSC27025 0.71 DRSC07556 1.00 DRSC18839 -2.71 DRSC28181 0.78 DRSC280289 0.63 DRSC20289 0.63 DRSC208703 -1.31 DRSC0843 -0.91	DRSC10509 0.72 0.66 DRSC07653 0.81 0.31 DRSC10567 0.65 0.43 DRSC25012 -0.69 -0.35 DRSC07519 -1.74 0.31 DRSC07519 -1.74 0.31 DRSC07519 -1.74 0.31 DRSC18712 0.52 1.01 DRSC07542 -0.95 -0.67 DRSC29803 0.71 0.33 DRSC28055 -0.51 0.38 DRSC28055 -0.51 0.38 DRSC27025 0.71 0.31 DRSC07556 1.00 0.75 DRSC18839 -2.71 0.22 DRSC28181 0.78 0.35 DRSC28289 -0.63 1.34 DRSC2808703 -1.31 -0.48 DRSC0843 -0.91 0.48	DRSC10509 0.72 0.66 0.47 DRSC07653 0.81 0.31 -0.59 DRSC10567 0.65 0.43 -0.19 DRSC25012 -0.69 -0.35 -0.75 DRSC07519 -1.74 0.31 0.05 DRSC18712 0.52 1.01 0.77 DRSC07542 -0.95 -0.67 -0.41 DRSC28055 -0.51 0.38 -0.54 DRSC28055 0.71 0.31 0.29 DRSC0839 0.45 0.96 0.69 DRSC18839 -2.71 0.22 -0.05 DRSC28181 0.78 0.35 -0.08	DRSC10509 0.72 0.66 0.47 0.26 DRSC07653 0.81 0.31 -0.59 0.12 DRSC10567 0.65 0.43 -0.19 1.56 DRSC25012 -0.69 -0.35 -0.75 1.85 DRSC07519 -1.74 0.31 0.05 0.80 DRSC18712 0.52 1.01 0.77 2.43 DRSC07542 -0.95 -0.67 -0.41 1.87 DRSC29803 0.71 0.33 0.32 -1.55 DRSC28055 -0.51 0.38 -0.54 1.31 DRSC27025 0.71 0.31 0.29 0.92 DRSC07556 1.00 0.75 0.12 0.32 DRSC0839 0.45 0.96 0.69 0.54 DRSC18839 -2.71 0.22 -0.05 1.29 DRSC28181 0.78 0.35 -0.08 1.35 DRSC26269 -0.83 -0.77 -1.00 1.09	DRSC10509 0.72 0.66 0.47 0.26 0.45 DRSC07653 0.81 0.31 -0.59 0.12 0.23 DRSC10567 0.65 0.43 -0.19 1.56 0.95 DRSC25012 -0.69 -0.35 -0.75 1.85 0.84 DRSC07519 -1.74 0.31 0.05 0.80 1.38 DRSC18712 0.52 1.01 0.77 2.43 1.49 DRSC07542 -0.95 -0.67 -0.41 1.87 1.37 DRSC28055 -0.51 0.38 -0.54 1.31 0.54 DRSC28055 -0.51 0.38 -0.54 1.31 0.54 DRSC28055 -0.51 0.38 -0.54 1.31 0.54 DRSC28055 -0.51 0.31 0.29 0.81 0.78 DRSC27025 0.71 0.31 0.29 0.81 0.78 DRSC07556 1.00 0.75 0.12 0.32 -0.08	DRSC105090.720.660.470.260.451.21DRSC076530.810.31-0.590.120.230.61DRSC105670.650.43-0.191.560.952.23DRSC25012-0.69-0.35-0.751.850.841.32DRSC07519-1.740.310.050.801.380.81DRSC187120.521.010.772.431.491.43DRSC07542-0.95-0.67-0.411.871.371.65DRSC298030.710.330.32-1.55-2.14-1.59DRSC28055-0.510.38-0.541.310.540.96DRSC2071-1.12-0.09-0.101.440.960.36DRSC075561.000.750.120.32-0.080.83DRSC1839-2.710.22-0.051.291.621.13DRSC281810.780.35-0.081.351.211.77DRSC26269-0.83-0.77-1.001.090.561.10DRSC202890.631.340.380.390.311.00DRSC20843-0.910.480.071.691.421.45	DRSC10509 0.72 0.66 0.47 0.26 0.45 1.21 1.10 DRSC07653 0.81 0.31 -0.59 0.12 0.23 0.61 0.33 DRSC10567 0.65 0.43 -0.19 1.56 0.95 2.23 1.71 DRSC25012 -0.69 -0.35 -0.75 1.85 0.84 1.32 0.31 DRSC07519 -1.74 0.31 0.05 0.80 1.38 0.81 0.37 DRSC18712 0.52 1.01 0.77 2.43 1.49 1.43 0.92 DRSC07542 -0.95 -0.67 -0.41 1.87 1.37 1.65 0.16 DRSC28033 0.71 0.33 0.32 -1.55 -2.14 -1.59 0.13 DRSC28055 -0.51 0.38 -0.54 1.31 0.54 0.96 1.45 DRSC27025 0.71 0.31 0.29 0.92 0.81 0.63 1.02 DRSC07556 1.00 0.75 0.12 0.32 -0.08 0.83 0.44 <	DRSC105090.720.660.470.260.451.211.100.53DRSC076530.810.31-0.590.120.230.610.330.21DRSC105670.650.43-0.191.560.952.231.711.23DRSC25012-0.69-0.35-0.751.850.841.320.310.49DRSC07519-1.740.310.050.801.380.810.370.13DRSC187120.521.010.772.431.491.430.920.06DRSC298030.710.330.32-1.55-2.14-1.590.130.25DRSC298030.710.330.32-1.55-2.14-1.590.130.25DRSC298030.710.310.290.920.810.631.021.25DRSC29701-1.12-0.09-0.101.440.960.360.990.43DRSC270250.710.310.290.920.810.631.021.25DRSC075561.000.750.120.32-0.080.830.440.16DRSC281810.780.35-0.081.351.211.771.101.56DRSC26269-0.83-0.77-1.001.090.561.100.300.78DRSC202890.631.340.380.390.311.000.921.24DRSC08703-1.31-0.48 <td< td=""></td<>

Table S4. Steady-state esi-2.1 levels upon knockdown of candidate genes. Steadystate levels of esi-2.1 upon knockdown of 36 selected candidate genes were examined by semiquantitative RT-PCR (q-PCR). The $\Delta\Delta$ Ct values ([CtU6 – Ctesi-2.1]sample – [CtU6 – Ctesi-2.1]control) are shown. The reciprocals of the "fold change of endo-siRNA reporter" values were log(2) transformed to generate the "esi-2.1 scores." One representative dsRNA for each candidate gene was employed in the assay.

		esi-2.1			
		sensor	esi-2.1	esi-2.1	esi-2.1
Gene	Amplicon	score	qPCR 1st	qPCR 2nd	qPCR 3rd
brm	DRSC11330	1.20	0.42	0.51	0.30
Cbp80	DRSC18450	-1.20	0.12	-0.38	0.10
CG11700	DRSC17794	-1.11	1.54	1.09	1.22
CG11985	DRSC14460	0.37	-1.09	-0.52	-0.49
CG12000	DRSC12186	-0.76	0.74	0.43	0.26
CG17836	DRSC28718	0.66	0.41	0.87	0.52
CG32021	DRSC23926	1.06	-0.43	-0.27	0.15
CG32721	DRSC17734	0.49	0.40	0.43	0.35
CG3825	DRSC04422	1.21	-0.11	-0.01	-0.09
CG4785	DRSC00668	-0.94	0.22	0.41	0.40
CG6169	DRSC10597	1.50	1.09	1.06	1.44
CG7185	DRSC10781	-1.97	-1.18	-0.80	-0.68
CG7843	DRSC04893	-1.19	-0.38	0.12	-0.38
CG8108	DRSC25065	1.18	0.50	0.64	0.52
CG9772	DRSC28203	0.49	0.47	0.59	0.68
CSN3	DRSC11859	1.27	1.05	0.45	0.56
drosha	DRSC07607	0.43	-0.31	0.13	0.01
Dsor1	DRSC18462	0.61	-0.17	0.09	0.02
E(bx)	DRSC08583	-1.04	0.01	-0.31	-0.03
flfl	DRSC16474	1.74	0.96	1.00	1.20
His2A:CG31618	DRSC21264	0.44	1.38	1.34	1.47
Hrb98DE	DRSC16709	-1.48	0.02	0.00	0.31
Mat89Bb	DRSC16733	-0.66	-0.63	-0.86	0.13
MED25	DRSC22981	-1.10	0.17	0.63	0.04
mule	DRSC10509	0.44	-0.08	0.15	0.18
mus209	DRSC07653	1.50	-0.01	-0.40	-0.66
Nelf-E	DRSC10567	0.50	-0.29	0.48	0.21
nito	DRSC05943	0.55	-0.01	0.14	0.12
Psi	DRSC07519	-0.58	-0.62	-0.18	0.21
raptor	DRSC18359	0.71	-0.18	0.09	0.03
RpS6	DRSC18712	1.15	0.62	1.11	0.90
snRNP70K	DRSC22071	-2.03	-1.09	-1.07	-0.60
Spt5	DRSC07556	1.76	0.01	-0.06	0.32
su(s)	DRSC18839	-0.63	0.21	0.07	0.06
tlk	DRSC22926	1.74	0.01	0.11	0.60
ubi-p63E	DRSC33366	-1.04	1.83	1.62	2.06

Gene	Citations
AGO1	(Eulalio <i>et al.</i> , 2007)
	(Kim <i>et al</i> ., 2005; Saleh et al., 2006; Ulvila <i>et al</i> ., 2006; Dorner <i>et al.</i> ,
AGO2	2006)
bel	(Kim <i>et al</i> ., 2005; Ulvila <i>et al</i> ., 2006)
Caf1	(Kim <i>et al</i> ., 2005)
Cbp20	(Kim <i>et al</i> ., 2005; Parry et al., 2007)
Cbp80	(Parry <i>et al</i> ., 2007)
CG16941	(Kim <i>et al</i> ., 2005)
CG17293	(Parry <i>et al</i> ., 2007)
CG33097	(Kim <i>et al</i> ., 2005)
CG7597	(Parry <i>et al</i> ., 2007)
Ckllbeta	(Kim <i>et al</i> ., 2005)
	(Kim et al., 2005; Parry et al., 2007; Saleh et al., 2006; Ulvila et al.,
Dcr-2	2006)
drosha	(Eulalio <i>et al</i> ., 2007)
gw	(Eulalio <i>et al</i> ., 2007)
His4r	(Parry <i>et al</i> ., 2007)
Hsc70-4	(Dorner <i>et al</i> ., 2006)
Nipped-A	(Parry <i>et al</i> ., 2007)
Psi	(Kim <i>et al</i> ., 2005)
Rrp6	(Parry <i>et al</i> ., 2007)

Table S5. List of candidate genes that were also identified in published genome-wideRNAi screens. Candidate genes and the corresponding references are listed.

<u>Chapter 3</u>

Overall perspective

Overview of screen results

By comparing our results with other small RNA screens generated by other groups, we found that there are genes that overlapped among those studies. For example, Ruvkun and colleagues performed an RNAi screen by using GFP sensor in *C. elegans*. Several genes, including Dcr-2, Caf1 and CKII beta, also scored in their screen. In addition, the functional profile from their screen shows a similar pattern to our results. It includes chromatin factors, signaling, and transcription factors ¹⁰¹. From this, we predict that there are conserved function groups for small RNA pathway in different organisms. Although these screens were done only in *Drosophila* or *C.elegans*, based upon the high level of conservation of major small RNA components (Ago, Drosha, and Dicer) in mammals, it is likely that many of candidates identified in C. elegans and Drosophila might have similar functions in mammalian small RNA pathways.

The major advantage of our screen compared with previous studies is that it is very comprehensive, and the use of a common platform, library and biological systems allows us to compare between the miRNA and siRNA pathways. Many of the previous small RNA pathway analyses were focused on one complex or one phenomenon. However, these decisions limited such studies to contributing to our understanding of only a subset of the small RNA-mediated pathways. While Dicer and Argonaute are key factors in the small RNA pathways, they cannot account for all the functions of small RNA systems. To understand the full complexity of the small RNA pathways, it is important to cover the components that work at the various stages of the pathway in different cellular locations.

The results from our screens identifies a variety of the functional groups as possible players in small RNA pathways, including proteolysis, ribosomal, and splicing factors, with the majority acting similarly within each group. Therefore, we raise the possibility that the functional group, rather than the individual genes, dictate the effect on the small RNA pathways.

In most small RNA-mediated gene regulation studies, "suppression" of the pathway tends to be studied to a greater extent that "enhancement". However, our screening results include both enhancers and inhibitors of small RNA pathways, with a similar number of each. This suggests that a tight and balanced control of small RNA pathways might be essential to proper gene regulation. As shown by the example of Drosha and DGCR8, where Drosha can control DGCR8 level ⁵², small RNA components can regulate each other to maintain balance in the pathway. This mutual regulation might occur not only at the single molecule level but also among multiple functional groups. Each function group might regulate other functional groups and ensure the equilibrium state is maintained. Only when certain gene or protein needs to be repressed, then the system is shifted into an "active" state, leading to the silencing of the gene.

After screening ~21,000 dsRNAs targeting *Drosophila* genes, we identified 177 candidates that affect the function of siRNA, endo-siRNA, and miRNA pathways. These candidates could be categorized into several different groups; those that enhanced silencing in all three pathways, those that suppressed silencing in all three pathways, and those that show differential effects depending on the pathway being analyzed.

Enhancers of small RNA-mediated silencing

Knock down of most proteasome components caused decreased silencing in small RNA-mediated pathways. This observation was supported by another knockdown screen

where Ubi-p63E was added to the cells to cause RNAi-mediated cell lethality. In this screen, the lethality is normally rescued by addition of an RNAi related genes, Dicer-2, but a proteasome component, pros45 was also able to rescue the lethal phenotype ¹⁰⁴.

Previous biochemical analyses argue against protein degradation of miRNA targets as the likely mode of action. As discussed in the introduction, pulse-chase experiments did not show any polypeptides from an miRNA reporter after miRNA-mediated silencing ⁴⁷. Even when the reporter is directed (during translation) to endoplasmic reticulum (ER) to prevent protease from accessing to target, the reporter activity was still repressed ⁴¹. With these results, it is hard to connect reduced protein levels and posttranslational degradation or proteasome activity within small RNA pathways.

Another possibility is that the proteasome might regulate the turnover of RNAi components rather than small RNA targets. In flies, synaptic mRNA and protein synthesis are regulated by components of the siRNA pathway, including the SDE helicase, Armitage. Strong transgenic expression of Armitage can reduce the level of CaMK II expression. However, when CaMK II expression was increased by exposure of acetylcholine or nicotine (agonist of nicotinic acetylcholine receptors), transgenic armitage expression was suppressed. This supression of armitage was caused by proteolysis, and could be blocked by proteolytic inhibitor, lactacystin ¹¹⁴. Further analyses of proteasome components from our screens might help to understand how proteasome activity can get involved in silencing pathway.

Inhibitors of small-RNA-mediated silencing

Suppression of many candidates in our screens increases small-RNA mediated silencing, suggesting that they encode negative regulators of small RNA pathway responses. Knock down of some transcription factors and signaling factors decreased small RNA-mediated silencing effects. In Drosophila, heterochromatic silencing of tandemly repeated genes or transgenes depends on RNAi components. Loss of RNAi components (piwi, aubergine, or spindle-E), as well as heterochromatin protein1, HP1 and the H3K9 methyltransferase, SU(VAR)3-9, lead to the de-repression of transgenes that are inserted in pericentromeric heterochromatin ¹¹⁵ Mutations in aubergine and spindle-E have can upregulate tandemly repeated Stellate genes, while mutations in piwi block the silencing of *Alcohol dehydrogenase (Adh)* transgenes. These observations suggest that they are positive regulator of silencing.

However, our results reveal that knock down of many transcription/ chromatin related candidate genes (including the chromatin factor, dom, and transcription factor, Ets96B) leads to enhancement of silencing of the reporter used in the screen. This raises the possibility that there are different mechanisms to regulate target genes through small RNA pathways. For example, oncogenic transcription factor, c-Myc, is known to both up and down regulate microRNAs. c-Myc binds directly to the promoter of a cluster of six miRNAs (miR-17-5p, miR-18, miR-19, miR-20, miR-92 and miR-106) on human chromosome 13 and activates their expression transcriptionally ¹¹⁶. However, myc can also negatively regulate the expression of miR-23a and miR23b in human P-493 B lymphoma cells and PC3 prostate cancer cells, with Q-PCR analysis showing that miRNA-23a/b levels

increased when Myc expression is diminished ¹¹⁷. Therefore, each transcription factors might have different function to depending on the species of small RNAs.

Another possibility is that the negative regulation and positive regulation pathways are not totally separated in small RNA mediated silencing, rather, those regulators might compete against each other. A candidate from screen, Spt5 is regulator of transcription, and it binds to the large subunit of RNA polymerase II *in vitro*. In yeast, transcriptional arrest can trigger ubiquitin-mediated proteolysis of RNA polymerase II (RNAPII). This ubiquitilation can be reversed by Ubiquitin protease3 (UBP3) complex, which includes UBP3, RNAPII, Spt5 and TFIIF¹¹⁸. Our screening data implies that proteasome is positive regulator of silencing, and therefore, this complex might function to repress silencing and counteract proteasome function.

Suppression of most splicing factors, including CG11985, CG2807 and CG16941, lead to an increase in small RNA-mediated silencing. Since reporter which was used for screening does not contain an intron, the possibility of splicing acting on the target reporter can be excluded. Another possibility is that those splicing factors cause changes in the splicing of small RNA pathway components. When the activity of small RNA pathway needs to be down regulated, this altered splicing might promote the production of dominant negative forms of RNAi factors. Splicing factors, SR proteins, including SF2/ASF, SC35, SRp40, are capable of enhancing NMD when mRNAs contains premature termination codons ¹¹⁹. The alternatively spliced RNAi components RNA could be targeted to this NMD event.

Measuring effects on small RNA-mediated silencing can offer insights into the functions of the genes emerging from our screen. However, even when levels of silencing

91

are similarly affected in different pathways, it does not mean that the component always acts in the same way. For example, knock down of Bel results in a similar reduction in silencing in all pathways, and Flag-tagged Bel coimmunoprecipitated Ago2, FMR, VIG and Ago1. However, fractionation of the protein showed differential association, with the majority of Bel co-fractionating with Ago1 and minute amounts with Ago2. This result implies that Bel might participate in both Ago1 and Ago2 pathway but Bel might function in different way in each pathway.

Differential regulators of small RNA pathways

From our screens, we found several groups of genes that show different responses depending on the small RNA pathway. These include the Ago1/Drosha like response group, and the Ago2/Dcr-2 like response group. Suppression of Ago1 and Drosha show decreased silencing in the miRNA pathway but either increases or had no effect on the activity of the siRNA/endo-siRNA pathway. In contrast, knock down of Ago2 and Dcr-2 decrease silencing in siRNA/endo-siRNA pathway but have different effects in the miRNA pathway. Since Ago1/Drosha and Ago2/Dcr-2 are widely accepted as "miRNA specific" and "siRNA specific" components respectively, genes that follow their patterns of regulation might be specific to either the miRNA or siRNA pathways.

miRNA-specific regulators

The Ago1/Drosha group genes include diverse functional groups, including proteolysis, transcription factors and RNA binding proteins. Protein kinases/phosphatases,

92

including SNF1A, PTP-ER, CG7597 and CG2577, are slightly more represented, and there might be miRNA specific kinase/phosphatase mediated signal transduction systems.

It is worth noting that CCR4-NOT complex component, CG1874, does not belong to this group. CCR4-NOT promotes mRNA deadenylation and causes miRNA-mediated RNA degradation in miRNA dependent manner. However, knock down of CG1874 increases siRNA and endo-siRNA mediated silencing and also slightly increases miRNA mediated silencing. In addition, suppression of the de-capping enzyme, CG6169, also increases silencing in all three pathways. Recent study implied that deadenylation may not be required for silencing. In *D. melanogaster*, mRNAs without a poly(A) tail could be still silenced by miRNA ^{41,48}. Therefore, de-capping and de-adenylation proteins might have additional impacts on small RNA pathways.

siRNA-specific regulators

The study of the candidates that affect siRNA pathway might provide important insights into understanding viral immune responses. The RNA interference pathway has been shown to protect adult flies from viral infection. Mutations in Dcr-2 and R2D2 lead to rapid virus accumulation after FHV virion injection, resulting in death ¹⁰⁶.

Knock down of siRNA component candidates in combination with viral infection of the cells might reveal other viral response factors that help defend against the infection. By enhancing immune response gene, the protection against viral infection might be increased, and this method could be utilized for therapeutic purposes.

Blurring the line between the RNA pathways

Previous analysis of the Ago1/Ago2 pathways suggests that the Ago2-associated siRNA pathway and Ago1-associated miRNA pathway have distinct functions and can be functionally separated. Mutants of siRNA pathway are mostly normal and fertile, whereas mutants in miRNA pathway are lethal during larval development. Most miRNAs are conserved, whereas most siRNAs are poorly conserved ^{69,71}. These results imply that siRNA and miRNA have different roles in gene silencing.

However, the observations from combinatorial mutations showed that some previously miRNA or siRNA-specific factors have functions in both pathways. Although R2D2 is implicated as a Dcr2 partner in siRNA pathway, *Drosophila* r2d2 mutants showed developmental defects and female infertility, whereas Dicer-2 mutants have no fertility defects ¹²⁰. Furthermore, the loss of single copy of dcr-1, when combined with r2d2 mutant, enhanced female infertility defect. This suggests that R2D2 might have additional functions beyond the Dcr-2/siRNA pathway. Similarly, LOQs is a partner of Dicer-1 in the miRNA pathway but biochemical and genetic analyses reveal an interaction with Dicer-2, and plays an important role in endo-siRNA pathway. From this data, it's clear that the previous distinct small RNA pathways might utilize the same combination of factors depending on the situation. Therefore, it is a distinct possibility that the endo-siRNA and miRNA pathways compete for LOQs or R2D2.

Competition between RNA pathways

Some of the candidates from the screens show decreased silencing in one pathway but an increased effect in the other pathway. This might be explained as the result of competition between miRNA, siRNA and endo-siRNA pathways, where enhancements to a pathway might impair the others. For example, a knock down of Drosha decreased miRNA-mediated silencing but enhanced silencing by endogenous siRNA. However, Drosha is known only as a processor of precursor of miRNA, and does not affect siRNAs or endo-siRNAs levels. A logical conclusion is that there are Drosha-interacting proteins that are shared between the miRNA and siRNA pathways, leading to competition. The loss of Drosha or the reduction in miRNAs would free up the common component, and enhance the activity of the siRNA pathway.

Cross talk with piRNA pathway

Regardless of the different functions of miRNAs and siRNAs, there are many overlapped genes from screen in both pathways. This fact suggests the possibility that piRNAs pathway also might have overlapped components with miRNAs and siRNAs pathway.

Current studies showed that endo-siRNAs and piRNAs pathway are functionally linked together. In Drosophila germ line, both piRNA and endo-siRNA systems functions in the transposon-silencing pathway. In addition, both piRNAs and siRNAs can be mapped to piRNAs clusters with overlapping regions ¹²¹. In ovaries, *Ago2* or *Dcr-2* mutation causes derepression of several transposons that can be potentially targeted by siRNAs.

Although piRNAs pathway was not analyzed in this study, it might be possible (based on the previous experiment results) to predict which components of the miRNA and siRNA pathways are shared with the piRNA pathway, and which ones are distinct. However, these predicted candidates would require validation, possibly using a piRNAtargeted reporter knockdown screen.

Previous data have shown that biogenesis factors would be different between the piRNA and the miRNA/siRNA pathways, with the RNase III protein-family members Drosha and Dicer unnecessary for piRNA biogenesis in Drosophila ^{121,122}. However, chromatin factors and transcription factors could be the candidates of shared components, with a recent study showing that *Drosophila* Heterochromatin protein-1a (HP1a) can interact with N-terminus of PIWI, and co-localize in pericentric heterochromatin regions ¹²³. Mutations that prevents PIWI from binding to HP1 fail to rescue silencing in PIWI-depleted animals, implying that PIWI may be function in heterochromatin formation. With many chromatin factors (ex. Iswi, CG17293) scoring on our screen, some of them could be the candidates in piRNA-mediated gene regulation. Knock down of these candidate genes might lead to changes in piRNAs mediated repression, and will give valuable insights into understanding piRNAs mediated gene regulation.

In summary, comparative genome-wide screens provide wide range of information regarding to miRNA, siRNA, and endo-siRNA pathway in *Drosophila*. The comparison of each pathway aids in the identification of the common components, and determining which components are unique to each pathway. It is likely that the selected candidates include

many key components of the small RNA pathway, and analysis of those components will open further aspects of small RNA-mediated silencing mechanisms.

The mechanisms of small RNA pathways are not still clear, and there are still many aspects of small RNA pathways that are not well analyzed. However, at least, our screen results provide some clues to which types of cellular functions need to be focused upon and which components should be analyzed.

References

- Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164-7 (2005).
- Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. *Cell* 136, 75-84 (2009).
- 3. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptormediated endocytosis in Drosophila S2 cells. *J Biol Chem* **281**, 14370-5 (2006).
- 4. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. *Mol Cell* **21**, 533-42 (2006).
- 5. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. *Science* **309**, 1573-6 (2005).
- Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. *Cell* 124, 191-205 (2006).
- 7. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. *Science* **303**, 669-72 (2004).
- O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. *Nature* 435, 839-43 (2005).
- 9. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. *Nature* (2009).
- 10. Kvint, K. et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. *Mol Cell* **30**, 498-506 (2008).

- Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. *Mol Cell* 16, 597-607 (2004).
- Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. *Proc Natl Acad Sci U S A* 103, 4034-9 (2006).
- Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. *Science* 312, 452-4 (2006).
- Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. *Nature* 453, 803-6 (2008).
- 15. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. *Nature* **453**, 798-802 (2008).
- 16. Meyer, W. J. et al. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. *PLoS Genet* **2**, e134 (2006).
- 17. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. *Science* **313**, 320-4 (2006).
- 18. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. *Cell* **129**, 69-82 (2007).
- Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. *Cell Mol Life Sci* 62, 2711-26 (2005).
Comprehensive list of references

1. Arcus, V. OB-fold domains: a snapshot of the evolution of sequence, structure and function. *Curr Opin Struct Biol* **12**, 794-801 (2002).

2. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. *Cell* **124**, 191-205 (2006).

3. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicerdependent small RNAs. *Genes Dev* **22**, 2773-85 (2008).

4. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**, 281-97 (2004).

5. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. *Genes Dev* **20**, 1885-98 (2006).

6. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. *Mol Cell* **28**, 328-36 (2007).

7. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. *Cell* **125**, 1111-24 (2006).

8. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTPdependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. *Rna* **10**, 185-91 (2004).

9. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. *Nat Struct Mol Biol* **13**, 1097-101 (2006).

10. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R. & Zhu, J. K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. *Cell* **123**, 1279-91 (2005).

11. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. *Cell* **128**, 1089-103 (2007).

12. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. *Rna* **10**, 1957-66 (2004).

13. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. *Genes Dev* **16**, 2733-42 (2002).

14. Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. *Genes Dev* **16**, 2491-6 (2002).

15. Chung, W. J., Okamura, K., Martin, R. & Lai, E. C. Endogenous RNA interference provides a somatic defense against Drosophila transposons. *Curr Biol* **18**, 795-802 (2008).

16. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. *Nature* **453**, 798-802 (2008).

17. Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. *Curr Biol* **15**, 743-9 (2005).

18. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. *Nature* **454**, 56-61 (2008).

19. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. *Genes Dev* **17**, 438-42 (2003).

20. Dorner, S. et al. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. *Proc Natl Acad Sci U S A* **103**, 11880-5 (2006).

21. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. *Cell* **124**, 343-54 (2006).

 Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. *Genes Dev* 21, 2558-70 (2007).
 Faehnle, C. R. & Joshua-Tor, L. Argonautes confront new small RNAs. *Curr Opin Chem Biol* 11, 569-77 (2007).

24. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? *Nat Rev Genet* **9**, 102-14 (2008).

25. Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. *Nat Rev Genet* **9**, 831-42 (2008).

26. Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. *Cell* **130**, 287-97 (2007).

27. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. *Nat Genet* **39**, 1033-7 (2007).

28. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. *Nature* (2009).

29. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. *Mol Cell* **11**, 939-49 (2003).

30. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. *Science* **320**, 1077-81 (2008).

31. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. *Nat Rev Genet* **10**, 94-108 (2009).

32. Glazov, E. A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. *Genome Res* **18**, 957-64 (2008).

33. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. *Nature* **455**, 1193-7 (2008).

34. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. *Science* **315**, 1587-90 (2007).

35. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. *Cell* **136**, 75-84 (2009).

36. Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. *Development* **128**, 2823-32 (2001).

37. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. *Mol Cell* **32**, 276-84 (2008).

38. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. *Science* **308**, 118-20 (2005).

39. Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. *Cell Mol Life Sci* **62**, 2711-26 (2005).

40. Hock, J. et al. Proteomic and functional analysis of Argonaute-containing mRNAprotein complexes in human cells. *EMBO Rep* **8**, 1052-60 (2007).

41. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of celllineage mutants of the nematode Caenorhabditis elegans. *Genetics* **96**, 435-54 (1980).

42. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. *Cell* **129**, 69-82 (2007).

43. Huang, J. et al. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. *J Biol Chem* **282**, 33632-40 (2007).

44. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. *Proc Natl Acad Sci U S A* **102**, 16961-6 (2005).

45. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. *Science* **297**, 2056-60 (2002).

46. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. *Nat Rev Mol Cell Biol* **9**, 22-32 (2008).

47. Ibanez-Ventoso, C., Vora, M. & Driscoll, M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. *PLoS ONE* **3**, e2818 (2008)

48. Ishizuka, A., Siomi, M. C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. *Genes Dev* **16**, 2497-508 (2002).

49. Johnstone, O. et al. Belle is a Drosophila DEAD-box protein required for viability and in the germ line. *Dev Biol* **277**, 92-101 (2005).

50. Kalmykova, A. I., Klenov, M. S. & Gvozdev, V. A. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. *Nucleic Acids Res* **33**, 2052-9 (2005).

51. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. *Nature* **453**, 793-7 (2008).

52. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. *Nat Rev Mol Cell Biol* **6**, 376-85 (2005).

53. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. *Science* **308**, 1164-7 (2005).

54. Kim, D. H., Saetrom, P., Snove, O., Jr. & Rossi, J. J. MicroRNA-directed transcriptional gene silencing in mammalian cells. *Proc Natl Acad Sci U S A* **105**, 16230-5 (2008).

55. Krek, A. et al. Combinatorial microRNA target predictions. *Nat Genet* **37**, 495-500 (2005).

56. Kvint, K. et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. *Mol Cell* **30**, 498-506 (2008).

57. Labourier, E., Adams, M. D. & Rio, D. C. Modulation of P-element pre-mRNA splicing by a direct interaction between PSI and U1 snRNP 70K protein. *Mol Cell* **8**, 363-73 (2001).

58. Lasko, P. The drosophila melanogaster genome: translation factors and RNA binding proteins. *J Cell Biol* **150**, F51-6 (2000).

59. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. *Cell* **75**, 843-54 (1993).

60. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. *Embo J* **21**, 4663-70 (2002).

61. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. *Embo J* 23, 4051-60 (2004).

62. Lee, S. K. et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. *Blood* **106**, 818-26 (2005)

63. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* **120**, 15-20 (2005).

64. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. *Nature* **426**, 465-9 (2003).

65. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. *Science* **305**, 1437-41 (2004).

66. Liu, J. et al. A role for the P-body component GW182 in microRNA function. *Nat Cell Biol* **7**, 1261-6 (2005).

67. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. *Science* **303**, 95-8 (2004).

68. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. *Nat Struct Mol Biol* **13**, 1102-7 (2006).

69. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passengerstrand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. *Cell* **123**, 607-20 (2005).

70. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. *Mol Cell* **15**, 185-97 (2004).

71. Meyer, W. J. et al. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. *PLoS Genet* **2**, e134 (2006).

72. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. *Genes Dev* **19**, 2837-48 (2005).

73. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. *Genes Dev* **16**, 720-8 (2002).

74. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. *Embo J* **17**, 1799-809 (1998).

75. Murzin, A. G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. *Embo J* **12**, 861-7 (1993).

76. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. *Rna* **14**, 1539-49 (2008).

77. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. *Nature* **435**, 839-43 (2005).

78. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. *Genes Dev* **18**, 1655-66 (2004).

79. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. *Cell* **130**, 89-100 (2007).

80. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. *Nature* **453**, 803-6 (2008).

81. Okamura, K., Balla, S., Martin, R., Liu, N. & Lai, E. C. Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. *Nat Struct Mol Biol* **15**, 581-90 (2008).

82. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. *Dev Biol* **216**, 671-80 (1999).

83. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. *Science* **315**, 241-4 (2007).

84. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in
Drosophila are dependent on the RNAi machinery. *Science* 303, 669-72 (2004).
85. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. *Nat Struct Mol Biol* 11, 121-7 (2004).

86. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. *Nature* 434, 663-6 (2005).
87. Parry, D. H., Xu, J. & Ruvkun, G. A whole-genome RNAi Screen for C. elegans miRNA pathway genes. *Curr Biol* 17, 2013-22 (2007).

88. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. *Mol Cell* **21**, 533-42 (2006).

89. Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. *Rna* **10**, 1518-25 (2004).

90. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. *Science* **309**, 1573-6 (2005).

91. Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. *Nat Struct Mol Biol* **12**, 340-9 (2005).

92. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. *Cell* **127**, 1193-207 (2006).

93. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. *Nature* **448**, 83-6 (2007).

Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. *Genome Res* 17, 1850-64 (2007).
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. *Nat Cell Biol* 10, 987-93 (2008).

96. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. *Genes Dev* **20**, 2214-22 (2006).

97. Saleh, M. C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. *Nat Cell Biol* **8**, 793-802 (2006).

98. Salz, H. K. et al. The Drosophila U1-70K protein is required for viability, but its arginine-rich domain is dispensable. *Genetics* **168**, 2059-65 (2004).

99. Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a piwidependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. *Genetics* **166**, 1313-21 (2004).

100. Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome small star, filled. *Genomics* **82**, 323-30 (2003).

101. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. *Dev Biol* **243**, 215-25 (2002).

102. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. *Nature* **455**, 58-63 (2008).

103. Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. *Science* **315**, 244-7 (2007).

104. Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. *Nat Genet* **40**, 751-60 (2008).

105. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. *Genetics* **152**, 1631-9 (1999).

106. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. *Cell* **99**, 123-32 (1999).

107. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. *Nature* **453**, 534-8 (2008).

108. Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. *Genes Dev* **21**, 644-8 (2007).

109. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. *Nature* **455**, 1124-8 (2008).

110. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. *Carcinogenesis* **29**, 2073-7 (2008).

111. Tolia, N. H. & Joshua-Tor, L. Slicer and the argonautes. *Nat Chem Biol* **3**, 36-43 (2007).

112. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. *Science* **306**, 1377-80 (2004).

113. Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. *Cell* **130**, 299-308 (2007).

114. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptormediated endocytosis in Drosophila S2 cells. *J Biol Chem* **281**, 14370-5 (2006).

115. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. *Science* **313**, 320-4 (2006).

116. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. *Genes Dev* **18**, 1187-97 (2004).

117. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. *Science* **320**, 97-100 (2008).

118. Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. *Mol Cell* **22**, 553-60 (2006).

119. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. *Science* **312**, 452-4 (2006).

120. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. *Nature* **453**, 539-43 (2008).

121. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. *Proc Natl Acad Sci U S A* **103**, 4034-9 (2006).

122. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. *Cell* **127**, 747-57 (2006).

123. Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. *Science* **309**, 1519-24 (2005).

124. Zeng, Y. & Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. *Nucleic Acids Res* **32**, 4776-85 (2004).

125. Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. *Mol Cell* **16**, 597-607 (2004).

Appendix

Drosophila Ago1 binding protein purification

Ago1 Immunoprecipitation

Although the small RNA screens were useful in finding important components within small RNA pathways, a potential problem is the presence of false negative results in the system. This might be due to inefficient knock down by dsRNA, or redundancy. For example, Dcr-1 and Pasha are important components in the miRNA pathway but failed to show a significant effect in the screen when knocked down. There might be more genes that do not affect repression level in our system but still function in the small RNA pathway. One way to address this is to use biochemical approaches to compliment the screen, both to validate the selected candidates, as well as finding "hidden" components.

In the miRNA pathway, one of the most important components, Ago1, was used as the vehicle for analyzing interacting proteins that might also function in the pathway. Flag-Ago1 was stably transfected into *Drosohila* S2 cells, and S10 cell lysate was used for Flag-immunoprecipitation. The precipitated proteins were eluted by 8M Urea, and analyzed by Multidimensional Protein Identification Technology (MudPIT) sequence system.

Ago1 co-precipitated proteins include the small RNA components, Dcr-1, Loquacious, and Fmr1. (Table. A1) The precipitated proteins were categorized into several functional groups, including signal transduction, proteolysis and splicing factors. Those groups are also present in the candidate genes in miRNA screen. The coprecipitation of ribosomal proteins supports previous data that Flag-tagged RpL22, RpL21 or RPs7 were co-immunoprecipitated with Ago1, and ribosomal proteins, RpL22,

111

Rps7, RpL21 and Rp49 co-precipitates with bantam, a miRNA. (Figure 4B and 4C) These results indicate that Ago1 and microRNAs are in ribosomal complex, and function together.

There are eight genes that were found in both in miRNA pathway screen and immunoprecipitation result (e.g. RpS28b, snRNP69D, RpL21). However, the overall overlap between the two sets of results was lower than expected. There are several reasons for this. One reason might be the transient or weak indirect interaction between certain proteins and Ago1, thus preventing a successful co-immunoprecipitation for further analyses. Ago1-independent complexes or processes might also explain the difference between the two techniques, such as the case of Drosha in processing miRNA precursors. These components would not be precipitated by Ago1 immunoprecipitation but could affect miRNA-mediated repression.

Although Dcr-1, Loquacious, and Fmr1 are important small RNA pathway components, the knock down of those genes does not show big changes in target suppression. However, since these proteins were co-immunoprecipitated with Ago1, we argue that even if the genes did not show up either in screen or immunoprecipitation result, they still might have a significant role. The combined screen and biochemistry results should compliment each other and allow for a more comprehensive analysis of the miRNA pathway. Although siRNA components were not analyzed in this study, purification of Ago2 binding protein will no doubt offer the same advantage to the study of the siRNA pathway.

112

	Uniprot kb ID	CG number	Flybase name
RNAi related	Q8INM7	CG6203	Fmr1
	Q9VCU9	CG4792	Dcr-1
	Q9VJY9	CG6866	Loquacious
Cytoskeleton	P06605	CG2512	alphaTub84D
	P08840	CG9359	betaTub85D
	Q9W0W8	CG15792:	zip
	Q9VQ78	CG726	CG726
	P29742	CG9012	Chc
	O62621	CG6699	beta'Cop
	Q00174	CG10236	LanA
	P11046	CG7123	LanB1
	P15215	CG3322	LanB2
Signal transduction	P92177	CG31196	14-3-3epsilon
	Q9VZ23	CG1404	ran
	Q9VWS1	CG6617	CG6617
	P36179	CG17291	Pp2A-29B
	O18640	CG7111	Rack1
	Q9VGP4	CG5252	Ranbp9
Heat shock proteins	P02517	CG4183	Hsp26
	P02516	CG4463	Hsp23
	P82910	CG31366	Hsp70Aa
	Q9VFV9	CG8863	CG8863
	P29844	CG4147	Hsc70-3
	Q24276	CG12019	Cdc37

 Table A1. Proteins precipitated with Drosophila Ago1

RNA binding	Q9VVI0	CG6322	CG6322
	Q8MRG6	CG7757	CG7757
	P40796	CG10922	La
	Q94901	CG8597	lark
	Q9VN21	CG14648	growl
	P07909	CG9983	Hrb98DE
	Q9VU02	CG10753	snRNP69D
	Q9VHP0	CG9748	bel
Ribosomal Protein	Q9W1B9	CG3195	RpL12
	Q9W237	CG4046	RpS16
	Q9W334	CG2998	RpS28b
	Q9VWG3	CG14206	RpS10b
	Q9VTP4	CG7283	RpL10Ab
	Q9VBU9	CG10423	RpS27
	Q9VA91	CG1883	RpS7
	Q9V9M7	CG12775:	RpL21
	Q7PL86	CG17420	RpL15
	Q9W3W8	CG3203	RpL17
	P46222	CG7726	RpL11
	P41093	CG6510	RpL18A
	P48159	CG3661	RpL23
	Q24154	CG10071	RpL29
	P04359	CG7939	RpL32
	P14130	CG1524	RpS14a
	P17704	CG3922	RpS17
	P48588	CG6684	RpS25
	P31009	CG5920	sop
1			

	P41042	CG11276	RpS4
	Q8IMB0	CG2168	RpS3A
	Q8SYL1	CG12792	l(2)09851
	Q9VBN5	CG4759	RpL27
	Q9VS34	CG8615	RpL18
	Q9VNE9	CG1475	RpL13A
	O61231	CG17521	Qm
	Q9VZS5	CG12740	RpL28
	P08570	CG4087	RpLP1
	P05389	CG4918	RpLP2
	P80455	CG11271	RpS12
	Q06559	CG6779	RpS3
Proteainase	Q95029	CG6692	Cp1
	Q9VN93	CG12163	CG12163
	Q9VW19	CG9372	CG9372
Other proteins	P41073	CG6143	Рер
	Q9VT61	CG8108	CG8108
	Q9VHI7	CG11982	CG11982
	Q9W153	CG4622	CG4622
	Q9VNA3	CG11999	CG11999
	Q9VR80	CG17068	CG17068
	Q9VRP3	CG5495	Txl
	Q9VK59	CG5787	CG5787
	Q9VIT9	CG10363	TepIV
	Q8IPZ5	CG9641	CG9641
	O97365	CG6378	BM-40-SPARC
	P17336	CG6871	Cat

Q9V405	CG16916	Rpt3
Q9VLT5	CG14472	рое
Q9VXD5	CG18572	r
Q9W362	CG12058	mxc
P14199	CG10360	ref(2)P
Q9XZ21	CG3231	snama
Q9VRV1	CG10289	CG10289
Q9W4C1	CG15784	CG15784
Q9VTC4	CG7949	CG7949
Q9VK69	CG5525	CG5525
Q9VPQ2	CG4164	CG4164
Q8MT18	CG5028	CG5028
Q9VLX0	CG7144	CG7144

Method

FLAG-Ago1 stably expressing S2R cells were lysed in hypotonic buffer and spun at 30,000*g*. The lysate was supplemented with 150mM NaCl and 0.1% NP40, and incubated with FLAG beads. The beads were washed and eluted with 8M Urea. The eluted samples were analyzed by MUDPIT sequence system.