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Abstract of the Dissertation
Holographic QCD
by

Keun young Kim

Doctor of Philosophy
in
Physics
Stony Brook University
2009

The gauge/gravity duality conjecture provides a novel and useful
tool for studying strongly coupled systems. This duality maps dif-
ficult strong coupling problems to tractable weak coupling gravity
problems. Furthermore, complicated non-perturbative phenomena

can be described by simple geometrical pictures.

The gauge/gravity duality was first applied to explain the strong
coupling regime of QCD (sQCD) such as strongly coupled quark
gluon plasma (sQGP) produced at the Relativistic Heavy Ion Col-
lider (RHIC) and hadronic physics. Recently it has been exploited
to study properties of condensed matter systems such as super-
fluidity, superconductivity, and the Hall effect. The various dual
theories of non-relativistic conformal field theory (CFT) also have

been considered.

In this thesis I review my work on sQCD using the gravity dual
model also called holographic QCD (hQCD).
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1) The baryon form factor and nuclear force,

2) Phase and properties of baryonic dense matter,

3) The effect of finite baryon density or chemical potential on
meson properties,

4) Non-equilibrium properties of sQGP.

These are important applications of the gauge/gravity duality since
hQCD gives us a tractable theoretical tool for studying the finite
baryon density problem and time-dependent dynamics of sQGP.
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Chapter 1

Introduction

1.1 Overview

The gauge/gravity duality conjecture [1] provides a novel and useful tool for
studying strongly coupled systems. For a general review see 2| and references
therein. This duality maps difficult strong coupling problems to tractable
weak coupling gravity problems. Furthermore, complicated non-perturbative
phenomena can be described by simple geometrical pictures.

The gauge/gravity duality was first applied to explain the strong coupling
regime of QCD (sQCD) such as strongly coupled quark gluon plasma (sQGP)
produced at the Relativistic Heavy Ion Collider (RHIC) and hadronic physics.
There are many review articles on this application [3-11]. Recently it has been
exploited to study properties of condensed matter systems such as superflu-
idity, superconductivity, and the Hall effect [12]. The various dual theories of
non-relativistic conformal field theory (CFT) also have been considered [13].

In this thesis I review my work! [14-21] on sQCD using the gravity dual
model called holographic QCD (hQCD).

We start with a brief review on some of general holographic methods and
holographic “QCD” models.?2 At the end of this chapter we describe the outline
of this thesis.

'With Prof. Ismail Zahed and Prof. Sang-jin Sin.
2There is no exact holographic QCD model yet, so the “QCD” model means that the
model mimics some aspects of QCD.



1.2 Holographic methods

In this section we will review some of the holographic methods widely used
in the strongly correlated systems including QCD and some condensed mat-
ter system. We will explain a “big picture” and “recipes” of the holographic
technique as non-technically as possible. We will not try to be general or
rigorous. We also avoid discussing many subtleties. For more complete dis-
cussion we refer to [3-10]. The aim of this section is to provide the conceptual
background and heuristic arguments before discussing the technical details in
the main text. To make this introduction as simple as possible some subtle
points which are important in practice but not important for a big picture are

relegated to the footnotes.

1.2.1 Green’s functions

We start with the 5 (or more) dimensional gravity theory. 3+1 dimension
will be identified with the spacetime where our field theory is defined and the
extra one dimension is identified with the energy scale of the field theory. If
there are more dimensions then they are compactified, for example as a small
sphere, not to be observed. In this section we will ignore this compactified
dimension for simplicity.

The object we are interested in is the partition function of the field theory,
which gives us various correlators (Green’s functions). The basic idea is to get
the field theory partition function by computing the gravity partition function.
There are two issues. One is the fact that getting the gravity partition func-
tion is also (possibly more) nontrivial in general. Thus the problem does not
become easier by going to gravity. The other one is the mismatch of spacetime
dimension. Both problems are resolved by considering the on-shell gravity ac-
tion with non-normalizable classical solutions. In brief the sum over all paths
in the gravity partition function is reduced to the single contribution due to the
classical solution, which amounts to the saddle point approximation. ® In this

procedure the 5 dimensional action is reduced to the 4 dimensional boundary

3The validity of this saddle point approximation needs to be justified. For a detail we
refer to [3]. Specifically it is valid at the large number of color (N¢) and large t'Hooft
coupling (A := g% ,,N.), which correspond to the weak gravity and the strongly coupled
field theory regime.



term, which we will describe in more detail below.

Let ¢ be some gravity field living in 5 dimension and ¢, be a classical
solution of the equations of motion. By plugging ¢, in the action we can get
the on-shell action which may be decomposed as two parts after integrating
by part. One is the part giving the equation of motion and the other is the
part giving the boundary value since it’s a total derivative term. We are left
with the boundary term since the equation of motion part vanishes. The value
of this boundary term depends on the nature of ¢.. If ¢, approaches to zero
sufficiently fast, which is a usual assumption in the field theory, there will be no
contribution. Here, in AdS/CFT setup, we assume a non-normalizable solution
with ¢ — ¢% at the boundary, so that there is a nontrivial contribution in the
boundary term. Consequently the 5 dimensional “bulk” action is reduced to
4 dimensional “boundary” action after taking care of the integration over the
extra dimension. Since it is the integration of a total derivative the resulting
action only depends on the boundary value (¢%) of the bulk field. It is the
boundary value of the classical field that is identified with the source of the
field theory.

With the above consideration of the “on-shell” gravity action which is
denoted by Syravity [0 — ¢%], the AdS/CFT correspondence is the statement
that

Zleh) = (e a0k | = eSremlbam ] (1)
gauge

where O is a operator whose source is ¢. Since the classical path will dominate
the gravity path integral, the RHS represents a saddle-point approximation to
the gravity path integral.

In summary, to compute a correlator for an operator O in the field theory
we follow the steps: First determine which field ¢ is dual to O * and solve the
gravity equations of motion for ¢ with the boundary condition ¢%.> Then plug

this solution (¢) into the gravity action, which yields the “on-shell” action

4Which operator is correspond to which field is not trivial. We usually deduce this by
the dimension and symmetry. For example, metric fields (g,,) correspond to the energy
momentum tensor (7#) of the field theory.

5Usually the differential equation is the second order and we need two boundary con-
ditions. One is fixed by ¢, and the other condition comes from the regularity or by the
incoming requirement of the positive energy mode at the black hole horizon.



and gives the RHS of (1.1). It is identified with the generating functional of
the field theory so by varying with respect to ¢, we can get the correlator
of the corresponding operator of the field theory. Note that Sy, can be

identified the generating functional for the connected Green’s functions.

1.2.2 Thermodynamics

By Euclideanizing the action we can study the thermodynamics via thermal
field theory. The temperature is introduced with periodic imaginary time.

Let us consider the Wick rotation to Euclidean time and compactify the
time direction with a period §:= 1/T. Then (1.1) reads

P = Z[gY) = (eI FeOR)  eShalbam ] (19)

gauge

= TSgravity |:¢cl - (b(c)l} ) (13)

where Z[¢?] is interpreted as the thermodynamic partition function in the
presence of the source ¢ and F is a thermodynamic potential such as Helmholtz
free energy or Grand potential.

The temperature is not arbitrary and is related to the black hole geometry.
The vacuum of the field theory corresponds to the vacuum solution of the
Einstein equation. The relevant solution called AdS metric is the solution with
the negative cosmological constant. In general this solution contains black
hole (or black brane) solution analogous to Schwarzschild black hole which
shows singular behavior near the horizon. Roughly speaking the temperature
is determined by the horizon position to avoid the conical singularity of the
geometry. The entropy of the system is related to the area of the horizon. In
this case F' is identified with Helmholtz free energy:.

We also can consider the chemical potential or the related conserved charge.
A conserved charge is equivalent to the existence of a global symmetry in the
field theory. In general, from gauge/gravity point of view, the global symmetry
of the field theory is related to the local (gauge) symmetry of the bulk theory.
Thus we need to consider the gauge theory in the bulk. For example let
us consider the global U(1) symmetry of the boundary field theory. It may
amount to introducing the U(1) Maxwell field in the bulk. Thus the minimal

bulk action is Einstein-Maxwell theory with one nonvanishing component Ag.



In the boundary field theory the conserved charge is conjugate to the chemical
potential (y), which is nothing but a boundary value of a bulk field, Ay(cc). ©
The corresponding operator O is the number operator N. In this case the F is
identified with the grand potential. By choosing a suitable gauge field we also
can study the system with some background electric field or magnetic field.
Once we know the thermodynamic potential we can compute all thermo-
dynamic quantities using the standard thermodynamics relations. If there
are more than one possible classical solution then we should compare ther-
modynamic potentials to determine the stable gravity configuration. It is the

holographic realization of the phase transition.

1.2.3 Linear response and transport properties

In the previous section we discussed the properties of the equilibrium state.
Now we want study non-equilibrium properties. One approach is linear re-
sponse theory, the response of the system to a small perturbation. It is char-
acterized by some transport coefficients, which are related to the retarded
Green’s function by Kubo’s formula. For example the conductivity can be

calculated as

zr __ 1: 1 T A
o™ = }Jl_IElO ;ImGR (w,0) (1.4)

where G5 (w, 0) is the retarded Green’s function defined as

—,

GF(w,0) /dtdfei“’tﬁ(t)([Jm(t,f),Jm(0,0)]> (1.5)
where J,, is the current.

The point is that we can calculate G% (w, 0) from the gravity [23-25]. The
method is a generalization of (1.1): (1) By Wick rotation we work with the
Euclideanized action. (2) Compute the two point correlator, which is identi-

fied with the Green’s function. The Green’s functions are defined up to the

6 Ay is not gauge invariant. However the gauge is fixed by the regularity condition
at the black hole horizon in the presence of the black hole or by the consistency with
the thermodynamics [22]. i.e. Ag(0) = 0. Thus the boundary value is well defined and
the equivalent gauge invariant identification is fooo F.o, which also has a direct meaning of
the chemical potential, the amount of work to put a particle into a system. As a result
Ap(c0) = p is always valid in the axial gauge A, = 0.



boundary condition. (3) To get the retarded Green’s function (not advanced
or Feynman Green’s function) we use the incoming boundary condition at the
horizon.”

We will finish this section with a heuristic derivation of Kubo formula. First
consider the small perturbation by weak external fields {¢;(z)} coupled to a

set of operators {O?(z)} at the thermal equilibrium. Then the Hamiltonian is
modified by

5ﬁ:—/ﬁmﬁjﬁ%j) (1.6)

The standard time-dependent perturbation will give us the expectation value

of the operators
50 () = / 2 G, 2! )y () + () (1.7)

where G'J(z, 2') is the retarded Green’s function. In the translational invariant

system the result reads in the Fourier space
30" (k) = G (K)o, (k) + O(¢°) (1.8)

Let us consider the Ohm’s law for an time-varing electric field. The spacial

part of the current is given by
J' = 0" E; (1.9)

In the language of the linear response theory, ¢; — A; and OF — Ji, and
E,(k) = iwA,(k) in the gauge A; = 0. By comparing (1.8) and (1.9) we get

GE = iwo™ (1.10)

Thus Kubo formula, which relates transport coefficient to the retarded Green’s

function, yields

1 -
o™ = lim —ImG% (w, 0) (1.11)

w—0 W

"This has been justified using Schwinger-Keldysh formalism [26].



Another studied example in gauge/gravity is the shear viscosity (n):

— . Y,y 0
n= —})13%] ;ImGR (w,0) (1.12)
where
GF ™ (w,0) = /dtdfewe(t)<[Txy(t,f),Txy(O,ﬁ)]> (1.13)

1.2.4 Holographic models

The gauge/gravity duality is originated from AdS/CFT duality, which says
that some large N, and large A CF'T, Conformal Field Theory (for example
N=4 super Yang-Mills in 4D), is dual to some weak classical gravity theory
in the AdS background metric (for example Type IIB supergravity in AdSs
metric).® This duality is related to the dual role of the D-brane or Dp branes,
p+1 dimensional gravitating objects which couple to the specific type of charge
called Ramond-Ramond charge (RR charge).”?

First the large number (N,) of Dp-branes on top of each other can be in-
terpreted as a source generating a background metric which is usually the AdS
metric or its variants. It is analogous to the Schwarzschild black hole metric
sourced by a large number of (very massive) point particles, “D0 branes”.'°
The gravity theory is defined in this background metric. The dual field theory
is U(N,) gauge theory and the gauge fields are related to the small fluctua-
tions of N, D-branes. 1i.e. the dual role of the D-branes are the source for
the background (where closed strings or gravity degrees of freedom live) and
their own small fluctuations (which amount to the excitations of open strings

or gauge field degrees of freedom).

8This is a weak form of AdS/CFT. In a stronger form there is no restriction on the
parameters and two theories are completely equivalent. In this thesis we will use a weak
form.

9Tt would be more logical to start with this D-brane argument at the beginning when
we discuss gauge/gravity duality. However I decided not to do so since I wanted to present
how to apply gauge/gravity duality to the real physical problems at first by avoiding any
formal argument. In the previous sections D-branes do not play any role in a practical sense.
Now D-branes becomes essential to discuss the flavor degrees of freedom and I introduce
the concept here. However the techniques presented in the previous section are still valid
with the D-brane’s action instead of the Einstein action for the gravity part.

10 A ysual point particle is not a D-brane. Only from the dimensional perspective it is a
“D0 brane”.



In this setup N, D-branes give us the pure U(N,) gauge theory description.
To consider the quark degrees of freedom, additional structure is needed. It
has been shown that adding quarks in the gauge theory amounts to embed-
ding Ny probe branes in the spacetime generated by N, branes, where Ny is
the number of flavor. In order not to disturb the original geometry (or orig-
inal gauge theory) we assume Ny < N, which corresponds to the quenched
approximation in the field theory.

To study the pure gauge theory we study the background metric itself. To
study the dynamics of the flavor degrees of freedom we study the dynamics
of the flavor branes in the background metric. It has been shown that the
D-brane dynamics is determined by two actions: the Dirac-Born-Infeld (DBI)

action and the Chern-Simons (CS) action. Schematically they are written as

SPBI /df”“x e ¢ tr/—det(gun + 270/ Fun) (1.14)

SY5 ~ /Cg/\tl"F/\F/\F. (1.15)

The DBI action describes the interaction of the flavor field (Fyy) with
the background gravity (gan)! and dilaton field (¢), while the CS action!?
describes the interaction with the RR field (Cj).

To study the thermodynamics and linear response we can use the same
formalism presented in the previous section with the D-brane action as the
gravity action.

There are two models which have been most studied. Omne is D3/D7
model [27] and the other is D4/D8 model called also Sakai-Sugimoto model
(SS model) [28]. The former uses Ny D7 flavor branes in the geometry of N.
D3 branes and the latter uses Ny D8 branes in the geometry of N, D4 branes.
They will be explained in chapter 2 in more detail. In this thesis the SS model
is the main model we study.

Here we simply describe what has been done with the SS model in studying
QCD. The SS model yields a first principle effective theory of mesons. Many

meson properties such as mass spectra, hidden local symmetry, vector meson

'The metric is the induced metric on the flavor brane from the background metric.
12While the DBI action is the general form, the CS action in (1.15) is not a general form.
It depends on the dimension and the form of the RR field.



dominance, and the KSRF relations are successfully derived. [29] The baryon
is realized as a soliton and its properties such as its spectrum and form factor
are in good agreement with experiment [19, 30-43]. The nuclear force from
these holographic baryons is computed by both the soliton picture [21, 44] and
effective point particle action [45, 46]. The SS model at finite temperature has
been discussed in [47-49] and at finite baryon(or isospin) density in [15, 17,
50-56]. Isospin chemical potential [57-59] and glueball decay [60] have been
discussed. The similar topics have been discussed also for D3/D7 model [27,
61-74).

1.3 Outline

In chapter 2 we define the SS model and collect the relevant formulas to appear
in the subsequent chapters. We also present the D3/D7 model for comparison
with SS model. The D3/D7 model will be discussed and compared with SS
model in chapter 4 and chapter 5.

In chapter 3 we study the thermodynamics of baryonic dense matter using
the SS model. For homogeneous matter we introduce the baryon number den-
sity through the Chern-Simons term. For inhomogeneous matter we deform
the space to consider the Wigner-Seitz cell approzimated by S®. By identi-
fying the Euclidean DBI action with the grand potential we can study the
thermodynamics.

In chapter 4 we study the conductivity of dense holographic QCD by in-
troducing a static external electric field on the probe branes. In chapter 5
the response function of a homogeneous and dense hadronic system to a time-
dependent (baryon) vector potential is discussed for the SS model and the
D3/D7 model. In chapter 6 we discuss the density’s effect on the meson’s
properties.

In chapter 7 the baryon form factor is worked out using the holographic
baryon realized as an instanton in the 5D Yang-Mills and Chern-Simons sys-
tem. In chapter 8 by considering two instantons in the same model we study

the nuclear force.



Chapter 2

Sakai-Sugimoto model

2.1 Introduction

In this section we summarize the Sakai-Sugimoto model (SS model) which is
D4/D8-D8 set up. We will be very brief only for notation and completeness.
For a thorough presentation we refer to [28, 75] and references therein.

As presented in the section 1.2.4 the physic of flavor branes are determined
by two actions: DBI action and CS action. Let us consider Ny probe DS8-
branes in the N, D4-branes background. With U(N;) gauge field Ay on
the D8-branes, the effective action consists of the DBI action and the Chern-

Simons action:

Soe =SB+ 558

SHBEL = —T8/d9x e~ ? tr \/—det(gMN + 27’ Fyn) (2.1)
1

S— Cstr F? 2.2

where Ty = 1/((2m)31?), the tension of the D8-brane, Fyn = Oy Ax —OnApr —
i [Ay, Ay] (M, N =0,1,---,8), and gy is the induced metric on D8-branes.
To make explicit expressions we need to know the background metric, delaton,
and RR fields produced by N. D4 branes and the form of the gauge fields
Aypr, which will be reviewed in the following sections. The formulas in this
subsection will be presented again when they are needed. However collecting

the formulas here will make every pieces as a whole picture.
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2.2 N, Dp branes background

In this subsection we review the D4 brane backgrounds and D3 brane back-

grounds. For more details we refer to [75].

2.2.1 N, D4 branes

There are two background solutions for D4 branes: Soliton background and
black hole background. The former corresponds to the zero temperature or

low temperature and the latter corresponds to the high temperature.

Soliton Background: zero tempearture

The metric, dilaton ¢, and the 3-form RR field C5 in N, D4-branes background

are given by

U\*? o R\*? ( au?
2 _ (2 42 B U2 Y| 2 o 2 Q2
ds (R) (—dt* + 6;dz'dx —l—f(U)dT)—l—(U) <f(U)+Ud 4) ,
AN 27N, Us
=g (%) m=dc =T jwy=1- T, 23)

where z# = 20123 7(= 2) is the compact variable on S'. U and €, are the
radial coordinate and four angle variables in the 2>%7%9 direction. V,; = 872/3
is the volume of unit S* and ¢, is the corresponding volume form. To avoid a

conical singularity at U = Ukyk the period of 7 of the compactified 7 direction

18 set to
47 R3/? 27
! 3 Uf(/KQ e Mxx (2.4)

This supergravity solution above is regular everywhere and is completely
specified by the string coupling constant, g,, the Ramond-Ramond flux quan-
tum(i.e.the number of D4 branes), N,, and the constant Uxk. The remaining

parameter R is given by
R’ = mg NI (2.5)

where [ are the string length.

11



The field theory defined by Kaluza-Klein mass( Mgy ) and the four-dimensional

coupling constant at the compactification scale, gy s

o 3Upye 9 Uk \'*
Mgk = — = - XK 2 = : 2.6
KK = 5 = 5p3/2 Iy m 3\/7?( N1 ) (2.6)

The parameters R, Ukk, and g; may be expressed in terms of Mgk, A(=

gymNe), and [ as

1 A

1A 0o 2 1
KK = o My N,

R} == AMy 2 .=
2MKK’ 9 KKls , g

(2.7)

Black hole background: finite tempearture

For a finite temperature we have two possible geometries.

One is to follow the standard prescription: analytically continue the time
1

T
impose anti-periodic boundary condition on the fermions around the ¢ g-circle.

coordinate t — tgp = it, periodically identify ¢tz with period dtgp = and

That is simply the Euclideanized version of (2.3),

U\ 32 o R\*? [ dU?
ds? = (E) (dt3, + 0yda‘da’ + f(U)dr?) + (5) (f(U) + U2in) :

which dominates at low temperature.
The other is to consider the black hole geometry, which is another sad-

dle point of the Euclidean path integral over supergravity (or rather, string)

configuration.
U\ oy R\*? [ aU?
2 — e 2 B 7 Y 2 o 2 Q2
ds <R> (f(U)dt3, + 6;5da’da +d7‘)—|—<U) (f(U)+Ud 4> ,
U\ 27N, U
v a(B)  m=dc= T joy=1-F (28)

which dominates at high temperature. To avoid a conical singularity at U =

Ur the period of dtg of the compactified 7 direction is set to

A R3/? 1
tp = ——— =1 — . 2.9

12



The relation between parameters are as follows
Gy =4mgs = A=dmg,N. . (2.10)

The phase transition between soliton background and black hole background

occurs when 07 = dtg i.e. at the critical temperature T,

_ MKK

T, 2.11
¢ 2m ( )
It corresponds to confinement/deconfinement transition.
2.2.2 N, D3 Background
D3 brane background are as follows.
U\? S R\? [ dU?
ds* = <E) (f(U)dt% + 05dx d:E]) + <ﬁ) <f(U) + Uzdﬁg) ,
2n N, ]
e =1, Fy=dC, = T e, f(U) = —U—Z, (2.12)
f U
where to avoid the conical singularity the temperature is determined as
TR? 1
T2 2.1
g U, T (2.13)
and R is
R'=4ng,Na”? | gy, = 47g, , (2.14)

In the literature there are a few widely used different conventions in ex-

pressing the metric components. We list some of them here for future use.

Relation to other conventions:

For z := %2 and zy = 5—;,
R? dz?
ds* = = <—fdt2 +di? + %) + R2O2 (2.15)
z
4
f=1-2 T= 1
Zrr TZH



Foryz;,

2 R 2 o, 2 42 2 1092
H
1
f=1-y", r'=——0:
TZH
Foruzz%z,
H
2T2R2 R2
ds? = © —F(u)di® + di? du? + R%O2 . (21
s - (= f(u)dt® + x)+4f(u)u2 u” 4+ RS, (2.17)
le_u27 T:L’
TTZH

2.3 DBI action

Since we know the background fields we can compute DBI action. We first
calculate the induced metric (the pull back of the metric from the background
metric). Then make the gauge field specific. In the last subsection we show the
general DBI action formula and specific form corresponding to the specified

gauge field or approximation scheme.

2.3.1 Induced metric
D8 brane in D4 brane background

The induced metric on the D8 branes from the gravity background (2.3) and

(2.8) may be written as

dsty = gudt® + gu.0ydx'ds’ + gyy dU? + gssdS) (2.18)
U\ 32 U\ 32 o
= « (E) dt® + <§> 0;jdx"da’
R 3/2 R 3/2
N

14



where for the KK background

@ =1, 5o ﬁ%g—ﬁf(%)gﬂw,
f) — 1- (%)3 : (2.20)

and for the BH background

a— fU), VHﬁjL(g—ﬁ)z(%)g,

ﬂU)—»1—<%§)3. (2.21)

The embedding information is encoded only in v and thereby gyp .

D7 brane in D3 background

Instead of considering a general case let us consider the massless quark embed-
ding as an illustration and for a future use. In this case analytic solutions are
available [98]. The induced metric on D7 brane from (2.15) becomes simply
AdSs x S independent of the gauge field.

22

T R?

2 4
(= fdt* + d7i®) + f‘lR—2dz2 FRYMD, f=1-2H (229
z

9
Z4

ds?

If we work in units of R = 1 SUGRA and SYM quantities will be tied by
o = 1/\/X with A = 4mrg,N..

2.3.2 Gauge Fields

Since A is U(Ny) valued, it may be decomposed into an SU(Ny) part(A) and

-~

a U(1) part(A),

RN 1 -~

A F=F F 2.2
A + vl (2.23)

where A = A*T*, F = F*T* and the SU(Ny) generators T are normalized as

A=A+

tr (T°T°) = %5@5’ . (2.24)
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Without index the gauge field and the field strength should be understood as

a 1 form and 2 form respectively.

2.3.3 DBI action

General expression

D8 brane action
With the induced metric (2.18) and the pertinent guage fields, the general DBI

action follows as

Sppr = =N tr /d4$dU e %955 [ — G009ss 90 — G Fou Fou
~GreguU Z FoiFoi = goog3s Z Fiy Fiy

1/2
—g00Gaaguv Y FiFij = gux Y FyFijFuoFuo+ -+ | (2.25)

i>j i>j

where e=® = g,(U/R)** and N = T3Qy. The Dg brane tension is Tg and €y is
the volume of a unit S*. ' The F*® and F® terms cancel by symmetry. Among

the F'* terms we only retained the relevant term for our discussion below.

D7 brane action

Similiary

Sppr = —N tr /d4$dZ 9;@2 [~ 90092922 — GouFozFoz
~Gr0922 Z FoiFoi = goog>s Z FizFiz
1/2
— 000922922 Z FijFij — Gaa Z FijFijFroF 70 + - - - (2.26)

i>j i>j

The result is analogous to the D4/D8 case (2.25) with three differences: 1)

N = T7Q3; 2) there is no contribution from the dilaton; 3) gz{g appears instead

of gé/; , since the compact space is S® not S*.

'We absorb 27’ into the gauge field for notational convenience. It will be recalled in
the final physical quantities.
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Baryonic background gauge field

The U(1) charge at the boundary is related to U(1) gauge field in the bulk.
A= A(U) , (2.27)

and the chemical potential is related to the A;(cc). To accommodate a static
baryonic electric field on D8 branes both in vacuum and matter, we follow [90]
to define

A= AU, Ay =Bt +h(U) . (2.28)

The magnetic field is
For example the DBI action (2.25) is written as

SpBI = —N/dU e % gegGun ¥

loelgzegins — @rer) (a0 + g0 A ~ loel(4,)
(2.29)

With the induced metric (2.18) and the guage fields (2.28). N = (2N;)T5Vi.
2Ny comes from the fact that we consider Ny branes and anti-branes and
Vi(= 8/37?) is the volume of the unit S* which is due to the trivial integral

/

over S*. ’is the derivative with respect to U and ~ is the derivative with

respect to ¢

1/\ expansion

In the soliton background the 5D Yang-Mills action yields as the leading terms
in the 1/ expansion of the DBI action,

1
Sym = —& / d'zdZ tr {iK—”g’”fiu + MK, (2.30)

where we change the variables as

20y Z

_ 2 _ 1/3 _ _
K=1+2%, U=UJKY?, U = == 55547 f=1-

1
K Y

17



w,v =0,1,2,3 are 4D indices and the fifth(internal) coordinate Z is dimen-
sionless. There are three things which are inherited by the holographic dual
gravity theory: Mgk, k, and K. Mgk is the Kaluza-Klein scale and we will

set Mxx = 1 as our unit. k is defined as
K=AN.—— = AN.a, . (2.31)

A is the 5D U(Ny) 1-form gauge field and F,, and JF,z are the components
of the 2-form field strength ¥ = dA — A A A.
For Ny = 2 the action (2.30) is reduced to

1
Sym = —K / d'zdZ tr {§K—1/3F3V+KF54
1 ~ ~
—g / d*zdZ {iK—l/i”FjﬁKFiZ} : (2.32)

where the SU(2) and U(1) parts are completely desentangled in the Yang-Mills

action.

Mesonic fluctuation around the background field

If we consider the fluctuation (A,(z®)) around the classical configuration Ag
(3.10), which is due to homogeneous matter at Z = 0, the action can be

expanded as

R2/3N
295

+ 2A(dyAo) Fryo + AP Fro Fro

(2ma/)?t / AU [QO‘VA_I

a7 | @ra')
+AaZEUFzU+A7< )ZFWFWJFA m( )Z

1>

up to quadratic terms. Fo3 = 0,4 — 0sAa — i[Aq, Ag| and

A= : (2.33)

\/1+ (ra’)? (pry2

18
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Similarly for D3/D7 model,

S = Ntr /d4£(,’dZ/€1 A3FZ()FZ(] + AkQ Z FOiFOi

+Aks Z FizFiz + A koks Z FiiFi;|

1>7

where the information of the background field A is encoded in A and

=N A i
2(2m)*

k=23, k=741 = f1. (2.34)

2.4 CS action

The 5D Chern-Simons action is obtained from the Chern-Simons action of the
D8 branes by integrating F;, RR flux over the S*, which is nothing but Ne¢.

N,
247T2 MAXR

Scs = WM (A (2.35)

wéj Ny )(A) is the Chern-Simons 5-form for the U(Ny) gauge field:

: 1
WM (A) = tr <Aff? + %Agff - 1—0A5) , (2.36)

For Ny = 2 it reads more explicitly

. Nc 3 i 2 ]_ ~2 1 —~ Z 3
Sos = 272 letrF + 4AF +3 d{A tr <2FA+ 2A )H (2.37)
N, 3 3
T gz MNEQ /d%dZ {ngtr (FunFpq) — §AMtr (O0ANFpg)

+ZFMNJC1” (A(]FPQ) + 1_6A0FMNFPQ — EAMFONFPQ

3 ~ N, ~ 1
+§8N(AMtrAOFpQ)} + 15 /d{A tr <2FA+ §A3)} :
(2.38)
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Chapter 3

Thermodynamics of Dense
Matter

3.1 Homogeneous matter

3.1.1 Introduction

Dense hadronic matter is of interest to a number of fundamental problems that
range from nuclear physics to astrophysics. QCD at finite baryon density is
notoriously difficult: (1) the introduction of a chemical potential causes most
lattice simulations to be numerically noisy owing to the sign problem; (2) the
baryon-baryon interaction is strong making most effective approaches limited
to subnuclear matter densities.

In the limit of a large number of colors N,., QCD is an effective theory
of solely mesons where baryons appear as chiral skyrmions. Dense matter in
large N, is a skyrmion crystal with spontaneous breaking of chiral symmetry
at low density, and restored or stripped (Overhauser) chiral symmetry at high
density. While some of these aspects can be studied qualitatively using large
N, motivated chiral models [77], they still lack a first principle understanding.

In this chapter we study the property of dense matter using SS model. In
section 2, we introduce the U(1)y field Ay in bulk and show how the baryon
charge density np affects its minimal profile. In section 2 and 3, we construct
the bulk hamiltonian and derive the energy density as a function of the identi-

fied baryon density. The energy density is found to grow about quadratically
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with the baryon density. We conclude in section 4. Throughout, the canonical

formalism will be used.

3.1.2 Thermodynamics from branes

Let Ao(U) be a U(1)y valued background gauge field in bulk. Its boundary
value is related to the baryon chemical potential [14, 50, 73, 74]. In the absence

of the source, the effective action of the D8-branes (3.24) becomes

1
2

N/ TRV, ’
Spg = — 1874 4/d4deU4 f)?+ (5) (f‘l— (27ra'A'0)2)] . (3.1)
9s U
where Ay = % and the Chern-Simons action vanishes. The equations of

motion for 7(U) and Ay(U) are [50]

d Utfr
v -
\/f (17)2 + (%)3 ( —1 — (2malAp) )
I v () 4 »
v \/f (7')* + ([}]—%)3 ( -1 (27‘(‘0/./46) )
In this paper we consider only the case 7 = 0, Sakai-Sugimoto’s original

embedding [28, 29], where the D8-branes configuration in the 7 coordinate is

not affected by the existence of background Ay. This corresponds to 7 = %T,
the maximal asymptotic separation between D8 and D8 branes.
To compare with [28, 29] we change the variable U to z through
The action (3.1) is then
~ [ [ ) 9 U,
Sps = —N;T [ d'z [ dzU"]1— (2ma’)?— (0.A0)? , (3.3)
0 4 UKK
where we used 7 = 0 and T = 2]\17%%1;1,{3 It is useful to define the dimensionless
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quantities

Zzé, KU)=1+2%= (%)3 , (3.4)
in terms of which the action is written as
Sps = —a / &'z / 47 K2 \[ 1~ bKV3(9A,)? . (3.5)
where
a= % : b= % : (3.6)

Now we introduce the baryon source coupled to Ay through the Chern-
Simons term [14, 30, 76] as mentioned before. We assume that baryons are
uniformly distributed over R? space whose volume is V. For large ), the
instanton size is 1/v/A [30, 33]. It can be treated as a static delta function

source at large N.. For a uniform baryon distribution, the source is

Ssource = Nenp / d*x / dZ §(Z)Ao(Z). (3.7)

The equation of motion of Ay is

d 0L

A7 o Ay) ngo(Z) , (3.8)
which yields
oL 1
BlopA,) 2 sgn(Z) , (3.9)

where n, = N.np is the quark density and the step function sig(Z) is deter-
mined by the symmetry between D8 (Z > 0) and D8(Z < 0). By integrating

!The integral is extended to (—oo, o) to take into account D8 branes as well as D8
branes.
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Figure 3.1: (a) The profile of Ay(Z), (b) Chemical potential vs baryon charge
(mip vs £ where Q = n,/2).

no’

once more we get the classical solution A,

ng/2
2K2 +bK'Y3n2/4

Ao(Ziny) = Ag(0) + /0 "z T (3.10)

We introduce the “baryon charge chemical potential of a quark”, u, by [73,
74]

ulng) = lim Ag(Z;n,) . (3.11)

|Z] =00

This relation also defines p as a function of n, and vice versa. Furthermore

we define the baryon chemical potential as
up =mpg+ N . (3.12)

In Fig.(3.1a) we plot the profile of Ag(Z) in the Z coordinate and in Fig.(3.1b)
we show p for various baryon densities. Since we work in the canonical for-
malism g is more like a Lagrange constraint.

Throughout, the numerics will be carried using the following values [28, 29]:
Ny =2, N. =3, fr = 92.6MeV, and m, = 776MeV. The smallest eigenvalue

was calculated to be A\ = 0.669. Using these five values we can estimate Mgy,
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A, K, a, and b:

m 54t
Mgk = —2% ~ 950MeV, \=g¢2,,N. = f> ~ 16.71
KK \/)\71 950Me ) Iym f7r NCM]?(K 6.7 )
AN,
~ 1
= 5163 = 0.0075, (3.13)
and

a=3.76-10"MeV* b=7.16x 10 "MeV 2. (3.14)

The definition of x and A are different from [28, 29| by a factor of 2, but it is
consistent with [30]. In all figures np is normalized to *2, with ng the nuclear

matter density,
no = 0.17fm > ~ 1.3 x 10°MeV?>. (3.15)

3.1.3 Thermodynamics

Consider the action (3.5) with the source term (3.8),

/d4 / dz L

with £ = —ak>® /1 - bK'3(0,A0) + nyd(Z)Ao(Z) .(3.16)

The Ay is an auxillary field with no time-dependence. It can be eliminated by

the equation of motion (3.9) and (3.10). The energy is

Uln,) = /dm /+00

n2
= aV/ dZ K2/3\/1 + KgbK—E’/3 — Nyt (3.17)

where V' is short for [ dz® and we may set ;= 0. The chemical potential p
6F("q where F'(n,) is the Helmholtz

free energy which is U(n,) at zero temperature Thus

is constrained by the Gibbs relation pu =

— / dz o/
o0 \/(ab)2K2+bK1/3ng/4

(3.18)
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which is in agreement with the solution (3.10) for Ay(0) = 0. We note that
this construction is consistent with [14, 50, 73] where the grand potential is
identified with the DBI action at finite pu.

In terms of the baryon number density np (n,/N.) the regularized Helmholtz

free energy is

Frog(nB) _ /OodZK2/3
aV )

4a?b

oo

\/1+ (Nes)? /s 1] . (3.19)

after subtracting the vacuum value. The regularized internal energy U, pres-
sure p and grand potential €2 as a function of baryon number density ng or

the baryon chemical potential up are

Ureslniz) - _ / 4z \/1+7(NC”B)2K—5/3—1] :

aV o 4a?b
p(nB)reg _ /OOdZ K2/3
a —o0 \/1 + (Nan K-5/3 7
Qreg(/j’\é) _ /OOdZ K2/3 1 —1
aV — 0o \/1 + NC”B(HB K-5/3 7

‘o V(@b)?K? + bK3(Nong /2)?

(3.20)

where up = g — mp = N.p.

In Fig.(3.2) we present the numerical plots of these thermodynamic func-
tions with the numerical inputs in section 3.1. For small baryon densities the
energy density is quadratic in ng/ng (or /m,). At large baryon densities it
is of order (np/ng)'*. The small density limit can be qualitatively understood
by noting that in bulk the A configuration for fixed charge is obtained by
minimizing the induced DBI action of D8-D8. Thus only flavor-meson me-
diated interactions between the point-like baryons are included. At large N,
the D4 mediated correlated gravitons (glueballs on the boundary) are heavy
and decouple. Since our point baryonic vertices in bulk map on infinite size
skyrmions at the boundary this implies that only w exchanges survive at large

N.. Rho and pion exchange relies on skyrmion gradients which are zero. At
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Figure 3.2: Numerical behaviour of the thermodynamic functions: See
Eq.(3.20)

low baryon densities, the dominant Skyrmion-omega-Skyrmion interaction is
two-body and repulsive. Thus the energy density is positive and quadratic in
the baryon density. The baryonic matter is prevented from flying apart by

the container V. At large baryon densities, the energy density softens as the

0.4

quark chemical potential is seen to saturate to (np/ng)”* numerically. We

recall that the baryons are fixed sources so no Fermi motion is involved to

this order. The pressure behaves as (np/ng)? at low baryon densities, and

7/5

again softens to (np/ng)’/° at large baryon densities from the plot. We sum-

Thermodynamic function | ng/ng ~0 | ng/ng~ 10 | ng/ng — oo
Internal energy (np/ng)? (np/ng)"® (ng/ng)**
Pressure (np/ng)? (np/ng)t* (ng/no)**
Chemical potential (np/no)! (ng/ng)%%" (ng/ng)**

Grand potential —(up/m,)?* | —(up/m,)** | —(up/m,)*?

Table 3.1: Numerical behaviour of the thermodynamic functions: See
Eq.(3.20)
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marize the behaviour of the thermodynamic functions obtained numerically
in Table.(3.1). In this paper we do not consider the back reaction of grav-
ity for baryons or D8 brane, therefore the behaviour at higher densities, say
ng/ng > 10, is not justified.

3.1.4 Conclusions

We have considered a generalization of the chiral model proposed by Sakai and
Sugimoto to finite baryon density. The baryon vertices in bulk are attached
equally to the D8-DS8 branes and correspond to S* in D8. They are treated as
stable and point like in R? and act as uniform sources of baryon density. Their
point-like nature at large N, and coupling A imply that their interactions as
induced by D8-DS is mostly repulsive through the exchanges of omega mesons.

The bulk energy density grows quadratically with the baryon density be-
fore softening at asymptotic densities. The quadratic and repulsive growth is
expected from the exchange of omega mesons. The softening reflects on the
fact that at asymptotic densities the repulsive baryons form an instable but
regular array for fixed volume V. If V' acting as a container is removed, the
baryons fly away in this version of the SS model. We note that the energy
density scales as N, since N./y/a is of order 1 as expected from standard large
N, arguments. The DBI action resums (partially) the strong NN-interactions
while keeping the leading N, result unchanged. Since the instanton size is of
order 1/v/X we also note that the resummed contributions are of order A’ since
the bulk instanton density v/ Anp is of order A\* (The additional v/A here stems
from the rescaling of z — z/v/A in the delta-function source at z = 0).

The current approach needs to be improved in a number of ways to acco-
modate the baryon physics expected in the real world. First, the point-like
nature of the sources need to be relaxed. This is possible by constructing the
pertinent instanton vertex. Also, the point-like limit suggests that the DBI
results quoted here are only indicative since higher derivative corrections to
the DBI effective action are expected to contribute (see also [28-30] for further
comments on this point)). Second, the Fermi motion of the sources need to be
included. This can be achieved through a select quantization of the collective
variables associated to the baryon vertex insertion. Some of these issues will

be addressed in later work.
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3.2 Inhomogeneous matter

3.2.1 Introduction

Cold and dense hadronic matter in QCD is difficult to track from first principles
in current lattice simulations owing to the sign problem. In large N. QCD
baryons are solitons and a dense matter description using Skyrme’s chiral
model [78-80] was originally suggested by Skyrme and others [81]. At large
N, and high density matter consisting of solitons crystallizes, as the ratio of
potential to kinetic energy I' = V/K ~ N? is much larger than 1. QCD matter
at large N. was recently revisited in [82].

The many-soliton problem can be simplified in the crystal limit by first
considering all solitons to be the same and second by reducing the crystal to
a single cell with boundary conditions much like the Wigner-Seitz approxima-
tion in the theory of solids. A natural way to describe the crystal topology
is through 7° with periodic boundary conditions. In so far, this problem can
only be addressed numerically. A much simpler and analytically tractable ap-
proximation consists of treating each Wigner-Seitz cell as S® with no boundary
condition involved. The result is dense Skyrmion matter on S* [83-85]. In-
terestingly enough, the energetics of this phase is only few percent above the
energetics of a more involved numerical analysis based on 7. Skyrmions on
S3 restore chiral symmetry on the average above a critical density. While
Skyrmions on S? are unstable against T3, they still capture the essentials of
dense matter and chiral restoration in an analytically tractable framework.

Cold dense matter in holographic QCD is a crystal of instantons with
I' = VA/vp > 1 where vp ~ 1/N, is the Fermi velocity. (In contrast hot
holographic QCD has I' = VA > 1). When the wigner-Seitz cell is approzi-
mated by S3, the pertinent instanton is defined on S® x R. In this chpater, we
investigate cold QCD matter using instantons on S® x R in bulk. As a result
the initial D4 background is deformed to accomodate for the S® which is just
the back reaction of the flavour crystal structure on the pure gauge theory.
Holographic dense matter can be organized in 1/\ at large N.. In our model

the baryon density is uniform while the chiral condensate is p-wave over a cell.
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However, the chiral condensation is averaged to be zero over a cell so that the
chiral symmetry is effectively restored in long wavelength limit. We will show
that as the average density goes up, it approaches to uniform distribution while
the chiral condensate approaches to p-wave over a cell. The energy density in
dense medium varies as n‘j’g/g, which is the expected power for non-relativistic
fermion. This shows that the Pauli exclusion effect in boundary is encoded in
the Coulomb repulsion in the bulk.

In section 2, we define this deformation and discuss the D8 brane embed-
ding structure. The instantons on S% x R in the flavour D8 brane is discussed
in section 3. In section 4,5,6,7 we derive the equation of state of cold holo-
graphic matter using the small size instanton expansion and in general. In
section 8 we show how the holographic small instantons in bulk transmute
large size Skyrmions on the boundary. The comparison to other models of

nuclear matter is carried in section 9. Our conclusions are in section 10.

3.2.2 D8 brane action

We consider crystallized skyrmions at finite density in the Wigner Seitz ap-
proximation. Spatial R? is naturally converted to T with periodic boundary
conditions. As a result the D4 background geometry is deformed. The baryons
are then instantons on 7% x R. Most solutions are only known numerically
on the lattice. A simpler and analytically tractable analysis that captures the
essentials of dense matter is to substitute 7% by S? in bulk with no boundary
conditions altogether. As a result, the D4 background dual to the crystal is
modified with the boundary special space as S®. Specifically, the 10 dimen-
sional space is that of (R' x S%) x R' x S*. The ensuing metric on D4 is

therefore
AN R\*? / du?
ds®> = | = —dt® + R2dO? dr? — 2402
i (R) (=t + 3”(U)T)+<U) (f(U)+U )
(3.21)
3
dQs = dip* + sin*tp df* + sin®ysin®0 d¢? , f(U)=1— % , (3.22)
AN 27N,
e? = g, <§) . Fy=dCy = AR (3.23)
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While this compactified metric is not an exact solution to the general relativ-
ity (GR) equations for small size S®, it can be regarded as an approximate
solution for large size S®. Indeed, in this case, the GR equations are seen to
be sourced by terms wich are down by the size of S3. Here, (3.23) can be
regarded as an approximation to the stable metric with 7 for a dense matter
analysis. Clearly, the former is unstable against decay to the latter, which will
be reflected by the fact that the energy of dense matter on S? is higher than
that on 7°. As indicated in the introduction, the Skyrmion analysis shows
that the energy on S? is only few percent that of 7°. So we expect the current
approximation to capture the essentials of dense matter in holographic QCD.
Specifically, the nature and strength of the attraction and repulsion in dense
matter. Indeed, this will be the case as we will detail below.

Now, consider N; probe D8-branes in the N, D4-branes background. With
U(Ny) gauge field Ay on the D8-branes, the effective action consists of the

DBI action and the Chern-Simons action

Sps = Spsr + Scs

Sppr = —Tgfdgl’ e~ tr\/—det(gun + 27/ Farn) (3.24)
1
= tr F? 2
SCS 4871'3 . C3 Ir (3 5)

where Ty = 1/((27)81?), the tension of the D8-brane, Fy;n = Oy An —On Ay —
i[Ay, Ay] (M, N = 0,1,---,8), and gy is the induced metric on the D8-

branes
U 3/2 R 3/2
ds?g = (E) (—dt? + R*dQ2) + goodo® + (ﬁ) U2d?, (3.26)
Joo = GTTaO'TaO'T + GUU80U80U ) (327>

where Gy refer to the background metric (3.21) and the profile of the D8
brane is parameterized by U(c) and 7(0).

The gauge field Ay, has nine components, Ag, A; = A1 23, A,(= A4), and
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Ay(a=5,6,7,8, the coordinates on the S*). We assume

Ao = Ao(0) € U(1) (3.28)
(A; = Ai(a',0), A, = A, (2", 0)) € SUN;) , (3.29)
Au=0. (3.30)

Then the action becomes 5-dimensional:

2 3
87?3& tr / dtesdo U
Js

[ { (%)/ oo - <zm'>2<agﬂo>2} { (%) + 1R, F}

SDBI = -

1/2
U\’ 1 .
v (§) @roPEn + er b En e Y|
(3.31)
Ne
SCS = 247T2t1' ANFANF s (332)

where €3 is the volume form of S® space and the indices i, j, k(€ {1, 0, ¢}) are
raised by the metric §¥ defined by

g 1 1 1
77 = =, : : 3.33
g (iR2 R?sin? )" R*sin? 1) sin? 9) ( )

3.2.3 Instanton in S° x R!

Only Ag will be determined dynamically in the given instanton background
A;, As. The exact background instanton solution is unknown. Thus we start
with an approximate solution which is the SU(2) Yang-Mills instanton solution

in the space with metric,
ds® = do® + R*dSs . (3.34)

This metric is different from our metric in (3.26) and (6.9), where there are
warping factors. Furthermore our action is the nonlinear DBI action and not
a Yang-Mills action. However it can be shown that the Yang-Mills instanton

in the space (3.34) is the leading order solution of 1/\ expansion of the full
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metric and the DBI action as shown in [30] . So the solution can be used in
the leading order calculation.
We summarize here the (anti) self dual instanton solution obatained in [86].

Using the ansatz ,
A= flo)Uau , U = cos ) + iT,7(0,¢) sin ) (3.35)

we get the field strength, in terms of vielbein whose relation to the coordinate
1,0, ¢, is specified in [86],

o 1 l2<f2 — f)rac,

Ol 0 o AP

b c
N 5 } e’ Net (3.36)

where we used L, = U7'0,U = 7,/R. If we require (anti) self-duality,

2(f? —
O, f = iu , (3.37)
R
then f is determined as
fo=— (339)
= 1 _‘_e:FQ(U—O'())/iR, ’ '
so the field strength of one (anti) instanton solution is
+ Ta (0 a 1 a b c
F :(&fi)i(e Ne :t§€ b€ N ef) . (3.39)

3.2.4 D8 brane plus Instanton

Now that we have the background instanton configurations, the remaining
dynamical variables are 7 and A,. However it can be shown that d,7(c) =0
is always a solution of the Euler-Lagrange equation regardless of the gauge
field. For simplicity we will work with this specific configuration so that the

only dynamical variable is Ag. Let us parameterize Ay by Z defined as

U = (U + Ugxo )3 |
Z

7 K=1+2%. (3.40)
UKK
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Then the field strength is expressed in terms of Z and the dimensionless radius
i]AQ = fR/ UKK,

1 T,

Fpo=—f =,

“ Ukk”™ R
1 €,°T,

Fp=—1Ff %< 3.41
UIZ(K R ( )

where f' = 05 f. The instanton configuration is

1
fo= _ (3.42)
1 + eF2(2—20)/R

The DBI action reads

2T 3
Sy = TR / dtesdZ K3
395
3
1

4 U2 K73 — 21/ ) (Ap)? 3 { K Uk + = (21 )?F2

9 R 2
U 3 1 1/2

+ K <%) (2ma/)2F2, + Z(27ra')4(eachaZFbc)2 . (3.43)

where Ay = 0zA0. We are using the same vielbein coordinates as (3.36).
Since the instanton size (R) is of order O(A~/2) we define a new dimensionless

parameter R, which is order of (A\%), as

~ ~ R
R=VAR = VA— . (3.44)
UKK

Furthermore we rescale the coordinate and the instanton field strength for a

systematic 1/ expansion

2 s NV 2 SNV ot
Fab_>)\Fab7 FaZ_>)\FaZ7 AOH'A07
1
K=01+2% — <1+XZ2) = K,, (3.45)

so all coordinates and gauge fields become of order of O()\?).
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By using the instanton solution (3.42) we get
N
3975 Uy Mycpr

3771'2 1/3 f/2 1 367'('2 1/3
14— gl 2 plBpry2
[{ T IO @ T N <”}

Spp1 = tr / dtesdZ K}

o 43 3752 13 f/2 1/2
MEUZ KRy 0T | N—} } (3.46)
{ KKY KK * )\ 4M}2(KU}2(K A :R2

If we let Ugk = My for simplicity, then the DBI action yields

- 1 ~ ~
Sppr = —dN,A / dtesd? \/ {1 + KR XKi/?’(Ag)z} {K;‘”/“ + K;/?’Fz}
372 ~, 2%~ 1 -1, ,
= —dN.\ /thgdZ {1+8—)\+F + 3—)\F - 5(AO) + O((1/X) )] ,
(3.47)
where
2M: 3B ~, 3'm?
d==—"1XK =—A FP="
30ms O T oMy 4 7
2 h'(Z/R 1
g= Lo eI L s
R 4R 3R

9,K = 026—% {tanh(zﬁz) (1 + %sechz(zﬁz))] ~ %sgn(Z) . (3.48)

The Chern-Simons action does not change by the recaling (8.50) , and it
is order of A\°. With the instanton solution (3.42) the Chern-Simons action

reduces to

N, N, 1 3 2
Scs = 247T2tr ANFANF = 87T2tr thgdZ.A0§ 24MKK%
= CNc/dt€3dZﬁoﬁ2, (349)
where
_ AMyg
c= 9,5 (3.50)
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It also can be written as
Ses = 3N.R / dZA00;K — N, ,  for Ag=1, (3.51)

which confirms that the field configuration (3.41), and (3.42) describe the
single (anti) self dual instanton since Scg corresponds to N, X the Pontryagin

index when Ay = 1.

3.2.5 Equation of State in 1/\

The equation of state of cold holographic matter is the energy following from

the action functional. The total action up to order of \° is

S = /dte;;dZ(LDBI + £JCS)

1

~ 2 ~ ~ ~ o~
= —dN, / dtesdZ [AFZ + %FQ - 5(AO)Q} + ¢N, / d*xdZ Ao F3.52)

where Ay is an auxillary field with no time-dependence that can be eliminated

by the equation of motion or Gauss law,
II' = ¢NF? (3.53)
with

II = — = ch-A() y (354)

The integral of the equation of motion with F?2 in (3.48) is

I1(Z) = I(c0) [tanh(Z/iTQ) (1 + %sechz(Z/f}NQ))} ,

Mg N,
o bamd

(3.55)

where we have set I1(0) = 0.
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The energy of one cell is

Ecel = _/€3dZ(LDBI+LCS)
~ 72 ~ 1 112 ~
_ 2 2
= ch/Eg dZ [)\F + ?F — §W:| —/63 dZAQH,,
722~ 1 I - %0
= dN, 7 NP+ =P o | - 2H(Z
dc/egd [A +3 +2(ch)2] /egﬂo()()_oo
Thus the energy density (&) of the crystalline structure is
e = Ngcell —~ 8Cell
o \% f€3
— 4N, /dZ sy L LB 2 oo 3s6)
¢ 3 2 (dN,)? 0 o

where N is the total number of baryons(cells) and V' is the total volume which
is approximated by N [ e;. Interestingly the second term in (3.56) is equal to

upnp since the density and the baryon chemical potential is given by

1 1

1 —
I 2 NeAog(o0) . (3.57)

np =

respectively and because

R 2A(00)T(00) = NaAg(co) 1

Ao(2)11(Z) . o2 (U R)?

= upnpg , (358)
Notice that R is of order of (A)° from (3.44) so the baryon density is of order

(N)°. Since the action is finite and concentrated in a finite size, we can

restrict the integral to the region Z < Z, and expand the action in 1/\.

Ze . 72 1 T1I2
= dN. dZ |AF? 4+ = F% 4 = :
: /0 [ T (ch)2} (3.59)
b
= M, [nB + %n}g/g + XZC nzB} , (3.60)

36



where

AN,
My = 8k Mgk FL—2167T3’
2 M2 6,4
azm, b= 37; , (3.61)
36(2m2)2/3 2M

A few remarks are in order.

1. Z.isintroduced as an arbitrary cut-off which is bigger than the instanton
size. However in section 8, we will argue that Z. should be identified as
baryon size by explicitly contructing the Skyrmion out of the instanton

Therefore it is not an arbitrary number.

2. Even in the case the instanton size is small, the baryon size on the
boundary is not. It is of order (N.\)? and large in units of My g. This
point is important. While the instanton size in bulk is of the order of
the string length and thus small as 1/v/A in units of My, its image on

the boundary is a large Skyrmion.

3. The position of the instanton Z; in the conformal direction is set to zero

by parity.

The various density contributions in (3.60) can be understood from the
zero density and finite instanton calculation discussed by Sakai and Sugimoyo
to order N A". For that, we recall that the energy balance for a holographic

instanton with flat R? directions reads schematically as [30]

1
2

leading to an instanton size in bulk of order p ~ (B/A)Y*/v/X. The Coulomb
repulsion B is 10* times the gravitational attraction A resulting into a size
that is of order p ~ 10/ V/A. This parametrically huge repulsion results in a
stiffer equation of state in holographic QCD.

The linear term in np in (3.60) is just the topological winding of the U(Ny)
flavored instanton in D8 on S* due to the self duality of the instanton con-
figuration. It is leading and of order N.\. Geometry is unaffected by matter.

A point-like instanton in bulk corresponds to a very large Skyrmion on the
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boundary. The term of order njlg/?’ is of order N A°. Tt corresponds to the
attraction due to gravity in bulk at finite size. Indeed, the energy of this term
is of order \p? = 5%2, as in (3.62) favoring smaller and smaller instanton. The
energy per volume for this term is of order 1/ R. Since in matter the cell size
is of the order of the interparticle distance 1/ n%/g, the n%/g follows. The term
of order n% is also of order N.A°. It stems from the Coulomb repulsion in
bulk which is of order 1/\p? = 1/ jf since the instanton is static in 4-space
(space-plus-conformal). This contribution is repulsive and favors larger size in-
stanton. The corresponding energy per cell is of order (Z./R)(1/ 5%5), since the
warping in the conformal direction is subleading in 1/\. The n% contribution
follows.

For a Skyrmion with a size Z. < R, (3.60) describes the low density regime.
In this regime the use of the S% xR instanton is likely to give higher energy than
a localized but flat instanton at the pole of S? say. Dilute holographic matter
is made out of flat R? instantons with (3.60) providing an upper bound on the
energy per unit volume. This phase breaks spontaneously chiral symmetry.
In the point particle limit, the equation of state at low density was discussed
in [15]

277t

€p ™~ NC%TLB (363)

for low densities after re-scaling v Ang/A*? — ng [15]. The point-like and

flat space instanton contribution (3.63) at low density is lower in energy than

(3.60) and therefore favored. This will be made more explicit below. The njlg/3
is absent in the point like limit (finite size effect).

As the density is increased (or equivalently as R approaches down to Z.),

there is a change in the equation of state (3.60). For Z, = R,

a 1/3 v 5/3

e= My |np+ Yt s | (3.64)

with b changing to O/

L 36(277'2)5/3

b = 3.65
VN (3.65)
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The softening of the equation of state at higher density from n% to n‘j’g/g follows
from a transition from a dilute gas/liquid phase to a dense solid /crystal phase.
This transition effectively restores chiral symmetry as we will show later. An
estimate of the chiral transition density follows by comparing the n% term
from (3.63) to the leading n‘;/?’ in (3.64)

2777'7/3 5/3
~ N, ————— 3.66
R TET T (3.66)
By setting €, = €, the critical transition density follows
. AME

3.2.6 Numbers

To give some estimates of the numbers emerging from the current discussion,
we first recall that in holographic QCD the mass of one baryon at next to
leading order is not unique. We refer to [30] for a more thorough discussion.

In particular, the baryon mass to order N \° is

My = M, (1 + ;) , (3.68)

where ¢ = 27m/2/15. Thus the interaction energy per unit volume for the

dilute case is

. M,
EDlluto =c— nBMB — TO <an1B/3 —cng + ch n2B) , (369)

nt

while for the denser case it is ,

M,
Epeme = e —npMp = == (anif?® = enp +¥nf?) . (3.70)

For numerical estimates, we use Mgk = 500 MeV and M, = 940 MeV for

N.=31? ]. Our parameters are

A~b532, a~0.095fm™?, b~2172fm*, ¥ ~2039fm*, ¢~ 31.
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Figure 3.3: The energy per unit volume: Z, = 5 (red) and Z, = R (blue). See
text.
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Figure 3.4: The energy per unit volume: Z. = oo (red) and Z, = R (blue).
See text.

The interaction energies are then

5% EPMte(GeV fm ™) = 0.00168n)/° — 0.548n5 + 192n% . (3.71)

int

$% : EPerse(GeV fm ™) = 0.00168n),° — 0.548n + 36.0n%° | (3.72)

nt

R : EPMeP(GeV fm™3) = —0.548n5 + 60.3n%  (3.73)

int

where we used Z, = 5. Notice that due to the smallness of the coefficients
of the first two terms, the last term is dominant even in the relatively small
baryon density if it is not much smaller than 10~2fm=3.

The results on S3: EPute and FPense are compared in Fig.(3.3) for Z. =5
( Z. = 5/Mxk = 1fm with restored dimensions). The results on S* and R?
are compared in Fig. (3.4). In R? the instantons are point-like or Z, ~ oo [15].
The crossing from R? to S? occurs at relatively small densities n% ~ 1.26ng

with ng = 0.17 fm™'/® the nuclear matter density.
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3.2.7 Equation of State in General

The approximation of 7% by S® suggested at the beginning of the paper was
justified in way in the dilute limit or for small densities. Phenomenologically,
we have found that the chiral phase transition from R* to S® x R occurs at few
times nuclear matter density in holographic QCD, which is reasonable. The
small size instantons dominate dense matter. This means that higher order
corrections to both the DBI action and the starting D4 metric are important.
While we do not know how to assess them, we now suggest that they may
conspire to be small. Indeed, if we were not to expand the DBI plus CS actions,
that is if we were to include only these class of higher order corrections our
numerical results change only mildly.
Consider, the total (DBI + CS) action is written as

1
S = —dN.\ / d'edZ\[ A~ T B(AY)? +2N. / dzdZJAy,  (3.74)

where
3b 3b 9v?
A=K+ KT+ KT+ ——— KT
Y MUk Ui Mgy Uiy
B= bK5/3 + 3b2 K2/3J J— S€Ch4(Z/:R)
- A A ) - ~ ’
MI%KUI%K 43{4
po ST a3 _ 2Mik
AME 212U 37d
The equation of motion is
II' = ¢N,J | (3.75)
with
~ 0L dN_.BA,

=
Il

= . (3.76)
Mo\ JA- 1B



The integral of of motion is

fi(2) = Ti(o0) {tanh(Z/ﬁ) (1 + %sechQ(Z/SNQ))] |

~ cN. N,
) = — = ¢ — Vbll(o0) . .
filoe) = 55 = e = V(o) G.17)

The energy per cell is

Eeell = /€3dZ (Lppr + Les)

= dNA / e dZ / e dZ AT
B_‘_)\dQN2
- dNA/e3dZ,/A+AN2dzB /63A0 - (31)

The energy density (¢) of the crystalline structure is then

Ngcoll ~ Scoll
\% f€3

- dNA/dz,//H e 2 R

where N is the total number of baryons (cells) and V' is the total volume which

e =

is approximated by N [ e;. The second term in (3.56) is

AO(Z)ﬁ(Z))iO = 2A,(00)1I(00) = Ncﬂo(oo)m = pupng , (3.80)
where
npg = Lo ! L pup = N Ag(oo) . (3.81)

J&  2m2(Ua®)?  2m2(VAR)?

Since np is fixed we may set up = 0. Then the energy density is

AlT2
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Figure 3.5: The energy per unit volume.

where we subtracted the vacuum value. Thus the interaction energy per unit

volume is
Eint =& — nBMB . (383)

In Fig.(3.5) we show the equation of state for the expanded and unexpanded
actions. As expected the corrections are of order 1/\ for a finite and small size
instanton. The unexpanded energy is finite for any size of the instanton due to
the gravitational warping factors which are subleading in 1/\ after rescaling.
The unexpanded results are similar to the expanded ones in the range of
densities explored as it should. For extremely small ng, Ej, ~ 0.002517513/3 )
however for reasonably large density ng ~ 1fm™2, Ei, ~ 33.9 n5B/3. This power
is consistent and expected from the expansion in eq.(3.64).

All general expressions in this section are consistent with the results quoted
above to order O(\°). Indeed, if for simplicity we set Uxx = My with
Mgk = 1, then A and B reduce to

2
A= (1+3bJ)°+ %%(1 +3bJ)(2+3bJ) + O(\7?)

B=0b(1+3bJ)+0\"), (3.84)

For example, by considering 3bJ = F? and II = VbII, we can readily show
that (3.82) reduces to (8.51)
Z? 1 112

— dN, [ dZ |MNF2 4+ Z2_F2 4 _
€ dc/d {)\ +3 +2(ch)2
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3.2.8 Holographic Skyrmions from Instantons

The S x R instanton used in bulk has a very simple Skyrmion picture on
the boundary. From (3.35) it follows that the gauge field at the boundary is
A(oo, F) = U~'dU. Following [30] we note that U(Z) is just the pion field at
the boundary. When we have a cut-off in Z, we replace A(oco, %) by A(Z., ©).
U is the boundary Skyrmion field originating from the bulk instanton. Thus

U is just the holonomy of the bulk instanton along the conformal direction:
Ze ,
U(x; Z.) = Pexpli / dz Arstemton) (7)) (3.85)
0

When the density is large and Z. ~ R, the instanton has a support covering

the whole three sphere, therefore the resulting Skyrmion should be
U(7) ~ o) + i, J1() = ™" 000 (3.86)

which is the identity map as (¢, 0, ¢) are the canonical angles for the unit
S3. The local Jacobian matrix for this map from S to S® is J* = 9I1* /0x; =
1% /R, proportional to the identity. The baryon density for this map is detJ /volS? =
1/(27%R3) in agreement with bulk holography. The scalar field o(Z) = cos
measures the chiral condensate and averages to zero on S°
% =< o(x) >g= %/Oﬂ dipsin®i cost) = 0 | (3.87)

The S3 x R instanton in (3.35) corresponds to a boundary Skyrmion on S*
with restored chiral symmetry on the average. We should notice that the
chiral condensation is p-wave over a cell while the density in this case is ap-
proximately constant over a cell. But it is certainly not a constant. In fact
this is a result consistent with ref. [52] where it was argued that there can
not be an uniform distribution. In Fig.(3.6), we show schematically how a
Skyrmion of size Z. looks on S® as a function of R. (a) corresponds to the
dilute phase with broken chiral symmetry, while (b) describes the dense phase
with restored chiral symmetry.

In previous section, Z. was introduced as a cut-off of the action bigger

than the instanton size. Here we give interpretation of Z. as the size of the
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Figure 3.6: Holographic Skyrmion on S® on the boundary

Skyrmion on the boundary. Note that the R* BPS instanton used in bulk in [?

| for the description of a single baryon, yields a boundary Skyrmion as
U(Z) = Z/& —iT - T/&. (3.88)

with €2 = Z% + 72 + p? and this is the analogue of the unit map (3.86) with
tany = x/&.. Notice that while the size of the instanton is p, the size of the
Skyrmaion is \/W M p < Z,, Z. itself is the size of the Skyrmion, hence
our interpretation above comes. Holography transmutes a small size instanton
p in bulk to a large size Skyrmion on the boundary.

At small densities with R > Z., one can replace the spherical cell by a flat
space and the map (3.88) is relevant, while at high density R < Z. the map
(3.86) is relevant. On S this is pictorially depicted in Fig.(3.6). Notice also
that (a) has broken chiral symmetry while (b) has restored chiral symmetry
effectively( See eq. (3.87)) . Again, in this case, our S® x R instanton in
bulk describes the high density phase in holographic QCD with restored chiral
symmetry. At low densities the energy density is about n% as discussed by
many in qualitative agreement with our figure here. The n% term is sourced by
Coulomb’s repulsion in both cases. The description on S® carries larger energy
density than on R?® and is therefore unfavorable energitically. It is favorable at
higher densities. The transition occurs at about R = Z,, or ng = 1/(272 Z,),
resulting into an energy density of n%/?’. The value of nf;, was estimated above.

The determination of Z. or equivalently the critical size of R depends on
the energetics of the SS model. It is worth pointing that the single baryon

mass analysis on S? as discussed in [83] allows a considerable simplification of
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Figure 3.7: Holographic Skyrmion mass on S®: order \

this issue when the Skyrme model is used. We now note that this is justified in
holographic QCD as small size instantons in bulk with p = R / VA map onto a
large size Skyrmion on the boundary with Z, > p. So the small size instanton
expansion in bulk maps onto the gradient expansion in 1/Z. on the boundary.
Limiting the SS model on the boundary to the Skyrme model with f, and eg
fixed by holography yields the specifics of the Skyrmion on the boundary to
order .

In Fig. (3.7) we show how the holgraphic Skyrmion mass on S to order A
changes with R the radius of S° following [83]. The units of mass and length

are respectively [30]

fr Vb/2m
aes (ANe) Myk 1 (3.89)
V2

eSfW

= (1/Mgx) V8b/7® .

with b = 15.25 and L = R. We note that the mass M, = 812k Myx cor-
responds to the point 0.95 at R = oo which matches the unit map result as
expected. In Fig. (3.8) we show the same curve to order 1/\. Here the ener-
getics is determined in bulk as the chiral Lagrangian in the SS model is not

known beyond the order \. Specifically,

M, ~ B
il (AR2 + N—Q) (3.90)
A R

with A = (72 — 6)/36 ~ 0.11 and B = (357%)/4 ~ 1799. The units of mass
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Figure 3.8: Holographic Skyrmion mass on S®: order \°

and lengths are

(B/A)Y* ~ 114
2VAB ~ 27.8 (3.91)

The point 1.12 is the 1/\ corrected mass (3.68) in these units. Finally, it is
interesting to note that the holographic Skyrme model on S? yields naively

the following equation of state
e = My(ng + ag n2B/3 + bs njlg/g) : (3.92)

as first noted in the context of the canonical Skyrme model [87]. The n%/?’ for
the Skyrmion stems from the universal current algebra (VII)? term which is
attractive and scales as 1/p* as opposed to 1/p from the finite size instanton
in bulk. The nj‘g/g for the Skyrmion stems from the repulsive Coulomb contri-
bution per unit 3-volume (1/p)/p® from the Skyrme term as opposed to the
repulsive Coulomb contribution per unit 3-volume (1/p%)/p* in the instanton
in bulk. We recall that Coulomb’s law in 1+D dimensions is 1/p”~2.

At high density the naive scalings in (3.92) obtained at the boundary differs
from (3.64) obtained in bulk in two essential ways: i) ag and bg are of order
NO)? on the boundary while their bulk contributions are of order N?/); ii) the
scaling with np appears to differ by an extra (spatial) dimension, D = 3 on the
boundary and D = 4 in bulk. These differences can be understood by noting
that the size of the holographic Skyrmion is Z.. This means that the chiral

gradients L; = U~'9;U are nearly zero on the boundary with U ~ 1, except on
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Figure 3.9: The energy per unit volume as a function of baryon density, for
pure skyrmions, for the calculations of Bethe and Johnson [87, 88] and of
Friedman and Pandharipande [87, 89], and for our instanton model based on
Sakai-Sugimoto model for dilute and dense case.

an the shell |Z| ~ Z. of thickness 1/v/) to ensure that the topological baryon
charge is finite 2. This renders ag and bg in (3.92) effectively of order 1/\ as
noted in bulk.

3.2.9 Comparison with Nuclear Models

In Fig.(3.9) we compare the interaction energy (3.69) and (3.70) with other
hadronic models including Skyrme’s chiral model. Holographic matter is sub-
tantially stiffer as explained through the energy budget in (3.62). The reason
can be traced back to the fact that for a single baryon the repulsion already
dwarfs the attraction in holographic QCD

At high densities € in (3.70) is approximated as

N Nc33(27T2)5/3 n5/3

5/3 -3 _
P 36n,° (GeVim™) forN. =3, (3.93)

and whatever NNy since the flavoured instanton in bulk is always 2 x 2. This

behaviour is different from that of free massless quarks in D = 3 (e3) but

2We note that for U ~ 1 the Skyrmion obeys the Faddeev-Bogomolnyi bound since the
classical equations of motion are fulfilled.
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similar to massive quarks in D = 3 (£}). Specifically,

B Nc 34/377'2/3 43
€3 = —N}/g 1 Np
NC 33/57T4/3 1 5/3 1 5/3 —
gg:REE 0 ;fg ~ 16%5m;«mvm1% for N, = 3,N; = 2.

5.52n7(GeVim ™) for N, = 3,N; =2,

So at strong coupling

€ a3 (9975 m 88m
SN ~ for Ny =2 3.94
€3 ! ( 213 ) Mgk My oris ’ (3:94)

independently of A and N,.. As chiral symmetry is restored in the high density
phase, the comparison to the the free massive quark phase in D = 3 suggests
that the mass m ~ My /88 is a chirally symmetric screening mass. While the

chiral transition restores chiral symmetry it still confines baryons.

3.2.10 Conclusions

We have provided a holographic description of dense and cold hadronic matter
using the brane model put forward by Sakai and Sugimoto [30]. At large N,
the matter crystallizes and can be treated in the Wigner-Seitz approximation
on T®. For simplicity, the Wigner-Seitz cell was further approximated by S3
in space leading to a simple instanton configuration on S x R with R the
conformal space. The resulting equation of state at next to leading order in A
shows a free quark behavior at high density, although the overall coefficient is
cutoff sensitive and large resulting into a stiff euation of state.

At high densities the gauge gradients are of order v/A so the DBI action
may not be enough to fix the brane dynamics at order N.A\° [30]. Also our
simplification of 7% by S® while justified at low density, involves curvature
corrections at high densities. However, we believe that the essentials of dense
matter in holographic QCD are already exposed on S® with a small attraction
leading n,lg/3 and a large Coulomb repulsion leading n‘;/g, where 5/3 is the power
of non-relativistic fermion. It is interesting to notice that the coulomb inter-
action in the bulk counts the fermi statistics in the boundary. The repulsion is

10* times the attraction resulting into a very stiff equation of state. Changing

49



S3 to T° will not affect the outcome quantitativaly we believe. Indeed, this is
the case for dense Skyrmions [83].

The present work expands on the original ideas developed in [51, 52]. Our
calculations with finite size instantons are closer to those presented in refer-
ence [52] where finite size and homogeneous instantons were used through a
variational estimate in R® x R. Their arguments yield np instead of the njlg/3
we have reported in the equation of state at next to leading order with our
S3 x R instanton.

The inhomegeneous S* x R description of the crystal suggests that at high
density, chiral symmetry is restored on the average. Indeed, since the dual
of the instanton cell is the Skyrmion cell with a pion field restricted to S3
in space. High density matter corresponds to small size S® where the pion
field becomes just the unit map [83]. The corresponding chiral condensate on
S3 is seen to vanish as half of S? carries positive chiral condensate, while the
other half carries negative chiral condensate so that on the average the chiral
condensate is zero. This restoration of chiral symmetry is due to the formation
of the crystal in the spatial direction in holographic QCD even though the DS-
D8 configuration is still attached. In other words, the left and right D8 branes
cease to talk to each other through the spatial directions not the conformal
direction when they crystallize at large N.,.

The present crystal analysis is classical in bulk. A quantum analysis in-
cluding vibrational and rotational motion is needed. These corrections are
subleading in 1/N, and should be estimated for a more thorough phenomeno-
logical discussion. Also, the inhomogeneous phase can be probed approximatly
by a dilute gas of instantons on 7% allowing for a lower energetics than on S3.

These issues and others will be discussed elsewhere.
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Chapter 4

Conductivity of Dense Matter

4.1 Introduction

In this chapter we would like to continue our investigation of the model at
baryon finite density and temperature but in the presence of a finite baryonic
electric field as recently discussed by Karch and O’Bannon [90] in a non-chiral
model, as a prelude to understand transport phenomena. There are many
works have been done in this line [18, 91-95]. In section 2, the DBI action at
finite baryon density is streamlined for both the KK and BH metrics. In section
3, we discuss Ohm’s law in the confined or KK metric. Above a critical value of
the baryon electric field £ > E. the vacuum and the dense state are unstable
against quark pair creation. In section 4, we show how this pair creation
translates to a vacuum persistence function thereby generalizing Schwinger’s
QED result to hQCD both in the vacuum and at finite density. In section
5, we derive Ohm’s law in the BH background, thereby extending a recent
result by Karch and Bannon [90] to the chiral case. The vacuum instability is
dwarfed by thermal pair creation in the incoherent statistical averaging with a
treshold value for the baryonic electric field starting at zero. Our conclusions

are in section 6.

4.2 DBI action

We will use the abstract metric notations (2.18) to treat the confined (2.20)

and deconfined (2.21) coherently in formal evaluation here. In the next section
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we will plug in the specific embedding and metric form.
To accommodate a static baryonic electric field on D8 branes both in vac-

uum and matter, we follow [90] to define
A=AU), A,=-Et+h,(U). (4.1)

With the induced metric (2.18) and the guage fields (4.1) the DBI action is

written as

SDBI = /d4deLDBI

= —N/dU e g% 600 X

loelgzagi — (2ra? (gua(A02 + (A2 ~ (A7) (1.2)

where N = (2N;)15Vy. 2Ny comes from the fact that we consider Ny branes
and anti-branes and Vj(= 8/37?) is the volume of the unit S* which is due

" is the derivative with respect to U and ~ is

to the trivial integral over S*.
the derivative with respect to t. Since (5.10) is purely kinetic, the conjugate

momenta D and B are conserved. Specifically,

a'ﬁ‘DBI
D =
0A;
—N 2 N2 ch/
= e_d)gg‘sgm (2ma) 9/2 : (4.3)
\/|gtt|g:c:cgUU - (27’(’@’)2 (gxxAt + gUUE12 - |gtt|h'g;2)
a'ﬁ‘DBI
B =
DA
_ N(2ma')?| gu| L
= € ¢92‘S9m ( V19 (4.4)

\/|gtt|g:c:cgUU - (27’(’@’)2 (gmcfél:f2 + gUUE12 - |gtt|h'g;2)

By rewriting A} and R/, in terms of B, D and E, we have

Jaa AY(U)?
- ;Lg |D2 gUU(|gtt|gxx — (271-0/)2E2) (4 5)
(2ma’)2 7" N2(27a)2| gl 93,6720 gL g + |gu| D? — gua B2
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|gtt|h;(U)2
]‘ g B2 gUU(|gtt|gxx - (27TO[/)2E2) (4 6)
~ @ra2 " N (2ma 2 gulge gk + [9ul D? — gosB?

The DBI action reduces to

Sppr = —N/d4de 2¢9f§59mé2|gtt|1/2 1/2] X

(92t gew — (2ma’)? E?)

3 =264 lgwt|D?—ges 52
‘gtt‘g:c:c g + N (2r a)

(4.7)

Notice that g4, g.z, gss have nothing to do with the D8 branes embedding.
They carry information of D4 branes. Only gyp carries information of the
z*(U). Tt is positive for all U. Thus the factors outside the square root are
real for all U. In contrast, the argument of square root may change the sign
for varying U. As we will discuss below, this change in sign is the signal of a

ground state instability or decay for large F fields.

4.3 Ohm’s law: KK

This decay is captured by a non-linear form of Ohm’s law. For that, it is useful

to change variable
U=Uy(1+ 253, (4.8)

where Uj is the coordinate of the tip of D8-D8 branes’ cigar-shaped configura-
tion, which is different from Uk in general. The range of Z is (0, c0) contrary
to U whose range is (Up, 00). Also this range can be extended to (—oo, 00) if
we consider D8 branes (—oo,0) together with D8 branes (0, 00) in a natural
way. It enables us to deal with the ADHM instanton solution in R?* [30]. It also
makes the parity property of the meson fields explicit [28]. For completeness,

we note the following useful relations

200 Z

_ 2 _ 1/3 _
K=1+2%, U=UJKY?, AU = =557 . (4.9)
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3
f=1- (UULOK) % . (4.10)

From here on and for simplicity, we follow Sakai and Sugimoto [28] and choose
Uy = Ukk. The DBI action then simplifies to

4 1/6 B Mg L£*
SDBI = —CL/d zdZ K 1+ D2;B§I}(_5/3 y (411)
a’b
where
NCN )\3M4 3671'2
o= Y= e (112
KK

In dense hQCD baryons are sourced by BPST instantons in bulk with a size
of order 1/v/A. They are point-like at A — oo. Thus the DBI action and the

matter sources read
£’tot - ’C’DBI + nB(S(Z)At(Z) + ﬁBvxé(Z)Al‘(ta Z) ) (413)

where np is the baryon - anti baryon density and ng is baryon + anti baryon
density. The first source contribution is that of static BPST instantons at
Z = 0 as initially discussed in [15]. The second term is their corresponding
current with a velocity v, ~ 1/AN, with a baryon mass Mp ~ N.AMk . Note
that we have renormalized the A, field here by 1/N, and identified the baryon
chemical potential as A, (c0) = pup — mp [15].

The equations of motion are
D' =npd(Z), B' =npv,(Z) . (4.14)

Thus

1 1_
D= §nBsgn(Z), B = §nvasgn(Z) , (4.15)
where sgn(Z) reflects the symmetry of D8 and D8 branes (chirality). We note
that the conserved momenta D, B are odd functions of Z since the baryonic

field A, is an even function of Z.
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For a finite baryonic electric field E, the current contribution in (7.84) is
seen to increase linearly with time in the action. This is expected since the
static electric field pumps energy in the system. For times t ~ Mg ~ N.A
the present stationary (time-independent) surface analysis is flawed. This

notwithstanding, the action variation with respect to A; yields

04,500 = / az [ﬁ&z(mtwn@@)mt@)}

= /dZ (%nBsgn(Z)ﬁz(éAt)) + npd A (0)
= npdA;(c0) . (4.16)

where we used the on-shell condition and A;(c0) = Ai(—c0) = pup — mp.
Note that the contribution from the source term is cancelled by the boundary
contribution of the DBI action at Z = 0. As a result the on-shell action may be
considered as a functional of A;(c0) only and we may set A;(0) = 0. Similarly
for A,(t,0) =0,

5AtSt0t = ﬁB UméAm(t, OO) . (417)

The former is the charge, while the latter is the current. At finite density Siot
plays the role of the grand potential. Thus

b E2

- 2
MK K

n2 —m2 2 )
B "BY% ~—5/3
1+ 4a2b K

S=—a / d*zdZ K6 (4.18)

on shell. For v, = FE/ = 0 this result is consistent with our previous result i.e.
Eq.(30) in [? | which is indeed the grand potential.
For0< E<E, = M—‘f, J.(=npv,) is bounded,

Jr < \/4a?b+n% | (4.19)

for S to be real. For E > E,, the numerator of (4.18) flips sign at

b

K, =
Mgy

E* Z,=+VbE?2 -1 . (4.20)
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We demand that this flip is compensated by the denominator for arbitrary v,.

Using Z, in the denominator we get

Jp = 4a’bK7P +nj

1 A\
= 7N2N2< ) EYS 4 n2 9(E).  (4.21)

010/332,14/37 f 7 ¢ Myx

In the unstable vacuum, the ensuing Ohmic’s conductivity is

1/3
o= JE = mz\u\g (MiK) E*3 (4.22)
This pair conductivity follows from quark pairs and not from baryon pairs as
it scales with N.N;. E. is strong enough to cause deconfinement of quark
pairs. For np # 0 the second contribution in (4.21) is that of the baryons
and anti baryons moving under the action of the strong electric field, with
Av ~ Et/Mp ~ t/N.. Note that for £ = 0, the minimum of (4.18) is for
v, = 0.

For E > FE,. both the vacuum with ng = 0 and the dense baryonic state
with ng # 0 are unstable against pair creation of quark-antiquark states as
opposed to baryon-antibaryon states. This is clearly seen from the threshold
value E.

Mgk 2 -, b4rMj

Vb 2Tm KETTOUAN?

with Mp = 872k Mgk and k = ﬁév;:g [30] which is much smaller than M%. The

baryonic electric field is strong enough to pair create quarks with constituent
masses of order VMg L.

Ee

(4.23)

4.4 Persistence Probability

The cold and dense states described by hQCD above are unstable for £ > E,,
meaning that they decay to multiparticle states that are likely time-dependent.

Following Schwinger, we will characterize this decay through its persistence

Tt is interesting to note that in the BH background the thermal shifts of heavy quarks is
7V AT /2 with T in the unconfined phase being the analogue of M in the confined phase.
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probability
(04 10-)[* = 727, (4.24)

where ImS is the imaginary part of the action S (4.18). For finite ny and
v, = 0, the action S reads

. 7241 €&
S=—a [ dzdz(1+ Z2*)"/6
/ ( ) 14+ 21+ 22)-5/3
Z2+1
— , (4.25
x/l—ku&a(1+—22y%ﬂ1 (4.25)
with €% = M2 E? 4*= f—%b and after regularizing the action by subtractin%
the E =0 contrlbutlon E. corresponds to €. = 1. For & < 1 the action S

is always real, but for € > 1 the action develops an imaginary part from the
integration interval (—Z,, Z.), where Z, = /&€* — 1. Thus

7241 €&
ImS = + d4/ dZ(1+ Z%)Y/6 0(& —1).(4.26
n / + Tz lE D (420)

For .4~ = 0 the integrals unwind analytically

ImS::I:aﬂ/d% [(82—1) 2F1( é ; 2,1—¢& )9(8—1)}. (4.27)

where o F} is the hypergeometric function and has the asymptotic behaviour

11
Fil->221-¢&2
21( 67277 )

1 1
~1 D+ —(E-1)2+--- ~1
+12(8 )+144(8 )+ (E~1)

TR s, 2(23) 1
/L(13/6) VrD(—1/6) €

as follows.

+--- (E>1) (4.28)
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The persistence function is then

(L0 = e @D ahi(-hd2i-e)oe-),
= (E<1)
o~ @' 2(e=1)+1.17(e=1)% 4] (€~ 1)

e~/ [07L T/P40.70 e ] (€>1) (4.29)

with ¢ = ar [d'z =

decay.

I—=K [ d'z, after chosing the negative sign for

4.5 Ohm’s law: BH

Since the vacuum decay under large E’s so does the coherent finite baryonic
state. But what about the finite temperature problem? As finite temperature
involves a statistical ensemble averaging, we may suggest that the unstable
ground state is statistically irrelevant and proceed to analyse the effects of a
baryonic field on the excited states (unstable by fiat) in the ensemble average.
This will be checked a posteriori below.

In the BH background there are two possible gravitational configurations:
1/ a U-shaped (chirally broken phase) and 2/ a parallell-shape (chirally sym-
metric phase). The former yields U bounded from below by U,. The com-
bination g¢y¢., has a positive minimum so the numerator is always positive
for sufficiently small E. The nature of the transition which is suggestive of a
metal-insulator transition [96] will be discussed elsewhere.

For high enough temperature the stable configuration is not the U-shaped
configuration but the parallel configuration which is connected to the black
hole. i.e. Cfl—”gl = 0. Our intial instanton sources have now drowned into the
BH horizon. So the ensuing analysis is the same as in the D3/D7 model [90],
with the general formula of the conductivity for Dq/Dp given ((5.7) in [90]).
Here and for completeness, we compute the conductivity for the parallel D8-D8
branes set up in the BH background.

We only need to consider the positivity condition for the argument of square
root as before. As U — Ur both the numerator and denominator are negative

since gy — 0. As U — oo both the numerator and denominator are positive.
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So by choosing B,D,E we can choose the numerator and denominator in (4.7)

to flip sign for the same value U = U, [90]. For the numerator

|91t| G = (2ma/)?E?

= U, = (U3 + R*(2nd/E)?)'/3 . (4.30)

Inserting this value of U, in the denominator yields the induced current

_ |Gt
Jx2 = <N2(27Ta/)2|gtt|g§xe 2¢géS+ Jzx Jt2 ‘U:U*
N2 2 / 4R6 2 )?
(T s merap) s T ) e
g2 7+ (2T E)?

where J, = B and J; = D (= ng) are now defined as in [90]. Setting Uy =
%T 2R3, X = g,N, yield the Ohmic conductivity for the chiral SS model

J AL Ny NAT? o 2
— T _ sty er /3
0=z \/< o ) (1+e2) +1+62, (4.31)
where
3E 33J,
=, . U= e, (432)

which is consistent with the result in [90] for massless but non-chiral quarks.
The induced thermal current sets in for any £ > 0 (large or small) with a
conductivity o of order N.N;NT?l; at high temperature, which involves only
thermal pairs with zero treshold for E. It dwarfs the induced vacuum pairs by
a factor of A3, The unstable vacuum state is statistically irrelevant. This is

not the case at 7' = 0 and/or very large baryonic densities.

4.6 Conclusions

We have extended our recent holographic analysis of the SS model at finite
density, to the case of finite temperature and finite baryonic electric field. For
E > FE, the stationary SS ground state breaks down by quark pair creation.
This phenomenon permeates both the cold and hot states of hQCD. The vac-
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uum persistence probability is derived, generalizing Schwinger’s QED result
to hQCD. At finite temperature, the baryonic electric field yields a thermal
conductivity at finite temperature and density that is a direct generalization
of Karch and Bannon’s Ohm’s law in the chiral model. We have argued that

the vacuum instability is statistically irrelevant in hot hQCD.
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Chapter 5

Baryonic Response of Dense
Matter

5.1 Introduction

Solids respond to external stress elastically through their bulk and shear mod-
ulii K and g respectively, with almost zero dissipation. Liquids on the other
hand, follow the lore of hydrodynamics with bulk and shear viscosities £ and 7
accounting for dissipation. In contrast to the solid, the shear modulus vanishes
in the liquid. The bulk modulus does not.

This remarkable difference between solid and liquid disappears when the
stress is time-dependent. Indeed, for a stress of finite frequency w a liquid
has a non-zero shear modulus much like the solid. In the long-wavelength
limit, the dual description of a solid or a liquid follows from the visco-elastic
equations with complex and frequency dependent elastic constants as we detail
below. In this chapter we will explore some of these ideas in the context of
the AdS/CFT correspondence by analyzing the baryonic response functions
at finite density for both D4/D8 and D3/D7 embeddings.

Hot and dense hadronic matter in QCD is difficult to track from first
principles in current lattice simulations owing to the sign problem. In large
N, QCD baryons are solitons and a dense matter description using Skyrme’s
chiral model [78-80] was originally suggested by Skyrme and others [81]. At
large N. and low density matter consisting of solitons crystallizes as the ratio

of potential to kinetic energy I' = V/K =~ N?/p% > 1 is much larger than
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1. The crystal melts at sufficiently high density with I' ~ N?/p% ~ 1, or
sufficiently high temperature with I' &~ N./T ~ 1. QCD matter at large N,
was recently revisited in [82].

The many-soliton problem can be simplified in the crystal limit by first
considering all solitons to be the same and second by reducing the crystal to
a single cell with boundary conditions much like the Wigner-Seitz approxima-
tion in the theory of solids. A natural way to describe the crystal topology is
through 7T with periodic boundary conditions. A much simpler and analyti-
cally tractable approximation consists of treating each Wigner-Seitz cell as 53
with no boundary condition involved. The result is dense Skyrmion matter on
53 [83].

At low baryonic densities holographic QCD is a crystal of instantons with
the Wigner-Seitz cell approzimated by S®. The pertinent instanton is defined
on S* x R [17]. At moderate densities chiral symmetry is restored on the
average with an n‘j’g/g equation of state [17]. This homogenous (on the average)
liquid-like phase is strongly coupled and not emmenable to standard Fermi
liquid analysis.

In this chapter, we would like to follow up on the transport properties in
the homogeneous phase originally discussed in [17] using D4/D8 to contrast
them with some recent studies in [97] using D3/D7. In section 2, we recall
the bulk characteristics of the homogeneous phase in D4/D8 and suggest that
it may be identified with a strongly coupled holographic 