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Abstract of the Dissertation

Regulation of Transcription in the Fission Yeast
Schizosaccharomyces pombe

by

Adam Phillip Rosebrock

Doctor of Philosophy

in

Molecular Genetics and Microbiology

Stony Brook University

2009

Although eukaryotic genomes contain a wide repertoire of sequence el-
ements, only a subset are highly transcribed during any single stage of
growth. Proper regulation of various transcriptional programs enables
both the cyclic behavior of dividing cells and the capacity to respond to
environmental or developmental cues. Conversely, dysregulated transcrip-
tion is a hallmark of many diseases including cancer.

Previous high-throughput studies have successfully employed a reduction-
ist approach of quantitating predicted functional transcripts. Using these
methods, I have characterized the cell-cycle regulated genes of the fission
yeast, Schizosaccharomyces pombe, assigned putative transcription factors
to many of the oscillating genes, and identified transcription programs and
regulatory schemes present from yeast to man.

In subsequent studies, I have shown that far more of the genome is tran-
scribed than is accounted for by traditional expression microarrays; unbi-
ased measurements using high-resolution strand-specific tiling arrays re-
vealed that processed RNAs are generated from greater than 90% of the
S. pombe genome, including previously unappreciated antisense species.
I have identified hundreds of discrete non-coding RNAs that result from
bidirectional activity of promoters upstream of known genes, and present
evidence that non-coding transcription plays an evolutionarily conserved
role in genome partitioning by de-coupling co-expression of adjacent genes.

arosebro
Text Box
iii



Non-coding transcription also plays a direct role in regulation of gene
expression. Many strong antisense transcripts are present in vegetative
cells, and disproportionately represent genes exclusively expressed during
mid-meiosis. I have demonstrated that antisense transcription represses
expression of these genes, whose ectopic expression is often toxic to vegeta-
tive cells. Repression by antisense transcriptional interference supersedes
previously proposed mechanisms for several genes, and appears to be a
widespread method of regulating transcription.
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1 Introduction

Genomes contain far more information than is used at any given time. Expression

must be carefully regulated to ensure that cells can properly respond to external

cues, progress through an ordered cell cycle, and to restrict the overlap of mutually

incompatible programs. Regulation of transcript levels occurs through several mech-

anisms, such that steady state RNA concentrations represent the integrated effects

of transcription and RNA turnover.

1.1 Yeast as model organisms

Yeast have served man since early civilization. Saccharomyces cerevisiae, known as

budding, baker’s, or brewer’s yeast, has been domesticated for more than 9000 years

(McGovern et al., 2004; Legras et al., 2007), and was one of the first microscopic or-

ganisms visualized by van Leeuwenhoek nearly a third of a millennium ago (Matthews

and Lott, 1889). In the modern laboratory, yeast have become indispensable model

organisms: they are cultured and manipulated with the ease of bacteria, yet house

the same organelles and rely on many of the same biochemical and genetic functions

of higher eukaryotes. Largely due to their diverse biology and clinical / industrial

relevance, many different yeasts are used in the lab. My work has spanned sev-

eral yeast genera, including Saccharomyces (Lo et al., 2008), Candida (Alvarez et al.,

2008), and focused primarily on Schizosaccharomyces (Oliva et al., 2005; Mickle et al.,

2007; Dutta et al., 2008; Patel et al., 2008; Viladevall et al., 2009). Although non-

pathogenic and of little Western industrial use, the fission yeast Schizosaccharomyces

pombe has been employed as a model organism for genetic and cell-cycle studies for

more than fifty years . Budding and fission yeast represent vastly different branches

of the mycological family tree, have diverged significantly across more than one billion
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Organism Genome Size Gene # gene density Introns/gene
H. sapiens 3.2Gbp ~30,000 100,000nt ~8
S. pombe 14.1Mbp 4970 2,837nt 1.0

S. cerevisiae 12.1Mbp 6607 1,831nt 0.061
E. coli 4.6Mbp 4288 1,072nt –

Table 1: Genome statistics for various model organisms

years (Heckman et al., 2001) – a distance greater than that between green algae and

vascular plants – and provide orthogonal views of conserved eukaryotic biology.

Compared to metazoa, these model yeasts encode the entire repertoire of eukary-

otic life into compact genomes of five to six thousand genes (see table 1). Prior to the

widespread availability of transgenic mouse production or transient gene knockdown

(reviewed in Paddison and Hannon (2002)), basic techniques used by yeast geneti-

cists, such as targeted gene disruption, were inaccessible in higher eukaryotes. Even

after the development of reverse genetic tools for complex organisms (Silva et al.,

2004), parsimoniously-encoded yeast genomes have provided fertile ground for dis-

covery of gene function; a recent screen for genes involved in mitochondrial biogenesis

revealed more than 100 previously unassociated genes, half of which are conserved

in mammals (Hess et al., 2009). As a testament to both the scientific importance of

budding yeast and the small size of its genome, S. cerevisiae was the first eukaryote

(and second free-living organism) whose genome was fully sequenced (Goffeau et al.,

1996). Completion of the fission yeast genome more than half a decade later (Wood

et al., 2002), underscored the differences in genomic organization between these two

yeasts who, despite similar total genome size, have significantly different gene densi-

ties and transcript structure. The lower gene density of fission yeast is due to longer

inter-gene spacing and far more introns than present in budding yeast, and we and

other recent reports have shown that larger 5’ and 3’ untranslated regions (UTRs)
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of genes comprise roughly 10% of the genome (Wilhelm et al., 2008; Dutrow et al.,

2008).

In addition to differences in genome organization, each yeast uniquely shares bio-

chemical or organellar function with higher eukaryotes. Heterochromatic silencing of

the telomeres and rDNA occurs in both yeasts, but is mediated by different mecha-

nisms. RNA interference (RNAi), a mechanism conserved from fission yeast through

man, guides heterochromatin formation in S. pombe, while budding yeast, which

lacks all components of the RNAi machinery, uses a unique yeast-specific mechanism

(Huang, 2002). Centromeres in budding yeast are extremely small, on the order

of 200nt (Meluh and Koshland, 1997), while fission yeast centromeres are long, 35-

110kb, heterochromatic sequences (reviewed in Ekwall (2004)) which more closely

resemble those found in metazoa. Despite these similarities, S. pombe is not “closer”

to mammals than S. cerevisiae, and several key biochemical pathways or even entire

organelles are missing in S. pombe. For example, budding yeast have well-developed

peroxisomes, mutations in which mimic dysfunction seen in human neurological dis-

ease (Lazarow, 1995). Long considered absent or vestigial, peroxisomes have only

recently been identified conclusively in fission yeast (Jourdain et al., 2008). Despite

these and numerous other idiosyncrasies, each yeast has served as an excellent model

system and continues to provide a complementary set of tools for various aspects of

molecular and cellular biology.

A compelling use for these “simple” model eukaryotes is in the reductive study of

human disease. Deregulation of the cell cycle and bypass of checkpoint control is a

key event in neoplasia (reviewed in Hanahan and Weinberg (2000)), and many of the

key cell-cycle regulators and checkpoint mediators in man have orthologs in yeast.

An elegant example of the direct applicability of cross-species analysis comes from

early work by Nurse on Cdc2p, in which human cdc2 was identified by complemen-
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tation of defective S. pombe cdc2 (Lee and Nurse, 1987). Later work demonstrated

the inhibitory role of S. pombe Cdc2p Tyr15 phosphorylation on cell-cycle progres-

sion (Gould and Nurse, 1989), findings which were later mirrored (down to the exact

phospho-residue!) in human cell lines (Jin et al., 1996). It is perhaps not surpris-

ing that such a fundamental process is conserved across species; it is the degree of

conservation, 65% identity and nearly 80% similar matches, which is striking. De-

spite their compact genomes housing one fifth the genes in barely 1/2500th the total

nucleotide space of mammals, yeast encode many proteins relevant to a wide range

of clinical conditions. Studies in yeast have provided data relevant to a number of

diseases and associated processes, including control of the cell cycle (Nurse, 2002),

cancer and DNA damage (Workman et al., 2006), apoptosis (Madeo et al., 2004),

lipid homeostasis (Hughes et al., 2005), regulation of drug metabolism (Hughes et al.,

2007), diabetes (Hong et al., 2003), mitochondrial dysfunction (Perocchi et al., 2008;

Barrientos, 2003), retroviral infection (Irwin et al., 2005), and prion diseases (Collinge

and Clarke, 2007). Perhaps most striking, given the complexity of the human brain,

is the number of neurodegenerative disorders with orthologous mutations in yeast, in-

cluding Parkinson’s, Alzheimer’s, Huntington’s (Outeiro and Muchowski, 2004), and

Batten’s disease (Vitiello et al., 2007), and the large number of neuronal proteins

with strong yeast orthologs (Wood et al., 2002). Beyond elucidating basic cellular

processes, yeast have provided insight into complex human conditions.

In addition to their utility as models of human disease, yeast continue to provide

an excellent system in which to study basic genetic and biochemical processes. Yeast

can be grown en masse using low cost media and equipment, and rapidly reach high

culture densities. In addition, yeast cultures can be made highly synchronous such

that large populations of cells corresponding to a single phase of the cell cycle can

be analyzed. Many methods of synchronizing yeast cultures have been established
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(reviewed in Futcher (1999)), and include physical (eg. elutriation and gradient cen-

trifugation), genetic (eg. temperature sensitive cell-cycle mutants such as cdc25-22

(pombe) and CDC28-13 (cerevisiae)), and chemical (eg. nocadazole or alpha factor

arrest) techniques. Mitchison’s measurement of macromolecular synthesis in S. pombe

nearly 50 years ago demonstrated cell-cycle linked stepwise synthesis of RNA, DNA,

and protein by metabolic labeling; technological advances over the past half century

have permitted an “extension” of this elegant experiment is the analysis of individual

transcript abundance throughout the cell cycle as presented in this thesis on page 41,

below.

1.2 The Cell Cycle

Cell division is the only path to immortality –Schleiden and Schwann (1838).

Coordination of the growth, DNA replication, and division of individual cells is re-

quired for the perpetuation of free living organisms. Regulation of these events,

together comprising the cell cycle, is central to life. The universal nature of this

process is exemplified by the studies of sea urchins, fission, and budding yeast which

shared the 2001 Nobel prize in medicine (Hartwell, 2004; Hunt, 2002; Nurse, 2002)

due, in part, to their widespread applicability to human life and disease. While the

exquisite mechanisms of proper cell cycle control went unnoticed for thousands of

years of scientific study, the panoply of human morbidity caused by aberrant cell cy-

cle progression has undoubtedly been witnessed since the dawn of man; dysregulation

of the cell cycle is central to many illnesses including cancer.

Regulation of the cell cycle in higher eukaryotes results from the association of dif-

ferent CDKs with certain cyclins at various phases of the cell cycle. Fission yeast, in

contrast, have a single cell-cycle driving CDK, Cdc2, which associates with different
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cyclins throughout the cell cycle; levels of Cdc2 remain relatively constant throughout

the cell cycle, shifting regulation of Cdc2 activity to its associated cyclins. During

G1, Cdc13-CDK activity is kept at bay by the inhibitory activity of Rum1, whose

expression begins at mitotic anaphase. At the G1/S transition, Rum1 is itself phos-

phorylated and subsequently degraded, leaving the now uninhibited Cig2-CDK free to

induce S-phase entry (Benito et al., 1998). At replication origins, the heterohexameric

ORC recruits, among others, Cdc18 and Cdt1, leading to MCM2-7 association and

formation of the pre-RC and origin licensing. Fewer than 50% of these licensed origins

actually fire in a given S-phase (Mickle et al., 2007), and do so only after activation by

the Hsk1-Dfp1 kinase(Patel et al., 2008). Re-licensing is precluded by the Cig2-CDK

phosphorylation mediated proteolysis of Cdc18, whose transcription is downregulated

in S-phase; Cdc18’s MCM loading activity is restricted small window in mitosis and

G1. Mitosis is initiated by a spike in Cdc13-CDK activity. Cdc13-Cdc2 is present

throughout G2, but activity is kept low by inhibitory phosphorylation of Cdc2 on

Tyr15 by Wee1 and Mik1. Inactivation of Wee1/Mik1 kinases and dephosphoryla-

tion of Cdc2 by Cdc25 permits a rapid increase in Cdc13-CDK activity; expression

of Cdc25p is highly sensitive to protein biosynthetic capacity, and critical size may

be sensed through increased eIF4A activity and the subsequent spike in Cdc25 levels

(Daga and Jimenez, 1999). During mitosis, Rum1 begins to accumulate, inhibiting

Cdc2-Cdc13 activity, and the cycle continues.

Periodic transcription and coherent gene loops

Periodic expression of cell-cycle relevant genes in a once-per-cycle fashion was first

recognized for yeast histone mRNAs. Control of the cell cycle is afforded by mul-

tiple mechanisms. Regulated transcription, post-translational protein modification,

and protein degradation are all involved in unidirectionally driving the cell cycle. In
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budding yeast, at least one transcription factor in each cell-cycle regulated complex

oscillates with a once-per-cycle period (Pramila et al., 2002). This factor promotes

expression of the next “wave” of transcription, generating forward motion through

the cell cycle. In addition, a given transcriptional wave often generates factors which

repress the preceding program, enforcing a ratchet-like forward progression . In bud-

ding yeast, the G1 transcription factors SBF and MBF activate transcription of NDD1.

Ndd1p, in turn, activates the Fkh2p-Mcm1p transcription factor complex, which leads

to G2/M transcription of ACE2 and SWI5. Mcm1p, Ace2p, and Swi5p direct tran-

scription of SWI4, the DNA binding component of SBF, and activate transcription

of CLN3, the result of both being increased SBF/MBF activity and completion of

the cycle. Regulation of transcription factor activity relies on far more than acti-

vation of factor transcription (1). Ace2p, for example, is differentially localized to

the daughter cell, where it acts on an overlapping, but not identical, set of genes as

the mother-specific Swi5p. Both Ace2p and Swi5p activity is regulated by selective

nuclear localization; phosphorylation by CDK masks the nuclear localization signal

and results in cytoplasmic sequestration of the factors, precluding their DNA binding

functions (Moll et al., 1991; O’Conallain et al., 1999).

Similar feed-forward transcriptional loops are present in fission yeast, and are

detailed below (see manuscript on page 41).

Meiosis is an alternate cell “cycle”

In all sexual species, an alternate cell cycle exists in which one round of DNA synthesis

is followed by two successive divisions of the cells’ genetic complement. This process

is fundamentally conserved across eukaryota, but has evolved to serve quite different

functions in different organisms. In higher eukaryotes, meiosis is initiated within

germ cells by extrinsic cues from the surrounding cell layers; the resulting gametes
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Figure 1: Serial feedback drives cell-cycle transcription in budding yeast.
Tandem transcriptional waves generate a cycling behavior. Transcription factors
driving a given step in the cell cycle are expressed by the previous wave, such as
the SBF/MBF regulated expression of Fkh2. Expression of a given factor is often
autoregulatory, both positively, such as the SBF-driven expression of Swi4, and nega-
tively, as exists for the MBF-dependent repression of MCM1 through Yox1p. Figure
modified from Breeden (2003).
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are often the sole means of reproduction for an organism. In both budding and fission

yeast, meiosis occurs as a response to nutrient starvation (and quorum) signals, and

generates environmentally resistant spores that are capable of weathering conditions

unsurvivable by the vegetative cell. In both upper and lower eukaryotes, entry into

the meiotic program is carefully controlled by multiple regulatory layers. Given the

critical importance of proper meiosis on the agricultural and medical fields, the study

of conserved mechanisms underlying meiotic regulation and fidelity are excellent uses

for tractable model yeasts.

The fission yeast life-cycle is effectively triphasic. When grown in nutrient rich

conditions capable of supporting proliferation, cells (generally haploid in the case of

S. pombe) clonally divide through mitosis. In nutrient limiting conditions, mitotic cy-

cling halts, and cells enter a stationary phase at either G2 (for carbon starvation; in

this state, post-S cells have a second copy of the genome from which to enact DNA re-

pair as needed (Costello et al., 1986)) or accumulate at G1 (for nitrogen starved cells).

When nitrogen-starved cells of both mating types are present in mixed culture (in-

cluding homothallic h90 strains), conjugation and mating occur followed immediately

by meiosis which generates four haploid spores. Diploids will only cycle mitotically

if moved from conjugation-promoting to rich media; when these cells experience nu-

trient depletion, G1 arrest occurs, followed by entry into the meiotic program akin to

freshly-conjugated haploid pairs.

Entry into and progression through the meiotic cell cycle requires several key

mitotic regulators. Cdc2 is required for the transition from G1 to pre-meiotic S, in

cooperation with Cig2, and for the second meiotic division; and Cdc13 and Cdc25

are required for both the first and second meiotic divisions (Iino et al., 1995). During

pre-meiotic S, genes involved in mitotic DNA synthesis including cdc18, cdt1, cdc22

(detailed below in figure 13 on page 63) are expressed in addition to a number of
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meiosis-specific genes involved in meiotic recombination and meiotic cohesin loading,

eg., rec8 and rec11 (detailed analysis of the fission yeast meiotic program is presented

in Mata et al. (2002)). Regulation of these genes in both mitotic and meiotic cells is

conferred by DSC1 (homologous to budding yeast MBF), consisting of Cdc10, Res1,

Res2, and Rep2 in mitosis, and the combination of Cdc10, Res2, and uniquely Rep1

during pre-meiotic S (Sugiyama et al., 1994). Regulation of genes shared between

mitotic and meiotic programs can be conferred by cycle-specific regulators, such as

the induction of cdc25 by Mei4 in mid-meiosis.

Commitment to meiotic entry must be carefully regulated. Inappropriate entry

into the sporulation program is energetically wasteful, and requires the expense of

numerous cell-cycles worth of lost competitive time in mixed culture. Conversely,

failure to heed the environmental cues which indicate inability to support further

mitotic growth could result in the exposure of a relatively fragile vegetative cell to

harsh external conditions. As a result, a “razor’s-edge” regulatory switch has evolved,

and includes overlapping layers of transcriptional regulation and regulation of meiotic

message processing, stability, and turnover.

A number of meiotic genes are transcribed in mitotic cells, but contain a sequence

element termed the “determinant of selective removal”, or DSR which precludes their

accumulation in non-meiotic cells. The DSR element is bound by Mmi1, an RNA

binding protein containing a YT521-B homology domain, and directs their degra-

dation in an Rrp6-dependent manner (Harigaya et al., 2006). Inactivation of Mmi1

in vegetative cells leads to aberrant expression of meiotic genes, including targets

of Mei4, a meiosis-specific FHA domain containing transcription factor. Induction

of meiotic genes following disruption of only Mmi1 strongly suggests that negative

regulation conferred by the DSR/Mmi1/Rrp6 system is constantly required to keep

expression of meiotic genes at bay, and does not serve as a dispensable “safety net”
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for ectopic expression of meiotic genes.

As Mmi1 acts in a pathway which degrades DSR-containing meiotic messages,

downregulation of its function is required for entry into and progression through

meiosis. In vegetative cells, Mmi1 is localized throughout the nucleus. During mei-

otic prophase, Mmi1 signal converges at a single point in the nucleus, colocalized with

the Mei2 dot, in a mei2 and meiRNA dependent manner. A model of Mmi1/Mei2

interaction from the Yamamoto lab proposes that during meiosis, a Mei2p/meiRNA

complex sequesters Mmi1 to a discrete focus from which it is unable to direct degra-

dation of DSR-containing transcripts. Mei2 expression in vegetative cells is regulated

by the Pat1 Ser/Thr kinase, both by direct phosphorylation followed by ubiquitin me-

diated proteolysis and indirect repression of transcription by phosphorylation of the

Ste11 transcription factor and its subsequent sequestration by 14-3-3 protein Rad24

(Kitamura et al., 2001).

Pat1 kinase activity negatively regulates meiotic entry, and can be perturbed to

induce meiosis in otherwise unfavorable conditions. Presence of both mat-M and

mat-P is required for meiotic entry, as is normally achieved by conjugation of h−

and h+ cells. Heterothallic strains will arrest in G1 when nitrogen starved, but can

be pushed into meiosis by inactivation Pat1, as is accomplished by shifting cultures

harboring homozygous copies of the temperature sensitive pat1-114 allele to restrictive

temperature. The resulting meiosis is relatively synchronous, as it allows all cells to

be arrested at G1 prior to accumulation of Mei2 and Ste11 function. This synchronous

meiotic induction has been widely used in the community, including my own work

below.

In addition to targeted degradation of meiotic transcripts in vegetative cells, pre-

vious work in the lab of Janet Leatherwood demonstrated that regulated splicing

provides an additional mechanism to preclude translation of meiotic gene products
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during mitosis. The splicing status of many early and mid-meiotic genes was exam-

ined, and it was demonstrated that many (extrapolated to 10%) of these meiosis-

specific genes were transcribed but not spliced in vegetative cells. At various times

during a synchronous meiosis, spliced transcripts were formed, often concomitant with

upregulation of expression. Among the genes identified as differentially spliced were

the meiosis-specific cyclins rem1 and crs1 (the latter named as “Cyclin Regulated by

Splicing”) (Averbeck et al., 2005). Of note, I believe that much of what was considered

“regulated splicing” is a technical artifact of the RT-PCR analysis used; the majority

of genes for whom regulated splicing was proposed are transcribed on the antisense

strand in vegetative cells. These antisense transcripts inherently lack splicing signals,

but are detected by PCR. Although regulated splicing does appear to be a valid reg-

ulatory mode for several genes (notably including crs1), my work (detailed below in

section 4) strongly suggests that the interference of antisense transcription engenders

regulatory function for these early genes. Regulated splicing appears to be used for

only a minority of early meiotic genes.

1.3 Eukaryotic transcriptome complexity

In their seminal work characterizing the lac operon of E. coli, Jacob and Monod

described a neatly organized paradigm for genetic regulation in which a discrete cod-

ing region is flanked by separable promoter and termination sequences (Jacob and

Monod, 1961). This linear model of gene regulation has been supported by nearly

a half century of genetic and biochemical studies, and conceptually extended to en-

vision a genome consisting of tandem discrete transcription units. This model ac-

counts for the output of a single transcript from any given locus, the regulation of

transcription exclusively by upstream untranscribed control elements, and regulation
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SporulationSMeiosis II

Meiosis I G1 G2

stationary
phase

Meiotic cycle Mitotic (vegetative) cycle

pre-meiotic
S phase

conjugation

Figure 2: The mitotic and meiotic cell cycles of fission yeast.
Although considerable re-use of individual genes occurs, vegetative growth and meio-
sis are the result of separate transcriptional programs. Entry into the meiotic cycle
normally occurs following the conjugation of nitrogen starved, G1 arrested cells of
opposite mating types. These diploid cells undergo a single round of pre-meiotic
DNA synthesis coupled with extensive crossover formation and placement of meiotic
cohesins, followed by two rounds of nuclear division without intervening S phases.
Finally, the late meiotic program directs packaging of these haploid nuclei into envi-
ronmentally resistant spores. Upon return to a favorable environment, germination
occurs followed by re-enter into the (haploid) mitotic program.
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of termination and transcript processing by downstream flanking sequences. With

this model in mind, many useful tools have been developed and fruitful studies ex-

ecuted. Expression microarrays, detailed below on page 27, are designed provide a

genome-wide snapshot of known transcripts, where a short (often strand-nonspecific)

probe serves as a proxy for a single larger transcript. Studies of protein-DNA inter-

actions, including chromatin immunoprecipitation (ChIP) on chip and bioinformatic

sequence motif searches, have largely focused on the transcription start site proximal

sequences upstream of interrogated transcripts. Probes contained on commercial (and

many custom-spotted) arrays designed for ChIP/chip exclude transcribed sequences

entirely, reflecting an presumed lack of factor-binding function by sequences outside of

this narrowly defined window. Despite the successes of these reductionist approaches,

it has been well established that transcription occurs from far more than these coding

elements, and that regulation occurs by a wide variety of mechanisms not limited to

protein-DNA interactions at upstream sequence elements.

Eukaryotic genomes are extensively transcribed

Following the discretized model of genome organization presented by Jacob and

Monod, transcribed material should correspond to functional elements, generally dis-

crete protein coding and structural RNAs. Subsequent work has demonstrated that

this overly simple model is incomplete. Studies of sea urchin gastrulae performed

during the 1970s found that total nuclear RNA pools were greater than ten times

more complex than the RNAs present on polysomes, and corresponded to nearly 30%

of the nonrepetitive genome (Hough et al., 1975). Although the identity of these

RNAs was unknown, far more material was transcribed than could be accounted for

by translated sequences. Twenty years later, the Vogelstein lab identified robustly

transcribed polyadenlyated RNAs lacking discernable open reading frames as part of
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the transcription complement of human cells (Velculescu et al., 1995). This finding,

made during the development of serial analysis of gene expression (SAGE), was the

harbinger of future methods for unbiased transcript detection and examination of

unannotated RNAs.

Though Cot analysis and small-scale transcript sequencing had demonstrated that

nuclear RNA pools contained far more than coding sequence, the extent of non-coding

transcription was not fully appreciated until the advent of high resolution studies us-

ing large scale sequencing and tiling arrays. “Genome wide” studies of transcription

in human cell lines were first performed along the relatively accessible 95 million base

pairs comprising chromosomes 21 and 22. These pilot experiments revealed that more

than 90% the bases present in stable transcripts were extra-exonic and non-coding. In

addition, more than 26% of the genomic regions analyzed were transcribed (Kapranov

et al., 2002), consistent with previous bulk hybridization studies. A plausible expla-

nation for this (and previously estimated) widespread transcription was “sampling”

of the genome by RNA Pol II, which would generate diverse and diffuse transcript

species from permissive chromatin across the genome. Further examination along

these exemplar human chromosomes revealed tens of thousands of binding events for

several transcription factors, including Sp1, cMyc, and p53, and these ChIP on chip

defined binding events were strongly correlated with the transcription start sites of

the previously identified non-coding RNAs. These findings strongly suggested that

instead of sampling, directed transcription was responsible for generation of many

extra-exonic transcripts (Cawley et al., 2004).

Greater transcriptome complexity results from the presence of relatively unpro-

cessed RNAs. In addition to the previously studied polyA+ fraction, much of the

genome is transcribed into unadenylated or uncapped forms. Two thirds of all het-

erogeneous large nuclear RNAs are capped but unadenylated, and the majority of
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capped RNAs are absent from polysomes (Salditt-Georgieff et al., 1981). Additional

complexity results from the different populations present in the cytoplasm and those

confined to the nucleus. Subsequent tiling array studies addressed these complexi-

ties by profiling different “compartments” of transcripts, based on subcellular fraction

(cytoplasmic vs nuclear localization) and polyadenylation status (Cheng et al., 2005).

Technological advances permitted the analysis of 30% of the human genome, a far

larger fraction than was previously possible, and enabled the comparison of tran-

scripts derived from chromosomes with varying gene density. A striking feature of

these studies was the relatively fixed transcript density of different chromosomes. On

gene-rich chromosomes, such as Chr19, nearly half of the transcripts identified mapped

to previous annotations, while only 13% were intergenic. The inverse was noted on

gene bereft Chr13, where nearly 45% of transcripts were previously unidentified inter-

genic species and only 17% corresponded to previously identified or predicted RNAs.

Unannotated “junk DNA” was found to be actively transcribed and processed largely

without a clear functional role, demonstrating that at the very least, this genomic

“dark-matter” contributes to cellular transcript pools.

Hybridization based techniques are inherently limited to measuring the short

stretch of RNA corresponding to each probe; the overall structure of associated

transcripts remains unknown. A possible explanation for the observed widespread

transcription was the presence of many overlapping relatively short transcripts, or

transcripts with unconserved end positions. Large scale sequencing based approaches

were subsequently used to provide both quantitation and detailed transcript struc-

ture analysis, exemplified by the massive collaborative effort between the RIKEN and

FANTOM consortia to sequence the mouse transcriptome completed in 2005 (Carn-

inci et al., 2005). Seven million 5’ end tags (via Cap Analysis of Gene Expression,

CAGE (Shiraki et al., 2003)), more than one million paired end tags (Ng et al., 2005),
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and roughly 100,000 full length mouse cDNAs were generated in an effort to char-

acterize the breadth of mammalian transcription. From these data, nearly 200,000

unique transcripts were identified, reflecting a genome complexity at least an order

of magnitude above the previously estimated 20,000 genes (Mouse Genome Sequenc-

ing Consortium, 2002). While many of the newly-identified transcripts were splice

variants, transcripts with alternate 5’ and 3’ untranslated regions, or previously unan-

notated genes with protein coding potential, a vast number of non-coding transcripts

were identified, accounting for more than 33% of all sequences. Only a fraction of

these novel non-coding transcripts were identified as singletons, suggesting that many

of these species are the output of directed transcription and processing and not the

result of stochastic sampling.

Functional non-coding transcripts

Non-coding species represent the vast majority of transcriptional output from the hu-

man genome, recently estimated at 98% of all RNAs (Mattick, 2005). Over the last

decade, a renaissance of RNA biology has occurred, resulting in the characterization

of many new classes of functional RNAs. Studies of small RNAs have been especially

fruitful, where a variety of mechanisms have been shown to regulate gene expression

and chromatin structure through a wide range of processed species. Regulatory tran-

scripts had been proposed by Jacob and Monod, who envisioned the lac repressor

was, in fact, RNA; although LacI turned out to be protein, regulatory RNAs are

indeed present in eubacteria. In addition, a richer palette of non-coding RNA regu-

latory functions has been described in eukaryotes; since the Ruvkin and Ambros labs

discovery of the first functional small RNA in C. elegans in 1993 (Lee et al., 1993;

Wightman et al., 1993), many classes of short functional species have been identi-

fied, and advances in high-throughput short read sequencing have made possible the
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exhaustive identification of variously sized populations from a number of organisms.

The breadth of small RNA biology is beyond the scope of this document, and the

brief overview that follows is intended to highlight their diversity of form, formation,

and function.

The ability of non-coding RNAs to affect gene expression was demonstrated more

than twenty years ago. Here at Stony Brook, Inouye and colleagues identified a

short transcript in E. coli which had strong homology to the reverse complement of

OmpC, a well-regulated component of the outer membrane (Mizuno et al., 1984).

This “mRNA-interfering complementary RNA” was shown to decrease translation

and overall stability of the sense transcript, presumably through formation of an

RNA:RNA hybrid. Competing work performed in Nancy Kleckner’s lab demonstrated

that activity was conferred in trans, and that translation of the Tn10 transposon’s

active insert was suppressed by the presence of small RNA complementary to the 5’ of

the transposase transcript (Simons and Kleckner, 1983). In both cases, binding of the

regulatory RNA occurred near the 5’ end of the regulated transcript. While presence

and binding of this complementary transcript reduces translation, an extant question

is whether this occurs through direct occlusion of ribosome engagement, direction of

transcript turnover, or a combination of the two (addressed in Gottesman (2005)).

Similar in spirit to eubacterial “interfering complementary” transcripts, microR-

NAs are short single stranded RNAs which function in direct modulation of transla-

tion and regulation of target turnover through direct target cleavage, deadenylation,

and translational repression. These 21-23nt species result from the processing of

highly structured pol II/ pol III transcripts by the RNAse III Drosha and its partner

Pasha/DGCR8(Denli et al., 2004), are shuttled to the cytoplasm by exportin-5, and

finally cleaved by Dicer into their mature from. Processed microRNAs are strand-

specifically loaded into Argonaute proteins where they function independent of Ago’s
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Subfamily Ago-family protein C lass of small RNA* Length of small RNA Origin of small RNA‡ Mechanism of action

Mammals

Ago AGO1–4 miRNA 21–23 nt miRNA genes Translational repression, 
mRNA degradation, 
mRNA cleavage and 
heterochromatin 
formation?

endo-siRNA§ 21–22 nt Intergenic repetitive 
elements, pseudogenes 
and endo-siRNA clusters

mRNA cleavage?

Piwi MILI (PIWIL2 in 
humans)

Pre-pachytene piRNA 
and pachytene piRNA

24–28 nt Transposons and piRNA 
clusters

Heterochromatin 
formation (DNA 
methylation)

MIWI (PIWIL1 in 
humans)

Pachytene piRNA 29–31 nt piRNA clusters ?

MIWI2 (PIWIL4 in 
humans)

Pre-pachytene piRNA 27–29 nt Transposons and piRNA 
clusters

Heterochromatin 
formation (DNA 
methylation)

(PIWIL3 in humans) ? ? ? ?

Drosophila melanogaster

Ago AGO1 miRNA 21–23 nt miRNA genes Translational repression 
and mRNA degradation

AGO2 endo-siRNA ~21 nt Transposons, mRNAs and 
repeats

RNA cleavage

exo-siRNA ~21 nt Viral genome Viral RNA cleavage

Piwi AUB piRNA 23–27 nt Transposons, repeats, 
piRNA clusters and Su(Ste) 
locus

RNA cleavage

AGO3 piRNA 24–27 nt Transposons and repeats 
(unknown in testis)

RNA cleavage

PIWI piRNA 24–29 nt Transposons, repeats and 
piRNA clusters

Heterochromatin 
formation?

Schizosaccharomyces pombe

Ago Ago1 endo-siRNA ~21 nt Outer centromeric repeats, 
mating-type locus and 
subtelomeric regions

Heterochromatin 
formation

Arabidopsis thaliana ||

Ago AGO1 miRNA 20–24 nt miRNA genes mRNA cleavage and 
translational repression

endo-siRNA (tasiRNA 
including TAS3)

21 nt TAS genes mRNA cleavage

exo-siRNA 20–22 nt Viral genome Viral RNA cleavage

AGO4 and AGO6 rasiRNA 24 nt Transposons and repetitive 
elements

Heterochromatin 
formation

AGO7 miR-390 21 nt miRNA gene Cleavage of TAS3 RNA

*Small RNAs that are the main partners of a given Ago protein are listed. ‡miRNAs, as a class, are expressed in all cell types, whereas endo-siRNAs and piRNAs are 
expressed abundantly in germ cells and contribute to germline development. §So far, only AGO2 has been shown to be required for endo-siRNAs. ||Plants have ten 
Ago proteins, but only those with known small RNA partners are shown. Ago, Argonaute; AUB, Aubergine; endo-siRNA, endogenous small interfering RNA; 
exo-siRNA, exogenous small interfering RNA; miRNA, microRNA; nt, nucleotide; piRNA, Piwi-interacting RNA; rasiRNA, repeat-associated siRNA; Su(Ste), 
Suppressor of Stellate; TAS, tasi gene; tasiRNA, trans-acting siRNA.

Table 2: Classes of functional RNAs. Reproduced from Kim et al. (2009).
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slicer and endonuclease activities (reviewed in Winter et al. (2009)) through mecha-

nisms incompletely understood. This function of argonaute appears to be restricted

to higher eukaryotes; to date, there is no evidence that microRNAs exist in either

fission or budding yeast.

Small interfering RNAs (siRNAs) are found across multicellular plants and an-

imals, and also in fission yeast. These short (usually 21nt) RNAs are generated

from endogenous transcripts (outer centromeric and subtelomeric repeat regions in

S. pombe, transposons and other repetitive sequences in mammals and flies) and

function in either direct mRNA cleavage or formation of heterochromatin through

Argonaute (Ago) family proteins. Ago loading requires a double-stranded RNA tem-

plate. This can be accomplished by endonucleolytic cleavage of a double-stranded

RNA template, as occurs during processing of pre-miRNAs or dsRNA viral genome

intermediates, bidirectional transcription of complementary sequences, or following

synthesis by an RNA dependent RNA polymerase (RdRP). The entire RNAi path-

way is present in fission yeast, and one copy each of Dicer (Dcr1), Argonaute (Ago1),

and the RdRP (Rdp1) is encoded in the S. pombe genome. They are required for

proper establishment and maintenance of heterochromatin, but are apparently un-

involved in regulation of euchromatic genes transcribed from both strands (Hansen

et al., 2005).

Transcription interference

In addition to the regulatory RNAs discussed above, many classes of proteins affect

transcription, ranging from DNA-binding transcription factors and components of

the basal transcription apparatus to silencing and RNA processing machinery. As

has been previously described in context of the cell cycle, elegant regulatory mech-

anisms have evolved which increase or reduce transcription of a number of targets,
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often including the factor itself in regulatory feedback. In this paradigm, activity is

conferred by the encoded protein, which in turn acts on the transcription machinery or

chromatin to modulate transcription. Individual genes are not transcribed in vacuo,

however, and both genomic and transcriptional context play important regulatory

roles.

The very act of transcribing an adjacent or overlapping/abutting sequence has

been shown to affect both transcript abundance, identity, and processing. Depending

on the regulatory context, this influence can be either positive or negative. During

the late 1970s to early 1980s, studies of phage λ transcription provided evidence of

cis-regulatory interactions between co-localized RNA polymerases. The antagonistic

interaction of colliding transcription complexes was described by the Murray lab

(Ward and Murray, 1979), wherein mutual impairment of transcription was observed

when two promoters were situated “nose-to-nose”. The Gottesman lab identified cis-

inhibitory activity of upstream transcription passing into or through a downstream

promoter element (Adhya and Gottesman, 1982); in this promoter occlusion model,

traversal of the “target” promoter by upstream-initiated polymerase precludes binding

of polymerase at the target-gene’s promoter. This process, since wrapped into the

ill-defined term ’transcriptional interference’, has been studied in multiple organisms

including eubacteria, budding yeast, and Drosophila, where there now exist a number

of well-characterized examples encompassing numerous mechanisms.

In budding yeast, a large number of non-coding RNAs have recently been mapped

(David et al., 2006; Neil et al., 2009), several of which have already been shown to

play regulatory roles by transcriptional interference. SER3, a 3-phosphoglycerate de-

hydrogenase which catalyzes an early step in serine and glycine biosynthesis (Albers

et al., 2003), is situated downstream of the SRG1 noncoding RNA. In nitrogen poor

media, SER3 expression and de novo serine biosynthesis occur; in rich media, SRG1
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is transcribed, and represses expression of the then-unnecessary SER3 gene. At this

locus, Winston and colleagues demonstrated a reduction of transcription factor bind-

ing in regions traversed by the upstream-initiated transcript, implying that “promoter

occluding” transcription interference may operate at the level of reduced transcription

factor recruitment (Martens et al., 2004).

Antisense transcription interference is also present in budding yeast, and helps

regulate the developmental switch between mitotic and meiotic cell cycles. IME4, an

Initiator of ME iosis, is transcribed from the sense strand only in MATa/α diploids,

where its activity is required for accumulation of IME1 and entry into meiosis (Shah

and Clancy, 1992). In cells lacking the a1-α2 repressive heterodimer, antisense tran-

scripts covering the entire IME4 gene are generated, antagonizing sense expression

(Hongay et al., 2006). This repression occurs only in cis-, and depends on the rel-

ative strength of the promoters involved; overexpression of the sense transcript can

surmount antisense interference.

These mechanisms are not limited to unicellular organisms. Studies in mammals

have demonstrated direct antisense transcriptional interference of the sphingosine

kinase gene, sphk1, where sense and antisense transcription appear to be mutually

exclusive at the single-cell level (Imamura et al., 2004). Promoter occlusion also

occurs in humans, where DHFR activity, and thereby DNA synthesis, is restricted

in quiescent cells by transcription of an upstream noncoding RNA which reduces

binding of basal transcription machinery at the major DHFR promoter (Martianov

et al., 2007).

Several mechanisms of direct regulation of transcription by transcription have

been recently demonstrated. Interfering transcription, either from an upstream or

convergent promoter, can prevent or reduce recruitment of Pol II or other factors

required for transcription initiation. In this case, firing and elongation rate of the
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regulatory RNA run counter to the size and binding affinity of the target gene pro-

moter. In addition to reduced initiation of transcription, transcriptional interfer-

ence can promote premature transcript termination. Transcription run-on assays

performed in the Fink lab demonstrated that, during antisense-favoring conditions

(non MATa/α), IME4 sense transcript is initiated but only proceeds to generate a

truncated form. Conversely, when sense transcription predominates, IME4 antisense

transcripts initiate but do not not extend to their erstwhile full length (supplemental

data of Hongay et al. (2006)). Indirect regulation of target gene transcription can

occur by modification of local chromatin structure or DNA topology. In fission yeast,

studies of the fission yeast fbp1+ locus have demonstrated transcriptional activation

mediated by conversion of the fbp1 promoter to an open chromatin state by tran-

scription of an upstream-initiated noncoding RNA (Hirota et al., 2008). The passage

of RNA pol II through the fbp1 promoter provides clearance for subsequent bind-

ing of transcriptional activators and formation of the pre-initiation complex (PIC)

at an otherwise inaccessible locus. A similar scheme regulates budding yeast PHO5

expression, where transcription of an unstable non-coding RNA through the PHO5

promoter is necessary and sufficient to evict histones and permit promoter chromatin

remodeling (Uhler et al., 2007b).

Despite these clear examples of biologically relevant action, potential mediators of

transcriptional interference have only recently been cataloged en masse. Genome wide

transcriptome studies, including those presented below in (David et al., 2006; Core

et al., 2008; Preker et al., 2008; Seila et al., 2008; He et al., 2008; Wilhelm et al., 2008;

Dutrow et al., 2008; Neil et al., 2009; Xu et al., 2009; Affymetrix ENCODE Transcrip-

tome Project and Cold Spring Harbor Laboratory ENCODE Transcriptome Project,

2009), have begun to profile the non-coding RNA repertoire of several organisms.

Although many of these transcripts are likely the side-effect of desired genic tran-
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scription, the regulatory potential of non-coding RNAs warrants examination of not

only the transcripts formed, but also the genomic regions affected by their transcrip-

tion.

RNA turnover and transcription quality control

Opposing transcription, RNA turnover is required to ensure that relevant, properly

formed transcripts are present within the cell. Transcript quality is constantly as-

sessed, beginning at the act of transcription itself and continuing alongside transla-

tion. RNA turnover occurs primarily through exonuclease activity. Processed mRNA

transcripts harbor both a 5’-methylguanosine cap and protein-bound 3’-poly(A) tail.

As cellular exonucleases usually act on accessible single-stranded terminii, these mod-

ifications confer resistance to exonuclease activity; it is only after decapping or dead-

enylation that degradation can occur. Conversely, transcripts which fail to acquire

a 5’ cap or are released as unadenylated polymers are rapidly degraded by 5’→3’

and 3’→5’ exonucleases, respectively. Although involving different ends, these path-

ways appear to have largely overlapping gross activities. Studies in budding yeast

have demonstrated that disruption of either activity results in the upregulation of

only a small number of transcripts, indicating that these pathways are functionally

redundant (He et al., 2003).

Turnover of unprotected 5’ terminii is generally constitutive, and regulation of

exonucleolytic activity is conferred by selective decapping. In S. pombe and S. cere-

visiae, decapping is performed by a dimeric enzyme consisting of Dcp1 and Dcp2,

followed by cleavage through Exo2/Xrn1p, respectively. Decapping efficiency is en-

hanced by several additional factors, including several associated with 3’ end binding

such as Lsm1, the enhancer of decapping Edc3 (Kshirsagar and Parker, 2004), and in

budding yeast, the PABP binding protein Pbp1. Components of the 5’→3’ turnover
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pathway are found in P-bodies, cytoplasmic foci involved in various facets of RNA

storage and metabolism, although 5’→3’ exonuclease activity appears to be present

throughout the cytoplasm (Sheth and Parker, 2003).

Transcription of much of the genome occurs, but only a fraction of these RNAs

are stable and exported to the cytoplasm; the remaining material is hydrolyzed by

one of several mechanisms. This turnover is highly regulated, and provides an addi-

tional layer controlling the cellular transcript pool. The exosome, a large multisubunit

3’ exonuclease, is a primary factor in post-transcriptional regulation of RNAs, and

guides both maturation and destruction of various species. In many respects, the

exosome’s activity on transcript pools parallels that of the proteasome on intracel-

lular polypeptides. Both complexes are large macromolecular cages (although the

eukaryotic exosome core appears to be catalytically inactive (Liu et al., 2006)), and

associated “gatekeeper” subunits regulate access to the complex. Substrate recogni-

tion is engendered by yet additional subunits, and specificity often relies on tagging of

polymers bound for degradation: poly(A) addition for RNAs, and polyubiquitination

for proteins.

The exosome was identified in budding yeast for its essential role in maturation of

the 5.8S rRNA, and was determined to be a multiprotein complex consisting of several

predicted or previously confirmed exoribonucleases, including homologs of bacterial

RNase II and RNase H. Strong cross-species conservation of most subunits was ob-

served, including the ability of hRrp4 to complement mutation in RRP4 (Mitchell

et al., 1997). Subsequent studies have demonstrated diverse functions for the exo-

some, which is highly conserved from archaea to metazoa. The catalytically inactive

eukaryotic exosome core appears to function as a scaffold and is associated with the

exoribonucleases Rrp6 and Rrp44/Dis3, though the former is restricted to the nucleus

in yeast.
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In budding yeast, non-coding transcripts are terminated by Nrd1-Nab3, which

recognize GUAA
G and UCUU , respectively, weak motifs enriched in non-coding re-

gions. Once terminated, these transcripts are subject to “maturation” by Rrp6 activ-

ity which is directed to these transcripts through polyadenylation by the Trf4/Trf5

non-canonical poly(A) polymerases present in the TRAMP complex(Thiebaut et al.,

2006). Orthologs of all members of the TRAMP complex are found in fission yeast,

including the poly(A) polymerase cid14, the RNA binding air1, and a pair of mtr4

helicases; a nab3 homolog is also present. Recruitment of Rrp6 to structured non-

coding RNAs results in their exonucleolytic “trimming”, as the exosome processes the

unstructured tail of the transcript. Consequently, spurious transcripts lacking signif-

icant structure will be cleaved at specific 3’ ends in a Nrd1-Nab3 dependent manner,

polyadenylated, and degraded by Rrp6. An additional consequence of this process is

that transcripts lacking a canonical cleavage/polyadenylation site will be terminated

at a discrete site and gain a poly(A) tail. While the post-cleavage fragment is likely

destroyed in an 5’→3’ exonuclease dependent fashion, the processed fragment can be

recovered by selective inactivation of Rrp6. This technique is used to identify the

“hidden” unstable transcripts as described below on page 107.

1.4 Quantitation of expression

The ability to accurately measure RNA levels underpins many of the studies listed

above, and nearly all work described herein. The fundamental necessity of transcrip-

tion detection and quantitation is reflected in the breadth of techniques which have

been developed and the subset that are currently in use. Advances have occurred

along several axes, including specificity, sensitivity, and parallelism. Total RNA con-

tent and synthesis rate can be determined by bulk metabolic or pulse-chase labeling;
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experiments in S. pombe demonstrated the stepwise synthesis of RNA throughout

the cell cycle. Detection and quantitation of individual transcripts was made possi-

ble by two different methods developed independently in the late 1970s. S1 nuclease

mapping (Berk and Sharp, 1977) and northern blotting (Alwine et al., 1977) provide

sequence specific measurements of RNA level and remain in use today. While they

provide focused quantitation and are well-suited for small numbers of genes, these

approaches are laborious and require relatively large amounts of input material per

measurement. Moderately high throughput, ranging up to hundreds or thousands of

measurements, can be achieved using quantitative rtPCR, where reverse-transcribed

cDNAs are amplified using gene specific primers and quantitated using one of a grow-

ing panel of methods. Measurement of thousands of genes in even a handful of samples

is beyond the reasonable reach of quantitative PCR, which has become the de facto

tool for validation of a few individual genes across many samples, and for validation

of the high throughput methods, described below.

Spotted Arrays

Two color spotted PCR arrays have been used by our lab for more than a decade, and

my involvement has spanned more than six years and multiple publications (Oliva

et al., 2005; Mickle et al., 2007; Alvarez et al., 2008; Dutta et al., 2008; Lo et al., 2008;

Patel et al., 2008; Viladevall et al., 2009). As such, expression arrays have become

a tool which has not only been used to great success in the lab, it is one which has

shaped the very design of experiments undertaken. At the heart of expression array

experimental design is the comparison between “control” and “unknown” samples;

relative ratios between samples are the only reliable output from arrays of this type1.
1Due to the heterogeniety of spotted DNA concentration, amount of DNA deposited/crosslinked

to the substrate, and size of the final spots, in-house arrays are inherently ill-suited for absolute
quantitation. Advances in photolithographic and direct in-situ synthesis have expanded the role of
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As such, two-color arrays are ideally suited for comparisons of linked samples, such as

that of wild type to mutant strains, +/- chemical treatment of a given strain, or even

time-courses compared to an asynchronous control. In these designs, ones’ control is

part and parcel of the data output; comparisons between various experiments lacking

a common control cannot be reliably made.

The term “array” is suitably vague for the tool produced. Although DNA on glass

arrays are by far the most common, and the sole format used in this dissertation, a

wide variety of materials can be deposited on many different substrate types. Early

macroarrays consisted of purified DNAs deposited onto nylon or nitrocellulose; 32P

or 33P labeled cDNA probes were hybridized much like a massively parallel slot (or

dot) blot. Development of relatively low cost, high-resolution stepper-motor driven

robotic systems and suitable contact-printing pins permitted a large increase in spot

density, and a concomitant decrease in substrate size. While hundreds to thousands

of probes could be reliably arrayed onto a 15x15cm membrane, many thousand spots

could be printed onto a standard format 25x75mm glass microscope slide. Parallel

technologies of in-situ synthesis and direct deposition were developed simultaneously,

but are beyond the scope of this document.

I joined the lab before their first successful printing of whole-genome arrays. An

array spotting robot had been previously built using the open-source design of Jo

DeRisi and Pat Brown at the Cold Spring Harbor Microarray course, but due to

recent relocation of the lab and delays in probe production, no usable arrays had as

of yet been produced. Probes for these arrays had been previously designed for both

budding and fission yeast, and consisted of 3’ biased PCR amplicons with a desired

size range of ~150nt-1kb. Genomic DNA was used as template, which provided lit-

glass slide arrays to include absolute quantitation in single-color experiments. These platforms are
being actively employed for separated tasks in the lab, although their use is beyond the scope of this
section.
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tle issue for budding yeast with a relative dearth of intronic features. Fission yeast

amplicons avoided inclusion of intronic sequence where possible; in reality, many of

the probes hybridize to both intronic and exonic sequence. Tandem PCR reactions

were performed. A small volume reaction was carried out from genomic DNA tem-

plate, followed by a larger volume reaction in which raw first-round product was

used as template. Although identical primers were used for both reactions, inclu-

sion of a second-round PCR reaction generated large (µg) amounts of DNA with low

well-to-well variability; low template complexity and high input copy count combined

resulted in reactions which were anectodally run to completion. Following amplifi-

cation, amplified probe DNA was purified using 96 well ultrafiltration membranes

(Millipore, Billerica MA), analyzed by agarose gel electropheresis, and aliquoted into

high density plates suitable for array printing.

Many different substrates and attachment chemistries competed for the de facto

standard in homemade microarray printing. Although covalent-binding chemistries,

eg. acrydite/thiol, exist, most labs settled on surface modifications which provided

transient electrostatic interactions with the phosphodiester backbone, followed by

covalent crosslinking of DNA to substrate by UVC or vacuum baking. In our hands,

aminopropylsilane coated substrates were determined to provide the best combination

of stability, binding capacity, spot morphology, and post-hybridization background.

Following printing and crosslinking, unoccupied primary amines were blocked by bulk

action (fraction V BSA) or direct reduction of the reactive surface using sodium

borohydride. When stored under vacuum and secondary dessication, these home-

spotted arrays have proven stable over many years.

For relative expression measurements, labeling of reference and “treated” RNAs

with two different fluors is required. Direct incorporation of dye-functionalized nu-

cleotides during sample labeling is possible, but can lead to unpredictable biases due
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to inconsistent incorporation of sterically different dyes (Ideker et al., 2000). In addi-

tion, the dyes used are exquisitely sensitive to oxidative damage and photobleaching

effects, leading to questionable longevity of fluro-modified nucleic acid samples. To

circumvent these issues, we employed an indirect labeling approach in which function-

alized cDNAs were generated by reverse transcription including an amino modified

dUTP (amino-allyl dUTP), followed by coupling of an N-hydroxysuccinimidyl (NHS)

ester functionalized dye. As the same modified nucleotide is used for reverse transcrip-

tion of RNAs destined to be labeled with Cy3 or Cy5, no differential incorporation

during reverse transcription occurs. Additionally, amino-functionalized cDNAs can

be stably stored indefinitely, and coupled to unstable dyes only as needed.

Following hybridization, scanning, and determination of fluorescent signal corre-

sponding to each dye, data from two-color arrays are distilled to a simple pair of

values per “spot”. Following background normalization and intensity-dependent de-

trending, expression ratios and sums of both channels’ signals are calculated from

the normalized red and green intensities. For home-spotted arrays, the sum of in-

tensities of of little use (due to relatively inconsistent amounts of spotted material

as mentioned in the footnote above), and analysis is focused solely on expression ra-

tio. Prior to the enforcement of MIAME-compliant data deposition policies, results

from many published array experiments were a simple genes × arrays matrix filled

with relative expression values. In cases of well-designed experiments performed on

quality arrays, this single measurement is sufficient to represent differences between

two samples. Since a ratio, not absolute signal, is reported, probe-specific effects are

minimized, and the reported value accurately reflects relative differences in material

corresponding to the array spot examined2.
2This does not imply that a probe’s signal necessarily reflects (exclusively) the target for which

it was originally designed. Many home-spotted array designs including our own made use of long
double-stranded PCR amplicons. While the ratio reported for a given probe reflects relative abun-
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Tiling Arrays

In contrast to the “one gene, one probe” design of expression microarrays3, tiling

arrays provide multiple non-redundant unbiased measurements across large swaths

of genomic space, such as promoter regions, whole chromosomes, or entire genomes.

Design of such arrays requires little a priori information about the features of the

genome to be interrogated; once sequence is available, arrays can be designed to probe

all (non-repetitive) regions without regard to their biological content. This seemingly

simplistic design paradigm has several advantages when compared to expression mi-

croarrays. Most crucially, the information available from tiling array data does not

rely on availability or accuracy of genome annotation. This approach permits dis-

covery of novel genomic features, but dilutes the available number of probes across

potentially uninformative sequences. As described below, this limitation is absent in

practice when dealing with small genomes, such as that of fission yeast, on “modern”

high-density arrays, where advances in manufacturing methods have permitted the

inclusion of millions of probes on a single substrate.

Platform description High resolution tiling arrays covering the entire S. pombe

genome are available commercially (Afffymetrix S. pombe tiling 1.0FR), and have been

used extensively in the course of my work. These arrays consist of nearly 2.6 million

twenty-five nucleotide in situ synthesized oligonucleotides. Of these, 1.1 million oligos,

or probes, map uniquely to a recent S. pombe genome assembly (April 2007) as

dance of hybridizing material in the interrogated samples, the identity of the sequence which hy-
bridizes to a given spot may not be unambiguously defined. This is especially true for gene families
and pairs of genes resulting from an ancestral duplication. Further confound results from the inabil-
ity of double-stranded arrays to distinguish orientation of hybridized material. This is the subject
of some discussion, below in 3.3 on page 107.

3Many competing or conceptually similar microarray platforms are available. Except where
explicitly noted, “two-color (micro)array” is synonymous with our home-spotted PCR-from-genome
glass slide arrays.
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Figure 3: Spacing of mapped probes on Affymetrix S. pombe 1.0FR arrays.
Probes which uniquely map to a modern reference genome maintain spacing similar
to the original design goals. The majority of probes (>50%) have a 19-21 nucleotide
start-to-start spacing. Coverage of genomic positions is relative quantized. Very few
probes map with spacings of 15<x>25nt. 26nt represents the beginning of the right
tale of the distribution; probes with wider spacing represent roughly 5% of total.
Longer spacing between mapped probes is generally due to exclusion of repetitive
regions.

described below (page 36). In addition to numerous spike-in and hybridization control

probes, the vast majority of excluded probes were originally designed as mismatch

controls (13th nucleotide is the complement of the perfect match probe). These probes

were not used for further analysis, excepting those that aligned to the current genome

assembly. Probe coverage was originally designed as one 25mer per 20nt of genomic

sequence, generating a 5nt overlap; despite substantial changes to the sequence and

assembly of the S. pombe reference genome, this figure is still generally (see figure 3).

The Affymetrix platform has proven incredibly flexible in practice. The platform

was originally designed for detection of fragments following chromatin immunopre-

cipitation (ChIP on chip), but has been re-tasked for detection of labeled cDNA,

chemically modified RNA, and labeled genomic DNA. Short fragments of nucleic acid

32



(ideally in the range of 60-150nt) are biotinylated through direct chemical or en-

zymatic labeling, purified, and hybridized in a standard mixture including DMSO,

formamide, and citrate salts. This loaded array is hybridized overnight at elevated

temperature while constantly mixed to ensure thorough mixing with all potential hy-

bridization partners, and to reduce non-specific adsorption. Following labeled probe

recovery4, arrays are washed under increasingly stringent salt and temperature con-

ditions. Development of hybridized biotinylated material is achieved through a three

step staining process. Streptavidin conjugated R-Phycoerytherin (SAPE) attaches

an initial fluor to the biotinylated species. Following non-stringent washing, biotiny-

lated goat anti-RPE antibody is used to decorate the previously labeled biotin/SAPE

complex. This complex is further fluor-labeled by subsequent staining with SAPE re-

sulting in a geometric amplification of the original biotinylation. Following a final

wash, array cartridges are filled with buffer and scanned.

Differences from two-color expression microarrays Tiling arrays are designed

to identify and quantitate material present in a single sample. A single nucleic acid

preparation is labeled and hybridized, and the intensity of each spot is used to infer

the abundance of the corresponding material present in the original sample. In so

doing, the burden of a consistent and relevant reference sample is lessened, and direct

comparison between any two samples can be made. Direct quantitation on arrays is

not without unique computational challenges, however, as significant experiment- and

probe-wise normalization must be performed to generate intelligible output. Normal-
4Due to a left-skewed equilibrium, only a negligible fraction of labeled material is “lost” from

this liquor during hybridization to the array. Serial hybridization using the same material is pos-
sible, and is in fact integral to multiple-chip array sets used by designs for which a single chip
provides insufficient probe counts. In context of my experiments, re-hybridization in the context of
technical replicate generation was considered but soon dismissed – systematic noise between serial
hybridizations of the same sample was virtually nonexistent. All hybridization cocktails were pre-
served as “backup”, where they occasionally found use following failure of downstream array washing
or scanning.
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ized probe intensities across millions of individual probes are analyzed further.

Unlike two-color arrays, the output of tiling arrays is not gene- or feature- centric.

Our two-color array probes were designed to specifically target the ~6000 annotated

S. pombe genes; probe names were, in fact, simply the gene to which the amplicon

(and probe) corresponded. The expression ratio for any (covered) gene is provided

by the single probe covering the 3’ end of the gene in question. Tiling array probes,

as mentioned previously, were generated without specific regard to the genes or other

features which they cover. Multiple probes cover each S. pombe gene, and many

probes correspond to portions of the genome with no annotated content. Quantitation

of gene expression on tiling arrays therefore required mapping of probes to genomic

coordinates, determining which probes overlap each genomic feature, and calculation

of a value which summarizes the information content of all relevant probes for each

gene.

The two array platforms are functionally quite different. Aside from the benefits

of commercial availability and quality control over homemade arrays and processing

equipment, marked differences in sample requirements exist. Targets for our two

color arrays were long cDNAs which incorporated an primary-amine modified dUTP

during reverse transcription. These ostensibly full-length cDNAs had to be dye-

coupled with an hydroxysuccinimide reactive dye moiety prior to hybridization. The

dyes used are inherently unstable, severely limiting the long-term storage of coupled

material. Although reverse transcription of a common modified nucleotide theoret-

ically reduced dye-dependent effects over direct incorporation of dye-functionalized

nucleotide analogs, poorly characterized differences in fluorescence between Cy3 and

Cy5 required the deconvolution of dye effects.
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Data management issues Microarrays are inherently prolific data sources. Unlike

more focused biological tools, thousands to millions of data points are generated

from each array experiment, and the resulting information can often be re-mined to

address additional specific questions. As such, it is critical to maintain a complete

record of all data generated by each hybridization. For all experiments, images of the

hybridized substrate are archived and the resulting numeric matrix of spot intensities

is carried through further analysis. In the case of yeast expression arrays covering

a few thousand genes, these lists are manageable by most off-the-shelf spreadsheet

packages. Indeed, early work in the lab relied exclusively on Excel® for analysis,

though the limitations of this package quickly became apparent5. As mentioned above,

expression experiments normally encompass a large number of hybridizations each

consisting of a (relatively) small number of probes. Ones major data management

concern becomes organization of individual hybridizations and array designs across

a large number of experiments, and comparison of heterogeneous array designs; the

sheer volume of values being analyzed is quite low. In stark contrast, tiling arrays

generate deep data, generally across a smaller number of experiments or conditions.

200 array hybridizations each profiling 6,000 genes generate 1.2 million values. Each of

my tiling hybridizations generates more (numeric) information than that contained

in the sum total of all published S. pombe cell-cycle experiments (Rustici et al.,

2004; Oliva et al., 2005; Peng et al., 2005). The computational burden becomes

simultaneous analysis of millions of measurements across a relatively small number

of hybridizations.
5The use of three character “common names” in S. pombe nomenclature has a few unfortunate

serendipitous matches in other English conventions, including calendar months. Genes such as “sep1”
are quickly mangled into formatted dates (10-01). While we noted this behavior early in our analyses
(which only helped reinforce my exclusion of Excel from any analytical pipeline), such assisted re-
naming issues have propagated throughout the community and are visible in numerous high-profile
public datasets.
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Computational methods are becoming part of the prototypical biologist’s toolbox.

Many ad-hoc packages for the analysis of different data types exist (often provided

by the manufacturers of each respective instrument/assay), but these tools often lack

flexibility, transparency, and expandability. The Bioconductor Project (Gentleman

et al., 2004), and the underlying R project for statistical computing have become

the de facto standard platform for microarray analysis. As a community supported,

open-source, peer-reviewed set of tools, Bioconductor/R addresses many of the short-

comings of individual analysis tools, and provides a common hub for integrating and

comparing disparate data types. Of particular relevance to my transcript mapping

studies are the affy (Irizarry et al., 2003), tilingArray (Huber et al., 2006), and vsn

(Huber et al., 2002) packages , which provided the framework for import and normal-

ization of raw scan data.

Data warehousing has become an integral part of high-throughput biology. For

many publications, supporting work product has shifted from a handful of strains

or antibodies to thousands -> billions of individual measurements. For example,

including the output of one tiling array experiment as a supplement to this document

would add nearly 40,000 filled pages6. The scientific community has responded to this

need for centralized, standardized storage following numerous pleas of the very labs

at the forefront of data generation (Ball et al., 2002a,b, 2004). All microarray data

included in this manuscript have been deposited in ArrayExpress, under accession

numbers listed in the respective reprints.

Mapping tiling probes to genomic space Since its formal publication in 2002

(Wood et al., 2002), the S. pombe reference genome has undergone many non-trivial
6Fitting 2598544 values at 66 lines per page would permit only the most brief of annotations

in a total of 39372 pages. Unfortunately, I doubt that the standard repositories can boast similar
longevity as the acid-free paper on which this document is printed.
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structural revisions and sequence changes. The Affymetrix tiling arrays used in these

studies were designed to cover a depreciated revision of the S. pombe genome (Septem-

ber 2004), and were designed without consideration for probes which could potentially

cross hybridize to multiple genomic coordinates. An early challenge in analysis of data

generated on these arrays was the assignment of probes to current coordinates and

the classification of probes into different levels of target uniqueness (ie, zero, one, two,

or >2 genomic matches).

Briefly, probe sequences for all 2,598,544 (1612^2) positions on the array were

determined and the resulting 25mers aligned to a current reference genome (April

2007) using MUMmer (Delcher et al., 2002). Only probes which matched perfectly

(25/25 nt) were assigned genomic coordinates and considered mapped, and any probe

for which ≥23/25nt matched multiple genomic positions was flagged as having cross-

hybridization potential (placing the onus of excluding these potentially confounding

probes on downstream tools). In addition, a separate flag was added to probes that

overlapped an annotated sequence feature, providing a very rough categorization into

“likely transcribed” and “background” probes7.

Annotations resulting from this mapping process relate genomic position to a

coordinate on the original array surface. An unanticipated benefit of this convention

was the ability to quickly import raw scan files from outside labs (using the same

platform, of course) into a homogeneous coordinate system8. This re-mapping has
7This was known to be a gross assumption even at the time of genome alignment, as (unknown)

UTRs and unannotated genes were included in the “background” category. The extent of this fallacy
was not clear until after the analysis of our tiling data, at which time it became clear that stable
transcripts corresponding to more than 90% of the genome exist in vegetative cells (see 3.3 on
page 107). Downstream use of these “background” probes was always done with the assumption
that the population would be a mixture of “transcribed” and “untranscribed” intervals.

8An unfortunate inconsistency of Affymetrix scan control software is the autorotation of array
data to place the “human readable” imprint in conventional left-to-right orientation, instead of the
bottom-to-top orientation as it is physically present on the chip (90◦ clockwise rotation). This
function was removed for new (non-upgraded) installations of the software, resulting in data het-
erogeniety between labs and individual scanner installations. I have not discovered the header byte

37



permitted the side-by-side analysis of my data with transcription and chromatin IP

experiments from other labs using the Affy tiling platform (Wilhelm et al., 2008).

Furthermore, the tools created for mapping oligonucleotide probes to a given genome

are not limited to Affymetrix designs; I have used the methods described above to

map heterogeneous array designs to a common genome build, such as those generated

on Agilent tiling arrays (Dutrow et al., 2008). This method of mapping has proven

quite effective for other platforms and enabled a more direct comparison of disparate

data sets, as detailed in the manuscripts below.

2 The Cell-Cycle Regulated Genes of Schizosaccha-

romyces pombe

2.1 Rationale

Previous landmark work in the lab systematically described the cell-cycle oscillat-

ing genes of budding yeast (Spellman et al., 1998). Briefly, microarrays containing

probes for nearly all known S. cerevisiae genes (created in similar fashion to DeRisi

et al. (1997)) were used to measure transcript abundance as cells progressed through

the vegetative cell cycle as synchronized by various means (see Futcher (1999) for

an excellent review of methods). Additional experiments were included to directly

determine the targets of known cell-cycle regulators, for example induced expression

of SBF and MBF responsive genes by induction of GAL-CLN3. Using this approach,

800 genes were identified as “cell cycle regulated”, nearly eight fold more genes than

had previously been shown to oscillate in a cell-cycle dependent manner, and more

which denotes rotation of the included data (although some distinguishing feature is clearly present,
as Affy binaries are able to deal seamlessly with both types of scans), so great care must be taken
to account for this rotation, when present.
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than three times the previously projected number of regulated genes (Price et al.,

1991).

A major conceptual advance made in Spellman et al. was the analysis of upstream

sequence elements shared between co-regulated groups of genes. Gibbs sampling algo-

rithms designed to identify overrepresented sequences, or motifs, had previously been

applied to find shared domains in hand-curated groups of protein primary sequence

(Lawrence et al., 1993; Neuwald et al., 1995), and were modified to identify DNA

sequence elements which were statistically overrepresented in the 5’ non-coding re-

gions of co-regulated genes. The definition of “co-regulated genes” was fundamentally

extended in this work, under the assumption that co-expressed genes are implicitly

co-regulated. Unsupervised agglomerative hierarchical clustering (described in Eisen

et al. (1998)) was used to group genes with quantitatively similar expression patterns,

vastly extending the repertoire of genes whose upstream sequences could be searched

for regulatory motifs. This definition of ’clusters as coregulated genes’ provided a

fundamental shift in the analysis of gene regulation. Although any expression data

set can be clustered, in practice, data from multiple experiments targeting varied

regulatory pathways are necessary to separate genes whose expression is incidentally

correlated. To a point, the wider variety of expression states that can be measured,

the better.

Later work from the lab (Zhu et al., 2000b) used expression profiles of strains

deleted for one or more related transcription factors (in this case, all Forkhead asso-

ciated domain (Weigel et al., 1989) containing proteins) to provide indirect evidence

of regulation by the disrupted factor(s). In addition to assigning a pair of tran-

scription factors to an M/G1 cluster which previously lacked a regulator, this work

demonstrated the feasibility and value of examining expression in transcription factor

knockout backgrounds as a method of determining target gene identity; the combina-
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tion of wild-type and mutant cell cycle profiles as input for cluster analysis permitted

the discrimination of primary and secondary targets of the factors tested. These two

manuscripts provided the conceptual groundwork for numerous studies of periodic ex-

pression in other organisms ranging from the developmentally dimorphic Caulobacter

crescentus (Laub et al., 2000) to human cell lines (Cho et al., 2001; Whitfield et al.,

2002b).

Studies of periodic expression in higher eukaryotes were performed before the avail-

ability of transient gene knockdown (Paddison et al., 2004) limiting early genome-wide

expression studies in these organisms to available immortalized cell lines and tumor

samples. As such, strategies used to tease apart temporally co-expressed clusters

in budding yeast were largely unavailable in higher model organisms. Despite this

limitation, biologically relevant co-regulated clusters were generated, and appreciable

overlap in the cell-cycle regulated genes shared between budding yeast and mam-

mals was observed. The immense phylogenetic distance between Saccharomyces and

mammals presented fundamental difficulties in predicting the evolutionary fate of

transcriptional regulators and their target genes; relatively recent changes unique to

the lineage of either system would obscure erstwhile common patterns.

An orthogonal organism system would provide information crucial to determin-

ing the common ancestral regulatory scheme. The fission yeast Schizosaccharomyces

pombe, roughly evolutionarily equidistant from yeast and mammal, is perfectly situ-

ated to provide such information. Fission yeast has been used as a model organism

for genetic and cell-cycle research across more than fifty years , and has a robust

repertoire of genetic tools available (reviewed in Forsburg (2003)). The fission yeast

genome sequence, formally published in 2002 (Wood et al., 2002), made possible the

creation of microarray probes and high-throughput analysis of expression in S. pombe.

Generation of probes and manufacture of arrays was undertaken in the lab as part
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of a National Center for Research Resources (NCRR) core facility grant beginning in

2001; my tenure in the lab began shortly thereafter.

2.2 Methods

Our experimental approach was similar to that of the lab’s previous work in budding

yeast (Spellman et al., 1998), and is fully described in the included reprint. The

definition of an “oscillating” gene is fundamentally different between the two works,

however. For budding yeast, genes were ranked based on the magnitude of their os-

cillations’ fit to a sinusoid. The resultant “CDC score” was strongly biased for genes

with a high peak-to-trough ratio, with less regard to the robustness of fit. For exam-

ple, an otherwise invariant gene with a few strong spurious “in-phase” measurements

would score higher than a gene that oscillates, albeit weakly, with a perfect once-

per-cycle periodicity. To overcome this limitation, I chose to quantitate a standard

score (also called a Z-score) for each gene, providing a homogeneous comparison be-

tween genes regardless of their peak expression levels. Systematic noise still provides

a hard floor precluding the detection of extremely weakly expressed transcripts in all

systems, but the standard scores generated in this study more accurately reflect cell

cycle regulation when compared to a simple magnitude.

2.3 Paper Reprint

The following was previously published in PLoS Biol. 2005 Jul;3(7):e225. Epub 2005

Jun 28.

The cell cycle-regulated genes of Schizosaccharomyces pombe. Oliva A, Rosebrock

A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J.

Department of Molecular Genetics and Microbiology, Stony Brook University,
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Stony Brook, New York, USA.

Abstract

Many genes are regulated as an innate part of the eukaryotic cell cycle, and a com-

plex transcriptional network helps enable the cyclic behavior of dividing cells. This

transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast)

and elsewhere. To provide more perspective on these regulatory mechanisms, we have

used microarrays to measure gene expression through the cell cycle of Schizosaccha-

romyces pombe (fission yeast). The 750 genes with the most significant oscillations

were identified and analyzed. There were two broad waves of cell cycle transcription,

one in early/mid G2 phase, and the other near the G2/M transition. The early/mid

G2 wave included many genes involved in ribosome biogenesis, possibly explaining

the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included

at least three distinctly regulated clusters of genes: one large cluster including mito-

sis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA

replication, and another small cluster dedicated to cytokinesis and division. S. pombe

cell cycle genes have relatively long, complex promoters containing groups of multiple

DNA sequence motifs, often of two, three, or more different kinds. Many of the genes,

transcription factors, and regulatory mechanisms are conserved between S. pombe and

S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscil-

lation in gene expression: 2,000 or more genes undergo slight oscillations in expression

as a function of the cell cycle, although whether this is adaptive, or incidental to other

events in the cell, such as chromatin condensation, we do not know.
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Introduction

The yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae are excellent

organisms for the study of the cell division cycle. Both yeasts have many well-

characterized cell division cycle (cdc) mutants (Nurse et al., 1976; Culotti and Hartwell,

1971; Hartwell et al., 1970; Hartwell, 1971a,b), and both have a long history of genetic

and molecular cell cycle studies. However, they diverged more than 1 billion years

ago, and have many lifestyle differences.

In particular, the two yeasts have different cell cycles. S. pombe divides by fission,

a symmetrical process in which a septum grows across the center of a long cylindrical

cell, dividing the old cell into two equal new cells. Moreover, the main control point

in the S. pombe cell cycle is a size control in G2, not in G1 as in S. cerevisiae and

many other organisms. In S. pombe, when cells reach a critical size, the Cdc2 protein

kinase is activated both by cyclin binding and also by Cdc25 phosphatase removal of

the inhibitory phosphate from Tyr15 of Cdc2, and this leads to mitosis. Once nuclear

division has occurred, the cell moves quickly into S phase without an appreciable G1.

Therefore S phase is largely completed by the time cytokinesis/cell separation occurs.

Thus, when the cells are growing in good conditions, cells have a long G2, and most

cell cycle–specific events are completed in a relatively small portion of the cell cycle

encompassing M, G1, and S, with S occurring coincident with cytokinesis. When

conditions are poor, a cryptic size control appears in G1 phase; that is, a G1 phase

appears and becomes longer as growth rate becomes slower.

In contrast, S. cerevisiae divides by “budding,” an inherently asymmetrical process

whereby a large mother cell generates a small daughter bud. Once born as a separate

cell, the small daughter grows in volume through a long G1, and commits to division

at a G1 event called “START.” START involves the activation of a pair of closely

43



related transcription factors, MBF and SBF, and the induction of 100 or more genes.

After START, DNA synthesis is initiated, and a bud forms. There is a short G2

phase, followed by mitosis and cytokinesis, and then cells enter the next G1. When

cells are growing rapidly in good conditions, G1, S, G2, and M phases are of similar

lengths, and so various cell cycle–specific events are distributed somewhat equally

around the cycle. However, when cells are growing slowly in poor conditions, almost

all the increased length of the cell cycle is accounted for by an increased G1, and

most cell cycle–specific events occur over a relatively small percentage of the cell

cycle, encompassing “START,” S phase, and mitosis.

Microarrays have been used to analyze gene expression in synchronized S. cere-

visiae. There are at least 800 genes whose transcripts oscillate as a function of the cell

cycle (Spellman et al., 1998). The cataloging of these transcripts has helped describe

what happens in a cell cycle. In addition, because many of the oscillating genes are

regulatory, the microarray analysis has helped us understand how the S. cerevisiae

cycle is regulated. In view of the fact that S. pombe also has a well-studied cell cycle

and because these two yeasts have both differences and similarities in the way they

carry out a cell cycle, it is of interest to characterize oscillating transcripts in S. pombe

also, to understand at a deeper level what is preserved and what changes across the

cell cycles of these two model eukaryotes.

Recently, Rustici et al. (2004) and Peng et al. (2005) have published microarray

analyses of S. pombe cell cycle genes. Our results are broadly similar to theirs, but

as described below, each group finds a somewhat different set of genes. There is

excellent agreement between the groups with respect to the most strongly regulated

genes, but naturally there is less agreement for more weakly regulated genes. Here,

we concentrate on the 750 genes that are most strongly regulated, but we believe

that there may be a total of 2,000 or more genes that have at least weak cell cycle
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regulation. A large number of weakly to moderately oscillating genes peak in G2

phase, and these are highly enriched for functions in ribosome biogenesis. Our analysis

of the cell cycle–regulated promoters shows them to be surprisingly complex, and

shows clusters of multiple regulatory motifs similar to clusters of motifs found in the

developmental genes of Drosophila. Although Rustici et al. have pointed out several

differences between the cell cycles of S. pombe and S. cerevisiae, we find that there

are also striking similarities, suggesting deeply conserved mechanisms.

Results

Synchronous Cultures and Identification of Cell Cycle–Regulated Tran-

scripts Three synchronous cultures were studied, one generated by cdc25 block

release, and two generated by elutriation. Each culture was sampled through three

cell cycles, giving nine cell cycles of data. Synchrony and cell cycle position were

assayed by scoring initiation of anaphase and septation microscopically (figure 4).

RNA was extracted, converted to cDNA, labeled, and hybridized to arrays, and then

fluorescence was analyzed. Gene expression was assayed as a ratio of experimental

cDNA to asynchronous control cDNA. In total, approximately 1.2 million data points

were generated from cell synchrony experiments. Fourier analysis identified cyclic

expression patterns. Monte Carlo simulations were used on shuffled expression-ratio

data, and compared to the actual, cyclic data, to generate a p-value for the cyclicity

of each gene. These p-values ranged from less than 10−16 for the most cyclic genes

(i.e., the probability that the observed oscillation occurs by chance is less than 10−16),

to 0.997 for the least cyclic gene of the 5,000 studied. We ranked all 5,000 genes by

p-value, with the most significantly oscillating genes at the top. The amplitude of

the oscillation is a major contributor to the p-value, so genes with higher amplitude

oscillations tend to rank higher than genes with lower amplitudes.
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Figure 4: Synchrony of time courses analyzed.
A: Samples from elutriation A were double stained with calcofluor (for septa) and
DAPI (for nuclei). Cells were assayed for initiation of anaphase by scoring cells with
two nuclei but no septum (binucleates, open circles). The cells were also scored for
septation (filled squares). B: Cells from elutriation B were assayed for septation by
phase contrast microscopy. C: Cells from the cdc25-22 block release were assayed for
septation by phase contrast microscopy.
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The list of all 5,000 genes ranked by p-value and other associated information such

as time of peak expression is given in Table S1. The raw data have been deposited

at ArrayExpress9. The raw data, including all figures and all tables, are available

online10.

The distribution of genes versus p-values is shown in figure 5 on the following page

. There is no clear distinction between “cyclic” and “non-cyclic” genes. Rather, after

the best 203 genes, there are simply more and more genes as one goes to poorer and

poorer p-values.

Because the distribution of genes versus p-values continuously increases after

gene 203, one must choose a somewhat arbitrary threshold for discussion of cell cy-

cle–regulated genes. We have chosen to discuss the best 750 genes in our p-value list.

This number is similar to the number of genes chosen by Peng et al. and Rustici

et al. as being cell cycle regulated (747 and 407, respectively), and similar to the

number of genes chosen for the yeast S. cerevisiae (800) (Spellman et al., 1998), thus

facilitating comparison of these gene sets. In the vicinity of the 750th gene (and even

below), most genes display an oscillatory behavior to the eye, at least in one or two

of the three experiments. Finally, the number 750 is obviously somewhat arbitrary,

and indeed we have no basis for anything other than an arbitrary cutoff. Because the

list of genes is ranked, other investigators may choose their own sets of oscillatory

genes from our p-value list (Table S1) by choosing any desired cutoff. For the top

750 genes, the false discovery rate is 0.00022, so on a statistical basis, less than one

false positive is expected in the list of 750.

Although we will discuss primarily these 750 best genes, there are many more

genes that appear to oscillate slightly. A total of 2,262 genes (nearly half the genes
9http://www.ebi.ac.uk/arrayexpress/

10http://publications.redgreengene.com/oliva_plos_2005/
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Figure 5: Distribution of p-values for cell cycle regulated genes.
The x-axis shows bins of p-values of the significance of cell cycle regulation. From the
left, the bins are: 1. Genes with p-values less than 10−16 (87 genes); 2. Genes with
p-values between 10−15 and 10−16 ( 13 genes); 3. Genes with p-values between 10−14

and 10−15 (13 genes); 4. Genes with p-values between 10−13 and 10−14 (8 genes); etc.
The number of genes in each bin is shown on the left y-axis (dark blue squares). Also
shown (right y-axis, magenta diamonds) are the cumulative number of genes at each
p-value or lower. Thus there are about 1000 genes with a p-value of 10−3 or less.
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in the genome!) have a p-value less than 0.05, the usual statistical cutoff. Based on

the false discovery rate, we would expect about 53 of these to be false positives, but

even so, this leaves well over 2,000 genes with a slight but statistical oscillation.

Previously, 37 cell cycle–regulated genes have been reported in S. pombe; 29 of

these (78%) are in our top 750. Of the eight that are not in our top 750, two are in

the top 1,000. The remaining six (cdc19/mcm2, cmk1, dmf1/mid1, ppb1, uvi22/rrg1,

and suc22) are also not in list of 407 of Rustici et al., and three of these (cdc19/mcm2,

cmk1, and ppb1) are also not in the list of Peng et al.. Thus, these genes are probably

quite weakly regulated (except for suc22, for which there are two transcripts, one

regulated and one not (Harris et al., 1996)). The top 750 genes are shown in figure 6

on the next page in order of time of expression (i.e., ordered by cell cycle phase).

About halfway down this phasogram is an apparent discontinuity; this corresponds

to the mid to late G2 trough, when there are relatively few cell cycle–regulated genes

(see below).

Rustici et al. have recently compiled a list of 407 periodically-expressed S. pombe

genes, and while our manuscript was in review, Peng et al. identified 747 similar

genes. A comparison of the three studies is shown in figure 7 . The total number of

genes found to oscillate in at least one study is 1,373. Of these, 1,013 were unique to

just one of the studies, whereas 360 were found in two or three studies, and 171 were

found in all three.

Despite the fact that 1,013 genes were found in only one of the three studies, we

believe that most of these 1,013 do indeed oscillate to some extent. There are two

lines of evidence. First, most of the genes do display a clear oscillatory pattern to

the eye, at least in one of the studies. For instance, figure 8 on page 52 shows the

516 genes found by us but not by Rustici et al. (63 of these were also found by

Peng et al., but the remainder were unique to us). At least in part, we found these
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Figure 6: Top cycling genes ordered by time of peak expression
Expression data for the top 750 genes is shown, with genes ordered by time of peak
expression. Every row represents a gene; every column represents an array from a
time-course experiment. Red signifies up-regulation (i.e., an experiment/control ratio
greater than one); green signifies down-regulation (i.e., an experiment/control ratio
less than one). Black is a ratio close to one, and grey is missing data. Dynamic range
is 16-fold from reddest red to greenest green. The time in hours since the beginning
of the time course is shown in black numerals at the top of Figure 3. The peaks
in septation index are marked with purple rectangles at the top and bottom of the
figure. Genes from defined clusters are marked on the left by colored lines, according
to the cluster color code shown at the bottom of the figure.
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Figure 7: Overlap between cell cycle microarray studies.
A Venn diagram of the overlap between the three lists of cell cycle regulated genes
from this study, Rustici et al, and Peng et al listing genes.
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Figure 8: Cycling genes uniquely identified in this study
As 6 on page 50, but only the 514 genes found in our study but not found by Rustici
et al. are shown.

52



Figure 9: Overlap between Different Cell Cycle Microarray Studies, by Rank
(A) Our ranked list of cell cycle–regulated genes is divided into consecutive sets, or
bins, of 50 genes. For each set of 50 genes, the number of genes in that set also found
in the list of 407 cell cycle genes of Rustici et al. is plotted on the left y-axis. For
instance, of our best 50 genes, 44 (88%) are found in the list of of 407 genes of Rustici
et al., and of our next-best 50 genes, 38 (76%) are also in their list. For the top 15
bins (750 genes), every bin of 50 genes is represented. Afterward, the number plotted
represents an average over several bins. The cumulative number of genes in the list
of 407 is plotted on the right y-axis.
(B) As (A), but the bins in our study are compared to the list of 747 genes of Peng
et al..
(C) As (A), but the ranked list of Peng et al. is divided into bins, and compared to
the list of 407 of Rustici et al. Because Peng et al. ranked only their top 2,700 genes,
the graph is truncated after gene 2,700, and the cumulative number of genes rises to
only 325.

genes because our elutriated cells were more synchronous than those of Rustici et al.

(compare our figure 4 on page 46to Figure 1B in the supplemental data of Rustici et

al.), thus allowing detection of genes with moderate amplitudes.

The second line of evidence is that most of the 1,013 genes unique to one study also

display some statistical oscillatory behavior in one or both of the other studies, even

though this behavior is not strong enough to surpass the threshold for inclusion on the

cell cycle list in those studies. This effect is shown in figure 9 As might be expected,

the top genes in our ranked list and the ranked list of Peng et al. show excellent

(approximately 85%) agreement with Rustici et al.. The degree of agreement then

drops as one proceeds down the ranked lists. But genes below rank 750 but above
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rank 2,500 in either list are much more likely to be in the list of Rustici et al. than

are genes below rank 2,500. In other words, a gene unique to the study of Rustici

et al. is likely to show some oscillatory behavior in the other two studies (i.e., be in

the top half of the lists). Analogous comments apply to the genes unique to us, and

genes unique to Peng et al..

Before the publication of Peng et al., we had compared our study to that of Rustici

et al. to look for discrepancies. We identified a total of 21 genes (11 from Rustici et

al., ten from us) that appeared very strongly regulated in one study, but not at all

regulated in the other. We have now checked these 21 genes against the results of

Peng et al., and find that 17 of the 21 appear regulated in Peng et al., whereas four

(three from us and one from Rustici et al.) do not appear regulated. Thus it seems

that both we and Rustici et al. have been conservative in our identification of cell

cycle–regulated genes and tend to get false negatives rather than false positives.

In summary, the three cell cycle lists together implicate about 1,300 genes, and our

ranked p-value list does not become worse than a p-value of 0.05 until gene number

2,262. We believe that a very large number of S. pombe genes, 2,000 or more, have

at least a weak cell cycle oscillation.

Two Genome-Wide Waves of Transcription To examine the distribution of

gene expression around the cycle, Fourier analysis was used to determine the time

at which each gene’s expression peaked (the “phase angle” of peak expression). For

genes in the bottom half of the 5,000 gene rank list (i.e., genes that did not cycle

appreciably), phase angles were largely determined by noise, but nevertheless would

tend toward the peak of any weak cyclic behavior that may have existed. The number

of genes peaking at each time in the cycle was plotted (figure 10) for four groups of

genes: the most-regulated 750 genes (panel A of figure 10), all genes (panel B of
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Figure 10: The Number of Genes Peaking during Each Portion of the Cell Cycle
The cell cycle was divided into 45 consecutive portions, or bins. If the cell cycle is
considered as a circle of 360°, then each bin occupies 8°. Every gene was analyzed
using a Fourier transform to determine the time of peak expression in elutriation
A, from 0° to 360°. The number of genes peaking in each bin was summed and
plotted (grey bars, background), with the number of genes in each bin shown on the
y-axis. Genes in specific clusters are shown by colored bars (foreground). The Fourier
transform calculation was similarly used to derive the time of peak septation and peak
binucleate cells (from Figure 1) and these cell cycle landmarks are indicated.
(A) The top 750 cell cycle–regulated genes were analyzed for time of peak expression.
Genes from different clusters are “stacked” when they occur in the same bin.
(B) All genes (~5,000) were analyzed for time of peak expression, exactly as in (A).
(C) The bottom 4,000 genes were analyzed for time of peak expression. Data was
extracted from arrays before the red/green normalization step, so that the bottom
4,000 genes would not be affected by the normalization and the cyclic expression of
the top 750 genes.
(D) All genes (~5,000) were analyzed for time of peak expression after genewise
random shuffling of microarray observations. This randomization serves as a negative
control for the Fourier calculation in parts (A), (B), and (C).

55



figure 10), the least regulated 4,000 genes (panel C of figure 10), and all genes after

random shuffling of ratio data (panel D of figure 10). The peaks of septation and

binucleates were also determined by Fourier analysis. (See Materials and Methods

for information on red/green normalization.)

There were two striking findings. First, it appears that there are two broad waves

of gene expression, one peaking in early to mid G2, and the second peaking in late

G2/M, whereas there are troughs in mid to late G2, and in S. The early/mid G2 peak

contains the Ribosome biogenesis cluster (see below) and associated genes, whereas

the late G2/M peak contains the genes of the Cdc15, Cdc18, and Eng1 clusters (see

below), which are important for M and S. Second, the two waves of gene expression

were seen even in the 4,000 least-cyclic genes. As noted above, there is statistical ev-

idence from p-values that 2,000 or more genes may oscillate slightly. The two waves

of expression seen for the bottom 4,000 genes confirm that many of these genes do

indeed oscillate. If the fluctuations in these 4,000 genes had simply been due to noise,

then the peak phase angles would have been uniformly distributed from 0° to 360°

(as confirmed by repeating the analysis on shuffled data; panel D of figure 10 Com-

bined with the evidence of the p-values, this analysis suggests that many, or most

(or possibly all!) of the least-cyclic 4,000 genes do in fact oscillate slightly, and that

there are two nearly genome-wide peaks in gene expression. These peaks might rep-

resent periods when the cell is preparing for a high level of cell cycle–specific activity,

or when transcription (of any kind) is activated on a genome-wide basis. Alterna-

tively, one might focus on the troughs, which might represent periods with little cell

cycle–specific activity, or periods when transcription is repressed on a genome-wide

basis (see Discussion).
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Cluster Analysis To study the regulation of the cell cycle, we wished to find

clusters of co-regulated genes potentially responding to the same transcription factor.

However for this purpose it is not sufficient to find genes expressed at the same time,

because such genes might be responding to different mechanisms of regulation. This

is an acute problem in S. pombe, because mitosis, DNA synthesis, and cytokinesis all

occur in a small window of the cell cycle under standard growth conditions.

Therefore our analysis included not only our three time courses of synchronous

cells, but also eleven other array experiments that more directly addressed regulatory

mechanisms. These experiments (see Materials and Methods) included small cells

grown in poor nitrogen to induce a G1 phase; a cdc10-M17 block-release experiment,

to separate S phase events from cytokinesis and septation events; an arrest at G1

(using cdc10-M17, encoding MBF transcription factor subunit); an arrest at S (using

cdc22-M45, encoding ribonucleotide reductase); an arrest at late G2 (using cdc25–22,

encoding the phosphatase that activates Cdc2); an arrest at M (using nuc2–663,

encoding a subunit of the anaphase promoting complex); and finally, from the data

of Rustici et al., experiments using a constitutively active allele of cdc10 (cdc10-c4),

null and over-expressor alleles of the forkhead transcription factor sep1, and null and

overexpresser alleles of the transcription factor ace2.

Hierarchical clustering was used (Eisen et al., 1998) because the underlying struc-

ture of a gene regulatory network is somewhat hierarchical. Thus, a hierarchy found

by the clustering algorithm is often interpretable in terms of a hierarchical transcrip-

tional network existing in the cell (see S. J. Gould’s essay, “Linnaeus’s Luck?”11, for

an illuminating discussion of this issue in a different context).

The clustergram of 750 genes is shown in figure 11 on the following page . We

chose eight clusters for analysis and discussion, on the basis that the genes in these
11http://www.findarticles.com/p/articles/mi_m1134/is_7_109/ai_65132190
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Figure 11: Cluster Analysis of the Top 750 Cell Cycle–Regulated Genes
Gene expression data from all experiments were clustered by a hierarchical method
(Eisen et al., 1998). Every row represents a gene; every column represents an array.
Red signifies up-regulation (i.e., an experiment/control ratio greater than one); green
signifies down-regulation (i.e., an experiment/control ratio less than one). Black is a
ratio close to one, and grey is missing data. Dynamic range is 16-fold from reddest red
to greenest green. The time in hours since the beginning of time-course experiments is
shown in black numerals at the top of the Figure. Peaks in septation index are marked
with purple rectangles at the top and bottom of the Figure. Clusters discussed in the
text are marked with blocks of color. Data for the cdc10-C4 (asynchronous cells with
the hyperactive allele cdc10-C4), ace2 OE (asynchronous cells over-expressing ace2),
ace2 (asynchronous ace2 cells), sep1 OE (asynchronous cells over-expressing sep1),
and sep1 (asynchronous sep1 cells) are taken from Rustici et al. (2004). cdc10
encodes a component of the MBF transcription factor; ace2 encodes the Ace2 tran-
scription factor, and sep1 encodes a forkhead transcription factor. Other experiments
are described in Materials and Methods.
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clusters are particularly tightly co-regulated. Most of the clusters are named for one

representative gene. The clusters are, from the late G2/M wave, the Cdc15, Cdc18,

and Eng1 clusters; from S and early G2, the telomeric, histone, and Wos2 clusters;

and from the early to mid G2 wave, the Ribosome biogenesis and Cdc2 clusters.

If the genes in each cluster are truly co-regulated, then the promoters of these

genes will be bound by the same transcription factor, and therefore the promoters

should share a common DNA sequence motif corresponding to the transcription factor

binding site. We searched for such motifs upstream of the genes in each cluster. We

used three motif search programs: AlignAce, a Gibbs-sampling algorithm (Hughes

et al., 2000); SPEXS12, a word-count algorithm (Brazma and Vilo, 2001; Vilo et al.,

2000), and MEME13, an expectation-maximization algorithm (Bailey and Elkan, 1995;

Bailey and Gribskov, 1998). In general, all three programs found the same motifs.

In the study of Rustici et al., four clusters were found. It is difficult to compare the

clusters of Rustici et al. with ours: The genes, experiments and clustering methods

were different. However, in general, the clustering of Rustici et al. tended to produce

fewer, larger clusters, and focused on time of expression as the main distinction be-

tween the clusters, whereas our method produced more, smaller clusters, and focused

on regulatory mechanisms (as well as time of expression). Peng et al., like us, used

hierarchical clustering and found eight clusters, some of which are quite comparable

to ours. However, again, we put more emphasis on regulatory mechanisms as opposed

to time of expression, and this generated some different clusters.

The M Clusters The wave of expression in the late G2 and M phases includes most

of the strongly regulated genes. This wave contains three major clusters, which we

call the Cdc15, Cdc18, and Eng1 clusters (figures 12, 13, and 15). Functionally, these
12http://www.egeen.ee/u/vilo/SPEXS/
13http://meme.sdsc.edu/meme/website/intro.html
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Figure 12: Cdc15 cluster
Clusters of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.
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clusters are important for mitosis and cell separation, DNA synthesis, and cytokinesis,

respectively. Genes of the Cdc15 and Cdc18 clusters peak almost simultaneously with

anaphase (see figures 10 and 14), whereas the Eng1 genes peak slightly later.

The Cdc15 cluster (figure 12 on the preceding page) is the largest of the three

clusters and contains over 100 genes. These are involved in mitosis and mitotic exit,

cytokinesis and septation, vesicle trafficking, cell wall remodeling, and other functions.

Genes involved in mitosis and mitotic exit include the APC adapter subunits srw1

and slt1, the prolyl isomerase pin1, spo12, the Cdk inhibitor rum1, five genes related

to ubiquitination, four microtubule-related genes including kinesins klp5 and klp6,

and four genes for chromosome segregation.

Cytokinesis/septation fuctions can be ascribed to at least 13 genes including the

key SH3 domain gene cdc15 and its paralog imp2, and a third SH3 domain gene,

pob1. Also present are the kinases fin1 and sid2 and phosphatase subunit par2,

which regulate the septation initiation network. mob1, which interacts with sid2, is

also cell cycle regulated with similar timing, but lies outside the cluster as defined

here. Other members likely involved in cytokinesis include genes for the rho family

member rho4, the putative rhoGEF rgf3, the septin spn2, and the myosin myo3.

Construction of the septum involves synthesis of plasma membrane and deposi-

tion of proteins into that membrane. The Cdc15 cluster is rich in proteins involved

in these processes. The cluster includes gwt1, likely involved in GPI anchor syn-

thesis, and SPAP27G11.01, SPCC306.05c, and SPBC2F12.05c, linked with sterol

functions. SPAC227.06 (a predicted Rab interactor), psy1 and bet1 (SNAREs), and

SPBC31F10.16 are likely to function in vesicle transport. The budding yeast ho-

molog of SPBC31F10.16, CHS6, is important for movement of chitin synthase from

the trans-Golgi network/endosome to the plasma membrane. Other genes encode cell

surface glycoproteins, such as the gene mac1, which is localized at poles and septum
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and is important for cell separation.

Genes for cell wall metabolism include two chitin synthase homologs, a putative

chitin synthase regulator, six putative sugar/starch hydrolases, and the MAP kinase

pmk1.

Finally, diverse other functions are represented. There are at least five genes

involved in transcription, most notably the transcription factor fkh2, which may be

one of the regulators of the Cdc15 cluster (Bulmer et al., 2004) (see below). There

are also multiple genes involved in mitochondrial functions and in glycosylation.

The three motif search programs all found the consensus motif GTAAACAAA,

easily recognizable as a binding site for a forkhead (FKH) transcription factor. Almost

every gene in the cluster had such a motif. In S. cerevisiae, the main clusters of

mitotic genes are also regulated (in part) by forkhead transcription factors. S. pombe

has several forkhead transcription factors, but the two most likely to regulate the

Cdc15 cluster are sep1 and/or fkh2. sep1 does not oscillate noticeably in our dataset,

but it does have phenotypes that could be due to defects in the expression of genes

of the Cdc15 cluster, and Rustici et al. have shown defects in cell cycle expression

in sep1 mutants. fkh2 does oscillate, and is a member of the Cdc15 cluster. The

fkh2 promoter contains two sites each for Forkhead, Ace2, and Cdc10. Interestingly,

peak expression of fkh2 precedes the peak of 94% of the other genes in the cluster,

consistent with the idea that it might help regulate these other genes. No direct

binding of either Sep1 or Fkh2 to any of these promoters has been demonstrated,

and we believe it is still an open question which protein regulates this cluster. It is

possible that both proteins contribute. Because forkhead transcription factors can

both repress and activate, and because they are regulated both transcriptionally and

post-transcriptionally, the regulatory mechanisms could be complex.

The motif search programs also found CCAGCC (Ace2 binding sites) and ACGCG
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Figure 13: Cdc18 cluster
As figure 12 on page 60, cluster of apparently co-regulated genes were chosen from
figure 11 on page 58. See legend to figure 11 for further information.

(MBF/Cdc10 binding sites) in a substantial minority of the genes of the Cdc15 clus-

ter. Many genes (e.g., fkh2 and pds5) had all three kinds of sites. MEME (but not

the other programs) also found the motif A
T TGACAAC. This is probably the same as

the motif CATGA
T CAAC found by Rustici et al. and named “New 1.” To minimize

confusion, we will refer to our version of the motif as “New1v” (“v” for variant).

MEME also found the motif CC T
ACC T

C TCC, and this may be a variant of the

motif A
T ACC T

ACGC T
A (“New 3”) found by Rustici et al. We will refer to our motif as

“New 3v.” New 3v was found preferentially in front of genes for cell wall metabolism,

such as hydrolases, glycoproteins, chitin synthases, and their regulators. Other func-

tionally related genes are found in the Eng1 cluster (see below), where they appear

to be regulated by Ace2. Interestingly, the consensus site for Ace2 (CCAGCC) is

reminiscent of the core of New 3v (CCACGC), suggesting that an unknown Ace2-like

factor could be involved.

We did not find the “PCB” consensus (GCAAC G
A), previously implicated in the

control of some of the genes of this cluster (Anderson et al., 2002; Buck et al., 2004a).

The Cdc18 cluster (figure 13) contains 18 genes involved in DNA replication. In-

cluded in the cluster arecdc18 (initiation of DNA synthesis), pol1 (DNA polymerase
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Figure 14: Oscillation of cdc18
The oscillation of the cdc18 transcript through two cell cycles in elutriation A is
plotted as a histogram (right y-axis). Also shown are the binucleate (blue triangles)
and septation indices (cyan squares) (left y-axis).

alpha), cdt1 (initiation of DNA synthesis), cig2 (S phase cyclin), mrc1 (S phase check-

point), cdc22 (ribonucleotide reductase), cdt2 (DNA replication), smc3 (cohesin), and

pif1 (DNA helicase). These genes are strongly regulated. Peak expression occurs at

about the same time as that of the Cdc15 cluster, and is essentially simultaneous

with the peak in binucleates (e.g., figure 14).

The Cdc18 cluster has a very similar cluster in S. cerevisiae, called the CLN2

cluster. Both clusters contain genes involved in DNA replication, and both clusters

appear to be regulated by the MBF transcription factor (see below). For the Cdc18

(pombe) and CLN2 (cerevisiae) clusters, many of the genes in the clusters are or-

thologs; e.g., mik1/SWE1, cig2/CLB5, mrc1/MRC1, cdc22/RNR1, andsmc3/SMC3.

Thus the cell cycle clusters regulating DNA synthesis are very highly conserved, with

the overall function of the clusters, the regulation of the clusters, and the genes in

the clusters, all being quite similar from S. cerevisiae to S. pombe.
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The three motif search programs found two motifs in the Cdc18 cluster: ACGCG,

and ACGCGA
T CGCG. The first of these is easily recognizable as the binding site for

the MBF transcription factor (also known as DSC1) (Tanaka et al., 1992; Lowndes

et al., 1992; Reymond et al., 1992), whereas the second is a related motif that may be

a tandem, double binding site for MBF, or for an MBF-like factor. Consistent with

the idea that MBF is a major regulator of this cluster, the genes of the cluster are

up-regulated by the cdc10-c4 mutation (see figure 13, and see Rustici et al.) which

creates a constitutively active form of MBF. Furthermore, six of these genes are known

to be regulated by MBF (cig2, cdt1, cdt2, cdc18, cdc22, and mik1; GeneDB, Sanger

Centre).

S. cerevisiae has two MBF-like transcription factors. One is itself called MBF and

consists of the DNA-binding protein Mbp1 complexed with the modulatory protein

Swi6. The second factor is called SBF and consists of a second DNA-binding protein,

Swi4, complexed with Swi6. S. cerevisiae MBF and SBF, with their related but

distinct DNA-binding proteins, bind to related but distinct motifs, and control the

cell cycle expression of partially overlapping sets of genes (Koch et al., 1993; Koch and

Nasmyth, 1994a). In S. pombe, there is likewise one modulatory protein, Cdc10 (the

ortholog of Swi6) and two DNA-binding proteins, Res1 and Res2 (possible orthologs

of Mbp1 and Swi4) (Tanaka et al., 1992; Lowndes et al., 1992; Reymond et al., 1992;

Ayte et al., 1995; Whitehall et al., 1999; Tahara et al., 1998). Some investigators

believe that in S. pombe, there is a unique MBF transcription factor and that it

contains Cdc10, Res1, and Res2 (Ayte et al., 1995; Whitehall et al., 1999; Zhu et al.,

1997). However, other investigators believe that the situation is similar to that found

in S. cerevisiae and that there may be two MBF-like factors, one containing Cdc10

and Res1, and the other containing Cdc10 and Res2 (Tahara et al., 1998; Sturm and

Okayama, 1996). Although our results do not speak directly to these models, the fact
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Figure 15: Eng1 cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

that we find two kinds of motifs is easier to interpret in terms of a model with two

different but related forms of MBF.

The Eng1 cluster (figure 15) contains nine genes, and these are involved in cell

separation. The genes are adg1 and adg2 (cell surface glycoproteins), adg3 ( -

glucosidase), agn1 and eng1 (glycosyl hydrolases), cfh4 (chitin synthase regulatory

factor), mid2 (an anillin needed for cell division and septin organization), ace2 (a cell

cycle transcription factor), and SPCC306.11, a sequence orphan of unknown func-

tion. The genes are very strongly cell cycle regulated. Peak expression of most of

the genes occurs slightly later than the genes of the Cdc15 and Cdc18 clusters. Motif

searches showed that each gene of the cluster has at least one binding site for the

Ace2 transcription factor (consensus CCAGCC). In fact, eight of the nine genes

contain multiple Ace2 binding sites. The exception is the ace2 gene itself, which con-

tains only one Ace2 binding site, but multiple FKH binding sites. Interestingly, the

ace2 gene is expressed earlier than the other genes of the cluster, consistent with the

idea that it might regulate the other genes. The genes are up-regulated when ace2

is over-expressed, and down-regulated when ace2 is deleted (see figure 15 Rustici et

al.). Ace2 was previously shown to be a regulator of eng1 (Martin-Cuadrado et al.,

2003) and agn1 (Dekker et al., 2004).

The Eng1 cluster has a recognizably similar functional cluster in S. cerevisiae, the
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SIC1 cluster (Spellman et al., 1998). This cluster also has many genes involved in

cell separation (e.g., EGT2, an endoglucanase; CTS1, an endochitinase; YGL028c, a

glucanase; DSE2, a glucanase; and CHS1, a chitin synthase), and the genes of the S.

cerevisiae cluster are also regulated from Ace2 binding sites of the same consensus

sequence (CCAGC). However, there is only one gene that is clearly present in the

cluster in both species, the glycosyl hydrolase eng1 in S. pombe, and its ortholog

DSE4 in S. cerevisiae. Thus the overall function of the cluster (cell separation),

the nature of many of the enzymes in the cluster (carbohydrate hydrolytic), and the

mechanism of gene regulation (binding by Ace2) have been conserved, even though the

individual genes in the cluster have been largely shuffled. It is easy to understand why

the individual genes are different, because the two species have cell walls containing

different carbohydrates (and so requiring different hydrolytic enzymes), and because

the modes of cell separation are very different (fission vs. budding). In fact, given

these differences, it is remarkable that the mode of regulation and the functional

cluster seem to have been conserved.

The S/Early G2 Clusters The relatively few genes that peak in late M, S, or

early G2 fall into three small clusters: the telomeric cluster, the histone cluster, and

the Wos2 cluster ( 16 on the following page, 17 on the next page, and figure 18 on

page 69).

The telomeric cluster figure 16 on the following page contains eight tightly clus-

tered genes found near telomeres. Peak expression is in early S. Two of the genes are

at telomere 1L; two at 1R; two at 2L, and two at 2R. Interestingly, S. cerevisiae also

has a cluster containing only telomeric genes (the Y´ cluster), and the genes of that

cluster also peak in late G1 or early S.

The histone cluster (figure 17 on the following page) contains all nine histones of
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Figure 16: Teleomere maintenance cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

Figure 17: Histone cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

S. pombe. These are tightly co-regulated and strongly periodic, and form a very tight

cluster. Presumably, peak expression of the histone genes marks the time of S phase.

These genes are expressed about 30 min after the DNA synthesis genes of the Cdc18

cluster. Surprisingly, the histone cluster contains two non-histone genes, SPAC977.07c

and SPAC1384.08c. These two genes are near telomeres and are homologs of each

other, but have no known function. Possibly they are actually co-regulated with the

genes of the telomeric cluster, which peak just before the histone cluster.

Motif searches showed that all the histone genes (but not the two telomeric genes)

had the motif GGGTTAGGGTT T
G . A degenerate second copy was sometimes also

present. This motif has been noted previously (Matsumoto and Yanagida, 1985). In

addition, six of the histone genes (and both telomeric genes) had a motif similar to

an MBF binding site, GC
G

T
GACGCG.
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Figure 18: Wos2 cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

In S. cerevisiae, the histone genes have at least three semi-redundant regulatory

systems: First, they have the HIR gene system that represses histone expression

outside of S (Spector and Osley, 1993; Spector et al., 1997). Second, they have

regulated mRNA stability, such that the messages are only stable during S (Lycan

et al., 1987). Third, they have a system for gene induction during S. Recently, it

has been suggested that this positive system relies on the SBF transcription factor,

possibly in combination with a forkhead transcription factor (Kato et al., 2004). The

fact that an MBF motif is found in front of most of the S. pombe histone genes is

consistent with the SBF motif found in front of most of the S. cerevisiae histones,

and suggests that MBF may play a role, along with other mechanisms, in regulating

histone expression in S. pombe.

The Wos2 cluster (figure 18) contains seven genes expressed in late S or very early

G2. Expression of the genes in the cluster responds strongly to the two experiments

that involve temperature shifts (cdc25–22 synchrony and cdc10-M17 block-release;

note that control cDNA for simple cell cycle–arrest experiments was made from wild-

type cells similarly shifted to high temperature). Motif searches found repeats of the

sequence NGAAN , a typical heat shock response element. The cluster contains wos2,

encoding a chaperone activator interacting with Hsp90; SPACUNK4.16c, important

in trehalose synthesis (trehalose is a thermo-protectant); SPBC16D10.08c, encoding a
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Figure 19: Ribosome biogenesis cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

chaperone similar to S. cerevisiae Hsp104; and SPBC4F6.17c, similar to S. cerevisiae

Hsp78, a mitochondrial chaperone.

The early to mid G2 genes: The Ribosome biogenesis and Cdc2 clusters

Although most of the strongly regulated genes peak near the G2/M transition,

another large group of genes, 200 or more, peaks with a moderate amplitude at al-

most exactly the opposite side of the cell cycle, in early to mid G2 (figure 19). The

expression of these genes does not respond to mutations in cdc10, ace2, or fork-

head, and they are all strongly repressed at the nuc2 block. Near the center of this

set of 200-plus genes is a sub-cluster of genes that is somewhat more tightly co-

regulated than the rest. We have designated these the “Ribosomal biogenesis” cluster

(figure 19). These genes include SPAC1527.03 (RNA-binding protein, LA-related),
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SPAC57A7.06 (processome component, involved in rRNA processing), SPBC13G1.09

(bystin family protein, associated with U3 and U14 snoRNAs, involved in rRNA

processing); SPCC16A11.02 (WD-repeat protein, processome component, involved in

rRNA processing); SPAC23C4.17 (tRNA methyltransferase of the NOL1/NOP2/sun

family involved in methylation of cytidine to 5-methyl-cytidine [m5C] at several po-

sitions in different tRNAs); SPBC11G11.03 (60S acidic ribosomal protein); rpl2403

(60S ribosomal protein L24–3); ker1 (interacts with RNA polymerase I); SPAC1093.05

(DEAD/DEAH box RNA helicase involved in rRNA processing); SPAC926.08c (Brix

domain RNA-binding protein involved in ribosome biogenesis and assembly); and

many others.

Other genes in the ribosome biogenesis cluster are involved in nuclear/cytoplasmic

import and export. These genes include: nup61 (nucleoporin with a RanBp-binding

domain), kap123 (karyopherin), SPCC550.11 (RanBP7/importin-beta/Cse1p family,

RanGTP-binding protein involved in mRNA export), and mep33 (mRNA export

protein).

It is not clear why such genes would be cell cycle regulated. However, Mitchi-

son and colleagues (Mitchison and Nurse, 1985; Creanor and Mitchison, 1982, 1984;

Mitchison et al., 1998; Sveiczer et al., 1996) have documented a cell cycle oscillation

in the rate of growth and protein synthesis in S. pombe. In these studies, there seems

to be an acceleration of protein synthesis, and a corresponding acceleration in cell

growth rate, in mid G2. Furthermore, “NETO” (new end take off, the time when

the new end begins to grow) occurs at about this time. The peak in expression of

ribosome biogenesis genes we observe in early/mid G2 could lead to this slightly later

peak of protein synthesis and growth rate. Sveiczer et al. (1996) suggest that the

acceleration in protein synthesis is the “sizer” that leads to commitment to division;

in terms of our findings, the peak in transcription of the ribosome biosynthesis genes
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would be an important component of the sizer.

We have recently found that many S. cerevisiae ribosome biogenesis genes are also

cell cycle regulated. Expression peaks in G1, and so this peak could be important

for the cell sizer, which in S. cerevisiae is in late G1. These genes also show a minor

expression peak in early G2. The oscillation of these genes is seen in an elutriation

experiment done in ethanol medium, but not in block-release experiments done in

glucose medium. The reason for these different, experiment-specific results is unclear,

but on the basis of the literature we believe that the oscillation may be under the

control of cyclic AMP, and this cyclic AMP signaling does not occur in media with

high glucose (Jorgensen et al., 2004; Muller et al., 2003).

Surprisingly, we found no DNA sequence motifs associated with the promoters of

the genes in the ribosomal biogenesis cluster.

As one moves out from the center of the ribosome biogenesis cluster, one encoun-

ters many other genes peaking in G2 phase. These are of diverse function, but one

interesting example is the pma1 gene, which encodes a proton pump. This pump is

needed to maintain the proton gradient across the plasma membrane, affecting many

processes, and so seems an unlikely candidate for a cell cycle–regulated gene. Nev-

ertheless, it is cell cycle regulated both here and in S. cerevisiae (Spellman et al.,

1998). The reason for the oscillation is unclear, but because Pma1 is an integral

plasma membrane protein that must be inserted into the membrane at the time of

synthesis, one possibility is that its synthesis matches the rate of plasma membrane

production; in S. cerevisiae, this may reach a peak in G2, accounting for the peak in

PMA1 transcription. A similar explanation could hold true in S. pombe.

Adjacent to the Ribosome biogenesis cluster is a cluster of 23 genes we call the

Cdc2 cluster (see figure 20 on the following page). Like the ribosome biogenesis

genes, these oscillate moderately with a peak in G2. Their regulation is distinguished
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Figure 20: Cdc2 cluster
Cluster of apparently co-regulated genes were chosen from figure 11 on page 58. See
legend to figure 11 for further information.

from the ribosome biogenesis genes by the fact that they are differentially regulated

after heat stress. Motif search programs found heat shock motifs (NGAAN) asso-

ciated with many of these genes. The Cdc2 cluster contains several interesting cell

cycle genes, including cdc2 itself; SPBC1861.01c and abp2, which code for AT hook

proteins thought to bind centromeric DNA and ARS DNA, respectively; res1, a key

component of the MBF transcription factor; sds22, a protein phosphatase regulatory

subunit known to be involved in the cell cycle; ash2, a member of the SET1 complex,

and involved in lysine methylation of histone H3; alp1, a tubulin-specific chaperone;

SPCC18.03, a putative transcriptional regulator; pkl1, a kinesin-like protein of the

Kar3 family; and other genes. Other than the heat shock elements, no statistically

significant motifs were associated with the promoters of these genes.

Characterization of Cell Cycle–Regulated Promoters Each cluster was searched

for DNA sequence motifs. The most significant motifs are summarized in table 3 on

the next page. However, the presence of these motifs in the upstream regions of

the genes of a cluster says little about promoter structure. To investigate promoter

structure in more detail, we used a program called SpikeChart (S. Pyne, B. Futcher,
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Table 3: Cell cycle clusters and motifs
When a cluster contains several motifs, they are listed by decreasing order of statistical
significance. When one of several motifs is clearly the most significant, it is noted as
the “Primary” or “(P)” motif. The Cdc18 and Eng1 clusters also contain examples
of the FKH, New1v, and New3v motifs, but these were not statistically significant
in motif searches. The statistical significance of each motif varied widely between
programs, as well as with different parameter settings, and is therefore not reported.
However, significance rankings (e.g., FKH was more significant than New1v for the
Cdc15 cluster) were fairly well preserved across programs and parameter settings.
FKH is a forkhead motif and HSE is a heat shock element.
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and S. Skiena, unpublished data) that finds and displays motifs in DNA sequences.

SpikeChart uses a weight matrix to define a consensus motif, and it shows each oc-

currence of a motif as a spike of varying height depending on that motif’s match

to the consensus. For instance, a motif that matches the consensus motif exactly

would be given a spike height of ten, whereas a motif with one or more mismatches

to the consensus would be given a lower score, depending on the number and nature

of the mismatches. (Weight matrices and scoring functions are shown in Table S2).

SpikeChart can score many different kinds of motifs simultaneously, and can show the

position of all scored motifs, so it is well suited to finding groups of motifs, whether

they be of the same kind or different kinds. Initially, because we did not know where

regulatory motifs might occur, SpikeChart was used to examine the first 200 base

pairs (bp) of the open reading frame in question, and 2,000 bp upstream of the start

codon (regardless of whether this region included the next open reading frame or not).

Groups of closely spaced, multiple motifs were usually visible, and these groups

usually occurred in the upstream intergenic region (as opposed to within the open

reading frame). These groups of motifs were striking for their complexity. There

were often four to ten motifs per group, and often the motifs were of several different

kinds. The groups of motifs usually occupied about 400 bp of DNA. SpikeChart

confirmed that the Cdc15 cluster was dominated by FKH motifs; the Cdc18 cluster

was dominated by MBF and DBL10 motifs; and the Eng1 cluster was dominated

by Ace2 motifs. However, SpikeChart showed that in addition to the predominant

motif, the genes of all these clusters often had other motifs as well. In particular, for

M phase genes, it was very common to have at least one FKH motif and at least one

other kind of motif. There was a weak to moderate correlation between the number

of motifs upstream of a gene and the amplitude of that gene’s cell cycle oscillation

(data not shown).
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We did not notice any cases where the group of regulatory motifs was inside an

open reading frame (either the downstream or upstream open reading frame).

In long (>1 kb) intergenic regions, the group of motifs usually occurred within

800 bp of the start codon, but this was not always true; a substantial minority of

regulatory motif clusters occurred more than 800 bp upstream (but still within the

intergenic region). Because the median S. pombe intergenic region is only 900 bp,

we wondered whether the cell cycle genes might have unusually long promoters. We

measured the length of upstream intergenic regions versus cell cycle rank in our list

of all 5,000 genes. The most strongly regulated 200 genes had upstream intergenic

regions of about 1,200-bp median length, versus a genome-wide median length of

900 bp. Thus, the more strongly cell cycle–regulated genes have longer than average

upstream regions. We have noticed the same phenomenon with the cell cycle regulated

genes of S. cerevisiae (S. Pyne, S. Skiena, and B. Futcher, unpublished data). The

longer-than-average promoters found for cell cycle–regulated genes suggests that these

promoters might be above average in complexity.

Discussion

How Many Cell Cycle–Regulated Genes Are There? We have ranked S.

pombe genes by the statistical significance of their oscillation, and we have discussed

the most cyclic 750 genes. However, p-values and other evidence (see figure 10 on

page 55) suggest there are at least 2,000 genes with weak oscillations. This number

fits well with the combined results of our study and the studies of Rustici et al. and

Peng et al.. The three cell cycle lists of 750, 407, and 747 genes, respectively, implicate

a total of 1,373 genes. Each study has uniquely identified some genes, but in general

these are not just errors, because the vast majority of the uniquely identified genes

show some cyclicity in one or both of the other studies even though they do not rise
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above the cutoff in those studies. Thus we feel the three groups of investigators are

each fishing 400 to 750 genes out of a pool of about 2,000 detectably oscillating genes.

The three groups are in excellent agreement with respect to the strongly oscillating

genes, but then diverge with respect to the more weakly oscillating ones (see figure

9).

However, at the same time, it seems unlikely that 2,000 genes would be directly

involved in the cell cycle. There might be at least two kinds of reasons for the observed

oscillations. First, an oscillation might be adaptive; i.e., there might be natural

selection in favor of the oscillation. The DNA synthesis genes (e.g., cdc18, pol1, and

cdc22) in the Cdc18 cluster are examples of genes in which it is easy to believe that

the oscillation is adaptive. But second, some oscillations may be incidental. That is,

there might be no selective advantage whatsoever to the oscillation, but instead the

oscillation is a secondary or indirect effect. For example, chromatin condenses during

mitosis. At least in multicellular eukaryotes, mitosis is associated with genome-wide

repression of transcription. If there is a similar loss of transcription during mitosis in

S. pombe, and if our microarray experiments are sufficiently sensitive, we will detect

this decreased transcription as a cell cycle oscillation with a trough in mitosis for

essentially all genes (preferentially the genes with a short mRNA half-life). But this

cell cycle oscillation, though real, does not imply that the oscillation of any of these

genes is beneficial; instead, it is a secondary consequence of mitotic repression and

chromatin condensation, which presumably is beneficial. Incidental oscillation might

also arise when two genes are adjacent to each other. One of the genes might oscillate

for adaptive reasons, but the oscillation of this gene might carry over to adjacent

genes, for which natural selection is perhaps indifferent to oscillation.

How can we distinguish adaptive from incidental oscillation? First, adaptive os-

cillations are likely to be large-amplitude oscillations, whereas incidental oscillations

77



are likely to be small-amplitude oscillations. Our cutoff at 750 genes is a crude first

screen to enrich for genes with adaptive oscillation. Second, one should consider the

total oscillation of the gene’s final activity. That is, the oscillation of a gene’s tran-

script might be small. But if one finds that the same gene also has an oscillation

in protein stability (e.g., because of regulated proteolysis), and also an oscillation in

enzyme activity (e.g., because of phosphorylation), this suggests that the oscillation

is adaptively significant. For example, in S. pombe, the cyclin transcripts oscillate

only modestly, and yet the oscillation of the final product (Cdc2 protein kinase ac-

tivity) is large. The modest oscillation of the transcript contributes in a significant,

multiplicative way to the overall oscillation, and is undoubtedly adaptive. Third, one

should consider co-regulated genes and the mode of regulation. If a gene is a member

of a small cluster of genes, and the genes have related functions and are regulated by

a specific cell cycle transcription factor, then the oscillation is almost certainly adap-

tive. But if the gene is co-regulated with hundreds of other genes all with very small

oscillations, and there is no common function to the genes and no known cell cycle

transcription factor, then the oscillation of the whole set of genes may be secondary to

some effect such as chromatin condensation. Fourth, one should consider the chromo-

somal location. Genes adjacent to adaptively regulated genes could oscillate passively.

In particular, genes in regions of special chromatin structures (e.g., near telomeres,

centromeres, and silenced regions) could oscillate as a secondary consequence of cell

cycle changes in the special chromatin structure.

In summary, we feel that a very large number of S. pombe genes, 2,000 or more,

have at least very small cell cycle oscillations. But it is possible that in many cases this

oscillation may be incidental and that only a smaller but unknown number oscillate for

adaptive reasons. Sorting adaptive from incidental oscillations will require additional

experiments.
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Two Genome-Wide Waves of Transcription There were two large waves of

transcription, one peaking in early/mid G2, and the other peaking in late G2 or M (see

figure 10 on page 55). The early/mid G2 wave contains hundreds of genes, including

many genes for ribosome biogenesis. Interestingly, Mitchison and co-workers (Sveiczer

et al., 1996) have documented a cell cycle oscillation in protein synthesis, which peaks

in mid G2, and may help trigger commitment to cell division. We believe that the

early/mid G2 peak in ribosome biogenesis genes may lead to this slightly later peak

in protein synthesis.

One property of these early/mid G2 genes is that they are deeply repressed at

the nuc2 block in mitosis (see figures 19 on page 70 and 20 on page 73). This is

reminiscent of mitotic repression, a phenomenon observed in multicellular eukaryotes

in which the majority of transcription (Pol I, Pol II, and Pol III) is repressed during

mitosis (Johnson and Holland, 1965; Gottesfeld et al., 1994; Gottesfeld and Forbes,

1997; Hartl et al., 1993; Leresche et al., 1996; Hu et al., 2004; Klein and Grummt,

1999; Spencer et al., 2000; Parsons and Spencer, 1997). Repression is especially well

established for Pol I and Pol III polymerases, which are needed for transcription

of ribosomal RNA and other RNAs required for protein synthesis. It is thought

that highly active transcription may interfere with chromosome condensation, and so

transcription is repressed to allow condensation.

A related observation is that in the 1970s and 1980s, metabolic labeling studies

were done on synchronized cultures of S. pombe. These studies found “steps” of

incorporation of labeled uridine into RNA (mostly ribosomal RNA) as a function

of cell cycle phase. Around mitosis, incorporation was poor, then after mitosis, the

rate of incorporation increased, and then flattened out again at the next mitosis, then

increased, and so on. The interpretations of this step-like, cell cycle–regulated uridine

incorporation were varied, and the subject disappeared from the literature without
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resolution (Elliott, 1983a,b; Fraser and Nurse, 1978, 1979).

Putting these observations together, we speculate that S. pombe, too, may have

some degree of mitotic repression, perhaps important for chromosome condensation.

Pol I accounts for the vast majority of the transcription in the cell. Mitotic repression

of Pol I transcription of the ribosomal RNA genes would account for the pause in uri-

dine incorporation seen in mitosis in the metabolic labeling studies. But if ribosomal

RNA is not transcribed in M, and given that the components of the ribosome are

tightly coordinated in their production, then genes for ribosomal proteins (as seen

by Peng et al.), and genes for ribosome biogenesis, might also be repressed in M.

Repression in M would account for the oscillation of the ribosome biogenesis cluster

and its repression at a nuc2 arrest. Finally, if the ribosome biogenesis genes cluster

together because they are subject to mitotic repression, this might explain why the

cluster does not contain any characteristic 5´ motifs: Mitotic repression might not

work through a particular upstream site-specific transcription factor. Indeed, in S.

cerevisiae, ribosome biogenesis transcripts are controlled in part at the level of mRNA

stability (Grigull et al., 2004). Thus, we suggest that S. pombe may have a form of

mitotic repression and that this repression in mitosis may account for the oscillation

of the ribosome biogenesis genes and other genes peaking in early/mid G2 phase and

troughing in M.

The second large wave of gene expression peaks in late G2 and in M. This wave

includes the Cdc15 cluster (which has many genes for mitosis), the Cdc18 cluster

(DNA replication), and the Eng1 cluster (cell separation). There are many important

cell cycle events in M and S, and these two phases are close together in rapidly-growing

S. pombe. The many genes peaking in late G2 and M may simply represent the cell’s

efforts to prepare for the many activities of M and S. It will be of interest to see what

happens to the timing of the Cdc18 cluster (DNA synthesis genes) in slowly growing
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cells with a long G1: Will they still be transcribed in mitosis, or will they now be

transcribed in late G1?

If mitotic repression does exist in S. pombe, how is it that the Cdc15, Cdc18,

and Eng1 clusters peak in M phase? Baum et al. (1998) have used nuclear run-

on to show that cdc18 and some other members of the cdc18 cluster can be actively

transcribed in mitosis at a time when histone H1 kinase activity is high and chromatin

is presumably condensed. Our own results agree that essentially all the genes of the

Cdc15, Cdc18, and Eng1 clusters are highly expressed at a nuc2 arrest, a time at

which histone H1 kinase activity is high, and chromatin should be condensed. Our

elutriation data suggest that in normal cells, the peak of expression of genes in the

Cdc15 and the Cdc18 cluster is almost simultaneous with mitosis (see figures 10

and 12). The genes of these clusters may be specialized for transcription in mitosis.

Interestingly, the Cdc15 cluster genes have binding sites for a forkhead transcription

factor. Forkhead transcription factors have a “winged-helix” fold, a structure they

share with histone H1. Like histone H1, forkhead proteins may be capable of binding

to linker DNA in between nucleosomes, and seem to be capable of binding even to

chromatin that is relatively condensed (Cirillo et al., 1998; Cirillo and Zaret, 1999;

Cirillo et al., 2002; Carlsson and Mahlapuu, 2002). That is, perhaps forkhead is

an enabler of transcription for genes in condensed chromatin, and so is particularly

suitable for driving expression of genes in mitosis. The Cdc18 cluster depends on

the MBF factor, and the MBF/SBF/E2F family of DNA-binding proteins also has a

winged helix fold (Taylor et al., 2000). Finally, the Ace2/Swi5 family of transcription

factors has been associated with the recruitment of chromatin remodeling enzymes

and histone acetylases (Cosma et al., 1999). Even in mammals, which clearly do

have mitotic repression, there are mitotic genes strongly expressed during mitosis

(Whitfield et al., 2002b). Interestingly, at least some of these genes are thought to be
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regulated by forkhead transcription factors (Alvarez et al., 2001).

The more moderately expressed genes in the G2/M wave (i.e., genes not in the

Cdc15, Cdc18, or Eng1 clusters) tend to be expressed in late G2 rather than in M

(see panel C of figure 10 on page 55). Thus these genes may be subject to mitotic

repression. Perhaps a large number of genes are expressed in late G2 because it the

last chance to be expressed before M, a relatively inopportune time for transcription.

Comparison of Cell Cycle Genes in S. pombe and S. cerevisiae Of our

top 200 ranked cell cycle–regulated genes, 72 (36%) had S. cerevisiae homologs that

cycled, 68 had S. cerevisiae homologs that did not cycle significantly, and 60 did not

have clear S. cerevisiae homologs. (A detailed comparison of the top 200 S. pombe

genes and their S. cerevisiae homologs is available as Table S3).

Genes involved in core cell cycle processes such as DNA synthesis and mitosis

were especially likely to cycle in both organisms. On the other hand, genes involved

in budding (in S. cerevisiae) or fission (in S. pombe), or in cell wall carbohydrate

metabolism, generally did not cycle in both organisms for the obvious reasons that

the mechanism of cell separation, and the nature of the carbohydrates in the cell wall,

are not conserved between the two yeasts.

There are many individual cases where a process is cell cycle–regulated in both or-

ganisms, but either the level of regulation (i.e., transcriptional or post-transcriptional)

or the identity of the gene regulated varies between the two yeasts. One example is

the activity of the cdc2/Cdc28 protein kinase. In S. cerevisiae, most of the cyclins

are very strongly regulated at the transcriptional level (e.g., CLN1, CLN2, CLB5,

CLB6, CLB1, and CLB2), but in S. pombe, the equivalent cyclins are only weakly or

moderately regulated at the transcriptional level. Possibly compensating for this rel-

atively weak transcriptional regulation, S. pombe has very strong post-translational
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regulation of Cdc2 kinase activity via Wee1/Mik1 inhibitory tyrosine phosphorylation

of Cdc2, whereas the homologous system is relatively weak in S. cerevisiae. That is,

both yeasts strongly regulate cdc2/Cdc28 activity through the cycle, but emphasize

different mechanisms. A second example is provided by the gene products of dut1

(SPAC644.05c) and ung1. These proteins both work to exclude uracil from DNA, but

by independent mechanisms. The Dut1 protein hydrolyses dUTP, whereas the Ung1

protein removes uracil from DNA by cleaving the glycosidic bond. In S. cerevisiae,

dut1 is very weakly cell cycle regulated, whereas ung1 is moderately regulated. In S.

pombe, dut1 (SPAC644.05c) is very strongly regulated, whereas ung1 appears not to

be regulated at all. Thus both yeasts use cell cycle transcriptional control to exclude

uracil from DNA, but the emphasis is on different genes.

Regulatory Networks and the Late G2 Bump In S. cerevisiae, there is a

regulatory network governing the transcription of cell cycle genes. This network is

organized as a circular cascade, such that transcriptional and post-transcriptional

changes occurring during one part of the cycle seem to promote changes in the next

part of the cycle, and so on around a circle (Zhu et al., 2000b; Simon et al., 2001;

Futcher, 2002). In principle, S. pombe must also have a circular cascade of some kind

to make the cell cycle repeat. However, fewer cell cycle regulatory mechanisms have

been described in S. pombe than in S. cerevisiae, and so the wiring of the putative

cascade is still unclear. In particular, it is unclear how extensive a role is played by

transcriptional control.

Moreover, in S. cerevisiae, genes displaying large-amplitude cell cycle changes are

distributed throughout the cycle (Spellman et al., 1998), consistent with the idea that

transcriptional control contributes significantly to all phases of the cascade (Simon

et al., 2001). However, in S. pombe, most large-amplitude genes are expressed in a
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window near the G2/M transition, whereas genes of moderate and low amplitudes are

distributed throughout the cycle. This concentration of large-amplitude genes near

M may suggest that transcriptional control is most important for only some portions

of the cascade.

Within the G2/M window of high-amplitude transcriptional regulation, one can

discern what may be part of the regulatory wiring diagram. The transcription factor

gene fkh2 peaks in the earliest part of the late G2 window. Over 100 other genes in

this window, including fkh2 itself, have FKH binding sites, so the up-regulation of

fkh2 may contribute to this large wave of gene expression.

One of the critical targets of the Fkh transcription factor may be the gene for

the Ace2 transcription factor. The ace2 promoter has multiple sites for Fkh binding.

The ace2 promoter also has one site for Ace2, so, like the fkh2 gene, ace2 may be

autoregulatory. The Ace2 transcription factor then induces a cluster of genes involved

in cell separation and cell wall metabolism. Interestingly, a forkhead transcription

factor is involved in turning on the ACE2 gene in S. cerevisiae, so this particular part

of the cell cycle wiring diagram appears to be conserved in the two species.

Three of the major cell cycle transcription factors in S. cerevisiae, MBF/SBF,

Fkh, and Ace2/Swi5, have homologous cell cycle transcription factors in S. pombe.

The major exception is Mcm1, a MADS-box transcription factor. In S. cerevisiae,

there are two paralogs of this gene, MCM1, and ARG80. Mcm1 is a transcription

factor for cell cycle genes and mating genes, whereas Arg80 controls various metabolic

processes. The best S. pombe orthologs are Map1 and Mbx1 (Buck et al., 2004a).

There was no noticeable enrichment of an Mcm1-like binding motif in front of any

cluster of cell cycle–regulated genes; i.e., there was no evidence for a binding site for

Map1 or Mbx1.

In multicellular animals, the major well-characterized cell cycle transcription fac-
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tor(s) are those of the E2F/DP family (Attwooll et al., 2004; Bracken et al., 2004).

These typically control a cluster of genes expressed in late G1, and the genes are

involved in DNA replication and commitment to the cell cycle. Functionally, the

genes controlled by E2F/DP in animals are similar to the genes controlled by MBF

in the two yeasts. E2F and DP proteins are not very similar in sequence to the pro-

teins found in MBF, but it is also true than various E2F and DP proteins are not

very similar to each other, though they are clearly related. E2F and DP recognize

binding sites with a CGCG core, as does MBF. Furthermore, the DNA-binding do-

main of E2F/DP factors consists of a winged-helix fold (Zheng et al., 1999), as do

the DNA-binding domains of Swi4 and Mbp1 (components of S. cerevisiae SBF and

MBF, respectively) (Taylor et al., 2000; Zheng et al., 1999). Thus, despite the overall

sequence dissimilarity, it is possible that MBF in the yeasts, and E2F/DP in animals,

are cell cycle transcription factors that are related by descent and which have always

controlled the cell cycle expression of genes involved in DNA replication.

Materials and Methods

Microarrays Microarrays were made by spotting unmodified, double-stranded

PCR products onto glass slides coated with aminopropylsilane (Erie Scientific). Spot-

ting was done using a robot of the DeRisi design14 and ArrayMaker2 software15.

PCR primers were designed using Primer3 (Whitehead Institute, Cambridge, Mas-

sachusetts, United States) and a shell script. Primers were designed against approx-

imately 5,000 open reading frames and RNAs (excluding pseudogenes) as annotated

by the Sanger Centre16. In general, PCR primer pairs were designed to give prod-

ucts 500 to 1,000 bp in length, because the yield of the PCR reaction decreased for
14http://cmgm.stanford.edu/pbrown/mguide/
15http://derisilab.ucsf.edu/arraymaker.shtml
16http://www.sanger.ac.uk/Projects/S_pombe/DNA_download.shtml
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products longer than 1,000 bp. When the PCR product was small compared to the

length of the gene, it was usually chosen from the 3´ region of the gene, so as to

maximize representation in poly dT-primed cDNA synthesis. PCR products were

amplified from genomic S. pombe DNA, and so in some cases the final product in-

cluded introns, but the design parameters maximize contiguous exonic sequence. A

fuller description of the microarrays will be published elsewhere. A full description

of the primer pairs, and hence the features on the microarrays, can be found at

http://www.redgreengene.com.

Cell cycle synchronizations Two methods of cell cycle synchronization were

used, elutriation and a cdc25–22 block and release. Two independent elutriation

experiments were carried out. For elutriations, 8l of h-972 cells (wild-type) were

grown in YES (autoclaved, elutriation B or filter-sterilized, elutriation A) to early

log phase (OD600 = 0.4) at room temperature (25°C). Cells were harvested by cen-

trifugation, resuspended in approximately 100-ml YES, and sonicated, all at room

temperature. For elutriation B, approximately half of the cell volume was reserved

for the reference cDNA preparation. For elutriation A, the reference cDNA was pre-

pared independently and the entire sample was used for elutriation. Cells were loaded

into a Beckman elutriator rotor containing two 40-ml elutriation chambers connected

in series. When two chambers are used in series, the bulk of the cells remain in the

first chamber, but the smallest cells flow into the second chamber, and then, at higher

pump speeds, some of these flow out of the elutriator for collection. This arrangement

provides both high capacity and high resolution. The elutriator was used at 1,800

rpm at room temperature. After every increase in pump speed, a fraction of about

150 ml was collected, containing about 5 × 108 cells (elutriation B) or 3 × 109 cells

(elutriation A). These were diluted to OD600 = 0.2–0.05 (greater dilution for sam-
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ples harvested at late times) with conditioned (elutriation B) or fresh filter-sterilized

(elutriation A) medium, and then sampled with time.

An entire three cell cycle time course was obtained from five elutriator fractions

(elutriation B) or two fractions (elutriation A). We used adjacent fractions containing

no (< 0.5%) septated cells; the elutriator fraction with the largest cells (i.e., the last

fraction collected) was used first, then the elutriator fraction with the next largest

cells, and finally the elutriator fraction with the smallest cells (i.e., the first fraction

collected). In general, the fractions were “overlapped,” i.e., the last sample from one

fraction and the first sample from the next fraction were collected at the same time.

“Overlapped” fractions, though collected at the same time, were deemed to have

been collected at slightly different times; the number of minutes by which overlapped

fractions were offset was determined by the offset, in minutes, of the septation indicies

for the two fractions. That is, for any pair of overlapped fractions, the smaller cells

were deemed to have been collected earlier, by a time determined from the offset of

the septation indicies of the two fractions. Note that elutration A used only two

fractions, and so there was only one overlap. Samples were taken about 10 min.

(elutriation A) or 15 min (elutriation B) apart; exact sampling times are given in the

Treeview files 1, 2, and 3 (Dataset S1) and at http://www.redgreengene.com.

Cells (108 cells/sample) were harvested by centrifugation at 4°C and washed with

ice-cold water, snap frozen, and stored at −70°C. For elutriation A, an equal volume

of ice was added to the cell culture during harvest (harvest with ice). The reference

sample for hybridizations was sonicated cells prior to elutriation (elutriation B), or

h-972 grown to OD600= 0.2 in filtered YES at 25°C (elutriation A). Septation index

was monitored by phase contrast microscopy of live cells during each experiment. In

addition, frozen cell pellets were thawed and stained with DAPI and calcofluor to

monitor anaphase (“binucleates”) and septation for elutriation A. Cells were scored
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as “binucleates” if two nuclei were visible, but there was no septum.

For the cdc25–22 block release, the prototrophic strain JLP1164 h+ cdc25–22 was

grown in filtered YES at 25°C to OD600 = 0.4 and then used to inoculate 4 × 500

ml filtered YES to an OD600 of 0.1 (flask 1), 0.08 (flask 2), 0.07 (flask 3), and 0.05

(flask 4). Cells were shifted to a water bath at 36.5°C for 4 h to arrest them in G2

(time = 0 h) and then shifted back to 25°C rapidly in an ice-water bath (26°C was

achieved in approximately 5 min; cultures did not cool below 25°C). Samples were

taken 10 min apart and harvested with ice as described above. The reference sample

for hybridizations was JLP1164 h + cdc25–22 grown at 25°C to OD600 = 0.2 in filtered

YES. Septation index was monitored by phase contrast microscopy.

Other microarray experiments To examine cells released synchronously from

a cdc10 arrest, 8L of strain JLP1166 h− cdc10-M17 was grown at 25°C to OD600

= 0.5 in filtered YES, and then harvested and elutriated to obtain a fraction of G2

cells. These were diluted to 106 cells/ml, shifted to 36.5°C for 3 h 15 min, rapidly

cooled to 25°C as described above (time = 0), and then sampled with time. Cells

were harvested with ice. Samples were also collected and analyzed by flow cytometry

to monitor DNA replication. The reference sample for hybridizations was JLP1166

h− cdc10-M17 grown to OD600 0.2 in YES at 25°C.

To examine cells grown in low nitrogen, wild-type h-972 was grown in EMM lacking

NH4 and supplemented with 20 mM phenylalanine (EMM-phe) to provide a limiting

nitrogen source to expand the G1 window (Carlson et al., 1999). 8L of cells were

grown at 25°C to OD600 = 0.4, collected by centrifugation at 4°C and kept on ice and

sonicated on ice. Approximately half of the total cell volume (125 ml, total 2 × 108

cells) was reserved for reference cDNA synthesis and the remainder was elutriated at

4°C to fractionate the culture into 21 fractions ranging from small cells (50% G1) and
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then medium cells (G2) and finally to long, septated cells. Fractions were harvested

immediately by centrifugation at 4°C. Fraction assignments were confirmed by flow

cytometry analysis and high-quality hybridizations were obtained with fractions 2, 3,

5, 7, 10, 13, and 16.

To examine cells arrested at the cdc10, cdc22, cdc25, and nuc2 block points, four

strains carrying these cell cycle mutants (cdc22-M45, nuc2–663, cdc25–22, and cdc10-

M17) and a wild-type reference control were grown to OD600 0.05–0.08 in YES at 25

°C and shifted to 36.5°C. After 4 h of arrest at this restrictive temperature, a sample

was taken for microarray analysis. For each strain, the experiment was repeated with

an independent single colony. Figures 10 on page 55, 11 on page 58, 16 on page 68, 17

on page 68, and 18 on page 69 show results (in different columns) from both single

colonies. Strains used were wild-type PR109 h− leu1–32 ura4-D18 (obtained from P.

Russell), and the cell cycle mutants (F84) OM591 h− cdc22-M45 (P. Russell), (F58)

PR580 h− leu1–32 nuc2–663 (P. Russell), JLP1165 h+ cdc25–22 (this study), and

JLP1166 h− cdc10-M17 (this study).

Microarray hybridization and processing Cell samples for RNA isolation were

rapidly cooled by addition of an equal volume of ice (except for elutriation B in

which samples were placed on ice) and then collected by centrifugation at 4,000

rpm. (3,300 × g) at 4°C for 3 min. Pellets were washed twice in ice-cold dH2O,

frozen in liquid nitrogen, and stored at −70°C. Total RNA was isolated using Ri-

boPure Yeast (Ambion, Austin, Texas, United States) according to the manufac-

turer’s instructions (elutriation A samples) or hot phenol essentially as described in

Rustici et al. (2004)17 with slight modifications according to the detailed protocols

at http://www.redgreengene.com). Isolated RNA was further purified by RNAeasy
17http://www.sanger.ac.uk/PostGenomics/S_pombe/docs/rnaextraction_website.pdf
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cleanup columns (Qiagen, Valencia, California, United States) and quantitated by

absorption spectroscopy.

Microarray probes were prepared in two steps. First, cDNA was synthesized in-

corporating aminoallyl-dUTP (aa-dUTP). Purified aadUTP cDNA was then coupled

with Cy3 or Cy5 fluorescent dyes according to protocols from the Institute for Ge-

nomic Research18 with slight changes as follows: 20–25 g of total RNA was used for

cDNA synthesis with 4 g of oligo-dT primer (not random hexamers), and reactions

contained 300 M aminoallyl-dUTP with 200 M dTTP. RNA was destroyed using

RNase instead of NaOH, and reactions were purified with a Qiagen PCR purification

kit. Dye incorporation was determined by absorption spectra and was typically one

fluor/20–30 nucleotides.

For hybridizations, cDNA with 50pmol Cy3 plus reference cDNA with 50pmol

Cy5 was included in a 24 l total hybridization solution (25% v/v formamide, 5×

SSC, 0.1% SDS, and 100 g/ml of sonicated salmon sperm DNA). Hybridizations

were performed under 22 × 25mm lifter cover slips (Erie Scientific, Portsmouth, New

Hampshire, United States) at 50°C in a humidified chamber for 16–20h. Hybridized

arrays were washed by gently shaking as follows: twice briefly with 2× SSC/0.1%

SDS (50°C), twice for 10 min with 2× SSC/0.1% SDS (50°C), and four times briefly

with 0.1× SSC at room temperature. Arrays were dried by centrifugation.

Arrays were scanned using an Axon 4000B scanner, controlled by GenePix Pro

5.1 software with a pixel size of 5 m and two-pass sequential line averaging. Laser

power was set to 100%, and PMT gains were subjectively adjusted during prescan to

maximize effective dynamic range and to limit image saturation. Lossless image files

were stored for later analysis.
18http://www.tigr.org/tdb/microarray/protocolsTIGR.shtml
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Data extraction and storage To extract data from microarray scans, previously

stored image files representing all hybridizations were analyzed in parallel. Spot size,

location, and quality were determined automatically by GenePix Pro algorithms.

Dynamic spot resizing between 60 and 150 m diameter was permitted based upon

image examination and prior optimization. Misidentification of spot locations was

corrected by manual adjustment of the map prior to automatic sizing and shifting.

Only in cases of gross hybridization defect were spots/regions manually moved/resized

or flags modified to “bad,” permitting consistent spot calling. Following spot location,

parameters and values for each spot were calculated by GenePix Pro and exported.

No normalization was applied within GenePix Pro.

Raw data and images exported from GenePix Pro were used to populate a local

installation of the Longhorn Array Database (Peter Killion, University of Texas at

Austin. An SQL database based upon the Stanford Microarray Database, Stanford

University). Initial data normalization was performed at the time of population.

Briefly, spots were categorized as “pombe” or “other.” S. pombe spots were further

categorized into “normalization” (no bad, missing, absent, or not-found flags) or “non-

normalization” (bad, missing, absent, or not-found flags). Only normalization spots

were further considered for the normalization calculation. Finally, spots with greater

than 5% saturation in either image channel were discarded from this group. The mean

log2 ratio of the median net intensities (Rm, foreground pixel − median of the local

background) was calculated. This “normalization factor” represented the distance

from a red/green ratio of one, and was used as a scalar modifier for the ratios of all

spots in the hybridization; i.e., though only spots meeting a stringent “good” criterion

were used to determine the normalization value, this value was subsequently applied

to all spots, good or not. During retrieval of data, several further criteria were used to

ensure high-quality data in downstream analysis. Only spots with non-negative flag
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values were retrieved (not bad, missing, absent, or not-found), and only spots with

a regression correlation of pixel ratios (a metric of internal spot consistency) greater

than 0.6 were used. Spot values were averaged (mean) when multiple independent

spots representing a single PCR product were present as internal controls or otherwise.

When analyzing multiple hybridizations, such as during time-course analysis, iterative

gene and array centering was performed. Briefly, within an array of genes × arrays,

the mean log2 ratio of medians (Rm) was calculated and subtracted from each log2

Rm, first along the gene axis, then along the array axis, until subsequent iterations

varied by < 0.001%.

Normalization There are some special red/green normalization issues relevant to

the genome-wide waves of expression (see figure 10 on page 55). In general, fluores-

cence from mRNA from synchronous cells was normalized to total fluorescence from

mRNA from asynchronous cells. If all mRNAs were equally reduced in abundance

during mitosis (e.g., because of genome-wide mitotic repression), this normalization

would obscure the effect. However, despite normalization, any such repression would

still be somewhat visible as a relative loss of unstable mRNAs versus stable mRNAs.

We presume that if the trough of peaks of expression in M/G1/S seen in figure 10 on

page 55is indeed partially due to mitotic repression of transcription, then the individ-

ual genes troughing at this time are genes that produce unstable mRNAs, which are

then noticeably repressed despite the red/green normalization because they are re-

duced relative to stable mRNAs. This argument suggests that stable mRNAs should

tend to peak in the M/G1 interval. Indeed, some genes do peak at this time. These,

however, would be fewer in number than the genes that fail to peak, because, in

general, cells tend to express a small number of stable mRNAs to very high levels,

comprising the bulk of mRNA, and a large number of unstable mRNAs to low levels
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(Futcher et al., 1999).

A second normalization issue is that the oscillation of the strongly regulated genes

would have an effect, via normalization, on the apparent expression of non-oscillating

genes (i.e., genes that do oscillate would produce an artifactual, complementary os-

cillation in non-oscillating genes, via normalization). To side-step this artifact, pixel

intensity data for the bottom 4,000 genes were extracted from the microarray data

before the red/green normalization step, and then normalized and analyzed after ex-

traction, so that the oscillation of the 1,000 most strongly cyclic genes would not

interfere with normalization of the least cyclic genes.

Cluster analysis For cluster analysis, array- and gene- centered log2 Rm data

were hierarchically clustered along the gene axis by the agglomerative algorithm of

Eisen et al. (1998). Data were visually presented using JavaTreeView19. Separation

of the total dendrogram into subordinate clusters was performed subjectively.

Motif analysis To find DNA sequence motifs, nucleotides extending from −1 to

the edge of the most 3´ proximal gene (stop or ATG, depending on orientation) with

a maximum length of 12,000 bp were extracted genewise for each cluster and used

as a target set for motif searching. Three different motif search programs were used:

MEME, AlignAce, and SPEXS.

MEME (Multiple EM for Motif Elicitation) (Bailey and Elkan, 1995) was used to

find motifs between five and nine nucleotides long present in any number of copies on

either strand, weighted to find 1/3n to 3n total sites in the target set of n sequences.

Parameters were set as follows: $ meme (sequence name) –dna –minsites (n/3) –maxsites (n*3) –mod

anr –minw 5 –maxw 9 –revcomp –nmotifs 10 –evt 0.1 –bfile (fifth order Markov model). (Other param-
19http://jtreeview.sf.net, manual at http://jtreeview.sourceforge.net/manual.html
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eters were also tried in additional searches.) The top ten motifs exceeding an E-value

of 0.1 were generated using a background set consisting of the fifth order Markov

model representing possible nucleotide pentuplets in all S. pombe upstream regions.

AlignACE (Hughes et al., 2000) uses a Gibbs sampling algorithm. Again, all S.

pombe upstream regions were used as a background set.

SPEXS (Sequence Pattern EXhaustive Search) (Vilo et al., 2000), a word-search

enumeration algorithm, was also used. Relative frequency of 1- to 9-mers was calcu-

lated, and compared between the target set and all S. pombe upstream sequences.

Identification of oscillating transcripts In general, identification of oscillating

transcripts requires a method for finding oscillations in each experiment, and then

a method for combining the results from different experiments. Here, we have used

Fourier analysis to identify oscillating genes. A p-value for the hypothesis of oscillation

was then established using Monte Carlo simulations on shuffled data. The p-values

for different experiments were then combined using known statistical properties of the

p-value. Finally, the p-values for each gene were ranked. Although we have ranked

the p-values, these p-values are nevertheless closely correlated with the amplitude of

the oscillation.

For each time series of observations in a single time course (e.g., a three cell cycle

elutriation experiment), we calculated the Fourier sums A and B over the range of

times, t, in the experiment:

A =
∑

sin(2π( t
T )) ∗ log2(ratio(t))

B =
∑

cos(2π( t
T )) ∗ log2(ratio(t))

Here, t is the time in minutes at which the sample was taken (where the beginning

of sampling is zero time); T is the cell cycle period, i.e., the time in minutes required

for a complete cell cycle; and ratio(t) is the ratio of experimental to control signal at
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time t.

We considered these two sums as a vector C = (A, B), and then calculated the

magnitude of the vector, D0 =
√

(A2 + B2). This magnitude, D0, is our basic Fourier

measure of whether a transcript oscillates. Note that there is no need to calculate

phase.

However, random noise would generate some value of D greater than zero, and

genes whose transcripts are relatively variable in abundance could generate relatively

large values of D, even if these variations had no connection to the cell cycle. There-

fore, as a second step, we randomly shuffled the series of observations for each gene

in question, and calculated a new magnitude, DR, for the randomized series. This

randomization was repeated 1,000 times, generating 1,000 values of DR. These rep-

resent the distribution of D for each gene, given that gene’s actual variance in gene

expression. Finally, we compared the original value of DO from the unshuffled data

to the distribution of D from the shuffled data, found how many standard deviations

D0 is from the mean of the distribution, and in this way calculated a z score for D0.

This procedure was repeated for each gene and for each experiment. Thus, for each

gene, there were three z scores, one per experiment (two elutriation experiments and

the cdc25 block-release experiment). These three z scores were then combined by the

method of Stouffer, yielding a single p-value for each gene. Genes were then ranked

by p-value with the lowest p-value at the top of the list. In practice, a large amplitude

of oscillation contributes tremendously to a low p-value, so the upper portion of the

p-value list is almost exclusively occupied by genes with high-amplitude oscillations

Gene database In general, we have used the information in the GeneDB database20

to describe the various genes studied; when a fact is given in the text about some gene
20http://www.genedb.org/genedb/pombe/index.jsp
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but no reference is given, the information comes from GeneDB. When the primary

literature has been consulted directly, the reference for the primary literature is given.

3 Abundant non-coding RNAs affect transcriptome

structure in S. pombe

Yeast biologists were relatively slow to undertake whole-transcriptome profiling. As

detailed above, systematic analyses of human and murine transcriptomes using high

resolution arrays and EST/tag sequencing were first published in 2002 (Kapranov

et al., 2002) and 2006 (Carninci et al., 2005) , respectively. These studies clearly

and repeatedly demonstrated that the genomic “dark matter” of gene-free regions

was being actively transcribed. Coding density of higher eukaryotic genomes is quite

low, so it is perhaps unsurprising that exonic sequences made up only a fraction of

processed cellular RNAs. The genomes of budding and fission yeast are more than an

order of magnitude more gene dense than those of metazoa, making it unclear how

findings in mouse and man would translate to smaller, more dense genomes.

Several instances of non-coding transcription had previously been identified in

budding and fission yeast. In S. pombe, subtractive hybridization and cloning of

meiosis-specific transcripts yielded several species which lacked an open reading frame,

including structured RNAs and antisense transcripts (Watanabe et al., 2001). The

presence of abundant processed non-coding transcripts in vegetative cells was alluded

to shortly thereafter; nearly 7% of sequenced cDNA clones from mitotic cells lacked an

identifiable ORF (Watanabe et al., 2002). Prior to high-resolution studies described

below, numerous non-coding transcripts were known in S. cerevisiae, including sev-

eral that conferred regulatory functions (outlined above on page 20). EST data had
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been generated for budding yeast and was invaluable for validation of predicted tran-

scripts, but high genomic density made identification of non-coding species difficult

(Velculescu et al., 1997). Despite the rich variety of gene expression studies which

had been performed in yeast, transcriptome structure was not mapped until relatively

“late” in comparison to other model organisms.

3.1 Transcriptome mapping and a glimpse of RNA-seq

In 2006, several tools developed for human transcriptome analysis trickled down to

budding yeast. Ron Davis’s group published a high-resolution snapshot of transcrip-

tion in asynchronous S. cerevisiae using Affymetrix tiling arrays (David et al., 2006),

providing strand-specific quantitation of transcript levels at 8nt spatial resolution.

Novel computational tools were designed for analysis of these data, including an algo-

rithm for segmentation of genomic intervals based on similarity of probe signals (Hu-

ber et al., 2006). This approach provided a list of genomic regions whose edges were

based on differences in expression level. Several months later, the Ito lab published

its long-read sequencing snapshot of mitotic and meiotic transcription in budding

yeast (Miura et al., 2006). These data included more than 50,000 full length cDNA

sequences from two vastly different transcriptional programs, and provided both val-

idation of and complementary information to the tiling array data (although the two

papers have not been directly meta-analyzed). A critical aspect of the Ito lab’s se-

quencing approach was the use of vector-capped libraries (Ohtake et al., 2004; Kato

et al., 2005), ensuring that the cDNAs to be sequenced were full length, complemen-

tary up to and including the 5’- m7G cap. These direct sequencing data permitted

accurate identification of transcription start and polyadenylation sites. The data re-

sulting from both of these studies demonstrated impressive complexity of the budding
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yeast transcriptome, and permitted the genome-wide analysis of 5’ and 3’ untrans-

lated regions, validation of predicted splicing events, and the identification of novel

transcripts, including many antisense species. While somewhat limited in biological

breadth, these dense data provided fertile ground for analysis of transcript structure

and novel feature discovery.

Previously unappreciated antisense transcription was a common finding of both

David et al. (2006) and Miura et al. (2006). This was especially true for data derived

from tiling arrays, where more than 1000 previously unannotated antisense transcripts

were identified, including nearly 200 “high confidence” “filtered” species. Several of

these antisense transcripts were validated through further experiments, including a

case of regulatory transcriptional interference which was shown to govern meiotic

entry (discussed here on page 20 and in Hongay et al. (2006); Uhler et al. (2007b)).

However, many of the antisense transcripts reported in David et al. could not be

validated by other methods, often to the frustration of researchers whose “favorite

genes” were purported to have antisense counterparts.

Before the publication of David et al. (2006); Miura et al. (2006), I had personally

purchased and implemented a complete Affymetrix workflow in the lab. Affymetrix

tiling arrays for budding and fission yeast had been previously ordered for use in

ChIP/chip experiments, but required expensive and inconvenient processing at the

University DNA Microarray Facility (UDMF) (University Hospital, Stony Brook

NY). The availability of in-house hybridization and processing permitted flexibil-

ity in chemistries used, sample preparation times, and most significantly, reduced

cost. Proof of principle for both the wet biology (probe labeling and hybridiza-

tion/staining/scanning) and downstream data analysis were performed by labeling

genomic DNA from wild type and partially aneuploid (harboring Ch16, (Niwa et al.,

1986)) cells. This strain contains a centromeric minichromosome with ~500kb of

98



Chromosome 3, and had been my previous test subject of choice for validating rela-

tive copy number on our spotted arrays prior to replication timing work for Mickle

et al. (2007). The data generated from the Affymetrix platform were immense in

comparison to spotted array data; significant time and coding effort was put into the

processing of raw intensity data from the array into mapped positions along the S.

pombe genome (several of these issues are addressed above on page 36). Despite the

growing pains of dealing with new higher density data sets, I was able to determine

a two-fold change across the aneuploid region with high confidence.

After seeing the rich complexity of S. cerevisiae transcription and the quality of

data generated from Affymetrix arrays, I decided undertake a similar analysis in S.

pombe. Collaborating with Huei-Mei Chen, another graduate student in the lab, I set

out to map transcription in fission yeast, with the main goals of refining transcript

structure, especially 5’ and 3’ ends, and identifying/validating introns, with particular

interest in regulated splicing events. To our good fortune, troubleshooting of cDNA

labeling for tiling arrays took a bit longer to scale up than expected; we were able

to generate and hybridize only a small number samples over the first few months.

During that time, the Steinmetz lab published a follow-up to David et al. (2006)

which addressed the presence of widespread (but largely unvalidateable) antisense

transcription in budding yeast, and provided a simple change to the labeling protocol

which greatly improved our eventual data.

The cDNA synthesis and probe labeling protocol used in David et al.was ex-

ceedingly simple (and is the fundamental basis for our protocol described below on

page 125). MMLV-derived reverse transcriptase was used to generate cDNA from

total RNA using random hexamers. Following hydrolysis of RNA and cleanup by

phenol extraction and EtOH precipitation, the cDNAs were enzymatically sheared

by brief DNAse I digestion into fragments of 50-100nt. Fragments were subsequently
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Figure 21: Actinomycin-D eliminates second-strand cDNA synthesis
Retroviral reverse transcriptases possess both RNA- and DNA-dependent DNA poly-
merase activity. In the viral life-cycle, the RNA genome is reverse transcribed to
first-strand cDNA, the RNA genome is hydrolyzed by RNase-H activity of the RT,
followed ultimately by second-strand cDNA synthesis. Actinomycin-D eliminates the
DNA-dependent DNA polymerase activity, restricting synthesis to that of first-strand
cDNA exclusively. Figure reproduced from Perocchi et al. (2007).

3’ labeled by incorporation of biotin-N6-dATP using terminal deoxynucleotide trans-

ferase (TdT). This method was quite effective at generating labeled first-strand cD-

NAs; unfortunately, second-strand cDNAs were also produced and end-labeled. These

second-strand cDNAs were indistinguishable from first-strand cDNAs from antisense,

resulting in spurious identification of antisense transcripts (schematized in figure 21).

The reason for this anomaly was recognized (but not addressed) by the Davis lab:

MMLV (and AMV) reverse transcriptases normally generate first-strand cDNA, de-

grade the heteroduplex, and, acting as a DNA dependent DNA polymerase, generate

second-strand cDNA (Spiegelman et al., 1970). These activities are clear in context

of the viral lifecycle, where double stranded DNA is required for integration into the

100



host genome.

The polypeptide antibiotic Actinomycin-D inhibits this second-strand synthesis

activity of MMLV RT, an activity of unknown mechanism which has been recognized

for nearly forty years (Müller et al., 1971; Ruprecht et al., 1973) . In 2007, Lars

Steinmetz’s group published a refinement of the method used by David et al. and

compared their original S. cerevisiae transcriptome maps to new data derived from

cDNAs generated in presence of Actinomycin-D (Perocchi et al., 2007). From this

comparison, it became evident that antisense transcription was occurring in budding

yeast, but to a lesser degree than previously proposed. Nearly half of the “antisense”

transcripts observed in the original data disappeared from the new Actinomycin-D

data, leaving antisense signal unchanged for roughly 200 genes (see examples in figure

23). Sense transcript level was shown to be strongly correlated with antisense signal

from -Actinomycin-D hybridizations (see figure 22) , but the variability of antisense

signal for a given sense transcript level precludes a posteriori deconvolution of such

data. This is especially relevant in the context of “sampling transcription” which is

proposed to occur from actively transcribed regions, resulting in the generation of

antisense transcripts from many loci. At least in fission yeast, the majority of these

incidental transcripts are not fully processed, and are the subject of further discussion

below.

All of the data which I’ve generated and analyzed come from cDNAs which were

reverse transcribed in the presence of Actinomycin-D. The resulting data are implic-

itly strand-specific, and are uniquely able to identify bona fide antisense transcripts

present in S. pombe. During the course of my tiling array analysis, two papers were

published profiling the transcriptome of fission yeast (Wilhelm et al., 2008; Dutrow

et al., 2008). Each of these manuscripts approached the general question of identify-

ing all transcribed sequences in S. pombe, but failed to provide significant insight into
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Figure 22: Spurious antisense signals are correlated with sense transcript level in
budding yeast
Average sense and antisense signals across each S. cerevisiae ORF are shown. When
reverse transcription is performed without Actinomycin-D, antisense signals are pos-
itively correlated with sense transcript level. When exclusively first-strand cDNAs
are generated by addition of Actinomycin-D, the majority of these antisense signals
disappear, suggesting that they are reverse transcription artifacts. Data obtained
from David et al. (2006) and Perocchi et al. (2007).
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poly(A)+
RNA-seq

Figure 23: Spurious second-strand cDNAs mimic antisense transcripts
Many of the antisense transcripts identified by David et al. (2006) were artifacts of the
DNA-dependent DNA polymerase activity of the reverse transcriptase used. Second-
strand cDNAs were generated for a subset of all RNAs, resulting in antisense-like
signals. Addition of Actinomycin-D suppresses this activity, excluding synthesis of
all but first-strand cDNA (Figure 21 on page 100). Note signal on the non-coding
strand (top) for both RPN2 and SER33, which disappears when cDNA synthesis is
performed in the presence of Actinomycin-D. Antisense signal of SPO22 (also top)
does not decrease in presence of drug, and lacks corresponding sense signal; SPO22
has a bona fide antisense transcript in vegetative cells.
Short read sequencing data from vegetative polyA+ RNAs (Nagalakshmi et al., 2008)
are shown at the bottom of the panel. Strand-nonspecific data is the unable to deter-
mine the edges of the tightly packed transcriptional units present in budding yeast.
Note the apparently contiguous signal of SEC28 and RPN2. Lack of strandedness
precludes assignment of SPO22 and HOP1 signals as antisense.
Despite millions of mapped sequence reads, the short read data’s dynamic range is far
below that of the tiling arrays. While tiling array data indicates clear expression of
both SPO22 and HOP1 antisense above background, sequencing coverage is poor. Av-
erage coverage across SPO22 was only 2.3 reads per exonic nucleotide, 0.7 for HOP1.
Coverage is inconsistent, showing numerous Gaussian peaks of reads corresponding
to fragmented cDNAs; standard deviations are 99% and 128% of respective means.
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Publication Technology Stranded resolution Input material

Wilhelm et al. cDNA on Affy NO 20nt total RNA
Wilhelm et al. cDNA-seq NO “1nt” fragmented polyA+ cDNA
Dutrow et al. direct RNA on Agilent yes 55nt total RNA (1 polyA+)

This work cDNA on Affy yes 20nt effectively polyA+ RNA

Table 4: Comparison of transcriptome studies in S. pombe

the nature of novel species. Furthermore, neither of these studies provided a com-

bination of high resolution, strand specificity, and analysis of exclusively processed

transcripts (detailed in table 4). While publication of these manuscripts preempted

publication of my own simple “catalog” of transcribed sequences, they have provided

an invaluable contrasts and supporting evidence for several mechanistic insights into

global regulation of transcription in fission yeast and beyond .

3.2 Unstable RNAs are a hidden but universal feature of tran-

scriptomes

In addition to stable transcripts which reach the cytoplasmic compartment, many

RNAs are generated, fail to be packaged into functional mRNPs, and promptly de-

graded (Zenklusen et al., 2002). Several unstable non-coding species were serendipi-

tously identified in budding yeast by Alain Jacquier’s group in 2005, when Affymetrix

gene expression arrays were used to identify changes in transcript abundance in cells

lacking functional Rrp6p in an attempt to profile maturation and turnover of partially

processed transcripts (Wyers et al., 2005). The Affymetrix design used incorporated

probes for a handfull of cryptic transcripts, signals for whom are normally low in

wild-type cells. Several of these cryptic transcripts were stabilized upon depletion

of Rrp6p, and were therefore termed “cryptic unstable transcript[s]”, or CUTs. In

contrast to genome-wide increases in transcript levels following disruption of RNA

104



turnover, focal changes were occurring and could be detected on microarrays.

rrp6 and dis3 conditional mutants were already being examined in the lab in

the context of regulated meiotic message turnover, and tiling microarray data was

generated from these strains. Surprisingly, few changes occur in cells lacking Dis3 ,

likely reflecting overlapping function with Rrp6 (noted previously in budding yeast by

Dziembowski et al. (2007)). Depletion of rrp6, however, stabilizes hundreds of hith-

erto unknown transcripts in fission yeast whose presence has significant implications

in genome organization. A pair of detailed examinations of non-coding transcrip-

tion in budding yeast was published during the course of my analysis (Neil et al.,

2009; Xu et al., 2009), and suggest that many non-coding transcripts are the result

of bidirectional transcription. As I have independently discovered in fission yeast,

non-coding transcripts are frequently transcribed divergently from active promoters.

The availability of these S. cerevisiae non-coding RNA maps has permitted the iden-

tification of cross-species patterns of genome organization and significantly broadened

the applicability of my findings in S. pombe.

Abundant non-coding transcription is not limited to yeast. Tiling array analy-

sis of exosome-depleted human cells demonstrated the active transcription of short

upstream polyadenylated non-coding RNAs which were turned over in an hRrp40 de-

pendent manner. This transcription was positively correlated with expression level of

the primary message, suggesting a positive regulatory role for transcription of these

species (Preker et al., 2008). Recent transcriptome-wide run-on experiments per-

formed in John Lis’s lab have demonstrated bidirectional initiation of transcription

around active promoters, and observed sense/antisense spacing similar to what we

observe in fission yeast (Core et al., 2008). Recent work in Arabidopsis has shown

that depletion of the exosome leads to accumulation of a variety of different RNAs,

including polyadenylated structural RNAs, microRNA precursors, and most intrigu-
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ingly, heterochromatic repeat-associated transcripts (Chekanova et al., 2007). In

fission yeast, heterochromatin formation has recently been shown to require cid14

poly(A) polymerase activity (Bühler et al., 2007), an ortholog of the Trf4/5 com-

ponent of the TRAMP complex in budding yeast responsible for polyadenylation of

exosome-bound transcripts. These findings reinforce the idea that heterochromatin

is not transcriptionally silent, and suggest that the encoded transcripts are degraded

in a co-transcriptional manner conserved from fission yeast to higher eukaryotes.

While generation of stable RNAs has been previously implicated in transcriptional

interference mechanisms, little attention has been paid to the possible effects of tran-

scription resulting in unstable species. As the majority of mechanisms proposed for

positive and negative regulation by transcription do not require generation of a sta-

ble RNA, CUT transcription can engender regulatory activity. As I describe below,

genome organization is strongly affected by transcription which results in both stable

and unstable non-coding species.
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3.3 CUTting apart the genome: non-coding RNAs separate

transcriptional units in fission yeast

Introduction

As we peer deeper into the transcriptome, widespread transcription of much of the

genome emerges as a universal feature of eukaryotic biology. Though early studies of

expression were focused on discrete coding or structural RNAs, it has become clear

through the development of unbiased transcript sequencing (Velculescu et al., 1995)

that far more of the genome is transcribed than can be ascribed a functional role.

The scope of this transcription is stunning. The recently completed ENCODE pilot

project has provided evidence for transcription of 93% of bases interrogated within

the human genome (ENCODE Project Consortium et al., 2007), most of which lack

apparent coding potential, echoing early fine structure studies of transcription human

cell lines which found that nearly 90% of the transcribed sequences fell outside of

annotated exons (Kapranov et al., 2002). Over the last decade, many new classes of

functional non-coding RNAs have been identified (reviewed in Hannon et al. (2006)),

but despite these advances, a large fraction of the genome is still transcribed without

clear purpose.

Advances in high-throughput detection and quantitation have enabled the cata-

loging and characterization of transcripts in a variety of model systems, from which

it has become clear that widespread transcription is not limited to spacious metazoan

genomes. Transcriptome studies of budding (David et al., 2006; Xu et al., 2009) and

fission yeast (Dutrow et al., 2008; Wilhelm et al., 2008) have mapped widespread

expression, refined the structure of known transcripts, and identified hundreds to

thousands of novel transcripts whose presence had not been predicted in silico. While

regulatory functions have been ascribed to a handful of non-coding transcripts in bud-
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ding (Martens et al., 2004; Hongay et al., 2006) and fission (Hirota et al., 2008) yeast,

these RNAs have been largely considered incidental byproducts of genic expression.

Results

We have examined the processed transcripts present in S. pombe using a high reso-

lution strand-specific approach. Commercial tiling microarrays were used to interro-

gate long (>200nt) polyA+ RNAs from asynchronous mitotic cells grown in defined

laboratory media (EMM). Sample preparation was carried out largely as described

(David et al., 2006) with the notable addition of Actinomycin D during cDNA syn-

thesis to avoid generation of confounding second strand cDNAs (Perocchi et al., 2007)

(see Supplemental Methods). Technical replicate hybridizations were performed for

all samples. These data represent processed, polyadenylated RNAs in vegetative

S. pombe. Non Pol II transcribed RNAs are absent, as is much of the “sampling

transcription” described previously (Figure 24) . Normalized probe intensities were

computationally partitioned into genomic intervals of similar signals (Huber et al.,

2006), and the resulting segments were analyzed further. These data represent the

first high-resolution strand-specific examination of the S. pombe transcriptome.

Consistent with findings in mammals, we have identified processed RNAs corre-

sponding to 90% of the genome from a single growth condition. During the initial

sequencing of the fission yeast genome(14), a number of “gene free regions” were

identified. We find that many of these intervals are actively transcribed into discrete

non-coding RNAs and as long untranslated regions (UTRs) of adjacent open reading

frames (Figure 25) . While gene free, these regions do not go untranscribed. In ad-

dition to the large amounts (~10%) of contiguous non-coding sequence in the form

of 5’ and 3’ UTRs, we have found a striking number of discrete non-coding RNAs

present in the S. pombe genome. We have identified hundreds of stable non-coding
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Figure 24: High resolution, strand specific quantitation of processed transcripts
Our data represent a high-resolution, strand specific snapshot of the polyadenylated
transcripts present in fission yeast. Shown above is data from this study and Dutrow
et al. (2008) across a 15kb window of chromosome I. In this window, all signals
are confined to a single strand corresponding to an annotated transcript. Intronic
probe signals are substantially lower than flanking exons (see spn2 for example) and
approach background signal levels. Our data lack the sampling transcription ob-
served by Dutrow et al. in total RNA hybridizations, and more closely resemble their
polyA+ enriched samples. A notable exception is seen at the snRNA snu3. This abun-
dant non-polyadenylated transcript is virtually absent in our hybridizations (signal
is within the first percentile of all annotated features), but was not depleted dur-
ing polyA+ enrichment by Dutrow et al. (signal is above ninety-fifth percentile of
annotated features).
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Figure 25: Gene free regions are actively transcribed
A number of gene-free regions were identified in the otherwise densely annotated
S. pombe genome during sequencing (Wood et al., 2002). Although lacking open
reading frames, we find that these regions are actively transcribed. Shown here is a
portion of Chromosome I along which there is a 4kb region lacking annotated features.
This region is actively transcribed in vegetative cells as both a divergent non-coding
transcript (B) from the gas5 TSS (A) and a long 5’ UTR of SPAC11E3.14 (A’). Similar
unannotated transcripts are observed at nearly all other annotation-free regions.
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Figure 26: Definition of non-coding RNA used in this work
A conservative definition of non-coding RNAs was used in this work to minimize false
discovery rate. Segments must satisfy multiple criteria to be called a novel feature. A
minimum of 12 contiguous unique probes must be present, corresponding to a mini-
mum feature size of 240nt or more (consistent with the minimum size recovered from
RNA purification methods used). The novel feature must be expressed at a signifi-
cantly higher level than both flanking segments and above background (as defined by
a minimum difference in segment mean and one-sided KS test p-value). Finally, the
novel feature must not overlap any current annotation.

RNAs using a conservative definition designed to minimize false positive calls (Figure

26) . This algorithm has identified more than 400 previously unannotated discrete

features in addition to 100 previously described ncRNAs and 21 snoRNAs. These

novel transcripts are expressed across a range similar to coding genes (Figure 27) ,

and have a median length roughly two-thirds that of the average S. pombe coding

sequence. ncRNAs identified here are abundant in number and total length; these

503 well-defined non-coding transcripts account for 5% of the genome, more than that

occupied by all identified introns.

Previous genome-wide studies of fission yeast have cataloged many non-coding
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Figure 27: Non-coding RNAs are expressed across a range similar to coding tran-
scripts
The non-coding RNAs identified in this study are expressed across a wide range of
expression levels, and at levels similar to annotated coding sequences. Mean intensi-
ties of all probes comprising each non-coding feature are shown below the mean signal
across coding bases (exclusively exonic probes) for all S. pombe genes. The major-
ity of coding sequences are expressed well above background level, though transcript
level varies across several orders of magnitude. Analysis of antisense transcription is
presented below on page 131.
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RNAs (Wilhelm et al., 2008; Dutrow et al., 2008) in the context of transcriptome

mapping, but little effort has been focused on analyzing the function or formation

of this abundant class of transcripts. The combination of strand specificity and high

spatial resolution of our data afforded us a unique look at the orientation and po-

sitioning of these non-coding RNAs in the context of all processed transcripts. In

vegetative cells, we find that 41% of stable ncRNAs are situated in a manner con-

sistent with their being the result of bidirectional transcription from the promoter of

known transcripts. In such cases, the 5’ edge of the divergent ncRNA maps to less

than 250bp from the transcription start site of the cognate forward gene (Figure 28),

a finding mirrored by recent studies in budding yeast in which many identified non-

coding RNAs appear to initiate from a single shared nucleosome free region upstream

of a coding gene (Neil et al., 2009; Xu et al., 2009). Widespread divergent transcrip-

tion has also been described in mammals, where high throughput sequencing of ES

cells revealed a novel population of small RNAs that represent transcription of both

strands around known transcription start sites (Core et al., 2008; Seila et al., 2008).

In this context, our findings suggest that bidirectional transcription is a universal

feature of eukaryotic genomes.

The presence of non-coding RNAs adjacent to transcribed genes could be due to

sampling transcription initiating from accessible DNA near an active promoter. If,

however, divergent ncRNAs are the result of bidirectional transcription from a single

promoter, changes in forward (message) transcription would be mirrored by changes in

the level of the associated divergent ncRNA. We tested this causal model by examining

expression changes around a set genes whose expression is strongly regulated by the

presence of thiamine (vitamin B1). Comparing transcript abundance between cells

grown with or without thiamine, we find that only 17 transcripts change substantially

in response to this nutrient (Figure 29) , and that in addition to gene expression level,
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Figure 28: Divergent transcripts initiate within a short distance of the associated
genic TSS
Initiation of a divergent transcript occurs within a narrow window upstream of the
genic transcription start site. Each gene with an associated divergent non-coding
RNA was aligned by segmentation-determined transcription start site, and probes
250nt 3’ (towards the initiator codon) and -500nt (upstream) are shown. Divergent
transcripts are represented by the blue line, whose turning point is present within a
window consistent with a single nucleosome free region. Of note, the “opposite strand”
signal is below background adjacent to the forward transcript. This is likely due to
transcriptional interference from genic transcription excluding antisense “sampling”
across this region.
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Figure 29: Thiamine starvation induces changes in transcript level and structure
Differences in expression level between cultures grown in minimal medium with thi-
amine (+B1) or without (-B1) are shown. Shown above, divergent transcription
occurs when the associated gene is induced. Antisense signal disappears with the
onset of forward transcription, possibly suggesting an additional layer of antisense
regulation.
Genome wide, only seventeen genes are robustly induced when cells are starved for
thiamine (vitamin B1), shown at mid-left. As above, marked changes in transcript
structure occur around nearly all induced genes. Diffuse 5’ edges (present in the
uninduced +B1 state) consolidate to a more discrete, shorter 5’ UTR when expression
is induced (top, mid right and bottom left panels). Divergent transcription is induced
for the majority of these genes (12 of 17), including induction of non-coding RNAs
and co-induction of divergent genes involved in thiamine biosynthesis (bottom right).
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Figure 30: Bidirectional transcription occurs around B1 starvation induced genes
Bidirectional transcription occurs around genes induced by B1 starvation. Instead of
absolute transcription level as in figure 28, difference in signal intensity is shown.

transcriptome structure changes accompany induction. For more than two thirds of

these regulated genes (12 of 17), transcription is induced bidirectionally, consistent

with coupled regulation of both transcripts from a single initiating element (Figure

30). Though markedly reduced by its absence, transcripts for thiamine repressed

genes are visible in cells grown in B1. In contrast, most associated non-coding RNAs

are only evident under conditions which activate transcription.

To exclude the possibility that induced non-coding RNA transcription was limited

to a single regulatory scheme, we expanded our analysis of induced expression to

changes in expression during meiotic differentiation, a program which has previously

been shown to involve regulation of hundreds of transcripts (Mata et al., 2002). RNA

was extracted from synchronous pat1-114 cells undergoing the first meiotic division

(MI) (Cervantes et al. (2000), see 4h time point below in figure 36 on page 135),

at which time genes of the Mei4p-regulated mid-meiotic program are expressed. We
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examined expression changes around meiotically-induced Mei4p-dependent genes, and

find that divergent transcription is induced for nearly 40% (120 out of 306 genes).

The majority of these divergent transcripts represent non-coding RNAs, although

several closely spaced pairs of divergently oriented coregulated genes were identified.

Transcription of stable noncoding RNAs is coupled to expression of adjacent gene,

and bidirectional activity is observed for both transcription factors tested .

In addition to the stable RNAs described above, much of the genome is tran-

scribed into unstable species that are rapidly degraded. In higher eukaryotes, only

an estimated 5% of Pol II transcribed ribonucleotides are exported to the cytoplasm

as stable RNAs (Moore, 2002), while the majority are culled by nucleolytic surveil-

lance mechanisms. At the center of RNA quality control is the exosome (reviewed

in Schmid and Jensen (2008)), whose disruption leads to accumulation of normally

degraded transcripts. Studies in budding yeast and Arabadopsis have described a new

class of discrete unstable non-coding transcripts that accumulate following depletion

or inactivation of the conserved nuclear exosome subunit Rrp6p (Wyers et al., 2005;

Chekanova et al., 2007). These cryptic unstable transcripts (CUTs) are actively tran-

scribed and, in budding yeast, gain a poly(A) tail via the TRAMP complex (Thiebaut

et al., 2006). Despite transcription and adenylation, their rapid turnover normally

precludes detection.

We used a conditional allele to inactivate rrp6 in mitotic cells and stabilize these

normally degraded RNAs. The CUT containing extracts were interrogated as oligo(dT)

primed cDNAs on tiling arrays. Probe intensities were compared to wild-type, and

the differences between the CUT-enriched and wild type signals were partitioned and

analyzed. Using identical criteria as above, we have identified 996 discrete unsta-

ble RNAs that are transcribed during growth in minimal media. These transcripts

are shorter than their stable counterparts, with a mean length of 518nt vs 933nt,
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Figure 31: Stable and unstable ncRNAs are divergently transcribed from active pro-
moters
Hundreds of novel non-coding transcripts which are divergently transcribed from pro-
moters of known genes have been identified in this work; several examples are shown
here. Both stable (*) and unstable (**) ncRNAs have been characterized, with the
latter defined as non-coding transcripts that are visible only following inactivation
of the nuclear exosome subunit Rrp6. Intensities of many “stable” non-coding RNAs
increase when Rrp6 function is absent (A and C). Numerous divergent pairs have
associated pairs of non-coding RNAs, as seen in (C). In addition to discrete non-
coding RNAs, long diffuse 3’ UTRs (possible readthrough transcription) are visible
for several genes (eg, fib1 and nap2) when Rrp6 function is depleted.

and most, 56%, are transcribed divergently from the start of annotated genes (see

panels B and C of figure 31) . As observed for stable ncRNAs, these CUTs are

strongly associated with actively transcribed genes, reinforcing a causal relationship

between genic and divergent non-coding transcription. Genes with divergent stable

non-coding RNAs or CUTS are expressed at a significantly higher level than those

without (p<2.2*10−16, one-sided t-test), though expression level is no different be-

tween genes that give rise to stable versus unstable transcripts (p=0.318, two-sided

t-test).

Non-coding transcription has broad implications on genome organization. Tran-

scription through promoter regions has been shown to strongly modulate expres-

sion of the downstream gene, and overlapping transcription has implications in both

transcriptional and RNA interference mechanisms (Ward and Murray (1979); Ad-

hya and Gottesman (1982); Martens et al. (2004); Hongay et al. (2006); Martianov

et al. (2007), reviewed in Mazo et al. (2007)). Divergent gene pairs regulated by
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a shared promoter or enhancers have been well characterized (Williams and Fried,

1986; Burbelo et al., 1988; Trinklein et al., 2004), and genome-wide, a disproportionate

number of gene pairs in eukaryotes are arranged in a head-to-head orientation. Phy-

logenic analysis has demonstrated that these gene pairs are more strongly conserved

than tandem-oriented genes (Li et al., 2006), suggesting widespread co-regulation of

divergent transcripts. We have found numerous functionally related co-regulated gene

pairs in fission yeast that respond to thiamine starvation or meiotic differentiation,

but despite these examples of coordinated expression, expression of many divergent

gene pairs is apparently unlinked. Distance between adjacent genes does not account

for this, as there is only a slight negative correlation between inter-transcript dis-

tance and co-regulation. Since many of the identified non-coding RNAs are present

between divergent genes, we postulated that non-coding transcripts affect coregula-

tion of neighboring transcription units.

We turned to expression microarray data to examine the regulatory patterns of

genes that give rise to these non-coding RNAs and to determine the effects of ncRNA

transcription on adjacent genes. 863 hybridizations comprising the results of numer-

ous publications and unpublished work from multiple labs including our own were

analyzed. These data, representing diverse transcriptional responses covering a wide

variety of environmental and developmental stimuli, were distilled to the standard

scores of Pearson correlations between genes and the variances of expression ratios

across all experiments; this analysis is described in detail below.

We find that divergent stable non-coding RNAs and CUTs are the result of fun-

damentally different modes of transcription. Genes that generate stable ncRNAs are

extensively regulated, insofar as their relative expression changes widely across the ex-

periments examined; expression ratios for genes with a stable divergent ncRNA vary

significantly more than those of genes without (p<0.0005, one sided t-test). This

119



finding is consistent with the widespread appearance of divergent stable transcripts

adjacent to genes induced by B1 starvation and during mid meiosis. Conversely, un-

stable ncRNAs are associated with relatively invariant transcripts; CUT-associated

expression varied less than other genes (p<0.036, one-sided t-test). We propose that

actively regulated transcription, in contrast to constant basal expression, results in

the formation of stable, polyadenylated divergent ncRNAs, consistent with the re-

cruitment of 3’ processing factors to upstream regulatory regions of genes bound by

strong transcriptional activators (Uhlmann et al., 2007).

Confirming expectations from previous phylogenetic studies, our data support the

notion that orientation of adjacent genes affects their co-regulation. Expression of

divergent gene pairs is better correlated than that of tandem genes across the experi-

ments examined (p<5.2*10−9, one-sided t-test). Though it has been well established

that enhancer activity can propagate over long genomic distances (Nasmyth, 1986),

not all divergent gene pairs are co-regulated. We find that presence of a non-coding

RNA between divergently oriented genes diminishes their co-regulation compared to

pairs lacking such a transcript (p<1.06*10−8, one-sided t-test). Non-coding RNA

transcription de-couples genes comprising otherwise adjacent transcriptional units,

and does so quite absolutely: divergent genes with an intervening ncRNA are no

better correlated than tandem adjacent genes (p=0.450, two-sided t-test). Of note,

tandem and de-coupled divergent gene pairs are more correlated than random pairs

of distal genes, likely reflecting effects of DNA topology or the local chromatin envi-

ronment.

Although stable ncRNAs and CUTs are generated from different types of pro-

moters, they are equally able to reduce co-regulation of adjacent genes; we observe

no difference in the de-coupling activity of these two classes (p=0.7553, two-sided t-

test). This finding suggests that the act of transcription, more than the persistence of
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Figure 32: Complex transcriptional regulatory mechanisms are missed by strand non-
specific sequencing
Tiling array data (this study) for a 15.5kbp region of chromosome I are presented
in blue. Transcription of the meiosis-specific spore-wall synthesis gene bgs2 occurs
from an internal transcription start site in vegetative cells. Bidirectional transcription
from this site occurs, generating a 5’ truncated bgs2 and an antisense transcript (A)
which extends to roughly the full-length transcript’s start. During meiosis, full length
bgs2 is transcribed from an upstream promoter and levels of the internally initiated
divergent transcript decrease. Bidirectional transcription also initiates from this new
promoter, and generates a non-coding transcript which is absent in vegetative cells
(B). In mei4∆ vegetative cells depleted of Rrp6 function, unstable non-coding RNAs
(C and C’) are visible as a divergent transcript from the adjacent genes, SPAC24C9.08
and SPAC24C9.09, respectively.
Sequencing data from Wilhelm et al. (2008) is shown in orange, and lacks both the
strand specificity and consistency in signal of our tiling array data. Of note, the
sequencing data are strongly biased toward the 3’ end of transcripts measured, as
seen for both induced bgs2 (Meiosis 4h for tiling data, “ME3” for sequencing) and
vegetative SPAC24C9.08.
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Figure 33: Internal divergent transcription regulates a functionally related group of
genes
In addition to bgs2, shown on the previous page, several other related spore-wall
specific enzymes have internal transcription start sites in vegetative cells. In each
case, transcription from an internal start site generates a 5’ truncated sense transcript
(A) and divergent non-coding RNA (B) in vegetative cells. Upon meiotic induction,
an upstream transcription start site is used, generating full-length sense (A’) and a
new divergent transcript (B’). For aah2, the divergent transcript is the strongly co-
regulated mok11 gene (standard score of Pearson correlation from aah2, 2.51). For all
other cases shown, a non-coding RNA (B’) is produced, and isolates transcriptional
activation of (A’) from the adjacent coding gene (C). SPAC1039.11c and bgs2 (shown
on the preceding page) are effectively decoupled from their adjacent genes (standard
score of Pearson correlation -0.17 and -0.00, respectively).
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a noncoding transcript itself, is responsible for this genome partitioning activity. Our

findings in S. pombe are echoed in budding yeast. We examined the recently cataloged

S. cerevisiae stable and unstable non-coding RNAs (Xu et al., 2009) in the context of

1728 published budding yeast expression hybridizations. To analyze a similar subset

of transcripts in both yeasts, we excluded non-coding RNAs that overlap annotated

coding sequence on either strand, and examined the remaining 553 stable and 505

unstable intergenic transcripts (65% and 55% of total, respectively). As in fission

yeast, stable non-coding RNAs are associated with regulated genes whose expression

varies more than those lacking non-coding transcripts (p<3.4*10−9, one-sided t-test).

Divergent gene pairs are more co-regulated than tandem genes (p<1.7*10−10, one-

sided t-test), and presence of a non-coding RNA de-couples adjacent genes compared

to pairs that lack an intervening feature (p<8.9*10−10, one-sided t-test). As in S.

pombe, no difference was observed in the de-coupling activity of stable and unstable

transcripts (p=0.586, two-sided t-test).

Communication between promoters and distal enhancers can occur over long ge-

nomic intervals. We propose that transcription of non-coding RNAs de-couples regu-

lation of adjacent genes by acting as a “sink” for adjacent promoter/enhancer activity

(Figure 34 on the next page). This isolating activity is engendered by the acts of

transcription and termination of the non-coding transcript; stability of the resulting

non-coding RNA is irrelevant, and we suggest that the fate of this RNA is determined

by the nature of the factors loaded at the transcription initiation complex. This ac-

tivity is conserved between two widely divergent model eukaryotes, and despite the

larger intergenic distances present in multicellular organisms, we have no reason to

expect this activity to be absent from such systems. Finally, we have identified a

large number of novel non-coding transcripts present in fission yeast, provided the

first genome-wide assessment of unstable transcripts in S. pombe, and suggest that
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Figure 34: Model of non-coding transcription’s isolating effects
Many non-coding RNAs are the result of bidirectional activity of a single promoter;
transcription of (A) is concomitant with divergent ncRNA (B), whose stability is
dictated by the nature of the transcriptional activator (C) present. Strongly regulated
transcriptional units are associated with processed, stable ncRNAs, while relatively
invariant genes tend to generate Rrp6-degraded CUTs., consistent with recruitment of
3’ processing factors (F) to the site of transcription initiation by strong transcriptional
activators (Uhlmann et al., 2007).
A coupled non-coding RNA (B) is transcribed and terminated by unknown sequences
downstream (D), likely through a Nrd1-Nab3-like pathway, and avoids interference
with the promoter of the adjacent gene (X). Transcription of (B) depletes any cis-
scanning activity of transcriptional activators or enhancers bound upstream (E);
through the transcription of a non-coding RNA (B), the adjacent coding gene (X) is
isolated from factors regulating expression of (A).
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stability of divergent non-coding RNAs is determined by the nature of the parent

promoter in both fission and budding yeast.

Methods

Synchronous meiotic induction was performed largely as described (Cervantes et al.,

2000). h+/h+ pat1-114/pat1-114 ade6-M210/ade6-M216 diploids (local strain F277,

obtained from YGRC) were grown in YEL+A (yeast extract + adenine, 0.5% yeast

extract, 3% glucose, 100µg/mL adenine) at 25◦C to saturation. Cultures were di-

luted 1:100 into EMM2∗ (Modification of EMM, 15mM potassium hydrogen ptha-

late, 10mM dibasic sodium phosphate, 93.5mM ammonium chloride, 0.5% glucose,

1x each EMM salts, EMM minerals, EMM vitamins) + 75µg adenine and grown at

25◦C to OD600 = 0.3. Cells were harvested by centrifugation, washed twice with

water, and resuspended in original volume of EMM2∗-Nitrogen (as EMM2∗ above,

without ammonium chloride) + 10µg/mL adenine. After 14h at 25◦C, G1 arrested

cells were harvested by centrifugation and resuspended in pre-warmed 34◦C EMM2∗-

complete (as above, with 5g/L NH4Cl and 75µg adenine) to OD600 = 0.3. Samples

were collected for flow cytometry and RNA extraction every 2 hours.

RNA was extracted from flash-frozen cell pellets using a commercial glass-fiber ad-

sorption kit (Ribo-Pure Yeast, Ambion, Austin TX). 30 OD600 units (effectively 3x108

cells) were processed per column, as per manufacturer instructions. Post-elution re-

moval of genomic DNA was performed by digestion with 40U of DNase I (Roche,

Indianapolis, IN) for 1h. RNAs were recovered by column adsorption (RNeasy, Qia-

gen, Valencia, CA). Sample integrity was confirmed by microcapillary electrophore-

sis (Bioanalyzer 2100 RNA-nano, Agilent), and quantitated spectrophotometrically

(Nanodrop ND1000, Thermo Scientific).

cDNAs were synthesized from polyadenylated messages. 400µg of total RNA was
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mixed with 37.5µg anchored oligo(dT) primers (equimolar (dT)16-(dA/dG), (dT)16-

dC(dA/dG/dC)) in a final reaction volume of 300µl and incubated for 5’ at 65◦C, 2’

at 0◦C, followed by 2’ at room temperature. To these primer-annealed RNAs, 90µl

5x First Strand Buffer (Invitrogen, Carlsbad, CA), 22.5µl 0.1M DTT, 4.5µl 600µg/µl

Actinomycin-D (Sigma), 3µl RNasin, 12µl Superscript III RT (Invitrogen), and 18µl

mixed 10mM dNTPs (including 2mM dUTP) were added for a total reaction volume

of 450µl. Reverse transcription was performed at 42◦C for 16h, followed by hydrolysis

of RNA template by addition of 2µl 10mg/ml RNase A + 1µl RNase H (NEB, Ipswich,

MA) and incubation at 37◦C for 30’. Reaction was split into thirds and cDNAs were

purified by column adsorption (PCR cleanup spin kit, Qiagen), followed by pooling

of column eluates (total of 90µl, 10-15µg cDNA by spectrophotometry).

Purified cDNAs were fragmented and end labeled. To 85µl cDNA, 10µl 10x frag-

mentation buffer (Affymetrix, Santa Clara, CA), 2µl UDG (uracil DNA glycosidase),

and 3µl APE 1 (human apurinic/apyrimidinic endonuclease) were added. Fragmen-

tation was performed at 37◦C for 1h followed by enzyme inactivation at 93◦C for

10’ and snap cooling to 4◦C for 2’. Fragment size was determined by capillary elec-

trophoresis (Bioanalyzer 2100 RNA-nano, Agilent), with a peak length of ~70nt. 93µl

of fragmented cDNA was end labeled in a reaction including 30µl 5x TdT buffer, 3µl

DNA labeling reagent (proprietary biotinylated dNTP, Affymetrix), and 16µl water.

The 150µl reaction was incubated at 37◦C for 1h, 70◦C for 10’, and cooled to 4◦C for

10’.

Tiling array hybridizations were performed in technical triplicate. For each array

cartridge, 150µl of hybridization cocktail was prepared, containing 5µg of fragmented

end labeled cDNA (final concentration 33ng/µl), 2.5µl Control Oligo B2 (Affymetrix,

final concentration 50pM), 75µl 2x Hybridization buffer, 10.5µl DMSO (final concen-

tration 7%). Hybridization cocktail was mixed, briefly centrifuged, and denatured at
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99◦C for 5’, followed by slow cooling in an air incubator to 45◦C for 5’. Array car-

tridges (S. pombe tiling 1.0FR, Affymetrix) were loaded with 130µl of probe mixture

and hybridized overnight at 45◦C rotating at 60rpm. Following hybridization, probe

cocktail was recovered, pooled, and stored at -20◦C for future reuse.

Arrays were washed and stained as per manufacturer instructions. Hybridized

arrays were filled with 160µl room temperature Wash Buffer A and mounted in a

primed FS450 fluidics station (Affymetrix). Cartridges were processed as per man-

ufacturer’s FS450_0002 protocol. Following cartridge draining, arrays were washed

with 10 cycles (2 drain/fill per cycle) of Wash Buffer A at 30◦C and 6 cycles (15

drain/fill per cycle) using stringent Wash Buffer B at 50◦C. Arrays were stained with

SAPE for 10’ at 35◦C, followed by post-stain wash of 10 cycles (4 drain/fill per cycle)

of Wash Buffer A at 30◦C. Second staining was performed using biotinylated goat

IgG anti-SAPE solution for 5’ at 35◦C, followed by an additional SAPE stain for 5’

at 35◦C. A final wash was performed using 15 cycles (4 drain/fill per cycle) of Wash

Buffer A at 35◦C. Cartridges were filled with 160µl Array Holding Buffer and im-

mediately scanned on a GeneChip Array Scanner, model 3000-7G (University DNA

Microarray Facility, Stony Brook University, Stony Brook NY).

Grids were placed and aligned to raw image files automatically (GeneChip Op-

erating System 1.4, Affymetrix). The resulting cell level summary files (.CEL) were

used for further analysis. Array probe sequences were obtained from Affymetrix syn-

thesis map files and were mapped to a recent S. pombe genome revision (4/2007)

using MUMmer (Delcher et al., 2002). Only probes which had a perfect genomic

match were assigned positions, and of these, any probe which matched 23 or more

nucleotides at multiple positions was flagged as potentially cross-hybridizing. All ar-

ray features were mapped, including perfect match, mismatch, and control probes. In

total, nearly 1.1 million features were unambiguously mapped to the genome (detailed
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above). Signals for all cDNA arrays were normalized using a variance stabilizing al-

gorithm (Huber et al., 2002) against the mean probe values for all arrays analyzed.

Background correction of variance stabilized values was performed using the mean

probe signals of three genomic DNA hybridizations generated previously (Wilhelm

et al. (2008), Array Express accession E-TABM-18).

Expression scores for genes and non-coding features were directly generated from

normalized and background corrected log2 signal intensities. Coding feature scores

were calculated as the mean intensity of non-crosshybridizing probes that mapped

entirely within exonic sequence. For non-coding features, scores represent the mean

of all non-crosshybridizing probes mapping entirely within feature boundaries. All

scores represent strand-specific signals.

Normalized and background corrected intensities from asynchronous vegetative

samples were positionally segmented using an algorithm derived from Huber et al.

(2006). Transcript boundaries for annotated features were assigned computationally

by identifying the segment edge nearest the annotation boundary which delineated a

distribution of feature-representative probes from a significantly different probe pop-

ulation. A Kolmogorov-Smirnov (KS) test was performed between probes within the

putative UTR and 1) those mapping entirely within the annotated feature (and only

to exons, where appropriate) and 2) probes comprising the annotation-distal seg-

ment. High confidence transcript boundaries were called only for annotated features

where segmentation demarcated a lower signal distributions adjacent to the feature

(one-sided KS p-value ≤ 10−5), and where probes falling outside of the annotation

boundary were from a distribution similar to those within the annotated feature (two-

sided KS p-value ≥ 10−2) and difference of the means did not exceed 10%. Features

adjacent to or overlapping regions of ambiguous or absent probe coverage were ex-

cluded from edge mapping.
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Non-coding RNAs were empirically defined as intervals of significantly higher sig-

nal intensity than surrounding segments and overall background signal which do not

overlap a previously annotated CDS. Contiguous regions of at least twelve unambigu-

ous probes (nominally 240nt, consistent with the minimum length fragments recovered

during RNA collection and cleanup) were considered novel features if signal intensi-

ties were significantly higher than both flanking segments by both one-sided KS test

(p-value ≤ 10−6) and difference in signal means of at least 1.5 log2 units. Compar-

isons with both flanking intervals were made separately. Features were considered

non-coding only if no overlap was observed with annotated coding regions on the

sense strand. Non-coding features were further classified as “antisense” if any part

of the interval overlapped a known coding feature on the opposite strand. tRNAs

and rRNAs were implicitly excluded due to the ambiguous mapping of corresponding

array probes. Other non-CDS features such as snoRNAs were removed post-hoc and

served as an internal control for feature identification.

For all other samples examined, normalized intensities for the vegetative asyn-

chronous hybridizations were subtracted from each additional experiments’ values.

The resulting difference in hybridization signal was segmented and categorized as

above. Genes induced (compared to asynchronous vegetative cells as reference) have

positive scores; regions of no relative change have a net signal of zero. Induced non-

coding features were identified as above.

Figures were plotted using custom written code and modifications to software pre-

viously described (Huber et al., 2006). For plots displaying a single value/sample/probe,

the arithmetic mean of all replicates is shown. All values plotted are normalized and

background corrected signals; differences in expression between samples are not di-

rectly shown except where explicitly mentioned. For composite expression plots,

probe intensities were mapped to each nucleotide flanking the transcription start

129



sites (5’ feature edge, as assigned above), and the average intensity across all relevant

probes and features is shown. Overlap and smoothing between probes occurs, due

to nominal 20nt spacing of 25nt probes. In contrast, heatmap plots represent the

3’ most bases for overlapping probes; where overlap exists, the signal for only one

probe is shown. Due to high probe density and the resolution at which figures are

presented, this is largely irrelevant. Data from Dutrow et al. (2008) were obtained

from the authors’ publicly available website.

Analysis of expression data was performed on composite data sets for both S.

pombe and S. cerevisiae. Fission yeast data was obtained from public data of the Fis-

sion Yeast Functional Genomics group (University College London, and Sanger Cen-

tre, UK) and data available from our own S. pombe hybridizations. Gene name am-

biguities were resolved manually in consultation with GeneDB locus history (Sanger

Centre, Hixton UK). S. cerevisiae expression data was obtained from the Saccha-

romyces Genome Database (Stanford University, Palo Alto, CA) curated experiment

collection, public expression experiments from the Stanford Microarray Database

(Stanford University, Palo Alto, CA), and a number of expression hybridizations

performed locally. Gene name ambiguities were virtually absent from these disparate

sets, with the notable exception of recently added dubious or uncharacterized short

features, most of whom lack coverage on available expression arrays. These features

were excluded from further analysis. Analysis of expression profiles was performed

en masse. Pairwise Pearson correlations were calculated for all gene pairs (generating

~60002/2-6000 pairwise scores for S. cerevisiae, for example). Standard score of each

gene’s correlation its adjacent genes (both 5’ and 3’ proximal) was calculated using all

Pearson correlations for a given gene as the background set. Variance of the original

log2 expression score was calculated for each gene. All calculations were performed

within the R platform for statistical computing.
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4 Antisense transcription suppresses meiotic gene ex-

pression in fission yeast

A major reason for examining the transcriptome structure of S. pombe was to unravel

the regulatory mechanisms controlling entry in and progression through the meiotic

program. Meiosis has historically been a low-hanging fruit of transcription studies,

and indeed served as one of the first expression programs examined on arrays for both

budding (Chu et al., 1998; Primig et al., 2000) and fission (Mata et al., 2002) yeast .

In both yeasts, meiotic functions can be separated into three transcriptional waves,

consisting of 1) early genes are responsible for pre-meiotic S, including meiotic co-

hesins and factors involved in meiotic recombination, 2) middle genes are responsible

for the meiotic divisions, and 3) late genes are largely responsible for assembly and

maturation of the spore (Chu et al., 1998).

Previous work in the lab had focused on regulation of meiotic entry, and par-

alleling my work on transcription during the vegetative cell cycle was a study of

transcriptional regulation of early meiotic genes. In 2005, the lab published a pilot

study of meiotic genes which suggested extensive regulation of the meiotic program

by differential splicing (Averbeck et al., 2005). The single-gene PCR based methods

used were not amenable to high-throughput use, making systematic detection of reg-

ulated splicing difficult. Along with a fellow graduate student in the lab, I undertook

a high-resolution tiling array analysis of fission yeast meiosis as a means for detecting

differences in splicing through sporulation.

The results were stunning and quite unexpected. Rather than validating regulated

splicing events and identifying a large number of new regulated genes, we identified

extensive antisense transcription throughout the fission yeast genome, with a sig-

nificant bias toward meiotically restricted genes. While quantitating splicing of the
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relatively short S. pombe introns was difficult, few changes appeared to be occurring.

The implications of my initial findings were sweeping. Many of the unspliced signals

identified by Averbeck et al. were amplifications of antisense transcripts, calling into

question the significance and extent of regulated splicing in S. pombe. Antisense tran-

scription was relatively widespread in S. pombe, but had previously been overlooked;

most coding regions were assumed to generate a single transcript from a single strand.

Finally, the genes with associated transcripts in vegetative cells were restricted to a

relatively small number of biological functions, suggesting a possible regulatory role

for antisense transcription.

Results

Previous work in the lab examined a subset of meiotically induced genes and deter-

mined that corresponding unspliced transcripts were present in vegetative cells for

10% of the genes tested. As cells progress through meiosis, fully spliced transcripts

predominate for these genes, suggesting differential splicing for a functionally related

set of genes. The twelve genes identified as “splice regulated” peak in different waves

of the meiotic program; three represent the early program, eight middle genes were

identified, as was a single late meiotic gene. Using high-resolution strand specific

tiling microarrays (Affymetrix), I am unable to validate unspliced sense transcript

in vegetative cells for many of these genes, but find presence of significant antisense

transcripts for all of the middle- and late- genes (figure 35). Transcripts originat-

ing from the opposite strand lack appropriate splicing signals, but are detected by

the RT-PCR based approach used by Averbeck et al. and are indistinguishable from

unspliced sense RNAs.

I have examined transcriptome structure in vegetative cells grown in minimal me-

dia and at 2h intervals throughout a pat1-114 synchronized meiosis (figure 36). In veg-
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Figure 35: All mid-meiotic “splice regulated” genes have strong antisense transcripts
in vegetative cells
Many genes previously identified as “splice regulated” by Averbeck et al. (2005) have
strong antisense transcripts in mitotic (vegetative) cells. Strand-specific expression
scores from high-resolution tiling microarray data are shown for each gene; shown
at left are box-and-whisker plots representing the sense and antisense scores for all
genes.
Early meiotic genes have significant sense transcript signal in vegetative cells; an-
tisense transcripts for these genes are not significant. Conversely, all of the middle
meiotic genes which were considered splice regulated are strongly transcribed from
the antisense strand. Without exception, sense transcript level for these genes is at
or near background level. Sense transcript for the sole late “splice regulated” gene
identified, SPAPB8E5.10, is present in vegetative cells, but overshadowed by strong
antisense signal which persists throughout meiosis. Induction of sense transcript oc-
curs at 6-8h, consistent with the appearance of “spliced” message at that time.
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etative cells, antisense transcripts are present for a large number of genes. I find that

genes with strong corresponding antisense transcripts span a bimodal distribution rel-

ative to sense expression level. A large number of low-sense, high antisense transcripts

have been identified, and at the opposite extreme, processed antisense transcripts are

relatively abundant for the most strongly expressed genes. Antisense transcripts cor-

responding to strongly expressed genes are perhaps inadvertently polyadenylated by

a high local concentration of Pol II associated cleavage and maturation factors.

Unlike budding yeast, S. pombe encodes an entire complement of RNAi machinery,

including the RNA directed RNA polymerase, Rdp1. Processed antisense transcripts

described herein are not generated by Rdp1, as antisense transcription in an rdp1∆

strain is largely unchanged from wild type cells (Pearson correlation 0.86, data not

shown).

Previous examination of total RNA in fission yeast described a strong correlation

between sense and antisense transcript levels, and furthermore an association between

antisense abundance and Pol II occupancy (Dutrow et al., 2008). With the exception

of the most strongly expressed genes, this correlation between expression from both

strands is not observed in our analysis of processed transcripts (see figure 37 on

page 136). Further examination of the data from Dutrow et al. supports the idea that

sense-correlated expression from the antisense strand results in largely unprocessed

species, as little correlation between sense and antisense signal is seen for poly(A)

enriched RNAs (see figure 38 on page 137).

Genes with high antisense, low sense expression in vegetative cells disproportion-

ately represent members of the Mei4 dependent mid-meiotic transcription program.

38% of the genes in this category have been previously identified as targets of Mei4p

(Mata et al., 2002), compared to less than 9% of genes with substantial sense ex-

pression in vegetative cells. Genes involved in meiotic divisions are specifically over-
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Figure 36: Meiotic timecourse progression
Progression through a pat1-114 induced meiosis is quantitated by DAPI-stained nu-
clei counts. Synchronous meiosis was induced in cells arrested in G1 by nitrogen
starvation. Cells were re-fed nitrogen containing medium pre-warmed to restrictive
temperature at T0.
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Figure 37: Many genes with strong antisense signal are Mei4-responsive meiotic tran-
scripts
Strand specific expression signals from asynchronous vegetative cells are shown. Sense
expression levels vary across a wide range, although sense transcripts are present well
above background for most genes. Antisense transcripts are abundant at both extrema
of expression; many genes with weak sense expression are abundantly transcribed on
the antisense strand. Local trendline is shown in orange.
Significant antisense transcripts are present for many genes, and a disproportionate
number of genes with low sense expression have high antisense signals (upper left).
Blue bar represents 4σ above antisense background.
Previously identified Mei4 dependent mid-meiotic genes (Mata et al. (2002), shown
as red points) are over-represented in the “low-sense, high-antisense” class, but are
specifically absent from the “low-sense, low-antisense” class. A significant fraction of
this group is unannotated, and may represent vestigial untranscribed ORFs.
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Figure 38: Previously identified sampling transcripts are unprocessed
A positive correlation between sense expression and abundance of antisense tran-
scripts was noted in previously (Dutrow et al., 2008), and is shown (left). Increased
chromatin accessibility or local concentration of components of the transcription ap-
paratus may permit initiation of spurious transcripts in a sense-expression dependent
manner.
These sampling transcripts are not polyadenylated, however, and are therefore ex-
cluded from my data (see figure 24 on page 109 for further details). The majority of
antisense “sampling” transcripts are absent from a poly(A) enriched fraction (right),
revealing a smaller set of processed transcripts generated from both strands.
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represented in this group by ontology term analysis, with a p-value of 4.8x10−13.

Presence of genes in this class does not reflect an overall lack of expression in vegeta-

tive cells; meiotic genes are explicitly absent from the “low-sense, low-antisense” class

(see figure 37).

Transcription from sense and antisense strands is mutually antagonistic. Given

the overrepresentation of strongly regulated meiotic genes among strong-antisense

transcripts, I postulated a negative regulatory role for opposite-strand transcription.

This is supported by changes in transcript abundance during meiosis. Induced sense

transcription is associated with a decrease in antisense transcript level. Conversely,

a decrease in sense strand expression is correlated with an increase in antisense tran-

script level (see figure 39 on the next page). While not mechanistically demonstrative,

this finding illustrates a negative correlation between expression of sense and anti-

sense strands of a given locus. This effect is especially evident for Mei4p responsive

genes, although this set is already enriched for transcripts which are induced across

the interval shown.

Transcription of the antisense strand impedes expression of meiotic genes in vege-

tative cells. We have disrupted antisense transcription to demonstrate the mechanistic

relevance of antisense transcription on repressing gene expression. spo6, the meiotic

counterpart of Dfp1, is strongly induced in mid meiosis in a Mei4p dependent manner

(Mata et al., 2002), and as a previously identified “splice-regulated” gene (Averbeck

et al., 2005) is strongly transcribed on the antisense strand in vegetative cells (see fig-

ure 35 on page 133). spo6 antisense is generated as a long 3’ UTR of the convergently

orientated adjacent sequence orphan, SPBC1778.05c. Truncation of this transcript

and elimination of antisense transcription through spo6 is sufficient to permit spo6

sense expression in vegetative cells (see figure 40 on page 140).
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Figure 39: Antisense transcription antagonizes sense expression
Changes in sense expression are anticorrelated with changes in antisense transcript
levels. Differences in strand-specific mean expression level between the 6h meiotic and
vegetative samples are shown. Genes previously identified as Mei4p responsive, shown
in red, are generally induced by 6h. Decreases in antisense transcript level accompany
increases in sense expression for these genes; Pearson correlation for Mei4p responsive
genes is -0.47. Increased antisense level is associated with decreased sense transcript,
as seen in upper left; Pearson correlation for all other genes is -0.34.
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Figure 40: Disruption of spo6 antisense transcript permits ectopic sense expression
Antisense transcription through spo6 is the result of long readthrough from the adja-
cent sequence orphan, SPBC1778.05c. Northern blot (top right) using single-stranded
riboprobes against spo6 demonstrates that contiguous antisense transcript observed
on tiling arrays (left) is a single transcript, and is longer than the spo6 sense transcript.
In vegetative cells, spo6 antisense transcript is relatively abundant, while spo6 sense
transcript is absent. Induction of spo6 sense transcription occurs between 2h and
4h in this synchronized meiosis, and continues well through 6h. Results from tiling
array data are recapitulated by strand specific PCR (bottom right) for vegetative and
meiotic cells. The relatively invariant dpb3 is shown as a control.
Insertion of a terminator-flanked Ura4+ cassette into the adjacent sequence orphan
precludes transcription of spo6 antisense. In absence of antisense transcription, spo6
sense-strand expression is increased. Isolates from two independent integrations of
the terminator cassette are shown.
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Conclusions

Although antisense transcripts to meiotic genes were serendipitously identified more

than twenty years ago(Kishida and Shimoda, 1986), this work represents the first

systematic strand-specific quantitation of processed transcripts. I have demonstrated

that antisense transcripts are present for a large number of genes, and specifically

enriched for a common functional class expressed in preparation for the meiotic di-

visions. I have further shown that the previously described mechanism of regulated

splicing appears to be restricted to early meiotic genes, and that previously iden-

tified unspliced messages present in vegetative cells are antisense transcripts. The

regulatory potential of antisense transcription is general has been supported by anti-

correlation between sense and antisense expression changes, and mechanistic evidence

has been generated for spo6, itself a key meiotic regulator.

Furthermore, I suggest that antisense transcriptional interference is one of several

layers of regulation for meiotic genes. Removal of repressive antisense transcription

does not result in expression of spo6 at meiotically induced levels. Regulation of spo6

occurs through several mechanisms, including competition for binding of upstream

sequence motifs between the inhibitory vegetative forkhead transcription factor Fkh2

and the related meiotic transcription Mei4p (especially relevant since mei4 is present

at low levels in vegetative cells). In fkh2∆-mei4∆ double mutant cells, spo6 sense ex-

pression level is increased to levels greater than that of 2h into meiosis; this increase is

seen in cells where spo6 antisense is being transcribed, and as such reflects exclusively

the inhibitory role of Fkh2p presence. These overlapping mechanisms likely reflect

an evolutionary impetus to avoid ectopic expression of genes involved in the meiotic

cell cycle.

Antisense-mediated reduction of sense expression is not specific to spo6; disrup-
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tions of antisense for several additional genes has been performed, and suggests that

this is a widespread regulatory mechanism. Examination of the combinatorial effects

of vegetative transcriptional interference and transcription factor competition are on-

going, and will be published shortly in collaboration with a fellow graduate student

in the lab, Huei-Mei Chen.

Methods

Induction of synchronous meiosis is described above on page 125. Samples were

collected every 2h following shift to restrictive temperature, and cDNAs were pre-

pared for tiling array hybridization in technical triplicate. Data were normalized

and background corrected as above, and CDS expression scores for Affymetrix data

were generated as described previously. In addition to the meiotic time course de-

scribed, technical duplicate hybridizations were performed on poly(dT) primed cD-

NAs generated from asynchronous cells derived from additional strains, including

rdp1∆, mei4∆/fkh2∆, fkh2∆, and dis3-54 (following 2h incubation at restrictive

temperature).

5 Perspectives

5.1 Experimental conclusions and their relevance in the field

Analysis of the vegetative cell cycle of S. pombe was performed using arrays which

were, at the time, cutting edge. From these data, hundreds of cell cycle regulated

genes were identified, and DNA binding sites for many components of a mitotic tran-

scriptional oscillator were identified or refined. Our examination of cell cycle tran-

scription was predicated on several assumptions. First, we measured transcriptional
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almost exclusively from coding sequences; expression of unannotated regions of the

genome and those without protein-coding potential was largely ignored. Second, the

3’ end of the coding sequence was used as a proxy for what was assumed to be a mono-

lithic transcript; edges of transcripts which could contribute to differential translation

capacity were not identified, nor were possible regulated splicing events. Finally, ex-

pression measurements were not strand-specific in nature; antisense transcription was

indistinguishable from sense expression. At the time, many of these limitations were

inevitable. The generation of expression array probes was a monumental task for the

lab, and limited array density dictated the number of features which could be packed

onto a single substrate. The lack of strand specificity and inability to distinguish

different transcript isoforms clearly did not, however, overwhelm the overall findings

of our study; the utility of the arrays was self evident in the biologically relevant

results obtained.

Subsequent studies in a number of organisms, including fission yeast, have demon-

strated vast complexity of the transcriptome which is belied by traditional expression

arrays. Regulated splicing, although perhaps not as widespread in S. pombe as previ-

ously believed, has been shown to play a key role in regulation of expression. Clearly,

many potentially overlapping mechanisms have evolved to fine-tune cellular pools of

translation-competent message. I have shown, above, the regulatory power of anti-

sense transcription, and have identified many genes for which antisense transcripts

exist. While well suited as a baseline for comparison to the meiotic transcription

program, many details pertinent to the regulation of the mitotic cell cycle have likely

been overlooked. My “vegetative” reference represents the composite expression pat-

terns of asynchronous cells in all stages of the cell cycle; given the sweeping changes in

transcriptional programs between various cell-cycle stages and the plethora of regula-

tory mechanisms used by the cell to ensure compartmentalization of expression and
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function, it seems nearly inevitable that transcriptional interference and antisense

transcription will be among the tools employed. Expression of non-coding RNAs

has similarly been studied exclusively in asynchronous cells. While I have provided

strong evidence that nearly half of the non-coding species transcribed in S. pombe

are byproducts of genic transcription, many of the possibly regulatory functions of

hundreds of transcripts remain unexplored.

Cross-study comparisons and the bounty of meta-analysis

All of the analyses presented in this dissertation have incorporated significant amounts

of data from outside sources. Due to the timing of our fission yeast cell-cycle tran-

scription study, significant effort was put forth in the analysis of our results in the

context of a similar parallel study. Far from providing repetition or simple confirma-

tion, the data sets were complementary such that their integrated analysis permitted

more powerful conclusions than could be made from any single study; several of the

most informative cluster-discriminating arrays were obtained from previous studies.

Re-analysis of published data provides significant weight to my study of non-

coding RNAs in S. pombe. My data, positionally dense, but only covering a few

conditions, were far more informative in the context of more than two-thousand in-

dividual expression arrays which were re-analyzed. Similarly, high-resolution tiling

array data from budding yeast was re-analyzed to answer my own biological questions,

fundamentally different from those for which the data had been published. While my

findings stand independent of these outside datasets, they are integral to drawing

broadly applicable conclusions.

My analysis of antisense transcription in fission yeast also draws from outside

datasets. Arrays which were present solely as supplementary data to a previous

publication have provided insight into a different population of transcripts than I
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had set out to study; their orthogonal data provided information on material which

would have gone unnoticed using my original methods. Integration of outside data

has enabled not only the inclusion of experiments that would have been performed

locally given infinite time and resources, but also tangential data that I would have

never considered generating.

Similarly, data which I have generated are all deposited in public repositories, and

provide a rich source for re-analysis by other labs. Data from our vegetative cell cycle

experiments have been analyzed both in context of the other published fission yeast

experiments (Marguerat et al., 2006) and across species in an attempt to define an

evolutionarily conserved set of cycling genes (Lu et al., 2007). Continued requirement

for public data deposition will ensure that similar meta-analyses can occur from a wide

variety of data sets.

The importance of context in transcription

Eukaryotic genomes contain far more information than the sum of their included

coding sequences. Genomic context plays multiple roles in the regulation of expression

and transcription, in turn, shapes organization of the genome. The majority of large-

scale transcription studies which have been performed have focused on individual

transcripts as independent entities, where grouping of transcripts most often occurs

by similarities in expression profiles and ignores critical spatial relationships. Recent

studies, including the work presented here, have begun to examine transcription in

spatial context of neighboring genes, and provide compelling reason to do so.

Recent work in budding yeast has illuminated an additional layer to genome orga-

nization by analyzing transcription in the context of nucleosome occupancy (White-

house et al., 2007; Neil et al., 2009). We have identified bidirectional transcription

initiating from regions consistent with a single nucleosome free region, and nearly
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half of the discrete non-coding transcripts observed in vegetative fission yeast can

be attributed to divergent transcription around a single promoter. More than half

of the non-coding RNAs have no obvious source, but are demarcated by gene-like

5’ edges. Although these may represent intentional transcription of sequences which

have so far escaped functional assignment, another possibility is their genesis as unin-

tentional byproducts of chromatin which has been made accessible for reasons other

than genic transcription. Examination of non-coding RNAs in context of replication

origins may provide significant insight into the chromatin changes which have been

previously recognized at such sites (Zhou et al., 2005). Genome-wide analysis of nu-

cleosome occupancy in fission yeast has not been published as of yet, but is underway

in collaboration with Joel Huberman, Roswell Park Cancer Center.

It is unclear to what extent relatively simple yeast genomes can serve as a model

for organization of mammalian transcription units. At a local level, similar conser-

vation of divergently transcribed genes has been observed, and several recent studies

have demonstrated generation of non-coding transcripts which may function in an

isolating capacity similar to those described above (Core et al., 2008; Seila et al.,

2008; Affymetrix ENCODE Transcriptome Project and Cold Spring Harbor Labo-

ratory ENCODE Transcriptome Project, 2009). Structure of individual genes is far

more complex in metazoa, adding multiple layers of potential regulation which are

seemingly absent in yeast, such as trans splicing or extensive alternate exon usage.

Despite these potential limitations, the roles of orientation and location dependent

co-regulation presented above are likely conserved not only between yeasts, but to

higher organisms as well.

Transcriptional interference was observed early in the study of transcription, but

has been largely ignored in genome wide studies. This is somewhat surprising given

the regulatory potential of interference and the elegant examples of regulatory circuits,

146



such as those controlling IME4, SER33, and fbp1, and regulation of the meiotic ex-

pression program shown above. These examples are likely just the “tip of the iceberg”,

and strongly warrant re-examination of transcripts, and the action of transcription

itself, in the context of adjacent genes.

The effects of new technologies on our understanding of transcription

Widespread transcription of both coding and non-coding genomic regions has been

recognized for more than thirty years. It has not been until the last decade that

advances in sequence detection and quantitation have permitted the in-depth de-

termination of a genome’s output. Early descriptions of genomic architecture were

based on the apparent output of discrete transcription units, whose functions could

seemingly be dissected and recapitulated in chimeric constructs. Although gene or-

ganization into divergent, convergent, or tandem arrays was recognized from early

studies with the potential for interference of adjacent transcripts described not long

thereafter, transcriptional context and production of transcripts from both template

strands were not fully appreciated until the last few years.

From afar, the reductionist view of a genome as a set of separate open reading

frames is still valid. The ability to quantitate expression of every nucleotide in the

genome does not reduce the utility of expression arrays; for many purposes, the

focused data which can be generated from carefully planned “one probe per gene”

designs is significantly easier to analyze and more cost effective to generate than brute-

force tiling arrays. In this sense, tiling arrays and high throughput sequencing serve

a complementary role to traditional expression microarrays. Novel features identified

by these unbiased approaches should be included in expression array designs. In

return, expression data encompassing a wide breadth of experiments can be mined in

context of the genomic fine structure (as presented in 3.3 on page 107 above).
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As new technologies become available, there is often a strong backlash against

established competing tools; this has been especially true in the context of high

throughput sequencing as an alternative to microarrays. The overall utility of next-

generation sequencing is of no doubt, and its increasingly widespread adoption has

permitted great strides in many areas including small RNA biology, novel transcript

identification, and genome sequencing. Sequencing has not, however, superseded

other forms of transcript detection and quantitation.

Despite ever-increasing throughput, “next-generation” sequencing is as of yet in-

capable of covering the same dynamic range as can an array. Although millions

of sequence reads are generated from each instrument “run”, they are stochastically

spread across transcripts ranging from less than one to thousands of copies per cell.

Furthermore, samples to be run on current generation instruments require significant

wet-lab processing, often including many rounds of PCR amplification. The results of

less-than-ideal workflows can be clearly seen above in figure 23 and figure 32. Strand

non-specific methods ignore known instances of transcription from both strands, and

preclude the identification of unexpected transcript structure.

Proponents of RNA-seq often highlight the purported benefits of “digital” sequenc-

ing output over the “analog” results generated by microarrays. Serious biases gener-

ated by sample preparation notwithstanding, this comparison belies the complexity

of the underlying issue. A digital clock which displays only the current hour is far

less precise than the analog spring-driven sweeping second hand of a pocketwatch.

Examined from another angle, the output from microarrays is effectively continuous,

with subtle changes in concentration recorded as changes across large (220) potential

values. Each element on an array is able to measure concentration of its complemen-

tary sequence; specificity is limited by probe length and density, individual elements

respond independently. In stark contrast, sequencing provides a quantized readout of
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sequence abundance, but does so with a significant limitation. Ability to detect rare

sequences is directly dependent on number of reads performed, and the complexity

of the total sample. Several comparisons between sequencing and high-density array

data have been presented above. In each case, the arrays provided a more consistent

quantitation of expression for moderately expressed genes, and were able to more ac-

curately quantitate lower abundance messages than possible by sequencing. Dynamic

range and the ability to detect low-abundance messages is critical even in simple

transcriptomes such as budding yeast, where expression varies greater than 213 fold

(Miura et al., 2008). Refinement and advancement of both tiling arrays and deep

sequencing technology is nearly assured, and improvements to these complementary

technologies will permit greater insight into transcription.

5.2 Future Directions

Detection of chromatin/protein interactions

In addition to measurement of transcriptional output, high throughput sequencing

and tiling microarrays can be employed in the detection of protein-DNA binding in-

teractions, as ChIP-seq and ChIP-on-chip. Although I have identified DNA sequence

motifs enriched upstream of many clusters of cell cycle regulated genes, these se-

quences are often found at lower quality or density throughout the genome. Affinity

tagged transcription factors can be selectively immunoprecipitated with bound DNAs,

and a map of bona fide binding sites generated for each factor in each condition, cell

cycle phase, for example. Analysis of one or a small number of factors would not

only provide validation of predicted binding sites and determination of predicted al-

though unused sites, but would also allow the refinement of sequence motifs by the

examining relative enrichment of various sequence classes. When many (or eventually
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all) transcription factors’ binding profiles have been analyzed, a far more informative

combinatorial analysis can be performed; cooperative interactions between different

factors, well known to occur by single gene studies, can be determined genome-wide.

Although many spurious binding events of single factors likely occur throughout the

genome, the requirement for factor-factor interactions may obviate selection against

isolated sites.

High throughput protein-nucleic acid interaction data will also provide substantial

insight into the origin and fate of non-coding RNAs. Association of 3’ processing fac-

tors with promoters is expected to occur only upstream of stable non-coding species,

and can be tested by genome-wide ChIP. Similarly, RNA-protein interactions of the

TRAMP complex are expected at the 3’ ends of unstable non-coding RNAs (and

indeed, many other sites genome-wide). HiTS-CLIP (Licatalosi et al., 2008) could be

performed to directly identify all TRAMP targets, complementing data which repre-

sent accumulation of targets following TRAMP inactivation. Far from supplanting

detection of transcripts, these methods will provide orthogonal data which will permit

further sub-classification of transcript classes.

Combining strands, space, and time: antisense transcription across the

cell cycle

Cell-cycle oscillating transcripts have been characterized in S. pombe by three in-

dependent groups, as described above. From these studies, it has become clear that

abundance of many, if not all, transcripts vary as cells cycle. I have also demonstrated

several hitherto hidden layers of transcriptional complexity in fission yeast, namely the

abundance of extragenic transcripts and the presence of many antisense transcripts

with potentially widespread regulatory function. Advances in array manufacture and

sample labeling since Oliva et al. are substantial. Using existing Affymetrix tiling
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arrays, one could examine the cell cycle at relatively high temporal resolution in a

strand specific, high spatial resolution fashion. Due to input RNA requirements, sam-

pling of only a few times across a synchronous cycle would be possible, but would

provide invaluable snapshots of strand specific expression in the context of previously

characterized transcription programs.

An alternative approach provides middle ground between transcriptome mapping

and our published strand-nonspecific study. High-density arrays comprising hundreds

of thousands of ad hoc strand-specific 60nt oligonucleotide probes are now the basis

of our array facility. Arrays can be designed to target sense and antisense strands of

previously identified genes and novel features (both those identified in this work, and

any subsequent studies, as above), in an effectively unlimited iterative process. RNA

requirements for these arrays are exceedingly low; fractions of a µg of total RNA is re-

quired, permitting analysis of limiting sample volume, or increased sampling density.

Using such arrays, one could profile sense and antisense transcription of coding and

non-coding transcripts throughout literally scores of times in the vegetative cell cycle

using fewer total cells than a single Affymetrix tiling array. Decreased input require-

ments also permit examination of limiting material, for example several cell-cycles

worth of samples from a single elutriation fraction.

Cross-species comparisons in the high-throughput age

Significant insights have been gained by comparisons across phylogeny both diverse

and local. A central justification for model organism use is their relevance to other

systems. Comparisons across wide evolutionary distances have been performed in

the context of my work, such as in the conservation of modules of transcribed genes

and their associated regulators, and the associations non-coding RNAs with various

classes of promoters. Although not as far-reaching, significant insight can be gained
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by more “local” examination across species. Genome sequences for many Saccha-

romycetes and other closely related yeasts have been published, and have provided

an invaluable resource for a variety of studies, not limited to identification promoter

motifs (as pioneered in Kellis et al. (2003)), determination of neutral mutation rate

and gene copy correction (Pyne et al., 2005), and functional elements of (non-coding)

telomerase RNAs (Gunisova et al., 2009).

Genome sequences for other Schizosaccharomyctes are currently being finished by

the Broad Institute, and will permit similar analyses for fission yeast. In addition to in

silico approaches such as promoter motif discovery, the availability of custom-designed

arrays and high throughput sequencing permits direct experimental investigation or

validation using these other species. The once onerous task of array manufacture has

been replaced by custom-designed tools on demand, with far lower total cost. In a

similar hyperbolic example, one could sequence a new species’ genome and generate

transcriptome data in the same instrument run with no prior information.

Cross species comparisons have direct applications to the projects listed above.

For cell cycle regulated genes, functional sequence motifs will be more strongly con-

served across species than will be vestigial or false positive sites. Comparison of

cell-cycle regulated genes in S. japonicus, S. octosporus, or S. cryophobus would per-

mit refinement of “cell cycle regulated genes” and moreover provide significant insight

into direct and indirect oscillators. Analysis of non-coding RNAs across species will

likely separate functional species with conserved sequence from incidental transcripts

of irrelevant content. The significance of antisense transcription can also be well ad-

dressed by comparisons with evolutionarily close species. Adjacent genes engendering

regulatory antisense transcripts should be more conserved than expected by the neu-

tral model. Direct measurement of antisense transcript levels in related species will

also help to distinguish active transcriptional interference from incidental expression
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of the opposite strand.

Transcript end mapping and measurement of transcription proper As ev-

idenced by this work, expression and tiling arrays are powerful tools for the detection

and classification of transcripts. Despite this great utility, some shortcomings exist,

of which several have been addressed by new methods. Samples to be interrogated on

arrays generally represent the sum total of transcripts in the cell at a given moment.

Subcellular fractionation or isolation of polysomes can provide evidence for differ-

ential localization or active translation, respectively, but do not address a question

underlying regulation of transcription. Arrays represent the steady state RNA levels

in a cell, confounding measurements of transcriptional activation with the instan-

taneous background of extant transcripts. Transcription rate and elongation speed

can be determined by nuclear run-on, but the procedure is laborious, low through-

put, and inherently difficult to scale. A recent publication by the John Lis’ lab has

demonstrated an immuno-enrichment modification to the classic run-on procedure,

which enables capture and subsequent quantitation of actively transcribed species

(Core et al., 2008). Although the method as published generated sequencing-ready

libraries, identification of nascent transcripts should be possible on arrays as well;

two color arrays could be employed to compare instantaneous transcription rate to

steady state, generating indirect RNA half-life measurements en masse.

A fundamental limitation of microarrays is the identification of sequence con-

nectivity. While sensitive and accurate measurement of sequences corresponding to

individual probes is possible, no information about connectivity between sequences

is generated. In higher eukaryotes, the potential for alternative exon use and long-

distance trans splicing make unambiguous assignment of a probe to a given transcript

difficult (Kapranov et al., 2005; Willingham et al., 2006), and identification of indi-
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vidual (often overlapping) transcript ends is difficult, even in yeast. Traditional “long

read” sequencing of vector-capped cDNAs has been performed in both budding yeast

and mouse, but is a relatively low-throughput technology. Identification of individual

5’ or 3’ transcript edges is possible using standard high-throughput sequencing linker

ligation, but discards information specific to each pair of ends. Paired end sequencing

or full-length RNAs, while conceptually attractive, falls short due to strong amplicon-

length biases during library preparation and sequencing. Paired end tag sequencing

provides SAGE-like data for both 5’ and 3’ terminii of a single message in a homoge-

neous tag read length, and was the backbone of mouse transcriptome sequencing (see

above). Development of high-throughput sequencing-formatted PET tag libraries will

undoubtedly enable new efforts of transcript-end mapping by sequencing (Fullwood

et al., 2009).

5.3 Summary

During my tenure in the lab, I have been fortunate to be involved in a wide variety of

projects, adoption of new techniques and technologies, and have witnessed fundamen-

tal changes in the study of transcription. My attraction to yeast as a model system

was largely due to the tractability of the system where, in the currency of the day,

the entire genome could fit onto a single slide. Techniques for genetic manipulation

of yeast were well beyond those available in higher eukaryotes, and the assumption

that yeast served as an excellent model for inaccessible metazoan systems appeared

sound. In the intervening years, huge strides have been made in both the genetics

tools available for metazoa (with notable advances in retro/lentiviral vectors and var-

ious titrable inducible expression systems, shRNAs, siRNAs, and integrable miRNA

knockdown systems), and the techniques with which we examine transcript structure
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and abundance (increased density of tiling arrays and the development of deep se-

quencing systems). Paralleling these advances have been a number of publications

(referenced throughout this dissertation) which demonstrate mechanistic conservation

across broadly divergent model organisms. Far from highlighting the differences be-

tween yeast and metazoa, progress during these years has underscored the continued

relevance of both budding and fission yeast to the scientific gestalt.

The study of regulated transcription has expanded from analysis of discrete func-

tional sequence elements to the examination of expression in both local and genomic

context. Gene expression is controlled not only through production of functional tran-

scripts, but also through transcription itself. Advances in expression measurement

technology and the availability of large data sets have permitted integrated analysis

of the actively transcribed genome as a whole.
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A Reagents and Media

Media: YEL+A

• 0.5% yeast extract, 3% glucose, 100µg/mL adenine, filter sterilized

Media: EMM2∗

• 15mM potassium hydrogen pthalate, 10mM dibasic sodium phosphate, 93.5mM
ammonium chloride, 0.5% glucose, 1x each EMM salts, EMM minerals, EMM
vitamins

1x Spotted array hybridization buffer

• 25% v/v formamide, 5× SSC, 0.1% SDS, 100µg/ml of sonicated salmon sperm
DNA

Wash Buffer 1 (spotted arrays)

• 2× SSC, 0.1% SDS

Wash Buffer 2 (spotted arrays)

• 0.1× SSC

2x hybridization buffer (Affymetrix)

• 200mM MES, 2M Na+, 40mM EDTA, 0.02% Tween-20

Wash Buffer A (Affymetrix)

• 6x SSPE, 0.01% TWEEN-20

Wash Buffer B (Affymetrix)

• 100mM MES, 0.1M Na+, 0.01% Tween-20

2x Stain Buffer (Affymetrix)

• 200mM MES, 2M Na+, 0.10% Tween-20

1x Array Holding Buffer (Affymetrix)

• 100mM MES, 1M Na+, 0.01% Tween-20

SAPE Stain Solution [Stain 1 & 3] (Affymetrix)

• 100mM MES, 1M Na+, 0.05% Tween-20, 2mg/ml BSA, 10µg/ml SAPE

Antibody Stain Solution [Stain 2] (Affymetrix)

• 100mM MES, 1M Na+, 0.05% Tween-20, 2mg/ml BSA, 0.1mg/ml goat IgG,
3µg/ml goat α-Streptavidin antibody (biotinylated)
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Reagents/Supplies and their primary sources:

• Cy5 and Cy3 mono-reactive dyes, NHS ester (GE Life Sciences)

• 5-(3-aminoallyl)-dUTP (aa-dUTP) (Ambion)

• SuperScript II/III Reverse Transcriptase (Invitrogen)

• RiboPure Yeast RNA extraction kit (Ambion)

• LabChip/BioAnalyzer RNA Nano 6000 (Agilent Life Sciences)

• Superchip aminopropylsilane microarray slides (Erie)

• Microquill 2000 contact printing pins (Majer Precision)

• S. pombe Tiling 1.0FR arrays (Affymetrix)
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