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Abstract of the Dissertation

Image Quality in MAP SPECT Reconstructions

by

Santosh Kulkarni

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

SPECT (Single Photon Emission Tomography) is a noninvasive nuclear

medical imaging modality commonly used in the clinic for diagnosis of dis-

ease. It is a tomographic modality that displays two-dimensional slices

of the three-dimensional spatial distribution of injected radiopharmaceuti-

cal within the patient body. The radionuclide in the radiopharmaceutical

emits gamma-ray photons that can pass through the body and get detected

by a position-sensitive detector. The photons emitted from the radionu-

clide have a Poisson noise characteristic leading to noisy collected data.

Limitations on patient dose mean that few photons are collected and so

this photon noise is significant. In addition, the anatomical variability and

variations in radiotracer uptake within the bodily anatomical structures is

itself a form of noise,“object variability”, akin to clutter in radar imaging.

A tomographic statistical Bayesian reconstruction algorithm is used to es-

timate the patient image. The reconstruction algorithm must incorporate
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an accurate forward model of the imaging system. An inaccurate model

results a third type of noise,“model error”. All three noise mechanisms

propagate into the reconstruction.

In medical imaging “image quality” is assessed by how well informa-

tion about a task of interest can be obtained from a given image. In my

work, the medically relevant task is that of detection of a signal in a noisy

background. The signal could be a local increase in radiotracer uptake, for

example, indicating the presence of a tumor or other lesion.

My goal in this thesis is to analyze the effects of the three noise sources

on detection task performance when the signal is deterministic i.e. its

form and location are known. We focus on the use of mathematical

model observers that emulate human performance (such as the Channel-

ized Hotelling Observer CHO) in a binary detection task, where the signal

is deemed either present or absent. We analyze the CHO and compare it

to human performance in an experiment to investigate the optimal (in the

sense of maximizing image quality) smoothing in a SPECT MAP (maxi-

mum a posteriori) reconstruction. We also observe that in the presence of

object variability, CHO and human performance correlate well. We also

address another concern regarding the efficacy of a Bayesian reconstruc-

tion incorporating an anatomical prior for lesion detection. The anatom-

ical prior uses information regarding the different radiotracer uptake in

different organs. Using the CHO we investigate whether this prior in-

formation leads to improved detection performance when the only noise

source in the data is photon noise. Our results showed no difference in

lesion detectability with and without the anatomical information. Finally,

we mathematically investigate model error that accounts for noise due to
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scattered photons in SPECT. We develop theoretical expressions to rapidly

compute certain measures of image quality, the reconstructed mean, covari-

ance, and local point-spread function, for SPECT MAP reconstructions.

We conclude that this model error adds variance to the reconstructed im-

age above and beyond that due to photon noise.

These investigations are useful in potentially comparing and optimizing

both imaging hardware and reconstruction algorithms to achieve better

task performance. Even incremental gains in task performance can lead to

more favorable diagnostic outcomes for many patients.
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Chapter 1

Introduction and Background

Nuclear Medical Imaging is a non-invasive modality of medical imaging for pro-

ducing a 3D spatial distribution of emitting radio-pharmaceutical in the human body

[1]. The 3D spatial distribution is viewed by a radiologist to glean useful diagnostic

information. A radiopharmaceutical labeled with a radionuclide, e.g 99mTc-sestamibi,

is administered to the patient to tag a specific biochemical function with regards to a

specific target organ [2]. Depending on the its bio-kinetic properties, the radiotracer

distributes within the body to give the functional state of the target organ [3]. Two

important emission tomographic (ET) imaging modalities are SPECT (Single Photon

Emission Computed Tomography) [4] and PET (Positron Emission Tomography) [5].

In this dissertation, we will focus on SPECT.

Here, we give a brief introduction to the SPECT imaging process. This will be

revisited in greater detail in later chapters. The radionuclide atom of the pharmaceu-

tical emits photons [6] having sufficient energy to penetrate tissue and escape from the

human body in significant numbers. The number of photons emanating from a certain

region within the body reflects the spatial distribution information of radiopharma-

ceutical within the patient. Out of all the photons that make their way out of the body

only those photons traveling in a specific direction hit a detector, an Anger camera

[7], that has a large NaI (thallium-doped sodium iodide) crystal preceding an array of

photomultiplier tubes (PMTs). This direction specific detection is made possible by
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a collimator which is a thick sheet of heavy metal (like lead) perforated like a honey-

comb by long thin channels. The collimator does this by absorbing gamma photons

traveling in directions other than those specified by the collimator. When a photon

hits and interacts with the NaI crystal it ionizes the atoms withing the crystal causing

an optical scintillation event. Light from this scintillation is detected by the array of

PMTs and an electronic circuit estimates the location of interaction of the incident

photon within the crystal by evaluating the signals from the PMTs. A histogram of

the incident photons binned with respect to their estimated position on the face of the

Anger camera constitutes a single two-dimensional planar image known as a projec-

tion [2]. It is a projection in the sense that it is a 2-D line integral of the 3-D object.

This 2D image indirectly portrays the in vivo distribution of the radiopharmaceutical

within the body. Several such 2D projections evaluated at different positions of the

camera face form the data used in emission tomography. In emission tomography a

3D map of the radiopharmaceutical density within the body is digitally reconstructed

from these multiple views. A 2D image of a slice extracted from this reconstructed

3D radiotracer distribution is then made available for the physician’s perusal.

Nuclear imaging has the ability to image qualitatively and quantitatively dy-

namic physiological process of the body [3]. This ability is important because anatom-

ical or morphological changes due to pathological conditions are often preceded by

physiological or biochemical alterations. It makes possible the study of various bio-

logical functions such as blood flow and metabolism. It has has become an important

tool in the clinic over the last several decades. Another part of its overall attraction is

that it enables the study of dynamic body functions without trauma to the subject.

SPECT is a form of imaging in which one uses a radionuclide which emits a

single gamma photon. The radiopharmaceutical is administered usually by injection

or sometimes by inhalation [8]. The Anger camera detects and records gamma ray
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positions emitted by the radiopharmaceutical as a product of radioactive decay. There

are two forms of single-photon emission imaging: planar and tomographic. SPECT is

tomographic imaging with single-photons. A planar image depicts a single projection

of a radiotracer distribution in a subject; a tomographic image is a slice from a volume

of reconstructed radiotracer distribution computed from multiple 2D planar images

acquired from multiple camera positions. The radiopharmaceuticals used in SPECT

are labeled with radionuclides, i.e. atoms that emit gamma(γ) rays. One of the most

important radionuclides used in SPECT imaging is Technetium-99m or 99mTc which

emits 140Kev gamma photons with a half life of 6.03 hours [8]. The half life is the

time in which the nuclei of one-half of a given population of atoms undergo radioactive

decay. Thallium-201 or 201TI is another radionuclide used in SPECT which emits

photons with 70Kev photons and whose half life is 73 hours [8].

1.1 Basics of Image Formation in SPECT and Planar Imaging

1.1.1 Planar Imaging

We first describe conventional planar imaging. In planar imaging the 3D dis-

tribution of radiopharmaceutical within the subject’s body is imaged onto a planar

surface producing a 2D projection image. The introduction of the scintillation camera

by Hal Anger [7] was the driving force for planar imaging which later led to the SPECT

modality. This camera uses a large NaI (Tl) crystal (typically 40cm in diameter) [1]

coupled to an array of PMT’s to record the position and energy of a incident gamma

photons. Figure 1.1 illustrates the schematic structure of an Anger camera.

The gamma photons emitted by the internally distributed radionuclide penetrate

through the patient’s body. While traversing through the body the photons can in-

teract with the intervening tissue. The photons undergo two effects, photoelectric

absorption and Compton scattering, which will be discussed in the next chapter. It is
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Figure 1.1: Basic components of an Anger camera.

those photons that do not interact and pass through the body that are used to obtain

the image.

The directionally isotropic emission of gamma photons from within the body and

the fact that gamma rays cannot be focused by lenses or electromagnetic field neces-

sitates the use of collimators to confine the direction of the incident photons reaching

the scintillation camera and thereby to localize the site of the emitting source. The

collimator is usually made out of a perforated plate of heavy metal having high atomic

number like lead or tungsten which can absorb the photons. If the apertures of the
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Figure 1.2: Basics of a parallel-hole collimator geometry: The hexagonal array in the

bottom part of the figure is the top view of a few bores of a typical collimator. A

cross-sectional view through the center of the hexagonal array is shown in the top part

of the figure. The figure is not to scale relative to a clinically used collimator. The

photons emitted from point ‘a’ spread over a smaller area of the crystal as compared

to photons emitted from point ‘b’. The acceptable angle of photon rays are limited

by the collimator (θ1 for point ‘a’ and θ2 for point ‘b’). The shaded area illustrates

the field of view for one bore. To a good approximation, only photons emitted from

locations within this field of view can be detected by the corresponding bore.
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collimator are all parallel to each other, then the collimator is called a parallel hole

collimator as shown in the Figure 1.2. For a parallel-hole collimator, incident photons

are confined to directions approximately perpendicular to the collimator face. Incident

rays approximately normal to the collimator reach the detector, while other photons

will hit the collimator vanes or septa. The figure also gives the various parameters

of the collimator such as collimator length (lc), bore diameter (dc), and septal thick-

ness. A given bore will allow only those photons whose direction vectors lie in its

field of view to hit the detector. The acceptance angle a function of the bore diam-

eter and bore length is the parameter that describes the field of view subtended by

the bore. Although most collimators have parallel holes, some collimators have hole

patterns that converge or diverge [8, 9]. Depending upon the radionuclide being im-

aged and the desired sensitivity/resolution trade-off (this tradeoff is discussed in more

detail in Chapter 2), a variety of lead parallel-hole collimators are commonly used

in conjunction with the Anger gamma camera in the clinic: LEHR (low-energy, high-

resolution), LEAP (low-energy, all-purpose), MEAP (medium-energy, all-purpose) and

HEAP (high-energy, all-purpose) [8].

The collimated photon hits the NaI (thallium doped sodium iodide) crystal and

deposits some energy by ionizing the atoms within the crystal at the point of inci-

dence. The deposited energy is converted to a visible light photons. The image of a

scintillation event at the exit face of the crystal is not a tiny bright dot but rather

is a broadly spread region of light, with the brightest part of the region coinciding

roughly with the location at which the gamma photon interacted with the crystal.

The intensity of the visible light flash created by the scintillation event is proportional

to the energy of the incident photon. This scintillation light is guided towards the

photocathode of the PMT’s coupled to the crystal.

The PMT consists of a photocathode, an anode and around 10 dynodes. The
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photocathode absorbs the flash of light impinging on it and emits photoelectrons. The

number of electrons generated from the photocathode are proportional to the intensity

of light impinging on it. The dynodes are coated with material that emits secondary

electrons when struck by another electron. Electrons are multiplied at each dynode

resulting in a burst of millions electrons at the output of the PMT. The output of each

the PMT is proportional to the amount of light impinging on it. The output of the

PMT’s is amplified by the preamplifier circuit. The current pulses from the various

PMT’s is given to an analog or digital pulse-position analysis circuit to estimate the

position of the scintillation event. This is then discretized to give a quantized position

on the camera face. Such a quantized position on the camera face is known as “bin”.

The current pulses from the PMT’s are combined to give a net signal propor-

tional to the total energy deposited in the crystal by the scintillation event. The height

of the combined pulses gives an estimate of energy of the detected photon. There is

an uncertainty in the estimate of energy of detected photon due to the uncertainty in

the pulse heights from the PMT’s and preamplifier. This uncertainty is responsible

for the energy resolution of the camera. Thus for a typical camera, a pencil beam of

140KeV photons will produce energies 140±14 KeV. The uncertainty in the combined

pulse height is because of the following [8, 3] reasons: (1) uncertainty in the number

of optical photons produced during a scintillation-event within the crystal (2) losses of

light intensity during crystal transmission (3) fluctuations in number of photoelectrons

released from the photocathode of the PMT (4) variations in the electron multipli-

cation factors at the dynodes of the PMT and (5) imperfections in the linearity of

the preamplifier. A pulse height analyzer (PHA) specifies an energy window so that

only pulses within this window are accepted for counting. Thus only events within

the range (corresponding to uncertainty in the energy estimation procedure) of known

radionuclide energy result in a unit increment of a memory location specific to the
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quantized location of each of those events. The array of resulting counts, displayed as

a 2D image, is known as projection or planar image.

1.1.2 Planar Imaging versus Tomography

3D Source Object 2D Projection

1D projection of the 
cross-section  image

cross-section image with 
photons emitting

xy

z

o

A
B

Collimator

Figure 1.3: A 2D projection from a 3D object. The line AB on a cross-section (slice)

is pictured to be a projection at point “o”. A slice perpendicular to detector plane

forms an image along one line (1D projection profile). Stacking 1D projections of slices

together forms a 2D projection of a 3D object.

Figure 1.3 schematically shows the 2D projection image of a 3D radionuclide

distribution within the body. The photons emitted get collimated and only those

whose direction is nearly perpendicular to the detector get accepted. From the Fig-

ure 1.3 we can see that any photon moving in the direction of line segment AB will

be recorded. Also all the photons that are emitted by the radionuclide along segment

AB will be recorded at the point ‘O’. Consequently all the photons emitted from the

2D cross-section containing AB and moving along the direction of AB will be summed
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and recorded as a 1D projection on the camera face. Following the same principle, a

stack of 2D cross sections stacked along the z-axis and perpendicular to the camera

face will be imaged as a stack of 1D projections on the camera face. Hence an entire

3D radiotracer density will project onto the camera face as a 2D projection image.

Since every point on the 2D projection image accumulates the radioactivity along

an approximate normal at that point on the detector, any information of depth through

the 3D radiotracer distribution is lost. Hence the underlying and overlying structures

in a 3D
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Figure 1.4: The basic principle of SPECT. A gamma camera rotates around the object

and acquires many projection views at equidistant angles. These projection views

together form a sinogram from which the object is mathematically reconstructed by

a reconstruction algorithm.
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object are overlapped in a 2D planar image. As in other tomographic modalities

such as CT, we sense line integrals of the object, not the object itself. This overlap

makes the image difficult to interpret.

The aim of SPECT is to provide a 3D distribution of gamma emitting radionu-

clide instead of a 2D projection image as in planar imaging. In tomography, one

acquires projection views at many angles all around the object [10]. By combining

these projection views mathematically, the 3D structure of the object can be obtained

from its many 2D projections, or, a 2D structure from many 1D projections. The

camera is rotated around the patient to get 2D planar images (projections) at various

angles. In SPECT, a gamma camera is designed to rotate up to 360o around the

patient stopping at equidistant angular samples to collect and record gamma photons.

The total time needed to complete the data acquisition for one patient is the number

of stops times the accumulation time per stop. Typical study time is around 20 min-

utes for brain imaging and also bone imaging [8] and 20-30 minutes for ventilation and

perfusion studies [8]. Once the projection data are acquired and stored, a computer

system will process the data to reconstruct the original radioactivity distribution of

the object.

Figure 1.4 illustrates the basic principle of operation of a 2D SPECT system,

i.e., only one cross-section of an object is studied. The 1D camera is shown at many

angular positions θk. A 1D projection is measured at each position θk. As shown in

Figure 1.4, initially, the camera is in position θ1, photons are collected to bins and the

resulting projection profile fills in the first line of the projection data with 1 being its

index for angle. Then, the camera is rotated to the next position θ2. Its projection

profile is placed next to the line from θ1, i.e., fills in the second line of the projection

data with angle index 2. Then, camera goes to θ3 for the third line of the projection

data. Extending this, the camera covers the full 360o(sometimes 180o) of the orbit, i.e.
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completes the collection of photons at K sampling angles in total as shown in Figure

1.4. All of these projection profiles are thus sequentially stacked to a 2D image with

the abscissa being the digitized detector coordinate “bin” and the ordinate being the

index of the sample angle. This 2D digital image is referred to as the “sinogram”.

A typical “sinogram” is shown in Figure 1.4. We can see that the sinogram is

itself not visually interpretable by a radiologist. Therefore, before serving a diagnostic

purpose, another step needs to be performed. This step is called reconstruction. A

reconstruction algorithm attempts to transform a sinogram to a meaningful image of

the original radioactivity distribution in its original coordinate frame. The digitized

sinogram data is fed to a computer system on which the reconstruction algorithm

is executed. The reconstructed digital images are what we present to physicians for

diagnostic or therapeutic purposes. The upper right image in Figure 1.4 shows a the

reconstruction of the data in the upper left sinogram in Figure 1.4.

1.2 Applications of SPECT

SPECT has been used in bone imaging [11, 12, 13, 14], clinical evaluation of

cardiac disease [15, 16, 17, 18], brain perfusion studies [19] and in other clinical appli-

cations. Both 201Tl and 99mTc labeled pharmaceuticals are used for SPECT myocardial

perfusion imaging [8]. A common version of such studies involves the characterization

of a patient’s heart with the patient at rest using 201Tl-TlCl and under stress using

99mTc-sestamibi or tetrofosmin. Its is an invaluable aid for diagnosis and management

of coronary artery disease (CAD).

Technetium-labeled methylene diphosphonate ( 99mTc-MDP) is the tracer com-

monly used for bone imaging. It is used to detect focal uptake (localized uptake that

is different in magnitude from uptake in neighboring bone) which may present an

abnormality. If the focal uptake is greater that uptake in the neighboring bone, this
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may indicate arthritis, a fracture or metastasis. Focal uptake that is less than the

neighboring bone may indicate necrotic tumor (due to accumulation of dead cells) or

a sequela (consequence) of radiation therapy.

Technetium labeled hexamethylpropleneamine oxime (HMPAO) and 99mTc-ECD

(Ethyl Cysteinate Dimer) are most commonly used for brain SPECT scan for inves-

tigating clinical indications of cerebrovascular disease, dementia, or seizure. In [20],

SPECT imaging was done for a renal region. SPECT has received wide interest for

clinical applications and is a standard imaging procedure in all Radiology departments.

SPECT also serves as an important imaging technology for imaging molecular

events for research in molecular biology [21]. The use of microSPECT to locate and

characterize tumor cells with the intent to change these processes by gene manipula-

tion in small animals is of interest [8]. The progress of a disease can be monitored

and/or molecular changes due to gene expression can be detected. This information

is particularly important in the area of gene therapy, where the imaging system can

assess the success of tracer delivery and obtain accurate time curves of gene expression

[22]. Such studies often use novel radiopharmaceuticals specially developed for in vivo

imaging of the biomolecular event of interest at the cellular level [21]. Several high

resolution small animal tomographic gamma-ray imaging systems have been devel-

oped in recent years based on scintillators [23, 24] and based on semiconductor arrays

[22, 25].

1.3 Anatomical images: MRI and CT

Other imaging modalities like MRI (magnetic resonance imaging) and X-ray CT

(Computed Tomography) have higher resolution than SPECT and PET. These modal-

ities give anatomical information while SPECT provides functional information. (In

certain cases MRI and CT can provide forms of functional information, but these
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Figure 1.5: Traverse Thoracic image from CT and coresponding 99mTc-FDP SPECT

image showing increased Focal uptake in thoracic spine.

modalities are used primarily for anatomical information.) Magnetic resonance imag-

ing (MRI) uses radio-frequency waves along with a strong magnetic field [26] and

CT uses X-rays [2] to give high resolution anatomical images. The image of a recon-

structed X-ray CT slice is the map of linear attenuation coefficients of the tissue within

the corresponding slice in the body. As the X-ray beam passes through the body it

gets attenuated by absorption and scattering processes. The degree of attenuation

depends on the energy spectrum of the X-rays as well as on the average atomic num-

ber and mass density of the tissue its passing through. Since each tissue has different

mass and average atomic number, X-ray CT results in a detailed anatomical map.

CT is termed as “transmission tomography” since the X-ray source is external while

SPECT is termed as “emission tomography” since the source of the radiation is inside

the body. There is often high correlation between functional images (from SPECT or

PET) and coregistered anatomical images (from MRI or CT) since function follows

anatomy. Figure 1.5 showing anatomical detail of a slice through the thorax from

CT and the focal uptake in the corresponding slice using SPECT image. Figure 1.6

shows slice through the parathyroid using (a) CT image and (b) SPECT image. The
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anatomical information can be used to improve emission reconstruction. We discuss

the use of this information for image reconstruction in Chapter 6.

(a) (b)

Figure 1.6: (a) a CT slice showing anatomical detail in a traverse section through

the parathyroid, and (b)a slice from a single-photon computed tomography (SPECT)

image showing function. The bright spot is a benign tumor.

1.4 Tasks in Nuclear Imaging

As described in previous sections, a reconstructed image is the interface between

a SPECT system and a physician. In order to improve the imaging system or recon-

struction method or to compare imaging systems or reconstruction methods we need

a way of measuring the amount of improvement. Most image reconstruction methods

have one or two free parameters for tuning a given algorithm to a specific imaging

problem. An imaging system has parameters such as collimator bore diameter and

bore length that need to be optimally adjusted for a specific imaging problem. These

parameters need to be tuned according to some criteria of image quality to get better

images. In order to do so one must be able to quantify the image quality of images

resulting from these imaging systems or reconstruction methods. This objective as-
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sessment of image quality must be task based. The image quality is measured on the

basis of how well an imaging system or reconstruction method allows an observer to

perform a specified task [27].

Tasks can be conveniently divided into estimation and classification. In estima-

tion one seeks to accurately derive the value of some scalar parameter of interest e.g.

a patient’s cardiac ejection fraction (percentage of blood that’s pumped out of a filled

ventricle with each heartbeat) or quantitatively estimate the average tracer uptake

in a particular organ or region of interest for the purpose of patient management,

including staging and monitoring for effects of therapeutic intervention. Classification

involves determining to which of two or more categories an image must belong. A

detection task is a special case of a classification task in which one decides whether or

not a signal is present. For a physician, the “signal” of interest might be a tumor or

some type of lesion. Figure 1.7 shows examples of signal present and absent images of

reconstructed slices of a digital test phantom. Another common form of “signal” is the

absence of counts (a “cold spot”) in an organ which has absorbed a certain amount of

tracer. An example of cold spot would be in cardiac imaging and lung imaging, where

the absence of radioactivity is a sign of impaired perfusion. Detection is not necessar-

ily a binary decision problem. Instead of having just two hypothesis (absent/present)

there can be L+1 hypothesis. The classifier has to decide whether the observed image

contains a signal and if so which of L signal classes the signal belongs. For example,

the classes might represent L different signals, all in same location or one signal in one

of L possible locations [28]. In this thesis, we will focus on binary detection tasks.

Image quality is based on performance of an observer with respect to the task.

An observer is an entity which performs the task. For a detection task in a clinic

the observer would be a physician. An observer could also be implemented as a

mathematical operator. The familiar matched filter is a simple mathematical observer
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(a) (b) (c)

Figure 1.7: Anecdotal reconstruction of(a) a slice of a test object, (b) without lesion

(c) with lesion (marked by arrow). The lesion was a 3 × 3 lesion of contrast 2:1 with

the background.

for the case of detection of a known signal in uncorrelated Gaussian noise.

We would like to make the distinction between the imaging system and recon-

struction algorithm. The imaging system delivers the raw projection data. The recon-

struction algorithm transforms this data into an image for the physician to examine.

To quantify image quality in an imaging system we need to measure the detection per-

formance of an observer which works on the raw data and as argued in [29] the observer

should be based on some optimal criterion. However, for a reconstruction algorithm,

we need an observer that works on the reconstructed image and is based on the criteria

which a human (physician) would apply while viewing the images. The best observer

for this purpose is the human itself. We are restricting ourselves to the performance

of observers for evaluating different reconstruction methods. But optimizing a recon-

struction method based on the performance of humans is extremely time-consuming.

Thus mathematical model observers that emulate human performance [27, 30] are

extremely useful. In order to optimize or compare reconstruction algorithms a com-
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putable scalar figure of merit (FOM) for image quality is needed [31, 32, 33]. The

uncertainty (noise) in the images as well as the observer performing the task play a

vital role in calculating a FOM as a measure of performance. Thus a fast method that

uses mathematical observers to theoretically predict the human observer performance

is useful in rapidly culling the parameter search space for reconstruction optimization.

1.5 Overview of Dissertation

Chapter 2 explains the mathematical model of the SPECT imaging system. This

is the forward projection model incorporating the physical effects of the SPECT sys-

tem. In Chapter 3 we discuss the inverse problem of image reconstruction from pro-

jection data. Here we try to estimate the underlying source distribution from the

measured noisy data using statistical methods. In Chapter 4 we describe the basics

of a detection task and FOMs’ of a few model observers. We discuss the noise char-

acteristics of the reconstructed images obtained from projection data corrupted by a

primary source of photon noise and theoretical methods to obtain them. In Chap-

ter 5 we compared the performance of a human emulating model observer to that of

human observers in order to determine an optimal smoothing parameter (controlling

the noise/resolution trade-off) in SPECT reconstruction. In Chapter 6 we talk of how

outside information made available by an anatomical scan can be incorporated into

the image reconstruction. We give a theoretical method for evaluating expressions

required for computing a detection FOM using model observers for studying the effect

of the use of anatomical side information on a lesion detection task. It also has simu-

lation details and results describing the efficacy of this anatomical prior information.

In Chapter 7 we develop theoretical expressions to rapidly calculate certain measures

of image quality, the reconstructed mean, covariance, and local point-spread function,

for SPECT reconstructions. These expressions account for two sources of noise, (1)
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a model error along with (2) a primary source of photon noise. We also perform an

elaborate simulation to validate our theoretical expressions with sample methods. In

Chapter 8 we conclude this thesis with a discussion and some avenues for future work.

18



Chapter 2

SPECT Imaging Model

In this chapter we describe a mathematical model for the formation of projec-

tion data in SPECT. (Henceforth, we use the term “projection data” to mean the

collection of planar images formed at different angular positions of the camera. For

a simple 2D case, the sinogram in Figure 1.4 is an example of projection data.) This

entails discussing the physics of the SPECT imaging system. It is important to have

a mathematical forward model for the SPECT data to address the ensuing inverse

problem of image reconstruction. The inverse problem of image reconstruction from

the acquired SPECT data is dealt with in the next chapter.

2.1 Notational Conventions

Here we summarize notation. Lower-case (non-bold) letters are used to specify

scalar variables and scalar valued functions. Vector and vector-valued functions are

represented by lower-case bold letters. For example, fn, n = 0, 1, · · · , N − 1 are the

elements of a N -dimensional vector f . Whether a vector or scalar is random or non-

random will be made clear from context. A matrix is denoted by an upper-case letter

and square brackets with appropriate subscripts is used to denote its element. For

example, [H]mn is the mnth element of a M × N matrix H. The mth element of a

matrix-vector product Hf is given by [Hf ]m, where [Hf ]m =
∑N−1

n=0 [H]mnfn. A matrix-

matrix product of an L × M matrix B with an M × N matrix H is denoted as BH,
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where [BH]ln is its lnth element. An M ×M diagonal matrix with an M -dimensional

vector g as its diagonal is given by diag(g). Another operation involved between two

matrices is an element-by-element multiplication, which is denoted by �. Two M ×N

matrices Y and A will have the mnth element of the element-by-element product Y�A

given by [Y �A]mn = [Y ]mn[A]mn. The element-by-element vector division of two M-

dimensional vectors a and g is a
g

with am

gm
is its mth element. The transpose of the

matrix H is denoted by HT .

An image can be represented as a vector such that each element of the vector

gives the intensity of an image pixel. We can lexicographically order a 2D or 3D image

to a vector. Lexicographical ordering assigns the intensity of the ijth pixel of a 2D

I × J image to the nth element of an N -dimensional vector f where N = I × J . The

index n can be from a column-by-column or row-by-row raster scan of the locations ij

of the image. A I × J ×K 3D data-set can be lexicographically ordered into a vector

f by assigning the intensity of ijkth element to fn where the index n can be calculated

as kIJ + iJ + j, or kIJ + jI + i, or iJK + jK + k, or iJK + kJ + j, or jIK + iK + k,

or jIK + kI + i.

Because of the statistical feature of this work, the concepts of means and variances

for random variables come up frequently in later chapters. We denote means by the

decoration of a bar. For a random variable a, if its probability density function is p(a),

its mean is defined as:

ā =
∫

ap(a)da (2.1)

and variance as:

σ2
a =

∫
(a − ā)2p(a)da (2.2)

Sometimes, we will also use 〈a〉 to denote its mean. Similarly, for a random vector g

with its probability density function p(g) (or, for a discrete valued random vector a

joint probability Pr(g)), its mean is denoted by ḡ with each element ḡm computed as
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following:

ḡm =
∫

gM−1

· · ·
∫

g1

∫
g0

gmp(g0, g1, · · · , gM−1) dg0 dg1 · · · dgM−1 (2.3)

Its covariance matrix is denoted as Kg with element [Kg]nn′ :

[Kg]nn′ =
∫

gM−1

· · ·
∫

g1

∫
g0

(gn−ḡn)(gn′−ḡn′)p(g0, g1, · · · , gM−1) dg0 dg1 · · · dgM−1 (2.4)

If the random variable (vector) is discrete, the integration is replaced by summation.

Another decoration used is the carat (ˆ). We denote an estimate of random vector f

by f̂ .

2.2 Image Formation

Once the radiopharmaceutical is introduced inside the subject’s body it gets

distributed within the body according to the physiological function it is targeting. It

is this emitting distribution within the body that we do not know and are trying to

estimate. The amount of radioactivity in the body is constantly reducing with time

because of (1) the physical decay of the radionuclide and (2) the biological elimination

of the radiopharmaceutical. Physically, the radionuclide is constantly decaying with

an exponential decay law. This is because the fraction of radioactive decays is constant

per unit time. Given N0 atoms present initially, the number of atoms remaining after

time t is:

N(t) = N0e
−λt (2.5)

where λ is the decay constant. The physical half-life (Tp = 0.693/λ) is a measure of

the decay rate and is equal to the length of time required for the radionuclide atoms

to reduce to half the original number of atoms. The radionuclide also undergoes a

biological washout. The biological half-life (Tb) is the time required for the body

to eliminate one half of the dose of any substance by regular process of elimination.

The physical half-life (Tp) along with the biological half-life (Tb) contribute to the
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effective half-life (Te) of the radioactive substance within the body. It is calculated as

Te = Tp×Tb

Tp+Tb
as given in [3]. The biologic half-life always decreases the effective half-life

to a value less than the physical half-life. We shall assume that the effective half-life

of the radionuclide is much longer than the fixed observation time interval. This is

often not true for some types of studies, there is a steady decline of radioactivity

associated with radioactive decay or a significant washout. In this case, the projection

data have to be corrected [3, 34] for half-life decay correction to ensure comparable

count statistics throughout the scan. After accounting for this effect we can assume

that the total number of radioactive atoms with the body do not change during the

scan.

However, the radionuclide itself might move within the body due to physiological

interactions with the body causing temporal variations on radionuclide distribution.

Dynamic imaging is used to identify these temporal variations in the radiotracer con-

centration revealing information about organ physiology and is a prominent research

topic [35, 8]. Further, patient motion and involuntary motions due to cardiac and

respiratory cycles lead to a changes with time of the radionuclide distribution. Volun-

tary motion can be compensated for by means of infrared motion tracking [36, 37] and

other techniques. Cardiac motion is captured in gated SPECT [38] which synchro-

nizes the acquisition of tomography data with the cardiac cycle, thus permitting the

reconstruction of a time sequence of images instead of a single motion blurred image.

Though the radionuclide distribution can move, we will consider only a temporally

static scenario. We assume the patient does not move and the radiotracer densities

within the body are not changing in space during the imaging process. For many

studies, the assumption of a temporally static distribution is a good one [8, 39].

In SPECT what we have is the data given by a number of 2D planar images

(projections) taken at equidistant angles as described is Chapter 1. The entity we
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want to know is the true 3D spatial density distribution of the radionuclide. It is

proportional to the average number of radionuclide disintegrations into 4π steradians

per unit volume per unit time of the radionuclide distribution. This average gamma-

emission rate (as a measure of radioactivity) per unit volume is a continuous function

of 3D Euclidean space. We denote it as f(x, y, z) with units of counts/(unit time, unit

volume) and with (x, y, z) the Euclidean coordinates of spatial position. The number

of photons emitted from the radionuclide in volume dx dy dz during a finite interval

of time is a random quantity and follows a Poisson distribution [6, 40]. The mean

number of emissions per unit time is thus f(x, y, z) dx dy dz. This is proportional to

the concentration of radionuclide in the volume dx dy dz. The higher the concentration,

the more gamma photons per unit time will be emitted on average. Thus, estimating

the Poisson means of the 3D emission rates is equivalent to estimating the spatial

density distribution of the radionuclide. We will term f(x, y, z) as the “object” and

its estimate as the “object estimate”.

The SPECT projection data are already in discrete form since each bin contains

a positive integer number of photon counts. Thus the sinogram is discrete spatially

(discrete bins) as well as in intensity (discrete in photon counts). The planar image

at each of Θ angles is made of L bins and P slices. Thus the projection data has

M = ΘLP elements which can be lexicographically ordered into a M element vector

g. The quantity gm specifies the number of photons counted for a quantized position

given by lth bin and pth slice on the Anger camera face at angle θ so that g is integer

valued. The index m can be pΘL + θL + l (one of six ways in which a 3D data set

can be lexicographically ordered). Due to the limited quantity of radiopharmaceutical

that can be administered to the patient and the fact that only about 1 in 104 photons

emanating from the object gets detected, the typical bin counts gm are of the order of

1 to 10. This results in noisy data.
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Figure 2.1: Collimator effects on the probability of photon detection: the probability

of the photon detected by a detector bin m is proportional to the angle limited by

the collimator. Since θb is bigger than θa, it’s more probable for a photon emanated

from (x, y) is detected by detector bin m than by m′. The angle is source-position

dependent. The angle θc is bigger than θa. The shaded area illustrates the field of

view for one parallel hole of the collimator, i.e., photons started inside this area have

a chance of being detected by this detector bin.

Photons are emitted into 4π steradians. The probability that a photon emit-

ted from f(x, y, z)dx dy dz would be detected by a bin m is dependent on location

(x, y, z) relative to the bin m and other factors of the imaging system. One impor-

tant geometric factor governing this acceptance probability is position relative to the

collimator. Figure 2.1 shows how the angle subtended by the collimator varies among

detector bins relative to a single location. The subtended angle is one factor that

governs the probability that a photon from (x, y, z) is detected or not detected at bin

m. It is a function of both source position and bin size and location. We denote this

probability density as hm(x, y, z). For m = 0, 1, · · · ,M − 1, the functions hm(x, y, z)
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are called system sensitivity functions [29, 33] as they describe the sensitivity of a

given detector to different spatial locations. The Bernoulli probability of detection at

the mth bin of a photon from volume dx dy dz at (x, y, z) is hm(x, y, z)dx dy dz. We

already know that the number of photons emitted from (x, y, z) is Poisson distributed

with mean f(x, y, z)dx dy dz. It turns out that a cascade of a Poisson process with

mean λ and a Bernoulli process with mean q gives another Poisson process with its

mean decreased to qλ [41, 40]. Thus the number of photons detected at bin m due to

the radioactivity in volume dx dy dz at (x, y, z) has a Poisson distribution with mean

hm(x, y, z)f(x, y, z)dx dy dz.

The total number of photons counted at bin m is the accumulation of the

contribution from locations over the entire object. This involves the integration of

hm(x, y, z)f(x, y, z)dx dy dz over the entire object. Since the summation of many

Poisson random variables is Poisson with mean equal to the sum of the all the means,

the total number of photon counts detected at m follows a Poisson distribution with

mean ḡm, where ḡm is given by

ḡm =
∫ ∫ ∫

hm(x, y, z)f(x, y, z)dx dy dz (2.6)

The number of counts in each bin is random and independently Poisson distributed

[40] due to the random feature of the emission of photons and the detection process.

The sinograms we acquire in SPECT imaging are sample values of the Poisson random

vector.

For computational convenience we will now discretize the object f(x, y, z) and

subsequently approximate the continuous system sensitivity functions hm(x, y, z) in a

system matrix H. We use voxels as the basis functions for transforming the object

from the continuous to the discrete domain. Other basis functions such as Gaussian

basis functions can also be used [42]. We discretize f(x, y, z) into an array of rectan-

guloid voxels having a total number of N voxels of size (Δx, Δy, Δz). This array is
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lexicographically ordered into a vector f with each nth element (n = 0, . . . , N − 1),

given by

fn =
∫ xn+Δx

2

xn−Δx
2

∫ yn+Δy
2

yn−Δy
2

∫ zn+Δz
2

zn−Δz
2

f(x, y, z) dx dy dz (2.7)

where the integration is taken over the volume of the nth voxel centered at (xn, yn, zn).

The intensity value of a voxel fn represents the expected number of emissions from

the nth voxel. Therefore, for the cubic or rectanguloid voxels the original continuous

object is approximated by a discrete representation f with elements fn given by

f(x, y, z) ≈
N−1∑
n=0

fnrect (
x − xn

Δx
)rect(

y − yn

Δy
rect(

z − zn

Δz
) (2.8)

Applying the system transformation (2.6) to (2.8), we can obtain:

ḡm =
∫ ∫ ∫ N−1∑

n=0

fnrect(
x − xn

Δx
)rect(

y − yn

Δy
)rect(

z − zn

Δz
)hm(x, y, z) dx dy dz

=
N−1∑
n=0

[H]mnfn (2.9)

where H, with elements Hmn =
∫ ∫ ∫

hm(x, y, z)rect(x−xn

Δx
)rect(y−yn

Δy
)rect( z−zn

Δz
) dx dy dz,

is called the system matrix. The quantity Hmn is the Bernoulli probability that a pho-

ton emitted from voxel m is detected at bin n.

Since counts in each detector bin are independent [40], the joint probability of

the number of detected counts g conditioned on f is given by an independent Poisson

distribution as

Pr(g|f) =
M−1∏
m=0

e−[Hf ]m

gm!
([Hf ]m)gm (2.10)

with mean

E{g} ≡ ḡ = Hf (2.11)

Due to the Poisson nature of (2.10), the covariance of g for a given f is a diagonal

matrix [43] with variances along the diagonal given by σ2
gm

= ḡm = [Hf ]m. Thus, for

a given object f , the conditional covariance Kg|f is

Kg|f = diag(Hf) (2.12)
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We naturally consider the case where g is measured and f unknown. In this case,

(2.10) is a likelihood.

Given (2.11), we can express the forward projection model as a linear system of

equations:

g = Hf + n (2.13)

where g is an instance of a (Poisson) noise vector with mean Hf and n is the noise

component. Note that the Poisson noise is signal dependent, yet we are still able to

express this noise as an additive term in (2.13). The vectors g and n are random, and

f is the nonrandom (parameter) vector we try to estimate. In later chapters we will

consider f to be random.

In practice, Hmn will only need to be proportional to the probability of receiving

a count in m emanating from n. For 3D SPECT with a 128×128×32 object and data

acquired over 128 angles using a 192-bin detector and 32-slices, the size of the system

matrix stored in single-precision format is over 1 TB (128×128×32×128×192×32×4

bytes). Storing and directly using such a huge matrix for example, in computing matrix

vector products during reconstruction is impractical. The matrix is either computed

on the fly or stored in some efficient way using specialized formats for sparse matrices.

Specialized functions have to be used to compute matrix vectors such as Hf .

2.3 System Matrix H and its Approximation H

The system matrix H models the overall physical effects of the imaging system,

such as geometrical response of the detector discussed earlier and the interaction of

the gamma photons with the human body and the detector. The matrix H comprises

many factors, some known only approximately via external measurements. It is often

convenient, especially in reconstruction, to use an approximate system matrix. In

Section 2.3.3 we explain computations of the the matrix H that approximate H by
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modelling some of the physical effects contained in H.

Note that the imaging equation (2.13) is linear. In this thesis we do not consider

non-linear effects such as dead time. The dead-time [44, 45] refers to the time required

by the detector to process individual detected events. Its is also known as pulse

resolving time. It is due to the finite scintillation rise and decay times, and time

required by the processing electronics. While a detected event is being processed,

the detector is not able to process another event. Therefore, if a second signal pulse

occurs before the first has disappeared, it does not generate a detected signal. The

effect of dead-time causes the loss of detected photons reducing sensitivity and limiting

the count rates. The mean projection data is no longer Hf . The measurement data

would no longer be Poisson distributed since the inter-arrival times between detected

events do not remain exponentially distributed. In a typical camera, dead-time is on

the order of microsecond [8, 3, 46]. The fraction of counts lost due to dead-time is

proportional to the true count rate in low to moderate count rates, but is non-linear

at high count rates [47]. For almost all SPECT studies, the average count rate is

relatively low, thus it is a good approximation to ignore dead-time.

2.3.1 Attenuation and Scatter

The H matrix incorporates the object-dependent physical effects of attenuation

and scatter as mentioned in Section 1.1.1, When a beam of photons passes through

the human body, it becomes weaker or attenuated as it interacts with the intervening

tissue. Given the energies of SPECT photons (70Kev-394Kev) [1] and the material

properties (mostly water) of the body, this attenuation takes place mainly in two

ways: photoelectric effect and Compton effect [3]. The photoelectric effect [48]

occurs when an incident gamma photon (primarily of low energy) interacts with an

inner-orbital electron, the entire energy of the gamma photon is transferred to the

electron, and the gamma photon is totally absorbed. The electron, called a photo-
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electron, is released from its energy shell and the atom. The photo-electron will itself

be absorbed. The photoelectric interaction only occurs when the energy of the incident

gamma photon is higher than the binding energy of the electron. As far as the imaging

system is concerned, the photon simply disappears at the absorption site.

aa

bb

cc

dd

Attenuating 
    Medium

Figure 2.2: Illustration of attenuation and scatter in SPECT imaging. The attenuation

object with several emission point scources is shown in the figure. Photon “a” is

detected directly. Photon “c” is stopped because of photoelectric absorption. Photon

“d” is scattered and stopped by the collimator. Photon “b” flies originally in an

undetectable direction but is scattered and then detected.

The Compton effect [48] occurs when an incident gamma photon interacts

with an outer-shell electron and some energy of the gamma photon is transferred to

the electron, and the electron is ejected from its orbit. The gamma photon, with
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reduced energy, emerges from the atom with a change in direction. The relationship

between the fractional energy loss of the photon and the scattering angle is given by the

Klein-Nishna equation [48]. This scattered photon may undergo further photoelectric

absorption, or be rescattered or go undetected or get detected.

In order for a photon to be detected, it must escape the body in a direction

that enables it to get through the collimator as discussed earlier. However, due to

the effects of photoelectric absorption and Compton scatter, photons can disappear

(get absorbed) or get deflected (scattered). If a gamma photon that would otherwise

be detected is either totally absorbed or scattered to a direction undetectable to any

detector, we classify the event as “attenuation”. In other words, photon attenuation

denotes the loss of photons because of interaction with the tissue of the human body.

Figure 2.2 shows an attenuation object with several emission point sources. It shows

the interaction of 4 emitted photons ‘a’, ‘b’, ‘c’ and ‘d’ with the attenuating medium.

The attenuation process is illustrated by photons ‘c’ and ‘d’ which fail to reach the

detector. If a photon that wouldn’t be detected gets detected after scattering then

such a photon is known as scatter photon. The photon ‘b’ in Figure 2.2 is an example

of a scatter photon. A photon that does not undergo either photo-electric interaction

or Compton scatter while traversing the body and is detected is termed a primary

photon. An example of a primary photon is the photon ‘a’ in Figure 2.2.

Attenuation is measured by a linear attenuation coefficient μ with units of cm−1.

It is a measure of the probability of attenuation per unit length along a thin beam

passing through tissue. The attenuation coefficient depends on the energy spectrum

of the photons as well as on the average atomic number of the tissue it passes through.

Let N0 be the number of photons incident into a uniform medium of thickness Δx and

attenuation coefficient μ, and N be the number of photons leaving the medium from

the other side. In general, the transmittance N
N0

can be obtained by using Beer’s law
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[1]:

N

N0

= exp(−μΔx) (2.14)

In (2.14), we have considered a μ which is independent of position and also

suppressed the energy dependence μ(E) of μ. The linear attenuation coefficient μ is

the sum of attenuation coefficient for photoelectric absorption μpe and attenuation

coefficient for Compton scatter μc [48]. A more detailed description of the attenuation

coefficient is available in [6] where the attenuation coefficient is given by

μ = μpe + μC
en + μC

s (2.15)

μabsorption = μpe + μC
en (2.16)

The term μabsorption occurs because energy is transfered to the medium due to (1)

photoelectric effect and (2) a part of the energy of the scattered photon is transfered

to the recoil electron during Compton scatter; μpe is due to photoelectric effect; μC
en is

due to energy imparted as kinetic energy to the recoil electrons and μC
s is due to the

energy imparted to emerging scattered photon.

To account for attenuation of the photons emitted by a monoenergetic radionu-

clide in a non-homogeneous medium, we use the obvious generalization of Beer’s law:

N

N0

= exp(−
∫ d

0
μ(l)dl) (2.17)

where d is the distance inside the medium along the ray connecting the emitting

radionuclide and the detector bin. Here μ(l) is the variation of μ along the ray.

Equation (2.17) would be applicable where a photon might travel through different

tissues (lung, soft tissue, bone), each with different μ, before leaving the body and

getting detected. At 140Kev (99mTc) the attenuation coefficient of soft tissue (mostly

consisting of water) is 0.153cm−1, lung is 0.05 cm−1 and bone is 0.335 cm−1. Half

the incident photons are absorbed after passing through only 4.53 cm of water. This

means in a human body where the photons have to travel through water, bone and
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lung for a distance of several centimeters to tens of centimeters, the attenuation effects

will be fairly severe.

Scatter interactions cause a deflection of the radiation, which can cause a mis-

leading indication of each gamma ray’s initial propagation direction. Photons that

have been scattered before reaching the detector give misplaced information of the

point of origin. This causes an object dependent distortion [1] i.e. dependent on both

activity and attenuation blur in the sinogram . This results in poor contrast in the

reconstructed SPECT image.

For a detector with perfect energy discrimination, the scatter photons can be

totally rejected. For a perfect detector system, in the absence of Compton scattering

effects, photons from a mono-energetic source with a specific energy should be detected

with exactly one energy and the energy spectrum should appear as a delta function

centered at the specified energy. However this is not the case since the detection

system is not perfect as explained in Section 1.1.1, resulting in an approximate energy-

estimation procedure which is characterized by a finite energy resolution. Thus if we

shot a pencil beam of mono-energetic 140Kev gamma rays at a single bin and recorder

the estimated energies of only the primary photons, we would get the bell-shaped

energy histogram shown as the dotted line in Figure 2.3. If we also recorded the

energies of scattered photons, we would obtain the dong-tailed histogram shown by

the dashed-dotted line in Figure 2.3. Note that the histogram overlap. Therefore,

while some low energy scattered photons can be eliminated by energy thresholding,

other scattered photons have energies comparable to those in the “photopeak window”

(bell shaped curve) and are more difficult to reject. In Chapter 7, we discuss further

this scatter rejection problem. The width of this energy window is approximately equal

to the twice the energy resolution of the detector. The width of the energy resolution

of a NaI crystal detector for a 99mTc source is about 10% FWHM which scales with
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the width of photopeak window. For a typical study the scatter fraction, equal to the

ratio of scatter to primary photons in the photopeak window is around is 20%-40%

[49]. For multienergy radionuclides like Ga67 there is more than one line of energy

and thus more than one photopeak window. In such case a photon of higher energy

can get scattered and lose energy and so get detected in the lower energy photopeak

window. This scattered photon is rejected by the higher energy photopeak window but

gets detected as a primary photon of the lower energy. Thus phenomenon is known

as down-scatter. In this thesis we will not focus on downscatter.

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140 1600

Window

ENERGY (Kev)

R
el

at
iv

e 
N

um
be

r 
O

f 
C

ou
nt

s

Photopeak

Overall photon spectrum

Primary photon spectrum
Scatter photon spectrum

140+10%Kev-

Figure 2.3: Illustration of the energy spectrum of detected photons for 99mTc. The

dotted line shows the spectrum of primary photons which directly hit the detector

without being scattered. The finite width of the dotted curve is due to the limited

energy resolution of the detector. The dashed dotted line shows the spectrum of

scattered and then detected photons. The overall energy spectrum (sum of two curves)

is displayed as the solid line. Counts with energy outside the primary window are

rejected.
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From our earlier explanation we know that the photons detected in the photo-

peak window are contributions from both scatter photons and photons that are not

attenuated (primary photons). Thus the mean projection data Hf in the photopeak

window is a sum of a primary component HP f in the photopeak and a scatter com-

ponent HSf in the photopeak. Consequently, the system matrix H can be written as

the sum of these two matrices and hence H = HP + HS.

2.3.2 Geometric Response

The geometric response of the gamma camera is an important effect to to be

modeled in the system matrix. Here we give a qualitative account for geometrical

response and later give a mathematical account. In absence of an attenuating medium

a point source in a 3D imaging system will get imaged as a 2-D Gaussian blob [50]

rather than a sharp point. A complete specification of such 2-D blobs for various

positions of the point source gives us the geometrical response of the gamma camera.

The geometrical response includes collimator blur effects and intrinsic detector blur

effects.

From Section 1.1 we know that for a parallel-hole collimator, incident photons

are confined to directions approximately perpendicular to the collimator face. A given

bore (see Figure 1.2) will allow only those photons whose direction vectors lie in its

field of view, to hit the detector. As seen in Figure 1.2, the point source ‘a’ is close

to the collimator, the area of the detector it sees is small while the point source ‘b’ is

farther from the collimator so the area of the detector it sees is larger. The point spread

function (PSF) of point ‘a’ is seen in Figure 2.4(a) and the PSF of point ‘a’ is seen in

Figure 2.4(b). The counts under both the surfaces (2D curves) are the same, hence

for a point source with no attenuating medium the counts are preserved independent

of its distance from the collimator. The FWHM of the PSF’s for a point source at a

certain distance is a measure of collimator resolution at that distance. The collimator
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resolution decreases as the detector to source distance increases. The figure also gives

the various parameters of the collimator such as collimator length (lc), bore diameter

(dc), and septal thickness. The figure is not to scale. Typical values of collimator

parameters would be lc = 2.0cm, dc = 0.1cm and septal thickness of 0.01cm. These

parameters would result in a collimator resolution of 2cm at a distance of 30cm from

the collimator face. The acceptance angle a function of the bore diameter and bore

length is the parameter that describes the field of view subtended by the bore. The

mathematical models for 3D parallel-hole collimators were analyzed in [51, 52].

(a) (b)

Figure 2.4: (a) PSF’s of a point closer to the collimator, (b) PSF’s of point farther

away from the collimator. Note that the area under both the PSF’s is the same. Thus

mean number of counts are for either points are preserved in the absence of attenuation

and scatter.

The geometric response of a collimator is affected by both the collimator bore

diameter (dc) and the bore length (lc). The bore length (lc) depends on the collimator

material, the energy of the radiation and the typical source distances [8]. For a radioac-

tive source in a fixed distance from the detector, the smaller the collimator hole (small

dc), the smaller the acceptance angle, therefore, the smaller the collimator blur and the
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detector space resolution distance. On the other hand, the wider the collimator holes

(large dc), the the bigger the acceptance angle, subsequently, the worse the collimator

blur and the detector space resolution. A collimator with a bigger acceptance angle

(more blur) collects more counts hence reducing the noise and increasing sensitivity.

A collimator with a smaller acceptance angle (less blur) collects less counts hence in-

creasing the noise and reducing sensitivity. This leads to a resolution-noise trade-off.

The system resolution is greatly determined by the collimator blur. Reducing the

collimator blur means improving the system resolution.

Apart from the collimator blur there is a limitation to the resolution of the detec-

tor itself. This intrinsic spatial resolution is due to the uncertainty propagated through

the detector chain discussed earlier. The intrinsic resolution is due to a number of

factors (a) variations in depth of gamma photon-crystal interaction (b) variations in

surface optical properties of the crystal and (c) multiple scattering of some gamma

photons within the crystal result in the flash of visible light to be centered away from

the site of initial photon-crystal interaction. But, the primary degrading factor in the

detector resolution is the Poisson noise in the number of photons produced during the

photon-crystal scintillation event. The noise (due to noise in number of photoelectrons

and secondary electrons) in the outputs of the PMT’s which see the (noisy) scintil-

lation event leads to noise in the position estimate of the detected gamma-photon.

The error in this position estimation procedure manifests itself as intrinsic detector

blur. Usually the intrinsic detector blur is modeled as a depth independent Gaussian

function and is typically on the order of 3 to 4mm [47]. The intrinsic detector blur is

usually combined with collimator blur to obtain an overall model of geometrical blur.

The overall blur is a convolution of the collimator psf and the intrinsic camera psf.

So far, we have discussed attenuation, scatter and geometrical response (com-

prising intrinsic detector response and collimator response). We have discussed their
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physical bases, but have not discussed how to incorporate these linear effects in the

approximation H. Before we discuss H, we point that there are other physical effects

that we have not discussed. One is septal penetration, in which a gamma ray passes

through a septum and hits the detector . Septal penetration effects can be measured

and approximated as a component in the overall geometrical response. Another effect

is the generation of lead X-rays via the interaction of γ-rays with the lead present in

some collimator. This is a small effect and can ignore it. Another effect is detector

efficiency, discussed in Section 2.3.3.

There is no practical procedure to compute the exact system matrix H. Given

the attenuation map and the geometrical response parameters, Monte Carlo (MC)

simulators such as SIMSET, SIMIND or GEANT [46, 8] may be used to compute a

good approximation to the system matrix H. The MC simulator is a program which

models the transport of photons within an object by randomly sampling from certain

probability density functions. These pdfs model the physical processes involved in

photon interaction with matter. By performing a simulation ( starting with a large

number of source events) with a point source at the nth pixel within the object to get

the projection of in the photopeak window, one can calculate the columns of H which

models all attenuation, scatter and geometrical response. The accuracy is dependent

on the number of photons (source events) transported through the object. A larger

number of source events improves the accuracy but entails larger computation times.

This approach would require large data storage capacity and long computation time.

Instead of an MC simulation we can perform a data acquisition on real scanner with

a point source at every point in a phantom to measure the matrix H.

2.3.3 Approximations to the System Matrix in the Absence of Scatter

We obtain successively more accurate analytical approximations to the true sys-

tem matrix HP by incorporating one physical effect at a time. We shall denote the
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approximate system matrix as H. The matrix H will not account for scatter in the

photopeak window.

Basic Line Integral

A simplified version of H is represented by Y which gives the system matrix

without the effects of photon interactions within the body and with the detector. The

element of system matrix Ymn is the projection of the nth voxel on the mth bin. In

other words it is the volume of overlap of a strip emanating out of bin m and the

voxel n. We approximate this by the intersecting length lmn at the intersection of the

projection ray from the center of bin m and the voxel n (see Figure 2.5). Thus, for a

particular central projection ray of bin m, (where ray m is associated with detector

bin m), it intersects several of the pixels.

The dark line in Figure 2.5 passes through pixels associated with ray m. As

illustrated in Figure 2.5, among those pixels intersecting this central ray, the length

of the intersecting chord of a pixel n with central ray of bin m is denoted as Ymn. For

those pixels n′ which do not intersect with this ray, the corresponding Ymn′ equals to

zero. Hence, we may write :

ḡm =
N−1∑
n=0

[Y ]mnfn (2.18)

In matrix form,

ḡ = Yf (2.19)

Equation (2.19) thus summarizes our model of idealized projection into a linear

algebraic form. Obviously, if the intersecting chord is long, such as the first or last

pixel along ray m in Figure 2.5, it means that big portion of this pixel can be “viewed”

by detector bin m, i.e., the photon emitted from this pixel is more probably detected

by bin m. If the intersecting line is short, such as [Y ]mn2 in Figure 2.5, it means that

only small portion of this pixel can be “viewed” by detector bin m, i.e., the photon
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Figure 2.5: Line integral approximation for discretized 2D projection: An object is

discretized to N pixels (dotted lines). A line integral is used to model the idealized

geometry of a SPECT system. The dark line is a central ray, indexed by m, that

is perpendicular to the detector array and intersects it at ιm, the center of bin m.

Without considering degradation factors, each element of the system matrix [H]mn is

approximated by the intersection length [Y ]mn of the central ray m with pixel n. The

dashed line shows the projection profile at this angle.

39



emitted from this pixel is less probably detected by bin m. Therefore, the intersecting

chord length [Y ]mn is a reasonable choice to crudely approximate the corresponding

system matrix element [H]mn, i.e.

H ≈ Y (2.20)

for a system without any other degradation factors. As we see in Figure 2.5, each ray

only intersects with limited number of pixels. Also photons emitted from each pixel

are only possibly detected by limited number of detector bins (in the order of the

number of angles K). Thus, the Y matrix is a very sparse matrix for this idealized

model. From now on, we will use Y to delineate the system matrix with these idealized

geometrical effects only.

Modelling Attenuation in H

To model attenuation in a system matrix, we consider the path (including the

attenuation coefficient along the path) that photons pass through. It starts from the

pixel from which the photon is emitted and ends at the bin where it is detected, thus

attenuation factors depend on both pixel position and bin position. We use the M×N

matrix A to cover all possible pixel-bin pairs of attenuation factors. The element Amn

is the value the attenuation factor connecting pixel n and detector bin m. That means,

with the attenuation effect, the original detection probability of photons from pixel n

to bin m is reduced by Amn. Assuming that the attenuation map with attenuation

coefficients μn of the object is from a transmission scan, the value of Amn is given by :

Amn = exp

⎛
⎝− ∑

n′∈path(m,n)

μn′Ymn′

⎞
⎠ (2.21)

where, path(m,n) is the set of pixels that intersect with the ray starting from pixel

n and ending at bin m, and Ymn′ is, as we defined before, the chord length of the

intersection between this ray and pixel n′.
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Thus, the system matrix with only an attenuation model added to the basic line

integration approximation is given by

H(a) = Y �A (2.22)

Modelling Geometric Response

For modelling geometric response we need to consider both the collimator blur

and the intrinsic spatial resolution of the detector. We can approximate the average

collimator response by a depth-dependent Gaussian kernel [50]. We know that the

intrinsic resolution of a detector is independent of the collimator blur and system

resolution cannot get any better than the intrinsic resolution. Usually the intrinsic

detector blur is modeled as a depth independent Gaussian function (with standard

deviation σ0) and is typically on the order of 3 to 4mm [47]. The collimator response

is depth-dependent and is well modelled by a Gaussian whose standard deviation grows

linearly with depth. The standard deviation of the geometric response blur can thus

be modelled by a σ(d) = αd + σ0, a curve which is a linear function of the depth d.

For 2D SPECT a depth-dependent blur kernel given by vector b with parameters

σ(d) and σ0 specifying the amount of Gaussian blurring is given by

[b(d)]m =
1√

2π(σ(d)2 + σ2
0)

exp

(
− ι2m

2(σ(d)2 + σ2
0)

)
(2.23)

Here ιm is the center of bin m as given in the caption of Figure 2.5. For implementing

this depth-dependent blur kernel, the entire object is be divided into L zones parallel

to the camera face at the kth angle with incrementally increasing distance from the

camera face. The projection of all the voxels in the lth zone are convolved with the

corresponding depth-dependent blur kernel b(d(l)) . Each of these projection are then

added to get the projection of the entire object on the camera face at the kth angle.

The entire details of implementing the system matrix with only the geometrical effect,

called H(dd), is given in [9].
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When attenuation is considered each element of H(dd), [H(dd)]mn, is attenuated by

the corresponding attenuation factor [A]mn, resulting in a new system matrix which

we denote by H(dd,a) :

H(dd,a) = H(dd) �A (2.24)

Here, we use the superscript (dd,a) denotes that both attenuation and depth-dependent

blur are modeled. The validity of (2.24) is based on the central ray approximation [9].

For 3D SPECT, the scheme is similar, but (2.23) becomes a radially symmetric 2D

Gaussian. Details are given in [50].

In (2.24) we haven’t modelled detector efficiency. Detector efficiency is the prob-

ability that the photon gets recorded when entering the crystal, and it depends on

the density and thickness of the scintillation crystal [3]. This it is a pure detector

effect. The detector efficiency is measured through system calibration using a flood

image (homogeneous photon fluence density over the field of view). It can be modelled

by the diagonal matrix diag(c) where M -dim vector c accounts for flood correction

applied to the sinogram. The approximate system matrix H is then given by:

H(dd,a) = diag(c)(H(dd) �A) (2.25)

We have discussed how to model the effects of attenuation, geometric response

and detector efficiency and how to approximately capture them in our system matrix

H. Our approximate system matrix H does not model the effect of scatter in the

photopeak window. We will discuss of modelling effects of scatter in Chapter 7 but

below we give an overview of the modelling approach.

2.3.4 Modelling scatter

As mentioned earlier, it is not possible to obtain computationally efficient an-

alytic approximation to the system matrix that accounts for scatter. Some groups

have derived efficient Monte Carlo methods to approximate SPECT projections (i.e.,
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computations of the form Hf for any object f) and used them in iterative statistical

reconstruction techniques [53, 54, 55], but these methods still tend to be computation-

ally very expensive. MC or physical calculation of H are useful, but these methods

are far too cumbersome to use for reconstruction. Reconstruction involves repeated

multiplications of Hf̂k, where f̂k is an object estimate at the iteration k. Since H is

too large to store, it is common to replace this product Hf̂k with Hf̂k where H is an

approximation to H. Though H is a matrix, we typically do not store it, but instead

compute it on the fly repeatedly as needed.

In Chapter 7, we will model scatter as an affine term that is independent of the

object f . Let s = HSf denote the true scatter that would be observed in the noise-free

data. Therefore, ḡ = HP f + s. We shall obtain an estimate ŝ of the affine true scatter

term s using various energy-window techniques as discussed in Chapter 7 and use it

in the approximate affine imaging model given below:

g ∼ Poisson(Hf + ŝ) (2.26)

This affine imaging model and the degrading effects of using such an approximate

imaging model in the reconstruction are discussed in greater detail in Chapter 7. As

a digression, we note that affine likelihood models similar to (2.26) have also found

applicability in PET [56]. Often, we will use a simplified imaging model that totally

ignores the effects due to scatter:

g ∼ Poisson(Hf) (2.27)

In Chapters 6 and 5, we shall use this simplified imaging model.
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Chapter 3

Image Reconstruction

Given the projection data g, and given a system matrix H which approximates

H, the reconstruction problem is to estimate the emission density f (the mean of

the Poisson emission rates at each pixel) of the source object via a reconstruction

algorithm. We model this estimation process in general with a reconstruction operator

O as:

f̂ = O{g} (3.1)

where f̂ is the estimate of f .

Emission tomography is a count starved modality due to attenuation, detector

efficiency and short observation times which leads to high statistical noise in the data.

A method for image reconstruction which models the statistical nature of the noisy

data is expected to produce “better” images than deterministic methods. Effects like

attenuation, detector blur and scatter can be modeled in the system matrix which

is another reason to adopt statistical methods. Modelling these effects becomes a

serious issue in SPECT where attenuation, for example can cause severe artifacts

if it is not suitably accounted for. In addition to accounting for the noise in the

data, statistical reconstruction techniques can be used to incorporate the probabilistic

models of the image itself by using Bayesian methods. In later chapters, we will

discuss what we mean by “better”. In this chapter we discuss MAP (maximum a
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posteriori) and ML maximum likelihood estimates for reconstruction. Our focus will

be statistical methods, but we also discuss very briefly deterministic methods for the

inverse problem of reconstruction in Section 3.2.

3.1 Statistical Methods for Reconstruction

3.1.1 Likelihood

A likelihood p(b|a) is a measurement of the likelihood that the presence of a causes

b to occur. In this case, (2.10) is a likelihood with b presumed known and a unknown.

The logarithm of the likelihood is known as log likelihood. The maximum likelihood

(ML) estimate f̂ is the value of f that most likely causes the acquired projection data

g, i.e.

f̂ = arg max
f≥0

Pr(g|f) (3.2)

= arg max
f≥0

log Pr(g|f)

Note that the estimate is subject to a positivity constraint f ≥ 0 consistent with the

physical nature of f . Since the logarithm is monotonic the second equality is true. We

define ΦL(f ;g) ≡ log ( Pr(g|f)) as the log-likelihood. Substituting (2.10) and omitting

the terms independent of g we get

f̂ = arg max
f≥0

ΦL(f ;g) (3.3)

= arg max
f≥0

M−1∑
m=0

[gm log ḡm − ḡm]

= arg max
f≥0

M−1∑
m=0

[
gm log (

N−1∑
n=0

[H]mnfn) − (
N−1∑
n=0

[H]mnfn)

]
(3.4)

In (3.4), we use H, the approximation to H, since the arg max operation will be

iterative and involve many vector products of the form HTg and Hf . Using H in these

products would be computationally infeasible.
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Iterative optimization is needed since a closed form solution is not available. It is

found that the ML estimation problem is ill-posed and hence the estimates at higher

iterations tend to be noisy. One solution to this problem is to stop the iterative process

at an earlier stage when the estimates appear to be most stable according to some

criterion [57]. Post-smoothing [58, 59] of the ML estimate is also a way to tackle the

problem. Another solution to the instability is the use of Bayesian methods [60] to

get a maximum a posteriori (MAP) estimate. The MAP estimate is equivalent to a

penalized ML reconstruction.

The MAP estimate f̂ for the data g is given by

f̂ = arg max
f≥0

p(f |g) = arg max
f≥0

log p(f |g) = arg max
f≥0

log (Pr(g|f)p(f)) (3.5)

where p(f) is the prior probability of the object f . The MAP objective is

Φ(f ;g) = (log Pr(g|f) + log p(f)) (3.6)

≡ (ΦL(f ;g) + βΦP (f))

where ΦP is the regularizer or prior, ΦL is the likelihood and β > 0 is the scalar

regularizing factor that controls the relative influence of the prior.

3.1.2 Regularizer

Many priors have been proposed [61, 62, 63, 64, 65]. The Gibbs distribution

has been adopted as a suitable prior in an attempt to capture the locally structured

properties of object [66]. The generalized form of the Gibbs distribution [67]:

P (f) =
1

Z
exp(−βU(f)) (3.7)

where β > 0 is a weight to adjust the influence of the prior. The choice of β plays an

important role in MAP regularized with this Gibbs prior. The term Z is a normal-

ization factor (partition function) that plays no role in the MAP reconstruction. The
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non-negative function U(f) is the Gibbs energy function or “potential” of the prior, is

a sum of potentials, each of which is a function of a subset of cliques. The cliques for

a particular neighborhood system must satisfy the condition that each pair of sites in

each clique are mutual neighbors. When image f meets the prior assumptions, U(f)

reaches its minimum and the prior function is maximized. The energy function can

be rewritten as

U(f) =
∑
n

∑
j∈N (n)

φnj(f). (3.8)

In (3.8), N (n) defines a neighborhood system of pixel j while φnj(f) is the potential

function which is dependent on N (n). The potential functions φnj(f) attempt to

reflect the local smoothness among neighboring pixels. For a 2-D object, a four-pixel

nearest neighborhood system (4NN) is shown in Figure 3.1 where the set of pixels

that pixel fn is related with, N (n), includes fj1 , fj2 , fj3 and fj4 . Another is an eight-

nearest-pixel neighborhood system (8NN) with the corresponding N (n) including fj1 ,

fj2 , · · ·, fj8 . These apply to 2D objects, and equivalent neighborhoods are used for 3D

systems. For example, in 3D there are 26NN (including diagonal neighbors).

n nj

j

j

j

j j j

j

jjj

j

3 3 7

4

2

8 4

5

1 2 1

6

Figure 3.1: Illustration of neighborhood systems

The energy function for a quadratic smoothing membrane (MM) prior [68, 40]

defined as the weighted summation of the quadratic function of the difference between
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neighboring pixels is equal to the negative of the prior:

ΦP (f) = −U(f) = −
N−1∑
n=0

∑
j∈N (n)

1

2
ωnj(fn − fj)

2 (3.9)

where N (n) is the neighborhood of pixel n and ωnj > 0 is the weight related to each

pair of neighboring pixels. Usually ωnj is chosen to be proportional to the inverse of

the distance between pixel n and j, reflecting the fact that nearby pixels are more

important. Note that ωnj = ωjn. The regularizer ΦP (f) incorporates the quadratic

membrane energy function.

The quadratic prior ΦP (f) can be expressed in a quadratic [69] form −1
2
fTRf ,

where a N ×N matrix R is the Hessian of ΦP (f). The elements of R for prior in (3.9)

are given by

[R]nj =
∂2

∂fn∂fj

⎡
⎣N−1∑

n=0

∑
j∈N (n)

1

2
ωnj(fn − fj)

2

⎤
⎦ (3.10)

Thus,

[R]nj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j′∈N (n) 2ωnj′ j = n

−2ωnj j ∈ N (n)

0 j 
∈ N (n) and j 
= n

(3.11)

Note that for such quadratic priors, R is independent of the object. This quadratic

form will later serve as a mathematical convenience.

The Gibbs distribution with quadratic membrane prior is

p(f) =
1

Z
exp(−β

N−1∑
n=0

∑
j∈N (n)

ωnj(fn − fj)
2) (3.12)

Taking the logarithm of p(f) and then dropping the terms log 1
Z

and β in (3.9), the

overall MAP objective becomes

Φ(f ,g) =
M−1∑
m=0

[
gm log (

N−1∑
n=0

[H]mnfn) − (
N−1∑
n=0

[H]mnfn)

]
− β

N−1∑
n=0

∑
j∈N (n)

1

2
ωnj(fn − fj)

2

(3.13)

and the MAP estimate becomes

f̂ = arg max
f≥0

Φ(f ,g) (3.14)

48



3.1.3 Optimization Techniques to Maximize the Objective Function

The maximizations in (3.3) and (3.14) are constrained optimizations. In princi-

ple, any standard optimization algorithm can be applied to get the estimates. However,

it is difficult to simply apply a textbook algorithm to this problem. For MAP the re-

construction f̂ is termed the “fixed point” of the objective and will be unique and

independent of initial condition for the convex prior in (3.9). For ML reconstructions

that are terminated early to control noise, the result does depend on the algorithm and

the final estimate is not technically and ML estimate. We will give a brief discussion

of a few optimization algorithms that have been applied in statistical reconstruction

for emission tomography. The description of the algorithms is cursory since it is not

a focus of the thesis. The reader is referred to the references for more detail.

3.1.4 Preconditioned Conjugate Gradient Algorithm

The PCG algorithm belongs to a class of optimization methods known as gradient

methods. At each iteration the objective function is optimized along a search direction.

For k = 0, 1, 2, · · ·

• Compute gradient ∇Φ(fk), where ∇Φ(fk) = HT
(

g
Hf (k) − 1

)
− βRf (k)

• Compute pk = Mk∇Φ(fk)

• Compute direction vector dk:

If k = 0, d0 = p0

else

– Compute λk =
(∇Φ(fk)−∇Φ(fk−1))

T
pk

(∇Φ(fk−1))
T
pk−1

(from Polak-Ribiere form)

– dk =
(
pk
)T

+ λkdk−1

• Line search xk = arg maxα Φ(fk + αdk)
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• Update f̂k+1 = f̂k + xkdk

Note that projection and backprojection operations are involved in PCG. These must

be implemented by custom software. The direction vectors are Q-orthogonal i.e.

dkQdk=0. The matrix Mk is called the preconditioner and can be used to reduce the

number of iterations. Considerable effort has been devoted to the design of precondi-

tioners [70, 71, 72, 73]. PCG in itself does not preserve positivity.

3.1.5 Expectation Maximization Algorithm

The expectation maximization (EM) algorithm is another iterative technique

that has been applied to the maximum-likelihood estimate. The ML-EM technique

was first presented by Dempster et al. [74] in its full generality. Later, its application

in emission tomography was proposed independently by Shepp and Vardi [75] and

Lange and Carson [76]. The ML-EM update for the (k + 1)th iteration f̂k+1 is given

by:

f̂k+1
n =

f̂k
n∑

m Hmn

∑
m

Hmn
gm

[Hf̂k]m
(3.15)

The ML-EM algorithm is preserves positivity and is easy to implement. One drawback

is its slow convergence. As in other iterative ML techniques the noise increases as the

number of iterations increase. MAP can solve this latter problem.

The prior in MAP causes coupling between different voxels. The EM-type up-

dates are no longer separable, but a surrogate method introduced in [77, 78] solves

this problem. The MAP update for (3.14) becomes

f̂k+1
n =

−B +
√

B2 − 4AC

2A
(3.16)

where A = 4β
∑

n′∈N (n) ωnn′ ,B = −∑
n′∈N (n) 2βωnn′(f̂k

n − f̂k
n′) +

∑
m Hmn and C =

−f̂k
n

∑
m Hmn

gm

[Hf̂k]m

One problem with the EM-ML and EM-MAP algorithms described above is that

they are slow to converge. It has been found that the convergence speed of the EM
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algorithm can be considerably improved using the “ordered-subsets” (OS) technique

[79]. In the ordered-subsets technique, the projection data g is divided into subsets

Sl, l = 1, · · · , L and a sub-iteration loop indexed by l is added inside the main itera-

tion. The typical method of selecting the subsets is as follows : Suppose the projection

data were collected over 64 angles, and we decide to use 16 subsets. Then the first

subset will corresponds to the projection data over the angles θ1, θ17, θ33, θ49, the sec-

ond subset corresponds to the projection data of the angles θ2, θ18, θ34, θ50 and the lth

subset Sl corresponds to θl, θ16+l, θ2(16)+l, θ3(16)+l and so on. The subsets are chosen so

that the projection data in each subset could have been obtained from a tomographic

scan at a coarser angular spacing. Each inner iteration corresponds to a subset and all

projections and backprojections required by the iterative update are performed only

over that subset. The object estimate is updated during each inner iteration or subit-

eration. A version of the EM algorithm using OS is the popular OSEM algorithm [79].

Its update is similar to (3.15) and is given by

f̂ (k,l)
n =

f̂ (k,l−1)
n∑

m∈Sl
Hmn

∑
m∈Sl

Hmn
gm

[Hf̂ (k,l−1)]m
(3.17)

where f̂ (k,l−1)
n is the estimate from the kth iteration and (l − 1)th subiteration, used

to get the update for the kth iteration and lth subiteration. One full iteration, indeed

by k, comprises one pass through all the subsets i.e. all the L subiterations. The

OSEM algorithm is fast but does not technically converge to the ML estimate. In

a later development, a row-action maximum likelihood algorithm (RAMLA) [80] was

proposed by including strong under relaxation in a modified version of OSEM that

converges to the ML estimate. For the MAP case (Block Sequentially regularized EM)

BSREM [81] and modified BSREM [82] were proposed which also require setting a

relaxation schedule to achieve convergence.

Other algorithms, the Complete Data Ordered Subset Expectation Maximization

(COSEM) for ML [83] and MAP [84] have been developed in our group. We use this
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algorithm for Chapter 6. Although it is slightly slower than the BSREM algorithm, it

does not require a relaxation schedule to ensure convergence and hence has fewer free

parameters and is easy to use. The derivation, convergence proof and implementation

of the are found in [85].

Though the algorithm is complex, we list the MAP version in detail there since

we will use it extensively for many of the MAP reconstructions of the ensuing chapters.

For simplicity, we drop the carat over f in object estimates so that fk,l
n is understood

to be the estimate of fn at iteration k and the subiteration l. Below is the pseudocode

for COSEM-MAP.

• The COSEM-MAP Algorithm

• Initialize {f (0,0)
n = f init

n , ∀n ∈ {1, . . . , N}}

• Initialize {c(0,0)
mn , ∀m ∈ Sl, ∀l ∈ {1, . . . , L} and ∀n ∈ {1, . . . , N}} by

c
(0,0)
mn = gm

Hmnf
(0,0)
n∑

n
Hmnf

(0,0)
n

• B
(0,0)
n =

∑L
l′=1

∑
m∈Sl′ c

(0,0)
mn , ∀n

• Begin k-loop [k ∈ {0, 1, . . .}]

– c
(k,0)
mn = c

(k−1,L)
mn ,∀m, n and k > 0.

– B
(k,0)
n = B

(k−1,L)
n ,∀n and k > 0.

– f
(k,0)
n = f

(k−1,L)
n ,∀n and k > 0.

– Begin l-loop [l ∈ {1, . . . , L}]

∗ c
(k,l)
mn = gm

Hmnf
(k,l−1)
n∑

n′ Hmn′f (k,l−1)

n′
, ∀m ∈ Sl, ∀n .

∗ c
(k,l)
mn = c

(k,l−1)
mn , ∀m /∈ Sl, ∀n

∗ B
(k,l)
n =

∑
m∈Sl

(c(k,l)
mn − c

(k,l−1)
mn ) + B

(k,l−1)
n , ∀n

∗ f
(k,l)
n = −B+

√
B2−4AC
2A , ∀n ∈ {1, . . . , N}

where

· A = 8λ
∑

n′∈N (n) wnn′ ,
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· B =
∑

m Hmn − 4λ
∑

n′∈N (n) wnn′(f (k,l−1)
n + f

(k,l−1)
n′ ) and

· C = −B
(k,l)
n .

– End l-loop

• End k-loop

3.2 Deterministic methods

Deterministic methods search for a solution f̂ directly from the deterministic

model of projection g = Hf . This deterministic model is obtained simply by removing

the noise in (2.13). Thus g becomes deterministic (although it is actually a single noise

realization). Thus deterministic methods for SPECT attempt to invert an inconsistent

system of linear equations. As opposed to statistical methods, they do not model the

noise in projection data, but they can easily incorporate a system matrix H.

3.2.1 Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) is a method which can be applied

to any system of linear equations. In particular, it can be applied to the system

g = Hf . In 1970, it was applied by Gordon et.al [86] as a tomographic reconstruc-

tion method. ART is an iterative method which includes a forward projection and

correction back projection in the kth iteration [87]:

fk+1
n = fk

n +
[H]mn(gm − [Hfk]m)∑

n[H]2mn

m = k(modM) (3.18)

SART, a simultaneous version of ART [86, 87] was developed:

fk+1
n = fk

n + t
∑
m

[H]mn(gm − [Hfk]m)∑
n[H]2mn

(3.19)

where t > 0 is chosen to ensure I− tHTH is positive definite. ART is slow to converge

which prevents its wide use in clinical applications. Linear algebraic methods such
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as ART and SART [2] are advantageous in that they can incorporate sophisticated

imaging models via the H matrix, but their deterministic model is equivalent to an

(incorrect) assumption of uniform Gaussian noise as the noise model. This implicit

noise model is inaccurate for photon-limited imaging systems (such as SPECT) and

hence statistical methods are more useful [2]

3.2.2 Filtered Back Projection

The most famous and popular reconstruction method is filtered backprojection

(FBP). It is naturally derived in continuous space and so is a method for obtaining

(for a 2-D case) f(x, y) from an analytic version of the sinogram. Many versions of

FBP exist for different acquisition geometries, but here we summarize the well-known

case for a 2D parallel ray projections [10, 88]. It assumes that the observed sinogram

is a continuous 2-D function and that is a Radon transform of the underlying object,

i.e.,

g(t, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(xcosθ + ysinθ − t)dxdy (3.20)

where θ is the projection angle and t is the projection bin. It can be shown that the

Radon transform can be inverted with the following operations:

1. Ramp Filtering

Fourier Transform of Data: G(ρ, θ) =
∫ ∞

−∞
g(t, θ) exp(−j2πtρ)dt (3.21)

Apply Ramp Filter: Q(ρ, θ) = |ρ|G(ρ, θ) (3.22)

Inverse Fourier Transform: q(t, θ) =
∫ ∞

−∞
Q(ρ, θ) exp(−j2πtρ)dρ(3.23)

2. Backprojection

f̂(x, y) =
∫ π

0
q(t, θ)|t=xcosθ+ysinθdθ (3.24)
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Discretization of the above inversion formulae gives us the filtered backprojection

(FBP) algorithm used often in the clinic. The ramp filtering operation can be per-

formed in the frequency domain with a Fast Fourier Transform (FFT). To mitigate

the effects of noise, an apodizing filter is often used in addition to the ramp filter in

the above equations.

FBP is popular due to its speed, but it models only parallel ray projection (es-

sentially our Y matrix) and not any other physical effects in H. It can be modified,

however, to approximately account for some of these physical effects. To compensate

for depth-dependent collimator blur, we may apply to the observed data an inverse fil-

ter based on the approximate frequency-distance relation [89, 9] between the observed

data and its Radon counterpart. The form of the frequency-distance relation is highly

dependent on the geometry of the collimator and the orbit of rotation of the camera.

To compensate for non-uniform attenuation, an empirical data-correction technique

such as the Chang method [90, 9] is often used. The accuracy of these methods is

highly-dependent on the geometry of the collimator and the camera orbit.

By contrast, all geometrical and physical effects including non-circular orbits can

be simply included in the H matrix in statistical and linear algebraic reconstructions.

The price one pays for this is speed - FBP is less than one iteration, while MAP, ART

and other algorithms can take 10’s of iterations. For SPECT, the data sets are not

that large and reconstruction speed is not a problem if a modern high-speed cluster is

used.
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Chapter 4

Model Observers for the Detection Task

One of the most important criteria in assessing the quality of a medical image is

how well does the image allow a human observer to perform a certain task. Often the

task is a detection task in which the observer has to detect the presence or absence of

signal (lesion) in the background (underlying object). An image obtained is “better”

than another if the probability of correctly detecting or rejecting the presence of the

signal using this image is greater than that using an image from a different imaging

system or reconstruction algorithm.

In this chapter we will be giving a basic background on detection theory and dis-

cussing some common figures of merit as a measure of the detection task performance.

In our discussion we assume the signal to be deterministic, i.e. its size, contrast and

location are known. With the signal fixed we discuss two types of tasks. In the first,

we assume that the background to be known and fixed. The only type of noise in

the reconstructed images is that propagated via the reconstruction from the photon

noise in the projection data. Such a simplified detection task is known as a signal-

known-exactly/background-known-exactly (SKE/BKE) detection task and allows for

analytical computation of figures of merit. In the second, slightly more realistic task

known as the signal-known-exactly/background-known-statistically (SKE/BKS) de-

tection task, we assume the signal to known and fixed and the background to be

random but known statistically.
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Assessment of task performance involves an observer. It could be a human, or

a mathematical observer that emulates human performance or an ideal mathematical

observer whose verdict is based on an optimal decision criteria. As mentioned earlier

in Section 1.4 we are concerned with the detection performance of human observers.

Since detection studies using human observers are laborious, there has been an ex-

tensive effort [27] to substitute mathematical “model” observers, derived from signal

processing theory and psychophysics, to emulate human observers. A scalar figure of

merit (FOM) has to be determined as a measure of performance of the observer in

the detection task. It may be used to quantitatively compare or optimize different

imaging system parameters or different reconstruction algorithms in the context of

the detection task.

In the SKE/BKE task the only source of noise corrupting the reconstructed im-

ages is the Poisson noise in the raw projection data. In the SKE/BKS task the projec-

tion data has two components of noise (1) due background variability in the underlying

object and (2) the Poisson noise in the image formation process. Background vari-

ability is the statistical variability in the uptake f , now considered random. It occurs

on different spatial scales. Background variability found in real human patient distri-

bution includes anatomical variability [91], organ uptake variability and small scale

local fluctuations [92] which can be referred as “texture”. Since radionuclide tends to

localize roughly uniformly in different anatomical organs, the shape/size variability

of organs in a patient population is a source of so-called anatomical variability. In

addition, the average uptake level per organ can vary amongst populations, so that

uptake variability is another source of object uncertainty. Perhaps most important

are small scale “textural variations” due to small scale anatomical uptake variations

in the object. This texture noise can easily mask detection of a lesion that would oth-

erwise be easily seen against a uniform background. In the radar and remote-sensing
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literature this form of background variability is known as “clutter”. Because small

scale textural variability is such an important effect we shall henceforth imply this

kind of variability when speaking of object variability. Random backgrounds that use

variability due to anatomical structures are generally too complex to be dealt with

analytically, though sample based methods can be used in this case.

A number of works have used models for texture variability based on random

processes from which the first and second moments can be derived analytically. One

example of such analytic models is the “Lumpy” backgrounds [93, 94, 29] derived by

convolving a two-dimensional Poisson spatial point process with a “lump” profile. In

another example [95], we modeled textural background variability as additive zero

mean multivariate Gaussian noise. It was obtained by blurring iid Gaussian noise with

a Gaussian kernel. In [33, 30] variability was simulated using a stationary Gaussian

process with a noise power spectrum which follows an inverse-power law over a range

of spatial frequencies.

In Chapter 5 we will be considering the task of detecting a signal in a statistically

known background. In our group we have also done original work on signal-known-

statistically/background-known-statistically (SKS/BKS) [28, 96, 97] but we do not

discuss it here. In the following sections, we first describe the FOM in general. Then,

the commonly used model observers, the Hotelling and the Channelized Hotelling

observers that are developed in Section 4.2. The model observers described in this

Chapter and used in this thesis need only the first and second order statistics of the

reconstructed images for both the SKE/BKE and SKE/BKS cases. For this we address

the topic of noise propagation through the reconstruction in Section 4.3.
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4.1 Figures of merit

One of the simplest detection problems is the binary hypothesis testing problem

of detecting a signal in noise [98]. The first hypothesis, denoted by H0 and called the

null hypothesis, corresponds to the absence of signal. The second hypothesis, denoted

by H1 and called the alternate hypothesis corresponds to the signal-present case.

For each image, the observer (receiver or detector) calculates a scalar test statistic λ

known as the observer response which represents the degree of agreement with H1.

The observer then compares this quantity to some threshold γ and decides in favour of

hypothesis H1 if λ ≥ γ and hypothesis H0 if λ < γ. The probability density function

of the observer response conditioned on the underlying hypotheses H0 and H1 are

denoted by p(λ|H0) and p(λ|H1), respectively. Such conditional pdf’s are shown in

Figure 4.1.

In general the observer will classify some of the images correctly and some of

then incorrectly. For a particular decision threshold γ the classification performance

can be summarized as follows

TPF = Pr(λ ≥ γ|H1) (4.1)

FPF = Pr(λ ≥ γ|H0)

TNF = 1 − FPF

FNF = 1 − TPF

The TPF, or “true positive fraction”, is the probability of guessing that the signal

is present when it is indeed present. The FPF, or “false positive fraction”, is the

probability of guessing that the signal is present when it is in fact absent. The TNF,

or “true negative fraction”, is the probability of guessing that the signal is absent

when it is indeed absent. The FNF, or “false negative fraction”, is the probability of

guessing that the signal is absent when it is in fact present. Obviously TPF+FNF=1
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Figure 4.1: The decision making diagram. As indicated in the legend, the shaded areas

under the curves represent the false positive and true positive decision probabilities

for the threshold shown. The areas of the shaded regions form one point on the ROC

curve. As γ is swept, the ROC curve is generated.

and TNF+FPF=1, so only two of the 4 quantities are independent. TPF and TNF

are also known as sensitivity and specificity, respectively. A plot of all possible pairs

of TPF and FPF obtained as the threshold γ is varied is called the receiver operating

characteristic (ROC) curve [98, 99]. The ROC curve can be generated by sweeping

the threshold γ as shown in Figure 4.1 and measuring the areas below the p(λ|H0)

and p(λ|H1) to the right of the threshold. The area under this ROC curve (AUC)

is commonly used [29] as a figure of merit (FOM) to assess observer performance.

Figure 4.2 shows several ROC curves. The best possible ROC curve (solid line), shown

in Figure 4.2, has an AUC=1, and more realistic ROC curves (dot-dashed and long

dashed), shown in Figure 4.2, have 0.5 < AUC ≤ 1. The small dashed (diagonal line)

curve is the worst possible ROC curve. Its area, 0.5, is tantamount to two observer
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response curves that overlap with no separation.

Another FOM for signal detection is the detectability dA [29, 33]. This FOM is

defined as a nonlinear transformation of the AUC. The relation is given by

dA = 2erf−1(2AUC − 1) (4.2)

where erf−1(·) denotes the inverse error function.

T
PF

FPF
0 1

1

0

Figure 4.2: Plots of TPF vs FPF showing a few ROC curves. The solid curve has a

AUC=1, and is the best possible curve. The linear diagonal curve has an AUC=0.5

and is the worst. More realistic ROC curves are displayed as the dash-dot and dashed

curves.

Another available FOM for detection tasks, found to have a monotonic relation-

ship to AUC under certain conditions, is the observer signal-to-noise ratio (SNR)

SNR2 =
(〈λ|H1〉 − 〈λ|H0〉)2

1
2

(
var(λ|H1) + var(λ|H0)

) (4.3)

where 〈λ|H1〉 and 〈λ|H0〉 are means of λ under hypotheses H1 and H0, var(λ|H1) and

var(λ|H0) are the variances of λ under hypotheses H1 and H0. The SNR is a way to
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measure the separability of the two lumps of the probability density functions. The

bigger the difference between their means and the smaller their variance is, the more

separable they are. If they are highly separable, then the probability of a correct

decision is increased. Notice that SNR only requires the information of the first and

second moments of p(λ|H0) and p(λ|H1), thus is less representative but easier to be

quantified than AUC. If the observer response has a Gaussian distribution under each

hypothesis then the SNR is related to AUC by [100]

SNR = 2erf−1(2AUC − 1) = dA (4.4)

We do not need equal variances for 4.4 to hold.

4.2 Model Observers

To evaluate the performance for a detection task one would have to perform

a human observer study using well-established ROC testing methodologies [101, 102]

and then assess performance using the AUC. ROC testing is labor intensive, and if one

is to optimize a reconstruction algorithm over many parameters or a wide range of one

parameter, the amount of labor required becomes formidable. Model (computational)

observers [27] that emulate human performance have been proposed, and the hope

is that these may be used to lower this burden. While not meant to replace human

observers, model observers might be used, in principle, to rapidly cull the parameter

search space down to a few select candidates that can be addressed by ROC testing.

That is, if one seeks to optimize some parameter(s) by ROC testing, one might well

use model observers to cull the parameter space to a size manageable by human ROC

testing. Our focus will be on such mathematical model observers wherein the test

statistic can be derived from an explicit formula.

For both the SKE/BKE and SKE/BKS tasks we express the two hypothesis as

H1 : f = b + s (4.5)
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H0 : f = b

where b is the (possibly random) background and s deterministic signal. The hypoth-

esis H0 is the signal-absent hypothesis and hypothesis H1 is the signal-present hypoth-

esis. For the SKE/BKE task the background is also fixed. Since for SKE/BKE the

underlying object f is fixed under the two hypothesis, hence Pr(g|H0) = Pr(g|f , H0)

and Pr(g|H1) = Pr(g|f , H1). We know that Pr(g|f , H0) and Pr(g|f , H1) are Poisson

with means Hf1 and Hf2 respectively. It will be henceforth convenient to use the no-

tation f1 and f2 for the signal-absent and signal-present objects, respectively, for both

the SKE/BKE and SKE/BKS cases. Thus the expressions Pr(g|f , H0) and Pr(g|f1)

are equal, as are Pr(g|f , H1) and Pr(g|f2).

Note that we have denoted the Poisson means above as Hf1 and Hf2. For the

same reasons we use H instead of H in reconstruction algorithms, we shall use H

instead of H in observer expressions in this chapter. The reasons ultimately have to

do with computational tractability. That is, by conducting detectability experiments

using H in place of H we greatly ease the computational burden.

For the SKE/BKS task the background b is a realization from a stochastic ran-

dom process with mean μb and covariance Kb. The probability density function of the

underlying object under the two hypothesis is p(f |H0) and p(f |H1). The probability

distribution of g conditioned on the underlying object f (which is a realization of a

random process) and respective hypothesis, is given by Pr(g|f , H0) and Pr(g|f , H1),

is Poisson with mean Hf1 and Hf2 respectively. The overall probability of the raw

projection data g under the two hypothesis is

Pr(g|H0) =
∫

fN−1

· · ·
∫

f0

Pr(g|f , H0)p(f |H0)df0 · · · dfN−1 (4.6)

Pr(g|H1) =
∫

fN−1

· · ·
∫

f0

Pr(g|f , H1)p(f |H1)df0 · · · dfN−1 (4.7)
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The observer is to inspect the reconstruction f̂ and decide to which hypothesis

H0 or H1 it belongs. To do this model observer computes a scalar test statistic λ via

λ = w(f̂), where w is some operation (linear or non-linear) on f̂ . Then λ is compared

to γ and a hypothesis chosen. Observers can be classified on whether the test statistic

is optimal or suboptimal or whether w is a linear or non-linear operation.

4.2.1 Ideal Observer

For the two-class decision problem, the ideal observer yields optimal task per-

formance in that it achieves maximum AUC, maximum TPF for a fixed FPF (the

Neyman Pearson lemma), and minimum Bayes’ risk [29]. As explained in [99, 103],

the choice of ideal observer is independent of costs associated decisions. The likelihood

ratio test is the optimal decision strategy. The ideal observer is given by the log of

the likelihood ratio test

λ = w(f̂) = ln

[
(p(f̂ |H1))

(p(f̂ |H0))

]
(4.8)

The computation of the ideal observer’s performance requires full knowledge of the

probability distributions for the random quantities it operates on (here, the recon-

struction) under the competing hypothesis. The expressions p(f̂ |H0) and p(f̂ |H1) are

usually too difficult to express analytically.

For imaging system optimization it is interesting to note [33, 29] that the ideal

observer can also be applied to the raw projection data g instead of the reconstruction

f̂ . The ideal observer would be given in this case by

w(g) = ln

[
(Pr(g|H1))

(Pr(g|H0))

]
(4.9)

Pr(g|H1) and Pr(g|H0) in (4.9) for SKE/BKS tasks are given by (4.7) and (4.6).

Computation of the likelihood ratio for SKE/BKS task modelling textural variabil-

ity in the form of lumpy background is described in [104] and modelling large scale

anatomical variability are described in [105]. The ideal observer acting on g sets an
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upper bound on the maximum achievable AUC. The detectability of the ideal observer

acting on the reconstructed images f̂ will be less than or equal to the detectability of

the ideal observer acting in the projection data g. If the reconstruction operation is

invertible in the sense that the original projection data is recoverable then the ideal

observer acting on the reconstructed image or the projection data will give the same

result [106, 29].

We want to use model observers that are suboptimal in that they emulate human

performance. Thus, even if an ideal observer of the form (4.8) where available, we’d

be interested instead in a model observer that emulates human performance. Ideal

observers are nonlinear except in few simple circumstances. Our human emulating

observers will be linear. We first consider a general class of linear observers, then

specialize these to human-emulating observers.

4.2.2 Hotelling Observer

Since the Bayesian ideal observer is intractable in many situations, one often

considers the optimal linear or Hotelling observer. Linear observers have the general

form λ = wT f̂ where the N -dimensional vector w is referred to as the observer tem-

plate. (Note that if the reconstructed image f̂ had a Gaussian distribution with same

covariance under both hypotheses then the ideal observer would be linear and would

be the same as the Hotelling observer [33, 29]. But this is not the case in real tomo-

graphic systems.) The Hotelling Observer template w requires knowledge and the first

order statistics
¯̂
f2 and

¯̂
f1 under the hypothesis H1 and H0, respectively. It also requires

knowledge of the average covariance Kf̂ defined as Kf̂ = 1
2
(Kf̂ |H0

+Kf̂ |H1
) ≡ 1

2
(Kf̂1

+Kf̂2
)

. The Hotelling observer corresponds to w = K−1

f̂
(
¯̂
f2 − ¯̂

f1). It turns out that the

Hotelling SNR2 is given [33] by :

SNR2
HO = (

¯̂
f2 − ¯̂

f1)
TK−1

f̂
(
¯̂
f2 − ¯̂

f1) (4.10)
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The Hotelling observer models the data as Gaussian regardless of the data’s true

statistics.

As in the case for the ideal observer, the Hotelling observer can also be applied

to the raw projection data instead of the reconstructed images. If the reconstruction

operation does not remove information from the raw data, i.e. if it is invertible,

then the SNRHO from the raw data will be the same as that from the reconstructed

images. The rationale for computing SNR2
HO in the data domain is that the expression

in (4.10) for the reconstruction domain is much more computationally intense. The

SNR2
HO expressed in the data domain is

SNR2
HO = (ḡ2 − ḡ1)

T (K−1
g )(ḡ2 − ḡ1) (4.11)

where ḡ2,ḡ1 are the mean data for signal present, absent, respectively, and

Kg =
1

2
(Kg|H0 + Kg|H1) (4.12)

We now consider the SNR2
HO for the SKE/BKE case as expressed in the data

domain. Clearly ḡ2 = H(b + s) and ḡ1 = H(b) where b is the fixed background, so

that ḡ2 − ḡ1 = Hs. The covariance of g is Kg|H0 = diag(Hf1) and Kg|H1 = diag(Hf2)

under the two hypotheses, respectively. Using (4.11) and (4.12) the Hotelling SNR for

the SKE/BKE case becomes

SNR2
HO =

1

2
(Hs)T (diag{H(f2 + f1)})−1(Hs) (4.13)

We now consider the SKE/BKS case. Here f1 = b and f2 = b+ s where b is now

random with the mean μb, and s is deterministic. The mean projection data is thus

ḡ2 = H(μb + s) and ḡ1 = H(μb). Thus ḡ2 − ḡ1 = Hs. To compute SNR, we need an

expression for Kg|H0 and Kg|H1 . This is given in [29] as

Kg|H0 = diag(Hμb) + HTKbH (4.14)

Kg|H1 = diag(H(μb + s)) + HTKbH (4.15)
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Using (4.14) and (4.15) and the expressions for ḡ2 and ḡ1, we obtain for the SKE/BKS

case. The Hotelling SNR is given by

SNR2
HO =

1

2
(Hs)T (Kg|H0 + Kg|H1)

−1(Hs) (4.16)

4.2.3 Channelized Hotelling Observer

The human visual system is suboptimal for detection. For SPECT, the ideal

and Hotelling observers are not always good predictors of actual human performance.

The channelized Hotelling observer (CHO) [29] is found to be a good predictor of hu-

man performance in detecting lesions in correlated noisy backgrounds such as those in

SPECT reconstructions [39, 30, 59, 107, 108]. Abbey and Barrett [30] found agreement

in human and CHO performance in SKE tasks to investigate the effects of regulariza-

tion in tomographic images. Gifford [39] et al. found correlation between CHO and

human observers to evaluate the impact of detector-response compensation on tumor

detection in SPECT.

The CHO is a Hotelling observer modified with the use of anthropomorphic

channels T to track human observer performance. It performs a detection task after

reducing the image to a smaller set of response variables. The human visual system

processes an image through frequency-selective channels to extract features. In the

CHO, in order to model the human visual mechanism, each feature is obtained by

applying a channel template at the lesion location. After reducing the input stimulus

to a small set of channel responses, these responses are combined using an optimal

linear combination rule (Hotelling). The loss of information due to channelization

results in suboptimal performance.

To perform the feature extraction step the human visual system acts as if it

operates on the Fourier transform of the retinal image. To extract each feature, the

Fourier transform of the retinal image is integrated over the corresponding bandpass
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channel filter. This is mathematically equivalent to the inner product in the spatial

domain of the image and the impulse response of the bandpass channel filter. The

impulse response of the bandpass channel filter is the spatial domain representation

of the channel.

The CHO observes a single 2D slice image extracted from the 3D reconstruction,

as does a human observer. Let L be a linear slice extraction operator which is an

N2D × N matrix with N2D the number of pixels in the extracted image. The CHO

applies anthropomorphic bandpass channels to reduce the N2D-dim image into Nc

channel responses (features). The feature reduction step is carried out by the dot

product of the image with each of the Nc channel templates, similar to the description

above for the human visual system. Since Nc is usually around 3-6, the number of

features is far less than the number of pixels N2D. If the vector ti is the ith channel

template centered at the lesion center, then the corresponding ith channel response is

ûi = (ti)TLf̂ . The feature vector is given by û = T TLf̂ , where ti is the ith column of

T , and T is an N2D × Nc matrix.

For SKE/BKE let
¯̂
f1 and

¯̂
f2 represent the mean (over data noise) reconstructions

for the signal-absent and signal-present hypotheses respectively. Since, the background

is fixed we have Kf̂ |H0
= Kf̂ |f ,H0

= Kf̂1
and Kf̂ |H1

= Kf̂ |f ,H1
= Kf̂2

under the two hy-

pothesis respectively. The covariance Kf̂ = 1
2
(Kf̂1

+ Kf̂2
). For SKE/BKS let

¯̂
f1 and

¯̂
f2 represent the mean reconstructions averaged over data noise and background vari-

ability for the signal-absent and signal-present hypotheses respectively. The (overall)

covariance of f̂ under each hypothesis is given by Kf̂ |H0
= Kf̂1

and Kf̂ |H1
= Kf̂2

, re-

spectively. For SKE/BKS case, analytic methods to calculate Kf̂1
and Kf̂2

from Kg|H0

and Kg|H1 are given in [109, 94]. The covariance Kf̂ = 1
2
(Kf̂1

+ Kf̂2
).

We now consider the calculation of the first and second order moments of the

feature vector. The quantities f̂1, f̂2 and Kf̂ have been defined for the SKE/BKE
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and SKE/BKS. The mean feature vectors ¯̂u2 and ¯̂u1 are obtained from
¯̂
f1 and

¯̂
f2,

respectively.

¯̂u2 = T TL¯̂
f2

¯̂u1 = T TL¯̂
f1 (4.17)

Let Kû be the average of the lesion-absent and lesion-present channel response covari-

ance matrices.

Kû2 = T TLKf̂2
LTT Kû1 = T TLKf̂1

LTT (4.18)

The channel covariance matrix is thus Kû = T TLKf̂LTT . Then a measure of de-

tectability, the CHO SNR, is given by [33]

SNR2 = (¯̂u2 − ¯̂u1)
T (Kû)−1(¯̂u2 − ¯̂u1) (4.19)

and the overall template is given by

wCHO = (Kû)−1(¯̂u2 − ¯̂u1) (4.20)

Because of the transformation by T , the dimensions of Kû are small (Nc × Nc) and

the necessary inverse is easy to calculate.

We use radially symmetric channels since the noise covariance and the signal

profiles the reconstructions used in this thesis are approximately radially symmet-

ric. Examples of the frequency domain bandpass channel filters and their spatial

domain representations are given in Figure 4.3. Figure 4.3(a) displays the frequency

domain radial profiles, of three difference-of-Gaussian (DOG) [33, 30] channel filters

of dyadically increasing widths. Figure 4.3(b) shows the 2-D spatial version of the first

channel template and figure 4.3(c) its central profile. Figure 4.3(d) displays the fre-

quency domain radial profile, showing non-overlapping square channels of increasing

bandwidths, while Figure 4.3(e) shows the 2D spatial version of one of the channels

along with a central profile in Figure 4.3(f).
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Figure 4.3: Radial profile of (a) DOG channels, (d) Radial profile of square channels

in frequency space. (b) 2D space domain channel template (corresponding to the first

DOG channel in (a)) displayed here as a 64× 64 grey scale image. (c) Central profile

of the channel template in (b). (e) 2D space domain channel template (corresponding

to the third square channel in (d)) displayed here as a 128× 128 grey scale image. (f)

Central profile of the channel template in (e).

4.2.4 Sample Methods

We can calculate the CHO SNR with sample methods. First we reconstruct an

ensemble of noisy reconstructions f̂k
1 and f̂k

2 , where k = 1, · · · , Nsamp indexes sample

number. For SKE/BKE tasks, each sample reconstruction is calculated from projec-

tion data obtained by adding Poisson noise to the noiseless projection of fixed f . For

SKE/BKS tasks, projection data obtained by adding Poisson noise to the projection of

a random realization of the underlying background is used as the input for calculating
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each sample reconstruction. Then we obtain the channel response ûk
2 = T TLf̂k

2 and

ûk
1 = T TLf̂k

1 by applying the channel matrix at the lesion location on the extracted

slice.

The sample means of the signal-present and -absent channel responses are given

by

¯̂u2 =
1

Nsamp

∑
k

ûk
2 and ¯̂u1 =

1

Nsamp

∑
k

ûk
1 (4.21)

and the sample covariance of the channel responses is given by

Kû =
0.5

Nsamp − 1

∑
k

(ûk
2 − ¯̂u2)(û

k
2 − ¯̂u2)

T

+
0.5

Nsamp − 1

∑
k

(ûk
1 − ¯̂u1)(û

k
1 − ¯̂u1)

T (4.22)

Since Kû is Nc×Nc, calculating its inverse is trivial. To get a good estimate of Kû and

its subsequent inverse, Nsamp should 10 ∼ 100 times Nc [110]. We can then substitute

(4.21) and (4.22) into (4.19) to obtain the sample SNR. We use jackknifing approach

[111] to compute the variance of the estimated SNR. A brief description is given below.

For the jackknifing approach we use a “leave one out” methods to calculate an

SNR value SNR(1) without the the first sample noisy reconstructions f̂1
1 and f̂1

2 , an

SNR value SNR(2) without f̂2
1 and f̂2

2 but including f̂1
1 and f̂1

2 , SNR value SNR(k)

without f̂k
1 and f̂k

2 and so forth. The standard deviation of SNR is calculated for the

set SNR(1),SNR(2),· · ·,SNR(k),· · ·,SNR(Nsamp) from the formula [111]:

σ̂SNR =

√√√√√Nsamp − 1

Nsamp

Nsamp∑
i=1

⎛
⎝SNR(i) − 1

Nsamp

Nsamp∑
j=1

SNR(j)

⎞
⎠

2

(4.23)

4.2.5 Internal Noise

To better emulate human performance the CHO can be modified with internal

noise. If a human is presented with exactly the same image on two different occasions,

the human may decide “signal-present” sometimes and “signal-absent” at others. A

model observer will, by contrast, always give a consistent result. This inconsistency
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by humans is modelled by a form of noise termed “internal noise” [33]. One way to

model internal noise [33] is by addition of a zero mean random variable to each of the

Nc channel-responses. This results in the addition of an internal noise covariance Kε

to the channel response covariance Kû. The resulting SNR is obtained by replacing

the term K−1
û in (4.19) by (Kû +Kε)

−1. The effect of Kε on the CHO SNR is described

extensively in Section 5.5.1.

4.3 Mean and covariance of MAP estimates

In order to evaluate the SNRCHO, we need the first and second order statistics

of the reconstructed images. Note that SNRHO can be calculated in the sinogram

space, but SNRCHO must be calculated in the reconstruction space. MAP is a non-

linear estimator for the Poisson noise model hence the propagation of photon noise

into the reconstruction is not straightforward. Here we give the theoretical expres-

sions for mean and variance of the MAP estimate using the approach introduced by

[112]. These theoretical expressions enable the fast computation of the mean and co-

variance of MAP reconstructions, which in turn are conducive to the rapid evaluation

of detection FOMs. This avoids the laborious generation of large number of sam-

ple reconstructions as per Section 4.2.4. The evaluation of the statistical properties

of MAP reconstructions in emission tomography have been extensively analyzed in

[112, 69, 113, 114, 115, 116].

The MAP solution in Eq. 3.14 can be expressed as a nonlinear operator O{g}

on the observed data g. Using a first-order Taylor series expansion about mean data

ḡ, we get

f̂ = O{g} ≈ O{ḡ} + ∇gO{ḡ}(g − ḡ) (4.24)

here, ∇g = [ ∂
∂g1

· · · ∂
∂gM

] denotes the gradient vector. The term O{g} is an N -

dimensional vector because it is an estimate of f . The derivative operation with
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respect to a M -dimensional vector g makes ∇gO{g} an N ×M matrix. The elements

of ∇gO{g} are given by

[∇gO{g}]nm =
∂

∂gm

[O{g}]n (4.25)

Hence, the reconstruction operator in (4.24) is approximated as linear. To the extent

that the variation of g about ḡ is small, the linearity approximation in (4.24) holds.

From the linearized operation in Eq. (4.24), we can obtain the mean of f̂ for a

nonlinear reconstruction:

¯̂
f = 〈O{g}〉g ≈ O{ḡ} (4.26)

where the 〈〉g denotes the mean over g. From the linearized approximation of Eq. 4.24,

we can also get the covariance of f̂ conditioned on the underlying object f under the

hypothesis Hk as follows:

Kf̂ |f ,Hk
≈ ∇gO{ḡ}Kg|f ,Hk

[∇gO{ḡ}]T (4.27)

Thus, obtaining ∇gO{ḡ} will solve Eq. 4.27. The unconditional covariance of f̂ under

the hypothesis Hk is given as follows:

Kf̂ |Hk
≈ ∇gO{ḡ}Kg|Hk

[∇gO{ḡ}]T (4.28)

We will lose the conditional notation on Hk for the rest of this section. The quantities

in (4.27) and (4.28) will have to be calculated for each of the hypothesis.

The first derivative at the fixed point in the case of the concave MAP objective

given in Eq. 3.13 is

∂

∂f
Φ(f ;g)|f=f̂ = 0 (4.29)

Using notation

∇2
ffΦ(f̂ ;g) ≡ ∂2Φ(f̂ ;g)

∂f2
and ∇2

fgΦ(f̂ ;g) ≡ ∂2Φ(f̂ ;g)

∂f∂g
(4.30)
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and applying chain rule and using results from [112] at point of expansion ḡ , we get

∇gO{ḡ} = −[∇2
ffΦ(O{ḡ}; ḡ)]−1∇2

fgΦ(O{ḡ}; ḡ) (4.31)

For a Gibbs prior with its potential function defined as in Eq. (3.9), the second deriva-

tion (Hessian) of the prior is:

∇2
ffΦP =

∂2ΦP

∂f2
= R (4.32)

For the case of SPECT, the derivatives of Φ(f ;g) (with a quadratic smoothing

prior) evaluated at ḡ and
¯̂
f are [112]

∇2
ffΦ(

¯̂
f ; ḡ) = −HT diag

( ḡ

(H¯̂
f)2

)
H− βR (4.33)

∇2
fgΦ(

¯̂
f ; ḡ) = HT diag

( 1

H¯̂
f

)
(4.34)

Therefore the right side of (4.27) becomes,

[
HT diag

( ḡ

(H¯̂
f)2

)
H + βR

]−1
HT diag

( ḡ

(H¯̂
f)2

)
H
[
HT diag

( ḡ

(H¯̂
f)2

)
H + βR

]−1
(4.35)

Hence the conditional covariance is given by

Kf̂ |f = [F + βR]−1F [F + βR]−1 (4.36)

where F = HT diag
(

ḡ

(H¯̂
f)2

)
H ≈ HT diag

(
1

(Hf)

)
H

To the extent that the object variability is small scale (low-amplitude textural

background variability) the overall covariance of the reconstructions for BKS case can

be calculated using the approach in [109, 94] and is given by

Kf̂ ≈ ∇gO{ḡ}Kg[∇gO{ḡ}]T (4.37)

Substituting (4.15),(4.31),(4.33) and (4.34) into (4.37)we get

Kf̂ = [F + βR]−1[F + FKbF ][F + βR]−1 (4.38)
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Apart from the mean and the covariance, another important statistic is a measure

of resolution of the imaging system known as the local point spread function or the

generalized point spread function or the local impulse response. For a space-invariant

reconstruction operator, the point spread function is invariant to position. For our

non-linear shift-variant reconstruction, it depends upon position, the object and the

noise level, so we must characterize it locally. The local point spread function (lpsf)

is defined in [69] as:

¯̂ej ≡ lim
δ→0

1

δ
( < O{g(f + δej)} > − < O{g(f)} > ) (4.39)

Here, ej denotes a unit impulse at location j and ¯̂ej denotes the lpsf at location j. It

is the mean reconstruction of the object with a small point source at j minus the same

reconstruction without the point source. Using (4.24) and (4.26), the above expression

may be simplified as:

¯̂ej ≈ lim
δ→0

1

δ
(O{ḡ(f + δej)} − O{ḡ(f)})

≈ lim
δ→0

1

δ
∇gO{ḡ(f)}(ḡ(f + δej) − ḡ(f))

= ∇gO{ḡ(f)}Hej (4.40)

Using (4.31),(4.33),(4.34), we get

¯̂ej = (F + βR)−1Fej (4.41)

We observe that the expression for Kf̂ |f in equations (4.36) is a matrix too large

for practical computation. As in the case of (4.18) for a signal located at a particular

location j, one generally is interested in constructs of the form Kf̂ |fxj or xT
j Kf̂ |fxj where

xj is a vector centered around j. For a point j, one can form a triply block-circulant

approximation K(j)

f̂ |f that closely approximates Kf̂ in the vicinity of j. The main step in

forming K(j)

f̂ |f is to approximate F by a local triply block-circulant approximation F (j).

The ith column of both F and F (i) is HT diag
(

ḡ

(H¯̂
f)2

)
Hei, and the remaining columns
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of F (i) are shifted versions of this ith column. Note that the key computations in

computing this ith column are a projection of a point source and a full backprojection.

For uniform quadratic prior (3.9), the Hessian of the prior R given by (3.10), is triply

block circulant (shift invariant if we ignore the edge pixels). Using the properties

of circulant matrices the eigenvalues of R and F(j) can be computed using a 3-D

DFT [88]. We know that the Fisher information matrix F as well as R is positive

semi-definite [114], i.e. its eigenvalues are real and non-negative. In order to enforce

this condition only the real part of the eigenvalues is used and negative components

are clipped to zero [116, 106]. Now (4.36) becomes

K(j)

f̂ |f = Q−1diag

[
νj

(νj + βη)2

]
Q (4.42)

where Q is the 3D DFT operator, νj and η are the lexicographically ordered eigenval-

ues of the matrices F(j) and R respectively. The (4.18) for channel centered around

j would become

(T TLKf̂LTT ) = T TLQ−1diag

[
νj

(νj + βη)2

]
QLTT (4.43)

A triply block-circulant approximation to the overall covariance (4.38) is given

K(j)

f̂
= Q−1diag

[
νj

(νj + βη)2

]
Q + Q−1diag

[
νj

(νj + βη)

]
QKbQ−1diag

[
νj

(νj + βη)

]
Q

(4.44)

In case if the background variability is multivariate Gaussian obtained by filtering iid

Gaussian noise then QKbQ−1 would be a diagonal matrix.

The lpsf in (4.41) has the form (F + βR)−1vj where vj = Fej. The lpsf is given

by

¯̂ej = Q−1diag

[
νj

(νj + βη)

]
Qej (4.45)

The above mentioned formulae ignore the positivity constraint in reconstruction.

Methods to account for the positivity constraint are discussed in [114]. These formulae
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are also limited in the sense that they consider the effects only due to primary photon

noise. Various generalizations of these analytical formulae are often necessary. In Sec-

tion 7.5.1, we derive similar formulae that deal with the noise in the scatter estimates

in SPECT. The CHO observer described in this chapter will be used in Chapter 5 for

predicting human performance to determine the optimal smoothing parameter β of

MAP reconstructions. The CHO is also used to assess the efficacy of anatomical prior

information in MAP reconstruction in Chapter 6.
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Chapter 5

Channelized Hotelling and Human Observer Study of

Optimal Smoothing in SPECT MAP Reconstruction

In Chapter 4 we have discussed the human emulating CHO. In Chapter 3 we

discussed the MAP reconstruction where the scalar smoothing parameter β is the

weight of the prior ΦP which is used as a regularizer in the MAP objective. In this

chapter we perform a human observer study to assess the effect of this regularization

parameter β on lesion detectability . Since β controls the noise-resolution tradeoff in

the reconstruction, it is a natural parameter to study. We compared the performance of

CHO to that of the human observer and then modified the CHO with internal noise to

give a better prediction of the human observer performance. This chapter is based on

our work in [95]. Though I appear as a second author on this paper, I had contributed

in the theory and in computation of all the calculations involving CHO SNR’s (i.e.

generating sample reconstructions, calculation of CHO SNR’s, choosing internal noise

parameters, calculation of error bars, studying the effects of quantization). I was in

charge of the generating the figures and LATEXing the manuscript. The human observer

study was conducted by the first author.

5.1 Introduction

FOM’s of human observer ROC testing methodologies are the most accepted test-

ing standard for optimization of reconstruction parameters with respect to a detection
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task. Model observers [27] described in Chapter 4 that are known to emulate humans

can be used to reduce the many possible cases that arise in an optimization study

down to a few select candidates that can be addressed by the more time-consuming

ROC testing. Model observers might also be used to “prototype” a study to glean pre-

liminary information regarding FOM variation with signal contrast, location or noise

level. This prototyping can be used to further narrow the conditions of the subsequent

human study. In this work, we focus on one particular model observer, the channelized

Hotelling observer (CHO) [117]. The CHO has become a widely adopted [118][39][59]

model observer in applications involving optimization of reconstruction strategies in

ECT.

From Chapter 3 we know that MAP reconstruction methods incorporate (a) the

models of both the imaging system and data noise, (b) a prior to stabilize the ill-posed

reconstruction and to model object properties such as smoothness. The reconstruction

is obtained by optimizing an objective function that comprises a weighted sum of a

data-fit term and a some form of smoothing penalty. The relative influence of each

term is controlled by a scalar parameter β. In recent years, efforts have been made

to adjust the penalty in order to achieve desired image quality in the reconstruction.

For example, in [69] (and a series of follow up works) this strategy was used to obtain

uniform spatial resolution, and in [113] the strategy was used to optimize a contrast-

to-noise ratio in the reconstruction. In [119] the authors design penalty functions to

improve lesion detectability measured by the CHO.

We explore the possibility of maximizing a detection FOM by controlling β,

using human and model observer tests. We limit ourselves to SKE/BKE detection

task and also include some comments for SKE/BKS tasks. A two-alternative forced-

choice (2AFC) test was used for assessing the human performance as a function of the

smoothing parameter β. In a single trial of a 2AFC test, the observer is presented
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with two images and asked to identify which image contains the signal. Each trial

with a different pair of signal-present signal-absent images (on each trial) is repeated

several times in a test to eventually deliver a percent-correct (PC) which approaches

the AUC [33] as number of pair samples increases. The CHO observer performance

was calculated using sample methods involving many reconstructions as described in

Section 4.2.4.

In this study we consider an SKE/BKE SPECT MAP detection problem, and

explore detection FOM’s vs β with sample (CHO) and human observers. In addition,

we explore an issue regarding the use of floating-point reconstructions versus quantized

reconstructions. This issue arises because humans actually view reconstructions that

are quantized for display purposes. We discuss the issue of whether the CHO internal

noise parameters tuned to the human data for a particular location can be generalized

to give CHO results that track human results for a different locations and different

signal contrasts. We also discuss the effect of β on the CHO and human observer

performance when object variability is added to the task. In Secs. 5.3 and 5.4 we

describe experiments using human observers and sample observers, respectively, and

in Section 5.5 we compare human vs model observer performance. We conclude in

Section 5.6 with a discussion.

5.2 Details of SPECT Reconstruction and the CHO

As in Chapter 4 for the SKE/BKE and SKS/BKS tasks we define f1 = b and f2 =

b + s as signal-absent and signal-present objects with b and s denoting a background

and fixed signal, respectively. For the SKE/BKE study we used two signals, signal A

and signal B, at two different locations and contrasts. Figures 5.1(a),(b) shows our f2

for each signal.

A MAP reconstruction optimizes the MAP objective (3.6). The quadratic penalty
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used in the (3.6) is given by (3.9) with the neighbourhood system N (n) defined over

the 8 nearest-neighbors and with ωnj chosen to be proportional to the inverse of the

distance between pixels n and j. The crucial scalar β > 0 controls the degree of

regularization (i.e. smoothing), and so we will use the notation f̂(β) when empha-

sizing the dependence of the reconstruction on β. Our reconstructions are obtained

by maximizing the objective using a positivity constraining preconditioned conjugate

gradient algorithm.

The 128 × 128 pixel (each pixel is 0.25 cm) chest phantom in Figure 5.1 com-

prises lung:soft-tissue:cardiac regions of relative intensity ratio 1:2:4. Signal A, in

Figure 5.1(a), is a 3 × 3 square pixel region whose contrast relative to local surround

is 2:1. A second signal, signal B, depicted in Figure 5.1(b) has a contrast relative to

local surround of 2.3:1. We included the effects of depth-dependent blur where the

blur kernel FWHM varied linearly from 1.97 to 5.36 detector bin lengths. Attenuation

effects were also included using attenuation coefficients 0.153 cm−1 and 0.0558 cm−1

in the soft tissue and lung region, respectively. The average count level was 525K.

Data was collected via a parallel hole collimator at 128 equispaced angles.

For the SKE/BKS study we used signal A added to a multivariate Gaussian

background as shown in Figure 5.2. Zero-mean multivariate Gaussian noise with

correlation width σ = 6 pixels and amplitude 0.2133 was added to the signal A signal

present/absent phantom. The attenuation map and rest of SPECT imaging system

parameters were same as those for the SKE/BKE task.

The reconstruction f̂(β) is naturally a floating point entity, yet the reconstruction

is quantized ( typically by an 8-bit ADC) before display. In our human trials, the

observer views this 8-bit image, further modified by the physical effects of the display

monitor. For our sample observer, we shall use reconstructions quantized to 8 bits,

but the sample reconstructions will not be further modified to include monitor effects.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: Reconstructions without object variability (a)Background plus signal A

(b)Background plus signal B. The remaining panels show anecdotal signal-present

reconstructions for signal A at (c) β = 0.01 (d) β = 0.1 (e) β = 0.5 (f) β = 1.0 (g)

β = 5.0 (h) β = 10.0 (i) β = 100.0

For human trials, additional scaling steps, described in Section 5.3, are applied before

display.

We consider a wide range of β in our reconstructions, ranging from obviously

noisy reconstructions to absurdly smooth ones. Figure 5.1(c)-(i) displays, for signal

A, signal-present anecdotal reconstructions for the seven values of β (0.01, 0.1, 0.5,

1.0, 5.0, 10.0, 100.0) used in this study. Clearly the signal, is difficult to detect in

these reconstruction.
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(a) (b) (c)

Figure 5.2: Reconstructions with object variability (OV). (a) Phantom with small 3×3

pixel lesion having contrast 2:1 over the local background with one realization of a

Gaussian random background added (amplitude is 16% of local surround, correlation

length is 6 pixels.), (c)(d) Signal-present MAP reconstructions of the OV phantom at

β = 0.1, 1.0. Signal is very difficult to detect in the case of SKE/BKS.

In Figure 4.3, we display the (Nc=3) channelization scheme used in our stud-

ies. (In Section 5.4 we will describe how we arrived at this channel scheme.) The

lesion-centered channels are real-valued and radially symmetric in both the spatial and

Fourier domains. Figure 4.3(d) displays the channel radial profiles, showing square

profiles of increasing radius in the frequency domain, while Figure 4.3(e) shows the

2D spatial version of the third channel template and Figure 4.3(f) its central profile.

As described in Section 4.2.3 the CHO SNR is calculated using (4.19). Since the CHO

SNR is calculated for different values of β we use the notation SNR2(β) to emphasize

its dependence on β.

5.3 Human Observer Trials

5.3.1 Testing Procedure

Human observer SKE/BKE studies were done on reconstructed images using

the 7 values of β and for two different combinations of signal location and contrast.

For each β, we used a 56-image training set to familiarize human observers with the
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image set’s characteristics, and a 180-image test set to obtain test data. Each observer

underwent a total of 3 sessions, two for three β’s each, and the third for β = 100. For

the two sessions with three β’s, the observer took a significant rest between β’s . This

strategy, along with the choice of the number of training and test images, avoided

observer fatigue. The sets corresponding to different β’s were presented in different

orders to different observers so as to avoid learning effects on β. Persons inside the

lab (including the paper authors) and the Stony Brook Health Sciences Center were

used as observers. There were a total of Nobs = 6 observers.
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Figure 5.3: Typical display as seen by an observer during a 2AFC test. This recon-

struction was done at β = 0.5 and for signal A. The image pair here clearly shows the

lesion in the left panel. In practice, such easy discrimination was rarely possible.

The trials used a 2AFC (two-alternative-forced-choice) methodology. The 2AFC

methodology can be used in place of standard ROC methodologies to obtain AUC

estimates and related FOM’s. To implement the 2AFC, we modified software from

the ‘Test2AFC’ MATLAB scripts provided by the University of Arizona’s Center for

Gamma-Ray Imaging (an NIH Resource). For each β, the 2AFC tests were conducted

as follows. As seen in Figure 5.3, each person was presented with three black and

white 128x128 images on a standard CRT monitor. The center panel always displayed

the background with signal in order to help the human observer localize the potential

signal locations in the test images. The left and right panels displayed two noisy
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reconstructions on the sides. One panel contained a noisy reconstruction with the

lesion absent, the other a noisy reconstruction with the lesion present. The panel with

the lesion was randomly determined (via a randomization function that consulted the

system clock) to be either on the right or the left side. The size of all three pictures

as measured together on the monitor together was 38.1 cm wide by 17.78 cm high.

Each individual picture was square, measuring 8.25 cm on a side. The expansion of the

128x128 picture to fit the 8.25 cm square entailed a default interpolation in MATLAB.

The observer had to choose with a right or left mouse-button click which side

they thought the picture (with lesion) was on. The observer had as much time as

they needed to observe the images, and was free to move their head position and

viewing distance as they saw fit. The average viewing distance was about 38 cm and

we noted that actual viewing distances did not dramatically differ from this average.

The correctness of their answer was immediately reported, as was their total percent

correct ˆ(PC) when they finished the experiment. Room lights were turned off, but any

additional specular reflection onto the monitor from ambient light around the lab was

decreased with a cardboard hood that enclosed the monitor and observer’s head.

To map the reconstructions f̂(β) to the display, we used the following strategy:

For a given pair of 2AFC images, a histogram of the floating-point values of both

images was created. The pixels corresponding to the top 0.5% and bottom 0.5% of

the histogram were set to 255(white) or 0(black). The remaining pixels were mapped

to occupy 256 equispaced values within the 0-255 range. We did not calibrate the

monitor brightness in any particular way, but the brightness and contrast knobs were

held fixed, throughout all experiments.

5.3.2 Calculation of d2
A for human observers

After the results were obtained for all six observers, we calculated a FOM, the

squared detectability, d2
A. This FOM is commensurate with the SNR2 for the CHO
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observer as explained in Section 5.4. The calculation was done as follows. Let r index

the observer, so that P̂C,r is the percent correct (as measured by 2AFC) of the rth

observer (we note that PC = AUC). Let d̂A,r be the detectability of the rth observer.

These are related [110] by :

d̂A,r = 2erf−1(2P̂C,r − 1) (5.1)

Since we were attempting to compare human performance to model observer SNR2, we

need to calculate an estimate of squared detectability. To do this, we simply squared

ˆdA,r to obtain:

d̂2
A,r = (d̂A,r)

2 (5.2)

The justification is as follows: P̂C,r is the ML (maximum likelihood) estimate of PC,r,

the underlying “ability” of the rth observer. The quantity d̂2
A is related to P̂C via the

invertible transformation of (5.1) and (5.2). Since the ML estimate of a transformed

quantity equals the transformation (if invertible) of the ML estimate, we can say that

d̂2
A,r is the ML estimate of (d̂A,r)

2 =
[
2erf−1(2P̂C,r − 1)

]2
. Figure 5.4 shows d2

A vs β

for the 6 human observers for the signal A experiment. Error bars represent 68%

confidence intervals. The plots for signal B (not shown) were qualitatively similar,

with individual observer performance consistent across signals A and B.

Error bars for d̂2
A, the squared detectability averaged over all observers, were

calculated using the standard error of the mean-squared detectability [33]:

σ̂d̂2 =

⎡
⎣ 1

Nobs(Nobs − 1)

Nobs∑
r=1

(d̂2
A,r −

¯̂
d2

A)2

⎤
⎦

1
2

(5.3)

where
¯̂
d2

A was the average squared detectability in the experiment:

¯̂
d2

A =
1

Nobs

Nobs∑
r=1

d̂2
A,r (5.4)

and d̂2
A,r was obtained from (5.1) and (5.2). The human-observer d̂2

A values are plotted

in Figure 5.10 (for signal A) and Figure 5.11 (for signal B). The error bars correspond

to ±1 standard deviation, as calculated in (5.3).
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Figure 5.4: d2
A versus β for individual human observers. Error bars are 68% confidence

interval.

5.4 Sample Observer Trials

5.4.1 Details of SNR Calculation

The sample method used for calculation of the CHO SNR is as given in Sec-

tion 4.2.4 with one additional step involved. The Nsamp signal-present and signal-

absent reconstruction for a particular beta are quantized to 8 bits i.e. 256 quantiza-

tion levels before applying the channel templates T . For quantization we compute

the global f̂max and f̂min from all 2Nsamp samples, and set Δq = f̂max−f̂min

256
. Then we

quantize each sample using step size Δq to obtain f̂k
1 (β) and f̂k

2 (β). After applying the

channel templates T to the 2Nsamp quantized reconstructions, we use (4.21) and (4.22)

into (4.19) to get the CHO sample SNR. We used Nsamp = 416 which is adequate to

give a stable estimate for SNR. Note that Nsamp = 416 is greater than the 180 samples
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used for human observers.

The signal, object and count level were chosen so that the histograms of model

observer response with and without signal showed considerable overlap. Figure 5.5

shows typical model observer response curves for the signal-absent and signal-present

cases for signal A. Other trials for different β and for signal B showed a similar degree

of overlap and a similar approximate Gaussian shape. If model observer responses
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Figure 5.5: Histogram of the observer responses for signal absent (bold line)and signal

present (dotted line) cases for β=1.0 and signal A. Histograms for other values of β

showed a similar degree of overlap.

for signal-present and signal-absent images are Gaussian in form, the model observer

signal-to-noise ratio is equivalent to the detectability dA for humans [30]. As seen in

Figure 5.5, the histograms of the observer responses are indeed approximately Gaus-

sian. We thus compared the model observer SNR2 to the human observer dA
2.

5.4.2 Channelization Scheme

A wide variety of radial channel profiles are possible; but we limit our study

to square channel profiles, which result in annular regions in the frequency domain.

We also restricted ourselves to dyadic channels, in which the width of the bandpass
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channels increases by a factor of two. In order to properly select these channels so as

to approximate the function of the human eye, we must pick the frequency boundaries

of the channel appropriately.

A minimum limit is set by the ability of the human eye to detect low-frequency

patterns (it has fairly low response below a given level). A reconstruction study [33]

used a minimum limit of 0.48 cycles per degree as a frequency cutoff. We used this

value as an approximate start point in designing our channels. To use this value, we

must convert it to units of cycles/pixel. Our average viewing distance δview was about

38 cm and our displayed image width 8.25 cm. Thus the pixel width was δpix 0.0645

cm, since our images comprised 128 by 128 pixels. Using the formula [33] relating

frequency in units of deg−1(ρdegree) to pixel−1(ρpix)

ρdegree =
δview

δpix

2π

360
ρpix (5.5)

we obtain 0.05 cycles per pixel as the minimum frequency corresponding to the cutoff

figure in [33] 0.48 cycles/deg. The maximum ρdegree is set by the Nyquist frequency

ρpix = 0.5. Plugging ρpix = 0.5 into (5.5), we get a maximum ρdegree = 5.154.

To explore channel schemes we used the following procedure. We picked a low fre-

quency cutoff ρmin
pix . The bandpass limits in the dyadic scheme become (ρmin

pix , 2ρmin
pix ),

(2ρmin
pix , 4ρmin

pix ), (4ρmin
pix , 8ρmin

pix ), etc. We choose as many such bandpass channels as

would fit below the Nyquist limit ρpix = 0.5. Thus ρmin
pix indexes each channel scheme.

We took multiples of the value ρmin
pix = 0.05 to explore different schemes. In partic-

ular we formed channels using γρmin
pix for γ = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and

1.25. For each γ, we could fit NC = 3 or NC = 4 channels within the Nyquist limit;

we derived the channels, and applied the resulting CHO to sample reconstructions to

obtain an SNR2 vs β curve.

In Figure 5.6, these SNR2(β) curves are compared to the one obtained for the

signal A human observers. We decided to choose the curve that looked qualitatively

89



closest to the human curve. We settled on a value of γ = 0.8 corresponding to
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Figure 5.6: Choosing a best channel scheme. The solid line is the d2
A for humans. The

dotted lines correspond to SNR’s obtained for various values of γ, while the dashed

curve is the SNR2 curve for our chosen (γ = 0.8) channel scheme.

minimum frequency of 0.04 cycles per degree; 3 channels brought us to a maximum

frequency of 0.32 cycles per degree or 64% of the Nyquist. This actual channel scheme

is the one displayed in Figure 4.3. The dotted curve in Fig. 5.6 is thus the CHO

SNR2(β) curve unmodified for effects of internal noise. We will call this observer with

its chosen channel scheme and lack of internal noise model the “unmodified observer”.

For this observer we calculated error bars obtained via a jackknife procedure [111] as

explained in Section 4.2.4. The resulting SNR2(β) curve is displayed in Figure 5.10

along with the human observer results for comparison.
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5.5 Comparison of Human and model observer performance

5.5.1 Internal Noise Models

As seen in Figure 5.6 for signal A, our CHO outperforms our human observers did;

the CHO has an SNR2 of about 3.5 for most values, corresponding to a performance

of about 91 percent correct, whereas human observers scored anywhere from 58 to

90 percent correct on the trials (average numbers obviously varied with β and with

observer). In addition the unmodified CHO is less specific in its prediction of a range

for β. In order to ‘handicap’ the CHO so that its performance was more similar to

that of a human observer, we used three types of internal noise models. Each of

these models works via an addition to the diagonal elements of the covariance matrix.

This is equivalent to altering the prewhitening so as to incorporate an assumption of

increased channel variance. Our strategy was to apply internal noise models to the

signal A CHO curve in attempt to match it to the human curve.

The first type of noise consists of an addition of a multiple α1 of the diagonal

elements of the covariance matrix to the diagonal, resulting in multiplication of the

diagonal of the covariance matrix by 1 + α1:

[Ku]ii → [Ku]ii + α1[Ku]ii (5.6)

We observed that this sort of noise generally creates a smoothing and lowering of

the curve, decreasing the CHO’s performance and also decreasing differences between

performance at different values of β. This is seen in Figure 5.7. This sort of noise was

employed by Abbey and Barrett [30] in their work on ramp-spectrum noise.

The second noise mechanism, described in [33] is more complicated. Here, con-

stants proportional to the maximum of the diagonal are added to each diagonal element

of the covariance matrix:

[Ku]ii → [Ku]ii + α2 max
j

[Ku]jj (5.7)
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Figure 5.7: Different values of the α1 parameter. Note the relative flatness of the

curves.

As seen in Figure 5.8 this type of noise approximates the shape of the human observer

much more closely, having a peak at β = 0.5 and decaying at similar rates on both

sides.

The third internal noise model, used in [120] is relatively simple. It involves a

multiple α3 of the identity matrix added to the covariance matrix as follows:

Ku → Ku + α3I (5.8)

This sort of noise gives a CHO SNR2 curve that does not match well with that for the

humans as shown in Figure 5.9.

The noise we used to ‘handicap’ the CHO was a combination of α1 and α2 noise.

We examined a range of linear combinations of α1 and α2 noise and searched for

the ones which gave us the minimum absolute (α1 = 0.25,α2 = 0.25) and minimum

squared (α1 = 0.15, α2 = 0.3) errors. As our final (best) CHO observer, we chose

one corresponding to the MSE. In Fig. 5.10 we plot the SNR2(β) for this final CHO

observer and include error bars obtained using a jackknife procedure [111]. The error
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Figure 5.8: Different values of the α2 parameter. Note the relatively close approxima-

tion to the human shape.

bars correspond to ±1 standard deviation. On the same figure, we superimpose the

results for human observers. We will call this sample observer, with its internal noise

component, the “modified” CHO.

We repeated the human and CHO trails for location B. The unmodified CHO in

this case was the same as that used for signal A. We then modified the CHO using

the same α1 and α2 internal noise parameters as was used for signal A. In Fig. 5.11,

we plot the SNR2(β) curve for the modified and unmodified observers, and also the

d2
A results for the human tests. All error bars were calculated as before.

So far, all reconstructions ˆf(β) used in calculating SNR were 8-bit quantized

versions. For theory observers, one must use floating point versions of ˆf(β) in the

ensemble formulae. This might make a difference in SNR, and indeed, such effects

were reported in Narayanan [59] for the case of optimization of OSEM iterations and

FWHM 3-D Gaussian post-filtering. To test whether quantization effects affected our

MAP reconstruction trials, we recomputed SNR2(β) using floating point samples of
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Figure 5.9: Different values of the α3 parameter. Note the partial plateau.

f̂(β) and compared the results to that using the quantized versions. Figure 5.12

shows the SNR2 vs β curve for the unmodified CHO at location A applied to 8-bit

quantized data and also to floating point data. As seen in Fig.5.12 there is a very slight

divergence at β = 100 where the smoothness of the images exacerbates quantization

effects. At all other values of β, the curves were indistinguishable. (The β’s differed

by less than 0.3% except at β = 100, where they differed by 6.9%)

5.6 Discussion

We have investigated the ability of CHO observers to mimic human observers for

our application of interest: SKE/BKE lesion detection as a function of smoothing in

a MAP reconstruction. As seen in Figures 5.10 and 5.11 both the human and CHO

show that detectability is rather insensitive to β over a broad range, but the CHO’s

unmodified for internal noise predict a broader range than that of humans. For both

signal A and B, the human response achieved a high plateau in d2
A covering the β

values 0.5, 1.0, 5.0 and 10.0. The unmodified CHO extended this plateau range to
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Figure 5.10: Comparison of d2
A and SNR2 versus β for human, unmodified and modified

CHO for signal A

include β = 0.01 and 0.1.

For signal A, we modified the CHO for internal noise so that, as seen in Fig-

ure 5.10, the response matches that of the human rather well, with both modified

CHO and human responses significantly high at β = 0.5, 1.0, 5.0 and 10.0. Can this

internal noise modification be generalized to work for different locations and signal

contrasts? Figures 5.11 shows the CHO at B modified using the internal noise pa-

rameters from A. While the human and modified CHO curves no longer match, the

modified CHO does yield a plateau region (β = 0.5-10.0) that matches the human.

These results seem to imply that while internal noise is needed for CHO’s to narrow

the range of sensitivity to β, perhaps some form of generic internal noise could be

used that achieves the range narrowing but does not require a human trial to calcu-

late parameters such as α1 and α2. In terms of even a crude rank order prediction,

even the unmodified CHO, though not perfect, is not far off from the human response.

In [120] the issue of needing a human observer study to set model observer internal
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Figure 5.11: Comparison of d2
A and SNR2 versus β for human unmodified and modified

CHO for signal B .

noise parameters was discussed. A follow up on this work in [121] concluded that

the inclusion of internal noise did not change the ranking of the CHO AUC values.

In [121] the CHO predicts a narrow range of optimal OSEM iteration parameters as

compared to a human ROC study which predicts a much broader range of optimal

number of iterations.

One limitation of the study was the restriction to square-channel profiles. We

tried two versions of 3-channel DOG (Difference-of-Gaussian) filters intended to ap-

proximately cover the same frequency bands of our square-channel filters. The results

for the DOG were not qualitatively different. Both unmodified DOGs showed very flat

SNR2 response over the entire range of β, and when modified by α1 and α2 internal

noise parameters, a narrowing of the β range similar to that seen with the square

channels.

The results are shown in Fig. 5.13 for the SKE/BKS test, both dA and SNR

are lowered (as expected) compared to the SKE/BKE results in Fig. 5.10, but the
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Figure 5.12: SNR2 vs β curve with and without quantization effects.
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Figure 5.13: With background variability the CHO and human observer performance

correlates well even without the addition of internal noise

CHO and human IQM’s were well correlated even without the addition of an internal

noise mechanism. The results in Fig. 5.13 show that at β = 0.1 (vz. Figure 5.1(d))

that performance was not much affected, but that β = 1.0 (vz. Figure 5.1(e)) the

previous high SNR/dA values for SKE/BKE were lowered significantly, and at β =

10.0, corresponding to the smooth image of Figure 5.1(h), the performance dropped

tremendously. For this very limited SKE/BKS study, unmodified CHO’s appeared to

track the human performance. Thus OV dramatically changed the β-response curve.

We plan a more thorough investigation of this issue in the future.
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Chapter 6

A Channelized Hotelling Observer Study of Lesion Detection

in SPECT MAP Reconstruction Using Anatomical Prior

The use of a priori information in image reconstruction to reduce the noise in

an ML estimate has been discussed in chapter 3. One might expect that a prior that

reflects the nature of the underlying radionuclide distribution might give an improved

reconstruction. Such a prior can be obtained by incorporating “side-information”

made available from anatomical images. This chapter is based on our work [122],

which focused on exploring the efficacy of such side information for lesion detection

as a function of boundary proximity. In section 6.1 we give the impetus for using

anatomical side-information for improving image reconstruction in the context of a

detection task. We also give a brief overview of previous work done by other authors.

In section 6.2, we present a simple way to incorporate anatomical information into the

MAP reconstruction. In section 6.3 we show how to rapidly calculate detection per-

formance using analytic methods. Our simulation results are shown in section 6.4. In

the discussion section 6.5.1, we summarize our work. In our discussion in section 6.5.2,

we place our work in the context of efforts by others to improve lesion detectability

using anatomical information.
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6.1 Introduction

In emission tomography (ET) one tries to determine the underlying radiotracer

distribution of radiopharmaceutical within the patient body. This tracer concentra-

tion has high correlation with the underlying anatomy. The high correlation is due

to the fact that different anatomical structures have different physiological function

and hence we expect to see a difference in tracer uptake between these anatomical

regions. A common assumption on anatomy-function correlation is that activity up-

take tends to be slowly varying within an organ or anatomical region, but can suffer

a discontinuity at a region boundary. This general observation is borne out in high

resolution autoradiographic images in which functional images also clearly reveal the

morphology of the underlying structures [123]. In some cases, lesion boundaries can

also be observed in the anatomical scan [124], and so lesion boundary information

can be used to aid in determining whether there is a significant uptake in the lesion

versus its surround. This high correlation with anatomy would lead one to expect an

improvement in the functional image quality with the use of this anatomical “side-

information” in the image reconstruction process. Such anatomical side information

can be made available from coregistered MR (for brain) and from CT (whole body)

images. For instance, high resolution magnetic resonance MR images are acquired as a

part of basic epilepsy presurgical evaluation protocols [125]. Furthermore, the advent

of multi-modality imaging systems like PET/CT [126] and SPECT/CT [127] increase

the availability of coregistered anatomical images. Many ways of improving the ET

reconstruction by incorporating anatomical side information have been proposed, but

the improvement in the ET images must be evaluated based on the performance with

respect to a chosen task - in our case, a detection task.

A common theme for imposing anatomical information is based on applying

some sort of smoothing withing anatomical boundaries while preserving discontinu-
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ities across boundaries. Keeping this theme in mind one might intuitively expect an

improvement in lesion detectability, if lesion boundary information with the precise

extent of the lesion is used for the reconstruction of a hot lesion in a weaker back-

ground. This intuition comes from the fact that the suspension of smoothness across

boundaries prevents the blurring of the lesion into the surrounding tissue, thus pos-

sibly enhancing detection. (Any reconstruction will have a noise-resolution tradeoff,

leading to a somewhat blurred reconstructed lesion.) In support of this, see Figure 6.1

for an example using noiseless reconstructions.

(a) (b) (c)

Figure 6.1: (a) Phantom with lesion present. Lesion contrast is 1.333:1 (b) Noiseless

lesion-present MAP reconstruction without anatomical boundary information. (c)

Noiseless lesion present MAP reconstruction with anatomical boundary information

placed precisely along the lesion boundary. The figure supports the intuition that with

the presence of a boundary information, we expect the detectability of the lesion to

be enhanced.

Based on the above discussion, one might intuitively expect lesion detectability

to be improved by anatomical side information if the lesion were proximate to an

anatomical boundary; and less improved if the lesion was distant from the boundary.

To address this question, we use an SKE/BKE (signal-known-exactly/background-

known-exactly) detection task, and a CHO (channelized Hotelling observer) which is

a numerical observer whose detection performance emulates that of humans for this
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task. To investigate lesion proximity effects, we therefore vary lesion and boundary

locations and calculate an SNR, a scalar figure of merit for detection. In our study,

our results show that these intuitions are incorrect for an SKE/BKE detection task

with a channelized Hotelling numerical observer and our SPECT MAP reconstruction.

Though there are many ways to impose anatomical information, we choose a

MAP (maximum a posteriori) reconstruction method in which a simple smoothing

prior can be modified to incorporate organ and lesion boundary information. Such a

method lends itself to very rapid calculation of the SNR by using analytic methods,

and so allows us to perform many more experiments than we could using sample

methods.

Previous work can be categorized based on the use of the side-information either

in the image reconstruction step or in post-processing the reconstructed image. A lim-

ited survey follows. In [128, 129, 130, 131] a post-processing method for brain imaging

using a convolution-based approach was discussed. The approaches in the former cate-

gory use Bayesian estimation techniques to introduce the anatomical side-information

into the reconstruction processes. In recent work in Comtat et al. [132] and Bruyant

et al. [124], segmented anatomical labels were used to manipulate the weighting of a

quadratic prior. Baete et al. [133] have developed an anatomy-based MAP algorithm

for PET brain imaging. The algorithm takes into account the knowledge that the

activity in the white matter (WM) has a fairly uniform spatial distribution with an

unknown mean and the activity in the cerebrospinal fluid (CSF) is known a-priori

to be negligible. This “A-MAP” scheme uses an edge-preserving concave prior [134]

for the grey matter (GM) and Gaussian priors for white matter (WM) and CSF. The

rationale of using a prior based on relative difference is that, since glucose metabolism

in GM is not uniform but locally varying throughout the entire brain, the amount of

penalty should not be based on the absolute, but rather on the relative difference of
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activity of neighboring pixels. Gindi et al. [123], Leahy and Yan [135], Lipinski et al.

[136] and Ouyang et al. [137] used an edge-preserving Gibbs prior where the anatom-

ical boundary information was used to control the formation of discontinuities in the

emission reconstruction. These methods estimate pixel values as well as “line sites”

(discontinuity formation) [67]. A low line-site value penalizes pixel difference whereas

a high value allows difference. A spatially varying weight for the formation of line-sites

modulates the Gibbs potential so as to encourage the formation of discontinuities in

the emission reconstruction at sites corresponding to discontinuities in the anatomi-

cal image. Ardekani et al. [138] proposed an minimum cross-entropy reconstruction

algorithm that incorporates multi-spectral MR data into a cross-entropy prior, which

performs edge preserving smoothing based on the anatomical information. An inter-

esting MAP approach by Hsu and Leahy [139] used a segmented anatomical image

to impose a graded form of smoothing in inter-region areas where partial volume ef-

fects limit one’s ability to impose sharp continuity breaks. An elaborate hierarchical

Bayesian approach was proposed by Bowsher [140] to jointly estimate anatomical side

information as well as functional tracer uptake. Sastry and Carson [141] suggested

a label-based tissue composition model to impose a Gaussian distribution within a

tissue region. The exact tissue fractions for each pixel were provided from segmented

MR brain images. Rangarajan et al. [142] used a joint-mixture framework to incor-

porate anatomical information. In [143] Bowsher et al. considered registration of the

(MRI/CT) anatomical images with the (SPECT/PET) emission grid via optimization

of an (SPECT/PET) reconstruction objective function which included the registration

parameters. They provide a natural framework for calculating joint uncertainties in

registration parameters and radiotracer activity. Much of the previous work reports

improvement with anatomical priors in terms of ROI quantitation tasks. Baete et

al. [125] & Bruyant et al. [124] address improvements for a detection task.
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6.2 Background

6.2.1 Quadratic Prior With Anatomical Information

We assume the anatomical information (from a segmented preregistered anatom-

ical image) to be present in the form of a tissue label map, where label ln is the tis-

sue class of voxel n. The quadratic prior given in (3.9) can be modified to capture

anatomy-function correlation by smoothing within an organ or lesion boundary while

suspending smoothing across boundaries. The prior, similar to ones used in [124] and

[132] , is given by

ΦP (f) = −
∑
n

∑
j∈N (n)

1

2

ωnj(ln, lj)

dnj

(fn − fj)
2 (6.1)

where N (n) defines neighbors of pixel n, dnj is the Euclidean distance between voxels

n and j, and the penalty weight ωnj(ln, lj) is dependent on the anatomical labels of

voxels n and j as follows:

ωnj(ln, lj) =

⎧⎪⎪⎨
⎪⎪⎩

1, if ln = lj,

0, else
(6.2)

Thus, if n and j belong to different anatomical regions, ωnj is set to 0, thus “break-

ing continuity” between voxels n and j. Note that if want to turn off anatomical

information, we simply set ω(ln, lj) = 1 unconditionally and thus obtain a uniform

space-invariant quadratic prior exactly as the one in (3.9). For the 2D 4NN neighbor-

hood system in Fig. 6.2 the voxel n and j2 belong to different tissue classes. Hence

the anatomical boundary formed between the two pixel results in a smoothing discon-

tinuity reflected by ωnj2 = 0. The smoothing between voxel n and voxels j1, j3, j4 is

retained since they belong to the same tissue class as n. In the 8NN system in Fig. 6.2

the penalty weight between voxel n and the voxels j2, j7, j6 is set to zero since they

belong to a tissue class other than that of n. The Euclidean distance of j7 and j6 is
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taken care of by the term dnj in (6.1). The smoothing between n and j1, j3, j4, j5 and

j8 is retained since they belong to the same tissue class.

The anatomical prior in (6.1) would reduce noise by smoothing within anatomical

regions and preserve edges by not blurring across different anatomical regions. It will

be convenient to re-express the prior ΦP (f) as a quadratic form −1
2
fTRf , where the

N × N matrix R is the Hessian of −ΦP (f) with matrix elements given by

[R]nj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j′∈N (n)

2
dnj′

ωnj′(ln, lj′) j = n

− 2
dnj

ωnj(ln, lj) j ∈ N (n)

0 j 
∈ N (n) and j 
= n

(6.3)

Although we considered the dimensionality of the anatomical images to be the

same as that of f , many times there is in fact, a resolution mismatch. Each voxel

in a functional image encompasses a number of high-resolution segmented MR or CT

voxels. Often several high-resolution anatomical voxels with disparate labels may

constitute a single functional voxel resulting in a fractional tissue composition in the

corresponding voxel. Due to this resolution mismatch there may not be a distinct

anatomical boundary. If a voxel is composed of fractions of different tissue classes

then the corresponding anatomical boundary between those classes gets diluted at

this voxel. Often, convoluted anatomical structures have thicknesses less than the

resolution of the reconstruction grid. It is difficult to resolve these anatomical struc-

tures given the finite axial and transaxial resolution of the functional images. This

causes at least a few voxels to be composed of different tissue classes (partial volume

voxels). Generally if not accounted for, this partial volume may lead to underes-

timation of tracer in that anatomical structure at those partial volume voxels. In

[128, 129, 130, 131, 133, 134] techniques using anatomical information are used to

minimize the partial volume effects (PVE) in the convoluted gray matter areas in

brain imaging. Some segmentation algorithms give a fuzzy classification i.e. they re-

turn a probability that a voxel belongs to a certain tissue class. In this case even in
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Figure 6.2: The figure illustrates the use of anatomical boundary information in a 4NN

and 8NN neighbourhood system. The voxels on either side of anatomical boundary

belong to different classes. The penalty weight for the voxels across the corresponding

boundary is set to zero. Shading indicates tissue class.
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the absence of function-anatomy resolution mismatch we would have partial volume

voxels. Further, there may be small-scale misalignments due to errors in the registra-

tion of functional and anatomical images. Registration errors are typical for images of

the same patient using two different imaging modalities. This inter-modality misalign-

ment is less than a few pixel distances in the functional images since brain is a rigid

registration. The registration errors in whole body image can be big. Miss-registered

edges or blurred edges result in imperfect anatomical information. This imperfect side

information would reduce the effectiveness of anatomical information. We assume that

if boundary proximity effects are significant, they should show up in the idealized case

where both effects are absent. Thus in our study we do not consider partial volume

effect and our prior assumes each voxel to be assigned to only one tissue type, though

it can accommodate partial volume effects with a slight modification, similar to the

“blurred label” scheme in [132].

So far, we have implied a model in which different anatomical regions have dif-

ferent activity. But to complicate matters, there may be an emission discontinuity

with no corresponding anatomical discontinuity. For example, a tumor avid lesion in

an organ may not have an anatomical signature. In the same vein, an anatomical

lesion boundary may not correspond to an emission hot-spot, e.g. a necrotic lesion

that shows up in CT may not show up in SPECT. In our simulations we consider both

such cases of false boundaries.

6.3 Methods

The CHO SNR calculations typically require sample methods as discussed in

section 4.2.4. For each of the many cases (many lesion locations and many boundaries)

we will consider, the calculation of SNR using sample methods requires a few hundred

sample reconstructions. This is a formidable amount of computation. The SNR is
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applied to an SKE/BKE detection task since such a task can clearly elicit the effects of

boundary proximity. In addition, SKE/BKE tasks lend themselves to rapid evaluation

of SNR for the CHO using the theoretical methods. In this section, we focus on the

theoretical methods used to rapidly obtain SNR.

From section 4.2.3 we know that Kf̂ is an average covariance. For our SKE/BKE

task and for the low contrast signals that we will use, it is a good approximation to

use Kf̂1
for Kf̂ . We can justify this approximation because our analytically calcu-

lated SNR’s (which use Kf̂1
) are validated by sample-method SNR’s (computed using

Kf̂1
+Kf̂2

2
). The mean channel responses become ¯̂u2 = T TL¯̂

f2 and ¯̂u1 = T TL¯̂
f1. The

covariance of these extracted 2D images is LKf̂1
LT and the corresponding covariance

of the channel responses, Kû, becomes T TLKf̂1
LTT . With the inclusion of slice ex-

traction and the approximation Kf̂ ∼ Kf̂1
in (4.19), the CHO SNR becomes

SNR2 = (
¯̂
f2 − ¯̂

f1)
TLTT (T TLKf̂1

LTT )−1T TL(
¯̂
f2 − ¯̂

f1) (6.4)

We shall base our sample-method calculation of SNR on (4.19) and our analytic meth-

ods on (6.4).

We perform two types of studies. In the first, termed the “organ boundary” ex-

periment, we place a lesion at varying distances from an organ boundary and evaluate

the SNR vs. distance for the case of an anatomical prior and for an ordinary smooth-

ing prior (no anatomy). In the second, termed a “lesion boundary” experiment, there

were no organ boundaries, only a uniform background with a single lesion. We fix

the functional lesion size and location but vary the anatomical boundary about the

lesion so that its radius increases beyond the functional lesion. At its minimum radius,

the anatomical boundary exactly encloses the lesion boundary. The maximum radius

corresponds to no boundary. The lesion boundary experiment is also motivated by

the following consideration: A perfect anatomical lesion boundary is the extreme case

of isotropic boundary information at minimal proximity in all directions. We relax
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this “ultimate” anatomical information by increasing the radius of the boundary until

there is no boundary, and then we assess the effects on SNR to gain insight.

6.3.1 Organ Boundary Experiment

Let sj denote a lesion centered at j. Then, f2j = b + sj is the signal-present 3D

object. Let
¯̂
f2j be the the mean reconstruction of the object with sj. Denote Tj as

the channel template matrix centered at j. From (6.4) the detectability of the lesion

centered at j is given by

SNR2
j = (

¯̂
f2j − ¯̂

f1)
TLTTj(T T

j LKf̂1
LTTj)

−1T T
j L(

¯̂
f2j − ¯̂

f1) (6.5)

The quantities
¯̂
f2j and

¯̂
f1 are well approximated by noiseless reconstructions. The

main theoretical computation is in the terms (T T
j LKf̂1

LTTj) in (6.5). This involves

the difficult-to-compute covariance matrix Kf̂1
. For our BKE MAP case, we rewrite

(4.36) the theoretical expression for the covariance as

Kf̂1
= (F + βR)−1F(F + βR)−1 (6.6)

where F = HT diag
(
Hf1/(H¯̂

f1)
2

)
H is an N×N matrix that approximates the Fisher

information matrix.

For uniform quadratic priors with no continuity breaking, the Hessian of the

prior, R, is triply block circulant (shift invariant if we ignore the edge pixels), hence

(T T
j LKf̂1

LTTj) in (6.5) can be evaluated using a local shift invariance assumption

and Fourier approximations [114, 116] as described in Section 4.3. But with the

incorporation of continuity breaking, the matrices R become shift variant and hence

we cannot use the Fourier tricks. Instead we use the following alternate method.

Substituting (6.6) in (T T
j LKf̂1

LTTj) we get

T T
j LKf̂1

LTTj
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= T T
j L(F + βR)−1F(F + βR)−1LTTj

≡ XT
j FXj (6.7)

= XT
j HT diag

(
Hf1/(H¯̂

f1)
2
)
HXj (6.8)

where Xj ≡ (F + βR)−1LTTj is an N × Nc matrix. The ith column of matrix Xj,

given by vector xi
j, can be obtained by solving the following linear system

(F + βR)xi
j = LT ti

j (6.9)

where ti
j is the ith channel template centered at j.

Equation (6.9) must be solved for all i = 1, . . . , Nc channels and j = 1, . . . , J

locations. We can solve this matrix-vector equation for a given xi
j using a pre-

conditioned conjugate-gradient (PCG) method with a diagonal preconditioner [144].

Solving for one xi
j is computationally equivalent to a few reconstructions. Thus

(6.9) would involve an order of JNc reconstructions. In (6.8), the matrix HXj =[
Hx1

j Hx2
j . . . HxNc

j

]
is obtained by projecting each column of Xj. (In

this notation Hxl
j, the projection of xl

j is the lth column of HXj). Thus HXj entails

Nc projections. Given HXj, each mnth element of the Nc × Nc matrix T T
j LKf̂1

LTTj

can be calculated by the dot product of Hxm
j and Hxn

j weighted by diagonal elements

of diag
(
Hf1/(H¯̂

f1)
2

)
. That is

[
T T

j LKf̂1
LTTj

]
mn

= (Hxm
j )T diag

(
Hf1/(H¯̂

f1)
2

)
Hxn

j .

Thus in (6.8) we have shown how to compute the crucial Nc×Nc matrix T T
j LKf̂1

LTTj.

Since Nc is small, the inversion of this Nc × Nc matrix is rapidly accomplished.

The terms
¯̂
f1 and

¯̂
f2j in (6.5) can each be evaluated by a noiseless reconstruction

[112] for each lesion location plus one noiseless reconstruction for a signal-absent case,

requiring a total of J + 1 reconstructions. Since (6.9) requires ∼ JNc reconstructions,

our theory method to calculate the CHO SNR at locations j = 1, · · · , J with varying

proximity to a fixed boundary thus entails an order of J(Nc + 1) + 1 reconstructions,

where Nc is typically 3-5. Sample methods as described in section 4.2.4 would take
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(J +1)Nsamp reconstructions, where Nsamp is the number of sample reconstructions for

a given object. Since Nsamp should 10 ∼ 100 times Nc [110], the net computational

savings using theory vs. sample methods is thus roughly two orders of magnitude.

6.3.2 Lesion Boundary Experiment

In this scenario, we take r = 1, · · · , R spherical boundaries with varying radii

circumscribing the fixed-location lesion s. (The quantity r is not the radius; it indexes

the boundary radius as will be shown in Figure 6.3 below.) Our intent is to relax the

boundary confinement (proximity) of the fixed lesion by surrounding it with continuity-

breaking boundaries of increasing radii. To study the effects of r = 1, . . . , R different

boundaries on the detectability of the lesion, we have to calculate the CHO SNR for

the rth boundary given by

SNRr
2 = (

¯̂
f

r

2 −
¯̂
f

r

1)
TLTT (T TLKf̂r

1
LTT )−1T TL(

¯̂
f

r

2 −
¯̂
f

r

1) (6.10)

where f̂ r
2 and f̂ r

1 are the reconstructions of f2 and f1 using the rth lesion boundary in-

formation in the prior. Figure 6.3 shows an example of varying anatomical boundaries

for r = 1, . . . , 8.

As in section 6.3.1, the main computation is in the terms (T TLKf̂r
1
LTT ) in (6.10).

Following (6.6), (6.7), (6.8), (6.9) in section 6.3.1 but for given r instead of a given j, we

can again compute (T TLKf̂r
1
LTT ). Note that in (6.6), R becomes Rr, i.e. the R prior

matrix indexed by r, and F becomes F r, given by F r = HT diag
(
Hf1/(H¯̂

f
r

1)
2

)
H.

Furthermore since the lesion is now centered at a single location, the channel matrices

Tj becomes a single matrix T . With this reindexing, and for R lesion boundaries and

Nc channels, we obtain the following computational burden for the lesion boundary

case. It takes ∼ RNc reconstructions to obtain (T TLKf̂r
1
LTT ) for r = 1, · · · , R.

For a single boundary,
¯̂
f

r

1 and
¯̂
f

r

2 can be calculated using 2 noiseless reconstructions.

Therefore, for R different boundaries, the theory method takes on the order of RNc +
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r=1 r=2 r=3 r=4

r=5 r=6 r=7 r=8

Figure 6.3: 2D cross-section of 3D spherical anatomical boundaries of increasing radii

centered on a fixed small lesion. The radii are indexed by r. Note r = 1 corresponds

to a boundary coincident with the lesion boundary and r = 8 to no boundary. Dark

pixels are inside the boundary.

2R reconstructions, while sample methods would involve 2RNsamp reconstructions.

The net computational savings is again about two orders of magnitude.

6.4 Results

We conducted 3D SPECT simulations to explore the effects of boundary informa-

tion. In all cases, we used Nc = 3 DOG bandpass channels in the radially symmetric

CHO as shown in Figure 4.3(a)(b)(c). The center frequencies of the 3 DOG channels

were 0.0625 cycles/pixel, 0.1250 cycles/pixel and 0.250 cycles/pixel. These channel

parameters were chosen according to criteria described in our work [95]. These values

would correspond to 0.625 cycles/degree, 1.25 cycles/degree and 2.5 cycles/degree if

δview = 38cm and δpix = 0.0645cm as is in section 5.4.2. Though this would cause

the displayed image width to be 4.2 cm. In [33] the center frequencies of the Sparse

DOG channels correspond to 1 cycles/degree, 2 cycles/degree and 4 cycles/degree. We

used the theoretical methods of section 6.3 to calculate SNR and validated the theory

methods with sample methods.
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Figure 6.4: (a) The 9th slice of the phantom through the lesion center. The figure

shows four of the ten prospective lesion locations. (b) Horizontal profile plot through

center of second lesion from top. In the profile plot the lesion is easily seen, centered

at pixel 25.

We performed an organ boundary experiment with a 3D MCAT [145, 146, 147]

64 × 64 × 16 phantom with cubic voxels of size 0.625cm and an attenuation map at

140 KeV. The 16 slices comprised a region around the liver (The slices start where the

lungs end and contain most of the liver). A depth-dependent collimator response was

modeled as a Gaussian psf whose σ was modeled as σ (cm) = 0.013 d (cm)+0.0392 cm

where d is depth measured from the collimator face. No scatter was simulated. Fig-

ure 6.4 shows the 9th slice of the phantom with four prospective lesion locations in the

liver at varying distances from the (inner edge) straight liver boundary. We used 10

lesion locations across the liver from one edge to the other. The lesion is a 3 × 3 × 3

cube with the 8 corner voxels deleted and with a low-contrast lesion-to-background

ratio of 6:5. We note that for SKE/BKE studies in ECT, low-contrast lesions are

required to avoid unacceptably high SNR’s. Each camera face comprised 96 × 32

square bins of size 0.625 cm and was placed at a distance of 30 cm from the center of

rotation. We simulated a parallel-beam geometry with 65 equispaced projection an-
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gles. The total number of counts was 4.8M. The reconstructions with a regularization

weight of β = 0.001 used the COSEM-MAP [84] algorithm with 16 subsets and were

run till convergence. The smoothing parameter β was chosen to obtain a reasonable

noise-resolution tradeoff. Organ boundary information was applied using (6.2) in the

reconstructions.
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Figure 6.5: (a) Theory SNR plotted as a function of location ranging from the inner

edge of the liver to the outer edge. “Location” is proportional to distance from the

inner edge. (b) Sample SNR along with error bars plotted as a function of location

ranging from the inner edge of the liver to the outer edge. In each case, the curves for

the anatomy and no-anatomy cases coincide almost exactly, so the plots appear as a

single curve.

Figure 6.5(a) plots SNR vs. lesion location from the inner edge to the outer edge

of the liver boundary for the cases of with/without anatomy. The CHO SNR’s were

calculated using the theoretical expressions for SNR in (6.5). There is no visible dif-

ference in the anatomy/no anatomy curves. One thousand two hundred lesion-present

and lesion-absent reconstructions were used for the sample validation of the SNR using

(4.21),(4.22) and (4.19). The sample SNR curves are shown in Figure 6.5(b). They

show close correspondence with the theory curves in Figure 6.5(a). Error bars calcu-
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lated using a jackknife procedure [111] as described in section 4.2.4 and displayed in

Figure 6.5(b) represent a 68% confidence interval. As seen, there is no visible anatomy

vs. no-anatomy difference in the SNR (for either sample or theory methods) even when

the lesion is adjacent to either edge of the liver. Figures 6.6(a)(b) show signal-present

anecdotal reconstructions with no anatomy information and with anatomy informa-

tion, respectively. Figures 6.6(c)(d) are anecdotal signal-present reconstructions with

the signal contrast enhanced for display purposes.

(a) (b)

(c) (d)

Figure 6.6: Slice from anecdotal signal-present reconstructions (a) without organ

boundaries (b) with organ boundaries. Signal-present reconstructions with a signal

contrast increased for visualisation (c) without and (d) with anatomical boundary dis-

continuities. Note (a)(b) share a common gray scale and (c)(d) share a common grey

scale.

The bowing of the SNR curves is due to attenuation effects. The voxel corre-
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sponding to the location # 1 in Figure 6.5 is near the object center while that at

location # 10 is near the edge of the object. Pixels near the center will suffer lower

SNR relative to those near the edge, hence the bowing. This is because photons em-

anating from the voxel at the center of the object undergo attenuation on their path

to the camera faces at each of the 65 projection angles, while those emanating from

the edge of the object do not undergo attenuation on their path towards the camera

faces closer to the corresponding edge. When attenuation is removed, the SNR curves

in Figures 6.5(a)(b) become nearly flat.

One might suspect that our main conclusion for the organ boundary experiment,

i.e. no separation of the anatomy and no-anatomy curves in Figure 6.5, would be

altered with the inclusion of internal noise described in section 4.2.5 in the CHO. To

address this we used an internal noise model summarized by the following transforma-

tion of the diagonal of Kû : [Kû]ii → [Kû]ii + α1 [Kû]ii + α2 maxj [Kû]jj where α1, α2

were positive scalars as described in section 5.5. We tried 441 combinations of (α1, α2).

In each case, the curves in Figure 6.5 were lowered, but they remained coincident, so

that internal noise did not affect our main conclusion.

Though the results in Fig. 6.5 were for a single β we repeated the organ boundary

experiment using theory methods, again for a high (10β) and low (0.1β) smoothing

parameter. We observed the anatomy vs no-anatomy curves remained coincident for

all values of β. In addition the low β curve shifted downward about 30% and the high

β curve shifted upward roughly 5%.

For the organ boundary experiment we observed no difference in SNR for MAP

with anatomy versus MAP without anatomy even when the lesion is at its closest

distance to the anatomical boundary. One might expect a different result if instead of

an non-anatomical MAP reconstruction, a post smoothed ML (psML) reconstruction

was used. We investigated this issue using sample methods to compute SNR for
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post-smoothed ML (psML) and theory methods to compute SNR for MAP with our

anatomical prior. For MAP, the SNR was plotted vs smoothing parameter β, and

for psML, SNR was plotted vs σps, the standard deviation of a 3-D Gaussian post-

smoothing kernel. We used the case of that lesion in Figure 6.5(a) at minimal distance

to the inner edge of the organ boundary. To obtain the psML results, we reconstructed

the data with 90 iterations of OSEM with 16 subsets followed by 10 iterations of the

ML-convergent COSEM-ML [84] algorithm with 16 subsets. A total of 2400 samples

for the lesion present and -absent case were used. Figure 6.7 shows the SNR curve

for MAP with anatomy compares favourably to the psML curve and the MAP peak

is 12% above the psML peak. Since we also observed that the SNR for MAP with

anatomy is equal to SNR for MAP without anatomy we can conclude that for the

CHO, MAP reconstructions without anatomy outperform psML resonstructions. Qi

in [148] came to the same conclusion.
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Figure 6.7: SNR curves for a lesion from the organ boundary experiment closest to

the inner edge of the liver.(a) Theory SNR as a function of β for MAP with organ

boundary information. (b) Sample SNR for post smoothed ML reconstruction as a

function of σps.
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We performed a lesion boundary experiment using a 64 × 64 × 16 object with

cubic voxels of size 0.625 cm. Here, as seen in Figure 6.8(a), the background was

uniform and the lesion was placed at the center of the object volume. The lesion, a

3 × 3 × 3 cube with the 8 corner voxels removed, had a contrast of 1.345 relative to

background. All other imaging and reconstruction parameters were as before except

that a smoothing parameter β = 0.002 was used. The smoothing is reasonable in

reducing the noise in the reconstruction without over-smoothing the reconstructed

signal. Anatomical information in the form of R spherical anatomical lesion boundaries

indexed by r = 1, · · · , R was used in the reconstructions. Anatomical information is

indexed by a parameter r, with r = 1 implying perfect knowledge of the functional

lesion boundary, r = 2 imperfect knowledge where the radius of the surrounding

anatomical lesion boundary is enlarged slightly, r = 3, 4, 5, 6, 7 even more imperfect

knowledge with even larger radii as shown in Figure 6.3, and with r = 8 corresponding

to no lesion boundary (no anatomical knowledge). MAP reconstructions with and

without anatomical information were evaluated using our theoretical expressions for

the SNR in (6.10). The observer is applied at the lesion site and evaluated vs. r.

Nine hundred lesion-present and lesion-absent reconstructions for each r were used

for the sample validation of the SNR using (4.21), (4.22) and (4.19). Error bars

calculated using a jackknife procedure [111] and displayed in Figure 6.8(b) represent

a 68% confidence interval.

From Figure 6.8(b) we see that the SNR does not significantly vary with r and

that the theory and sample methods correspond well. This result belies the intuition

discussed in Figure 6.1. That the SNR vs. r curve is indeed flat is borne out by the

anecdotal signal-present (+) and -absent (-) reconstructions shown in the first four

rows of Figure 6.8(c). Note that even in the signal-absent cases, the lesion boundaries

can induce false lesions as seen in the 4th row of Figure 6.8(c). For signal-present
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Figure 6.8: Effects of increasingly inaccurate boundary information about the lesion.

(a) 9th slice of the phantom through center of the lesion (b) SNR versus proximity of

boundary with r=1 a perfect boundary and r=8 no boundary. Plot shows that SNR

versus r is relatively flat, with theory and sample methods in agreement. (c) Each

column corresponds to a boundary indexed by r. The first four rows show anecdotal

reconstructions with the lesion present (+) and absent (-). The fifth row plots variance

at each pixel and the sixth row is the difference of reconstructions.

cases, the lesion boundaries can induce reverse contrast (cold) lesions in place of the

hot-lesion signal. The fifth row of Figure 6.8(c) comprises the variance images (at a

common gray scale) of the 9th slice. The sixth row shows the 9th slice of the noiseless

reconstructions of the signal, given by L¯̂
f

r

2 − L¯̂
f

r

1. Note that the variance level along

the perimeter of the anatomical lesion boundary increases as the lesion boundary

becomes more confining. This accounts for a typical result of a false positive lesion as

seen in the fourth row, column r=1 and the cold lesion as seen in the third row, column
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r = 1. A similar result of increased variance along the perimeter of the lesion boundary

accompanied by false positive lesions is reported in [132]. The high variance can also

lead to false negative reports as seen in the images in row 3, columns r=4,6 and 8.

The last row illustrates that the anatomical lesion boundary restricts the spread of the

mean reconstructed lesion and yields for noiseless images a higher contrast with more

restricting boundaries. One would expect this latter effect to increase SNR as r is

reduced. However, tight boundaries also increase variance (row 5), and this decreases

SNR. The trade-off of these two effects results in the slow variation of SNR with r

seen in Figure 6.8(b).

We repeated the lesion boundary experiment of figure 6.8(b), but with a smaller

1 × 1 × 3 pixel lesion whose size in the plane of observation was less than the system

resolution. The reason for doing this in the case of the lesion boundary experiment is to

see if anatomical information assists lesion detection particularly when the functional

lesion as well and the anatomical lesion boundary is smaller than the system spatial

resolution. The FWHM at the center of rotation is 1.01cm. We added one additional

lesion boundary, indexed by r = 0, that exactly encompassed the smaller functional

lesion (0.625cm wide in the plane of observation). The resulting theory SNR vs r

curve was again invariant with r.

We again tested whether the inclusion of internal noise would affect our main

conclusion - the invariance of SNR with r. As before, we used 441 combinations

of (α1, α2) in the internal noise modification of Kû. We observed that inclusion of

internal noise lowered the overall SNR(r) curve, but did not change the invariance

with r. Internal noise, therefore, did not alter our conclusions.

The Figure 6.8(b) shows the SNR(r) for a single β which is flat and the SNR≈=

1.7. We used theory to repeat this lesion boundary experiment for 10β and 0.1β

and observed that curves remained fairly flat with r, but that the SNR for the low
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0.1β was much lower (SNR≈1.2) and the SNR for the higher 10β was slightly higher

(SNR≈1.83).

For the lesion boundary experiment we observed that the SNR at r = 1 was

equal to the SNR at r = 8. One might expect the SNR for a non-anatomical non-

MAP psML reconstruction instead of a non-anatomical (r = 8) MAP reconstruction

to be different from the SNR at r = 1. To investigate this issue we used sample

methods to compute SNR for psML and theory methods to compute SNR for MAP

with r = 1. To obtain the psML results, we reconstructed the data with 90 iterations

of OSEM with 16 subsets followed by 10 iterations of the ML-convergent COSEM-ML

algorithm with 16 subsets. We used a total of 1800 samples for signal-present and

-absent reconstructions. The results are displayed in Figure 6.9.
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Figure 6.9: For the lesion boundary experiment (a) SNR for MAP(r = 1) plotted vs

smoothing parameter β, (b) SNR for psML plotted vs σps.

For the range of β and σps in Figure 6.9 here, the peak SNR(β) is 15% greater

than that of SNR(σps). Since SNR for MAP with r = 1 is same as for MAP with

r = 8 one could conclude that for a CHO, MAP reconstructions outperform psML

reconstructions. A similar result is observed for a non-anatomical MAP reconstruction
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by Qi in [148] and for an anatomical MAP reconstruction in Nuyts in [149].

One observes that with no regularization (i.e β = 0 a.k.a psML with σps = 0)

the SNR is much lower for both organ boundary and lesion boundary experiments.

6.5 Discussion

6.5.1 Summary

We studied the effects of anatomical information on lesion detectability using

anatomical and non-anatomical MAP priors, an SKE/BKE task, a CHO observer

and a scalar figure of merit SNR. We investigated, in this context, whether SNR

would be improved with the incorporation of organ boundary information. We further

investigated whether this improvement in SNR would be a function of proximity of

the lesion to an organ boundary. We concluded that SNR was unchanged with the

addition of organ boundary information, and in particular, we found no change in

SNR at any proximity.

We also investigated whether the incorporation of anatomical lesion boundaries

coincident with the assumed functional lesion boundary (our r = 1 case) would im-

prove SNR relative to no anatomical information (our r = 8 case). We further in-

vestigated whether SNR improvements, if any, would vary if the anatomical lesion

boundary was less proximate (our 1 < r < 8 case) to the assumed functional lesion

boundary. We concluded that SNR was unaffected by the inclusion of perfect (r = 1)

lesion boundaries. In particular, SNR was insensitive to r. This insensitivity may be

due to the fact that for the low lesion contrast necessary for an SKE/BKE task, the

detection performance is limited by the appearance of false positive and false negative

lesions within anatomical lesion boundaries. This is caused by an increase in variance

within the lesion boundary as seen in figure 6.8(c).

In sum, we found that anatomical boundary information did not affect SNR in
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our context, and that SNR was unaffected as proximity was varied. We note that

related studies by others, discussed in section 6.5.2, do not include proximity effects.

Hence any comparisons to our work involve only perfect (r = 1) lesion boundary

information. In addition, comparisons involving organ boundaries do not take into

account lesion location with respect to the organ boundary.

One can gain some insight into our negative results by noting that, for our re-

construction method, an optimal linear observer, the Hotelling observer (HO), would

yield no SNR difference with anatomy versus without anatomy. Note that the CHO is

a Hotelling observer applied to channel responses instead of directly to pixels. The HO

is a limiting form of the CHO as we increase the number of channels so that a unit-

weight channel template is applied to each pixel. Note that SNR2
HO ≥ SNR2

CHO.

Qualitatively, the smoothing prior without anatomy acts as a linear information-

preserving slowly-varying smoothing filter in the reconstruction domain, and the HO

is insensitive to this smoothing if the reconstruction step does not remove informa-

tion. When we adjust R to incorporate anatomical information, it simply induces a

form of smoothing on the reconstruction that yields sudden changes along anatomical

loci and the HO is again insensitive to this form of smoothing. Yet another way to

see that SNRHO is insensitive to R, and hence insensitive to anatomical priors, is to

note that the SNRHO can be expressed directly in the sinogram domain [150, 33, 29]

as SNRHO = sTHT diag( 1
Hf1

)Hs. Therefore any difference in the anatomy versus no-

anatomy results must be due to the inclusion of channels, though, as mentioned earlier,

we have seen little difference with our CHO.

In [150] it was shown, for the SKE/BKE MAP case, that if F and (F + βR)

were invertible, then SNR2
HO as calculated in the reconstruction domain would be

independent of the smoothing as encoded in R. The result in [150] was derived using

Fourier techniques and applied to forms of R that encoded simple space-invariant
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quadratic smoothing, but it is easy to generalize this argument to the form of R,

quadratic prior with continuity breaking vz (6.1), used for our anatomical priors. The

SNR2
HO on applying the Hotelling observer to the reconstructed images is given by

SNR2
HO = (

¯̂
f2 − ¯̂

f1)
TK−1

f (
¯̂
f2 − ¯̂

f1) (6.11)

where Kf̂ = 1
2
(Kf̂1

+ Kf̂1
). As introduced by [150, 94] for an SKE/BKE case the

difference between mean reconstructions is given by

(
¯̂
f2 − ¯̂

f1) ≈ (F + βR)−1HT diag

(
1

H¯̂
f1

)
Hs. (6.12)

where F = HT diag
(
Hf1/(H¯̂

f1)
2

)
H. Substituting (6.12) and (6.6) in (6.11) we get

SNR2
HO ≈ sTHdiag

(
1

H¯̂
f1

)
H(F + βR)−1

(
(F + βR)−1F(F + βR)−1

)−1

(F + βR)−1HT diag

(
1

H¯̂
f1

)
Hs. (6.13)

Using the fact that F ≈ HT diag( 1

H¯̂
f1

)H ≈ HT diag( 1
Hf1

)H [69], we obtain

SNR2
HO ≈ sTHT diag

(
1

H¯̂
f1

)
Hs ≈ sTHT diag(

1

Hf1
)Hs (6.14)

Indeed, it is possible, given the strictures on F and (F + βR), to calculate SNR2
HO

using only sinogram quantities [150, 33] having nothing to do with R.

We indeed verified in a 2D organ boundary experiment that the SNR2
HO was

insensitive to the inclusion of anatomical information and was greater than SNR2
CHO.

We used a 64 × 64 rectangular phantom consisting of a hot region and cold region

separated by a vertical edge which was used as an organ boundary in presence of

anatomy. Figure 6.10(a) shows a horizontal profile of the phantom drawn across the

vertical organ boundary. A single pixel lesion (contrast 6:1) was placed at various

points along this horizontal profile on either side of the vertical edge. Attenuation

effects and detector response were not modeled in the projection data. For each
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Figure 6.10: (a) Horizontal profile (across a vertical organ boundary) of noiseless

signal-absent reconstruction with/without organ boundary information. (b) SNR vs

lesion location. The SNRHO is observed to be same with and without boundary

information. Hence a single curve for the Hotelling SNR is shown, represented by

‘· · ·� · · ·’. The two other curves lying below the Hotelling curve are the SNRCHO

with/without anatomy. Dashed dotted vertical line indicates boundary position.

lesion location, we computed both SNR2
HO and SNR2

CHO for the cases of with/without

anatomy. For this test case without physics the SNR2
CHO versus lesion location curves

differed for anatomy versus no anatomy in the vicinity of the boundary. In contrast, the

SNR2
HO versus lesion distance curves coincided to several decimal places. Furthermore,

the SNR2
HO curve remained invariant when it was computed directly from sinogram

data. Hence the SNRHO is shown by a single curve in Figure 6.10(b) lying above

SNRCHO curves for with/without organ boundary. The SNRCHO with organ boundary

decreases near the boundary (dashed line).

Our selection of a 3-DOG channel scheme does not seem especially important

and we have observed similar results with different channel schemes. For any reason-

able β, the anatomy/no anatomy SNR curves remain in close agreement. We also

observed that the inclusion of internal noise did not alter our conclusions. Our CHO

used radially symmetric channels even near organ boundaries where a non-symmetric
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channel might be more appropriate. The use of radially symmetric channels is jus-

tified [30] when the signal profile and noise covariance is radially symmetric around

the lesion. This is true for our lesion boundary experiment. But for the organ bound-

ary experiments, the signal spread and the covariance are anisotropic and the use of

anisotropic channels might give different performance. Partly to address this prob-

lem, we designed our somewhat artificial lesion boundary experiment to be completely

isotropic in 3D. We again observed little difference in SNR as the anatomical lesion

boundary radius was expanded to the point where the boundary disappeared.

Finally, this work should obviously be extended to human observer testing. Pre-

liminary results using human experiments with a 2AFC methodology [29] to measure

SNR showed agreement of human and model observer for our lesion boundary exper-

iment, but far more work is needed.

6.5.2 Related Work

Any comparison of our results to other work must be couched in the context of the

components of a generalized detection task. Thus one must specify the task (detection

or detection plus localization or localization). The object model including signal (size,

contrast, shape, location known or unknown) and background (variable or fixed) must

be stated. The imaging modality (PET or SPECT) and imaging model (Monte Carlo

vs analytical projector, modeling of scatter or other effects) must also be stated. One

must consider the nature of the anatomical boundary information (the particular type

of lesion and or organ boundary) and the reconstruction method (MAP with some

anatomical or non-anatomical prior, post smoothed ML). To measure image quality,

one must specify the observer + scalar figure of merit (CHO+SNR, NPW+SNR,

scanning CNPW+ALROC, human+ALROC, human+localization accuracy.) Finally

many studies focus on the variation of the figure of merit with some regularization

parameter (smoothing weight β in MAP, post smoothing kernel for ML, number of
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iterations).

It will be useful in our comparisons below to be more specific about our anatom-

ical boundary taxonomy. We will consider 4 types of boundary: (i) organ boundaries

(ii) perfect lesion boundaries as in our r = 1 case (we shall refer to these as “tight

lesion boundaries”) (iii) organ + tight lesion boundaries (iv) hybrid boundaries, in

which functional lesions are surrounded by complex anatomies that do not correspond

to any of the cases (i)-(iii).

Others have assessed the effects of anatomical priors in PET and SPECT for

pure detection, pure localization, and for detection plus localization tasks. None of

these directly addressed our question of boundary proximity effects, but some of these

works had conclusions that bore relation to our work. We first consider previous work

that involved detection only.

The work most similar to ours is found in [149]. Nuyts et al. in [149] considered

the detection of hypometabolic regions in brain PET using an SKE/BKE task and

CHO+SNR. They compared SNR performance for their brain-specific AMAP anatom-

ical reconstruction versus a non-anatomical post-smoothed ML (psML) reconstruction.

Like our anatomical MAP prior, the prior in AMAP breaks continuity across anatom-

ical boundaries but applies different forms of smoothing within grey matter, white

matter and CSF. In phantom studies incorporating tight lesion boundaries, organ

boundaries and hybrid boundaries, they found that AMAP at a variety of smooth-

ing parameters β outperformed psML at a variety of Gaussian post-smoothing kernels

with standard deviation σps. A related study by Baete et al. [133, 125] assessed SNR of

hypometabolic brain regions in PET but used an NPW (Non-prewhitening) observer

[29] rather than a CHO. Again AMAP was compared to psML. The brain phantom

used here involved hybrid boundaries only. No significant difference was found be-

tween the optimal NPW SNR of AMAP and the optimal NPW SNR of psML. In [133]
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Baete et al. again addressed the same PET problem using an NPW observer, but this

time compared the performance of AMAP versus that of a MAP algorithm using a

relative difference prior [134]. The NPW SNR was greater for AMAP than that of

MAP-RD.

Since for our MAP with SKE/BKE and CHO+SNR, anatomical information

essentially had no advantage, and since, in the various contexts listed above, AMAP

did often show an advantage, one is motivated to reconcile these differences. In [149]

AMAP did indeed outperform psML using a CHO and SKE/BKE detection task.

However, the study was incommensurate with ours in that AMAP differed from our

anatomical MAP and psML differed from our non-anatomical MAP. In [133] the MAP-

RD prior is of interest because it is the natural non-anatomical Bayesian counterpart

of AMAP. However, that study was again incommensurate with ours since the observer

was an NPW. Despite incommensurabilities, one might well infer that a prior (such

as AMAP) highly tuned to the anatomical correlates of the underlying radiotracer

distribution might lead to improved performance in a detection-only task.

We now consider previous work [124, 151, 152, 153] involving a detection plus

localization task for a Ga-67 SPECT torso simulation. The projection data were

generated using a Monte Carlo package. These tasks involve model observers and a

figure of merit radically different than ours and also necessarily involve lesion con-

trasts much higher than those required by SKE/BKE. The figure of merit was the

area under the LROC curve (ALROC). These works used either human observers or

a numerical scanning channelized NPW (CNPW) observer [154]. The observer was

required to correctly detect the signal while also localizing it within a search tolerance.

They addressed the case of SPECT with an imaging model similar to ours. They en-

coded anatomical information using a MAP objective identical to ours. Their lesion

contrasts were high ranging from 12:1 to 30:1. They considered organ boundaries but
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with the lesion location, if the lesion was present, distributed uniformly throughout a

search region. The results in [124], using their numerical observers, showed that the

use of organ-boundary information did not increase ALROC relative to that obtained

with non-anatomical psML. While scatter was not modeled in [124], it was included in

[151, 152]. In [151], organ boundary information led to a mild increase in ALROC for

the numerical observer relative to that of non-anatomical psML. In a human observer

study in [153], they used, in addition to a non-anatomical psML reconstruction, a

non-anatomical MAP reconstruction identical to the one in this paper. Scatter was

included. An interesting conclusion was that for MAP reconstructions organ bound-

aries alone did not significantly improve ALROC. These papers also considered the

case of organ + tight lesion boundaries. All four papers found significant ALROC in-

creases with respect to their non-anatomical counterparts for this organ + tight lesion

boundary case. In sum, organ boundaries alone did not help much, but organ + tight

lesion boundaries were of significant help in detection plus localization studies. In a

separate work by a PET brain group, in [125] Baete et al. used a pure localization

task (signal always present but location unknown), human observers, and a figure of

merit given by percent correctly localized signals in an MAFC study. They used a

brain phantom whose hypometabolic lesions were surrounded by hybrid boundaries.

The lesion contrast ranged from 5% -100%. In this context it was found that AMAP

outperformed the non-anatomical psML reconstruction.

While none of the studies involving higher-order tasks, such as detection plus

localization, directly addressed boundary proximity effects, it would be interesting

to investigate these. For example, since the ALROC metric involves an aggregate

detectability over all locations in a search region, it is not clear whether lesions nearer

to boundaries contributed more to ALROC than other lesions.

Finally, we point out that previous studies discussed in this section have not
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included the important feature of statistically variable backgrounds. Aside from their

realism, the inclusion of background variability might lead to a change in conclusions

regarding the efficacy of anatomical priors in some task contexts.
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Chapter 7

Statistical Properties of SPECT MAP Reconstruction

Incorporating Window Based Scatter Correction

In this chapter, we derive analytical noise propagation formulae incorporating

scatter effects in SPECT MAP reconstruction. This chapter is based on our work in

[155, 156]. By accounting for noise in the reconstruction due to scatter, we can, in

principle perform image quality tests under more realistic conditions, i.e. scatter noise

in addition to photon noise and object variability.

7.1 Introduction

In SPECT imaging systems, scatter can account for a significant fraction of the

counts detected within an allowed (photopeak) energy window whose width scales

with the energy resolution of the detector. Energy windows we discussed in Chapter

2. The corresponding sinogram thus contains scatter counts, and when reconstructed,

this scatter can lead to a degradation of image quality in addition to that due to other

sources.

Many types of scatter correction (SC) methods have been proposed (see [8, 157,

158] for a good overview). In Section 7.2 we have a literature survey of the various

scatter estimation and compensation techniques. Energy window-based SC (WSC) is

a simple and oft-used method [159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,

170, 171] in which counts collected in one or more satellite energy windows are used to
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estimate the scatter contribution in the photopeak window. Reconstruction-based SC

methods [54, 53, 172, 173, 174, 175] start with an estimated source and attenuation

map and calculate the contribution of scatter in the projection. The contribution is

calculated using the underlying principles of scatter interactions and this contribution

is used in the reconstruction. Transmission-dependent convolution subtraction meth-

ods [176, 177] use the photopeak data along with data from a transmission scan to

estimate scatter in the photopeak. While the latter two SC methods are based on

more sophisticated physical models of scatter than window based methods, WSC is

more easily implemented and enjoys frequent use [178, 175, 179, 173]. In many cases,

the performance of WSC methods is comparable to that of the more sophisticated and

computationally complex methods [178, 175]. One of the more well-known WSC tech-

niques is the TEW (Triple Energy Window) [162, 180] method and similar variants

[181, 182, 183]. Here, counts in narrow satellite windows on either side of a photopeak

window are used to estimate counts in the photopeak window. Our analysis will focus

on TEW but is generally applicable to many WSC methods.

Often, in WSC, one simply subtracts the scatter estimate from the photopeak

window and then reconstructs. However, one can incorporate WSC directly into a

reconstruction, and there are reasons (discussed in section 7.3)) to prefer this over

simple subtraction.

In Chapter 4 Section 4.3 we derived theoretical expressions for rapid evaluation

of the first- and second-order moments of SPECT MAP reconstructions corrupted

by Poisson noise in the absence of scatter. In this chapter we develop theoretical

expressions that enable the rapid calculation of the mean, covariance and local point

spread function (lpsf) of SPECT reconstructions that incorporate WSC. Theoretical

calculation of these quantities (mean, covariance, lpsf) can be used to rapidly calculate

figures of merit (FOM) that summarize performance of detection and estimation tasks
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for reconstructed images.

In [184], Qi and Huesman presented a similar theoretical analysis for propagating

noise from a Monte Carlo (MC) estimated scatter sinogram into a PET mammographic

reconstruction. The noise in the MC scatter estimate is due to the finite number of

source events used for an MC run. They give an expression for the covariance of

the reconstruction caused by photon noise and noise in the MC scatter estimate. In

our work, we apply this approach to the case of WSC, where the noise in the scatter

estimate is due to photon noise in photopeak and satellite energy windows. We use

this to calculate an lpsf and mean as well as a covariance for the reconstructed image.

Reconstructions are noisy by virtue of photon noise propagated into the recon-

struction and also by virtue of a necessarily noisy scatter estimate that comprises part

of the imaging model. We develop theory expressions for mean, covariance and lpsf

for SPECT MAP in the presence of these two sources of noise. Indeed similar theory

expressions for the case of emission tomography but with only the photon noise were

developed in [112, 69] and in section 4.3. Subsequent papers built on [112, 69] to

develop expressions that enable rapid calculation of detection figures of merit FOMS

[119, 150, 115, 94, 109, 96, 97] and quantitation FOMs [185, 186]. Some of these papers

[119, 109, 69, 115, 119, 150, 94, 185, 186] modeled scatter but, unlike the work in this

paper, did so as a known deterministic quantity. In [187], the effects of a systematic

bias in HS were analyzed in the context of PET.

Instead of fast theoretical expressions to evaluate mean, covariance and lpsf,

one can instead evaluate these quantities by sample methods that entail numerous

laborious reconstructions. Therefore one motive to develop the theory expressions is

that they can be used to more rapidly (faster than sample) calculate lpsf, covariance

and mean and thus more rapidly obtain useful FOMs. In section 7.6 we evaluate the

speedup of our theory vs sample methods for the calculation of mean, covariance and
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lpsf.

In section 7.2 we present a literature survey on various scatter correction meth-

ods. In section 7.3 we give background information on MAP reconstruction and WSC

methods. In section 7.4 we present our theoretical development. In section 7.5 we

validate our theoretical expressions using sample methods. We conclude in section 7.6

with a discussion.

7.2 Literature Survey of Scatter Compensation Techniques

This rather exhaustive literature survey is meant as an aid to those familiar with

scatter techniques. To the casual reader section 7.2 is difficult to follow since only

limited space is available to describe the plethora of methods. However, in section 7.3

we shall focus on window based methods and build our mathematical development

slowly and carefully.

Scatter correction methods can be divided into two categories. First category

described in are the ones that use the acquired emission data to estimate the scatter

contribution in the projection data. This acquired emission data could be from the

energy spectrum (TEW or Compton Window) as described in Section 7.2.1 or a com-

bination of the photopeak data and an approximation of the scatter PSF as described

in Section 7.2.2. This scatter contribution can then be modeled before the reconstruc-

tion or during the reconstruction or after the reconstruction. The second category

is the Reconstruction Based SC methods (RBSC) described in 7.2.3 consists of those

that model the scatter during the reconstruction using the underlying principles of

scattering interactions. In Section 7.2.4 we give a brief description of various works

comparing the different Energy Window based scatter correction methods and RBSC

methods.
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7.2.1 Energy Window based Scatter Estimation Methods

The energy window based methods estimate the scatter contribution within the

photopeak window using the photons detected the entire energy spectrum around the

photopeak. The entire spectrum around the photopeak is used to correct for scatter

due to the effect of down-scatter. A photon of higher energy can get down scattered

into a low energy photopeak. These down-scattered photons can be corrected by using

counts from an energy window on the higher side of the lower energy photopeak win-

dow. Convolution based methods described in Section 7.2.2 use the scatter estimate

for scatter correction by convolving the photopeak data with a scatter PSF.

Compton window method (CW)

The method by Jaszczak in [159] is also known as dual energy window method

or Compton window (CW) method. Two energy windows are used, the photopeak

(127 keV-153 keV) and a secondary window (92-125keV). Projection data from the

secondary window is multiplied by a scaling factor “k” and is then subtracted from

the photopeak projection. The scaling factor is derived from calibration studies or

from Monte Carlo (MC) simulation. The heuristic method gave a value of ≈ 0.5 while

MC gave a value or 0.57. His results are based on value of k to be equal to 0.5.

It is observed that the value of “k” varies depending on radionuclide, energy-

window definition, activity distribution and attenuation [188]. In [188] by Koral et al

phantom studies are performed to investigate, first the effect of varying background

levels around a spherical hot object on the “k” values and second, to relate the “k”

value to body-size and location variations. Luo et al in [189] use Monte Carlo simula-

tion to investigate VOI quantification of radioactive structures and the effect on that

quantification of dual-energy- window scatter correction. They find values of k for a

variety of phantom geometries.
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Spectral fitting methods

The spectral fitting method in [161] involves establishing the shape of the energy

spectrum for unscattered counts i.e. scatter-free spectrum (by calibration or MC).

For every given pixel location in the projection data, the acquired energy spectrum

can be assumed to be a sum of the scatter spectrum (this vector is unknown which

we want to determine) and the a known bell shaped scatter-free spectrum times an

unknown scalar parameter (which we want to determine). The authors have made

another assumption that the scattered energy spectrum can be represented as a third

order polynomial. Combining these two assumptions a system of equations can be

written. A weighted least squares solution of this system gives the coefficients for

the polynomial fitting and the unknown scalar multiplier. The multi window spectral

fitting method in [161] employs 32 2keV windows from 108keV to 162 keV to estimate

the unscattered component of the acquired data. The energy spectrum is analyzed in

two stages. The first is an iterative peak-erosion algorithm. The result of successively

reducing the peak height is an estimate of the Compton scattering spectrum.

The method described in [163] is similar to Koral et al [161], but does not assume

a polynomial shape for the scatter component of the energy spectra. It requires

knowledge of the camera energy resolution function (i.e. the detected ‘energy’ spread

function for any true gamma ray energy). Instead of the polynomial fitting it assumes

the scatter spectrum within the acquired data to be the convolution of the camera

energy resolution function and the scatter energy distribution of the source. Knowing

the camera energy response function, Wang et al [163] wrote a system of equations

similar to those in [161] and then performed a penalized least square inverse operation

to estimate the scatter. Monte-Carlo simulations on hot sphere in cold cylinders with

99mTc and 131I were performed. Wang et al provide a data weighted least-square

method and a unweighted least-square method.
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Dual photopeak Window (DPW)

In [164], King et al divide the photopeak window into two non-overlapping abut-

ted energy windows. The ratio of counts in the lower to upper energy window is used

as an input to a regression relation that gives the scatter fraction (ratio of scatter

to primary) (SF) within the photopeak. The coefficients of the analytic function are

obtained by calibration experiments for 99mTc. Using the scatter fraction the scatter

in the photopeak is estimated, this estimate is then low-pass filtered before being sub-

tracted from the counts in the photopeak (sum of lower and upper energy windows).

This method is not applicable to our analysis in this Chapter because it involves ratios

of counts in the lower to upper energy window to get the scatter fraction. The use of

ratios is not within out mathematical scope.

Channel Ratio Method

The same windows used for Dual photopeak window (DPW)[164] SC were used

here. The channel ratio method [165] assumes that the ratio of the number of unscat-

tered photons detected in these two sub windows is constant value α and the ratio of

the number of scattered photons in these two windows has a constant value β. Conse-

quently, calibration of α and β results in a system of four equations for four unknown

values. Its solution leads to the number of unscattered photons in the photopeak win-

dow. Pretorius et al performed phantom calibration experiments with 99mTc source

in air and water to determine the values of α and β.

Generalized Spectral Method (GS)

Haynor et al in [166], describe a multi-window method that uses a linear combi-

nation of counts in many energy windows to estimate the scatter contribution in each

pixel. Moore et al in [171] refer to this as a generalized spectral method. This scatter
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contribution is then spatially smoothed and this smoothed scatter contribution at each

pixel is subtracted from the total number of counts (summed over energy bins) for

that pixel. A Rollo phantom was used to study linear scatter correction methods for

99mTc and 201Tl sources. For 99mTc the acquisition window extended from 96.5-168.5

keV and was divided into 18 4 keV energy bins. For, 201T l, the acquisition window

extended from 39.7-120.7keV and was subdivided into 27 bins of 3 keV each. The

authors give a procedure for obtaining the optimal the weight for every energy bin.

In the “optimal” sense, it minimizes some normalized mean square error (NMSE) and

error in region of interest (EROI) criteria. They also give a model-based adaptive

scatter correction method which delivers a set of basis functions (the first basis func-

tion being the primary component) by performing principal component analysis on

the lower order polynomials obtained from the energy spectra and the camera energy

response function. They compare their optimal linear method to the model-based

adaptive method along with the dual photopeak window method. The model-based

adaptive method outperforms the other schemes.

The Compton window method and GS method used by Haynor is applicable to

our analysis in this Chapter. Haynor et al’s model-based adaptive method is based on

an obscure extension of Koral et al [161].

Triple Energy Window TEW

The TEW method by Ogawa et al in [162], uses two satellite windows on either

side of the photopeak window to estimate the scatter in the photopeak window for

every pixel in the projection data. This scatter is then subtracted from the photopeak

projection on a pixel by pixel basis. The same group in a later publication (Ichihara et

al [180]) conducted physical evaluations of this method using experimental phantoms

and also applied this method to patients in a clinical trial. They performed studies

with a single isotope (99mTc) and a dual-isotope (201Tl and 123I). The relation between
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the activity within a region of the reconstructed image vs the true activity (in mCi)

is used as a tool for comparison. The TEW corrected images perform better than no

scatter correction. Ichihara et al in [180] argue that overlapping windows are hard to

acquire. The same argument is observed in Bong et al [181].

In Dewaraja et al [190] the accuracy of quantitative 131I SPECT with TEW SC is

evaluated by phantom measurements. In 131I imaging the right satellite window is used

to compensate for scatter by 637keV and 723keV. The photopeak width at centered

at 364keV was set at 20%(72.8keV) and the left satellite windows at 6% (19keV) and

right satellite window at 6% (25keV). The TEW scatter estimate is subtracted from

the photopeak projection. Attenuation maps were generated from registered X-ray

CT images using external markers in the physical phantom. Quantitaive accuracy in

the post smooted EM reconstructed images with TEW was better than no scatter

correction. A preliminary clinical trial to evaluate tumor activity of B-cell lymphoma

patients with 131I radioimmunotherapy was also performed.

The Extended TEW method by Bong et al in [181] is a modification of TEW

with the satellite window not abutted to the photopeak window. When the satellite

windows are abutted to the photopeak the ETEW boils down to TEW. ETEW is com-

pared to TEW using MC simulations for point sources as well as hot and cold spheres

in a cylindrical water phantom. The scatter components were estimated using ETEW

and TEW. NMSE, image contrast, activity recovery coefficients, and normalized stan-

dard deviation were calculated for evaluation and comparison of FBP reconstruction

of the TEW and ETEW SC projections. Extended TEW method in [181] is tractable

with our analysis in this Chapter.

As far as variants of the basic TEW, there are two: Bourguignon et al [182] and

Li et al [183].
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Multi window method using Artificial Neural Networks

Ogawa et al in [167] employed a 3 layered artificial neural network (ANN) to

estimate primary photons in the photopeak. Five 6keV windows with the energy

range of 125-154keV were used. The ANN comprised of 5 input units, 5 hidden

units and 2 output units. The inputs to the input units were the ratio of counts

acquired by narrow windows to total counts acquired from 125-154keV. The outputs

were scatter count ratios and primary count ratio. The neural network was trained

with a backpropagation algorithm using calculated true energy spectra obtained by

MC methods. Energy spectra from 3 projection angles was used resulting in 192

samples in the training set. They showed an accurate estimation of primary photons

using an error ratio metric. They even analyzed the performance of the ANN for

different network parameters (no. of input units and no. of hidden units) Ogawa et

al [167]’s method is not tractable by our analysis. The given input to the ANN is the

ratio of counts in the corresponding energy window to the total counts in all energy

windows. The output is the ratio of scatter counts to the total counts in all energy

windows.

Maksud et al in [191] use an ANN to simultaneously correct for attenuation and

Compton scattering. The ANN used was a multilayer perceptron (MLP) featured

with error backpropagation algorithm as learning tool. Three sets of experiments are

conducted using data of radioactive sources with various shapes and distributions in

the a homogeneous medium. They use metrics like RMSE, recovery and likelihood to

compare CW, DPW and TEW SC schemes with their scheme. Fakhri et al in [168]

used the ANN in [191] for scatter correction in 67Ga SPECT.
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Holospectral Imaging

Holospectral Imaging described by Gagnon in [160] is a multiwindow SC method

with typically 16 subwindows. The acquired projection data is rearranged into 16

frames where the ith frame corresponds to the projection data acquired in the ith

energy window. A single bin in the projection data can be visualized as a point in R16

dimensional space. To analyze the relation between these 16 frames, the 16 frames

are transformed into 16 principal component frames using the Hotelling transform.

The eigenvectors corresponding to these principal component bear a certain relation

to the contribution of primary, scatter and noise to the acquired data. The eigenvector

with the maximum eigenvalue gives the direction of maximum variation in R16 space

which would be due to the primary component of the projection data. The second

largest eigenvalue corresponds to the variation due to the scatter component in the

acquired data in R16 space. In order to reduce the scatter component of the acquired

data, a filtering operation is performed on the principal components to eliminate the

variations due to the second highest eigenvalue. The resulting principal components

are then transformed back. To maintain positivity a nonlinear operation is further

performed. Gagnon extended this work in [192].

7.2.2 Convolution based subtraction methods

These methods seek to estimate the scatter content of the projection data on the

basis of the acquired photopeak data. This photopeak data is used to estimate of the

source distribution and this source is projected using some model of the scatter point

spread function in the projection space. Example of convolution subtraction [193],

[194] and [195]
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Scatter line-spread function

The scatter line-spread function (SLSF) method described in [196] and [197]

is a convolution-subtraction technique that used spatially variant scatter line-spread

functions in the modeling of the scatter component. The knowledge of the source

distribution is necessary to select appropriate scatter functions. This information is

obtained from reconstructed SPECT images since each voxel is an estimate of the

given voxel in the object. This method estimates the scatter contribution from each

voxel location in the object using the scatter LSF and the scatter-to-total fraction for

that voxel location.

Transmission dependent convolution subtraction schemes

Meikle et al in [176] describe a method of scatter compensation that uses the

photopeak data along with data from a transmission scan to estimate scatter in the

photopeak. The scatter distribution is first estimated by convolving the projection

data with a monoexponential scatter function. The subsequent scatter fraction to be

used is then determined for each point in the projections based on the transmission

scan. If the convolution operation is denoted by ⊗ then it is an iterative deconvolution

operation given by gk = gobs −K(gk−1 ⊗ sf) where sf is the monoexponential scatter

function, gk is the scatter corrected projection at the kth iteration and K is obtained

from the transmission data. On a pixel by pixel basis in projection domain it can

be written as gk(x, y) = gobs(x, y) − K(x, y)[(gk−1(x, y) ⊗ sf(x, y)]. Other groups

[198, 199, 200, 177] have worked on optimized extensions of TDSC.

7.2.3 Reconstruction based scatter correction (RBSC)

In RBSC, scatter is included in the statistical model. With RBSC methods,

compensation is achieved by mapping scattered photons back to their point of origin in
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the object instead of trying to determine a separate estimate of the scatter contribution

to the photopeak projection data [174]. RBSC methods in some way try to perform the

HSf operation at every iteration (or the scatter is estimated at every pth iteration). One

drawback [175] of RBSC methods is that they cannot account for scattered photons

that originate outside the SPECT camera field-of-view (FOV). Multi-energy window

based methods can correct for these scattered photons that originate outside the FOV.

Effective Scatter Source estimate (ESSE)

Frey and Tsui proposed the ESSE scatter model of RBSC in [54] The ESSE

scatter model works by calculating an ‘effective scatter source’ form which the scatter

contribution can be estimated using the same projector as for the primary photons.

The effective scatter source is dependent upon the current image estimate, the attenu-

ation map, the projection angle and ESSE scatter kernel. The current image estimate

is blurred into an effective scatter source distribution. The effective scatter source is

formed by taking into account the probability that a photon emitted at a given loca-

tion will reach the scattering site, the photon there undergoes a scattering interaction

that leads to it being detected, and finally that the scattered photon will interact in

the crystal producing an event that is within the energy window used in imaging. The

probability of it not being lost due to attenuation on its way from its last scattering

site to the crystal is handled by the (HP ) the projector that models attenuation and

collimator blur for the primary photons. Computation of the effective scatter source

can be broken into two parts (1) convolution of the current image estimate with the

ESSE scatter kernel (this is done for the first three terms of a truncated Taylor series

expansion of the exponential describing the probability of attenuation of the photon

from the site of emission to the site of last scattering [54]) and (2) weighting by the

relative density map to account for some of the effects of non-uniform attenuation.

Advances to this method involving an incremental slice-by-slice blurring approach are
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provided by Zeng et al in [201] and Bai et al in [172].

In [202] the authors have applied a RBSC to Thallium-201 which a multi-energy

isotope. The use ESSE [54] for scatter modeling.

Monte Carlo Based Scatter Compensation

Beekman et al in [53] have developed a highly efficient Monte Carlo simulator to

be used as the projector in iterative reconstruction algorithms. The method combines

stochastic photon transport of the interactions within the patient with an analytic

model of the detection by the camera, a technique they call convolution-based forced

detection [203].

Fast Implementation of fully 3D RBSC

Kadrmas et al in [174] provide a fast implementation of fully 3D RBSC using

(i) a coarse-grid scatter model that makes use of the fact that scatter component of

the projection data is dominated by low-frequency information and (ii) intermittent

RBSC that limits the number of iterations during which scatter is modelled. The

former leads to an order of magnitude reduction in processor time required to model

the scatter response function SRF in an iterative algorithm. The later accelerates

the reconstruction process by limiting the number of iterations during which scatter

is modelled. Since, the scatter estimate tends to converge within the early iterations

[174] it is kept constant after only 2 or 3 iterations for the remaining iterations. The

coarse-grid scatter model is incorporated along with ESSE. They use an unmatched

projector/backprojector that models scatter only during projection. The fast imple-

mentation was evaluated using a MC simulated experiment of a 3D MCAT phantom

with a 99mTc tracer and also using experimentally acquired data with 201Tl.
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7.2.4 Comparisons of Scatter Correction Methods

Moore et al in [171] compared three energy window based SC methods, (1) CW

(2) TEW and (3) generalized spectral method (GS) on the basis of the accuracy with

which lesion and background activity concentration could be simultaneously estimated.

They optimized the following parameters for each of the SC methods - (1)“k” factor

in CW method (2) Window widths of the photopeak and satellite windows in TEW

and (3) the energy weights for the seventeen 4keV windows used in the GS method.

The optimization entailed minimizing the sum of mean-squared errors (MSE) of the

estimates of the lesion and background activity ([ all operations performed in sinogram

domain]). The 3 SC methods with optimal parameters where compared by calculating

the bias, variance and RMSE of the activity estimates for lesions of different size, loca-

tion and contrast. Along with the estimation of lesion and background activity he also

included a more complex Bayesian estimation task in which lesion size was estimated.

For CW the optimal value of “k” was found to be 0.4 and for the TEW methods the

optimal photopeak and satellite windows were 124-157keV and 112-124keV (generally

the satellite windows is like 2-6keV).

Narayan et al in [204] studied the effects of different compensation strategies

SPECT reconstruction for improving accuracy of detection of coronary artery dis-

ease. Seven human observer were used to perform the ROC studies. The accuracy

of detecting CAD was evaluated for following reconstruction strategies: FBP; OSEM

with attenuation correction (AC); OSEM with AC and SC; and OSEM with AC, SC

and resolution compensation (RC). Reconstruction parameters for OSEM were opti-

mized by use of human-observer ROC studies, where as standard clinical parameters

were used for FBP. TEW was the SC method used. OSEM with AC,SC and RC

outperforms FBP.

Narayanan et al in [178] state the TEW method “as their current clinical stan-
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dard”. Narayanan et al compared the ESSE method with TEW method in a cardiac

study. The area under the ROC curve was virtually identical for the LCx territory for

the two methods, but was larger with ESSE for detection of coronary artery disease for

the LAD territory and the RCA territory. The difference was statistically significant

(P < 0.05) only for the ROC curves for the LAD territory. The authors of the study

added several caveats, but stated: “With TEW like scatter compensation strategies

being easier to implement and having a minimal impact on reconstruction time com-

pared to ESSE, the slightly better performance of ESSE with the clinical images of this

study may not be enough to strongly favour its use clinically.”

DeVries et al in [205] investigated the effect of DPW SC method on lesion de-

tection and quantitation. The scatter estimate was smoothed with a Wiener low-pass

filter before subtraction. A human observer SKE-ROC study was used to determine

accuracy of tumor detection in the liver. The human results were compared to those

of an NPW model observer and to activity quantitation metrics. SIMIND was used to

generate noise free projection data. Projection data was reconstructed with FBP and

multiplicative Chang AC and Butterworth lowpass filter. Images with low and high

amount of scatter were compared with corresponding SC images and corresponding

images with only primaries in the projection data. SC methods may improve lesion

detection if there is a significant amount of scatter present. Their results are better

summarized in Farncombe [179].

Beekman et al investigated effects of different scatter compensation methods in

fully 3D iterative reconstruction. They compared (i) ‘ideal scatter estimate - Noise

free’ (ISE-NF) (ii) ‘ideal scatter estimate’ (ISE) (iii) ‘ideal scatter model’ (ISM) (iv)

‘no scatter compensation’ (NSC) and (v) ‘ideal scatter rejection’ (ISR). This paper

refrains from subtracting the scatter estimate and uses an affine term instead. ISE-

NF uses a scatter estimate which is the scatter component of the noiseless projection
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data (made available by SIMSET or SIMIND or any in-house method for getting the

noiseless primary and scatter projection data). ISE uses a scatter estimate which is a

noisy version of the estimate used in ISE-NF. In [206] the noise level in the ISE estimate

is that which would be expected from a CW estimate. ISM is an RBSC method in

with the scatter response function is modeled at every iteration. The metrics of

contrast recovery, normalized standard deviation and sum of squared differences was

used to assess the five strategies. Ideal scatter rejection (ISR ) out performs all other

methods. ISM is superior to ISE and performs approximately as well as ISE-NF. No

scatter compensation performs the worst.

Ljungberg et al in [169] compared four SC methods with 99mTc. The four schemes

were (1)CW with k = 0.5 (2) DPW (3) TEW (4) and a convolution-subtraction

method based on scatter line-spread function [196, 197]. Two forms of the TEW

were used (a) TEW(1) with a right scatter window and (b) TEW(2) without a right

scatter window. The comparison involved MC simulated data for point sources, hot or

cold spheres of different diameter in cylinder of water, and a clinically realistic brain

phantom. Projection data was reconstructed with FBP. The comparison between SC’s

was made using NMSE, image contrast, % recovery and scatter fraction. TEW(1) did

tend to over estimate the scatter. It concluded that performing scatter correction is

essential for accurate quantification, and that all four methods yeilds a good, but not

perfect, scatter correction.

Buvat et al in [170] compared nine window based scatter correction methods. MC

simulations were used to get the primary and scatter projection data in each energy bin

for a realistic 99mTc phantom. Relative and absolute quantification and signal-to-noise

ratio were assessed for each scatter corrected projection. They compared (1) No scatter

correction (2) DPW (3) Channel Ratio method (4) Photopeak energy Distribution

method (similar to DPW and Channel ratio method but the widths of the subwindows
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in the photopeaks needs to determined by calibration of MC simulation) (5) CW (6)

TEW (7) TEW without the right satellite window (8) Constrained factor analysis

methods (FAMIS) (9) Factor analysis of medical image sequence using target-apex

seeking (FAMIS-TAS). The FAMIS and FAMIS-TAS require many smaller subwindows

and involve a fit to the acquired data as do the methods in [161] and [163]. The

new factor analysis outperformed the other methods. TEW and DPW are easy to

implement and in terms of accuracy TEW is better than DPW.

King et al in [49] optimized the filter used to smooth the TEW scatter esti-

mate. Using MC simulated projections of a MCAT phantom they investigated 2-D

pre-reconstruction filtering by Wiener filter and Butterworth filters with various cut-

offs. The scatter estimate was either subtracted or modeled as affine term in OS-ML

reconstruction. Using the NMSE criteria between reconstructed and true slices they

observed (1) lowpass filtering dramatically decreased NMSE compared to no filtering

(2) the inclusion of scatter estimate as affine term results in a lower NMSE than sub-

traction of the scatter estimate from the photopeak window prior to reconstruction.

For 67Ga citrate SPECT study with lesions in the mediastinum Farncombe et al

in [179] simulated SIMIND projections of an MCAT phantom. They first performed

a SKEV CHO study to optimize the prereconstruction filter cutoff for the TEW esti-

mate. The TEW estimate is modeled as affine term. (Through human LROC studies

[207] showed that at clinical noise level, subtraction of the scatter estimate actually

reduces the detectability as compared to no scatter correction). They compared five

SC strategies (1) Perfect scatter rejection (PSR), (2) Ideal scatter compensation (ISC)

using HSf as the affine term, (3) TEW (4) ESSE (a reconstruction based SC method)

and (5) post reconstruction scatter subtraction (PSSR) where they subtract the recon-

struction of the TEW estimate from the reconstruction of the photopeak data. The

optimal filter for TEW estimate was obtained using a SKEV-CHO study. Then they
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performed s human LROC study to optimize the number of iteration for RBI and the

FWHM of the Gaussian postsmoothing. Both TEW and ESSE SC methods were able

to significantly improve lesion detectability over no SC.

Dewaraja et al in [175], compared a TEW against an accurate Monte Carlo based

scatter modeling (MCBS) scheme using 3-D OSEM reconstruction of 131I SPECT. The

scatter estimate is included as an affine term. In MCS, a simple multiple window-

based estimate is used for the initial iterations and in later iterations the Monte Carlo

estimate is used for several iterations before it is updated. (So in [175] one will use the

TEW estimate for first 20 iterations, then generate the MC estimate and update it at

the 20th iteration then use it for 4 iterations and then update it at the 24th iteration

and so on.) He used NMSE, normalised standard deviation and % bias as the metric

for comparing TEW and MCS. The accuracy and noise of the reconstructed images

was superior with MCS compared to TEW. However the improvement was not large,

and some may not justify the large compuational requirements of MCS. They observed

the the TEW tends to overestimate the scatter and show that TEW correction could

be improved by applying a suitably chosen scaling factor to the scatter estimate. )

The authors of [175] state in the conclusion section of the paper - “In general,

the accuracy and noise of the images reconstructed with MCS were superior to images

reconstructed with TEW. However, the improvement was not large, and in some cases

may not justify the large computational requirements of MCS.”

Xiao et al in [173] compares Monte Carlo based scatter correction which is a

type of Reconstruction based scatter correction described in [53], versus TEW versus

no scatter correction. He compared performance of the algorithms in terms of noise

properties, contrast-to-noise ratios, and contrast separability of cold defects. The

found that MCBS to be superior to TEW for their imaging context.

Nartia et al in [177] compared results from TEW SC with their TDSC method
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and concluded that their TDSC method produced a much smoother scatter estimate,

and the resulting signal to noise ratio was better that with TEW correction.

7.3 Background

For WSC, one often simply subtracts the scatter estimate and reconstructs the

remaining counts. This subtraction method has several problems. It could lead to neg-

ative counts. Also the Poisson nature of the sinogram is lost thus making likelihood-

based reconstruction methods more difficult [208]. One way to avoid these problems

[49, 179, 206] involves eschewing the subtraction step in favor of modeling scatter di-

rectly in a likelihood function using an affine term, and then performing a maximum

likelihood (ML) or penalized-likelihood (a.k.a. MAP or maximum a posteriori) recon-

struction. A second improvement recommended in [49, 179, 206] is to spatially smooth

the noisy scatter estimate. Several investigators [49, 207, 179, 206] have compared re-

constructions (both MAP and other methods) obtained with scatter subtracted sino-

grams with reconstructions obtained by modeling scatter in a likelihood term. The

inclusion of scatter estimate as affine term results in a lower noise levels and improved

image quality. Below we describe MAP reconstruction with scatter and also give

relevant details for the TEW WSC method.

7.3.1 MAP Reconstruction with Scatter

Let the object be denoted by the N -dim lexicographically ordered vector f and

sinogram for the photopeak window by M -dim vector g. Thus fn : n = 1 . . . N is the

value of the nth voxel and gm : m = 1 . . . M is the integer value of the mth detector bin.

Denote the reconstruction by f̂ with f̂n the value of the nth reconstructed voxel. Let

the system matrix be denoted by H so that Hmn is proportional to the probability that

a count emanating from voxel n is received in bin m. The sinogram g is independently
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Poisson distributed at each bin. The mean sinogram is given by

ḡ = Hf (7.1)

In (7.1) matrix H incorporates all effects including attenuation, camera resolu-

tion, collimator resolution and scatter. We split H into HS, the part of H that models

scatter only, and HP , the sparse matrix that models all other effects:

H = HP + HS (7.2)

We can approximate with good accuracy forward projection operations such as HP f

and HSf by using a photon tracking MC Monte Carlo simulator such as SIMIND [46]

or SIMSET [209] applied to a discrete but fine-grained version of f . In iterative recon-

struction algorithms one would have to compute projections Hf and backprojections

HTg (where T means transpose). One problem with doing this is that projections and

backprojections with HS are exceedingly computationally intensive.

WSC circumvents this problem by forming an estimate of scatter in the sinogram

photopeak window rather than repeatedly computing it via matrix multiplication with

HS. Define the M -dim vector s to be the sinogram of scattered photons in the pho-

topeak. Then WSC delivers an estimate of s which we denote by ŝ. Since we do not

have knowledge of s itself we replace the imaging model (7.1),(7.2) with

ḡ = HP f + ŝ (7.3)

where the estimated scatter ŝ is treated for reconstruction purposes as a constant

independent of f . From (7.1),(7.2) and (7.3), one can see that ŝ is an approximation

to the correct model term HSf , and for WSC the value of ŝ will change on each photon

noise realization. Thus (7.3) incorporates a form of model error : ŝ = HSf + δHSf

with δHSf a model error. This model error is a source of noise different than that of

photon noise or object variability.
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We note that with this model, the reconstruction f̂ is corrupted by two sources

of noise. The first is Poisson photon noise in the photopeak g. The second source is

in ŝ which is noisy because it is obtained, as described in section 7.3.2 below, from

noisy counts in satellite energy windows surrounding the photopeak. Let O be a

reconstruction operator so that f̂ = O(g, ŝ). For MAP this can be written as an

optimization

f̂ = O{g, ŝ} = arg max
f≥0

Φ(f ,g, ŝ)

= arg max
f≥0

(ΦL(f ,g, ŝ) + ΦP (f)) (7.4)

where Φ is a MAP objective with ΦL the log likelihood and ΦP the log prior (regu-

larizer). In this work we use a simple quadratic smoothing prior given by ΦP (f) =

−β
2

∑
n

∑
n′∈N (n) wnn′(fn − fn′)2. The term N (n) denotes a local neighbourhood of

voxels about n and wnn′ is the inverse Euclidean distance between n and n′. For N (n)

we shall use the 27 nearest 3D neighbours of n. The scalar β > 0 weights the prior

and effectively controls the reconstructed-noise resolution tradeoff. Note that the reg-

ularizing term can be written as the quadratic form ΦP (f) = −β
2
fTRf where R is a

triply block-circulant matrix (for a 3D object). The elements of a spatially invariant

R for a uniform quadratic prior are described in [69, 122].

The log likelihood ΦL is due to the Poisson data noise whose mean is given by

(7.3) and is thus given by

ΦL(f ,g, ŝ) =
∑
m

gm log(
∑
n

Hmnfn + ŝm)

−
∑
m

(
∑
n

Hmnfn + ŝm) (7.5)

To be consistent with (7.3), one should use HP
mn instead of Hmn in (7.5). However,

the product HP f leads to computationally intensive operations if HP is modelled re-

alistically. Hence often one approximates HP by a system matrix H, an analytical

projector that is efficiently computed.
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7.3.2 Triple Energy Window Scatter Estimation

Wm

Energy

C
ou

nt
s

photopeak

Ws Ws

Figure 7.1: The TEW method. The solid curve shows the energy spectrum of scattered

plus primary counts. The photopeak window of width Wm and the two overlapping

satellite windows of widths Ws are shown. Primary counts in the photopeak window

are estimated by subtracting counts in the trapezoid under the dotted line connecting

the satellite windows.

We consider the well-known triple-energy window (TEW) method [162] for esti-

mating scatter, though our method applies to any window-based method. As recom-

mended in [49], we also allow the TEW sinogram to be spatially smoothed by a linear

filtering operator represented by matrix B. In this case, the TEW scatter estimate

(see Fig. 7.1) is given by

ŝ =
Wm

2Ws

B(gl + gr) (7.6)

where Wm is the width of the photopeak energy window and Ws the width of narrower

satellite windows. In (7.6), gl and gr are the counts (primary as well as scatter)

collected in the left (low energy) and right (high energy) windows. We note that the

satellite windows can partially overlap the photopeak window and thus include primary
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counts. For a monoenergetic isotope only a single left satellite window needs to be

used. Because the right satellite window will be empty since there is no possibility of

down-scatter form any other higher energy photon. For a multienergy isotope both

left and right satellite windows must be used since the both the photopeak and right

energy window will contain photon down-scattered from a higher energy. In some

cases [180, 49, 169] only a single low-energy window gl need be collected.

7.4 Theory

Our goal is to develop theoretical expressions for the mean reconstruction
¯̂
f and

its covariance Kf̂ . In addition we develop a theoretical expression for the local point

spread function (lpsf) [69] of the reconstruction. These, in turn, will depend on the

mean and covariance of g and ŝ.

The mean ḡ and covariance Kg of g are given by ḡ = HP f+HSf and Kg = diag(ḡ).

(Note that the alternative affine form ḡ = HP f + ŝ is used only in the optimization of

the likelihood objective.) From (7.6), the mean ¯̂s and the covariance Kŝ of the scatter

estimate are given by

¯̂s =
Wm

2Ws

B(ḡl + ḡr) (7.7)

Kŝ =
W 2

m

4W 2
s

Bdiag
(
(ḡl + ḡr)

)
BT (7.8)

In (7.7) and (7.8), we use the fact that gl and gr are independent of one another

and each is independently Poisson distributed. Note that the means ḡ and ¯̂s and

covariances Kg and Kŝ are dependent on ḡ, ḡl and ḡr. Accurate estimates of these

three mean sinograms can be obtained by propagating (using an MC simulator) a

large number of source events into the appropriate energy windows.

We use a Taylor series approach to propagate noise from the scatter estimates.

Using a first-order Taylor series expansion about the mean data and scatter estimate,
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we get

f̂ ≈ O{ḡ, ¯̂s} + ∇gO{ḡ, ¯̂s}(g − ḡ)

+∇ŝO{ḡ, ¯̂s}(ŝ − ¯̂s) (7.9)

The term ∇gO{ḡ, ¯̂s} is an N×M matrix whose (n,m)th element is given by ∂[O{ḡ,¯̂s}]n
∂gm

.

A similar definition obtains for ∇ŝO{ḡ, ¯̂s}. From (7.9), it is immediately evident that

the mean reconstruction
¯̂
f is given by:

¯̂
f ≈ O{ḡ, ¯̂s} (7.10)

Using techniques from [112, 184] and dropping (to avoid notational clutter) the

dependence on the point of expansion {ḡ, ¯̂s}, we get

∇gO = −[∇2
ffΦ]−1∇2

fgΦ (7.11)

∇ŝO = −[∇2
ffΦ]−1∇2

f ŝΦ (7.12)

The term ∇2
fgΦ is an N ×M second derivative matrix whose (n,m)th element is given

by ∂2Φ
∂fn∂gm

. Similar definitions obtain for ∇2
ffΦ and ∇2

f ŝΦ. An evaluation of the terms

in (7.11) and (7.12) yields

∇2
ffΦ = −HT diag

( ḡ

(H¯̂
f + ¯̂s)2

)
H− βR (7.13)

∇2
fgΦ = HT diag

( 1

H¯̂
f + ¯̂s

)
(7.14)

∇2
f ŝΦ = −HT diag

( ḡ

(H¯̂
f + ¯̂s)2

)
(7.15)

So far, our equations (7.9) and (7.13)-(7.15) appear, albeit in a slightly different con-

text, in [184] sec. 2.3.

With the results in (7.9)-(7.15), we can address our first goal, a calculation of Kf̂

that includes the effects of scatter. From (7.9), it is readily seen that

Kf̂ ≈ (∇gO)Kg(∇gO)T + (∇ŝO)Kŝ(∇ŝO)T
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+(∇gO) < (g − ḡ)(ŝ − ¯̂s)T > (∇ŝO)T

+(∇ŝO) < (ŝ − ¯̂s)(g − ḡ)T > (∇gO)T (7.16)

where <> indicates an average over noise realizations. (Thus x̄ ≡< x >).

In the third term of (7.16), we need to evaluate the cross-covariance < (g −

ḡ)(ŝ − ¯̂s)T >. Since the fourth term in (7.16) is the transpose of the third, then this

evaluation gets us the fourth term as well. Let the counts in that part of the left

(right) window that overlap the photopeak window be given by gl−ovp (gr−ovp). Then

it is easy to show that

< (g − ḡ)(ŝ − ¯̂s)T >

=
Wm

2Ws

< (g − ḡ)(gl − ḡl + gr − ḡr)
T > BT

=
Wm

2Ws

< (gl−ovp − ḡl−ovp + gr−ovp − ḡr−ovp) ×

(gl−ovp − ḡl−ovp + gr−ovp − ḡr−ovp)
T > BT

=
Wm

2Ws

diag(ḡl−ovp + ḡr−ovp)B
T (7.17)

where we have used the fact that counts in non-overlapping windows are uncorrelated

and Poisson distributed. Note also in the case of satellite windows that do not overlap

the main window, (7.17) vanishes.

With (7.10)-(7.17), we can now evaluate all four terms in (7.16). It will be

convenient to introduce a Fisher information matrix [69] appropriate for this problem,

and this is given by

F ≡ HT diag
( ḡ

(H¯̂
f + ¯̂s)2

)
H (7.18)

The first term in (7.16) becomes

(∇gO)Kg(∇gO)T

= [F + βR]−1F [F + βR]−1 (7.19)
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The second term in (7.16) becomes

(∇ŝO)Kŝ(∇ŝO)T

=
W 2

m

4W 2
s

[F + βR]−1HT diag
( ḡ

(H¯̂
f + ¯̂s)2

)
B ×

diag(ḡl + ḡr)B
T diag

( ḡ

(H¯̂
f + ¯̂s)2

)
H[F + βR]−1 (7.20)

The third term in (7.16) becomes

(∇gO) < (g − ḡ)(ŝ − ¯̂s)T > (∇ŝO)T

= −Wm

2Ws

[F + βR]−1HT diag
( 1

H¯̂
f + ¯̂s

)
diag(ḡl−ovp +

ḡr−ovp)B
T diag

( ḡ

(H¯̂
f + ¯̂s)2

)
H[F + βR]−1 (7.21)

Note that the fourth term is simply the transpose of the third.

Equation (7.19), which is the first term of (7.16), corresponds to the contribution

to the covariance from the Poisson noise in g. This Poisson noise is that due to primary

and scatter photons in the photopeak window. Equations (7.20) and (7.21), as well as

the transpose of (7.21), correspond to the last three terms of (7.16). These represent

added covariance due to the noise in the scatter estimate.

For a nonlinear shift-variant MAP reconstruction, resolution is characterized by

an lpsf that is object and position dependent. The lpsf is defined operationally [69] as

the noise-averaged difference of two reconstructions: one of the object and another of

the object plus a vanishingly small point source at position j. If ej is a unit vector at

j, then the lpsf at j is defined as

¯̂ej ≡ lim
δ→0

1

δ

(
< O{g(f + δej), ŝ(f + δej)} > − < O{g(f), ŝ(f)} >

)
(7.22)

Using (7.10), one can approximate (7.22) as a difference of reconstructions of mean

data:

¯̂ej ≈ lim
δ→0

1

δ

(
O{ḡ(f + δej), ¯̂s(f + δej)} − O{ḡ(f), ¯̂s(f)}

)
(7.23)
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A method (7.24) to approximate the lpsf that is faster than the two-reconstruction

methods (7.23) can be derived using (7.23) and (7.9)-(7.15). The first step in deriv-

ing (7.24) below can be obtained from (7.23) by expanding O{ḡ(f + δej), ¯̂s(f + δej)}

about O{ḡ(f), ¯̂s(f)} using (7.9). To see the second step of (7.24), define Hl and Hr

as the system matrices for photon propagation into the left and right satellite win-

dows. Then using the expressions ḡ(f) = HP f +HSf and a version of (7.7) rewritten as

¯̂s(f) = Wm

2Ws
B(Hlf+Hrf), we obtain the second step. The third step follows immediately

from the second. Using (7.11)-(7.15) we obtain the final step of (7.24).

¯̂ej

≈ lim
δ→0

1

δ

(
∇gO(ḡ(f + δej) − ḡ(f))

+∇ŝO(¯̂s(f + δej) − ¯̂s(f))
)

= lim
δ→0

1

δ
(∇gO(HP (f + δej) − HP f + HS(f + δej) − HSf)

+∇ŝO
Wm

2Ws

B(Hl(f + δej) − Hlf + Hr(f + δej) − Hrf))

= ∇gO(HP + HS)ej + ∇ŝO
Wm

2Ws

B(Hl + Hr)ej

= (F + βR)−1HT diag
( 1

H¯̂
f + ¯̂s

)
(HP + HS)ej

−Wm

2Ws

(F + βR)−1HT diag
( ḡ

(H¯̂
f + ¯̂s)2

)
B(Hl + Hr)ej (7.24)

Thus our main theoretical results are equations (7.16), (7.19), (7.20), (7.21) for co-

variance and (7.24) for lpsf.

7.5 Validation of Theory via Sample Methods

In this section, we use sample reconstruction methods to validate our theory

expressions. We will first describe computational techniques for evaluating various

theoretical and sample based expressions, then apply these to a 3D SPECT simulation.

We reserve a discussion of the computational complexity of theory vs sample methods

for section 7.6.1.
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7.5.1 Computational Techniques for Theory and Sample Methods

We first discuss computational methods for theory expressions. Although we

have an expression for Kf̂ in equations (7.19)-(7.21), this matrix is too large for prac-

tical computation. Often, for FOM calculations, one is interested in constructs of

the form Kf̂x where x is a vector [96, 185, 119, 150, 115, 94, 109, 106]. In partic-

ular, we shall compute a quantity of interest, the local covariance about the point

j, that is given by Kf̂ej. This is the jth column of the covariance matrix. We shall

consider a second quantity, the variance map, given by eT
j Kf̂ej = σ2

j for a set of

points j. This is the diagonal of the covariance matrix. For our simulations, we

consider a case where satellite windows do not overlap the photopeak, so that the

covariance is given by the sum of the two expressions in (7.19) and (7.20). For lo-

cal covariance these are of the form (F + βR)−1F ′(F + βR)−1ej where F ′ = F

for equation (7.19) and F ′ = HT diag
(

ḡ

(H¯̂
f+¯̂s)2

)
Bdiag(ḡl + ḡr)B

T diag
(

ḡ

(H¯̂
f+¯̂s)2

)
H for

(7.20). The computation of these sorts of expressions via Fourier techniques has

been studied previously in [114, 116]. The main idea is that for a point j, one

can form a triply block-circulant approximation Kj

f̂
that closely approximates Kf̂

in the vicinity of j. The main step in forming Kj

f̂
is to approximate F or F ′ by

a local triply block-circulant approximation F(j) or F ′(j). Since R is itself triply

block-circulant, the matrix constructs in (F(j) + βR(j))−1F ′(j)(F(j) + βR(j))−1ej

are amenable to calculations by rapid Fourier techniques. The variance map cal-

culation requires only an additional inner product operation. We shall also eval-

uate the lpsf (7.24). Note that this is of the form (F + βR)−1vj where vector

vj = HT
(
diag

(
1

H¯̂
f+¯̂s

)
(HP + HS)ej − Wm

2Ws
diag

(
ḡ

(H¯̂
f+¯̂s)2

)
B(Hl + Hr)ej

)
. Again, by using

F(j), rapid Fourier techniques can be used to evaluate the lpsf. As far as the mean
¯̂
f ,

the relevant expression is equation (7.10).

We now discuss evaluation of the local covariance and variance with sample-
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based methods. One first computes Nsamp reconstructions f̂k, k = 1, . . . , Nsamp. Then

clearly the sample mean is given by
¯̂
f = 1

Nsamp

∑Nsamp

k=1 f̂k. An element of [Kf̂ ]jj′ of the

covariance matrix can be computed by the sample expression

[Kf̂ ]jj′ =
1

Nsamp − 1

Nsamp∑
k=1

(f̂k
j − ¯̂

f j)(f̂
k
j′ −

¯̂
f j′) (7.25)

With suitable choices for j and j′, one can compute the local covariance about j or

a variance map. Clearly Nsamp must be chosen large enough to achieve an acceptable

amount of sample error.

7.5.2 Simulation Results

Figure 7.2: Anecdotal reconstruction of object including data and model (scatter)

noise. Illustrated is slice 9.

We used a 3D 64× 64× 16 object with cubic voxels of size 0.625 cm. The object

was cylindrically symmetric except for the end slices 1 and 16, wherein the activity

f was set to zero. In each of the remaining slices, the object activity comprised

a background circle with circular hot and cold inserts of ratios background:hot:cold

= 2 : 4 : 1. Attenuation was uniform in all 16 slices with attenuation set to that of

H2O at 140Kev (μ = 0.146 cm−1). Each camera face comprised 96× 32 square bins of
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size 0.625 cm. We simulated a parallel-beam geometry with 65 equispaced projection

angles. Figure 7.3 shows the object within the simulation setup.

64

96

32

64

1 voxel =1 bin = 0.625 cm

16

Figure 7.3: Simulation geometry with camera face in one position (not to scale).

Object with background:hot:cold= 2:4:1.

We designed our simulation to approximately reflect the geometry and count level

of some types of clinical acquisitions. We used SIMSET [209] to simulate a parallel

hole collimator with bore radius and length of 0.1 cm and 3.0 cm, respectively, and a

radius of rotation (measured from the center of the object to the collimator face) of

30 cm. These parameters were consistent with a depth-dependent resolution having a

Gaussian psf whose σ was modeled as σ (cm) = 0.026 d (cm) + 0.0392 cm where d is

depth (measured from the camera face). The photopeak energy window was 128−152

KeV and the single non-overlapping low-energy satellite window was 124 − 128 KeV.

(Note that for a single-energy radionuclide such as Tc99m, only one satellite window

[49, 180] is needed.) The energy response curve of the detector was Gaussian with

an energy resolution given by a FWHM of 10% for Tc99m. We generated 1011 source

events scaled to yield 5.6M counts in the photopeak window and 4.14× 105 counts in

the left satellite window. We used enough source events so that these MC generated

counts were effectively noiseless, thus obtaining ḡ and ḡl.
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To accomplish the sample reconstructions of (7.4), we used a g obtained by

adding Poisson noise to ḡ, and an ŝ obtained from (7.6), where in (7.6), gl is it-

self a Poisson noise realization using ḡl. In (7.6), we did not implement a sinogram

smoothing filter B. We used smoothing parameter β = 0.005 for a reasonable noise-

resolution trade-off. The reconstruction used the COSEM-MAP algorithm [84] run to

100 iterations, using 16 subsets and an initial estimate corresponding to a noiseless

reconstruction of the object. Fig. 7.2 shows one slice (slice #9) of a noisy reconstruc-

tion.

0 10 20 30 40 50 60
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0.1

0.2

0.3

0.4

0.5

0.6

0.7 theory
sample

Figure 7.4: Profile through row 48 of slice 9 of the variance map. Theory and sample

curves are shown.

To evaluate the theory expressions for local covariance and variance, we used

techniques described above in sec. 7.5.1 and aforementioned procedures used for ob-

taining ḡ,
¯̂
f and ¯̂s. As shown in Fig. 7.4 and Fig. 7.5, we have evaluated theory

expressions for the variance map (the diagonal of Kf̂ ) and also the local covariance at

one pixel (a column of Kf̂ ).

To validate the theory by sample methods, we generated noisy reconstructions

and used these to obtain a sample estimate of variance and local covariance. A total of

8100 noisy data realizations was obtained by generating 8100 Poisson noise realizations
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Figure 7.5: Profile through row 48 of slice 9 of local covariance image corresponding

to voxel (48,36,9). Theory and sample curves are shown.

of ḡ, and 8100 noisy scatter estimates obtained by generating 8100 Poisson noise

realizations of ḡl and then applying (7.6). Figures 7.4 and 7.5 include profiles of

the sample local covariance and variance images. The correspondence of sample and

theory profiles is close.
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Figure 7.6: Profile through row 48 of slice 9 of the variance image decomposed into

it’s constituent components.

Equations (7.19) and (7.20) give the two contributions to the covariance of the

reconstruction, one due to Poisson noise in g and the other due to the noise in the
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scatter estimate. Equations (7.19) and (7.20) were evaluated separately and the sepa-

rate contributions are shown in figure 7.6, which corresponds to the net profile shown

in figure 7.4, and in figure 7.7, which corresponds to the net profile shown in figure 7.5.

For the imaging system that we have modelled, we observe that the component of vari-

ance and local covariance due to scatter (i.e. due to equation (7.20)) is comparable

to that due to the Poisson noise in g given by equation (7.19). Thus we observe that

the noise in the scatter estimate adds considerable variance to the reconstruction.
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Figure 7.7: Profile through row 48 of slice 9 of the covariance image corresponding to

voxel (48,36,9) decomposed into its constituent components.

We evaluated lpsf about a single point (48,36,9) using theory methods described

above in sec. 7.5.1. A profile is shown in figure 7.8. To evaluate lpsf by sample

methods one could use (7.22). While (7.22) involves all 2Nsamp reconstructions, the

simpler expression (7.23) for lpsf, involving only two reconstructions of mean data

could be used instead. Note that the evaluation of (7.22) and (7.23) both need the

terms (HP +HS)ej and Hlej along with ḡ(f) and ¯̂s(f) to get ḡ(f + δej) and ¯̂s(f + δej).

These terms are calculated using an MC simulator. Note that (7.23) is obtained from

(7.22) via (7.10).

Before comparing lpsf-theory vs lpsf-sample we compared lpsf via (7.22) to the ap-
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Figure 7.8: Profile through row 48 of slice 9 of lpsf at one location (48,36,9) (in

the background). The sample curve computed via (7.22) and the difference of mean

reconstruction curves computed via (7.23) correspond very well.

proximate lpsf via (7.23). This latter comparison is a test of the accuracy of the mean

approximation (7.10). To evaluate the expression for lpsf using the sample method

expressed in (7.22) we need < O{g(f + δej), ŝ(f + δej)} > and < O{g(f), ŝ(f)} >.

To obtain < O{g(f + δej), ŝ(f + δej)} > we reconstructed 2000 noisy data realiza-

tions obtained by generating 2000 Poisson noise realizations of ḡ(f + δej), along with

2000 noisy scatter estimates ŝ(f + δej) obtained by generating 2000 Poisson noise

realizations of ḡl(f +δej) and then applying (7.6). We took δ = 20% of the local back-

ground. In order to get < O{g(f), ŝ(f)} > we used the mean of 8100 reconstructions.

Figure 7.8 shows both lpsf profiles for one location. The difference of reconstructions

using (7.23) and the sample validation curves using (7.22) match very closely.

Finally we compared the lpsf theory expression with that due to the sample

method in (7.22). The results, a profile of which is shown in figure 7.9, show a good

correspondence.
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Figure 7.9: Profile through row 48 of slice 9 of lpsf at one location (48,36,9) (in the

background). Sample curve versus theory curve.

7.6 Discussion

We have developed and validated theoretical expressions for mean, lpsf and co-

variance for SPECT MAP reconstructions driven by data noise and noise in the TEW

WSC estimate. Below we discuss computational complexity of the theory expressions

vs that of sample-based methods, and include comments on the applicability of our

methods.

7.6.1 Complexity of Theory Methods vs Sample Methods

In general, a precise comparison of computational complexity of theory vs sample

methods for computing a performance FOM depends on the specific FOM. We have

addressed only quantities mean, lpsf and covariance that often comprise such FOM’s.

Nevertheless, it is useful to consider the complexity for these quantities. First, consider

a fixed object f , attenuation map μ, and imaging system H. Consider the evaluation

of lpsf and a covariance-related quantity Kf̂x at single location j. We consider the

TEW WSC method.
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All of the relevant theory and sample expressions will require ḡ, ḡl and ḡr as well

as Hrej, Hlej and HPej. These mean sinograms need be generated by an MC simula-

tion using a sufficient number of source events so that the noise due to limited source

events is far less than the Poisson noise added to these mean sinograms. The complex-

ity of the required MC operation, dominated by ḡ, ḡl and ḡr, will be implementation

dependent, but let us denote the number of operations by NMC .

We now consider the complexity of sample-reconstruction (SR) based methods.

From (7.10), one may as well use a single reconstruction of noiseless data to get

the mean reconstruction, and from the discussion in section 7.5.2, use two noiseless

reconstructions to obtain lpsf at a single location. As mentioned previously, constructs

of the form Kf̂x including lpsf and variance, can be calculated using variants of (7.25).

This equation is dominated by the calculation of the Nsamp sample reconstructions.

Thus considering the Monte Carlo calculations, the complexity of SR methods for such

quantities at a single j goes as Nsamp reconstructions +NMC .

We now consider the computation complexity of the corresponding theory ex-

pressions, again for a single j. The mean reconstruction using (7.10) amounts to a

single reconstruction. For covariance, as previously mentioned, we need only deal with

a matrix vector product of the form Kf̂x
j where xj is a compact signal centered at

location j. In this case one may replace with only small error Kf̂ by Kj

f̂
. As mentioned

in section 7.5.1, the complexity in computing Kj

f̂
resides in the computation of the

term (F(j) + βR(j))−1. The computation of this inverse can be done with Fourier

techniques, but the complexity of the Fourier operations is small relative to the com-

putation of F(j) itself. In [114] it is shown that the computational complexity of F(j)

is approximately equal to a single backprojection. (Approximate versions of F(j) for

SPECT may be computed much more rapidly using techniques in [116].) If in (7.19),

(7.20) and (7.21) we ascribe a complexity equal to a single backprojection to the ap-
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pearance of the term (F + βR)−1, one might ask what are the remaining significant

computationally complex operations. The answer is that there is an addition back-

projection in (7.20) and (7.21). Thus to compute, for a given location j, a product of

the form Kj

f̂
xj, the effort (once the sinograms have been computed) is approximately

2 backprojections if there is no satellite window overlap and 3 backprojections if there

is satellite window overlap.

For the lpsf in (7.24) we noted in section 7.5.1 that it is of the form (F +

βR)−1vj. We can again replace F and R by F(j) and R(j). If (F(j) + βR(j))−1,

using Fourier tricks, has already been computed for covariance purposes, there is no

extra computation for this term. However the computation for vj is dominated by the

computation of a single backprojection. In sum, for a given location j the lpsf involves

only one backprojection if the corresponding covariance term has been computed.

Now consider, instead of a single location j, multiple locations j = 1, . . . , J . To

calculate by SR methods any covariance related quantity at a single j one needs Nsamp

reconstructions. One iteration of an iterative reconstruction such as MAP is dominated

by one projection and one backprojection (approximately 2 backprojections). If a

reconstruction involves L iterations, then the complexity is 2LNsamp backprojections.

From previous arguments, the calculation of an lpsf or covariance related quantity for

theory would need (for no window overlap) three backprojections. Thus for a single

j, SR methods have a complexity of 2LNsamp backprojections + NMC and theory

methods 3 backprojections + NMC . If the calculation is done for J separate locations,

then the SR method does not require any extra reconstructions for covariance-related

quantities. Note that lpsf calculation by SR methods using (7.23) would involve (1 +

J)2L backprojections, but this number is far less than 2LNsamp backprojections. The

theory calculation must be repeated at all J locations. Therefore, the SR method

retains a complexity of 2LNsamp (backprojections) + NMC but the theory method
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now involves 3J backprojections + NMC . Since L ∼ 10 − 100 and Nsamp is often

102 − 103, then 3J is typically far less than 2LNsamp, thus giving an apparent speed

advantage for theory methods.

The aforementioned speed differences become insignificant if the MC sinogram

calculations common to both methods are more computationally complex than sam-

ple reconstructions or the theory calculations. However the speed comparison in the

above paragraph was considered in the context of calculation of the statistical quan-

tities of f̂ for a fixed set of reconstruction parameters. For TEW these parameters

are: count levels, H, β, B and widths and positions of the photopeak and satellite

windows. A natural goal is to explore this parameter space and develop an optimal set

of parameters according to some image quality FOM. For SR methods one would have

to do Nsamp reconstructions to get a FOM for each such member of the parameter set.

For either method the investment in the initial MC calculation of the sinograms need

be done only once. If NP is the number of sets of reconstruction parameters being

explored (e.g. two H’s and 3 β’s ⇒ NP = 6), then the effort for SR methods goes

as 2LNsampNP backprojections +NMC and for theory goes as 3JNP backprojections

+NMC . If NMC < 2LNsampNP backprojections then the SR method is dominated by

the reconstructions and not the Monte-Carlo calculations. In this case, theory meth-

ods will be faster than SR methods whether or not NMC is greater or less that 3JNP

backprojections. The inequality is dependent on the MC implementation, number of

source events and size (NP ) of the search space.

7.6.2 Applications

One clear application of these results is in the optimization of TEW based scatter

estimation methods as was done using sample methods in [179]. In this paper we have

focused on familiar TEW SC method and its single satellite window variant. TEW is

but one example of WSC. Our methods are applicable to other WSC methods with
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the restriction that the scatter estimate be modeled as an affine term. Any scatter

estimate which is a linear combination of counts in adjacent windows of the form

ŝ = B
∑

k akgk where gk is the counts in the kth energy window, ak a weight factor,

and B a linear filtering operator. Examples include the generalized linear method in

[166], the Compton scatter estimation method in [159], the Extended TEW in [181],

TEW with scaling as in [175] and other variants of TEW [182, 183].
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Chapter 8

Discussion and Future Work

In this work, we proposed our computational methods to theoretically predict

the noise properties of MAP reconstructions of a SPECT system, and then the lesion

detectability for the SPECT reconstructed images. It primarily dealt with the appli-

cation of model observers to image quality in the context of lesion detectability which

can be used to compare, optimize and improve imaging systems and SPECT recon-

structions. Our results show the good coincidence between the theoretical predictions

and the Monte Carlo simulations and human observer tests. We focused on SKE tasks

where the lesion location is known. Though SKE is a simplistic task, the theoretical

computations can be extended to more complex tasks with location uncertainty. We

discuss this briefly in 8.1. We also proposed method for theoretical computation of

first-and second order moments of SPECT reconstructions that model more realistic

systems including scatter. Theoretical calculation of these quantities (mean, covari-

ance, lpsf) can be used to rapidly calculate figures of merit (FOM) that summarize

performance of detection and estimation tasks for reconstructed images. The main

contributions comprise Chapter 5, 6 and 7.

In Chapter 5 we estimated the validity of the human emulating mathemati-

cal model observer the CHO in predicting human performance for SKE tasks. The

context involved was the optimization of a crucial parameter which controls the

noise/resolution trade-off in SPECT MAP reconstruction. This parameter extensively
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affects lesion detectability and was confirmed with human observer 2AFC tests. We

also went on the show the effectiveness of the CHO adjusted for internal noise in pre-

dicting this human performance. We also observed that the noise in the background,

i.e., object variability, is a very important factor that deteriorates the detection perfor-

mance. We made an interesting observation in the performance of CHO in the presence

of object variability. We saw in the presence of OV that the CHO predicts human

performance without being tweaked for internal noise. To make our mathematical

observer better in predicting human observer, we needed to include the quantization

noise. The CHO in the SKE task acts directly on reconstructed images of continu-

ous values, whereas, human observers act on displayed images in practice which are

quantized. We saw quantization noise hardly affects the performance of the CHO.

In Chapter 6 we have observed, using 3D SPECT simulations, model observers,

and a rapid means to evaluate SNR, that lesion detectability is not affected by anatom-

ical boundary information. We extended our work by carrying out more realistic sim-

ulations involving the effect of anatomical boundaries on detection of a lesion in a 2D

slice extracted from a 3D reconstruction of a 3D object. In the simulation described

we assumed perfect knowledge of anatomical boundaries with no misalignments or

anatomy-function resolution mismatch. We investigated whether the use of anatomi-

cal priors with organ boundaries alone or with perfect lesion boundaries alone would

change lesion detectability relative to the case of a prior with no anatomical infor-

mation. Furthermore, we investigated whether any such detectability changes for the

organ-boundary case would be a function of the distance of the lesion to the organ

boundary. We also investigated whether any detectability changes for the lesion-

boundary case would be a function of the degree of proximity, i.e. a difference in the

radius of the true functional lesion and the radius of the anatomical lesion boundary.

Our results showed almost no detectability difference with vs without organ bound-
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aries at any lesion-to-organ boundary distance. Our results also showed no difference

in lesion detectability with and without lesion boundaries, and no variation of lesion

detectability with degree of proximity.

Chapter 7 we tacked a somewhat different problem of rapid computation of co-

variance and lpsfs of 3D SPECT MAP reconstructions in the presence of scattered

photons in the projection data. Chapters 5 and 6 dealt with controlling and predict-

ing the effect of these noise/resolution tradeoff quantities on SKE human performance.

We knew for the literature survey in Chapter 7 that the presence of scatter affects

image quality. The MAP reconstruction incorporated a window-based scatter correc-

tion method TEW for modeling this scatter in the reconstruction. The scatter in the

projection data was obtained using SIMSET an MC simulator. We showed that MAP

reconstructions corrected for scatter was one form of a mismatched model error which

increased the variance of 3D SPECT reconstructions. We developed fast theoretical

expression which obviate the need of sample reconstructions for computing means and

lpsf. These expressions can then be used in the computation of model observer FOMs.

We validated our rapid theory results versus laborious sample methods and showed

very good concordance between computations and sample methods.

We reviewed the image formation equation g = Hf +n and the MAP reconstruc-

tion operator f̂ = O(g). We studied the effects of Poisson noise n, the model mismatch

between the real imaging model H and its approximation H used for reconstruction

purposes. We also studied the effect of OV in affecting detection performance in case

of human and model observers. Also Since O comprise a MAP algorithm we studied

the effect of anatomical priors in affecting model observer SKE/BKE detection per-

formance. Thus this was a broad study of the effects of noise resolution tradeoff, noise

and reconstruction estimators in the context of SPECT “Image Quality”.
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8.1 Future Work

8.1.1 Future work involving SKE task

We used the simplified non-realistic signal-known-exactly SKE detection task.

For practical usage, there are several aspects we can focus on to improve our imaging

system model and mathematical observer models for SKE tasks in the future. More

detailed studies need to be done to take into account the more complicated geometrical

factors, such as fan beam or even cone beam collimation. Long-range artifacts induced

due to model mismatch in the form of inclusion/exclusion or attenuation correction

and scatter correction can have an effect on lesion detectability. We would study the

effects of these model errors on lesion detectability in the presence and absence of

anatomical side information.

Further, in Chapter 6 each pixel belonged to a single tissue class giving rise to bi-

nary labeling of pixels. One way to compensate from misregistration errors and partial

volume effects is to use “blurred” anatomical labels [132] as described in Sec. 6.1. We

could show the effects of using binary as well as blurred labels to incorporate anatom-

ical information in the MAP reconstruction in presence of either perfect or erroneous

(imperfect) anatomical knowledge. Projection data of these experiments should be

obtained with a Monte Carlo image generator SIMSET and the reconstruction should

have imperfect knowledge of attenuation and scatter. We point out that the study

discussed in Chapter 6 did not include the important feature of statistically variable

backgrounds. Aside from their realism, the inclusion of background variability might

lead to a change in conclusions regarding the efficacy of anatomical priors in some task

contexts. Finally, Chapter 6 should obviously be extended to human observer testing.

Preliminary results using human experiments with a 2AFC methodology (Barrett and

Myers 2003) to measure SNR showed agreement of human and model observer for our

lesion boundary experiment, but far more work is needed.
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8.1.2 Extending the Task

While none of the studies described in Chapter 5 and 6 involved higher-order

tasks, such as detection plus localization, it would be interesting to investigate the de-

tection performance in the case of these tasks. SKE tasks are too simplistic and do not

model the clinical realism of detection plus localization when the lesion location is un-

known and variable. A physician in the clinic does not exactly know the lesion location

and must predict the presence /or absence of the lesion along with its location within

a certain appropriate search radius. In our group we have also done original work

on signal-known-statistically/background-known-statistically (SKS/BKS) [28, 96, 97]

but we do not discuss it in this thesis. However, we have only recently begun to apply

this to practical 3D SPECT. My initial work in this area is [210], in which we address

the problem of optimization and comparison of window-based scatter correction (SC)

methods in SPECT for MAP (maximum a posteriori) reconstruction. It is a signifi-

cant extension of two of our previous works [96, 155]. In [96], we introduced theory

methods to rapidly evaluate performance of an observer for the task of detecting and

localizing a signal in a SPECT MAP reconstruction. This had nothing to do with SC.

However, in [210], we addressed the problem of formulating theoretical expressions for

the additional bias and covariance (above that due to photon noise) in a SPECT MAP

reconstruction that included window-based SC. Here, we extend [96] and combine it

with [155] to address a problem of practical import.

This thesis has used statistical decision theory and other tools of signal processing

to quantitatively analyze image quality in the medical imaging modality SPECT. Since

for radiation-based imaging such as nuclear imaging and X-ray, one always tries to

lower the dose of radiation administered to the patient, this starves the system of

detected counts which results in the increase of quantum noise. Together with object
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variability and model error, this noise ensures that the reconstructed images will always

be noisy and this offers challenges in Image Quality.
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