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Abstract of the Dissertation

Holographic QCD

by

Keun young Kim

Doctor of Philosophy

in

Physics

Stony Brook University

2009

The gauge/gravity duality conjecture provides a novel and useful

tool for studying strongly coupled systems. This duality maps dif-

ficult strong coupling problems to tractable weak coupling gravity

problems. Furthermore, complicated non-perturbative phenomena

can be described by simple geometrical pictures.

The gauge/gravity duality was first applied to explain the strong

coupling regime of QCD (sQCD) such as strongly coupled quark

gluon plasma (sQGP) produced at the Relativistic Heavy Ion Col-

lider (RHIC) and hadronic physics. Recently it has been exploited

to study properties of condensed matter systems such as super-

fluidity, superconductivity, and the Hall effect. The various dual

theories of non-relativistic conformal field theory (CFT) also have

been considered.

In this thesis I review my work on sQCD using the gravity dual

model also called holographic QCD (hQCD).
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1) The baryon form factor and nuclear force,

2) Phase and properties of baryonic dense matter,

3) The effect of finite baryon density or chemical potential on

meson properties,

4) Non-equilibrium properties of sQGP.

These are important applications of the gauge/gravity duality since

hQCD gives us a tractable theoretical tool for studying the finite

baryon density problem and time-dependent dynamics of sQGP.
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Chapter 1

Introduction

1.1 Overview

The gauge/gravity duality conjecture [1] provides a novel and useful tool for

studying strongly coupled systems. For a general review see [2] and references

therein. This duality maps difficult strong coupling problems to tractable

weak coupling gravity problems. Furthermore, complicated non-perturbative

phenomena can be described by simple geometrical pictures.

The gauge/gravity duality was first applied to explain the strong coupling

regime of QCD (sQCD) such as strongly coupled quark gluon plasma (sQGP)

produced at the Relativistic Heavy Ion Collider (RHIC) and hadronic physics.

There are many review articles on this application [3–11]. Recently it has been

exploited to study properties of condensed matter systems such as superflu-

idity, superconductivity, and the Hall effect [12]. The various dual theories of

non-relativistic conformal field theory (CFT) also have been considered [13].

In this thesis I review my work1 [14–21] on sQCD using the gravity dual

model called holographic QCD (hQCD).

We start with a brief review on some of general holographic methods and

holographic “QCD” models.2 At the end of this chapter we describe the outline

of this thesis.

1With Prof. Ismail Zahed and Prof. Sang-jin Sin.
2There is no exact holographic QCD model yet, so the “QCD” model means that the

model mimics some aspects of QCD.

1



1.2 Holographic methods

In this section we will review some of the holographic methods widely used

in the strongly correlated systems including QCD and some condensed mat-

ter system. We will explain a “big picture” and “recipes” of the holographic

technique as non-technically as possible. We will not try to be general or

rigorous. We also avoid discussing many subtleties. For more complete dis-

cussion we refer to [3–10]. The aim of this section is to provide the conceptual

background and heuristic arguments before discussing the technical details in

the main text. To make this introduction as simple as possible some subtle

points which are important in practice but not important for a big picture are

relegated to the footnotes.

1.2.1 Green’s functions

We start with the 5 (or more) dimensional gravity theory. 3+1 dimension

will be identified with the spacetime where our field theory is defined and the

extra one dimension is identified with the energy scale of the field theory. If

there are more dimensions then they are compactified, for example as a small

sphere, not to be observed. In this section we will ignore this compactified

dimension for simplicity.

The object we are interested in is the partition function of the field theory,

which gives us various correlators (Green’s functions). The basic idea is to get

the field theory partition function by computing the gravity partition function.

There are two issues. One is the fact that getting the gravity partition func-

tion is also (possibly more) nontrivial in general. Thus the problem does not

become easier by going to gravity. The other one is the mismatch of spacetime

dimension. Both problems are resolved by considering the on-shell gravity ac-

tion with non-normalizable classical solutions. In brief the sum over all paths

in the gravity partition function is reduced to the single contribution due to the

classical solution, which amounts to the saddle point approximation. 3 In this

procedure the 5 dimensional action is reduced to the 4 dimensional boundary

3The validity of this saddle point approximation needs to be justified. For a detail we
refer to [3]. Specifically it is valid at the large number of color (NC) and large t’Hooft
coupling (λ := g2

Y MNc), which correspond to the weak gravity and the strongly coupled
field theory regime.

2



term, which we will describe in more detail below.

Let φ be some gravity field living in 5 dimension and φcl be a classical

solution of the equations of motion. By plugging φcl in the action we can get

the on-shell action which may be decomposed as two parts after integrating

by part. One is the part giving the equation of motion and the other is the

part giving the boundary value since it’s a total derivative term. We are left

with the boundary term since the equation of motion part vanishes. The value

of this boundary term depends on the nature of φcl. If φcl approaches to zero

sufficiently fast, which is a usual assumption in the field theory, there will be no

contribution. Here, in AdS/CFT setup, we assume a non-normalizable solution

with φcl → φ0
cl at the boundary, so that there is a nontrivial contribution in the

boundary term. Consequently the 5 dimensional “bulk” action is reduced to

4 dimensional “boundary” action after taking care of the integration over the

extra dimension. Since it is the integration of a total derivative the resulting

action only depends on the boundary value (φ0
cl) of the bulk field. It is the

boundary value of the classical field that is identified with the source of the

field theory.

With the above consideration of the “on-shell” gravity action which is

denoted by Sgravity [φcl → φ0
cl], the AdS/CFT correspondence is the statement

that

Z[φ0
cl] :=

〈
ei

R

d4x Ôφ0
cl

〉
gauge

= eiSgravity[φcl→φ0
cl] , (1.1)

where Ô is a operator whose source is φ0
cl. Since the classical path will dominate

the gravity path integral, the RHS represents a saddle-point approximation to

the gravity path integral.

In summary, to compute a correlator for an operator Ô in the field theory

we follow the steps: First determine which field φ is dual to Ô 4 and solve the

gravity equations of motion for φ with the boundary condition φ0
cl.

5 Then plug

this solution (φcl) into the gravity action, which yields the “on-shell” action

4Which operator is correspond to which field is not trivial. We usually deduce this by
the dimension and symmetry. For example, metric fields (gµν) correspond to the energy
momentum tensor (T µν) of the field theory.

5Usually the differential equation is the second order and we need two boundary con-
ditions. One is fixed by φ0

cl and the other condition comes from the regularity or by the
incoming requirement of the positive energy mode at the black hole horizon.
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and gives the RHS of (1.1). It is identified with the generating functional of

the field theory so by varying with respect to φ0
cl we can get the correlator

of the corresponding operator of the field theory. Note that Sgravity can be

identified the generating functional for the connected Green’s functions.

1.2.2 Thermodynamics

By Euclideanizing the action we can study the thermodynamics via thermal

field theory. The temperature is introduced with periodic imaginary time.

Let us consider the Wick rotation to Euclidean time and compactify the

time direction with a period β := 1/T . Then (1.1) reads

e−βF ≡ Z[φ0
cl] =

〈
e−β

R

d3x Ôφ0
cl

〉
gauge

= e−S
E
gravity[φcl→φ0

cl] , (1.2)

F = TSgravity
[
φcl → φ0

cl

]
, (1.3)

where Z[φ0
cl] is interpreted as the thermodynamic partition function in the

presence of the source φ0
cl and F is a thermodynamic potential such as Helmholtz

free energy or Grand potential.

The temperature is not arbitrary and is related to the black hole geometry.

The vacuum of the field theory corresponds to the vacuum solution of the

Einstein equation. The relevant solution called AdS metric is the solution with

the negative cosmological constant. In general this solution contains black

hole (or black brane) solution analogous to Schwarzschild black hole which

shows singular behavior near the horizon. Roughly speaking the temperature

is determined by the horizon position to avoid the conical singularity of the

geometry. The entropy of the system is related to the area of the horizon. In

this case F is identified with Helmholtz free energy.

We also can consider the chemical potential or the related conserved charge.

A conserved charge is equivalent to the existence of a global symmetry in the

field theory. In general, from gauge/gravity point of view, the global symmetry

of the field theory is related to the local (gauge) symmetry of the bulk theory.

Thus we need to consider the gauge theory in the bulk. For example let

us consider the global U(1) symmetry of the boundary field theory. It may

amount to introducing the U(1) Maxwell field in the bulk. Thus the minimal

bulk action is Einstein-Maxwell theory with one nonvanishing component A0.
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In the boundary field theory the conserved charge is conjugate to the chemical

potential (µ), which is nothing but a boundary value of a bulk field, A0(∞). 6

The corresponding operator Ô is the number operator N̂ . In this case the F is

identified with the grand potential. By choosing a suitable gauge field we also

can study the system with some background electric field or magnetic field.

Once we know the thermodynamic potential we can compute all thermo-

dynamic quantities using the standard thermodynamics relations. If there

are more than one possible classical solution then we should compare ther-

modynamic potentials to determine the stable gravity configuration. It is the

holographic realization of the phase transition.

1.2.3 Linear response and transport properties

In the previous section we discussed the properties of the equilibrium state.

Now we want study non-equilibrium properties. One approach is linear re-

sponse theory, the response of the system to a small perturbation. It is char-

acterized by some transport coefficients, which are related to the retarded

Green’s function by Kubo’s formula. For example the conductivity can be

calculated as

σxx = lim
ω→0

1

ω
ImGxx

R (ω,~0) (1.4)

where Gxx
R (ω,~0) is the retarded Green’s function defined as

Gxx
R (ω,~0) =

∫
dtd~xeiωtθ(t)〈[Jx(t, ~x), Jx(0,~0)]〉 (1.5)

where Jx is the current.

The point is that we can calculate Gxx
R (ω,~0) from the gravity [23–25]. The

method is a generalization of (1.1): (1) By Wick rotation we work with the

Euclideanized action. (2) Compute the two point correlator, which is identi-

fied with the Green’s function. The Green’s functions are defined up to the

6A0 is not gauge invariant. However the gauge is fixed by the regularity condition
at the black hole horizon in the presence of the black hole or by the consistency with
the thermodynamics [22]. i.e.A0(0) = 0. Thus the boundary value is well defined and
the equivalent gauge invariant identification is

∫
∞

0 Fz0, which also has a direct meaning of
the chemical potential, the amount of work to put a particle into a system. As a result
A0(∞) = µ is always valid in the axial gauge Az = 0.
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boundary condition. (3) To get the retarded Green’s function (not advanced

or Feynman Green’s function) we use the incoming boundary condition at the

horizon.7

We will finish this section with a heuristic derivation of Kubo formula. First

consider the small perturbation by weak external fields {φi(x)} coupled to a

set of operators {Ôi(x)} at the thermal equilibrium. Then the Hamiltonian is

modified by

δĤ = −
∫
ddxφi(t, ~x)Ô

i(t, ~x). (1.6)

The standard time-dependent perturbation will give us the expectation value

of the operators

δ〈Ôi(x)〉 =

∫
dd+1x′Gij

R(x, x′)φj(x
′) + O(φ2) (1.7)

where Gij
R(x, x′) is the retarded Green’s function. In the translational invariant

system the result reads in the Fourier space

δÔi(k) = Gij
R(k)φj(k) + O(φ2) (1.8)

Let us consider the Ohm’s law for an time-varing electric field. The spacial

part of the current is given by

J i = σijEj , (1.9)

In the language of the linear response theory, φi → Ai and Ôi → J i, and

Ex(k) = iωAx(k) in the gauge At = 0. By comparing (1.8) and (1.9) we get

Gxx
R = iωσxx (1.10)

Thus Kubo formula, which relates transport coefficient to the retarded Green’s

function, yields

σxx = lim
ω→0

1

ω
ImGxx

R (ω,~0) (1.11)

7This has been justified using Schwinger-Keldysh formalism [26].
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Another studied example in gauge/gravity is the shear viscosity (η):

η = − lim
ω→0

1

ω
ImGxy,xy

R (ω,~0) (1.12)

where

Gxy,xy
R (ω, 0) =

∫
dtd~xeiωtθ(t)〈[Txy(t, ~x), Txy(0,~0)]〉 (1.13)

1.2.4 Holographic models

The gauge/gravity duality is originated from AdS/CFT duality, which says

that some large Nc and large λ CFT, Conformal Field Theory (for example

N=4 super Yang-Mills in 4D), is dual to some weak classical gravity theory

in the AdS background metric (for example Type IIB supergravity in AdS5

metric).8 This duality is related to the dual role of the D-brane or Dp branes,

p+1 dimensional gravitating objects which couple to the specific type of charge

called Ramond-Ramond charge (RR charge).9

First the large number (Nc) of Dp-branes on top of each other can be in-

terpreted as a source generating a background metric which is usually the AdS

metric or its variants. It is analogous to the Schwarzschild black hole metric

sourced by a large number of (very massive) point particles, “D0 branes”.10

The gravity theory is defined in this background metric. The dual field theory

is U(Nc) gauge theory and the gauge fields are related to the small fluctua-

tions of Nc D-branes. i.e. the dual role of the D-branes are the source for

the background (where closed strings or gravity degrees of freedom live) and

their own small fluctuations (which amount to the excitations of open strings

or gauge field degrees of freedom).

8This is a weak form of AdS/CFT. In a stronger form there is no restriction on the
parameters and two theories are completely equivalent. In this thesis we will use a weak
form.

9It would be more logical to start with this D-brane argument at the beginning when
we discuss gauge/gravity duality. However I decided not to do so since I wanted to present
how to apply gauge/gravity duality to the real physical problems at first by avoiding any
formal argument. In the previous sections D-branes do not play any role in a practical sense.
Now D-branes becomes essential to discuss the flavor degrees of freedom and I introduce
the concept here. However the techniques presented in the previous section are still valid
with the D-brane’s action instead of the Einstein action for the gravity part.

10A usual point particle is not a D-brane. Only from the dimensional perspective it is a
“D0 brane”.
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In this setup Nc D-branes give us the pure U(Nc) gauge theory description.

To consider the quark degrees of freedom, additional structure is needed. It

has been shown that adding quarks in the gauge theory amounts to embed-

ding Nf probe branes in the spacetime generated by Nc branes, where Nf is

the number of flavor. In order not to disturb the original geometry (or orig-

inal gauge theory) we assume Nf ≪ Nc, which corresponds to the quenched

approximation in the field theory.

To study the pure gauge theory we study the background metric itself. To

study the dynamics of the flavor degrees of freedom we study the dynamics

of the flavor branes in the background metric. It has been shown that the

D-brane dynamics is determined by two actions: the Dirac-Born-Infeld (DBI)

action and the Chern-Simons (CS) action. Schematically they are written as

SDBI ∼
∫
dp+1x e−φ tr

√
−det(gMN + 2πα′FMN) , (1.14)

SCS ∼
∫
C3 ∧ trF ∧ F ∧ F . (1.15)

The DBI action describes the interaction of the flavor field (FMN ) with

the background gravity (gMN)11 and dilaton field (φ), while the CS action12

describes the interaction with the RR field (C3).

To study the thermodynamics and linear response we can use the same

formalism presented in the previous section with the D-brane action as the

gravity action.

There are two models which have been most studied. One is D3/D7

model [27] and the other is D4/D8 model called also Sakai-Sugimoto model

(SS model) [28]. The former uses Nf D7 flavor branes in the geometry of Nc

D3 branes and the latter uses Nf D8 branes in the geometry of Nc D4 branes.

They will be explained in chapter 2 in more detail. In this thesis the SS model

is the main model we study.

Here we simply describe what has been done with the SS model in studying

QCD. The SS model yields a first principle effective theory of mesons. Many

meson properties such as mass spectra, hidden local symmetry, vector meson

11The metric is the induced metric on the flavor brane from the background metric.
12While the DBI action is the general form, the CS action in (1.15) is not a general form.

It depends on the dimension and the form of the RR field.
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dominance, and the KSRF relations are successfully derived. [29] The baryon

is realized as a soliton and its properties such as its spectrum and form factor

are in good agreement with experiment [19, 30–43]. The nuclear force from

these holographic baryons is computed by both the soliton picture [21, 44] and

effective point particle action [45, 46]. The SS model at finite temperature has

been discussed in [47–49] and at finite baryon(or isospin) density in [15, 17,

50–56]. Isospin chemical potential [57–59] and glueball decay [60] have been

discussed. The similar topics have been discussed also for D3/D7 model [27,

61–74].

1.3 Outline

In chapter 2 we define the SS model and collect the relevant formulas to appear

in the subsequent chapters. We also present the D3/D7 model for comparison

with SS model. The D3/D7 model will be discussed and compared with SS

model in chapter 4 and chapter 5.

In chapter 3 we study the thermodynamics of baryonic dense matter using

the SS model. For homogeneous matter we introduce the baryon number den-

sity through the Chern-Simons term. For inhomogeneous matter we deform

the space to consider the Wigner-Seitz cell approximated by S3. By identi-

fying the Euclidean DBI action with the grand potential we can study the

thermodynamics.

In chapter 4 we study the conductivity of dense holographic QCD by in-

troducing a static external electric field on the probe branes. In chapter 5

the response function of a homogeneous and dense hadronic system to a time-

dependent (baryon) vector potential is discussed for the SS model and the

D3/D7 model. In chapter 6 we discuss the density’s effect on the meson’s

properties.

In chapter 7 the baryon form factor is worked out using the holographic

baryon realized as an instanton in the 5D Yang-Mills and Chern-Simons sys-

tem. In chapter 8 by considering two instantons in the same model we study

the nuclear force.
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Chapter 2

Sakai-Sugimoto model

2.1 Introduction

In this section we summarize the Sakai-Sugimoto model (SS model) which is

D4/D8-D8 set up. We will be very brief only for notation and completeness.

For a thorough presentation we refer to [28, 75] and references therein.

As presented in the section 1.2.4 the physic of flavor branes are determined

by two actions: DBI action and CS action. Let us consider Nf probe D8-

branes in the Nc D4-branes background. With U(Nf ) gauge field AM on

the D8-branes, the effective action consists of the DBI action and the Chern-

Simons action:

SD8 = SDBID8 + SCSD8 ,

SDBID8 = −T8

∫
d9x e−φ tr

√
−det(gMN + 2πα′FMN) , (2.1)

SCSD8 =
1

48π3

∫

D8

C3trF
3 , (2.2)

where T8 = 1/((2π)8l9s), the tension of the D8-brane, FMN = ∂MAN−∂NAM−
i [AM , AN ] (M,N = 0, 1, · · · , 8), and gMN is the induced metric on D8-branes.

To make explicit expressions we need to know the background metric, delaton,

and RR fields produced by Nc D4 branes and the form of the gauge fields

AM , which will be reviewed in the following sections. The formulas in this

subsection will be presented again when they are needed. However collecting

the formulas here will make every pieces as a whole picture.
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2.2 Nc Dp branes background

In this subsection we review the D4 brane backgrounds and D3 brane back-

grounds. For more details we refer to [75].

2.2.1 Nc D4 branes

There are two background solutions for D4 branes: Soliton background and

black hole background. The former corresponds to the zero temperature or

low temperature and the latter corresponds to the high temperature.

Soliton Background: zero tempearture

The metric, dilaton φ, and the 3-form RR field C3 in Nc D4-branes background

are given by

ds2 =

(
U

R

)3/2 (
−dt2 + δijdx

idxj + f(U)dτ 2
)

+

(
R

U

)3/2(
dU2

f(U)
+ U2dΩ2

4

)
,

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4
ǫ4 , f(U) ≡ 1 − U3

KK

U3
, (2.3)

where xµ = x0,1,2,3, τ(≡ x4) is the compact variable on S1. U and Ω4 are the

radial coordinate and four angle variables in the x5,6,7,8,9 direction. V4 = 8π2/3

is the volume of unit S4 and ǫ4 is the corresponding volume form. To avoid a

conical singularity at U = UKK the period of δτ of the compactified τ direction

is set to

δτ =
4π

3

R3/2

U
1/2
KK

=: 2πRKK =:
2π

MKK
. (2.4)

This supergravity solution above is regular everywhere and is completely

specified by the string coupling constant, gs, the Ramond-Ramond flux quan-

tum(i.e.the number of D4 branes), Nc, and the constant UKK. The remaining

parameter R is given by

R3 ≡ πgsNcl
3
s , (2.5)

where ls are the string length.
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The field theory defined by Kaluza-Klein mass(MKK) and the four-dimensional

coupling constant at the compactification scale, gYM

MKK ≡ 2π

δτ
=

3

2

U
1/2
KK

R3/2
, g2

YM = 3
√
π

(
gsUKK
Ncls

)1/2

(2.6)

The parameters R, UKK, and gs may be expressed in terms of MKK, λ(=

gYMNc), and ls as

R3 =
1

2

λl2s
MKK

, UKK =
2

9
λMKKl

2
s , gs =

1

2π

λ

MKKNcls
(2.7)

Black hole background: finite tempearture

For a finite temperature we have two possible geometries.

One is to follow the standard prescription: analytically continue the time

coordinate t → tE = it, periodically identify tE with period δtE = 1
T
, and

impose anti-periodic boundary condition on the fermions around the tE-circle.

That is simply the Euclideanized version of (2.3),

ds2 =

(
U

R

)3/2 (
dt2E + δijdx

idxj + f(U)dτ 2
)

+

(
R

U

)3/2(
dU2

f(U)
+ U2dΩ2

4

)
,

which dominates at low temperature.

The other is to consider the black hole geometry, which is another sad-

dle point of the Euclidean path integral over supergravity (or rather, string)

configuration.

ds2 =

(
U

R

)3/2 (
f(U)dt2E + δijdx

idxj + dτ 2
)

+

(
R

U

)3/2(
dU2

f(U)
+ U2dΩ2

4

)
,

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4
ǫ4 , f(U) ≡ 1 − U3

T

U3
, (2.8)

which dominates at high temperature. To avoid a conical singularity at U =

UT the period of dtE of the compactified τ direction is set to

δtE =
4π

3

R3/2

U
1/2
T

=:
1

T
. (2.9)
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The relation between parameters are as follows

g2
YM = 4πgs ⇒ λ = 4πgsNc . (2.10)

The phase transition between soliton background and black hole background

occurs when δτ = δtE i.e. at the critical temperature Tc

Tc =
MKK

2π
. (2.11)

It corresponds to confinement/deconfinement transition.

2.2.2 Nc D3 Background

D3 brane background are as follows.

ds2 =

(
U

R

)2 (
f(U)dt2E + δijdx

idxj
)

+

(
R

U

)2(
dU2

f(U)
+ U2dΩ2

5

)
,

eφ = 1, F5 ≡ dC4 =
2πNc

V4
ǫ4 , f(U) ≡ 1 − U4

T

U4
, (2.12)

where to avoid the conical singularity the temperature is determined as

δtE =
πR2

UT
=:

1

T
, (2.13)

and R is

R4 = 4πgsNα
′2 , g2

YM = 4πgs , (2.14)

In the literature there are a few widely used different conventions in ex-

pressing the metric components. We list some of them here for future use.

Relation to other conventions:

For z := R2

U
and zH := R2

UT
,

ds2 =
R2

z2

(
−fdt2 + d~x2 +

dz2

f

)
+R2dΩ2

5 , (2.15)

f = 1 − z4

z4
H

, T =
1

πzH
.
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For y = z
zH

,

ds2 =
R2

z2
Hy

2

(
−fdt2 + d~x2 + z2

H

dz2

f

)
+R2dΩ2

5 , (2.16)

f = 1 − y4 , T =
1

πzH
.

For u = z2

z2H
,

ds2 =
π2T 2R2

u

(
−f(u)dt2 + d~x2

)
+

R2

4f(u)u2
du2 +R2dΩ2

5 , (2.17)

f = 1 − u2 , T =
1

πzH
,

2.3 DBI action

Since we know the background fields we can compute DBI action. We first

calculate the induced metric (the pull back of the metric from the background

metric). Then make the gauge field specific. In the last subsection we show the

general DBI action formula and specific form corresponding to the specified

gauge field or approximation scheme.

2.3.1 Induced metric

D8 brane in D4 brane background

The induced metric on the D8 branes from the gravity background (2.3) and

(2.8) may be written as

ds2
D8 ≡ gttdt

2 + gxxδijdx
idxj + gUU dU

2 + gSSdΩ
2
4 (2.18)

≡ α

(
U

R

)3/2

dt2 +

(
U

R

)3/2

δijdx
idxj

+

(
R

U

)3/2

γ dU2 +

(
R

U

)3/2

U2dΩ2
4 , (2.19)
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where for the KK background

α → 1 , γ → 1

f(U)
+

(
∂x4

∂U

)2(
U

R

)3

f(U) ,

f(U) → 1 −
(
UKK

U

)3

, (2.20)

and for the BH background

α→ f(U) , γ → 1

f(U)
+

(
∂x4

∂U

)2(
U

R

)3

,

f(U) → 1 −
(
UT
U

)3

. (2.21)

The embedding information is encoded only in γ and thereby gUU .

D7 brane in D3 background

Instead of considering a general case let us consider the massless quark embed-

ding as an illustration and for a future use. In this case analytic solutions are

available [98]. The induced metric on D7 brane from (2.15) becomes simply

AdS5 × S3 independent of the gauge field.

ds2 =
z2

R2
(−fdt2 + d~x2) + f−1R

2

z2
dz2 +R2dΩ2

3 , f ≡ 1 − z4
H

z4
, (2.22)

If we work in units of R = 1 SUGRA and SYM quantities will be tied by

α′ = 1/
√
λ with λ = 4πgsNc.

2.3.2 Gauge Fields

Since A is U(Nf ) valued, it may be decomposed into an SU(Nf ) part(A) and

a U(1) part(Â),

A = A +
1√
2Nf

Â , F = F +
1√
2Nf

F̂ , (2.23)

where A ≡ AaT a, F ≡ F aT a and the SU(Nf ) generators T a are normalized as

tr (T aT b) =
1

2
δab . (2.24)
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Without index the gauge field and the field strength should be understood as

a 1 form and 2 form respectively.

2.3.3 DBI action

General expression

D8 brane action

With the induced metric (2.18) and the pertinent guage fields, the general DBI

action follows as

SDBI = −N tr

∫
d4xdU e−φg2

SS

[
− g00g

3
xxgUU − g3

xxF0UF0U

−g2
xxgUU

∑

i

F0iF0i − g00g
2
xx

∑

i

FiUFiU

−g00gxxgUU
∑

i>j

FijFij − gxx
∑

i>j

FijFijFU0FU0 + · · ·
]1/2

(2.25)

where e−φ = gs(U/R)3/4 and N ≡ T8Ω4. The D8 brane tension is T8 and Ω4 is

the volume of a unit S4. 1 The F 3 and F 5 terms cancel by symmetry. Among

the F 4 terms we only retained the relevant term for our discussion below.

D7 brane action

Similiary

SDBI = −N tr

∫
d4xdZ g

3/2
SS

[
−g00g

3
xxgZZ − g3

xxF0ZF0Z

−g2
xxgZZ

∑

i

F0iF0i − g00g
2
xx

∑

i

FiZFiZ

−g00gxxgZZ
∑

i>j

FijFij − gxx
∑

i>j

FijFijFZ0FZ0 + · · ·
]1/2

(2.26)

The result is analogous to the D4/D8 case (2.25) with three differences: 1)

N = T7Ω3; 2) there is no contribution from the dilaton; 3) g
3/2
SS appears instead

of g
4/2
SS , since the compact space is S3 not S4.

1We absorb 2πα′ into the gauge field for notational convenience. It will be recalled in
the final physical quantities.
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Baryonic background gauge field

The U(1) charge at the boundary is related to U(1) gauge field in the bulk.

At = At(U) , (2.27)

and the chemical potential is related to the At(∞). To accommodate a static

baryonic electric field on D8 branes both in vacuum and matter, we follow [90]

to define

At = At(U) , Ax = −Et+ hx(U) . (2.28)

The magnetic field is

For example the DBI action (2.25) is written as

SDBI = −N

∫
dU e−φg2

SSgxx ×
√
|gtt|gxxgUU − (2πα′)2

(
gxx(A′

t)
2 + gUU(Ȧx)2 − |gtt|(A′

x)
2
)

(2.29)

With the induced metric (2.18) and the guage fields (2.28). N ≡ (2Nf)T8V4.

2Nf comes from the fact that we consider Nf branes and anti-branes and

V4(= 8/3π2) is the volume of the unit S4 which is due to the trivial integral

over S4. ′ is the derivative with respect to U and ˙ is the derivative with

respect to t

1/λ expansion

In the soliton background the 5D Yang-Mills action yields as the leading terms

in the 1/λ expansion of the DBI action,

SYM = −κ
∫
d4xdZ tr

[
1

2
K−1/3

F
2
µν +M2

KKKF
2
µZ

]
, (2.30)

where we change the variables as

K ≡ 1 + Z2 , U = U0K
1/3 , dU =

2U0

3

Z

K2/3
dZ , f = 1 − 1

K
,
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µ, ν = 0, 1, 2, 3 are 4D indices and the fifth(internal) coordinate Z is dimen-

sionless. There are three things which are inherited by the holographic dual

gravity theory: MKK, κ, and K. MKK is the Kaluza-Klein scale and we will

set MKK = 1 as our unit. κ is defined as

κ = λNc
1

216π3
≡ λNca , . (2.31)

A is the 5D U(Nf ) 1-form gauge field and Fµν and FµZ are the components

of the 2-form field strength F = dA − iA ∧ A.

For Nf = 2 the action (2.30) is reduced to

SYM = −κ
∫
d4xdZ tr

[
1

2
K−1/3F 2

µν +KF 2
µZ

]

−κ
2

∫
d4xdZ

[
1

2
K−1/3F̂ 2

µν +KF̂ 2
µZ

]
, (2.32)

where the SU(2) and U(1) parts are completely desentangled in the Yang-Mills

action.

Mesonic fluctuation around the background field

If we consider the fluctuation (Aα(x
α)) around the classical configuration A0

(3.10), which is due to homogeneous matter at Z = 0, the action can be

expanded as

R2/3N

2gs
(2πα′)2tr

∫
dUU5/2 1√−αγ

[
2αγ∆−1

(2πα′)2
+ 2∆(∂UA0)FU0 + ∆3FU0FU0

+∆α
∑

i

FiUFiU + ∆γ

(
R

U

)3∑

i

F0iF0i + ∆−1αγ

(
R

U

)3∑

i>j

FijFij

]
,

up to quadratic terms. Fαβ ≡ ∂αAβ − ∂βAα − i[Aα, Aβ] and

∆ ≡ 1√
1 + (2πα′)2

αγ
(A′

0)
2

. (2.33)
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Similarly for D3/D7 model,

S = Ntr

∫
d4xdZk1

[
∆3FZ0FZ0 + ∆k2

∑

i

F0iF0i

+∆k3

∑

i

FiZFiZ + ∆−1k2k3

∑

i>j

FijFij

]
,

where the information of the background field A0 is encoded in ∆ and

N =
λNfNc

2(2π)4
, ∆ =

√
1 + d2Z−6 ,

k1 = Z3 , k2 = Z−4f−1 , k3 = f−1 . (2.34)

2.4 CS action

The 5D Chern-Simons action is obtained from the Chern-Simons action of the

D8 branes by integrating F4 RR flux over the S4, which is nothing but NC .

SCS =
Nc

24π2

∫

M4×R
ω
U(Nf )
5 (A) , (2.35)

ω
U(Nf )
5 (A) is the Chern-Simons 5-form for the U(Nf ) gauge field:

ω
U(Nf )
5 (A) = tr

(
AF

2 +
i

2
A

3
F − 1

10
A

5

)
, (2.36)

For Nf = 2 it reads more explicitly

SCS =
Nc

24π2

∫ [
3

2
ÂtrF 2 +

1

4
ÂF̂ 2 +

1

2
d

{
Â tr

(
2FA+

i

2
A3

)}]
(2.37)

=
Nc

24π2
ǫMNPQ

∫
d4xdZ

[
3

8
Â0tr (FMNFPQ) − 3

2
ÂM tr (∂0ANFPQ)

+
3

4
F̂MNtr (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ

+
3

2
∂N (ÂMtrA0FPQ)

]
+

Nc

48π2

∫
d

{
Â tr

(
2FA+

i

2
A3

)}
,

(2.38)
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Chapter 3

Thermodynamics of Dense

Matter

3.1 Homogeneous matter

3.1.1 Introduction

Dense hadronic matter is of interest to a number of fundamental problems that

range from nuclear physics to astrophysics. QCD at finite baryon density is

notoriously difficult: (1) the introduction of a chemical potential causes most

lattice simulations to be numerically noisy owing to the sign problem; (2) the

baryon-baryon interaction is strong making most effective approaches limited

to subnuclear matter densities.

In the limit of a large number of colors Nc, QCD is an effective theory

of solely mesons where baryons appear as chiral skyrmions. Dense matter in

large Nc is a skyrmion crystal with spontaneous breaking of chiral symmetry

at low density, and restored or stripped (Overhauser) chiral symmetry at high

density. While some of these aspects can be studied qualitatively using large

Nc motivated chiral models [77], they still lack a first principle understanding.

In this chapter we study the property of dense matter using SS model. In

section 2, we introduce the U(1)V field A0 in bulk and show how the baryon

charge density nB affects its minimal profile. In section 2 and 3, we construct

the bulk hamiltonian and derive the energy density as a function of the identi-

fied baryon density. The energy density is found to grow about quadratically
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with the baryon density. We conclude in section 4. Throughout, the canonical

formalism will be used.

3.1.2 Thermodynamics from branes

Let A0(U) be a U(1)V valued background gauge field in bulk. Its boundary

value is related to the baryon chemical potential [14, 50, 73, 74]. In the absence

of the source, the effective action of the D8-branes (3.24) becomes

SD8 = −NfT8V4

gs

∫
d4x dUU4

[
f (τ ′)2 +

(
R

U

)3 (
f−1 −

(
2πα′

A
′
0

)2)
] 1

2

, (3.1)

where A
′
0 = dA0

dU
and the Chern-Simons action vanishes. The equations of

motion for τ(U) and A0(U) are [50]

d

dU




U4f τ ′√
f (τ ′)2 +

(
R
U

)3 (
f−1 −

(
2πα′A′

0

)2)


 = 0,

d

dU




U4
(
R
U

)3
A

′
0√

f (τ ′)2 +
(
R
U

)3 (
f−1 −

(
2πα′A′

0

)2)


 = 0.

In this paper we consider only the case τ ′ = 0, Sakai-Sugimoto’s original

embedding [28, 29], where the D8-branes configuration in the τ coordinate is

not affected by the existence of background A0. This corresponds to τ = δτ
4
,

the maximal asymptotic separation between D8 and D8 branes.

To compare with [28, 29] we change the variable U to z through

U ≡ (U3
KK + UKKz

2)1/3 (3.2)

The action (3.1) is then

SD8 = −Nf T̃

∫
d4x

∫ ∞

0

dz U2

√
1 − (2πα′)2

9

4

Uz
UKK

(∂zA0)2 , (3.3)

where we used τ ′ = 0 and T̃ ≡ NcMKK

216π5α′3 . It is useful to define the dimensionless
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quantities

Z ≡ z

UKK
, K(U) ≡ 1 + Z2 =

(
U

UKK

)3

, (3.4)

in terms of which the action is written as1

SD8 = −a
∫
d4x

∫
dZ K2/3

√
1 − bK1/3(∂ZA0)2 , (3.5)

where

a ≡ NcNfλ
3M4

KK

39π5
, b ≡ 36π2

4λ2M2
KK

. (3.6)

Now we introduce the baryon source coupled to A0 through the Chern-

Simons term [14, 30, 76] as mentioned before. We assume that baryons are

uniformly distributed over R3 space whose volume is V . For large λ, the

instanton size is 1/
√
λ [30, 33]. It can be treated as a static delta function

source at large Nc. For a uniform baryon distribution, the source is

Ssource = NcnB

∫
d4x

∫
dZ δ(Z)A0(Z). (3.7)

The equation of motion of A0 is

d

dZ

∂L

∂(∂ZA0)
= nqδ(Z) , (3.8)

which yields

∂L

∂(∂ZA0)
=

1

2
nq sgn(Z) , (3.9)

where nq = NcnB is the quark density and the step function sig(Z) is deter-

mined by the symmetry between D8 (Z > 0) and D8(Z < 0). By integrating

1The integral is extended to (−∞,∞) to take into account D8 branes as well as D8
branes.
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Figure 3.1: (a) The profile of A0(Z), (b) Chemical potential vs baryon charge
( µ
mρ

vs Q
n0

, where Q ≡ nq/2).

once more we get the classical solution A0

A0(Z;nq) = A0(0) +

∫ Z

0

dZ
nq/2√

(ab)2K2 + bK1/3n2
q/4

. (3.10)

We introduce the “baryon charge chemical potential of a quark”, µ, by [73,

74]

µ(nq) ≡ lim
|Z|→∞

A0(Z;nq) . (3.11)

This relation also defines µ as a function of nq and vice versa. Furthermore

we define the baryon chemical potential as

µB = mB +Ncµ . (3.12)

In Fig.(3.1a) we plot the profile of A0(Z) in the Z coordinate and in Fig.(3.1b)

we show µ for various baryon densities. Since we work in the canonical for-

malism µ is more like a Lagrange constraint.

Throughout, the numerics will be carried using the following values [28, 29]:

Nf = 2, Nc = 3, fπ = 92.6MeV, and mρ = 776MeV. The smallest eigenvalue

was calculated to be λ1 = 0.669. Using these five values we can estimate MKK,
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λ, κ, a, and b:

MKK =
mρ√
λ1

≃ 950MeV, λ ≡ g2
YMNc = f 2

π

54π4

NcM
2
KK

≃ 16.71,

κ ≡ λNc

216π3
≃ 0.0075, (3.13)

and

a = 3.76 · 109MeV 4, b = 7.16 × 10−6MeV −2. (3.14)

The definition of κ and λ are different from [28, 29] by a factor of 2, but it is

consistent with [30]. In all figures nB is normalized to nB

n0
, with n0 the nuclear

matter density,

n0 = 0.17fm−3 ≃ 1.3 × 106MeV 3. (3.15)

3.1.3 Thermodynamics

Consider the action (3.5) with the source term (3.8),

S =

∫
d4x

∫ +∞

−∞
dZ L

with L ≡ −aK2/3
√

1 − bK1/3(∂ZA0)2 + nqδ(Z)A0(Z) . (3.16)

The A0 is an auxillary field with no time-dependence. It can be eliminated by

the equation of motion (3.9) and (3.10). The energy is

U(nq) =

∫
dx3

∫ +∞

−∞
dZ (−L)

= aV

∫ +∞

−∞
dZ K2/3

√
1 +

n2
q

4a2b
K−5/3 − nqµ , (3.17)

where V is short for
∫
dx3 and we may set µ = 0. The chemical potential µ

is constrained by the Gibbs relation µ = ∂F (nq)
∂nq

where F (nq) is the Helmholtz

free energy which is U(nq) at zero temperature. Thus

µ =

∫ ∞

−∞
dZ

nq/4√
(ab)2K2 + bK1/3n2

q/4
, (3.18)
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which is in agreement with the solution (3.10) for A0(0) = 0. We note that

this construction is consistent with [14, 50, 73] where the grand potential is

identified with the DBI action at finite µ.

In terms of the baryon number density nB (nq/Nc) the regularized Helmholtz

free energy is

Freg(nB)

aV
≡

∫ ∞

−∞
dZK2/3

[√
1 +

(NcnB)2

4a2b
K−5/3 − 1

]
, (3.19)

after subtracting the vacuum value. The regularized internal energy U , pres-

sure p and grand potential Ω as a function of baryon number density nB or

the baryon chemical potential µB are

Ureg(nB)

aV
=

∫ ∞

−∞
dZK2/3

[√
1 +

(NcnB)2

4a2b
K−5/3 − 1

]
,

p(nB)reg

a
=

∫ ∞

−∞
dZ K2/3


1 − 1√

1 + (NcnB)2

4a2b
K−5/3


 ,

Ωreg(µ̃B)

aV
=

∫ ∞

−∞
dZ K2/3


 1√

1 + (NcnB( fµB))2

a2b
K−5/3

− 1


 ,

µ̃B = Nc

∫ ∞

−∞
dZ

NcnB/4√
(ab)2K2 + bK1/3(NcnB/2)2

, (3.20)

where µ̃B ≡ µB −mB = Ncµ.

In Fig.(3.2) we present the numerical plots of these thermodynamic func-

tions with the numerical inputs in section 3.1. For small baryon densities the

energy density is quadratic in nB/n0 (or µ/mρ). At large baryon densities it

is of order (nB/n0)
1.4. The small density limit can be qualitatively understood

by noting that in bulk the A0 configuration for fixed charge is obtained by

minimizing the induced DBI action of D8-D8. Thus only flavor-meson me-

diated interactions between the point-like baryons are included. At large Nc

the D4 mediated correlated gravitons (glueballs on the boundary) are heavy

and decouple. Since our point baryonic vertices in bulk map on infinite size

skyrmions at the boundary this implies that only ω exchanges survive at large

Nc. Rho and pion exchange relies on skyrmion gradients which are zero. At
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Figure 3.2: Numerical behaviour of the thermodynamic functions: See
Eq.(3.20)

low baryon densities, the dominant Skyrmion-omega-Skyrmion interaction is

two-body and repulsive. Thus the energy density is positive and quadratic in

the baryon density. The baryonic matter is prevented from flying apart by

the container V . At large baryon densities, the energy density softens as the

quark chemical potential is seen to saturate to (nB/n0)
0.4 numerically. We

recall that the baryons are fixed sources so no Fermi motion is involved to

this order. The pressure behaves as (nB/n0)
2 at low baryon densities, and

again softens to (nB/n0)
7/5 at large baryon densities from the plot. We sum-

Thermodynamic function nB/n0 ∼ 0 nB/n0 ∼ 10 nB/n0 → ∞

Internal energy (nB/n0)
2 (nB/n0)

1.85 (nB/n0)
1.4

Pressure (nB/n0)
2 (nB/n0)

1.45 (nB/n0)
1.4

Chemical potential (nB/n0)
1 (nB/n0)

0.67 (nB/n0)
0.4

Grand potential −(µ̃B/mρ)
2 −(µ̃B/mρ)

2.16 −(µ̃B/mρ)
3.5

Table 3.1: Numerical behaviour of the thermodynamic functions: See
Eq.(3.20)
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marize the behaviour of the thermodynamic functions obtained numerically

in Table.(3.1). In this paper we do not consider the back reaction of grav-

ity for baryons or D8 brane, therefore the behaviour at higher densities, say

nB/n0 ≫ 10, is not justified.

3.1.4 Conclusions

We have considered a generalization of the chiral model proposed by Sakai and

Sugimoto to finite baryon density. The baryon vertices in bulk are attached

equally to the D8-D8 branes and correspond to S4 in D8. They are treated as

stable and point like in R
3 and act as uniform sources of baryon density. Their

point-like nature at large Nc and coupling λ imply that their interactions as

induced by D8-D8 is mostly repulsive through the exchanges of omega mesons.

The bulk energy density grows quadratically with the baryon density be-

fore softening at asymptotic densities. The quadratic and repulsive growth is

expected from the exchange of omega mesons. The softening reflects on the

fact that at asymptotic densities the repulsive baryons form an instable but

regular array for fixed volume V . If V acting as a container is removed, the

baryons fly away in this version of the SS model. We note that the energy

density scales as Nc since Nc/
√
a is of order 1 as expected from standard large

Nc arguments. The DBI action resums (partially) the strong NN-interactions

while keeping the leading Nc result unchanged. Since the instanton size is of

order 1/
√
λ we also note that the resummed contributions are of order λ0 since

the bulk instanton density
√
λnB is of order λ2 (The additional

√
λ here stems

from the rescaling of z → z/
√
λ in the delta-function source at z = 0).

The current approach needs to be improved in a number of ways to acco-

modate the baryon physics expected in the real world. First, the point-like

nature of the sources need to be relaxed. This is possible by constructing the

pertinent instanton vertex. Also, the point-like limit suggests that the DBI

results quoted here are only indicative since higher derivative corrections to

the DBI effective action are expected to contribute (see also [28–30] for further

comments on this point)). Second, the Fermi motion of the sources need to be

included. This can be achieved through a select quantization of the collective

variables associated to the baryon vertex insertion. Some of these issues will

be addressed in later work.
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3.2 Inhomogeneous matter

3.2.1 Introduction

Cold and dense hadronic matter in QCD is difficult to track from first principles

in current lattice simulations owing to the sign problem. In large Nc QCD

baryons are solitons and a dense matter description using Skyrme’s chiral

model [78–80] was originally suggested by Skyrme and others [81]. At large

Nc and high density matter consisting of solitons crystallizes, as the ratio of

potential to kinetic energy Γ = V/K ≈ N2
c is much larger than 1. QCD matter

at large Nc was recently revisited in [82].

The many-soliton problem can be simplified in the crystal limit by first

considering all solitons to be the same and second by reducing the crystal to

a single cell with boundary conditions much like the Wigner-Seitz approxima-

tion in the theory of solids. A natural way to describe the crystal topology

is through T 3 with periodic boundary conditions. In so far, this problem can

only be addressed numerically. A much simpler and analytically tractable ap-

proximation consists of treating each Wigner-Seitz cell as S3 with no boundary

condition involved. The result is dense Skyrmion matter on S3 [83–85]. In-

terestingly enough, the energetics of this phase is only few percent above the

energetics of a more involved numerical analysis based on T 3. Skyrmions on

S3 restore chiral symmetry on the average above a critical density. While

Skyrmions on S3 are unstable against T 3, they still capture the essentials of

dense matter and chiral restoration in an analytically tractable framework.

Cold dense matter in holographic QCD is a crystal of instantons with

Γ =
√
λ/vF ≫ 1 where vF ≈ 1/Nc is the Fermi velocity. (In contrast hot

holographic QCD has Γ =
√
λ ≫ 1). When the wigner-Seitz cell is approxi-

mated by S3, the pertinent instanton is defined on S3 ×R. In this chpater, we

investigate cold QCD matter using instantons on S3 × R in bulk. As a result

the initial D4 background is deformed to accomodate for the S3 which is just

the back reaction of the flavour crystal structure on the pure gauge theory.

Holographic dense matter can be organized in 1/λ at large Nc. In our model

the baryon density is uniform while the chiral condensate is p-wave over a cell.
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However, the chiral condensation is averaged to be zero over a cell so that the

chiral symmetry is effectively restored in long wavelength limit. We will show

that as the average density goes up, it approaches to uniform distribution while

the chiral condensate approaches to p-wave over a cell. The energy density in

dense medium varies as n
5/3
B , which is the expected power for non-relativistic

fermion. This shows that the Pauli exclusion effect in boundary is encoded in

the Coulomb repulsion in the bulk.

In section 2, we define this deformation and discuss the D8 brane embed-

ding structure. The instantons on S3 ×R in the flavour D8 brane is discussed

in section 3. In section 4,5,6,7 we derive the equation of state of cold holo-

graphic matter using the small size instanton expansion and in general. In

section 8 we show how the holographic small instantons in bulk transmute

large size Skyrmions on the boundary. The comparison to other models of

nuclear matter is carried in section 9. Our conclusions are in section 10.

3.2.2 D8 brane action

We consider crystallized skyrmions at finite density in the Wigner Seitz ap-

proximation. Spatial R3 is naturally converted to T 3 with periodic boundary

conditions. As a result the D4 background geometry is deformed. The baryons

are then instantons on T 3 × R. Most solutions are only known numerically

on the lattice. A simpler and analytically tractable analysis that captures the

essentials of dense matter is to substitute T 3 by S3 in bulk with no boundary

conditions altogether. As a result, the D4 background dual to the crystal is

modified with the boundary special space as S3. Specifically, the 10 dimen-

sional space is that of (R1 × S3) × R1 × S4. The ensuing metric on D4 is

therefore

ds2 =

(
U

R

)3/2 (
−dt2 + R

2dΩ2
3 + f(U)dτ 2

)
+

(
R

U

)3/2(
dU2

f(U)
+ U2dΩ2

4

)
,

(3.21)

dΩ3 ≡ dψ2 + sin2ψ dθ2 + sin2ψ sin2θ dφ2 , f(U) ≡ 1 − U3
KK

U3
, (3.22)

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4

ǫ4 , (3.23)
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While this compactified metric is not an exact solution to the general relativ-

ity (GR) equations for small size S3, it can be regarded as an approximate

solution for large size S3. Indeed, in this case, the GR equations are seen to

be sourced by terms wich are down by the size of S3. Here, (3.23) can be

regarded as an approximation to the stable metric with T 3 for a dense matter

analysis. Clearly, the former is unstable against decay to the latter, which will

be reflected by the fact that the energy of dense matter on S3 is higher than

that on T 3. As indicated in the introduction, the Skyrmion analysis shows

that the energy on S3 is only few percent that of T 3. So we expect the current

approximation to capture the essentials of dense matter in holographic QCD.

Specifically, the nature and strength of the attraction and repulsion in dense

matter. Indeed, this will be the case as we will detail below.

Now, consider Nf probe D8-branes in the Nc D4-branes background. With

U(Nf ) gauge field AM on the D8-branes, the effective action consists of the

DBI action and the Chern-Simons action

SD8 = SDBI + SCS ,

SDBI = −T8

∫
d9x e−φ tr

√
−det(gMN + 2πα′FMN) , (3.24)

SCS =
1

48π3

∫

D8

C3trF
3 . (3.25)

where T8 = 1/((2π)8l9s), the tension of the D8-brane, FMN = ∂MAN−∂NAM−
i [AM , AN ] (M,N = 0, 1, · · · , 8), and gMN is the induced metric on the D8-

branes

ds2
D8 =

(
U

R

)3/2

(−dt2 + R
2dΩ2

3) + gσσdσ
2 +

(
R

U

)3/2

U2dΩ2
4 , (3.26)

gσσ ≡ Gττ∂στ∂στ +GUU∂σU∂σU , (3.27)

where GMN refer to the background metric (3.21) and the profile of the D8

brane is parameterized by U(σ) and τ(σ).

The gauge field AM has nine components, A0, Ai = A1,2,3, Aσ(= A4), and
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Aα(α = 5, 6, 7, 8, the coordinates on the S4). We assume

A0 = A0(σ) ∈ U(1) , (3.28)

(Ai = Ai(x
i, σ), Aσ = Aσ(x

i, σ)) ∈ SU(Nf ) , (3.29)

Aα = 0 . (3.30)

Then the action becomes 5-dimensional:

SDBI = −8π2T8R
3

3gs
tr

∫
dtǫ3dσ U

[ {(
U

R

)3/2

gσσ − (2πα′)2(∂σA0)
2

}{(
U

R

)3

+
1

2
(2πα′)2FijF

ij

}

+

(
U

R

)3

(2πα′)2FσiF
i
σ +

1

4
(2πα′)4(ǫijkFiσFjk)(ǫijkF

i
σF

jk)

]1/2

,

(3.31)

SCS =
Nc

24π2
tr

∫
A ∧ F ∧ F , (3.32)

where ǫ3 is the volume form of S3 space and the indices i, j, k(∈ {ψ, θ, φ}) are

raised by the metric g̃ij defined by

g̃ij =

(
1

R
2 ,

1

R
2 sin2 ψ

,
1

R
2 sin2 ψ sin2 θ

)
. (3.33)

3.2.3 Instanton in S3 ×R1

Only A0 will be determined dynamically in the given instanton background

Ai, Aσ. The exact background instanton solution is unknown. Thus we start

with an approximate solution which is the SU(2) Yang-Mills instanton solution

in the space with metric,

ds2 = dσ2 + R
2dΩ3 . (3.34)

This metric is different from our metric in (3.26) and (6.9), where there are

warping factors. Furthermore our action is the nonlinear DBI action and not

a Yang-Mills action. However it can be shown that the Yang-Mills instanton

in the space (3.34) is the leading order solution of 1/λ expansion of the full
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metric and the DBI action as shown in [30] . So the solution can be used in

the leading order calculation.

We summarize here the (anti) self dual instanton solution obatained in [86].

Using the ansatz ,

A = f(σ)U−1dU , U ≡ cosψ + iτar̂
a(θ, φ) sinψ , (3.35)

we get the field strength, in terms of vielbein whose relation to the coordinate

ψ, θ, φ, is specified in [86],

F =
(∂σf)τa

R
e0 ∧ ea +

1

2

[
2(f 2 − f)τdǫ

d
bc

R
2

]
eb ∧ ec , (3.36)

where we used La = U−1∂aU = τa/R. If we require (anti) self-duality,

∂σf = ±2(f 2 − f)

R
, (3.37)

then f is determined as

f± ≡ 1

1 + e∓2(σ−σ0)/R
, (3.38)

so the field strength of one (anti) instanton solution is

F± = (∂σf±)
τa
R

(e0 ∧ ea ± 1

2
ǫabce

b ∧ ec) . (3.39)

3.2.4 D8 brane plus Instanton

Now that we have the background instanton configurations, the remaining

dynamical variables are τ and A0. However it can be shown that ∂στ(σ) = 0

is always a solution of the Euler-Lagrange equation regardless of the gauge

field. For simplicity we will work with this specific configuration so that the

only dynamical variable is A0. Let us parameterize A0 by Z defined as

U ≡ (U3
KK + UKKσ

2)1/3 ,

Z ≡ σ

UKK

, K ≡ 1 + Z2 . (3.40)
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Then the field strength is expressed in terms of Z and the dimensionless radius

R̂ ≡ R/UKK,

FZa =
1

UKK

f ′ τa

R̂
,

Fab =
1

U2
KK

f ′ ǫ
c

ab τc

R̂
, (3.41)

where f ′ ≡ ∂Zf . The instanton configuration is

f± =
1

1 + e∓2(Z−Z0)/
c

R
. (3.42)

The DBI action reads

SDBI = −8π2T8R
3

3gs
tr

∫
dtǫ3dZK

1/3

[ {(
4

9

)
U2

KKK
−1/3 − (2πα′)2(A′

0)
2

}{
K

(
UKK

R

)3

+
1

2
(2πα′)2F 2

ab

}

+ K

(
UKK

R

)3

(2πα′)2F 2
Za +

1

4
(2πα′)4(ǫabcFaZFbc)

2

]1/2

, (3.43)

where A
′
0 ≡ ∂ZA0. We are using the same vielbein coordinates as (3.36).

Since the instanton size (R) is of order O(λ−1/2) we define a new dimensionless

parameter R̃, which is order of (λ0), as

R̃ ≡
√
λR̂ =

√
λ

R

UKK
. (3.44)

Furthermore we rescale the coordinate and the instanton field strength for a

systematic 1/λ expansion

xa → λ−1/2xa , Z → λ−1/2Z , t→ t ,

Fab → λFab , FaZ → λFaZ , A0 → A0 ,

K = (1 + Z2) →
(

1 +
1

λ
Z2

)
≡ Kλ, (3.45)

so all coordinates and gauge fields become of order of O(λ0).
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By using the instanton solution (3.42) we get

SDBI = − Ncλ

39π5UKKM
−3
KK

tr

∫
dtǫ3dZK

1/3
λ

[ {
1 +

37π2

4M2
KKU

2
KK

K
1/3
λ

f ′2

R̃
2 − 1

λ

36π2

4M2
KK

K
1/3
λ (A′

0)
2

}

{
M2

KKU
2
KKK

4/3
λ +

37π2

4M2
KKU

2
KK

K
1/3
λ

f ′2

R̃
2

} ]1/2

(3.46)

If we let UKK = M−1
KK for simplicity, then the DBI action yields

SDBI = −dNcλ

∫
dtǫ3dZ

√{
1 +K

1/3
λ F̃ 2 − 1

λ
K

1/3
λ (Ã

′
0)

2

}{
K

3/4
λ +K

1/3
λ F̃ 2

}

= −dNcλ

∫
dtǫ3dZ

[
1 +

3Z2

8λ
+ F̃ 2 +

Z2

3λ
F̃ 2 − 1

2λ
(Ã

′
0)

2 + O((1/λ)2)

]
,

(3.47)

where

d ≡ 2M4
KK

39π5
, Ã0 ≡

33π

2MKK
A0 , F̃ 2 ≡ 37π2

4
J ,

J ≡ f ′2

R̃
2 =

sech4(Z/R̃)

4R̃
4 ∼ 1

3R̃
3 δ(Z) ,

∂ZK ≡ ∂Z
1

6R̃
3

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
∼ 1

6R̃
3 sgn(Z) . (3.48)

The Chern-Simons action does not change by the recaling (8.50) , and it

is order of λ0. With the instanton solution (3.42) the Chern-Simons action

reduces to

SCS =
Nc

24π2
tr

∫
A ∧ F ∧ F =

Nc

8π2
tr

∫
dtǫ3dZA0

1

2

(
24M3

KK

f ′2

R̃
2

)

= cNc

∫
dtǫ3dZÃ0F̃

2 , (3.49)

where

c ≡ 4M4
KK

39π5
. (3.50)
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It also can be written as

SCS = 3NcR̃
3
∫
dZA0∂ZK → Nc , for A0 = 1 , (3.51)

which confirms that the field configuration (3.41), and (3.42) describe the

single (anti) self dual instanton since SCS corresponds to Nc × the Pontryagin

index when A0 = 1.

3.2.5 Equation of State in 1/λ

The equation of state of cold holographic matter is the energy following from

the action functional. The total action up to order of λ0 is

S ≡
∫
dtǫ3dZ(LDBI + LCS)

= −dNc

∫
dtǫ3dZ

[
λF̃ 2 +

Z2

3
F̃ 2 − 1

2
(Ã

′
0)

2

]
+ cNc

∫
d4xdZÃ0F̃

2 .(3.52)

where A0 is an auxillary field with no time-dependence that can be eliminated

by the equation of motion or Gauss law,

Π′ = cNcF̃
2 , (3.53)

with

Π ≡ ∂L

∂Ã
′
0

= dNcÃ
′
0 , (3.54)

The integral of the equation of motion with F̃ 2 in (3.48) is

Π(Z) = Π(∞)

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
,

Π(∞) =
M4

KK

54π3

Nc

R̃
3 , (3.55)

where we have set Π(0) = 0.
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The energy of one cell is

Ecell = −
∫
ǫ3dZ(LDBI + LCS)

= dNc

∫
ǫ3 dZ

[
λF̃ 2 +

Z2

3
F̃ 2 − 1

2

Π2

(dNc)2

]
−
∫
ǫ3 dZÃ0Π

′ ,

= dNc

∫
ǫ3 dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
−
∫
ǫ3 Ã0(Z)Π(Z)

∣∣∣
∞

−∞
.

Thus the energy density (ε) of the crystalline structure is

ε ≡ NEcell

V
≈ Ecell∫

ǫ3

= dNc

∫
dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
− Ã0(Z)Π(Z)

∣∣∣
∞

−∞
, (3.56)

where N is the total number of baryons(cells) and V is the total volume which

is approximated by N
∫
ǫ3. Interestingly the second term in (3.56) is equal to

µBnB since the density and the baryon chemical potential is given by

nB =
1∫
ǫ3

=
1

2π2(UKKR̃)3
=

1

2π2(
√
λR)3

, µB ≡ NcA0(∞) . (3.57)

respectively and because

Ã0(Z)Π(Z)
∣∣∣
∞

−∞
= 2Ã0(∞)Π(∞) = NcA0(∞)

1

2π2(UKKR̃)3
= µBnB , (3.58)

Notice that R̃ is of order of (λ)0 from (3.44) so the baryon density is of order

(Ncλ)0. Since the action is finite and concentrated in a finite size, we can

restrict the integral to the region Z ≤ Zc and expand the action in 1/λ.

ε = dNc

∫ Zc

0

dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
(3.59)

= M0

[
nB +

a

λ
n

1/3
B +

b

λ
Zc n

2
B

]
, (3.60)
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where

M0 ≡ 8π2κMKK , κ ≡ λNc

216π3
,

a ≡ (π2 − 6)M2
KK

36(2π2)2/3
, b ≡ 36π4

2M3
KK

, (3.61)

A few remarks are in order.

1. Zc is introduced as an arbitrary cut-off which is bigger than the instanton

size. However in section 8, we will argue that Zc should be identified as

baryon size by explicitly contructing the Skyrmion out of the instanton

Therefore it is not an arbitrary number.

2. Even in the case the instanton size is small, the baryon size on the

boundary is not. It is of order (Ncλ)0 and large in units of MKK . This

point is important. While the instanton size in bulk is of the order of

the string length and thus small as 1/
√
λ in units of MKK , its image on

the boundary is a large Skyrmion.

3. The position of the instanton Z0 in the conformal direction is set to zero

by parity.

The various density contributions in (3.60) can be understood from the

zero density and finite instanton calculation discussed by Sakai and Sugimoyo

to order Ncλ
0. For that, we recall that the energy balance for a holographic

instanton with flat R3 directions reads schematically as [30]

Nc

(
A λ ρ2 + B

1

λ ρ2

)
(3.62)

leading to an instanton size in bulk of order ρ ∼ (B/A)1/4/
√
λ. The Coulomb

repulsion B is 104 times the gravitational attraction A resulting into a size

that is of order ρ ∼ 10/
√
λ. This parametrically huge repulsion results in a

stiffer equation of state in holographic QCD.

The linear term in nB in (3.60) is just the topological winding of the U(Nf )

flavored instanton in D8 on S4 due to the self duality of the instanton con-

figuration. It is leading and of order Ncλ. Geometry is unaffected by matter.

A point-like instanton in bulk corresponds to a very large Skyrmion on the
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boundary. The term of order n
1/3
B is of order Ncλ

0. It corresponds to the

attraction due to gravity in bulk at finite size. Indeed, the energy of this term

is of order λρ2 = R̃
2
, as in (3.62) favoring smaller and smaller instanton. The

energy per volume for this term is of order 1/R̃. Since in matter the cell size

is of the order of the interparticle distance 1/n
1/3
B , the n

1/3
B follows. The term

of order n2
B is also of order Ncλ

0. It stems from the Coulomb repulsion in

bulk which is of order 1/λρ2 = 1/R̃
2

since the instanton is static in 4-space

(space-plus-conformal). This contribution is repulsive and favors larger size in-

stanton. The corresponding energy per cell is of order (Zc/R̃)(1/R̃
5
), since the

warping in the conformal direction is subleading in 1/λ. The n2
B contribution

follows.

For a Skyrmion with a size Zc ≪ R̃, (3.60) describes the low density regime.

In this regime the use of the S3×R instanton is likely to give higher energy than

a localized but flat instanton at the pole of S3 say. Dilute holographic matter

is made out of flat R3 instantons with (3.60) providing an upper bound on the

energy per unit volume. This phase breaks spontaneously chiral symmetry.

In the point particle limit, the equation of state at low density was discussed

in [15]

ǫp ∼ Nc
27π4

4M2
KK

n2
B (3.63)

for low densities after re-scaling
√
λnB/λ

3/2 → nB [15]. The point-like and

flat space instanton contribution (3.63) at low density is lower in energy than

(3.60) and therefore favored. This will be made more explicit below. The n
1/3
B

is absent in the point like limit (finite size effect).

As the density is increased (or equivalently as R̃ approaches down to Zc),

there is a change in the equation of state (3.60). For Zc = R̃,

ε = M0

[
nB +

a

λ
n

1/3
B +

b′

λ
n

5/3
B

]
, (3.64)

with b changing to b′

b′ ≡ 36(2π2)5/3

23M2
KK

. (3.65)
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The softening of the equation of state at higher density from n2
B to n

5/3
B follows

from a transition from a dilute gas/liquid phase to a dense solid/crystal phase.

This transition effectively restores chiral symmetry as we will show later. An

estimate of the chiral transition density follows by comparing the n2
B term

from (3.63) to the leading n
5/3
B in (3.64)

ǫs ∼ Nc
27π7/3

24/3MKK
n

5/3
B (3.66)

By setting ǫp = ǫs, the critical transition density follows

ncB =
4M3

KK

π5
. (3.67)

3.2.6 Numbers

To give some estimates of the numbers emerging from the current discussion,

we first recall that in holographic QCD the mass of one baryon at next to

leading order is not unique. We refer to [30] for a more thorough discussion.

In particular, the baryon mass to order Ncλ
0 is

MB = M0

(
1 +

c

λ

)
, (3.68)

where c = 27π
√

2/15. Thus the interaction energy per unit volume for the

dilute case is

EDilute
int ≡ ε− nBMB =

M0

λ

(
an

1/3
B − cnB + b Zc n

2
B

)
, (3.69)

while for the denser case it is ,

EDense
int ≡ ε− nBMB =

M0

λ

(
an

1/3
B − cnB + b′ n

5/3
B

)
. (3.70)

For numerical estimates, we use MKK = 500 MeV and M0 = 940 MeV for

Nc = 3 [? ]. Our parameters are

λ ∼ 53.2 , a ∼ 0.095 fm−2 , b ∼ 2172 fm3 , b′ ∼ 2039 fm2 , c ∼ 31 .
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Figure 3.3: The energy per unit volume: Zc = 5 (red) and Zc = R̃ (blue). See
text.
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Figure 3.4: The energy per unit volume: Zc = ∞ (red) and Zc = R̃ (blue).
See text.

The interaction energies are then

S3 : EDilute
int (GeV fm−3) = 0.00168n

1/3
B − 0.548nB + 192n2

B , (3.71)

S3 : EDense
int (GeV fm−3) = 0.00168n

1/3
B − 0.548nB + 36.0n

5/3
B , (3.72)

R3 : EDilute,P
int (GeV fm−3) = −0.548nB + 60.3n2

B (3.73)

where we used Zc = 5. Notice that due to the smallness of the coefficients

of the first two terms, the last term is dominant even in the relatively small

baryon density if it is not much smaller than 10−2fm−3.

The results on S3: EDilute
int and EDense

int are compared in Fig.(3.3) for Zc = 5

( Zc = 5/MKK = 1 fm with restored dimensions). The results on S3 and R3

are compared in Fig. (3.4). In R3 the instantons are point-like or Zc ∼ ∞ [15].

The crossing from R3 to S3 occurs at relatively small densities ncB ≈ 1.26n0

with n0 = 0.17 fm−1/3 the nuclear matter density.
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3.2.7 Equation of State in General

The approximation of T 3 by S3 suggested at the beginning of the paper was

justified in way in the dilute limit or for small densities. Phenomenologically,

we have found that the chiral phase transition from R4 to S3×R occurs at few

times nuclear matter density in holographic QCD, which is reasonable. The

small size instantons dominate dense matter. This means that higher order

corrections to both the DBI action and the starting D4 metric are important.

While we do not know how to assess them, we now suggest that they may

conspire to be small. Indeed, if we were not to expand the DBI plus CS actions,

that is if we were to include only these class of higher order corrections our

numerical results change only mildly.

Consider, the total (DBI + CS) action is written as

S = −dNcλ

∫
d4xdZ

√
A− 1

λ
B(A′

0)
2 + c̃Nc

∫
d4xdZJA0 , (3.74)

where

A ≡ K
4/3
λ +

3b

M2
KKU

4
KK

K
1/3
λ J +

3b

U2
KK

K
5/3
λ J +

9b2

M2
KKU

6
KK

K
2/3
λ J2 ,

B ≡ bK
5/3
λ +

3b2

M2
KKU

4
KK

K
2/3
λ J , J =

sech4(Z/R̃)

4R̃
4 ,

b ≡ 36π2

4M2
KK

, c̃ ≡ 3

2π2U3
KK

, d =
2M4

KK

39π5
.

The equation of motion is

Π̃′ = c̃NcJ , (3.75)

with

Π̃ ≡ ∂L

∂A′
0

=
dNcBA

′
0√

A− 1
λ
B(A′

0)
2
. (3.76)
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The integral of of motion is

Π̃(Z) = Π̃(∞)

[
tanh(Z/R̃)

(
1 +

1

2
sech2(Z/R̃)

)]
,

Π̃(∞) ≡ c̃Nc

6R̃
3 =

Nc

4π2(UKKR̃)3
=

√
bΠ(∞) . (3.77)

The energy per cell is

Ecell = −
∫
ǫ3dZ(LDBI + LCS)

= dNcλ

∫
ǫ3 dZ

√
A

B +
eΠ2

λd2N2
c

−
∫
ǫ3 dZA0Π̃

′

= dNcλ

∫
ǫ3 dZ

√

A +
AΠ̃2

λN2
c d

2B
−
∫
ǫ3 A0(Z)Π̃(Z)

∣∣∣
∞

−∞
. (3.78)

The energy density (ε) of the crystalline structure is then

ε ≡ NEcell

V
≈ Ecell∫

ǫ3

= dNcλ

∫
dZ

√

A+
AΠ̃2

λN2
c d

2B
− A0(Z)Π̃(Z)

∣∣∣
∞

−∞
, (3.79)

where N is the total number of baryons (cells) and V is the total volume which

is approximated by N
∫
ǫ3. The second term in (3.56) is

A0(Z)Π̃(Z)
∣∣∣
∞

−∞
= 2A0(∞)Π̃(∞) = NcA0(∞)

1

2π2(UKKR̃)3
= µBnB , (3.80)

where

nB =
1∫
ǫ3

=
1

2π2(UKKR̃)3
=

1

2π2(
√
λR)3

, µB ≡ NcA0(∞) . (3.81)

Since nB is fixed we may set µB = 0. Then the energy density is

ε = dNcλ

∫
dZ



√

A+
AΠ̃2

λN2
c d

2B
−K

2/3
λ


 , (3.82)
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Figure 3.5: The energy per unit volume.

where we subtracted the vacuum value. Thus the interaction energy per unit

volume is

Eint ≡ ε− nBMB . (3.83)

In Fig.(3.5) we show the equation of state for the expanded and unexpanded

actions. As expected the corrections are of order 1/λ for a finite and small size

instanton. The unexpanded energy is finite for any size of the instanton due to

the gravitational warping factors which are subleading in 1/λ after rescaling.

The unexpanded results are similar to the expanded ones in the range of

densities explored as it should. For extremely small nB, Eint ∼ 0.00251n
1/3
B ,

however for reasonably large density nB ∼ 1fm−3, Eint ∼ 33.9n
5/3
B . This power

is consistent and expected from the expansion in eq.(3.64).

All general expressions in this section are consistent with the results quoted

above to order O(λ0). Indeed, if for simplicity we set UKK = M−1
KK with

MKK = 1, then A and B reduce to

A = (1 + 3bJ)2 +
1

λ

2Z2

3
(1 + 3bJ)(2 + 3bJ) + O(λ−2) ,

B = b(1 + 3bJ) + O(λ−1) , (3.84)

For example, by considering 3bJ = F̃ 2 and Π̃ =
√
bΠ, we can readily show

that (3.82) reduces to (8.51)

ε = dNc

∫
dZ

[
λF̃ 2 +

Z2

3
F̃ 2 +

1

2

Π2

(dNc)2

]
.
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3.2.8 Holographic Skyrmions from Instantons

The S3 × R instanton used in bulk has a very simple Skyrmion picture on

the boundary. From (3.35) it follows that the gauge field at the boundary is

A(∞, ~x) = U−1dU . Following [30] we note that U(~x) is just the pion field at

the boundary. When we have a cut-off in Z, we replace A(∞, ~x) by A(Zc, ~x).

U is the boundary Skyrmion field originating from the bulk instanton. Thus

U is just the holonomy of the bulk instanton along the conformal direction:

U(x;Zc) = P exp[i

∫ Zc

0

dZA
(instanton)
Z (Z)] (3.85)

When the density is large and Zc ∼ R, the instanton has a support covering

the whole three sphere, therefore the resulting Skyrmion should be

U(~x) ≃ σ(~x) + iτaΠ
a(~x) = eiτa r̂

a(θ,φ)ψ , (3.86)

which is the identity map as (ψ, θ, φ) are the canonical angles for the unit

S3. The local Jacobian matrix for this map from S3 to S3 is Jai = ∂Πa/∂xi =

1ai/R, proportional to the identity. The baryon density for this map is detJ/volS3 =

1/(2π2R3) in agreement with bulk holography. The scalar field σ(~x) = cosψ

measures the chiral condensate and averages to zero on S3

< qq >S3

< qq >R3

=< σ(x) >S3=
2

π

∫ π

0

dψsin2ψ cosψ = 0 . (3.87)

The S3 × R instanton in (3.35) corresponds to a boundary Skyrmion on S3

with restored chiral symmetry on the average. We should notice that the

chiral condensation is p-wave over a cell while the density in this case is ap-

proximately constant over a cell. But it is certainly not a constant. In fact

this is a result consistent with ref. [52] where it was argued that there can

not be an uniform distribution. In Fig.(3.6), we show schematically how a

Skyrmion of size Zc looks on S3 as a function of R. (a) corresponds to the

dilute phase with broken chiral symmetry, while (b) describes the dense phase

with restored chiral symmetry.

In previous section, Zc was introduced as a cut-off of the action bigger

than the instanton size. Here we give interpretation of Zc as the size of the
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Figure 3.6: Holographic Skyrmion on S3 on the boundary

Skyrmion on the boundary. Note that the R4 BPS instanton used in bulk in [?

] for the description of a single baryon, yields a boundary Skyrmion as

U(~x) = Zc/ξc − i~τ · ~x/ξc (3.88)

with ξ2
c = Z2

c + ~x2 + ρ2 and this is the analogue of the unit map (3.86) with

tanψ = x/ξc. Notice that while the size of the instanton is ρ, the size of the

Skyrmion is
√
Z2
c + ρ2. If ρ≪ Zc, Zc itself is the size of the Skyrmion, hence

our interpretation above comes. Holography transmutes a small size instanton

ρ in bulk to a large size Skyrmion on the boundary.

At small densities with R̃ ≫ Zc, one can replace the spherical cell by a flat

space and the map (3.88) is relevant, while at high density R̃ ≤ Zc the map

(3.86) is relevant. On S3 this is pictorially depicted in Fig.(3.6). Notice also

that (a) has broken chiral symmetry while (b) has restored chiral symmetry

effectively( See eq. (3.87)) . Again, in this case, our S3 × R instanton in

bulk describes the high density phase in holographic QCD with restored chiral

symmetry. At low densities the energy density is about n2
B as discussed by

many in qualitative agreement with our figure here. The n2
B term is sourced by

Coulomb’s repulsion in both cases. The description on S3 carries larger energy

density than on R3 and is therefore unfavorable energitically. It is favorable at

higher densities. The transition occurs at about R = Zc, or ncB = 1/(2π2Zc),

resulting into an energy density of n
5/3
B . The value of ncB was estimated above.

The determination of Zc or equivalently the critical size of R̃ depends on

the energetics of the SS model. It is worth pointing that the single baryon

mass analysis on S3 as discussed in [83] allows a considerable simplification of
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Figure 3.7: Holographic Skyrmion mass on S3: order λ

this issue when the Skyrme model is used. We now note that this is justified in

holographic QCD as small size instantons in bulk with ρ = R̃/
√
λ map onto a

large size Skyrmion on the boundary with Zc ≫ ρ. So the small size instanton

expansion in bulk maps onto the gradient expansion in 1/Zc on the boundary.

Limiting the SS model on the boundary to the Skyrme model with fπ and eS

fixed by holography yields the specifics of the Skyrmion on the boundary to

order λ.

In Fig. (3.7) we show how the holgraphic Skyrmion mass on S3 to order λ

changes with R̃ the radius of S3 following [83]. The units of mass and length

are respectively [30]

fπ

2
√

2eS
= (λNc)MKK

√
b/2π

54π5
(3.89)

√
2

eSfπ
= (1/MKK)

√
8b/π3 .

with b = 15.25 and L = R. We note that the mass M0 = 8π2κMKK cor-

responds to the point 0.95 at R̃ = ∞ which matches the unit map result as

expected. In Fig. (3.8) we show the same curve to order 1/λ. Here the ener-

getics is determined in bulk as the chiral Lagrangian in the SS model is not

known beyond the order λ. Specifically,

M0

λ

(
AR̃

2
+

B

R̃
2

)
(3.90)

with A = (π2 − 6)/36 ∼ 0.11 and B = (36π2)/4 ∼ 1799. The units of mass
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Figure 3.8: Holographic Skyrmion mass on S3: order λ0

and lengths are

(B/A)1/4 ∼ 11.4

2
√

AB ∼ 27.8 (3.91)

The point 1.12 is the 1/λ corrected mass (3.68) in these units. Finally, it is

interesting to note that the holographic Skyrme model on S3 yields naively

the following equation of state

ε = M0(nB + aS n
2/3
B + bS n

4/3
B ) , (3.92)

as first noted in the context of the canonical Skyrme model [87]. The n
2/3
B for

the Skyrmion stems from the universal current algebra (∇Π)2 term which is

attractive and scales as 1/ρ2 as opposed to 1/ρ from the finite size instanton

in bulk. The n
4/3
B for the Skyrmion stems from the repulsive Coulomb contri-

bution per unit 3-volume (1/ρ)/ρ3 from the Skyrme term as opposed to the

repulsive Coulomb contribution per unit 3-volume (1/ρ2)/ρ3 in the instanton

in bulk. We recall that Coulomb’s law in 1+D dimensions is 1/ρD−2.

At high density the naive scalings in (3.92) obtained at the boundary differs

from (3.64) obtained in bulk in two essential ways: i) aS and bS are of order

N0
c λ

0 on the boundary while their bulk contributions are of order N0
c /λ; ii) the

scaling with nB appears to differ by an extra (spatial) dimension, D = 3 on the

boundary and D = 4 in bulk. These differences can be understood by noting

that the size of the holographic Skyrmion is Zc. This means that the chiral

gradients Li = U−1∂iU are nearly zero on the boundary with U ∼ 1, except on
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Figure 3.9: The energy per unit volume as a function of baryon density, for
pure skyrmions, for the calculations of Bethe and Johnson [87, 88] and of
Friedman and Pandharipande [87, 89], and for our instanton model based on
Sakai-Sugimoto model for dilute and dense case.

an the shell |~x| ≈ Zc of thickness 1/
√
λ to ensure that the topological baryon

charge is finite 2. This renders aS and bS in (3.92) effectively of order 1/λ as

noted in bulk.

3.2.9 Comparison with Nuclear Models

In Fig.(3.9) we compare the interaction energy (3.69) and (3.70) with other

hadronic models including Skyrme’s chiral model. Holographic matter is sub-

tantially stiffer as explained through the energy budget in (3.62). The reason

can be traced back to the fact that for a single baryon the repulsion already

dwarfs the attraction in holographic QCD

At high densities ε in (3.70) is approximated as

ε ∼ Nc3
3(2π2)5/3

23πMKK

n
5/3
B ∼ 36n

5/3
B (GeV fm−3) forNc = 3 , (3.93)

and whatever Nf since the flavoured instanton in bulk is always 2 × 2. This

behaviour is different from that of free massless quarks in D = 3 (ε3) but

2We note that for U ∼ 1 the Skyrmion obeys the Faddeev-Bogomolnyi bound since the
classical equations of motion are fulfilled.
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similar to massive quarks in D = 3 (ε′3). Specifically,

ε3 =
Nc

N
1/3
f

34/3π2/3

4
n

4/3
B ∼ 5.52n

4/3
B (GeV fm−3) forNc = 3, Nf = 2 ,

ε′3 =
Nc

N
2/3
f

33/5π4/3

10

1

m
n

5/3
B ∼ 1.68

1

m
n

5/3
B (GeV fm−3) forNc = 3, Nf = 2 .

So at strong coupling

ε

ε′3
= N

2/3
f

(
96/55

21/3

)
m

MKK
∼ 88m

MKK
forNf = 2 , (3.94)

independently of λ and Nc. As chiral symmetry is restored in the high density

phase, the comparison to the the free massive quark phase in D = 3 suggests

that the mass m ∼MKK/88 is a chirally symmetric screening mass. While the

chiral transition restores chiral symmetry it still confines baryons.

3.2.10 Conclusions

We have provided a holographic description of dense and cold hadronic matter

using the brane model put forward by Sakai and Sugimoto [30]. At large Nc

the matter crystallizes and can be treated in the Wigner-Seitz approximation

on T 3. For simplicity, the Wigner-Seitz cell was further approximated by S3

in space leading to a simple instanton configuration on S3 × R with R the

conformal space. The resulting equation of state at next to leading order in λ

shows a free quark behavior at high density, although the overall coefficient is

cutoff sensitive and large resulting into a stiff euation of state.

At high densities the gauge gradients are of order
√
λ so the DBI action

may not be enough to fix the brane dynamics at order Ncλ
0 [30]. Also our

simplification of T 3 by S3 while justified at low density, involves curvature

corrections at high densities. However, we believe that the essentials of dense

matter in holographic QCD are already exposed on S3 with a small attraction

leading n
1/3
B and a large Coulomb repulsion leading n

5/3
B , where 5/3 is the power

of non-relativistic fermion. It is interesting to notice that the coulomb inter-

action in the bulk counts the fermi statistics in the boundary. The repulsion is

104 times the attraction resulting into a very stiff equation of state. Changing
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S3 to T 3 will not affect the outcome quantitativaly we believe. Indeed, this is

the case for dense Skyrmions [83].

The present work expands on the original ideas developed in [51, 52]. Our

calculations with finite size instantons are closer to those presented in refer-

ence [52] where finite size and homogeneous instantons were used through a

variational estimate in R3 × R. Their arguments yield nB instead of the n
1/3
B

we have reported in the equation of state at next to leading order with our

S3 × R instanton.

The inhomegeneous S3 ×R description of the crystal suggests that at high

density, chiral symmetry is restored on the average. Indeed, since the dual

of the instanton cell is the Skyrmion cell with a pion field restricted to S3

in space. High density matter corresponds to small size S3 where the pion

field becomes just the unit map [83]. The corresponding chiral condensate on

S3 is seen to vanish as half of S3 carries positive chiral condensate, while the

other half carries negative chiral condensate so that on the average the chiral

condensate is zero. This restoration of chiral symmetry is due to the formation

of the crystal in the spatial direction in holographic QCD even though the D8-

D8 configuration is still attached. In other words, the left and right D8 branes

cease to talk to each other through the spatial directions not the conformal

direction when they crystallize at large Nc.

The present crystal analysis is classical in bulk. A quantum analysis in-

cluding vibrational and rotational motion is needed. These corrections are

subleading in 1/Nc and should be estimated for a more thorough phenomeno-

logical discussion. Also, the inhomogeneous phase can be probed approximatly

by a dilute gas of instantons on T 3 allowing for a lower energetics than on S3.

These issues and others will be discussed elsewhere.
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Chapter 4

Conductivity of Dense Matter

4.1 Introduction

In this chapter we would like to continue our investigation of the model at

baryon finite density and temperature but in the presence of a finite baryonic

electric field as recently discussed by Karch and O’Bannon [90] in a non-chiral

model, as a prelude to understand transport phenomena. There are many

works have been done in this line [18, 91–95]. In section 2, the DBI action at

finite baryon density is streamlined for both the KK and BH metrics. In section

3, we discuss Ohm’s law in the confined or KK metric. Above a critical value of

the baryon electric field E > Ec the vacuum and the dense state are unstable

against quark pair creation. In section 4, we show how this pair creation

translates to a vacuum persistence function thereby generalizing Schwinger’s

QED result to hQCD both in the vacuum and at finite density. In section

5, we derive Ohm’s law in the BH background, thereby extending a recent

result by Karch and Bannon [90] to the chiral case. The vacuum instability is

dwarfed by thermal pair creation in the incoherent statistical averaging with a

treshold value for the baryonic electric field starting at zero. Our conclusions

are in section 6.

4.2 DBI action

We will use the abstract metric notations (2.18) to treat the confined (2.20)

and deconfined (2.21) coherently in formal evaluation here. In the next section
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we will plug in the specific embedding and metric form.

To accommodate a static baryonic electric field on D8 branes both in vac-

uum and matter, we follow [90] to define

At = At(U) , Ax = −Et+ hx(U) . (4.1)

With the induced metric (2.18) and the guage fields (4.1) the DBI action is

written as

SDBI ≡
∫
d4xdULDBI

= −N

∫
dU e−φg2

SSgxx ×
√

|gtt|gxxgUU − (2πα′)2
(
gxx(A′

t)
2 + gUU(Ȧx)2 − |gtt|(A′

x)
2
)

(4.2)

where N ≡ (2Nf)T8V4. 2Nf comes from the fact that we consider Nf branes

and anti-branes and V4(= 8/3π2) is the volume of the unit S4 which is due

to the trivial integral over S4. ′ is the derivative with respect to U and ˙ is

the derivative with respect to t. Since (5.10) is purely kinetic, the conjugate

momenta D and B are conserved. Specifically,

D ≡ ∂LDBI

∂A′
t

= e−φg2
SSgxx

−N(2πα′)2gxxA
′
t√

|gtt|gxxgUU − (2πα′)2 (gxxA′2
t + gUUE2 − |gtt|h′2x )

(4.3)

B ≡ ∂LDBI

∂A′
x

= e−φg2
SSgxx

N(2πα′)2|gtt|h′x√
|gtt|gxxgUU − (2πα′)2 (gxxA′2

t + gUUE2 − |gtt|h′2x )
(4.4)

By rewriting A′
t and h′x in terms of B, D and E, we have

gxxA
′
t(U)2

=
1

(2πα′)2
|gtt|D2 gUU(|gtt|gxx − (2πα′)2E2)

N
2(2πα′)2|gtt|g3

xxe
−2φg4

SS + |gtt|D2 − gxxB2
(4.5)
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|gtt|h′x(U)2

=
1

(2πα′)2
gxxB

2 gUU(|gtt|gxx − (2πα′)2E2)

N
2(2πα′)2|gtt|g3

xxe
−2φg4

SS + |gtt|D2 − gxxB2
(4.6)

The DBI action reduces to

SDBI = −N

∫
d4xdU

[
e−2φg4

SSg
5/2
xx |gtt|1/2g

1/2
UU

]
×

√√√√ (|gtt|gxx − (2πα′)2E2)

|gtt|g3
xxe

−2φg4
SS + |gtt|D2−gxxB2

N
2
(2πα′)2

(4.7)

Notice that gtt, gxx, gSS have nothing to do with the D8 branes embedding.

They carry information of D4 branes. Only gUU carries information of the

x4(U). It is positive for all U . Thus the factors outside the square root are

real for all U . In contrast, the argument of square root may change the sign

for varying U . As we will discuss below, this change in sign is the signal of a

ground state instability or decay for large E fields.

4.3 Ohm’s law: KK

This decay is captured by a non-linear form of Ohm’s law. For that, it is useful

to change variable

U = U0(1 + Z2)1/3 , (4.8)

where U0 is the coordinate of the tip of D8-D8 branes’ cigar-shaped configura-

tion, which is different from UKK in general. The range of Z is (0,∞) contrary

to U whose range is (U0,∞). Also this range can be extended to (−∞,∞) if

we consider D8 branes (−∞, 0) together with D8 branes (0,∞) in a natural

way. It enables us to deal with the ADHM instanton solution in R4 [30]. It also

makes the parity property of the meson fields explicit [28]. For completeness,

we note the following useful relations

K ≡ 1 + Z2 , U = U0K
1/3 , dU =

2U0

3

Z

K2/3
dZ , . (4.9)

53



f = 1 −
(
UKK

U0

)3
1

K
. (4.10)

From here on and for simplicity, we follow Sakai and Sugimoto [28] and choose

U0 = UKK. The DBI action then simplifies to

SDBI = −a
∫
d4xdZK1/6

√√√√ K − b
M2

KK
E2

1 + D2−B2

a2b
K−5/3

, (4.11)

where

a ≡ NcNfλ
3M4

KK

39π5
, b ≡ 36π2

4λ2M2
KK

. (4.12)

In dense hQCD baryons are sourced by BPST instantons in bulk with a size

of order 1/
√
λ. They are point-like at λ → ∞. Thus the DBI action and the

matter sources read

Ltot = LDBI + nBδ(Z)At(Z) + ñBvxδ(Z)Ax(t, Z) , (4.13)

where nB is the baryon - anti baryon density and ñB is baryon + anti baryon

density. The first source contribution is that of static BPST instantons at

Z = 0 as initially discussed in [15]. The second term is their corresponding

current with a velocity vx ∼ 1/λNc with a baryon mass MB ∼ NcλMKK . Note

that we have renormalized the Aµ field here by 1/Nc and identified the baryon

chemical potential as Aµ(∞) = µB −mB [15].

The equations of motion are

D′ = nB δ(Z) , B′ = ñBvxδ(Z) . (4.14)

Thus

D =
1

2
nBsgn(Z), B =

1

2
ñBvxsgn(Z) , (4.15)

where sgn(Z) reflects the symmetry of D8 and D8 branes (chirality). We note

that the conserved momenta D,B are odd functions of Z since the baryonic

field Aµ is an even function of Z.
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For a finite baryonic electric field E, the current contribution in (7.84) is

seen to increase linearly with time in the action. This is expected since the

static electric field pumps energy in the system. For times t ∼ MB ∼ Ncλ

the present stationary (time-independent) surface analysis is flawed. This

notwithstanding, the action variation with respect to At yields

δAtStot =

∫
dZ

[
δL

δ(∂ZAt)
∂Z(δAt) + nBδ(Z)δAt(Z)

]

=

∫
dZ

(
1

2
nBsgn(Z)∂Z(δAt)

)
+ nBδAt(0)

= nBδAt(∞) . (4.16)

where we used the on-shell condition and At(∞) = At(−∞) = µB − mB.

Note that the contribution from the source term is cancelled by the boundary

contribution of the DBI action at Z = 0. As a result the on-shell action may be

considered as a functional of At(∞) only and we may set At(0) = 0. Similarly

for Ax(t, 0) = 0,

δAtStot = ñB vxδAx(t,∞) . (4.17)

The former is the charge, while the latter is the current. At finite density Stot

plays the role of the grand potential. Thus

S̄ = −a
∫
d4xdZK1/6

√√√√ K − b
M2

KK
E2

1 +
n2

B−en2
Bv

2
x

4a2b
K−5/3

, (4.18)

on shell. For vx = E = 0 this result is consistent with our previous result i.e.

Eq.(30) in [? ] which is indeed the grand potential.

For 0 < E ≤ Ec ≡ MKK√
b

, Jx(= ñBvx) is bounded,

Jx <
√

4a2b+ n2
B , (4.19)

for S̄ to be real. For E > Ec, the numerator of (4.18) flips sign at

K∗ =
b

M2
KK

E2 , Z∗ = ±
√
bE2 − 1 . (4.20)
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We demand that this flip is compensated by the denominator for arbitrary vx.

Using Z∗ in the denominator we get

J2
x = 4a2bK5/3

∗ + n2
B

=
1

210/332π14/3
N2
fN

2
c

(
λ

MKK

)2/3

E10/3 + n2
B θ(E) . (4.21)

In the unstable vacuum, the ensuing Ohmic’s conductivity is

σ ≡ Jx
E

=
1

25/33π7/3
NcNf

(
λ

MKK

)1/3

E2/3 . (4.22)

This pair conductivity follows from quark pairs and not from baryon pairs as

it scales with NcNf . Ec is strong enough to cause deconfinement of quark

pairs. For nB 6= 0 the second contribution in (4.21) is that of the baryons

and anti baryons moving under the action of the strong electric field, with

∆v ∼ Et/MB ∼ t/Nc. Note that for E = 0, the minimum of (4.18) is for

vx = 0.

For E > Ec both the vacuum with nB = 0 and the dense baryonic state

with nB 6= 0 are unstable against pair creation of quark-antiquark states as

opposed to baryon-antibaryon states. This is clearly seen from the threshold

value Ec

Ec =
MKK√
b

=
2

27π
M2

KKλ =
54πM2

B

λN2
c

, (4.23)

with MB = 8π2κMKK and κ = λNc

216π3 [30] which is much smaller than M2
B. The

baryonic electric field is strong enough to pair create quarks with constituent

masses of order
√
λMKK

1.

4.4 Persistence Probability

The cold and dense states described by hQCD above are unstable for E > Ec,

meaning that they decay to multiparticle states that are likely time-dependent.

Following Schwinger, we will characterize this decay through its persistence

1It is interesting to note that in the BH background the thermal shifts of heavy quarks is
π
√
λT/2 with T in the unconfined phase being the analogue of MKK in the confined phase.
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probability

|〈0+|0−〉|2 = e−2ImS̄, (4.24)

where ImS̄ is the imaginary part of the action S̄ (4.18). For finite nB and

vx = 0, the action S̄ reads

S̄ = −a
∫
d4xdZ(1 + Z2)1/6

[√
Z2 + 1 − E

2

1 + N
2(1 + Z2)−5/3

−
√

Z2 + 1

1 + N
2(1 + Z2)−5/3

]
, (4.25)

with E
2 ≡ b

M2
KK
E2, N

2 ≡ n2
B

4a2b
and after regularizing the action by subtracting

the E = 0 contribution. Ec corresponds to Ec = 1. For E ≤ 1 the action S̄

is always real, but for E > 1 the action develops an imaginary part from the

integration interval (−Zc, Zc), where Zc ≡
√

E
2 − 1. Thus

ImS̄ = ±a
∫
d4x

∫ Zc

−Zc

dZ(1 + Z2)1/6

√
Z2 + 1 − E

2

1 + N
2(1 + Z2)−5/3

θ(E − 1) . (4.26)

For N = 0 the integrals unwind analytically

ImS̄ = ±aπ
∫
d4x

[
(E2 − 1) 2F1

(
−1

6
,
1

2
, 2, 1 − E

2

)
θ(E − 1)

]
. (4.27)

where 2F1 is the hypergeometric function and has the asymptotic behaviour

as follows.

2F1

(
−1

6
,
1

2
, 2, 1 − E

2

)

∼ 1 +
1

12
(E − 1) +

1

144
(E − 1)2 + · · · (E ∼ 1)

∼ Γ(2/3)√
πΓ(13/6)

E
1/3 +

2Γ(−2/3)√
πΓ(−1/6)

1

E
+ · · · (E ≫ 1) (4.28)
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The persistence function is then

|〈0+|0−〉|2 = e−a
′(ε2−1) 2F1(− 1

6
, 1
2
,2,1−ε2)θ(ε−1),

= 1 (E ≤ 1)

e−a
′[2(ε−1)+1.17(ε−1)2+··· ] (E ∼ 1)

e−a
′[0.71 ε7/3+0.70 ε+··· ] (E ≫ 1) (4.29)

with a′ ≡ aπ
∫
d4x =

NcNfλ
3M4

KK

39π4

∫
d4x, after chosing the negative sign for

decay.

4.5 Ohm’s law: BH

Since the vacuum decay under large E’s so does the coherent finite baryonic

state. But what about the finite temperature problem? As finite temperature

involves a statistical ensemble averaging, we may suggest that the unstable

ground state is statistically irrelevant and proceed to analyse the effects of a

baryonic field on the excited states (unstable by fiat) in the ensemble average.

This will be checked a posteriori below.

In the BH background there are two possible gravitational configurations:

1/ a U-shaped (chirally broken phase) and 2/ a parallell-shape (chirally sym-

metric phase). The former yields U bounded from below by U0. The com-

bination gttgxx has a positive minimum so the numerator is always positive

for sufficiently small E. The nature of the transition which is suggestive of a

metal-insulator transition [96] will be discussed elsewhere.

For high enough temperature the stable configuration is not the U-shaped

configuration but the parallel configuration which is connected to the black

hole. i.e. dx4

dU
= 0. Our intial instanton sources have now drowned into the

BH horizon. So the ensuing analysis is the same as in the D3/D7 model [90],

with the general formula of the conductivity for Dq/Dp given ((5.7) in [90]).

Here and for completeness, we compute the conductivity for the parallel D8-D8

branes set up in the BH background.

We only need to consider the positivity condition for the argument of square

root as before. As U → UT both the numerator and denominator are negative

since gtt → 0. As U → ∞ both the numerator and denominator are positive.
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So by choosing B,D,E we can choose the numerator and denominator in (4.7)

to flip sign for the same value U = U∗ [90]. For the numerator

|gtt|gxx
∣∣∣
U=U∗

= (2πα′)2E2

⇒ U∗ = (U3
T +R3(2πα′E)2)1/3 . (4.30)

Inserting this value of U∗ in the denominator yields the induced current

J2
x =

(
N

2(2πα′)2|gtt|g2
xxe

−2φg4
SS +

|gtt|
gxx

J2
t

) ∣∣∣
U=U∗

=

(
N

2(2πα′)4R6

g2
s

(
U3
T +R3(2πα′E)2

)2/3
+

(2πα′)2

U3
T

R3 + (2πα′E)2
J2
t

)
E2 ,

where Jx = B and Jt = D (= nB) are now defined as in [90]. Setting UT =
16π2

9
T 2R3, λ = gsNc yield the Ohmic conductivity for the chiral SS model

σ =
Jx
E

=

√(
4lsNfNcλT 2

27

)2

(1 + e2)2/3 +
d2

1 + e2
, (4.31)

where

e ≡ 33E

25π3T 3λls
, d ≡ 33Jt

25π3T 3λls
, (4.32)

which is consistent with the result in [90] for massless but non-chiral quarks.

The induced thermal current sets in for any E ≥ 0 (large or small) with a

conductivity σ of order NcNfλT
2ls at high temperature, which involves only

thermal pairs with zero treshold for E. It dwarfs the induced vacuum pairs by

a factor of λ2/3. The unstable vacuum state is statistically irrelevant. This is

not the case at T = 0 and/or very large baryonic densities.

4.6 Conclusions

We have extended our recent holographic analysis of the SS model at finite

density, to the case of finite temperature and finite baryonic electric field. For

E > Ec the stationary SS ground state breaks down by quark pair creation.

This phenomenon permeates both the cold and hot states of hQCD. The vac-
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uum persistence probability is derived, generalizing Schwinger’s QED result

to hQCD. At finite temperature, the baryonic electric field yields a thermal

conductivity at finite temperature and density that is a direct generalization

of Karch and Bannon’s Ohm’s law in the chiral model. We have argued that

the vacuum instability is statistically irrelevant in hot hQCD.
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Chapter 5

Baryonic Response of Dense

Matter

5.1 Introduction

Solids respond to external stress elastically through their bulk and shear mod-

ulii K and µ respectively, with almost zero dissipation. Liquids on the other

hand, follow the lore of hydrodynamics with bulk and shear viscosities ξ and η

accounting for dissipation. In contrast to the solid, the shear modulus vanishes

in the liquid. The bulk modulus does not.

This remarkable difference between solid and liquid disappears when the

stress is time-dependent. Indeed, for a stress of finite frequency ω a liquid

has a non-zero shear modulus much like the solid. In the long-wavelength

limit, the dual description of a solid or a liquid follows from the visco-elastic

equations with complex and frequency dependent elastic constants as we detail

below. In this chapter we will explore some of these ideas in the context of

the AdS/CFT correspondence by analyzing the baryonic response functions

at finite density for both D4/D8 and D3/D7 embeddings.

Hot and dense hadronic matter in QCD is difficult to track from first

principles in current lattice simulations owing to the sign problem. In large

Nc QCD baryons are solitons and a dense matter description using Skyrme’s

chiral model [78–80] was originally suggested by Skyrme and others [81]. At

large Nc and low density matter consisting of solitons crystallizes as the ratio

of potential to kinetic energy Γ = V/K ≈ N2
c /p

2
F ≫ 1 is much larger than
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1. The crystal melts at sufficiently high density with Γ ≈ N2
c /p

2
F ≈ 1, or

sufficiently high temperature with Γ ≈ Nc/T ≈ 1. QCD matter at large Nc

was recently revisited in [82].

The many-soliton problem can be simplified in the crystal limit by first

considering all solitons to be the same and second by reducing the crystal to

a single cell with boundary conditions much like the Wigner-Seitz approxima-

tion in the theory of solids. A natural way to describe the crystal topology is

through T 3 with periodic boundary conditions. A much simpler and analyti-

cally tractable approximation consists of treating each Wigner-Seitz cell as S3

with no boundary condition involved. The result is dense Skyrmion matter on

S3 [83].

At low baryonic densities holographic QCD is a crystal of instantons with

the Wigner-Seitz cell approximated by S3. The pertinent instanton is defined

on S3 × R [17]. At moderate densities chiral symmetry is restored on the

average with an n
5/3
B equation of state [17]. This homogenous (on the average)

liquid-like phase is strongly coupled and not emmenable to standard Fermi

liquid analysis.

In this chapter, we would like to follow up on the transport properties in

the homogeneous phase originally discussed in [17] using D4/D8 to contrast

them with some recent studies in [97] using D3/D7. In section 2, we recall

the bulk characteristics of the homogeneous phase in D4/D8 and suggest that

it may be identified with a strongly coupled holographic liquid prior to the

restoration of chiral symmetry. In section 3, we derive the general formulae

for the holographic currents induced by an external baryonic field in the linear

response approximation for both D4/D8 and D3/D7. In section 4 we show

that the transverse baryonic current for cold D4/D8 is saturated by medium

modified vector mesons in leading Nc in agreement with [18]. The bulk static

conductivity is zero. Large Nc D4/D8 is an insulator. In section 5, we develop

the quasi-normal mode approach for hot and dense D4/D8 and D3/D7, both

of which are conductors at large Nc. For completeness we also discuss cold

D3/D7 in light of a recent result [97]. In section 6, we suggest a unified

visco-elastic framework for interpreting gapless excitations in dense media in

both the elastic (collisionless) and hydrodynamic (collision) regimes. We argue

that cold D3/D7 exhibits such a mode at large Nc with zero bulk viscosity and
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finite shear viscosity. In section 7, we suggest that the leading 1/Nc correction

to the baryonic currents in cold D4/D8 can be extracted from an effective

baryonic theory using the Random Phase Approximation. Our conclusions

and prospects are in section 8. A number of points pertaining to transport in

dense holographic media are discussed in the Appendices.

5.2 Homogeneous dense matter

The interaction energy density ǫint, pressure P , grand potential Ω, and the

baryon chemical potential µB have been computed in [15],

ǫint ≡
∆E

V
= a

∫ ∞

−∞
dZK2/3

[√
1 +

(NcnB)2

4a2b
K−5/3 − 1

]
, (5.1)

P = −Ω

V
= a

∫ ∞

−∞
dZ K2/3


1 − 1√

1 + (NcnB)2

4a2b
K−5/3


 , (5.2)

µB = mB +Nc

∫ ∞

−∞
dZ

NcnB/4√
(ab)2K2 + bK1/3(NcnB/2)2

, (5.3)

where V is the volume and Ω is understood as a function of µB. At low

densities they translate to

ǫint ∼ 27π3

2

Nc

Nfλ

1

M2
KK

n2
B , (5.4)

P = −Ω

V
∼ 27π3

2

Nc

Nfλ

1

M2
KK

n2
B , (5.5)

µB ∼ mB + 27π3 Nc

Nfλ

1

M2
KK

nB . (5.6)

The baryonic contributions appear through the combination Nc/λNf . The

large Nc and large λ limit are not compatible in the homogeneous phase.

Compatibility with solitonic physics suggests that the large Nc limit be taken

first followed by the large λ limit, which is also consistent with holography.

This will be assumed throughout, unless specified otherwise. The homoge-

neous phase described by (5.2) breaks spontaneously chiral symmetry with

density dependent vacuum-like modes [15]. In Fig. (5.1) we sketch the various

phases of dense holographic matter at zero temperature. The low density part
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Figure 5.1: Sketch of the phases of cold D4/D8.

is inhomogeneous (solid) with spontaneously broken chiral symmetry, while

the high density phase is homogeneous (gas) with restored chiral symmetry.

Intermediate between the two is a possible liquid phase. Here we suggest that

(5.2) may capture some aspects of the liquid phase still in the spontaneously

broken phase using holography. The solid phase binds with an energy density

ǫint ≈ aM nB where aM is the Madelung constant for the pertinent crystal-

lization provided that the baryons are semiclassically quantized to account for

the pion-interaction through the mesonic cloud [19]. The gas phase is homo-

geneous with ǫint ≈ n
5/3
B and restored chiral symmetry [17]

5.2.1 Compressibility

Holographic QCD at large Nc and large λ is umcompressible. Indeed, under

small scalar or longitudinal vector stress the baryonic density nB is expected

to change locally to nB + δnB so that the constitutive equations read

MnB~̇v = −~∇p , (5.7)

∂tδnB + nB ~∇ · ~v = 0 , (5.8)

by the Newtonian equation of motion (5.7) and baryon current conservation

(5.8). The baryonic charges move with an acceleration (∂P/∂nB)/mB ≈ 1/λ

which is suppressed at large λ since mB = 8πλNc [30]. Another way to say

this is to note that (5.8) implies (∂2
t − c21∇2)δnB = 0, with the speed of the

first or thermodynamic sound c1 =
√
∂P/∂nB/mB. For the confined D4/D8
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Figure 5.2: Typical contributions to the baryonic response in D4/D8. (a)
Direct N0

c (b) Vector mesons N0
c and (c) Fermi (baryon) contributions N−1

c

configuration

c1 =




27π

8

nB
λ2Nf

∫
dZ

1

K

1
√

1 +
N2

c n
2
B

4a2b
K−5/3

3




1/2

, (5.9)

after using (5.2). The bulk modulus is K = nB∂P/∂nB ≈ n2
B(Nc/λ), with the

compressibility χ = 1/K ≈ (λ/Nc)/n
2
B. Holographic QCD is uncompressible

at large Nc.

5.3 Holographic Baryonic Currents

Baryon transport in confined D4/D8 occurs explicitly through 1/Nc effects.

Contributions to the baryonic current to order N0
c are shown in Fig.5.2. They

follow from direct (a) or vector meson (b) such as the ω meson. All density

effects in holography are suppressed at large Nc and large λ. To illustrate these

points, we streamline the dense analysis given in [15] using general notations

to extend the results to finite temperature and also other brane embeddings.

With the induced metric (2.18) and the pertinent guage fields, the general DBI

action follows as

SDBI = −N tr

∫
d4xdU e−φg2

SS

[
− g00g

3
xxgUU − g3

xxF0UF0U

−g2
xxgUU

∑

i

F0iF0i − g00g
2
xx

∑

i

FiUFiU

−g00gxxgUU
∑

i>j

FijFij − gxx
∑

i>j

FijFijFU0FU0 + · · ·
]1/2

(5.10)
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where e−φ = gs(U/R)3/4 and N ≡ T8Ω4. The D8 brane tension is T8 and Ω4 is

the volume of a unit S4. 1 The F 3 and F 5 terms cancel by symmetry. Among

the F 4 terms we only retained the relevant term for our discussion below. If we

consider the fluctuation (Aα(x
α)) around the classical configuration A0, which

is due to homogeneous matter at Z = 0, the action can be expanded as

R2/3N

2gs
(2πα′)2tr

∫
dUU5/2 1√−αγ

[
2αγ∆−1

(2πα′)2
+ 2∆(∂UA0)FU0 + ∆3FU0FU0

+∆α
∑

i

FiUFiU + ∆γ

(
R

U

)3∑

i

F0iF0i + ∆−1αγ

(
R

U

)3∑

i>j

FijFij

]
,

up to quadratic terms. Fαβ ≡ ∂αAβ − ∂βAα − i[Aα, Aβ] and

∆ ≡ 1√
1 + (2πα′)2

αγ
(A′

0)
2

. (5.11)

It is useful to change variable

U = U0(1 + Z2)1/3 , (5.12)

where U0 is the coordinate of the tip of the D8-D8 cigar-shaped configuration in

the confining background and the position of the horizon UT in the black hole

background. The range of Z is (0,∞) contrary to U whose range is (U0,∞).

Also this range can be extended to (−∞,∞) if we consider D8 branes (−∞, 0)

together with D8 branes (0,∞) in a natural way. For convenience, we note

the following useful relations

K ≡ 1 + Z2 , U = U0K
1/3 , dU =

2U0

3

Z

K2/3
dZ , f = 1 −

(
U∗
U0

)3
1

K
,

where U∗ is UT for the black hole background. For the confining background,

from here on and for simplicity, we follow Sakai and Sugimoto [? ] and choose

1We absorb 2πα′ into the gauge field for notational convenience. It will be recalled in
the final physical quantities.
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N k1 k2 k3

D4/D8con κ ≡ λNc

216π3 K K−4/3M−2
KK −1

D4/D8dec
λNcT 3

54π
K3/2
√
K−1

K−4/3(2πT )−2 −K−1
K

D3/D7
λNfNc

2(2π)4
Z3 Z−4f−1 −f

2πα′A′
0 ∆

D4/D8con
d√

b
√
K2+K1/3d2

√
1 + d2K−5/3

D4/D8dec
d√

K5/3+d2

√
1 + d2K−5/3

D3/D7 d√
Z6+d2

√
1 + d2Z−6

.

Table 5.1: Parameters of the different embeddings in (5.13). See text.

U∗ = UKK. In terms of Z the action reads

S = Ntr

∫
d4xdZk1

[
2∆A

′
0FZ0 + ∆3FZ0FZ0 + ∆k2

∑

i

F0iF0i

+∆k3

∑

i

FiZFiZ + ∆−1k2k3

∑

i>j

FijFij

]
,(5.13)

where we dropped the fluctuation independent part and the parameters (k1, k2,

k3, ∆, N) are different for each of the brane embeddings. They are summarized

in Table 1. The case D3/D7 is separatly discussed below (section 5.5.3).

We note that the dimensionless densities are d = 36π4

λ2NfM
3
KK
nB for D4/D8con,

d = 35π2

25NcNfλT 5l2s
nB for D4/D8dec, and d = (2π)3√

λNfNc
nq for D3/D7 with f = 1−Z4

H

Z4 .

This explicitly shows that the density effects are subleading at large λ and large

Nc for fixed Nf .

Now consider an abelian fluctuation in the AZ = 0 gauge

Aµ = aµ(x
0, x3, Z) + Vµ(x

0, x3) , (5.14)

where aµ vanishes at the boundary i.e. aµ(x
0, x3,∞) = 0, so that the boundary

field is simply Vµ(x
0, x3). Vµ(x

0, x3) exists for all Z as the background. 2 With

2This is equivalent to the usual set up Aµ with the boundary condition Aµ(x0, x3,∞) =
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the Fourier decomposition

aµ(Z, x
0, x3) =

∫
dωdq

(2π)2
e−iωx

0+iqx3

aµ(Z, ω, q) , (5.15)

Vµ(Z, x
0, x3) =

∫
dωdq

(2π)2
e−iωx

0+iqx3

Vµ(ω, q) , (5.16)

the quadratic action can be rewritten as 3

S = N

∫
dωdq

(2π)2
dZ
[
aLDLaL − 2fLVLaL − fLVLVL − 2gLaL

+aTDTaT − 2fTVTaT − fTVTVT

]
,

where we introduced the gauge invariant variables

Longitudinal mode : aL ≡ qa0 + ωa3, VL ≡ qV0 + ωV3 ,

Transverse mode : aT ≡ ωa1, VT ≡ ωV1 ,
(5.17)

with a2 = 0 and used Gauss constraint ∆2ωa′0 + k3qa
′
3 = 0. a2 = 0 is a

consistent choice since the transversal equation of motion decouples from the

others.

The differential operators DL/T are defined as

DL ≡ ∂Z
−k1k3∆

3

∆2ω2 + k3q2
∂Z + k1k2∆ , (5.18)

DT ≡ 1

ω2

(
∂Zk1k3∆∂Z − k1k2(∆ω

2 + ∆−1k3q
2)
)
, (5.19)

and the coefficient functions are

fL ≡ −k1k2∆ , gL ≡ k3qA
′
0

∆2ω2 + k3q2
, (5.20)

fT ≡ k1k2(∆ω
2 + ∆−1k3q

2)

ω2
. (5.21)

Vµ(x0, x3). The difference is in the equations of motion. The equation forAµ is homogeneous
but the equation for aµ is inhomogeneous and sourced by Vµ as shown in (5.22).

3For simplicity we omitted the argument of the functions. Each quadratic term is a
function of (ω, q) (first) and (−ω,−q) (second). We dropped the surface terms since they
vanish on shell when the source is explicitly present.
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The equations of motion is

DLaL = fLVL + gL , DTaT = fTVT . (5.22)

With the formal solutions

aL = D
−1
L (fLVL + gL) , aT = D

−1
T (fTVT ) , (5.23)

the on-shell action reads

S = −N
∫

dωdq

(2π)2
dZ

(
VLfL[D

−1
L (fLVL) + VL] + VL[2fLD

−1
L gL]

+gLD
−1
L gL + VTfT [D−1

T (fTVT ) + VT ]

)
. (5.24)

The induced baryonic currents follow to leading order in large Nc and large

λ as

JL(ω, q) = 2Nω

∫
dZfL[D

−1
L (fLVL + gL) + VL] , (5.25)

JT (ω, q) = 2Nω

∫
dZfT [D−1

T (fTVT ) + VT ] , (5.26)

where D
−1
L and D

−1
T are understood with the retarded prescription ω → ω +

i0. fL, fT , gL are all recorded in (5.21). The longitudinal current involves

gL independently of VL as gL is triggered by the gradient of the baryonic

profile A′
0. This is the analogue of Fick’s law (baryonic charge diffusion).

The terms involving VL,T correspond to σL,T the longitudinal and transverse

Fourier transforms of the space-time conductivities. The arguments (ω, q) are

subsumed.

5.4 Baryonic current: D4/D8: Cold

In the confined phase, the operators DL,T are hermitian modulo the retarde

prescription in frequency space. They can be diagonalized using eigenmodes

as discussed in [15]. Throughout the prescription ω → ω + i0 is subsumed.

69



5.4.1 Longitudinal Mode

The longitudinal operator (DL) is

DL ≡ ∂Z
K∆3

∆2ω2 − q2
∂Z +K−1/3∆ . (5.27)

When q = 0 or ω = 0 it is easily diagonalized, since

DL(q = 0) =
1

ω2
∂ZK∆∂Z +K−1/3∆ ,

DL(ω = 0) = − 1

q2
∂ZK∆3∂Z +K−1/3∆ . (5.28)

The Green’s function (D−1
L ) may be expanded in terms of the complete set of

eigenvalues that diagonalize

DL(q = 0)f =

(
K−1/3∆

ω2

)
λf ,

DL(ω = 0)f =

(
K−1/3∆

q2

)
λf , (5.29)

where K−1/3∆
ω2 and K−1/3∆

q2
are weight factors. Using the complete sets,

(∂ZK∆∂Z)χn = −(K−1/3∆) (λχn)
2 χn ,

(∂ZK∆3∂Z) ξn = −(K−1/3∆) (λξn)
2 ξn , (5.30)

we have

〈Z|D−1
L (q = 0)|Z ′〉 =

∑

n∈N

χn(Z)χn(Z
′)

−ω2 + (λχn)2
+
χ0(Z)χ0(Z

′)

−ω2
, (5.31)

〈Z|D−1
L (ω = 0)|Z ′〉 =

∑

n∈N

ξn(Z)ξn(Z
′)

q2 + (λξn)2
+
ξ0(Z)ξ0(Z

′)

q2
, (5.32)

which are the results of [15]. Typical behaviors of χn and ξn are shown in

Fig.(5.3).

70



−50 0 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Vector modes

Z

ψ
n(Z

)

ρ
ρ(4th)

−50 0 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Pion and Axial vector modes 

Z

ψ
n(Z

)

a
1

a
1
(4th)

pion
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For small ω, q we may write without loss of generality,

〈Z|D−1
L (ω ≈ q ≈ 0)|Z ′〉 ≈

∑

n∈2N

ϕn(Z)ϕn(Z
′)

−ω2 + c2nq
2 + (λχn)2

+
ϕ0(Z)ϕ0(Z

′)

−ω2 + c2πq
2

+
∑

n∈2N+1

ϕn(Z)ϕn(Z
′)

−ω2 + c2nq
2 + (λχn)2

. (5.33)

The first contribution is from the density dependent axial-vector mode, the

second contribution is from the density dependent pion mode (strictly speaking

its U(1) partner at large Nc), and the last contribution is from the density

dependent vector mode. The denominators are the dispersive modes, while

the numerators capture their residues. The even-odd in the labelling of the

modes translates into odd-even in the parity of ϕn(Z). The baryonic current

reads

JL = 2Nω

∫
dZK−1/3∆

[
D

−1
L (K−1/3∆VL + gL) + VL

]
. (5.34)

The Z-integration picks only the vector or even-modes of (5.31) since VL is

trivially even. The longitudinal baryonic conductivity in the confined case is

σL = 2Nω

∫
dZK−1/3∆

[
1 + D

−1
L K−1/3∆

]
. (5.35)

The longitudinal mesonic propagator D
−1
L admits the mode decomposition
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(5.33). From (5.30) it follows that

∫
dZfLχn =

1

λ2
n

∫
dZ (∂ZK∆∂Z)χn =

1

λ2
n

(K∆∂Z χn)
+∞
−∞ = 0

is a zero boundary term. The longitudinal baryonic conductivity simplifies

σL = −2Nω

∫
dZfL , (5.36)

and so does the longitudinal current. The longitudinal conductivity vanishes

at ω = 0. Confined holographic QCD is a static insulator at large Nc and large

λ in agreement with our recent analysis [18].

We now note that

cn ≡ λχn

λξn
, cπ ≡ fSπ

fTπ
=

√∫
dZK−1∆−3

∫
dZK−1∆−1

, (5.37)

where fSπ and fTπ have been derived in [15]. At high density the pion speed

vanishes as cπ ≈ 1/nB. The propagation of the axial charge stalls in very

dense matter. For small momenta q the poles develop at

ωn ≈
√

(c2nq
2 + λχn)2 ≈ λχn +

1

2

c2nq
2

λχn
, (5.38)

while for small frequencies ω

c2n(−(λξn)
2) + (λχn)

2 = 0 ⇒ c2n =

(
λχn

λξn

)2

, (5.39)

since q2
n = −(λξn)

2 from (5.32). In the confined D4/D8 embedding, the vector

and axial modes disperse through

ωn ≈ λχn +
1

2

λχn

(λξn)2
q2 , (5.40)

where λχn is the rest mass and (λξ
n)2

λχ
n

is the kinetic mass (Fig.5.4). To this

order, the imaginary parts vanish in holographic QCD [15]. Indeed, vector,

axial-vector and pionic modes are expected to be absorbed by excited and/or

recoiling baryons which are 1/Nc suppressed effects in cold and dense QCD.
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Figure 5.4: Dispersion relation for vectors (Left) and axial-vectors including
the massless pion (Right), n = 1.26n0

5.4.2 Transverse Mode

The transverse operator (DT ) is given by

DT ≡ − 1

ω2

(
∂ZK∆∂Z +K−1/3(∆ω2 − ∆−1q2)

)
. (5.41)

For q = 0 it diagonalizes trivially through

DT (q = 0) ≡ − 1

ω2
∂ZK∆∂Z −K−1/3∆ , (5.42)

The Green’s function (D−1
L ) may be expanded in terms of the complete set of

eigenvalues that diagonalize

DT (q = 0)f = −
(
K−1/3∆

ω2

)
λf , (5.43)

by using the eigenvalues

(∂ZK∆∂Z)χn = −(K−1/3∆) (λχn)
2 χn . (5.44)

The Green’s function is then expanded as

〈Z|D−1
T (q = 0)|Z ′〉 =

∑

n∈N

χn(Z)χn(Z
′)

−ω2 + (λχn)2
+
χ0(Z)χ0(Z

′)

−ω2
, (5.45)
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which is the same as D
−1
L . A rerun of the arguments for the longitudinal

current response yields

JT (ω, q) = 2Nω

∫
dZfT [D−1

T (fTVT ) + VT ] , (5.46)

where again the retarded prescription is subsumed and

fT =
K−1/3(∆ω2 − ∆−1q2)

ω2
. (5.47)

In the confined phase, the transverse conductivity follows

σT = 2Nω

∫
dZfT [1 + D

−1
T fT ] . (5.48)

Using the vector meson mode decomposition for D
−1
T (5.33) and the relation

(7.98) we can simplify the transverse conductivity

σT = σL + 2Nω

∫
dZ(fT + fL)[1 + D

−1
T (fT + fL)] , (5.49)

with

fT + fL = − q2

ω2
K−1/3∆−1 . (5.50)

The transverse conductivity is vector meson mediated as shown in Fig.5.2. For

q = 0, σT = σL and vanishes for ω → 0 in agreement with [18].

5.5 Quasi-normal mode analysis

we now turn our attention to the deconfined phase of dense holographic models

with non-hermitean or absorptive boundary conditions. For that, the retarded

prescription on the inversion of DL,T is best captured by the quasi-normal mode

analysis. The latter is enforced analytically by matching for the gapless modes

and numerically for the gapped modes. We now present the general formulas

pertinent to the longitudinal and transverse currents.
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For ω ≪ 1, q ≪ 1 the equations (5.18) and (5.19) are reduced to

(
∂Z

−k1k3∆
3

∆2ω2 + k3q2
∂Z

)
aL = 0 , (5.51)

(∂Zk1k3∆∂Z) aT = 0 . (5.52)

The general solutions are

aL(Z) = CL

∫ ∞

Z

dZ

(
ω2

−k1k3∆
+

q2

−k1∆3

)
, (5.53)

aT (Z) = CT

∫ ∞

Z

dZ

(
1

−k1k3∆

)
= aL(Z)(q → 0, ω → 1) , (5.54)

where we imposed the vanishing Dirichlet boundary condition at the boundary

Z = ∞ i.e. aL/T (∞) = 0. CL/T will be determined by imposing incoming

boundary condition at Z = 0 which corresponds to the location of matter

(confined phase) or the black hole horizon (deconfined phase).

To constrain CL/T we need to know the behavior of aL/T around Z = 0.

First, we solve the equations (5.18) and (5.19) near Z = 0 with fixed ω and

q. Second, we take the limit ω ≪ 1, q ≪ 1. ∆LaL = 0 and ∆TaT = 0 may be

written as

a′′L +

[
∆′(3k3q

2 + ω2∆2(1 − k3(1/k3)
′∆/∆′))

∆(k3q2 + ω2∆2)
+
k′1
k1

]
a′L

−k2
ω2∆2 + k3q

2

k3∆2
aL = 0 , (5.55)

a′′T +

[
(k1k3∆)′

k1k3∆

]
a′T − k2

ω2∆2 + k3q
2

k3∆2
aT = 0 . (5.56)

In this analysis the variable Z introduced in (5.12) is not convenient due to

the complicated form of ∆. To make it simpler we introduce the new variable:

z =
1

(1 + Z2)1/3
, (5.57)

which is nothing but U0/U in terms of the original coordinate in (3.26). In

this coordinate the boundary is u = 0 and the horizon or the matter location

is u = 1.
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5.5.1 D4/D8: Cold and Dense

Before analyzing the deconfined phase of D4/D8 with black-hole background

absorption, it is amusing to ask whether the D4/D8 confined background with

matter in the KK background could be also addressed with absorptive or non-

hermitean boundary conditions. After all cold matter disperses and absorbs

waves much like a black-hole. From (5.53) and (5.54) it follows that

aL = CL(ω
2aω(z) − q2aq(z)) , (5.58)

aT = CTaω(z) , (5.59)

where

aq(z) ≡
∫ z

0

dz′

√
z′

(1 + d2z′5)3

1√
1 − z′3

, (5.60)

aω(z) ≡
∫ z

0

dz′
√

z′

1 + d2z′5
1√

1 − z′3
, (5.61)

for ω, q ≪ 1. Recall that the density d is defined by 36π4

λ2NfM
3
KK
nB below (5.13).

At small densities we expand

aL(z) = CL

[
(ω2 − q2)a(0)(z) − d2

2
(ω2 − 3q2)a(1)(z)

+
3d4

8
(ω2 − 5q2)a(2)(z)

]
+ O(d6) , (5.62)

with

a(0)(z) =

∫ z

0

dz′
√

z′

1 − z′3
= −2

3

(
arcsin(

√
1 − z3) − π

2

)
,

a(1)(z) =

∫ z

0

dz′
√

z′

1 − z′3
z′5

= − 1

60

√
1 − z3(3

√
z(7 + 4z3) + 7 2F1[1/2, 5/6; 3/2; 1− z3])

+
7
√
π

120

Γ(1/6)

Γ(2/3)
,

a(2)(z) =

∫ z

0

dz′
√

z′

1 − z′3
z′10 .
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We don’t show a(2)(z) explicitly since it is long and not illuminating.

To impose the incoming boundary condition we expand the solution around

z = 1

aL(z) = CLA+ CLB
√

1 − z + O((1 − z)3/2) , (5.63)

where

A ≡ −π
3

(q2 − ω2) +
7d2

√
π(3q2 − ω2)Γ(1/6)

240Γ(2/3)

+
187d4

√
π(−5q2 + ω2)Γ(5/6)

3584Γ(4/3)
,

B ≡ (−8 + 12d2 − 15d4)q2 + (8 − 4d2 + 3d4)ω2

4
√

3
, (5.64)

On the other hand we may first solve the equation near z=1. In general

∆LaL = 0 and ∆TaT = 0 are

a′′L +

[
(5d2z4){3q2 − ω2(1 + d2z5)}

2(1 + d2z5){q2 − ω2(1 + d2z5)} − 3z2

2(1 − z3)
− 1

2z

]
a′L

−9{q2 − ω2(1 + d2z2)}
4z(1 − z3)(1 + d2z5)

aL = 0 , (5.65)

a′′T +

[
(5d2z4)

2(1 + d2z5)
− 3z2

2(1 − z3)
− 1

2z

]
a′L

−9{q2 − ω2(1 + d2z2)}
4z(1 − z3)(1 + d2z5)

aL = 0 , (5.66)

and reduce to

a′′L/T − 1

2

1

1 − z
a′L/T +

3

4

ω2 − q2

1+d2

(1 − z)
aL/T = 0 , (5.67)

near z = 1. The solutions are

aL/T = CIe
−i
√

3γ(1−z) , γ ≡ ω2 − q2

1 + d2
, (5.68)

where we imposed the incoming boundary condition at z = 1. Their expanded
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form reads

aL(z) ≈ CI − iCI
√

3γ
√

1 − z + O(1 − z) , (5.69)

γ = ω2 − q2 + q2d2 − q2d4 + O(d6) . (5.70)

A comparison of (5.63) and (5.69) yields

B + iA
√

3γ = 0 , (5.71)

and the dispersion relation is

ω = ±
[
1 − d2

2
+

3d4

8
+ O(d6)

]
q + O(d6)q2 + O(d6)q3 + O(q4) . (5.72)

The latter resums to

ω = ± 1√
1 + d2

q . (5.73)

This is consistent with the zero mode result obtained in (5.33), (5.37) and

Fig.5.4 where we also found the zero mode solution odd in Z. Interestingly

enough, the quasinormal mode analysis when applied to the confined and dense

KK background with absorptive boundary condition, it yields a massless pole

which is the pion pole with a speed cπ = 1/
√

1 + d2. Note that there is no

imaginary part. The reason can be traced back to the + (outgoing) and −
(incoming) wave assignment in (5.71), both of which solve

0 = B ± iA
√

3γ =

[
8 − 4d2 + 3d4

4
√

3

√
γ ± i

√
3

]√
γ = 0 , (5.74)

for γ = 0.

For the transverse mode we may follow the same procedure with the sub-

stitution in (5.63)

aT (z) = aL(z)(q → 0 , ω → 1) . (5.75)
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The relation (5.71) yields

ω = i

[
2

π
+

(
−1

π
+

7Γ(1/6)

40π3/2Γ(2/3)

)
d2 + O(d4)

]
+ O(q) , (5.76)

which shows that there is no massless excitation. This channel is indeed gapped

in the confined D4/D8 case as we discussed earlier for the case of reflecting

boundary conditions.

5.5.2 D4/D8: Hot and Dense

The absorptive boundary condition is more appropriate for the deconfined BH

background that we now discuss. For that, we rerun the same steps as we did

in the previous section. First we solve the equations for w ≪ 1, q ≪ 1, where

w ≡ ω
2πT

and q ≡ q
2πT

. From (5.53) and (5.54)

aL = CL(w
2aw(z) − q2aq(z)) , (5.77)

aT = CTaw(z) , (5.78)

where

aq(z) ≡
∫ z

0

dz′

√
z′

(1 + d2z′5)3
(5.79)

=
2

15
z3/2

[
3√

1 + d2z5
+ 2 2F1[3/10, 1/2; 13/10;−d2z5]

]
,

aw(z) ≡
∫ z

0

dz′
√

z′

1 + d2z′5
1

1 − z′3
. (5.80)

Recall that the density d is defined by 35π2

25λNcNfT 5l2s
nB below (5.13). To impose

the incoming boundary condition we expand aL around the horizon.

aL(1 − ǫ) = aL(1) − ǫa′L(1) + · · ·

= CLw
2aw(1) − CLw

2

3
√

1 + d2
− CLq

2aq(1) + O(ǫ) , (5.81)

where aw(1) has a logarithmic divergence and aq(1) is finite.
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In general ∆LaL = 0 and ∆TaT = 0 are

a′′L +

[
(5d2z4){3(1 − z3)q2 − w2(1 + d2z5)}

2(1 + d2z5){(1 − z3)q2 − w2(1 + d2z5)}

+
w2(1 + d2z5)

(1 − z3)q2 − w2(1 + d2z5)

3z2

1 − z3
− 1

2z

]
a′L

−9{(1 − z3)q2 − w2(1 + d2z2)}
4z(1 − z3)2(1 + d2z5)

aL = 0 ,

a′′T +

[
(5d2z4)

2(1 + d2z5)
− 3z2

(1 − z3)
− 1

2z

]
a′T

−9{(1 − z3)q2 − w2(1 + d2z2)}
4z(1 − z3)2(1 + d2z5)

aT = 0 ,

which simplify to

a′′L/T − 1

1 − z
a′L/T +

w2

4(1 − z)2
aL/T = 0 , (5.82)

near the horizon with z = 1. The incoming wave solution near the horizon is

aL/T = (1 − z)−iw/2F (z) , (5.83)

with F (z) a regular function near z = 1 or z = 1− ǫ. Assuming w ln ǫ≪ 1 we

have

ǫ−iw/2F (1 − ǫ) = F (1 − ǫ) − iw

2
ln ǫF (1 − ǫ) + · · ·

= F (1) − iw

2
ln ǫ|ǫ→0F (1) + O(ǫ) . (5.84)

By comparing the singular part of (5.81) with (5.84) we get

CL =
i3
√

1 + d2

2w
F (1) . (5.85)

By comparing the regular part of (5.81) with (5.84) we get the dispersive

retation for the longitudinal baryonic waves

1 = −iw
2

− i3aq(1)
√

1 + d2

2

q2

w
. (5.86)
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For small w and q but fixed q2/w the dispersion relation is

ω ≈ −i3
√

1 + d2

2

q2

2πT

2

15

[
3√

1 + d2
+ 2 2F1[3/10, 1/2; 13/10;−d2]

]

≈ −i q
2

2πT

(
1 +

2d2

13
− 16d4

299
+ · · ·

)
(For small d)

≈ −i q
2

2πT

(
2Γ(1/5)Γ(13/10)

5Γ(1/2)
d2/5 +

Γ(1/5)Γ(13/10)

5Γ(1/2)
d−8/5 + · · ·

)

(For large d) , (5.87)

where both the small and large baryon density limits are displayed explicitly.

The longitudinal diffusion constant is

DL ≈
√

1 + d2

2πT

[
3/5√
1 + d2

+
2

5
2F1[3/10, 1/2; 13/10;−d2]

]
. (5.88)

For zero baryon density this is D = 1/2πT . In the deconfined phase of

D4/D8 the baryonic charge diffuses whatever the density. This is expected

from baryon number conservation. The presence of the BH in the deconfined

phase overwhelms the Fermi effects.

A rerun of the analysis for the transverse baryonic current follows the

substitution

aT = aL(q → 0 ,w → 1) . (5.89)

Comparing the singular part of (5.81) and (5.84) gives

CT =
i3w

√
1 + d2

2
F (1) , (5.90)

and comparing the regular part of (5.81) and (5.84) yields

w3 = i2 . (5.91)

Thus there is no hydrodynamic pole. The transverse baryonic current in

dense and deconfined D4/D8 is still gapped. It is much like a transverse

plasmon.
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5.5.3 D3/D7: Hot and Dense

For comparison, let us consider in this case the non-chiral and non-confining

embedding with D3/D7 at finite temperature and finite density. We consider

the massless quark embedding where analytic solutions are available [98]. The

induced metric becomes simply AdS5 × S3 independent of the gauge field.

ds2 =
Z2

R2
(−fdt2 + d~x2) + f−1R

2

Z2
dZ2 +R2dΩ2

3 , f ≡ 1 − Z4
H

Z4
, (5.92)

where R = 4πgsNcα
′2 is the curvature radius. We work in units of R = 1.

ZH = πT where T is the temperature. SUGRA and SYM quantities will be

tied by α′ = 1/
√
λ with λ = 4πgsNc. With this metric, we compute the DBI

action as

SDBI = −N tr

∫
d4xdZ g

3/2
SS

[
−g00g

3
xxgZZ − g3

xxF0ZF0Z

−g2
xxgZZ

∑

i

F0iF0i − g00g
2
xx

∑

i

FiZFiZ

−g00gxxgZZ
∑

i>j

FijFij − gxx
∑

i>j

FijFijFZ0FZ0 + · · ·
]1/2

(5.93)

The result is analogous to the D4/D8 case (5.10) with three differences: 1)

N = T7Ω3; 2) there is no contribution from the dilaton; 3) g
3/2
SS appears instead

of g
4/2
SS , since the compact space is S3 not S4.

To consider finite baryon density (or chemical potential) we set the back-

ground vector U(1) field A0(Z) in bulk. Its form follows from minimizing the

DBI action (5.93):

2πα′
A

′
0 =

d√
Z6 + d2

. (5.94)

We explicitly recalled 2πα′ and d ≡ (2π)3√
λNfNc

nq [97, 98].

Following the analysis in D4/D8 above, we now consider mesonic fluctu-

ations around the density background A0. In the general form cast in (5.13)
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the quadratic action reads

S = Ntr

∫
d4xdZk1

[
∆3FZ0FZ0 + ∆k2

∑

i

F0iF0i

+∆k3

∑

i

FiZFiZ + ∆−1k2k3

∑

i>j

FijFij

]
,

where the information of the background field A0 is encoded in ∆ and

N =
λNfNc

2(2π)4
, ∆ =

√
1 + d2Z−6 ,

k1 = Z3 , k2 = Z−4f−1 , k3 = f−1, (5.95)

as in Table.5.1.

In this general form we can use (5.51)-(5.56). In terms of the variable

z = ZH

Z
, w = ω

2πT
, q ≡ q

2πT
, and d ≡ d

(πT )3
we have

aL = CL(w
2aw(z) − q2aq(z)) , (5.96)

aT = CTaw(z) , (5.97)

with

aq(z) ≡
∫ z

0

dz′
z′

√
1 + d2z′6

3 (5.98)

= z2( 2F1[3/2, 1/3; 4/3,−z6d2]) ,

aw(z) ≡
∫ z

0

dz′
z′√

1 + d2z′6
1

1 − z′4
. (5.99)

Note that the integrand in aw exhibits explicitly the BH horizon at z′ = 1

in units of temperature. At zero temperature the integrand smoothly reduces

from 1/(1 − z′4) to 1. However, the BH singularity makes the integral loga-

rithmically divergent at the horizon. As a result, the zero temperature limit

is singular and will be considered separatly next. To impose the incoming

boundary condition we expand aL around the horizon.

aL(1 − ǫ) = aL(1) − ǫa′L(1) + · · ·

= CLw
2aw(1) − CLw

2

4
√

1 + d2
− CLq

2aq(1) + O(ǫ) , (5.100)
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Alternatively, the zero mode equation (DLaL = 0) is

∂2
zaL +

[
3d2z5

(1 + d2z6)

(
3(1 − z4)q2 − w2(1 + d2z6)

(1 − z4)q2 − w2(1 + d2z6)

)

+
w2(1 + d2z6)

(1 − z4)q2 − w2(1 + d2z6)

4z3

1 − z4
− 1

z

]
∂zaL

+
4

1 − z4

(
w2

1 − z4
− q2

1 + d2z6

)
aL = 0 , (5.101)

∂2
zaT +

[
3d2z5

(1 + d2z6)
− 4z3

1 − z4
− 1

z

]
∂zaT

+
4

1 − z4

(
w2

1 − z4
− q2

1 + d2z6

)
aT = 0 , (5.102)

which reduces to

a′′L/T − 1

1 − z
a′L/T +

w2

4(1 − z)2
aL/T = 0 , (5.103)

near the horizon at z = 1. The incoming wave solution is of the form

aL/T = (1 − z)−iw/2F (z) , (5.104)

with F (z) a regular function near z = 1. For w ln ǫ≪ 1 we have

ǫ−iw/2F (1 − ǫ) = F (1 − ǫ) − iw

2
ln ǫF (1 − ǫ) + · · ·

= F (1) − iw

2
ln ǫ|ǫ→0F (1) + O(ǫ) . (5.105)

A comparison of the singular part of (5.100) and (5.105) yields

CL =
i2
√

1 + d2

w
F (1) , (5.106)

and a comparison of (5.100) and (5.105) yields

1 = −iw
2

− i2aq(1)
√

1 + d2
q2

w
. (5.107)
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For small w and q with fixed q2/w the dispersion relation follows

ω ≈ −i

√

1 +

(
d

(πT )3

)2
q2

2πT
2F1[3/2, 1/3; 4/3;−d2]

≈ −i q
2

2πT

(
1 +

1

8

(
d

(πT )3

)2

− 1

112

(
d

(πT )3

)4

+ · · ·
) (

d

(πT )3
≪ 1

)

≈ −i q
2

2πT

(
2Γ(7/6)Γ(4/3)

Γ(1/2)

(
d

(πT )3

)1/3

+
Γ(7/6)Γ(4/3)

Γ(1/2)

(
d

(πT )3

)−5/3

− · · ·
)(

d

(πT )3
≫ 1

)
. (5.108)

The longitudinal diffusion constant for hot and dense D3/D7 is

DL ≈ 1

2πT

√

1 +

(
d

(πT )3

)2

2F1[3/2, 1/3; 4/3;−d2] . (5.109)

As mentioned earlier the zero temperature limit is singular owing to the oc-

curence of the BH pole in the issuing integrals.

To analyze the transverse baryonic current 4 in the same limit of small ω, q

we follow the same procedure with the substitution in (5.100)

aT = aL(q → 0 ,w → 1) . (5.110)

A comparison of the singular part of (5.100) and (5.105) yields

CT = i2w
√

1 + d2F (1) , (5.111)

while a comparison of the regular part of (5.100) and (5.105) gives

w3 = i2 , (5.112)

which is incompatible with the limits. The transverse baryonic mode in hot

and dense D3/D7 is gapped much like the transverse plasmon in dense matter.

This reflects on the long-range nature of the transverse forces in holography.

We will comment further on this point below.

4See [99] for related work on the dispersion relation
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5.5.4 D3/D7: Cold and Dense

In a recent analysis [97] have reported the occurence of a zero sound mode in

cold D3/D7. For completeness we now rederive their results using our general

result (5.53). At zero temperature we set ZH = 0 in (5.92) and change the

variable to z = 1/Z.

For ω ≪ 1 and q ≪ 1 (5.53) gives

aL = CL(ω
2aω(z) − q2aq(z)) , (5.113)

aT = CTaω(z) , (5.114)

with

aq(z) ≡
∫ z

0

dz′
z′

√
1 + d2z′6

3 =
1

2
z2( 2F1[3/2, 1/3; 4/3;−z6d2]) ,

aω(z) ≡
∫ z

0

dz′
z′√

1 + d2z′6
=

1

2
z2( 2F1[1/2, 1/3; 4/3;−z6d2]) , (5.115)

Near the horizon aL is expanded as

aL = CLA
1

z
+ CLB + O

(
1/z2

)
, (5.116)

with

A ≡ ω2

d
, B ≡ (q2 − 3ω2)d−2/3Γ(1/3)Γ(1/6)

18Γ(1/2)
. (5.117)

On the other hand the zero mode equations DL/TaL/T = 0 are

∂2
zaL +

[
3d2z5

(1 + d2z6)

(
1 +

2q2

q2 − ω2(1 + d2z6)

)
− 1

z

]
∂zaL

+

(
ω2 − q2

1 + d2z6

)
aL = 0 ,

∂2
zaT +

[
3d2z5

(1 + d2z6)
− 1

z

]
∂zaT +

(
ω2 − q2

1 + d2z6

)
aT = 0 . (5.118)
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Near the horizon the incoming solution is

aL(z) = CI
eiwz

z
, (5.119)

and for ωz ≪ 1

aL(z) =
CI
z

+ iωCI , (5.120)

A comparison of (5.116) with (5.120) yields

Aiω = B , (5.121)

which yields the dispersion relation reported in [97]

ω = ± q√
3
− iq2

2pµ0
+ O(q3) , (5.122)

for a massless excitation. Holographic D3/D7 at arbitrarily small temperatures

is diffusive. It is not at strictly zero temperature with the occurence of a long-

range collective mode. In the next section we suggest that this is a visco-elastic

mode, and thereby generalize it to massive quarks. Any amount of temperature

(collisions) destroy the Fermi-surface at large λ and large Nc. Indeed, while

the temperature effects are of order N0
c through the underlying BH metric,

the density effects are 1/λ and 1/Nc suppressed through the NF embeddings

either D7 or D8.

Finally and for completeness we note that the transverse baryonic mode

follows also from (5.116) with the substitution

aT = aL(q → 0 , ω → 1) . (5.123)

From (5.121) we get

ω = i
d1/3Γ(1/3)Γ(1/6)

Γ(1/2)
. (5.124)

The transverse baryonic current is gapped in cold D3/D7 much like the current

is plasmon-gapped in a metal.
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Figure 5.5: Visco-elastic domain versus the free particle-hole continuum. See
text.

5.6 Visco-Elastic Analysis

The occurence of a collective mode in cold D3/D7 suggests that collectivity

through the possible occurence of a Fermi surface at strong coupling maybe

at work. To understand that, we propose to understand this collectivity by

unifying the hydrodynamical or collision regime with the elastic or collisionless

regime.

In Fig. 5.5 we show different propagating domains for a wave of frequency

ω and momentum q in liquids. The dashed curves are typical wave dispersions.

The free particle-hole continuum occupies the lower quadrant. τ is a typical

relaxation time to equilibrium, say τ ≈ 1/T (hot) and τ ≈ 1/µ (cold) for

conformal and strongly coupled theories. For waves with ωτ ≫ 1 and large

velocities compared to the Fermi velocity vF of a quasiparticle, we expect

collisionless wave propagation or elastic regime. For waves with ωτ ≪ 1 but

still large velocities compared to the Fermi velocity vF we expect collision wave

propagation or hydrodynamic regime. Typical cold media behave elastically

at low temperature and hydrodynamically at higher temperature. Thus, an

elastic mode can be turned inelastic by just raising the temperature. This

is typically what happens in liquid He3 where the zero sound transmutes to

the first or thermodynamic sound by changing its frequency or temperature

to interpolate between the collisionless and collision regimes. To understand

these regimes we now introduce a unified visco-elastic framework.
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5.6.1 Generalities

In a homogeneous and isotropic solid, the constitutive equations for the elastic

displacement field ~u(t, ~x) are discussed in the canonical book by Landau and

Lifshitz on the theory of elasticity [100]. Specifically

mB nB
∂2~u

∂t2
= (K + (1 − 2/p)µ) ~∇(~∇ · ~u) + µ∇2~u+ ~F (t, ~x) , (5.125)

where K and µ are the bulk and shear moduli, p = 3 is the dimensionality of

space, ~F is an external volume force, nB is the baryon equilibrium density and

mB is the bare baryon mass. The massless case more pertinent for D3/D7 will

be deduced by inspection below. Without loss of generality, we may write

~F (t, ~x) = nB
∂ ~A(t, ~x)

∂t
, (5.126)

which is the ’baryon electric field’. Since the transverse part of ~A induces a

’baryon magnetic field’ we expect (5.126) to also include the magnetic contri-

bution as it plays the role of the Lorentz force. Since we are interested in the

induced baryon current through ~A, the magnetic effects are second order and

will be omitted. The baryon current density is

~j(t, ~x) = nB
∂~u(t, ~x)

∂t
. (5.127)

Inserting (5.126) and (5.127) in (5.125) and taking the Fourier transforms

yield

− iω mB
~j(ω, ~q) =

(
K

nB
+

(
1 − 2

p

)
µ

nB

)
~q (~q ·~j(ω, ~q))

iω

+
µ

nB

q2

iω
~j(ω, ~q) − iω nB ~A(ω, ~q) . (5.128)

Decomposing the current j = jT + jL and the potential A = AL +AT along ~q

and transverse to ~q allows the transverse and longitudinal induced currents

~jT (ω, ~q) =
nB/mB

1 − µ
n2

B

nBq2

mBω2

~AT (ω, ~q) , (5.129)
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and

~jL(ω, ~q) =
nB/mB

1 −
(
K
n2

B
+ 2

(
1 − 1

p

)
µ
n2

B

)
nBq2

mBω2

~AL(ω, ~q) . (5.130)

jL relates directly to the induced baryon density through the local conservation

law as qjL/ω.

The response currents (5.129) and (5.130) have a direct analogy with their

counterparts in a liquid. Indeed, using hydrodynamics for the baryon current

density in a liquid we can write the analogue of (5.128). In the linear response

approximation

− iω mB
~j(ω, ~q) =

(
K

nB
− iωζ

nB
+

(
1 − 2

p

)
iωη

nB

)
~q (~q ·~j(ω, ~q))

iω

+
iωη

nB

q2

iω
~j(ω, ~q) − iω nB ~A(ω, ~q) , (5.131)

where the hydrostatic pressure term p in the Euler equation was traded with

the longitudinal baryon current through the continuity equation,

− ~∇p(ω, ~q) = −∂p
∂n

∇nB(ω, ~q) =
∂p

∂n
~q

(
~q ·~j(ω, ~q)

iω

)
, (5.132)

where η and ζ are the shear and bulk viscosities; p is the equilibrium pressure

as a function of density with K = nB∂p/∂n the bulk modulus. (5.128) is very

similar to (5.131) except for: 1/ the shear modulus in the solid becomes purely

imaginary or −iωη in the liquid; 2/ the bulk modulus acquires an imaginary

part through −iωζ in the liquid. Both imaginary parts vanish at ω = 0 making

the liquid insensitive to shear at zero frequency. This also means that their

contributions in jL,T are diffusive.

The solid and liquid visco-elastic coefficients can be described in a unified

manner through (5.129) and (5.130) by substituting

K → K(ω) = K(ω) − iωζ(ω) , (5.133)

µ→ M(ω) = µ(ω) − iωη(ω) , (5.134)

as the complex and frequency dependent bulk K and shear M visco-elastic
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coefficients. The solid has real M with a small imaginary part η (zero up to

the uncertainty principle) while the liquid has imaginary M with a small µ

and large imaginary part η. The bulk modulus K is about the same in liquid

and solid, and of the same order of magnitude as the shear viscosity η.

In light of (5.134) it follows from (5.130) and (5.129) that the longitudinal

current admits a gapless pole (compression mode) at

ω ≈
(

K

mBnB
+ 2

(
1 − 1

p

)
µ

mBnB

)1/2

q

−i
(

ζ

mBnB
+ 2

(
1 − 1

p

)
η

mBnB

)
q2

2
, (5.135)

while the transverse current admits a gapless pole (shear mode) at

ω ≈
√

µ

mBnB
q − i

η

mBnB

q2

2
. (5.136)

We see that for finite frequency waves and in the long-wavelength approxima-

tion the way a solid responds to external wave-stress is similar to the way a

liquid does. The difference is that in a solid µ ≈ K and ζ, η are small, while

in a liquid µ is close to zero and ζ, η are large. In the liquid the transverse or

shear mode becomes diffusive.

5.6.2 Cold D3/D7

D3/D7 at finite density yields a gapped transverse baryonic current and a

gapless longitudinal baryonic current [97]. The gapless longitudinal baryonic

current can be compared with the longitudinal visco-elastic mode (5.135) with

(
K

mBnB
+ 2

(
1 − 1

p

)
µ

mBnB

)1/2

⇔ 1√
p
, (5.137)

(
ζ

mBnB
+ 2

(
1 − 1

p

)
η

mBnB

)
⇔ 1

pµB
. (5.138)

The compressibility is readily tied with the equation of state for any embedding

K

mBnB
≡
(
∂P

∂ǫ

)

S

=
1

p
, (5.139)

91



since ǫ−pP = 0 in a conformal theory. 5 The energy momentum tensor is still

traceless at finite temperature and density for massless fermions. The gapless

and longitudinal baryonic mode has the speed of the first sound c1 = 1/
√
p for

zero shear modulus µ = 0 and massless quarks. For massive quarks ǫ−pP 6= 0.

For D3/D7 it follows from [98] that

ǫ =
1

4
γN(2πα′)4(µ2

q −m2
q)(3µ

2
q +m2

q) , (5.140)

P =
1

4
γN(2πα′)4(µ2

q −m2
q)

2 , (5.141)

where γ ≈ 0.363. The visco-elastic mode has a speed

c1 =

√(
∂P

∂ǫ

)

S

=

√
µ2
q −m2

q

3µ2
q −m2

q

, (5.142)

in agreement with the detailed quasi-normal mode analysis in [101].

Since the mode ω = q/
√

3 lies within the free particle-hole continuum

as shown in Fig.(5.2), it is susceptible to Landau-like damping through sin-

gle particle-hole or multi-particle-multi-hole. Again, the visco-elastic analysis

suggests that the bulk viscosity in cold D3/D7 with massless quarks is

η

nB
=

~

2(p− 1)
, (5.143)

where we used (5.158) and (5.159). In conformal theories the shear modulus

(µ = 0) and bulk viscosity are zero (ζ). For p = 3, we have η/nB = ~/4,

where ~ has been restored. This is to be compared with ~/6π argued in [102]

using the Stokes-Einstein relation and the uncertainty principle for cold and

strongly coupled Fermions.

It is worth noting that (5.143) can be rewritten as

η

nB
=

(
p

p− 1

)
~

2p
=

nFkF
NcNfnB

~

p
, (5.144)

5p is the dimensionality of space and P is pressure.
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where

nF
nB

=
NcNf

∫ kF

0
dpk

(2π)p
1
2k∫ kF

0
dpk

(2π)p

=
NcNf

2kF

p

p− 1
, (5.145)

is the ratio of the quark density at the Fermi surface normalized to the baryon

density. For massless quarks nBkF = ǫ + P with nq = NcNfnB so that in

general

η

ǫ+ P
=
nF
nq

~

p
. (5.146)

This result can generalized to finite mass by noting that at zero temperature

ǫ+P = nBµB and substituting 2k → 2
√
k2 +m2

q in nF in (5.145). Specifically,

nF
nB

=
NcNf

∫ kF

0
dpk

(2π)p
1

2
√
k2+m2

q∫ kF

0
dpk

(2π)p

=
NcNfvF

4kF
2F1(1/2, p/2; 1 + p/2;−v2

F ) ,

with vF = kF/mq. Thus

η

nB
=

(
µBvF
4kF

)
2F1(1/2, p/2; 1 + p/2;−v2

F )
~

p
. (5.147)

The visco-elastic (5.122) for massless quarks, turn to

ω = c1q − i

p

(
1 − 1

p

) (
vF
kF

2F1(1/2, p/2; 1 + p/2;−v2
F )

)
q2

4
, (5.148)

for massive quarks. c1 is the first sound speed. For D3/D7 it is explicitly given

in (5.142), while for arbitrary Dp/Dq it follows from the known equations of

state [98].

In D3/D7 any infinitesimal temperature washes out the Fermi surface, re-

sulting in a diffusive baryonic phase. Thermal collisions at strong coupling

take over the collisions through the Fermi surface however small is the tem-

perature. As noted earlier, this is the hallmark of strong coupling holography

whereby the BH contribution is of order N0
c while the Fermi contributions are

1/Nc suppressed.
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5.7 Random Phase Approximation

If cold D3/D7 exhibits collectivity at large λ and large Nc that is consistent

with a constitutive visco-elastic analysis, why the cold D4/D8 results above

are all gapped. The short answer is that in D4/D8 the baryons are solitons,

so baryonic motion with a Pauli-blocked Fermi surface is subleading in 1/Nc

as shown in Fig.(5.2). Baryons move semi-classically by quantizing the isoro-

tations and rotations both of which are 1/Nc suppressed. To estimate some

of these contributions we note that the baryons in D4/D8 are flavored instan-

tons with core sizes of order 1/
√
λ. They are heavy with mB = 8π2Ncλ. So

the semiclassical descriptive of the translational zero modes follow from the

point-like effective action

S = φ+

(
i∂t −

(−i~∇− ~V)2

2mB
− µB

)
φ− 1

2
α(φ+φ)2 + .... , (5.149)

where the repulsive interaction α = (24π4/4M2
KK)(Nc/λ) is set to repro-

duce the energy density and pressure of the holographic matter (5.2) with

p ≈ αn2
B/2. The dotted contributions involve higher derivative terms, e.g.

(φ+(−i∇ − V)/mBφ)2 which are suppressed by 1/Nc. Again, note that the

limit Nc and λ large do not commute for α. For fixed λ and large Nc the

repulsion is strong as it should, while for fixed Nc and large λ the repulsion is

weak. Here ~V is the probing baryonic vector source. In large Nc the baryons

are scalar fermions with no assigned spin to leading order in 1/Nc. Therefore

their spin degeneracy is 1.

In the RPA approximation, the zero modes in (5.149) integrate to the

effective action

SRPA(V) =
1

2
VL∆LVL +

1

2
VT∆TVT , (5.150)

with jL = ∆LVL and jT = ∆TVT for the longitudinal and transverse currents.

ω∆L,T are the longitudinal and transverse baryonic conductivities respectively.

The RPA contributions as shown in Fig.(7.1) resum to

∆L =
ΠL

1 − α q2

ω2 ΠL

, ∆T =
ΠT

1 − α̃ q2

ω2 ΠT

, (5.151)
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+

+

+ . . .

+

Figure 5.6: RPA contributions following from (5.149).

with

ΠL,T =

F∑

k

1

mB
+

F∑

k

(
kL,T
mB

)2

∆F (k + q)∆F (k) . (5.152)

The solid lines in Fig.(7.1) lie in the Fermi surface. α̃/α ≈ 1/Nc. The trans-

verse contributions follow solely from the dotted terms in (5.149). The summa-

tion is carried over the Fermi surface. ∆F is the massive and non-relativistic

fermion propagator associated to (5.149) in the presence of a Fermi surface.

The first contribution in (5.152) is from the seagull term in (5.149) and the

second contribution is from the particle-hole bubble. The londitudinal vector

response ∆L relates to the scalar density-density response function by current

conservation. Specifically, ΠL = ω2/q2Π where

Π(q) =
F∑

k

∆F (k + q)∆F (k) (5.153)

is the Lindhard function for scalar fermions. For ω, q → 0 but fixed β =

ω/q/vF it takes the form

Π(q) ≈ mBkF
2π2

(
−1 +

β

2
ln

∣∣∣∣
1 + β

1 − β

∣∣∣∣
)
− iθ(1 − |β|)mBβkF

4π
. (5.154)

The quasiparticle spectrum following from (5.153) is schematically displayed

in Fig.(5.7) with massless quasiparticles of energy ω = vF q at small k, and

free massive fermions with ω = q2/2mB away from the Fermi surface. This

description is rooted in weak coupling.
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Figure 5.7: Dispersion relations (dotted lines) for D4/D8 and D3/D7.

We note that the longitudinal current in (5.151) develop a massless poles for

strongly repulsive fermions as D4/D8. The longitudinal modes are directly tied

to the Lindhard function by current conservation. They follow from 1 = αΠ.

In particular the longitudinal sound modes is stable for β > 1 above the

quasiparticle cut (no imaginary part) with a speed (β ≫ 1)

cL = β vF ≈
√
αmBkF

3π2
vF =

√
αnB/mB = c1 , (5.155)

in agreement with the pressure p ≈ αn2
B/2 in leading order in the density.

For β > 1 the decay of the longitudinal baryonic in D4/D8 is not through

Landau-like damping.

The transverse mode follows from the pole at ω2 = α̃q2ΠT . For α̃ ≈
α∗/(Ncq

2) the transverse mode is gapped since

ΠT (q) ≈ nB
mB

+
nB

20mBβ2
− iθ(1 − |β|)3πnB

8mB
, (5.156)

for ω, q → 0 and fixed β = ω/q/vF . The transverse gap is typically ωT ≈
α∗nB/mBNc with α∗ following from a a numerical analysis of the transverse

quasi-normal modes in holography. In light of the RPA analysis, the holo-

graphic result suggests that the transverse baryonic fluctuations are long ranged

and unscreened unlike their longitudinal counterparts.
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5.8 Conclusions

We have analyzed the baryonic transport in D4/D8 (chiral) and D3/D7 (nonchi-

ral) at finite density and/or temperature. D4/D8 is a holographic model of

QCD at largeNc and large ’tHooft coupling λ. The transverse baryonic current

in D4/D8 is saturated by the medium modified vector mesons in the confined

phase with T < MKK/π. The vector spectrum is gapped since matter is un-

compressible at large Nc. Confined D4/D8 matter becomes compressible to

order 1/Nc with the occurence of a gapless longitudinal vector mode. While

1/Nc effects are difficult to assess in holography, we have provided an RPA ar-

gument for the speed of the gapless mode using an effective action for baryons

constrained by holography. D4/D8 is diffusive in the deconfined regime.

D3/D7 is diffusive at all temperatures except zero where it is visco-elastic.

This is a hallmark of holography at large Nc and large λ. Indeed, the temper-

ature effects are mediated by the BH background and leading in 1/Nc, while

the baryonic density effects are carried by the probe branes which are Nf/Nc

suppressed. At strong coupling and large Nc the thermal or collisional collision

regime is dominant. The exception is D3/D7 at zero temperature but finite

density as recently pointed by [97]. A Fermi surface (albeit strongly coupled)

maybe at work in this case that suggests a visco-elastic regime. A longitudinal

gapless mode emerges with a small width suggestive of a shear viscosity to

baryon ratio η/nB = ~/4 in cold but dense D3/D7. This mode is turned dif-

fusive by arbitrarily small temperatures at strong coupling. Our observations

extend readily to massive quarks in D3/D7.

5.9 Appendix

5.9.1 Cold Dp/Dq

It is interesting to analyze the equation of state of cold Dp/Dq embeddings.

We consider Dq probe branes whose worldvolume spans an AdSp+2 factor and

wraps the n-sphere Sn in AdS5 × S5, where p = q − n − 1. For example,

q = 5, p = 2 corresponds to D5 branes on AdS4 × S2, and q = 3, p = 1

corresponds to D3 branes on AdS3 × S1 in AdS5 × S5.

At zero temperature and for massless quarks, the pressure P and energy
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density ǫ read [97]

P = − Ω

Vp
=

1

p+ 1

α

N
1/p
q

ñ
p+1

p

B , (5.157)

µ̃B =
α

N
1/p
q

ñ
1
p

B , (5.158)

ǫ = −P + µ̃BñB =
p

p+ 1

α

N
1/p
q

ñ
p+1

p

B , (5.159)

ǫ

ǫ0
=

α

4π3/2

(
1

Γ(p/2 + 1)πNcNf

)1/p
(
λ

p+1
2

Nq

)1/p

, (5.160)

ǫ0 = 2
√
π

(
Γ(p/2)p

4NcNf

)1/p
p

p+ 1
n(p+1)/p
q , (5.161)

where ñB ≡
√
λ

2π
nq, µ̃B ≡ 2π√

λ
µq, and α ≡ Γ(1/2−1/2p)Γ(1+1/2p)

Γ(1/2)
. Nq ≡ NfTDqVn

with Vn the volume of a unit n-sphere and TDq is the Dq brane tension [98].

That is N7 = λNfNc/(2π)4, N5 =
NfNc

√
λ

2π3 , and N3 =
NfNc

π
. The ratio ǫ/ǫ0

shows the energy density in cold Dp/Dq normalized to the free Fermi energy

density:

ǫ

ǫ0
≈ λ1/p . (5.162)

For Dp/Dq ≡ (D3/D7), (D2/D5), (D1/D3) dense Dp/Dq is unbound at large

λ.

5.9.2 Fermionic Drag

Hot D3/D7

Hot D3/D7 is diffusive at all temperatures. The drag coefficient ηD is inversely

proportional to the baryonic diffusion constant Dq through the Einstein for-

mulae at strong coupling [102–105]

ηD =
T

Dq
, (5.163)
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and for slowly moving particles. In equilibrium, the diffusion constant ties

with the baryonic conductivity σq (at zero frequency and momentum)

Ξ =
< (∆N)2 >

TV3

=
σq
Dq

, (5.164)

where Ξ is the baryonic susceptibility. Thus

ηD =
Ξ

σq
T . (5.165)

The conductivity σq has been obtained using Ohm’s law in [? ] (See also

next Appendix)

σq =
NcNfT

4π

√
c6 + d2 , d ≡ 8nq√

λNcNfT 3
, (5.166)

with c ≡ cos6 θ(z∗) and z∗ ≡ 4/(π2T 2) a dynamically generated value of a

scalar profile at the BH horizon. Massless quarks correspond to θ = 0 and

infinite mass quarks to θ = π/2. Thus

ηD =
Ξ

NcNf

4π√
c6 + d2

. (5.167)

This expression expresses the drag of a quark in diffusive D3/D7 for arbitrary

mass, temperature and baryon density. When mq = 0

ηD =
Ξ

NcNf

4π√
1 + d2

=
2πT 2

√
1 + d2

, (5.168)

where Ξ =
NfNcT 2

2
[106]. When mq = ∞

ηD =
Ξ

NcNf

4π

d
=

Ξ

nq

π

2

√
λT 3 , (5.169)

where Ξ can be read off from Eq.(5.7) in [106].

Cold D3/D7

The zero temperature case is visco-elastic as we suggested earlier. In this

regime the fermionic conductivity ties to the diffusion constant by the Kubo
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formulae

σq = nFDq , (5.170)

nF = NcNf

∫
dpk

(2π)p
1

2Ek
(f(Ek) + f̄(Ek)) , (5.171)

where f is Boltzmann distribution function and Ek =
√
k2 +m2

q . This relation

follows from the relaxation time approximation in the quark probe phase space

irrespective of strong or weak coupling. Relaxation to equilibrium at strong

coupling is subsumed. For infinitesimal temperatures and for finite quark

mass [98, 107] (see also next Appendix)

σq
T

=
NcNf

4π

√
c6 + d2 . (5.172)

From (5.163) it follows that the drag is

ηD
nB

=
nF

NcNfnB

4π√
c6 + d2

. (5.173)

This is the general form of the quark drag in a cold holographic medium

(Coulomb phase) with infinitesimal temperature. We will assume it also for

T = 0 by continuity.

For mq finite (c 6= 0) and Nc, λ→ ∞ (d → 0)

ηD ≈ nF
NcNf

4π

c3
. (5.174)

When T = 0 and mq = 0(c = 1)

ηD =
2(2−p)π(1−p/2)

Γ(p/2)

µp−1
q

p− 1
, (5.175)

where we used

nF = NcNf

∫ µq

0

dpk

(2π)p
1

2k
. (5.176)
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When T = 0 and mq 6= 0(c 6= 1) and p = 3

ηD(mq)

ηD(mq = 0)
=


 µq√

µ2
q −m2

q

−
m2
q

µ2
q −m2

q

ln




1 + µq√
µ2

q−m2
q

m√
µ2

q−m2
q




 1

c3
, (5.177)

where nq =
√
m2
q + k2

F .

For mq → ∞(c = 0)

ηD ≈ nF
NcNf

4π

d
=
nF
nq

π
√
λ

2
T 3 =

1

2(p− 2)
π
√
λT 2 , (5.178)

where nq = NcNfnB and

nF
nq

=

∫
dpk 1

k2/2mq
e−k

2/2mqT

∫
dpke−k2/2mqT

=
1

p− 2

1

T
. (5.179)

For p = 3, ηD is the drag coefficient reported in [103–105].

5.9.3 Baryonic conductivity

The baryonic conductivity σq in D3/D7 has been derived by various meth-

ods [98, 107, 108]. Generically, the Kubo formulae for the conductivity is

σq = − lim
ω→0

1

ω
ImGret

xx(K)
∣∣∣
ω=|~k|

, (5.180)

where only the transverse response function contributes, as the longitudinal

part vanishes for light-like momenta by charge conservation. For a rotationally

symmetric medium, Gxx = Gyy = Gzz are the components of the jxjx, jyjy

and jzjz retarded baryonic current correlations.

Using AdS/CFT the transverse response can be extracted from (5.102),

i.e.

a′′T − u(u+ d2u(−3 + 7u2))

2(1 − u2)(1 + d2u3)
a′T +

w2u

(1 − u2)2

1 + ud2

1 + u3d2
aT = 0 , (5.181)

with u ≡ z2. The horizon(u = 1) is a regular singular point and the so-

lution behaves as aT ∼ (1 − u)±iw/2. We choose the incoming boundary
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condition(aT ∼ (1 − u)−iw/2) and extract the singularity at u = 1 by sub-

stituting

aT = (1 − u2)−iw/2F (u) . (5.182)

F (u) is regular at u = 1 and satisfies the following equation

F ′′ +
u(−4 + ud2(3 − 7u2)) + 2i(1 + u)(1 + d2u3)w

2(1 − u2)(1 + d2u3)
F ′

+
i(1 + u)(2 + d2u2(3 + 5u))w + (−1 + u+ d2u2(4 + 3u+ u2))w2

4(1 − u2)(1 + u)(1 + d2u3)
F = 0 .

In the hydrodynamic region(w ≪ 1) we may expand F (u) in terms of w

as

F = F0 + wF1 + w2F2 · · · , (5.183)

and unwind F0, F1, F2, · · · order by order. For that consider the case with

d = 0. The zeroth order equation is solved with

F ′
0 =

C

1 − u2
, (5.184)

where C is an integration constant. Regularity at u = 1 forces C = 0. So F0

is a constant. At next order we have

F ′
1 =

i

2(−1 + u2)
F0 +

C

−1 + u2
. (5.185)

Again regularity at u = 1 sets the constant C = −iF0/2. Thus

F ′
1 =

iF0

2(1 + u)
, (5.186)

which is enough unwinding of the transverse solution for the Green’s function

in the zero frequency limit needed for the Kubo formulae.

To obtain the retarded Green’s function we need the boundary action

S = lim
Z→∞

−2Ñ

∫
dωdq

(2π)2
∆k1k3

1

w2
a′T (Z,w)aT (Z,−w)

= lim
u→0

−4Ñ(πT )2

∫
dωdq

(2π)2

1

w2
a′T (u,w)aT (u,−w)

= −4Ñ(πT )2

∫
dωdq

(2π)2

1

w2
F ′(0,w)F (0,−w) ,
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where we recovered 2πα′ and Ñ ≡ N(2πα′)2 =
NcNf

2(2π)2
. The retarded Green

function is then

Gret
xx =

δ2S

δax(0,w)δax(0,−w)
=

w2δ2S

δF (0,w)δF (0,−w)

= −8Ñ(πT )2F
′(0,w)

F (0,w)
, (5.187)

and the conductivity is

σq = − lim
ω→0

1

ω
ImGret

xx(K)
∣∣∣
ω=|~k|

= 8Ñ(πT )2 lim
ω→0

1

ω
Im

(
F ′

1(0,w)w

F0
+ O(ω2)

)

=
NcNfT

4π
. (5.188)

Extending the procedure to finite density yields [107]

σq =
NcNfT

4π

√
1 + d2 , (5.189)

where d = d
(πT )3

= 8nq

NcNf

√
λT 3 , which is (5.166) with c = 1.

5.9.4 D4/D8 Deconfined phase

In this section we enforce an eigenmode analysis on the longitudinal and trans-

verse vector currents in the deconfined hot and dense D4/D8. The eigenmode

analysis parallels the one for cold and dense D4/D8 with reflective boundary

conditions at the BH horizon. No imaginary parts arise from this analysis. In

a way, in D4/D8 we may still entertain the possibility of stationary solutions

between the Left-pending and Right-pending branes to mock up existing light

bound states. Of course, this is a formal suggestion.

The longitudinal operator (DL) is

DL ≡ ∂Z

√
K(K − 1)∆3

∆2ω2 − K−1
K
q2
∂Z +

K1/6

√
K − 1

∆ . (5.190)
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When q = 0 or ω = 0 it is easily diagonalized, since

DL(q = 0) =
1

ω2
∂Z
√
K(K − 1)∆∂Z +

K1/6

√
K − 1

∆ ,

DL(ω = 0) = − 1

q2
∂Z

K3/2

√
K − 1

∆3∂Z +
K1/6

√
K − 1

∆ .

The Green’s function (D−1
L ) may be expanded in terms of the complete set of

eigenvalues that diagonalize

DL(q = 0)f =

(
K1/6

ω2
√
K − 1

∆

)
λf , (5.191)

DL(ω = 0)f =

(
K1/6

q2
√
K − 1

∆

)
λf , (5.192)

where K1/6

ω2
√
K−1

∆ and K1/6

q2
√
K−1

∆ are weight factors. Using the complete sets,

(∂Z
√
K(K − 1)∆∂Z)χn = −

(
K1/6

ω2
√
K − 1

∆

)
(λχn)

2 χn ,

(
∂Z

K3/2

√
K − 1

∆3∂Z

)
ξn = −

(
K1/6

ω2
√
K − 1

∆

)
(λξn)

2 ξn ,

we have

〈Z|D−1
L (q = 0)|Z ′〉 =

∑

n∈N

χn(Z)χn(Z
′)

−ω2 + (λχn)2
+
χ0(Z)χ0(Z

′)

ω2
, (5.193)

〈Z|D−1
L (ω = 0)|Z ′〉 =

∑

n∈N

ξn(Z)ξn(Z
′)

q2 + (λξn)2
+
ξ0(Z)ξ0(Z

′)

q2
. (5.194)

The transversal operator (DT ) is

DT ≡ − 1

ω2

(
∂Z
√
K(K − 1)∆∂Z +

K1/6

√
K − 1

(
∆ω2 − ∆−1K − 1

K
q2

))
.

When q = 0 it is easily diagonalized as

DT (q = 0) ≡ − 1

ω2
∂Z
√
K(K − 1)∆∂Z − K1/6

√
K − 1

∆ . (5.195)
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With the eigenfunctions and eigenvalues:

(∂Z
√
K(K − 1)∆∂Z) ζn = − K1/6

√
K − 1

∆ (λζn)
2 ζn ,

the Green’s function is expanded as

〈Z|D−1
T (q = 0)|Z ′〉 =

∑

n∈N

ζn(Z)ζn(Z
′)

ω2 + (λζn)2
+
ζ0(Z)ζ0(Z

′)

ω2
. (5.196)
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Chapter 6

Meson

In [28, 29] the meson spectrum and coupling was studied at zero baryon density

by analyzing the DBI action of D8-D8 branes with the fluctuating gauge field

AM . We want to extend the analysis to finite baryon density or nB 6= 0.

For this purpose we streamline in this section the construction in [28, 29] for

notational purposes and completeness. In the next two sections we add the

background U(1)V field A0 to the fluctuating gauge field AM . It will enable

us to study meson properties at finite baryon density.

In section 2, we summarize the construction of the chiral effective action

for pions, vectors and axials at zero density. In section 3, we show how this

chiral effective action is modified by the finite “charges” in bulk. A number of

meson properties are discussed as a function of the identified baryon number.

Our conclusions are in section 4. In the appendix we discuss the effective

action using vacuum mode.

6.1 Effective meson action: nB = 0

6.1.1 Mode decomposition of AM

The gauge field AM has nine components, Aµ = A1,2,3,4, Az(≡ A5), and Aα(α =

5, 6, 7, 8, the coordinates on the S4). We assume that Aα = 0, and Aµ and Az

are independent of the coordinate on S4. We further assume that AM can be
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expanded in terms of complete sets, ψn(z) and φn(z) as

Aµ(x
µ, z) =

∞∑

n=1

B(n)
µ (xµ)ψn(z) , (6.1)

Az(x
µ, z) = ϕ(0)(xµ)φ0(z) +

∞∑

n=1

ϕ(n)(xµ)φn(z) , (6.2)

where B
(n)
µ is identified with vector and axial vector mesons and ϕ(0) with pi-

ons. ϕ(n) can be absorbed into B
(n)
µ through the gauge transformation (section

6.1.2). ψn satisfies the eigenvalue equation,

−K1/3 ∂Z (K ∂Zψn) = λnψn , (6.3)

with the boundary condition ∂Zψn(0) = 0 (vector meson) or ψn(0) = 0 (axial

vector meson) at Z = 0. They are normalized by

κ

∫
dZ K−1/3ψnψm = δnm , (6.4)

where κ ≡ T̃ (2πα′)2R3 = λNc

216π3 , and (6.3) and (6.4) implies

κ

∫
dZ K(∂Zψn)(∂Zψm) = λnδnm . (6.5)

The φn(Z) are chosen such that

φn(Z) =
1√

λnMKKUKK
∂Zψn(Z) (n ≥ 1) , (6.6)

φ0(Z) =
1√

πκMkkUKK

1

K
, (6.7)

with the normalization condition:

(φm, φn) ≡ κM2
KKU

2
KK

∫
dZ K φmφn = δmn , (6.8)

which is compatible with (6.5).
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6.1.2 Effective meson action

With the gauge field Aµ(x
µ, z) and Az(x

µ, z) the DBI action of the D8-D8-

branes becomes 5-dimensional 1:

SDBI
D8-D8

= −T̃
∫
d4xdz U2

tr

√
1 + (2πα′)2

R3

2U3
FµνF µν + (2πα′)2

9

4

U

UKK

FµzF µz + [F 3] + [F 4] + [F 5] ,

(6.9)

where T̃ = Nc

216π5
MKK

α′3 , U is a function of z, and the indices are contracted

by the metric (−,+,+,+,+). [F 3], [F 4], and [F 5] are short for the terms of

F 3, F 4, and F 5 respectively. Notice that the range of z is extended from [0,∞]

to [−∞,∞] to account for both D8 and D8.

Inserting (6.1) and (6.2) into (6.9) and using the orthonomality of ψn and

φn ((6.4)∼(6.8)), we have [28, 29]

SDBI
D8-D8

∼
∫
d4x tr

[
(∂µϕ

(0))2 +

∞∑

n=1

(
1

2
(∂µB

(n)
ν − ∂νB

(n)
µ )2

+λnM
2
KK(B(n)

µ − λ−1/2
n ∂µϕ

(n))2
)]

+(interaction terms) . (6.10)

Here ϕ(0) and B
(n)
µ are interpreted as a masseless pion field and an infinite

tower of vector (or axial) vector meson fields with masses m2
n(≡ λnM

2
KK). The

lightest vector meson ρ is identified with B
(1)
µ . ϕ(n) are absorbed into B

(n)
µ .

In the expansion (6.1) and (6.2), we have implicitly assumed that the gauge

fields are zero asymptotically, i.e. AM(xµ, z) → 0 as z → ±∞. The residual

gauge transformation that does not break this condition is obtained by a gauge

function g(xµ, z) that asymptotes a constant g(xµ, z) → g± at z±∞. (g+, g−)

are interpreted as elements of the chiral symmetry group U(Nf )L × U(Nf )R

in QCD with Nf massless flavors.

1The gauge group generators ta are normalized as tr tatb = δab/2
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6.1.3 Az = 0 gauge and pion effective action

In the previous subsection we worked in the gauge AM(xµ, z) → 0 as z →
±∞. However the Az = 0 gauge can be achieved by applying the gauge

transformation AM → gAMg
−1 + g∂Mg

−1 with the gauge function

g−1(xµ, z) = P exp

{
−
∫ z

0

dz′Az(x
µ, z′)

}
. (6.11)

Then the asymptotic values of Aµ(z → ∞) do not vanish and change to

Aµ(x
µ, z) → ξ±(xµ)∂µξ

−1
± (xµ) as z → ±∞ , (6.12)

where ξ±(xµ) ≡ limz→±∞ g(xµ, z). The gauge fields can be expanded as

Aµ(x
µ, z) = ξ+(xµ)∂µξ

−1
+ (xµ)(xµ)ψ+(z) + ξ−(xµ)∂µξ

−1
− (xµ)ψ−(z)

+
∞∑

n=1

B(n)
µ (xµ)ψn(z) ,

Az(x
µ, z) = 0 , (6.13)

where ψ± is the non-normalizable zero mode of (6.3) with the appropriate

boundary condition to yield (6.12):

ψ± =
1

2
± ψ̂0 ,

ψ̂0 =
1

π
arctan(Z)

There is a residual gauge symmetry which maintains Az = 0. It is given

by the z-independent gauge transformation h(xµ),

AM (xµ, z) → h(xµ)AM(xµ, z)h−1(xµ) + h(xµ)∂Mh
−1(xµ) , (6.14)

which acts on the component fields as

ξ± → h ξ± g
−1
± , (6.15)

B(n)
µ → hB(n)

µ h−1 , (6.16)

where we considered chiral symmetry g± together. Then ξ±(xµ) are interpreted
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as the U(Nf ) valued fields ξL,R(xµ) which carry the pion degrees of freedom

in the hidden local symmetry approach . Indeed the transformation property

(6.15) is the same as that for ξL,R(xµ) if we interpret h(xµ) ∈ U(Nf ) as the

hidden local symmetry. They are related to the U(Nf ) valued pion field U(xµ)

in the chiral Lagrangian by

ξ−1
+ (xµ)ξ−(xµ) = U(xµ) ≡ e2iΠ(xµ)/fπ . (6.17)

The pion field Π(xµ) is identical to ϕ(0)(xµ) in (6.2) in leading order. A con-

venient gauge choice is

ξ−(xµ) = 1, ξ−1
+ (xµ) = U(xµ) = e2iΠ(xµ)/fπ (6.18)

which expresses the gauge fields as,

Aµ(x
µ, z) = U−1(xµ)∂µU(xµ)ψ+(z) +

∑

n≥1

B(n)
µ (xµ)ψn(z) (6.19)

In this gauge, after omitting the vector meson fields B
(n)
µ , the effective action

reduces to the Skyrme model

SDBI
D8-D8

∣∣∣
B

(n)
µ =0

=

∫
d4x

(
κM2

KK

π
tr
(
U−1∂µU

)2
+

1

32e2S
tr
[
U−1∂µU,U

−1∂νU
]2
)
, (6.20)

where e−2
S ≡ κ

∫
dz K−1/3(1 − ψ2

0)
2 and the pion decay constant fπ is fixed by

the comparison with the Skyrme model:

f 2
π ≡ 4

π
κM2

KK =
1

54π4
M2

KKλNc , (6.21)

Another gauge we will consider below is

ξ−1
+ (xµ) = ξ−(xµ) = eiΠ(xµ)/fπ . (6.22)

110



in terms of which the gauge fields are written as

Aµ(x
µ, z) = αµ(x

µ)ψ̂0(z) + βµ(x
µ) +

∞∑

n=1

B(n)
µ (xµ)ψn(z) , (6.23)

αµ(x
µ) = {ξ−1, ∂µξ} =

2i

fπ
∂µΠ + [[∂µΠ

3]] + O(Π4) ,

βµ(x
µ) =

1

2
[ξ−1, ∂µξ] =

1

2f 2
π

[Π, ∂µΠ] + O(Π4) ,

where [[∂µΠ
3]] ≡ − i

3f3
π
((∂µΠ)Π2 + Π2∂µΠ − 2Π(∂µΠ)Π).

6.2 Effective meson action: nB 6= 0

We now extend the previous analysis to finite baryon density for nB = 0.

This is achieved by adding the background U(1)V field A0 to the fluctuating

gauge field AM . Since, the vacuum modes {ψn, φn} are not mass eigenmodes

in matter, we may choose more pertinent eigenmodes in matter. Two basis

set are possible: (1) medium mass eigenmodes ψn ∼ e−imtfn(z); (2) screening

eigenmodes ψ ∼ ei
~k·~xfn(z). With this in mind, we have the following gauge

fields decomposition

A0(x
µ, z) = A0(z) +

∞∑

n=1

B
(n)
0 (xµ)ωn(z) , (6.24)

Ai(x
µ, z) =

∞∑

n=1

B
(n)
i (xµ)ψn(z) , (6.25)

Az(x
µ, z) =

∞∑

n=0

ϕ(n)(xµ)φn(z) . (6.26)

A0(z) is the background gauge field. The time component modes (ωn(z)) and

the space component (ψn(z)) are not necessarily the same as Lorentz symmetry

does not hold in the matter rest frame. Note that Fµz is modified by A0 while

Fµν is not.
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In order to compute the DBI action (6.9),

SDBI
D8-D8

= −T̃
∫
d4xdz U2

tr

√
1 + (2πα′)2

R3

2U3
FµνF µν + (2πα′)2

9

4

U

UKK
FµzF µz + [F 3] + [F 4] + [F 5] ,

we need to know FµνF
µν , FµzF

µz, [F 3], [F 4], and [F 5], which are involved in

general. To quadratic order (ignoring O((Bµ, ϕ)3)), the contributions are

greatly simplified because of: 1) cyclic property of the trace, 2) antisymmetry

of Fµ,ν , 3) parity of mode functions. Then there is no contribution from [F 3]

and [F 5]. [F 4] has important terms that will modify FµνF
µν :

[F 4] = (2πα′)4 9

8

U

UKK

(
R

U

)3

F0zF
0zFijF

ij + O((Bµ, ϕ)4) . (6.27)

Table (6.1) lists all the relevant terms, where we have introduced fij defined

as

fij ≡ ∂ivj − ∂jvi , (6.28)

with i, j = 1, 2, 3. Table (6.1) should be understood in the integral and trace

operation. We omitted some terms vanishing in those operations and rear-

ranged some terms by using the cyclicity of the trace.

In terms of the definitions on the RHS of the Table (6.1) , the action reads

SDBI
D8-D8

= −T̃
∫
d4xdz U2 tr

√
P0 + P1 , (6.29)

with

P0 ≡ 1 − (2πα′)29

4

U

UKK
β0 = 1 − bK

1
3 (∂ZA0)

2 , (6.30)

P1 ≡ (2πα′)2 R
3

2U3
(α2) + (2πα′)2 9

4

U

UKK

(β1 + β2)

+ (2πα′)49

8

R3

UKKU2
(γ2) , (6.31)

where P0 does not contain meson fields but involves the baryon density. Ex-
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FµνF
µν →

[
2∂0B

(n)
i ∂0B(m)iψnψm + 2∂iB

(n)
0 ∂jB(m)0ωnωm

−2∂0B
(n)
i ∂iB(m)0ψnψm

+(∂iB
(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)ψnψm

]
≡ α2

FµzF
µz → −(Ȧ0)

2 ≡ β0

+2Ȧ0

[
∂0ϕ(n)φn − B0(n)ω̇n + [B(n)0, ϕ(m)]ωnφm

]
≡ β1

+
[
∂0ϕ

(n)∂0ϕ(m)φnφm +B
(n)
0 B(m)0ω̇nω̇m

−2∂0ϕ
(n)B(m)0φnω̇m + ∂iϕ

(n)∂iϕ(m)φnφm

+B
(n)
i B(m)iψ̇nψ̇m − 2∂iϕ

(n)B(m)iφnψ̇m

]
≡ β2

[F 4] → fijf
ij(Ȧ0)

2ψ2
1 ≡ γ2

Table 6.1: The relevant terms in evaluating the DBI action up to quadratic
order in the fields (Bµ, ϕ). The upper dot stands for the derivative with respect
to z. The terms should be understood in the integral and trace operation.

panding the action for small fields we have

SDBI
D8-D8

= −T̃
∫
d4xdz U2 tr

[
√
P0 +

1

2

P1√
P0

− 1

8

P 2
1√
P0

3

]
+ O((Bµ, ϕ)3)

= S1 + S2 + O((Bµ, ϕ)3) , (6.32)

with

S1 ≡ −T̃
∫
d4xdz U2tr ∆−1 , (6.33)

S2 ≡ −T̃
∫
d4xdz U2tr

[
1

2
∆P1 −

1

8
∆3P 2

1

]
, (6.34)
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where the modification factor ∆(nB) is

∆(nB) ≡ 1√
P0

=
1√

1 − bK
1
3 (∂ZA0)2

=

√
1 +

n2
B

4a2b
K−5/3 .

−S0 is the grand potential discussed in section 3.1.3, and S2 will be reduced

to 2

S2 = −tr

∫
d4x

{

[∫
dZK−1/3∆ ΨnΨm

]
∂0B

(m)
i ∂0B(n)i

+

[∫
dZK−1/3∆ Ωn Ωm

]
∂iB

(n)
0 ∂iB(m)0

−
[∫

dZK−1/3∆ Ψn Ωm

]
2∂0B

(n)
i ∂iB(m)0

+

[∫
dZK−1/3∆−1ΨnΨm

]
1

2
(∂iB

(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆ ∂ZΨn∂ZΨm

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆3ΦnΦm

]
∂0ϕ

(n)∂0ϕ(m)

+

[
M2

KK

∫
dZK∆ΦnΦm

]
∂iϕ

(n)∂iϕ(m)

−
[
M2

KK

∫
dZK∆3Φn∂ZΩm

]
2∂0ϕ

(n)B(m)0

−
[
M2

KK

∫
dZK∆Φn∂ZΨm

]
2∂iϕ

(n)B(m)i

}
, (6.35)

where we defined the scaled eigenfounctions as

Ωn ≡
√
κωn , Φn ≡

√
κψn , Φn ≡

√
κUKKφn . (6.36)

2Note that the pattern: ∆, ∆−1, and ∆3. This pattern appears also when we consider
higher order terms including couplings. The origin is explained in Appendix A.
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At zero density ∆ = 1, so Φn = Ωn and the action reduces to the (6.10) by

the same mode function in (6.3) ∼ (6.8). However at finite density the eigen

modes Ωn, Ψn, and Φn cannot be determined uniquely. In other words there

is no mode decomposition which makes the action completly diagonal. So we

consider the space-like and time-like separatly: (1) AM = AM(xi, z) and (2)

AM = AM(x0, z).

6.2.1 Space-like fields AM = AM(xi, z)

First we consider time-independent gauge fields. Up to quadratic order the

action is

S2 = −tr

∫
d4x

{[∫
dZK−1/3∆ Ωn Ωm

]
∂iB

(n)
0 ∂iB(m)0

+

[∫
dZK−1/3∆−1ΨS

nΨ
S
m

]
1

2
(∂iB

(n)
j − ∂jB

(n)
i )(∂iB(m)j − ∂jB(m)i)

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆ ∂ZΨS

n∂ZΨS
m

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆ΦS

nΦ
S
m

]
∂iϕ

(n)∂iϕ(m)

−
[
M2

KK

∫
dZK∆ΦS

n∂ZΨS
m

]
2∂iϕ

(n)Bi(m)

}
, (6.37)

where we have defined the scaled eigenfunctions as

Ωn ≡
√
κωn , ΨS

n ≡
√
κψn , ΦS

n ≡
√
κUKKφn . (6.38)

To diagonalize the action we choose ΨS
n as the eigenfunction satisfying

−K1/3∆−1∂Z
(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.39)

−K1/3∆ ∂Z
(
K∆ ∂ZΨS

n

)
= λSnΨ

S
n , (6.40)
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with the normalization conditions,

∫
dZK−1/3∆ Ωn Ωm = δnm , (6.41)

∫
dZK−1/3∆−1ΨS

nΨ
S
m = δnm , (6.42)

which imply

∫
dZK∆3 ∂ZΩn ∂ZΩm = λΩ

nδnm , (6.43)
∫
dZK∆ ∂ZΨS

n∂ZΨS
m = λSnδnm . (6.44)

If we choose ΦS
n as

ΦS
n =

1

MKK

√
λSn
∂ZΨS

n (n ≥ 1) , ΦS
0 =

1

MKK

1√∫
dZ(K−1∆−1)

1

K∆
,(6.45)

then ∂iϕ
(n) (n ≥ 1) can be absorbed into B

(n)
i through the gauge transforma-

tion

B
(n)
i → B

(n)
i +

1

MKK

√
λSn
∂iϕ

(n) . (6.46)

These choices of mode functions reduces the action to

S2 = −tr

∫
d4x
{
∂iϕ

(0)∂iϕ(0)

+∂iB
(n)
0 ∂iB(n)0 +

1

2
f

(n)
ij f

(n)ij + M
q2
n B

(n)
0 B(n)0 + M

⊥ 2
n B

(n)
i B(n)i

}
,

where we have defined longitudinal screening masses M
q

n and transverse screen-

ing masses M
⊥
n as

M
q

n ≡
√
λΩ
nMKK , M

⊥
n ≡

√
λSnMKK . (6.47)
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6.2.2 Time-like fields AM = AM(x0, z)

For spacially homogeneous gauge fields the action reads

S2 = −tr

∫
d4x

{[∫
dZK−1/3∆ ΨT

nΨT
m

]
∂0B

(m)
i ∂0B(n)i

+

[
M2

KK

∫
dZK∆ ∂ZΨT

n∂ZΨT
m

]
B

(n)
i B(m)i

+

[
M2

KK

∫
dZK∆3 ∂ZΩn ∂ZΩm

]
B

(n)
0 B(m)0

+

[
M2

KK

∫
dZK∆3ΦΩ

nΦΩ
m

]
∂0ϕ

(n)∂0ϕ(m)

−
[
M2

KK

∫
dZK∆3ΦΩ

n∂ZΩm

]
2∂0ϕ

(n)B0(m)

}
, (6.48)

where we have defined the scaled eigenfunctions

Ωn ≡
√
κωn , ΨT

n ≡
√
κψn , ΦΩ

n ≡
√
κUKKφn . (6.49)

We choose ΨS
n as the eigenfunction satisfying

−K1/3∆−1∂Z
(
K∆ ∂ZΨT

n

)
= λTnΨT

n , (6.50)

−K1/3∆−1∂Z
(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.51)

with the normalization conditions,

∫
dZK−1/3∆ ΨT

nΨT
m = δnm , (6.52)

∫
dZK−1/3∆ Ωn Ωm = δnm , (6.53)

which imply

∫
dZK∆ ∂ZΨT

n∂ZΨT
m = λTndnm , (6.54)

∫
dZK∆3 ∂ZΩn ∂ZΩm = λΩ

nδnm , (6.55)
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If we choose ΦS
n as

ΦΩ
n =

1

MKK

√
λΩ
n

∂ZΨΩ
n , ΦΩ

0 =
1

MKK

1√∫
dZ(K−1∆−3)

1

K∆3
, (6.56)

then ∂0ϕ
(n) (n ≥ 1) can be absorbed into B

(n)
0 through the gauge transforma-

tion

B
(n)
0 → B

(n)
0 +

1

MKK

√
λΩ
n

∂0ϕ
(n) . (6.57)

The action is reduced to

S2 = −tr

∫
d4x
{
∂0ϕ

(n)∂0ϕ(n) + ∂0B
(n)
i ∂0B(n)i

+m2
nB

(n)
i B(n)i +M2

KKλ
Ω
nB

(n)
0 B(n)0

}
, (6.58)

where we have defined the mass

mn =
√
λTnMKK . (6.59)

6.2.3 Pion effective action

In this subsection we work in the Az = 0 gauge following the procedure in

section 6.1.3.

Time-like field (AM = AM(x0, z))

First consider the case AM = AM(x0, z). By the gauge transformation AM →
gAMg

−1 + g∂Mg
−1 with the gauge function

g−1(x0, z) = P exp

{
−
∫ z

0

dz′Az(x
0, z′)

}
, (6.60)

the gauge fields are rewritten as

A0(x
0, z) = A0(z) + ξ+(x0)∂0ξ

−1
+ (x0)ω+(z) + ξ−(x0)∂0ξ

−1
− (x0)ω−(z) ,

Ai(x
0, z) = Az(x

0, z) = 0 ,
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where we have omitted the vector mesons B
(n)
µ . The ω± are obtained as zero

mode solutions of (6.51) satisfying the boundary condition for A0(x
0, z):

ω±(z) ≡ 1

2
± 1∫

dZ(K−1∆−3)

∫ Z

0

dZ
1

K∆3
. (6.61)

By using the residual gauge symmetry h(xµ) (6.18) and (6.19) we may express

the gauge field as

A0(x
0, z) = A0 + U−1(x0)∂0U(x0)ω+(z) . (6.62)

The field strength is

Fzµ = Ȧ0 + U−1∂0Uφ̂
ω
0 (z) , Fµν = 0 , (6.63)

where

φ̂ω0 (z) ≡ ∂zω+(z) =
1

UKK

∫
dZ(K−1∆−3)

1

K∆3
. (6.64)

The action becomes

S2 = tr

∫
d4x

[
κM2

KK

1∫
dZK−1∆−3

]
(U−1∂0U)2 , (6.65)

and we identify the time-like pion decay constant fTπ as

fTπ
2

=
4κM2

KK∫
dZK−1∆−3

, (6.66)

by comparison with the Skyrme model.

Space-like field (AM = AM(xi, z))

Similarly, we consider the case AM = AM(xi, z). Using the same gauge trans-

formation we can work with the gauge fields,

Ai(x
i, z) = ξ+(xi)∂iξ

−1
+ (xi)ψS+(z) + ξ−(xi)∂iξ

−1
− (xi)ψS−(z) ,

A0(x
i, z) = A0(z) , Az(x

i, z) = 0 ,
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where ψS± are obtained as a zero mode solution of (6.42) satisfying the pertinent

boundary condition of Ai(x
i, z):

ψS±(z) ≡ 1

2
± 1∫

dZ(K−1∆−1)

∫ Z

0

dZ
1

K∆
(6.67)

Then the gauge field and the field strength in the gauge (6.18) are

A0(x
0, z) = A0 + U−1(xi)∂iU(xi)ψS+(z)

Fzµ = Ȧ0 + U−1∂iUφ̂
S
0 (z) , (6.68)

where we do not consider Fµν since we are interested in the kinetic part and

φ̂S0 (z) ≡ ∂zψ
S
+(z) =

1

UKK

∫
dZ(K−1∆−1)

1

K∆
. (6.69)

The action is

S2 = tr

∫
d4x

[
κM2

KK

1∫
dZK−1∆−1

]
(U−1∂iU)2 , (6.70)

and fSπ is identified by

fSπ
2

=
4κM2

KK∫
dZK−1∆−1

. (6.71)

6.2.4 Vector Mesons Interactions

In this section we study the interactions of the fields B
(1)
0 , B

(1)
i and ϕ(0) corre-

sponding to the lowest medium modes Ω1, Ψ1, and Φ1. For simplicity, we use

the following notation,

v0 ≡ B
(1)
0 , vi ≡ B

(1)
i , Π ≡ ϕ(0) . (6.72)

The details of the computation are relegated to Appendix A 3.

3Both in Appendix A and this section, the vector meson field is considered as anti
Hermitian. Although in Appendix A, we are working with the vacuum modes instead of
the medium modes, the conversion can be done by inspection using the formula tabulated
in Table (6.3,6.4)
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Time-like Fields AM = AM(x0, z)

S2 = tr

∫
d4x
{
− ∂0Π∂

0Π + ∂0vi∂
0vi +m2

1viv
i +M2

KKλ
Ω
1 v0v

0
}

−2gTvΠ2 v0[Π, ∂
0Π] + gTv3 2∂0vi[v

0, vi] + · · ·
}
, (6.73)

where the couplings can be read from (6.3,6.4) in Appendix A by substituting

the vacuum mode functions by the medium mode functions

gTvΠ2 =
1√
κ

∫
dZ Ω1

K∆3∫
dZ 1

K∆3

, (6.74)

gTv3 =
1√
κ

∫
dZ K−1/3Ω1(Ψ

T
1 )2∆ . (6.75)

Space-like Fields AM = AM(xi, z)

S2 = tr

∫
d4x
{
− ∂iΠ∂

iΠ + ∂iv0∂
iv0 +

1

2
fijf

ij + M
q2
1 v0v

0 + M
⊥ 2
1 viv

i

−2gSvΠ2 vi[Π, ∂
iΠ] + gSv3 2∂iv0[v

i, v0] + g̃Sv3 fij [v
i, vj] + · · ·

}
,

where the couplings can be read from (6.3,6.4) in Appendix A, again by sub-

stituting the vacuum mode functions by the medium mode functions

gSvΠ2 =
1√
κ

∫
dZ

ΨS
1

K∆∫
dZ 1

K∆

,

gSv3 =
1√
κ

∫
dZ K−1/3(Ω1)

2ΨS
1 ∆−1 ,

g̃Sv3 =
1√
κ

∫
dZ K−1/3(ΨS

1 )3∆−1 . (6.76)

Zero Density Limit

To check the current mode decomposition used in this section, we take the

zero baryon density limit. In this case, Lorentz symmetry is enforced and the
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action reads

S2 = tr

∫
d4x
{
− ∂µΠ∂

νΠ +
1

2
fµνf

µν +m2
1vµv

ν
}

−2gvΠ2 vµ[Π, ∂
µΠ] + gv3 fµν [v

µ, vν ] + · · ·
}
, (6.77)

which is the same as Eqn.(5.40) in [28] except the vΠΠ coupling. The difference

comes from the gauge choice. In [28] Az = 0 gauge is used and we chose

AM(z → ∞) → 0. Since the difference is merely a gauge choice, physics

will not be changed. However we will repeat the analysis of couplings at zero

density with (6.77), since the action in our gauge is more convenient for reading

off physical quantities. Also it is readily extendable to finite baryon density.

First we examine the KSRF relation by defining aKSRF as

aKSRF ≡ 4 g2
vΠ2 f 2

π

m2
1

∼
{

2.03 Experiment

1.3 Sakai Sugimoto model
, (6.78)

which is the same value reported in [28, 29], as expected. The universality of

the vector meson coupling can be checked by aU defined as

aU ≡ gvΠ2

gv3
∼
{

1 The universality of the vector meson coupling

0.93 Sakai Sugimoto model
,(6.79)

which is also the same value as in [28]. Notice that both relations include gvΠ2

and can be read from (6.77). In the Az = 0 gauge we should convert gvΠ2 to

avΠ2 by [28]

avΠ2 =
2gvΠ2

m2
1

. (6.80)

When we consider the field redefinition in (6.77)

vµ → vµ +
av3

2
[Π, ∂µΠ] , (6.81)

the algebraic relation (6.80) appears immediate. However when we look at the
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integral expression of gvΠ2 and avΠ2 the equivalence is obscured.

avΠ2 =
2gvΠ2

m2
1

⇔ π2

8

∫
dZK−1/3Ψ1(1 − 4ψ̂2

0)

∫
dZK(∂ZΨ1)

2 =

∫
dZK−1Ψ1 .

Next and following [28], we compare (6.77) with the action from the hidden

local symmetry approach

SH ≡ tr

∫
d4x
{
− ∂µΠ∂

νΠ +
1

2
fµνf

µν + ag2f 2
πvµv

ν
}

−ag vµ[Π, ∂µΠ] + g fµν [v
µ, vν] + · · ·

}
. (6.82)

The hidden local symmetry parameter (LHS) can be written in terms of the

D-brane effective action parameter (RHS):

g = gv3 , (6.83)

a =
2gvΠ2

g
=

2gvΠ2

gv3
, (6.84)

f 2
π =

m2
1

ag2
=

m2
1

2gv3gvΠ2

, (6.85)

where we used the first two relations to get the last. We may define the

parameter aH which quantify the difference between hidden local symmetry

approach and our model: 4

aH ≡ 2gv3gvΠ2f 2
π

m2
1

∼
{

1 Hidden local symmetry

0.72 Sakai Sugimoto model
, (6.86)

which is the same value reported in [28], as expected. aH may be interpreted

as follows. Since fπ is an input parameter the Hidden local symmetry has two

adjustable parameters, so a is not uniquely determined. It can be fixed by

(6.84) or (6.85). When these two procedures yield the same value, aU = 1.

4For a=2 the hidden local symmetry approach implies KSRF relation and the univer-
sality of the vector meson coupling. Here, we do not require this value since we want to
compare our model with the hidden local symmetry itself.
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6.2.5 Numerical results

All the numerical work reported here has been carried out for the lowest modes

vµ ≡ B
(1)
µ and Π ≡ ϕ(0) with the parameters discussed in section 3.

Mass and Screening Mass

From the previous section the meson masses (6.59) (time-like) and the screen-

ing masses (6.47) (space-like) are defined as

mn ≡
√
λTnMKK ,

M
q

n ≡
√
λΩ
nMKK , M

⊥
n ≡

√
λSnMKK , (6.87)

where λTn , λΩ
n , and λSn are determined as the eigenvalues of the following equa-

tions ((6.50),(6.51),(6.42)), respectively:

−K1/3∆−1∂Z
(
K∆ ∂ZΨT

n

)
= λTnΨT

n , (6.88)

−K1/3∆−1∂Z
(
K∆3 ∂ZΩn

)
= λΩ

nΩn , (6.89)

−K1/3∆ ∂Z
(
K∆ ∂ZΨS

n

)
= λSnΨ

S
n . (6.90)

Their dependense on the baryon density normalized to the nuclear matter

density is shown in (8.1) for the lowest eigenmode. The time-like and trans-

verse screening mass are seen to decrease midly with density. The longitudinal

screening mass increases moderatly with baryon density. The mild dependence

on the density for the SS model indicates that the vector mesons are weakly

affected by the baryon density in this version of the SS model. As the inserted

baryons are point like, at large Nc their interaction is chiefly repulsive through

ω’s as induced by D8-D8. The ω interactions with vectors and axials is mostly

anomalous (through the WZ term) and therefore small as we ignored the WZ

term.
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Figure 6.1: (a) Mass (b) Screening mass (Longitudinal mode: M
q

1(nB)/mρ(0),
Transverse mode: M

⊥
1 (nB)/mρ(0))

Pion decay constant

The pion decay constant is identified from ((6.66),(6.71)) respectively,

fTπ
2

=
4κM2

KK∫
dZK−1∆−3

,

fSπ
2

=
4κM2

KK∫
dZK−1∆−1

. (6.91)

The explicit dependence on the baryon density is shown in Fig.(6.2). Both
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Figure 6.2: Pion decay constant

the time-like and space-like pion decay constant are found to increase with the

baryon density. The increase is quadratic at small densities. Since the S-wave

pion scattering length with baryons is 1/Nc this explains the absence of a linear

term. Moreover, for point-like external baryon sources the pion-Axial-Vector
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coupling in matter at the origin of the pion decay constant involves two baryon

sources and is repulsive.

Vector Couplings and KSRF Relation

The vector couplings are identified in (6.75) and (6.76). Their overall depen-

dence on the baryon density is again mild as explained above.

vΠΠ couplings:

gTvΠ2 =
1√
κ

∫
dZ Ω1

K∆3∫
dZ 1

K∆3

,

gSvΠ2 =
1√
κ

∫
dZ

ΨS
1

K∆∫
dZ 1

K∆

,

vvv couplings:

gTv3 =
1√
κ

∫
dZ K−1/3Ω1(Ψ

T
1 )2∆

gSv3 =
1√
κ

∫
dZ K−1/3(Ω1)

2ΨS
1 ∆−1 ,

g̃Sv3 =
1√
κ

∫
dZ K−1/3(ΨS

1 )3∆−1 .
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Figure 6.3: (a) vΠΠ coupling (b) vvv coupling
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KSRF relations

In the matter rest frame Lorentz symmetry is no longer manifest. As a result,

we expect a variety of KSFR relations depending on wether time-like or space-

like parameters are used. Indeed, for instance the a-parameter at the origin

of the KSFR relations can now take 4 different forms depending on the time-

like/space-like arrangement. Specifically

aT1
KSRF ≡ 4 (gTvΠ2)2 (fTπ )2

m2
1

, aT2
KSRF ≡ 4 (gTvΠ2)2 (fTπ )2

(Mq

1)
2

aS1
KSRF ≡ 4 (gSvΠ2)2 (fSπ )2

(M⊥
1 )2

, aS2
KSRF ≡ 4 (gSvΠ2)2 (fSπ )2

(Mq

1)
2
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Figure 6.4: Generalized a-parameter

6.3 Conclusion

Using linear response theory, we have probed this dense baryonic system using

pions, vectors and axials. The point like nature of the baryons with a size of

order 1/
√
λ and the large Nc nature as noted above, causes rather mild changes

in the masses and couplings as a function of baryon density. In contrast, the

pion decay constants are found to change appreciably. The quadratic increases

at small baryon densities is mediated by omega’s. The scalar S-wave pion-

baryon scattering length is noted to vanish at large Nc, causing fπ to increase

instead of decreasing at finite density. This behaviour is unphysical.
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6.4 Appendix

6.4.1 The Effective Action Using the Vacuum Modes

Let us only consider the lightest vacuum meson modes corresponding to the

pion and ρ meson fields. This vacuum mode decomposition was studied in [?

] at zero baryon density. Here we just add A0 as obtained in section 3.1 to

the gauge field AM . Since the mode decomposition is complete, this approach

should be complementary to the one discussed in the text. It is the same as

the one we used in [? ]. As we will show, the results are overall similar to the

ones discussed in the main text regarding the density dependence.

In the gauge Az = 0 and ξ ≡ e
iΠ(xµ)

fπ (6.23), Aµ reads5

Aµ(x
µ, z) = −iA0(z) + vµ(x

µ)ψ1(z) .

+

(
2i

fπ
∂µΠ + [∂µΠ

3]

)
ψ̂0(z) +

1

2f 2
π

[Π, ∂µΠ] + O(Π4) , (6.92)

where A0 is the background field, vµ ≡ B
(1)
µ . We have set B

(n)
µ = 0 for n ≥ 2.

The corresponding field strengths are

Fµν = (∂µvν − ∂νvµ)ψ1 + [vµ, vν ]ψ
2
i

+
2i

fπ
([∂µΠ, vν ] + [vν , ∂νΠ])ψ1ψ̂0 +

1

f 2
π

[∂µΠ, ∂νΠ](1 − 4ψ̂2
0) + O((Π, vµ)

3)

Fzµ = −iȦ0 +

(
2i

fπ
∂µΠ + [[∂µΠ

3]]

)
φ̂0 + vµψ̇1 + O(Π4)

where Ȧ0 = dA0

dz
, ψ̇1 = dψ1

dz
, and

φ̂0 = ∂zψ̂0 =
1

πUKK

1

K
∼ φ0 in (6.7) (6.93)

Notice that A0 does not contribute to Fµν and affect only Fzµ.

5In this section the gauge field Aµ is treated as anti-Hermitian. A0 and Π is Hermitian
so i was introduced, while vµ is anti-Hermitian. Note that we are working in a different
gauge from Section 6.2.
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In order to compute the DBI action (6.9),

SDBI
D8-D8

= −T̃
∫
d4xdz U2

tr

√
1 − (2πα′)2

R3

2U3
FµνF µν − (2πα′)2

9

4

U

UKK
FµzF µz + [F 3] + [F 4] + [F 5] ,

we need to know FµνF
µν , FµzF

µz, [F 3], [F 4], and [F 5], which have many com-

plicated contributions. Again, we use the observations noted in the text to

simplify. Thus

[F 4] = (2πα′)49

8

U

UKK

(
R

U

)3

F0zF
0zFijF

ij + O((vµ, ϕ)4) . (6.94)

Table (6.2) lists all relevant terms. We have introduced fµν defined as

fµν ≡ ∂µvν − ∂νvµ , (6.95)

with µν = 0, 1, 2, 3 and i, j = 1, 2, 3. Table (6.2) should be understood in the

integral and trace operation. We have omitted some terms vanishing in the

operation and rearranged some terms by using the cyclicity of the trace.

In terms of the entries in the RHS of the table, the action reads

SDBI
D8-D8

= −T̃
∫
d4xdz U2 tr

√
P0 + P1 , (6.96)

with

P0 ≡ 1 − (2πα′)2 9

4

U

UKK

β0 = 1 − bK
1
3 (∂ZA0)

2 , (6.97)

P1 ≡ (2πα′)2 R
3

2U3
(α2 + α3) + (2πα′)29

4

U

UKK
(β1 + β2)

+ (2πα′)49

8

R3

UKKU2
(γ2 + γ3) . (6.98)

Again, P0 does not include meson fields and has carries the baryon density.
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FµνF
µν → fµνf

µνψ2
1 ≡ α2

2fµν [v
µ, vν ]ψ3

1 + 2
f2

π
fµν [∂

µΠ, ∂νΠ]ψ1(1 − 4ψ̂2
0) ≡ α3

FµzF
µz → (Ȧ0)

2 ≡ β0

− 4
fπ

(∂0Π)φ̂0Ȧ0 + 2iv0ψ̇1Ȧ0 ≡ β1

− 4
f2

π
(∂µΠ∂

µΠ)φ̂2
0 + vµv

µψ̇2
1 + 2i

fπ
{∂µΠ, vµ}φ̂0ψ̇1 ≡ β2

[F 4] → fijf
ij(Ȧ0)

2ψ2
1 ≡ γ2

[
2fij [v

i, vj](Ȧ0)
2ψ3

1 − 2iv0fijf
ijȦ0ψ̇1ψ

2
1

+ 2
f2

π
fij [∂

iΠ, ∂jΠ](Ȧ0)
2ψ1(1 − 4ψ̂2

0)
]

≡ γ3

Table 6.2: The relevant terms in evaluating DBI action up to third order in
the fields (Π, v). All entries are understood in the integral and trace operation.

Expanding the action by fluctuating the fields we have

SDBI
D8-D8

= −T̃
∫
d4xdz U2 tr

[
√
P0 +

1

2

P1√
P0

− 1

8

P 2
1√
P0

3 +
1

16

P 3
1√
P0

5

]
+ · · ·

= S1 + S2 + O((Π, vµ)
4) , (6.99)

with

S1 ≡ −T̃
∫
d4xdz U2tr ∆−1 , (6.100)

S2 ≡ −T̃
∫
d4xdz U2tr

[
1

2
∆P1 −

1

8
∆3P 2

1 +
1

16
∆5P 3

1

]
, (6.101)

where we defined a modification factor ∆(Q) as

∆(Q) ≡ 1√
P0

=
1√

1 − bK
1
3 (∂ZA0)2

=

√
1 +

n2
B

4a2b
K−5/3 .

Notice that −S1 is the grand potential discussed in section 3.1, and S2 will be
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reduced to the action of mesons. To accomplish it we plug (6.98) into (6.101)

and evaluate all z integrals and identify them as coefficients of each term in

the remaining 4-D action.

Let us first check which terms we have and how they are affected by finite

baryon density schematically. It can be read off from Table (6.2). At zero

density we set A0 = 0 and ∆ = 1. Then α2, α3, β2 survive. α2, β2 correspond

to the free action of Π and ρ, and α3 is the couplings of vvv, vΠΠ interaction.

At finite density all terms are enhanced by ∆,∆2,or ∆3. Furthermore there

are nontrivial modification. The free action part will be affected by γ2 and β2
1 .

(β1 itself does not contribute because the first term has odd parity in z and the

second term is traceless.) The couplings are modified by γ3. There are new

interaction terms such as v0(∂µvν−∂νvµ)2, v0vµv
µ, v0∂µΠ∂

µΠ, ∂0Π{∂µΠ, vµ},
which all vanish at zero density.

Considering all these modification we get the final form of the meson action

S2 =

∫
d4x

[
− aTΠ2tr

(
∂0Π∂

0Π
)
− aSΠ2tr

(
∂iΠ∂

iΠ
)

+ aTv2tr f0if
0i +

1

2
aSv2tr fijf

ij

+ m2
v
T
tr v0v

0 +m2
v
S
tr viv

i

+ aTv3tr
(
2f0i[v

0, vi]
)

+ aSv3tr
(
fij [v

i, vj]
)

+ aTvΠ2tr
(
2f0i[∂

0Π, ∂iΠ]
)

+ aSvΠ2tr
(
fij [∂

iΠ, ∂jΠ]
)

+ · · ·
]
,

(6.102)

where the coefficients of every term are defined in Table (6.3). At zero density

all coefficients agree with those in [28]. There are three types of modification

due to the baryon density: ∆,∆−1, and ∆3. ∆ simply comes from 1
2
∆P1 in

(6.101). Since ∆ is common to all coefficients, ∆3 and ∆−1 can be understood

as ∆ ·∆2 and ∆ ·∆−2. An enhancing factor ∆2 is due to additional contribu-

tion from β2
1 and a suppressing factor ∆−1 is from γ2, γ3, which explains the

calculational similarities in all the results.

Finally we want to mention without details, the character of the action in

the gauge AM(z → ∞) → 0 instead of Az = 0. The action is the same as
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Coefficients Definition Q = 0(∆ = 1)

aTΠ2
1
π

∫
dZK−1 ∆3 1

aSΠ2
1
π

∫
dZK−1 ∆ 1

aTv2
∫
dZ K− 1

3 Ψ2
1 ∆ 1

aSv2
∫
dZ K− 1

3 Ψ2
1 ∆−1 1

m2
v
T

M2
KK

∫
dZ K(∂ZΨ1)

2 ∆3 m2
ρ

m2
v
S

M2
KK

∫
dZ K(∂ZΨ1)

2 ∆ m2
ρ

aTv3
1√
κ

∫
dZ K− 1

3 Ψ3
1 ∆ 1√

κ
· 0.446

aSv3
1√
κ

∫
dZ K− 1

3 Ψ3
1 ∆−1 1√

κ
· 0.446

aTvΠ2
1√
κ

π
4M2

KK

∫
dZ K−1/3Ψ1(1 − 4ψ̂2

0)∆
1√
κ

π
4M2

KK
· 1.584

aSvΠ2
1√
κ

π
4M2

KK

∫
dZ K−1/3Ψ1(1 − 4ψ̂2

0)∆
−1 1√

κ
π

4M2
KK

· 1.584

Table 6.3: The definitions of the coefficients in the action (6.102). At finite
density, there are enhancing factors ∆,∆3 and a suppressing factor ∆−1.

in (6.102) except for the interaction term vΠΠ

− 2gTvΠ2 v0[Π, ∂
0Π] − 2gSvΠ2 vi[Π, ∂

iΠ] , (6.103)

where gTvΠ2 and gSvΠ2 are defined in Table(6.4).

6.4.2 Numerical results

In this section we compute the coefficients in Table (6.3,6.4) numerically. Their

physical meanings can be read off from the action (6.102). We use the same

numerical inputs as detailed in section 3.
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Coefficients Definition Q = 0(∆ = 1)

gTvΠ2

√
κM2

KKU
2
KK

∫
dZ K∆3Ψ1φ

2
0

1√
κπ

· 0.63

gSvΠ2

√
κM2

KKU
2
KK

∫
dZ K∆Ψ1φ

2
0

1√
κπ

· 0.63

Table 6.4: The definitions of the coefficients in the action (6.102). At finite
density, there are enhancing factors ∆,∆3 and a suppressing factor ∆−1.

Pion Decay Constant

The pion decay constant can be defined by the procedure of Section 6.2.3 with

the vacuum mode function.

fTπ ≡ fπ

√
aTπ2 , fSπ ≡ fπ

√
aSπ2 (6.104)

Velocity

The pion velocity and the lowest mode velocity are

vπ ≡
√
aSπ2

aTπ2

=
fSπ
fTπ

, vv ≡
√
aSv2

aTv2
(6.105)

Mass

M1 ≡
√
m2S
v

aTv2
(6.106)

Screening mass

M q

scr ≡
√
m2T
v

aTv2
, M⊥

scr ≡
√
m2S
v

aSv2
. (6.107)
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Figure 6.5: (a) Pion decay constant vs nB

n0

[ fT
π

fπ
=
√
aTπ2 ,

fS
π

fπ
=
√
aSπ2

]
, (b)

Velocity of Π and ρ (v) vs nB

n0

[
vπ ≡

√
aS

π2

aT
π2

and vv ≡
√

aS
v2
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v2

]
, (c) v mass vs

nB

n0

[
M1

mρ
≡
√

m2S
v
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v2m

2
ρ
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, (d) Screening masses vs nB

n0

[
M q
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√
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ρ
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Chapter 7

Baryon Form Factor

7.1 Introduction

Holographic QCD has provided an insightful look to a number of issues in bary-

onic physics at strong coupling λ = g2Nc and large number of colorsNc. In par-

ticular, in [12, 33] baryons are constructed from a five-dimensional Shrodinger-

like equation whereby the 5th dimension generates mass-like anomalous dimen-

sions through pertinent boundary conditions. A number of baryonic properties

have followed ranging from baryonic spectra to form factors [12, 34].

At large Nc baryons are chiral solitons in QCD. A particularly interest-

ing framework for discussing this scenario is SS model [28–30]. In SS model

(herethrough hQCD) D4 static instantons in bulk source the chiral solitons or

Skyrmions on the boundary. The instantons have a size of order 1/
√
λ and a

mass of order Ncλ in units of MKK , the Kaluza-Klein scale [28]. The static

Skyrmion is just the instanton holonomy in the Z-direction, with a larger size

of order λ0 [17].

In this chapter we would like to elaborate further on the precedent obser-

vation by explicitly constructing the pertinent electromagnetic current for a

holographic soliton following from the exact D4 instanton in bulk in a semi-

classical expansion with ~ = 1/λNc. The vector mesons are quantized using

non-rigid constraints to preserve causality. The electromagnetic current is

boundary valued as expected from the solitonic nature of the baryon as well

as the holographic principle. To order ~0 the current is entirely vector meson

dominated in overall agreement with the effective analysis in [34]. Our semi-

135



classical analysis provides a book-keeping framework for analyzing the baryons

in holographic QCD. It also clarifies a recent analysis [31].

We note that the instanton dynamics in bulk follows from the reduced DBI

action. For instantons of size 1/
√
λ, their field strengths are large and of order

λ. In a way the use of the reduced DBI action is not justified. However, since

the analysis to follow relies on semiclassics, we believe that our final results

are generic enough to hold for the exact instanton solution as well.

In section 2 we briefly go over the soliton-instanton configuration of the

Yang-Mills-Chern-Simons effective theory of the Sakai-Sugimoto model in 5

dimensions, including some generic symmetries of the instanton configuration.

In section 3 we detail our semiclassical analysis to order ~
0. In section 4 we

derive the baryon current also to order ~0, and show that it is vector meson

dominated. In section 5 we derive the electromagnetic form factor and show

that the minimum and magnetic vector couplings are tied by the solitonic

nature of the baryon to order ~0. In section 6 the electromagetic charge and

radius are worked out. While the instanton in bulk carries a size of order

1/
√
λ, its holographic image the baryon carries a size of order λ0 thanks to

the trailing vector mesons. The baryon magnetic moments and the axial form

factor are given in section 7 and 8 respectively. Our conclusions are in section

9. Some useful details can be found in the Appendices.

7.2 5D YM-CS Model

7.2.1 Action and equations of motion

In this section we review the action and its soliton solution obtained in [30]. We

start with the Yang-Mills-Chern-Simons(YM-CS) theory in a 5D curved back-

ground, which has been derived as an effective theory of Sakai-Sugimoto(SS)

model [28, 29]. The 5D Yang-Mills action is the leading terms in the 1/λ ex-

pansion of the DBI action of the D8 branes after integrating out the S4. The

5D Chern-Simons action is obtained from the Chern-Simons action of the D8

branes by integrating F4 RR flux over the S4, which is nothing but NC . The
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action reads [28, 29]

S = SYM + SCS , (7.1)

SYM = −κ
∫
d4xdZ tr

[
1

2
K−1/3

F
2
µν +M2

KKKF
2
µZ

]
, (7.2)

SCS =
Nc

24π2

∫

M4×R
ω
U(Nf )
5 (A) , (7.3)

where µ, ν = 0, 1, 2, 3 are 4D indices and the fifth(internal) coordinate Z is

dimensionless. There are three things which are inherited by the holographic

dual gravity theory: MKK, κ, and K. MKK is the Kaluza-Klein scale and we

will set MKK = 1 as our unit. κ and K are defined as

κ = λNc
1

216π3
≡ λNca , K = 1 + Z2 . (7.4)

A is the 5D U(Nf ) 1-form gauge field and Fµν and FµZ are the components

of the 2-form field strength F = dA− iA∧A. ω
U(Nf )
5 (A) is the Chern-Simons

5-form for the U(Nf ) gauge field:

ω
U(Nf )
5 (A) = tr

(
AF

2 +
i

2
A

3
F − 1

10
A

5

)
, (7.5)

Since A is U(Nf ) valued, it may be decomposed into an SU(Nf ) part(A) and

a U(1) part(Â),

A = A +
1√
2Nf

Â , F = F +
1√
2Nf

F̂ , (7.6)

where A ≡ AaT a, F ≡ F aT a and the SU(Nf ) generators T a are normalized as

tr (T aT b) =
1

2
δab . (7.7)

For Nf = 2 the action (8.46) and (8.47) are reduced to

SYM = −κ
∫
d4xdZ tr

[
1

2
K−1/3F 2

µν +KF 2
µZ

]

−κ
2

∫
d4xdZ

[
1

2
K−1/3F̂ 2

µν +KF̂ 2
µZ

]
, (7.8)
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SCS =
Nc

24π2

∫ [
3

2
ÂtrF 2 +

1

4
ÂF̂ 2 +

1

2
d

{
Â tr

(
2FA+

i

2
A3

)}]
(7.9)

=
Nc

24π2
ǫMNPQ

∫
d4xdZ

[
3

8
Â0tr (FMNFPQ) − 3

2
ÂMtr (∂0ANFPQ)

+
3

4
F̂MNtr (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ

+
3

2
∂N (ÂMtrA0FPQ)

]
+

Nc

48π2

∫
d

{
Â tr

(
2FA+

i

2
A3

)}
, (7.10)

where the SU(2) and U(1) parts are completely desentangled in the Yang-

Mills action. The ω
SU(2)
5 (A) vanishes in the CS action. The action (7.8) and

(7.9) yield the 10 coupled equations of motion, of which the D4 instanton is

a solution with topological charge 1. The coupled equations are specifically

given by

δA0 → κ
{
Dµ
(
K−1/3Fµ0

)
+DZ (KFZ0)

}

− Nc

64π2
ǫMNPQ(F̂MNFPQ) = 0 , (7.11)

δAi → κ
{
Dµ
(
K−1/3Fµi

)
+DZ (KFZi)

}

− Nc

64π2
ǫiNPQ(F̂N0FPQ + F̂PQFN0) = 0 , (7.12)

δAZ → κ {Dµ (KFµZ)} − Nc

64π2
ǫZNPQ(F̂N0FPQ + F̂PQFN0) = 0 , (7.13)

δÂ0 → κ
{
∂µ
(
K−1/3F̂µ0

)
+ ∂Z

(
KF̂Z0

)}

− Nc

64π2
ǫMNPQ

(
tr (FMNFPQ) +

1

2
F̂MN F̂PQ

)
= 0 , (7.14)

δÂi → κ
{
∂µ
(
K−1/3F̂µi

)
+ ∂Z

(
KF̂Zi

)}

− Nc

16π2
ǫiNPQ

(
tr (FN0FPQ) +

1

2
F̂N0F̂PQ

)
= 0 , (7.15)

δÂZ → κ
{
∂µ
(
KF̂µZ

)}

− Nc

16π2
ǫZNPQ

(
tr (FN0FPQ) +

1

2
F̂N0F̂PQ

)
= 0 . (7.16)

We note that δA0 and δÂ0 are constraint type equations or Gauss laws.
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7.2.2 The Instanton Solution

The exact static O(4) solution in xM space in the large λ limit is not known.

Some generic properties of this solution can be derived for large λ whatever the

curvature. Indeed, since κ ∼ λ, the instanton solution with unit topological

charge that solves (7.11-7.16) follows from the YM part only in leading order.

It has zero size at infinite λ. At finite λ the instanton size is of order 1/
√
λ.

The reason is that while the CS contribution of order λ0 is repulsive and wants

the instanton to inflate, the warping in the Z-direction of order λ0 is attractive

and wants the instanton to deflate in the Z-direction [30, 33].

For some insights to the warped instanton configuration at large λ we

follow [30] and rescale the coordinates and the U(2) gauge fields A as

xM = λ−1/2x̃M , x0 = x̃0 , AM = λ1/2
ÃM , A0 = Ã0 ,

FMN = λF̃MN , F0M = λ1/2
F̃0M , (7.17)

where M,N = 1, 2, 3, Z and xZ ≡ Z. The variables with tilde are of order of

λ0. The equations of motions of order λ are

D̃N F̃MN = 0 , (7.18)

∂̃N
̂̃
FMN = 0 , (7.19)

which yield
̂̃
AM = 0 1 for the U(1) part and the BPST instanton solution for

the SU(2) part:

ÃM = ηiMN
σi
2

2x̃N

ξ̃2 + ρ̃2
, F̃MN = ηiMN

σi
2

−4ρ̃2

(ξ̃2 + ρ̃2)2
. (7.20)

The instanton is located at the origin so ξ̃ ≡
√
~̃x

2
+ Z̃2. ηiMN is t’Hooft

symbol defined as ηijk ≡ ǫijk, and ηiMZ = δiM . At this order Ã0 and
̂̃
A0 are

not determined and there is no restriction on the size of the BPST instanton.

1For clarity we summarize our convention here. Greek indices {µ, ν} = 0, 1, 2, 3, 4,
capital latin indices {M,N,P,Q} = 1, 2, 3, 4, and small latin indices {i, j, k} = 1, 2, 3. The
fifth coordinate Z has index 4. i.e. 4 ≡ Z. The gauge field and field strength with hat are
U(1) valued and without hat they are SU(2) valued. All variables with tilde are of order of
λ0 and without tilde they behave as (8.50). We denote the classical field by the boldface.
(e.g A). A and F are understood as form without component indices.
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The equations of motion to order λ0 are

D̃2
M Ã0 = 0 , (7.21)

∂̃2
M
̂̃
A0 −

1

64π2a
ǫMNPQtr (F̃MN F̃PQ) = 0 , (7.22)

2

3
Z̃2D̃jF̃ij + 2Z̃2D̃ZF̃iZ + 2D̃0F̃0i −

1

8π2a
ǫijkZ

̂̃
A0(D̃jF̃kZ) = 0 ,(7.23)

−2Z̃2D̃iF̃iZ + 2D̃0F̃0Z − 1

8π2a
ǫijkZ

̂̃
A0(D̃kF̃ij) = 0 , (7.24)

Gauss law (7.21) and (7.22) fix Ã0 and
̂̃
A0 as

Ã0 = 0 ,
̂̃
A0 = − 1

8π2a

2ρ̃2 + ξ̃2

(ρ̃2 + ξ̃2)2
. (7.25)

To this order, the leading BPST solution together with (7.25) solve (7.23) and

(7.24) for fixed size ρ̃ of order λ0. Equivalently, this size follows from the the

minimum of the energy to order 1/λ [30]. For completeness, we note in this

section that in terms of the unrescaled variables the instanton gauge fields are

A0 = 0 , AM = ηiMN
σi
2

2xN
ξ2 + ρ2

, (7.26)

Â0 = − 1

8π2aλ

2ρ2 + ξ2

(ρ2 + ξ2)2
, ÂM = 0 , (7.27)

and the nonvanishing field strengths are

FMN = ηiMN
σi
2

−4ρ2

(ξ2 + ρ2)2
, F̂M0 =

xM (3ρ2 + ξ2)

4π2aλ(ρ2 + ξ2)3
, (7.28)

with the size ρ = ρ̃/
√
λ,

ρ2 =
1

8π2aλ

√
6

5
. (7.29)

We note that near the origin ξ ∼ 0, the field strengths are large with F ∼
1/ρ2 ∼ λ and F̂ ∼ 1/(λρ4) ∼ λ. In a way the reduced DBI action (8.47) is

not justified for such field strengths since higher powers of the field strength

contribute. For our semiclassical analysis below this does not really matter,

since an exact solution of the instanton problem with the full DBI action
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will not affect the generic nature of most results below as we noted in the

introduction.

For large Z and finite λ, the warped instanton configuration is not known.

While we do not need it for the semiclassical analysis we will detail below, some

generic properties can be inferred. Indeed, the small-Z BPST configuration

above has maximal spherical symmetry. That is that an isospin rotation is

equivalent to (minus) a space rotation, a feature that is immediately checked

through

(RA)Z = AZ(R~x) , (Rab
A
b)i = R

T
ijA

a
j (R~x) , (7.30)

with R a rigid SO(3) rotation. When semiclassically quantized, the instanton-

baryon configuration yields a tower of states with isospin matching minus

the spin. This is expected, since the holographic instanton is a Skyrmion on

the boundary with hedgehog symmetry. These symmetries can be used to

construct variationally the warped instanton configuration, a point we will

present elsewhere.

7.3 Non-rigid SemiClassical Expansion

In this section we assume that the instanton configuration A solves exactly the

equations of motion for all Z and all λ and proceed to quantize it semiclassi-

cally using ~ = 1/κ ∼ 1/λNc. For the book-keeping to work we count ρ2 of

order ~0. Since the holographic pion decay constant f 2
π ∼ κ, this is effectively

the analogue of the semiclassical 1/Nc expansion of the boundary Skyrmion,

albeit at strong λ coupling.

We now note that A exhibits exact flavor, translational and rotational zero

modes as well as soft or quasi-zero modes in the size ρ and conformal direction

Z. We will use collective coordinates to quantize them in general. While for

the electromagnetic analysis below we focus on the isorotations (minus the

spatial rotations) only, we will discuss in this section the semiclassical anlysis

in general.
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Generically, we have in the body fixed frame

AM(t, x, Z) = R(t) (AM(x−X0(t), Z − Z0(t))

+CM(t, x−X0(t), Z − Z0(t))) , (7.31)

with ρ = ρ(t). The classical part transforms inhomogeneously under flavor

gauge transformation, while the quantum part transforms homogeneously. The

fluctuations C are quantum and of order
√

~ (see below). The isoration R is an

SO(3) matrix which is the adjoint representation of the SU(2) flavor group. Its

generators are real (GB)ab = ǫaBb. To order ~
0 the constrained field Â0 remains

unchanged, while the constrained field A0 = 0 shifts by a time-dependent zero

mode as detailed in Appendix A. The collective coordinates R, X0, Z0, ρ and

the fluctuations C in (7.31) form a redundant set. Indeed, the true zero modes

δBRAM = GB
AM , δiAM = ∇i

AM , (7.32)

and the quasi-zero or soft modes are

δZA = ∂ZA , δρAM = ∂ρAM , (7.33)

modulo gauge transformations. All the analysis to follow will be carried to

order ~0. To avoid double counting, we need to orthogonalize (gauge fix) the

vector fluctuations C from (7.32-7.33) though pertinent constraints. In the

rigid quantization, the exact zero modes are removed from the spectrum of C.

For example, the isorotations are removed by the constraint

∫
dξ C GB

AM , (7.34)

and similarly for the translations. For an application to chiral baryons of this

method we refer to [112]. This constraint violates causality as the fluctuation

orthogonalizes instantaneously to an infinitesimal isorotation throughout the

instanton body. A causal semiclassical quantization scheme has been discussed

in [113]. Here, it means that for instance (7.34) should only be enforced at the
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Figure 7.1: The Z-mode in the non-rigid gauge vs ∂ZAi.

location of the instanton, i.e.

∫

x=Z=0

dξ̂C GB
AM . (7.35)

For Z and ρ the non-rigid constraints are more natural to implement since

these modes are only soft near the origin at large λ. The vector fluctuations

at the origin linearize through the modes

d2ψn/dZ
2 = λnψn , (7.36)

with ψn(Z) ∼ e−
√
λnZ . In the spin-isospin 1 channel they are easily confused

with ∂ZAi near the origin as we show in Fig.(7.1). Using the non-rigid con-

straint, the double counting is removed by removing the origin from the vector

mode functions

ψ′
n(Z) = θ(|Z| − Zc)ψn(Z) , (7.37)

with ZC ∼ ρ ∼ 1/
√
λ which becomes the origin for large λ. In the non-

rigid semiclassical framework, the baryon at small ξ < |ZC| is described by an

instanton located at the origin of R4 and rattling in the vicinity of ZC . At large

ξ > |ZC|, the rattling instanton sources the vector meson fields described by a

semi-classical expansion with non-rigid Dirac constraints. Changes in Zc (the

core boundary) are reabsorbed by a residual gauge transformation on the core

instanton. This is a holographic realization of the Cheshire cat principle [114]
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where Zc plays the role of the Cheshire cat smile.

For simplicity, and throughout the semiclassical expansion we will ignore

the translational zero modes. Also for simplicity, the expansion will not rely

on the Dirac constraint of the isorotations since to order ~0 their contribution

does not arise in the electromagnetic current. A similar observation was made

in the Skyrme model where pion-baryon couplings are found to be leading and

time-like [113, 115]. At order ~ and higher the Dirac constraints matter. The

constraint on the Z-mode is implemented by ZC throughout.

To order ~0 the semiclassical expansion will be carried out covariantly in

the action formalism, whereby Gauss law is unfolded for both Â0 and A0

as detailed in Appendix A. To this order there is no difference between the

canonical Hamiltonian formalism, with the advantage of manifest covariance

for the derived flavor currents.

Having said this, we now use the gauge field decomposition presented in [29]

for the non-rigid semiclassical expansion and refer to this work for further

references. Specifically,

Aµ = Aµ + Cµ , Cµ ≡ vnµψ2n−1 + anµψ2n + Vµ + A µψ0 , (7.38)

AZ = AZ + CZ , CZ ≡ −iΠφ0 , (7.39)

Âµ = Âµ + Ĉµ , Ĉµ ≡ v̂nµψ2n−1 + ânµψ2n + V̂µ + Â µψ0 , (7.40)

ÂZ = ÂZ + ĈZ , ĈZ ≡ −iΠ̂φ0 , (7.41)

where {A, Â} refer to the instanton configuration and {C, Ĉ} to the vector

meson fluctuations. The R rotation is subsumed. {vn, v̂n}, {an, ân}, and

{Π, Π̂} are the vector mesons, the axial vector mesons and the pions respec-

tively. {V, V̂} is the vector source and {A , Â } is the axial vector source.

Theses meson and source fields are all functions of xµ. They are attached

to the mode functions {ψ, φ} in bulk which are functions of Z as expounded

in [29]:

−K1/3∂Z(K∂Zψn) = m2
vnψn , κ

∫
dZK−1/3ψnψm = δnm , (7.42)

αvn ≡ κ

∫
dZK−1/3ψ2n−1 , αan ≡ κ

∫
dZK−1/3ψ2nψ0 , (7.43)

ψ0 ≡
2

π
arctanZ , φ0 ≡

1√
πκK

. (7.44)
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With the gauge field (7.38)-(7.41) the SU(2) YM action reads

SYM = −κ
2

∫
d4xdZ

[
∂Z
(
2KF̂ZµĈ

µ
)

+
1

2
K−1/3

(
∂µĈν − ∂νĈµ

)2

+K
(
∂ZĈµ − ∂µĈZ

)2
]
, (7.45)

−κ
∫
d4xdZtr

[
∂Z (2KFZνC

ν)

+
1

2
K−1/3

{
2Fµν [C

µ, Cν ] +
(
DµCν − DνCµ − i[Cµ, Cν ]

)2
}

+K

{
2FZµ[C

Z , Cµ] +
(
DZCµ − DµCZ − i[CZ , Cµ]

)2
}]

,(7.46)

where Dα is the covariant derivative with the slowly rotating instanton in flavor

space: Dα∗ = ∂α − i[Aα, ∗]. We dropped the leading and pure instanton part

for convenience. Some details regarding the expansion including the CS part

are briefly given in Appendix.

All the linear terms to {C, Ĉ} except the boundary terms in the YM and

CS action vanish due to the equations of motion. There is no coupling in bulk

between the vector mesons and the instanton configuration except through

boundary terms and/or time derivatives. This is the hallmark of solitons.

While it apparently looks different from the effective and holographic descrip-

tion presented in [33, 34] as couplings are involved in bulk, we will show below

that the results are indeed similar for the electromagnetic form factors to order

~0. Below, we will explain why the similarity.

We note that without the instanton {A, Â}, the action reduces to the one

in [29], where the vector meson dominance (VMD) of the pion form factor

follows from the field redefinitions

vn → vnnew = vn + αvnV +
bvnππ

2f 2
π

[Π, dΠ] , (7.47)

bvnππ ≡ κ

∫
dZK−1/3(1 − ψ2

0) , (7.48)

with fπ the pion decay constant. This redefinition yields a direct vector-photon

coupling vn − V

m2
vn (vnnew − αvnV)2 , (7.49)
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while removing all pion-photon couplings Π − V through various sum rules.

Holographic QCD obeys the strictures of VMD in the meson sector. This point

will carry semiclassically to the baryon sector as we detail below.

Substituting the 5D fields for the 4D fields with mode functions we have

to order ~0

Seff =

−
∞∑

n=1

∫
d4x

[[
κKF̂

Zµ
(
(v̂nµ − αvnV̂µ)ψ2n−1

+(ânµ − αanÂ µ)ψ2n + V̂µ + Â µψ0

)]
Z=B

+
1

4

(
∂µv̂

n
ν − ∂ν v̂

n
µ

)2

+
1

2
m2
vn(v̂nµ − αvnV̂µ)

2

+
1

4

(
∂µâ

n
ν − ∂ν â

n
µ

)2

+
1

2
m2
an

(
ânµ − αanÂ µ

)2
]
,(7.50)

−
∞∑

n=1

2tr

∫
d4x

[[
κKF

Zν
(
(vnµ − αvnVµ)ψ2n−1

+(anµ − αanA µ)ψ2n + Vµ + A µψ0

)]
Z=B

+
1

4

(
∂µv

n
ν − ∂νv

n
µ

)2

+
1

2
m2
vn

(
vnµ − αvnVµ

)2

+
1

4

(
∂µa

n
ν − ∂νa

n
µ

)2

+
1

2
m2
an

(
anµ − αanA µ

)2
]
, (7.51)

where all meson fields are the redefined fields, vnnew and annew, but we drop the

subscript for simplicity. [· · · ]Z=B will be evaluated at the boundary Z = B,

which is collectively denoted by {±∞,±Zc}. We retained only the terms

relevant to the baryon form factor. For the complete expansion of the meson

fluctuation part we refer to [29].
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Figure 7.2: Left: Direct coupling, Right: Vector meson mediated cou-
pling(VMD)

7.4 Baryon current

Now, consider the effective action for the U(1)V source to order ~0

Seff [V̂µ] =
∞∑

n=1

∫
d4x

[
−1

4

(
∂µv̂

n
ν − ∂ν v̂

n
µ

)2

− 1

2
m2
vn(v̂nµ)

2

−κKF̂
Zµ

V̂µ(1 − αvnψ2n−1)
∣∣∣
Z=B

+ avnm2
vn v̂nµV̂

µ − κKF̂
Zµv̂nµψ2n−1

∣∣∣
Z=B

]
, (7.52)

The first line is the free action of the massive vector meson which gives the

meson propagator

∆mn
µν (x) =

∫
d4p

(2π)4
e−ipx

[−gµν − pµpν/m
2
vn

p2 +m2
vn

δmn
]
, (7.53)

in our convention. The rest are the coupling terms between the source and the

instanton: the second line is the direct coupling (Fig.7.2(a)) and the last line

corresponds to the coupling mediated by the U(1) (omega, omega’, ...) vector

meson couplings (Fig.7.2(b)),

κKF̂
Zµv̂nµψ2n−1 , (7.54)

which is large and of order 1/
√

~ since ψ2n−1 ∼
√

~. When ρ is set to 1/
√
λ

after the book-keeping noted above, the coupling scales like λ
√
Nc, or

√
Nc in

the large Nc limit taken first 2.

2The reader may object that such strong couplings may upset the semiclassical expan-
sion through perturbative corrections. This is not the case when the Dirac constraints are
imposed properly as noted in [113] for the Skyrme model.
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The direct coupling drops by the sum rule

∞∑

n=1

αvnψ2n−1 = 1 , (7.55)

following from closure in curved space

δ(Z − Z ′) =
∞∑

n=1

κψ2n−1(Z)ψ2n−1(Z
′)K−1/3(Z ′) . (7.56)

in complete analogy with VMD for the pion [29].

The baryon current is entirely vector dominated to order ~0 and reads

JµB(x) = −
∑

n,m

m2
vnαvnψ2m−1

∫
d4y κKF̂Zν(y, Z)∆νµ

mn(y − x)
∣∣∣
Z=B

. (7.57)

This point is in agreement with the effective holographic approach described

in [34]. The static baryon charge distribution is

J0
B(~x) = −

∑

n

∫
d~y

2

Nc
κKF̂Z0(~y, Z) ∆n(~y − ~x) avnm2

vnψ2n−1

∣∣∣
Z=B

,(7.58)

with

∆n(~y − ~x) ≡
∫

d~p

(2π)3

e−i~p·(~y−~x)

~p2 +m2
vn

, (7.59)

and the extra factor 2/Nc comes from the relation between V̂µ and the baryon

number source B̂0(~x): by V̂µ = δµ0

√
2Nf

Nc
B̂0(~x).

7.5 Electromagnetic Current and Form Factor

In addition to the baryon current discussed above, we now need the flavor or

isospin current to construct the electromagnetic current. For that, consider

the 4 dimensional effective action for the SU(2)-valued flavor source again to
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order ~
0

Seff [Va
µ] =

3∑

b=1

∞∑

n=1

∫
d4x

[
−1

4

(
∂µv

b,n
ν − ∂νv

b,n
µ

)2

− 1

2
m2
vn(vb,nµ )2

+ αvnm2
vnva,nµ V

a,µ − κKF
b,Zµvb,nµ ψ2n−1

∣∣∣
Z=B

]
, (7.60)

where the direct coupling vanishes due to the sum rule (7.96) and only the

VMD part contributes through the SU(2) (rho, rho’, ...) meson couplings

κKF
b,Zµvb,nµ ψ2n−1 , (7.61)

which is large and of order 1/
√

~. Again, this coupling is of order
√
Ncλ

3/2

after the book-keeping. This contribution is similar to (7.52) apart from the

SU(2) labels.

The isospin current is,

JµI,a(x) = −
∑

n,m

m2
vnαvnψ2n−1

∫
d4y κKF

a
Zν(y, Z)∆νµ

mn(y − x)
∣∣∣
Z=B

, (7.62)

From (7.57) and (7.99) the electromagnetic current is given by

JµEM(x) = JµI,3(x) +
1

2
JµB(x)

= −
∑

n,m

m2
vnαvnψ2m−1

∫
d4y Qν(y, Z)∆νµ

mn(y − x)
∣∣∣
Z=B

, (7.63)

with

Qµ(x, Z) ≡ κKF
3
Zµ(x, Z) +

1

Nc
κKF̂Zµ(x, Z) . (7.64)

The electromagnetic charge density is

J0
EM(x) = −

∑

n

∫
d4y Q0(y, Z)

∫
d4p

(2π)4
e−ip·(y−x)

m 2
vn

p2 +m2
vn

αvnψ2n−1

∣∣∣
Z=B

+
∑

n

∫
d4y Qµ(y, Z)

∫
d4p

(2π)4
e−ip·(y−x)

pµp0

p2 +m2
vn

αvnψ2n−1

∣∣∣
Z=B

,

(7.65)
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and the static electromagnetic form factor follows readily in the form

J0
EM(~q) =

∫
d~xei~q·~xJ0

EM(x)

= −
∑

n

∫
dZ∂Z

[(∫
d~xei~q·~xQ0(x, Z)

)
ψ2n−1

]
αvnm2

vn

~q 2 +m2
vn

, (7.66)

after setting p0 = 0 in (7.65) so that Qi is irrelevant. Recall that the instan-

ton configuration we are using is adiabatically rotating in flavor space. In the

charge Q0, these rotations generate a velocity dependence to leading order in

~ which is proportional to the angular momentum upon semiclassical quanti-

zation. With this in mind, there is effectively no time-dependence left in the

density Qµ(x, Z) to leading order in ~.

We now note that the electromagnetic form factor (7.66) can be rewritten

as

J0
EM(~q) =

∑

n

(
gnV,min + gnV,mag

) αvnm2
vn

~q 2 +m2
vn

, (7.67)

with

gnV,min =

∫
dZ∂Z

[(∫
d~xei~q·~xQ0(x, Z)

)]
ψ2n−1 ,

gnV,mag =

∫
dZ

(∫
d~xei~q·~xQ0(x, Z)

)
∂Zψ2n−1 ,

which are the analogue of the minimal and magnetic coupling used in the

effective baryon description of [34]. The solitonic character of the solution

implies that the two contributions are tied and sum up to a purely surface term

in the Z-direction a point that is not enforced in the effective approach [34].

Also our results are organized in ~ starting from the original D4 instanton.
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7.6 Electromagnetic Charge and Charge Ra-

dius

The nucleon electromagnetic form factor is written as a boundary term

J0
EM(~q) =

∫
d~xei~q·~xJ0

EM(~x)

=

∫
d~xei~q·~x

∑

n

αvnm 2
vn

~q 2 +m2
vn

ψ2n−1(ZC)2Q0(~x, ZC) , (7.68)

where the boundary term at Z = ∞ vanishes since ψ2n−1 ∼ 1/Z for large Z.

In the limit q → 0 we pick the electromagnetic charge

∫
d~x ei~q·~x 2Q0(~x, ZC) , (7.69)

due to the sum rule (7.96). Since Zc will be set to zero ultimatly at large λ, the

limits limq→0 limZ→0 will be understood sequentially. To proceed, we need to

work out the surface densities Q0 i.e. the U(1) and SU(2) parts KF̂Z0(~x, Zc)

and KFZ0(~x, Zc) respectively. By the equations of motion (7.14) and (7.11),

they read

4

Nc
κKF̂Z0(Zc) =

∫ ZC

−ZC

dZ
1

32π2
ǫMNPQ

(
tr (FMNFPQ) +

1

2
F̂MN F̂PQ

)

+
2

Nc

∫ ZC

−ZC

dZκK−1/3∂iF̂0i , (7.70)

2κKF
a
Z0(Zc) =

∫ ZC

−ZC

dZ 2iκ tr
{
K−1/3 ([F0i,Ai] +K[F0Z ,AZ ]) ta

}

+

∫ ZC

−ZC

dZκK−1/3∂iFa0i +

∫ ZC

−ZC

dZ
Nc

64π2
ǫMNPQ(F̂MNF

a
PQ) .

The U(1) number density readily integrates to 1 since

B =

∫
d~xJ0

B(~x) =

∫
d~x

4

Nc

κKF̂Z0(Zc)

=

∫
d~x

∫ ZC

−ZC

dZ
1

32π2
ǫMNPQtr (FMNFPQ) = 1 , (7.71)

as the spatial flux vanishes on R3
X and the U(1) winding number arezero for a
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sufficiently localized SU(2) instanton in R3
X ×RZ . We note that the integrand

is manifestly gauge invariant. To contrast, the isovector charge is

IA =

∫
d~x2κKF

A
Z0(Zc)

=

∫
d~x

∫ ZC

−ZC

dZ 2iκ tr
{
K−1/3 ([F0i,Ai] +K[F0Z ,AZ ]) tA

}
, (7.72)

again after dropping the surface term in R3
X and the Chern-Simons contribu-

tion for a sufficiently localized instanton in |ZC |. Although the integrand in

(7.72) is not manifestly gauge invariant, it is only sensitive to a rigid gauge

transformation at ZC which is reabsorbed by gauge rotating the cloud as is

explicit from the mode decomposition.

As noted earlier, the D4 instanton has maximal spherical symmetry so that

its isospin IA is just minus its angular momentum JA,

JA =

∫
d~xdZJ0A =

∫
d~xdZǫAjkx

jT 0k

=

∫
d~xdZǫAjkx

j
[
−κK−1/3

F
l0,a

F
lk,a − κKF

Z0,a
F
Zk,a
]
. (7.73)

Both IA and JA are driven by the adiabatic rotation R. For the D4 instanton

part, it is

A
a
R = R

ab(t)Ab , Ȧ
a
R =

(
Ṙ(t)R−1(t)

)ab
A
b
R , (7.74)

with ωAGA ≡ −ṘR−1 3. The ω’s are quantum and of order ~. Recalling the

result for AR
0 for the constrained field and the zero mode (ZR) from Appendix,

we obtain to leading order

JA = −IA =

∫
d~xdZǫAjkx

j
[
−κK−1/3

F
l0,a

F
lk,a − κKF

Z0,a
F
Zk,a
]

=

∫
d~x

∫ Zc

−Zc

dZǫAjkx
j
[
−κ(DM

Z
R)aFMk,a

]

→ −1

2
M0ρ

2 ωA ≡ −IωA . (7.75)

3We recall that both the BPST instanton and the fluctuations are rotating in the body
fixed frame. As noted earlier, the R-labeling of the fields is subsumed.
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The last relation follows from the BPST instanton (7.28). As expected, the

core instanton has a moment of inertia I = M0ρ
2/2 where M0 = 8π2κ is the

D4 instanton mass in units of MKK and to leading order in 1/λ. I is of order

Nc. Maximum spherical symmetry results in a symmetric inertia tensor.

Finally, the nucleon charge is then

∫
d~xJ0

EM(x) =

∫
d~x2Q0(x, Zc) = I3 +

B

2
. (7.76)

While our analysis is to order ~0 this normalization should hold to all orders

in ~. The vector meson cloud encodes the exact charges in holography thanks

to the exact sum rule (7.96).

The electromagnetic charge radius 〈r2〉EM can be read from the q2 terms

of the form factor

〈r2〉EM =

∫
d~x r2 2Q0(~x, Zc) + 6

∞∑

n=1

αvnψ2n−1(Zc)

m2
n

∫
d~x 2Q0(~x, Zc) , (7.77)

with r ≡
√

(~x)2. The first contribution is from the core, while the second

contribution is from the cloud. For a sufficiently localized instanton in bulk

the first contribution is of order 1/λ,

〈r2〉′I=0 =

∫
d~x r2 2Q0(~x, Zc)

=
3

2
ρ2 Zc√

Z2
c + ρ2

→ 3

2
ρ2 . (7.78)

The meson cloud contribution is of order λ0. It can be exactly asessed by

noting that

∞∑

n=1

αvnψ2n−1(Zc)

m2
n

=

∫
dZ

∞∑

n=1

ψ2n−1(Zc)ψ2n−1(Z)K−1/3(Z)

m2
n

=

∫
dZ〈Zc|2−1

C
|Z〉 , (7.79)

where 2
−1
C

≡ −∂−1
Z K−1∂−1

Z K−1/3 is the inverse of (7.42). This is just the
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vector meson propagator in curved space 4. It follows that

∞∑

n=1

αvnψ2n−1(Zc)

m2
n

= −
∫
dZ

∫
dZ ′〈Zc|∂−1

Z |Z ′〉K−1(Z ′)〈Z ′|∂−1
Z |Z〉K−1/3(Z) , (7.80)

where 〈Z ′|∂−1
Z |Z〉 = 1

2
sgn(Z ′ − Z) and K = 1 + Z2. It is zero for Zc = ∞ and

2.377 for Zc = Z̃c/
√
λ in the double limit λ → ∞ followed by Z̃ → ∞. See

Appendix for details.

Thus the charge radius for the nucleon is

√
〈r2〉EM ≈ 14.26

(
1

2
+ I3

)
M−2

KK ≈ 0.784

(
1

2
+ I3

)
fm, (7.81)

where we used MKK = 950MeV [28]. The experimental values are [116]

√
〈r2〉proton

EM = 0.875 fm , 〈r2〉neutron
EM = −0.1161 fm2 . (7.82)

7.7 Baryon Magnetic moment

The magnetic moments follow from the moments of the electromagnetic cur-

rent,

µi =
1

2
ǫijk

∫
d~xxjJkEM(x)

= ǫijk

∫
d~y
∑

n

m2
vnαvnψ2n−1(Zc)Qm(~y, Zc)

∫
d~xxj∆mk

n (~y − ~x)

= ǫijk

∫
d~y
∑

n

m2
vnαvnψ2n−1(Zc)Qm(~y, Zc)y

j−gmk
m2
vn

= −ǫijk
∫
d~yyjQk(~y, Zc) , (7.83)

with

Qk(~x, Zc) ≡ κK(Zc)F
3
Zk(~x, Zc) +

1

Nc
κK(Zc)F̂Zk(~x, Zc) . (7.84)

4The vector-meson coupling to the instanton in the propagator is subleading in 1/λ and
thus dropped.
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While the electromagnetic current is meson mediated at the core boundary,

its contribution to the magnetic moment to order ~0 is core-like owing to the

exact sum-rule (7.97) in warped space. By resumming over the tower of infinite

vector mesons, the magnetic moment shrunk to the core at strong coupling

with g2 large and Nc large. This remarkable feature is absent in the Skyrme

model and its variants since they all truncate the number of mesons.

First consider the iso-scalar contribution to the magnetic moment in (7.84).

As we are assessing Qk(x, Zc) at the core boundary, the small Z instanton

configuration is sufficient. From (7.15) it follows that

1

Nc

κF̂
R
Zk(~x, Zc) =

∫ Zc

−Zc

dZ

[
1

32π2
ǫkNPQ

(
tr (FRN0F

R
PQ)

]

=

∫ Zc

−Zc

dZ

[
1

32π2
ǫkNPQ

(
tr (DnZ

R
FPQ)

]
, (7.85)

where we have dropped the U(1) CS contribution as it is subleading as well as

surface contributions on R3
X since we will integrate over R3

X at the end. The

upper R-labels refer to the rigid SO(3) rotation R and ZR is the zero mode

from the Gauss constraint. In the second line the R-label drops because of

tracing. Thus

µAI=0 = −ǫAjk
∫
d~yyj

2

Nc
κK(Zc)F̂

R
Zk(~x, Zc)

= −ρ
2ωA

4

Zc√
Z2
c + ρ2

→ −ρ
2ωA

4

=
〈r2〉′I=0

6

JA

I
, (7.86)

where we used the BPST solution (7.28) since Zc ∼ ρ ∼ 0. The contribution

is of order ~ but subleading in 1/λ. The last relation uses that IA = −JA.

This relation for the isoscalar magnetic moment is similar to the one derived

in the Skyrme model with the notable difference that only the isoscalar core

radius and core moment of inertia are involved.

Now, consider the iso-vector contribution to the magnetic moment. Using
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(7.12), we have

κF
R,3
Zk (~x, Zc) =

∫ Zc

−Zc

dZiκtr
{
[AR,M ,FRMk]t

3
}

→ −
∫ Zc

−Zc

dZ
κ

4
A
a
MF

b
MkǫabcR3c . (7.87)

Much like the iso-scalar, we have only retained the leading contribution to

the magnetic moment. As noted earlier, the residual gauge variance of the

integrand through ZC is removed by gauge rotation of the cloud. In terms of

the regular BPST solution (7.26) and (7.28) we get

A
a
MF

b
Mkǫabc =

−8ρ2

(ξ2 + ρ2)3
(xaǫakc − xbǫkbc) , (7.88)

so that

µiI=1 = −ǫijk
∫
d~yyjκK(Zc)F

R,3
Zk(x, Zc)

= −32π

3
κρ2

R3i

∫ ∞

0

dr

∫ Zc

−Zc

dZ
r4

(ξ2 + ρ2)3

= −4π2κρ2
R3i logc

= − I

2
R

3i logc , (7.89)

with a logarithmic cutoff sensitivity to the core size,

logc ≡ log

(
Zc +

√
Z2
c + ρ2

−Zc +
√
Z2
c + ρ2

)
. (7.90)

The isovector magnetic contribution is of order ~0 and similar in structure to

the Skyrmion, with the exception that I is solely driven by the core. The cutoff

sensitivity logc is absent if we were to use the BPST instanton in the singular

gauge. The Cheshire Cat smile survives in the isovector magnetic contribution

in the regular gauge (albeit weakly through a logarithm).

Combining the isoscalar and isovector contributions to the magnetic mo-

ment yields (singular gauge)

µi =
〈r2〉′I=0

6

J i

I
− I

2
R

3i , (7.91)
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which results in the Skyrme-like independent relation [117],

µp − µn
µp + µn

=
3

4

M∆ +MN

M∆ −MN
, (7.92)

expected from a soliton. Here MN,∆ are the nucleon and delta masses split by

the inertia I.

7.8 Axial Form Factor

The effective action for the SU(2)-valued axial vectors to order ~
0 is

Seff [A a
µ] =

3∑

b=1

∞∑

n=1

∫
d4x

[
−1

4

(
∂µa

b,n
ν − ∂νa

b,n
µ

)2

− 1

2
m2
an(ab,nµ )2

−κKF
b,zµ

A
b
µ(ψ0 − αanψ2n)

∣∣∣
z=B

+ aanm2
anab,nµ A

b,µ − κKF
b,zµab,nµ ψ2n

∣∣∣
z=B

]
, (7.93)

The first line is the free action of the massive axial vector meson which gives

the meson propagator

∆mn,ab
µν (x) =

∫
d4p

(2π)4
e−ipx

[−gµν − pµpν/m
2
an

p2 +m2
an

δmnδab
]
, (7.94)

in Lorentz gauge. The rest are the coupling terms between the source and the

instanton: the second line is the direct coupling and the last line corresponds

to the coupling mediated by the SU(2) (a, a’, ...) vector meson couplings,

κKF
b,zµab,nµ ψ2n , (7.95)

which is large and of order 1/
√

~ since ψ2n ∼
√

~. When ρ is set to 1/
√
λ after

the book-keeping noted above, the coupling scales like λ
√
Nc, or

√
Nc in the

large Nc limit taken first

The direct coupling drops by the sum rule

∞∑

n=1

αanψ2n = ψ0 =
2

π
arctan z, (7.96)
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following from closure in curved space

δ(z − z′) =

∞∑

n=1

κψn(z)ψn(z
′)K−1/3(z′) . (7.97)

in complete analogy with VMD for the pion [28] and the electromagnetic

baryon form factor. It follows form (7.96) that

∞∑

n=1

αanψ2n(zc) =
1

2

∫ zc

−zc

dz∂zψ0(z) =
κ

π

∫ zc

−zc

dzφ0(z) . (7.98)

The axial vector contributions at the core sum up to the axial zero mode.

The iso-axial current is,

JµA,b(x) = −
∑

n,m

m2
anaanψ2n

∫
d4y Q

b
ν(y, z)∆

νµ
mn(y − x)

∣∣∣
z=B

, (7.99)

with

Q
b
ν(y, z) ≡ κKF

b
zν(y, z) . (7.100)

The static axial-iso-vector form factor follows readily in the form

J biA (~q) =

∫
d~xei~q·~xJ biA (x)

= (δij − q̂iq̂j)

∫
d~xei~q·~x

∑

n

αanm2
an

~q 2 +m2
an

ψ2n(z) Q
b
j(~x, z)

∣∣∣
z=B

, (7.101)

and is explicitly transverse for massless pions. The zero momentum limit of

the transverse momentum projector is ambiguous owing to the divergence of

the spatial integrand for ~q = ~0. We use the rotationally symmetric limit with

the convention (δij − q̂iq̂j) → 2δij/3. Thus

J biA (0) =
2

3

∫
d~x κKF

b
zi(~x, z)ψ0(z)

∣∣∣
z=B

, (7.102)

by the sum rule (7.98). Since the rotated instanton yields

∫
d~xF

R,a
zi = Rai 4π2ρ2

√
z2
c + ρ2

, (7.103)
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the spatial component of the axial-vector reads

JRbiA (0) =
32κπρ2

3
(1 + z2

c )
arctan(zc)√
ρ2 + z2

c

Rbi , (7.104)

In the nucleon state

〈s′t′|JRbiA (0)|st〉 =
32κπρ2(1 + z2

c )

9
√
ρ2 + z2

c

arctan(zc)(σ
b)ss

′

(τ i)tt
′

≡ 1

3
gA(σb)ss

′

(τ i)tt
′

, (7.105)

where we used 〈s′t′|Rbi|st〉 = −1
3
(σb)ss

′

(τ i)tt
′

. Thus

gA =
32κπρ2(1 + z2

c )

3
√
ρ2 + z2

c

arctan(zc) ≈
32

3
κπρ2 , (7.106)

where the limit ρ → 0 is followed by zc → 0. It is 2 times ĝA = 16
3
κπρ2 as

quoted in [32]. This discrepancy maybe traced back to a factor of 2 discrepancy

in the normalization of the axial-vector current in [32].

7.9 Conclusions

We have shown how the non-rigid quantization of the D4 instanton in holo-

graphic QCD yields baryon electromagnetic form factors that obey the stric-

tures of VMD in agreement with the effective approach discussed in [33, 34].

The holographic baryon at the boundary is composed by a core instanton in

the holographic direction at Z = 0 of size 1/
√
λ that is trailed by a cloud of

bulk vector mesons and pions of size λ0 all the way to Z = ∞. The core and

the cloud interface at ZC which plays the role of the Cheshire Cat smile (gauge

movable). At strong coupling, the baryon size is of order λ0 thanks to vector

meson dominance. The meson-baryon couplings are large and of order 1/
√

~

(or lower) and surface-like only owing to the solitonic nature of the instanton.

The electromagnetic form factors, radii and magnetic moments of the ensu-

ing baryons compare favorably with the results obtained in the Skyrme model,

as well as data for a conservative value of MKK = 950 MeV. For instance the

electromagnetic charge radii are 0.784 fm (proton) and zero (neutron). They
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are derived in the triple limit of zero pion mass (chiral limit) and strong cou-

pling λ (large g2 and large Nc). The magnetic moments are completly driven

by the core D4 instanton through a remarkable sum rule of the vector meson

cloud. They obey a model independent relation of the type encountered in the

Skyrme model, a hall-mark of large Nc and strongly coupled models.

The non-rigid quantization scheme presented here offers a systematic frame-

work for discussing quantum baryons in the context of the semi-classical ap-

proximation. It is causal with retardation effects occuring in higher order in

~. These semiclassical corrections are only part of a slew of other quantum

corrections in holography which are in contrast hard to quantify. Also, the

small instanton size calls for the use of the full DBI action to characterize the

instanton field more faithfully in the holographic core. We note that beyond

the ~0 contribution discussed here, the issue of Dirac constraints needs to be

addressed. This is best addressed in the canonical Hamiltonian formalism

whereby Gauss laws are explicitly removed by their constaint equations. The

drawback are lack of manifest covariance and operator orderings.

The extension of our analysis to the axial-vector channels is straightforward

with minimal changes in our formulae as can be readily seen by inspection.

Indeed, the axial vector source differs from the vector one we used by the

extra mode function ψ0(Z) which is odd in Z. Also the pion field Π now

contributes. In the axial-vector channel the pion-baryon coupling is expected

to be formally of order
√

~ but time-like thus effectively of order 1/
√
Nc and not√

Nc. The Goldberger-Treiman relation in this case follows from the non-rigid

quantization of the instanton much like its counterpart for the Skyrmion [113].

Some of these issues and others will be discussed next.

7.10 Appendix

7.10.1 Gauss Law

For the flavor rotated instanton, the rotated form of Gauss law (7.11 ) reads

D
R
MF

R
M0 = O (1/λ) , (7.107)
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to leading order as the curvature effects are subleading in 1/λ. All upper R-

labels refer to the rigid SO(3) rotation R with DR
M = ∂M + AR,AGA. While

this is subsumed throughout in the main text, here it is recalled explicitly for

the clarity of the argument. The formal solution reads

A
R
0 =

1

(DR′)2
D
R
N Ȧ

R
N + Z

R , (7.108)

where the primed inverted operator excludes the zero mode. Following [30],

the rotated zero mode solution reads

Z
R,A = C RR(g)ωA f(ξ) , (7.109)

up to an arbitrary constant C. Here f(ξ) = ξ2/(ξ2 + ρ2) and

R
AB

(g) = tr
(
tAg−1tBg

)
, g =

z − i~x · ~σ
ξ

. (7.110)

We note that for an unrotated BPST instanton with ωA = 0, the formal

solution (7.108) yields A0 = 0 as it should. The normalization is C = 1

which is fixed by the asymptotic of the AR
0 field: AR

0 (x, Z = ∞) = UR†∂0U
R.

U = eiτa r̂
a(θ,φ,ψ) is the identity map and (θ, φ, ψ) are the canonical angles on

S3.

In terms of (7.108) the rotated electric field is

F
R
M0 = D

R
MA

R
0 − Ȧ

R
M = D

R
MZ

R . (7.111)

The kinetic energy for the rotated instanton is

H = κ

∫
d~x dZ tr (FRM0)

2 = κ

∫
d~x dZ tr

(
DMZ

R
)2

=
1

2
M0ρ

2ω2 . (7.112)

The upper R-label drops out by tracing. Here M0 = 8π2κ is the instanton

mass in units of MKK to leading order in 1/λ.

161



7.10.2 Action

With the gauge field (7.38)-(7.41) the SU(2) YM action reads

S
SU(2)
YM = −κ

∫
d4xdZtr

[
1

2
K−1/3

F
2
µν +KF

2
Zµ

+∂µ
(
2K−1/3

FµνC
ν
)

+ ∂Z (2KFZνC
ν) + ∂µ

(
2KFµZC

Z
)

−
{
D
µ
(
2K−1/3

Fµν

)
+ D

Z (2KFZν)
}
Cν − D

µ (2KFµZ)CZ

+
1

2
K−1/3

{
2Fµν [C

µ, Cν ] +
(

DµCν − DνCµ − i[Cµ, Cν ]
)2
}

+K

{
2FZµ[C

Z , Cµ] +
(
DZCµ − DµCZ − i[CZ , Cµ]

)2
}]

,(7.113)

where Dα is the covariant derivative with the soliton configuration: Dα∗ =

∂α − i[Aα, ∗]. Similary U(1) YM action is

S
U(1)
YM = −κ

2

∫
d4xdZ

[
1

2
K−1/3

F̂
2
µν +KF̂

2
Zµ

+∂µ
(
2K−1/3

F̂µνĈ
ν
)

+ ∂Z
(
2KF̂ZνĈ

ν
)

+ ∂µ
(
2KF̂µZĈ

Z
)

−
{
∂µ
(
2K−1/3

F̂µν

)
+ ∂Z

(
2KF̂Zν

)}
Ĉν − ∂µ

(
2KF̂µZ

)
ĈZ

+
1

2
K−1/3

(
∂µĈν − ∂νĈµ

)2

+K
(
∂ZĈµ − ∂µĈZ

)2
]
, (7.114)

and the CS term is

SCS =
Nc

24π2
ǫMNPQ

∫
d4xdZ

[
3

8

(
Â0 + Ĉ0

)
tr
{

FMNFPQ + 4FMNDPCQ + 4FMNCPCQ)

+4(DMCN + CMCN)(DPCQ + CPCQ)
}

−3

2

(
ÂM + ĈM

)
tr
{
∂0(AN + CM)(FPQ + 2DPCQ + 2CPCQ)

}

+
3

4

(
F̂MN + 2∂M ĈN

)
tr
{

(A0 + C0)(FPQ + 2DPCQ + 2CPCQ)
}

+
1

16

(
Â0 + Ĉ0

){
F̂MN F̂PQ + 4F̂MN∂P ĈQ + 4(∂M ĈN)(∂P ĈQ)

}
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−1

4

(
ÂM + ĈM

){
F̂0N F̂PQ + 2F̂0N∂P ĈQ + F̂PQ(∂0ĈN − ∂N Ĉ0)

+2(∂0ĈN − ∂N Ĉ0)∂P ĈQ

}

+
3

2
∂N

[(
ÂM + ĈM

)
tr
{

(A0 + C0)(FPQ + 2DPCQ + 2CPCQ)
}]]

+
Nc

48π2

∫
d

[(
Â + Ĉ

)
tr

{
2d(A + C)(A + C) − 3i

2
(A + C)3

}]
.

(7.115)

7.10.3 Integral

In this appendix we work out the integral in (7.80):

G(Zc) ≡ −
∫
dZ

∫
dZ ′〈Zc|∂−1

Z |Z ′〉K−1(Z ′)〈Z ′|∂−1
Z |Z〉K−1/3(Z) . (7.116)

We start with the Green function

〈Z ′|∂−1
Z |Z〉 =

1

2
sgn(Z ′ − Z) . (7.117)

Since there are two sgn functions in (7.116) we divide the integral region into

six pieces reflecting all possible sign difference:

G(Zc) = −1

4

[∫ Zc

−∞
dZ ′

∫ Z′

−∞
dZ −

∫ Zc

−∞
dZ ′

∫ Zc

Z′

dZ

−
∫ ∞

Zc

dZ ′
∫ Z′

Zc

dZ +

∫ ∞

Zc

dZ ′
∫ ∞

Z′

dZ

−
∫ ∞

Zc

dZ ′
∫ Zc

−∞
dZ −

∫ Zc

−∞
dZ ′

∫ ∞

Zc

dZ

]
(K−1(Z ′)K−1/3(Z)) .

In two extreme(symmetric) case the expression becomes simple. For Zc = ∞

− 1

4

[∫ ∞

−∞
dZ ′

∫ Z′

−∞
dZ −

∫ ∞

−∞
dZ ′

∫ ∞

Z′

dZ

]
(K−1(Z ′)K−1/3(Z)) = 0 ,
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and for Zc = 0

−1

2

[∫ 0

−∞
dZ ′

∫ Z′

−∞
dZ −

∫ 0

−∞
dZ ′

∫ 0

Z′

dZ

−
∫ ∞

0

dZ ′
∫ 0

−∞
dZ

]
(K−1(Z ′)K−1/3(Z))

=

∫ ∞

0

dZ ′K−1(Z ′)

∫ Z′

0

dZK−1/3(Z) ∼ 2.377 .
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Chapter 8

Nuclear Force

8.1 Introduction

In the past the Skyrmion-Skyrmion interaction was mostly analyzed using

the product ansatz [118, 119] or some variational techniques [120]. While

the product ansatz reveals a pionic tail in the spin and tensor channels, it

lacks the intermediate range attraction in the scalar channel expected from

two-pion exchange. In fact the scalar potential to order Nc is found to be

mostly repulsive, and therefore unsuited for binding nuclear matter at large

Nc. The core part of the Skyrmion-Skyrmion interaction in the product of

two Skyrmions is ansatz dependent. In [121] it was shown that the ansatz

dependence could be eliminated in the two-pion range by adding the pion

cloud to the core Skyrmions. In a double expansion using large Nc and the

pion-range, a scalar attraction was shown to develop in the two-pion range in

the scalar channel [121]. The expansion gets quickly involved while addressing

shorter ranges or core interactions.

In this paper we analyze the two-baryon problem using the D4 two-instanton

solution [123, 124] to order Nc/λ. The ensuing Skyrmion-Skyrmion1 interac-

1In hQCD D4 static instantons in bulk source the chiral solitons or Skyrmions on the
boundary. The instantons have a size of order 1/

√
λ and a mass of order Ncλ in units of

MKK , the Kaluza-Klein scale [30]. The static Skyrmion is just the instanton holonomy in
the z-direction

U(~x) = Pe−i
R

∞

−∞
dzAz(~x,z) , (8.1)

where Az is the 5-dimensional ADHM instanton. The static 3-dimensional Skyrmion is
sourced by a static 4-dimensinal flavour instanton embedded in D8-D8.
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tion is essentially that of the two cores and the meson cloud composed of

(massles) pions and vector mesons. At strong coupling, holography fixes the

core interactions in a way that the Skyrme model does not. Although in QCD

very short ranged interactions are controlled by asymptotic freedom, the core

interactions at intermediate distances maybe still in the realm of strong cou-

pling and therefore unamenable to QCD perturbation theory. In this sense,

holography will be helpful. Also, in holographic QCD the mesonic cloud in-

cluding pions and vectors is naturally added to the core Skyrmions in the

framework of semiclassics. These issues will be quantitatively addressed in

this paper.

In section 2, we review the ADHM construction for one and two-instanton

following on recent work in [123, 124]. In section 3, we show how this con-

struction translates to the one and two baryon configuration in holography.

In section 4, we construct the bare or core Skyrmion-Skyrmion interaction for

defensive and combed Skyrmions. We unwind the core Skyrmion-Skyrmion

interaction at large separations in terms of a dominant Coulomb repulsion in

regular gauge. Core issues related to the singular gauge are also discussed. In

section 5, we project the core Skyrmion-Skyrmion contributions onto the core

nucleon-nucleon contributions at large separation using semiclassics in the adi-

abatic approximation. In section 6, we include the effects of the mesonic cloud

to order Nc/λ in the Born-Oppenheimer approximation. At large separations,

the cloud contributions yield a tower of meson exchanges. In section 7, we

summarize the general structure of the NN potential as a core plus cloud con-

tribution in holographic QCD. Our conclusions are in section 8. In Appendix

9.1, we check our semiclassical cloud calculations in the regular gauge, using

the strong coupling source theory in the singular gauge. In Appendix 9.2 we

detail the k = 1, 2 instantons in the singular gauge and we revisit the core

interaction in the singular gauge.

8.2 YM Instantons from ADHM

The starting point for baryons in holographic QCD are instantons in flat R3
X×

RZ . In this section we briefly review the ADHM construction [125] for SU(2)

Yang-Mills instantons. Below SU(2) will be viewed as a flavor group associated
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to D8-D8 branes. For a thorough presentation of the ADHM construction we

refer to [126] and references therein.

In the ADHM construction, all the instanton information is encoded in the

matrix-data whose elements are quaternions q. The latters are represented as

q ≡ qMσ
M , σM ≡ (iτ i,1) , (8.2)

with M = 1, 2, 3, 4, 1 ≡ 12×2, and τ i the standard Pauli matrices. qM are four

real numbers. The conjugate (q†) and the modulus (‖q‖) of the quaternion,

are defined as

q† ≡ qM(σM)† , ‖q‖2 ≡ q†q = qq† = | q|1 =
∑

M

q2
M1 , (8.3)

Re q ≡ q + q†

2
= q0σ

0 , Im q ≡ q − q†

2
=
∑

i

qiσ
i , (8.4)

where | q| is the determinant of a matrix q. For clarity, our label conventions

are: M,N, P,Q ∈ {1, 2, 3, 4}, µ, ν, ρ, σ,∈ {0, 1, 2, 3}, and i, j, k, l ∈ {1, 2, 3}
with z ≡ x4. The flavor SU(2) group indices are a, b ∈ {1, 2, 3}.

The basic block in the matrix-data is the (1 + k) × k matrix, ∆, for the

charge k instanton

∆ = A + B ⊗ x , (8.5)

where A and B are x-independent (1 + k) × k quaternionic matrices with

information on the moduli parameters. We define x = xMσ
M and B ⊗ x

means that each element B is multiplied by x. A and B are not arbitrary.

They follow from the ADHM constraint

∆†∆ = f−1 ⊗ 1 , (8.6)

where ∆† is the transpose of the quaternionic conjugate of ∆. f is a k × k

invertible quaternionic matrix. f−1⊗1means each element f−1 is multiplied by

1. The null-space of ∆† is 2-dimensional since it has 2 fewer rows than columns.

The basis vectors for this null-space can be assembled into an (1 + k) × 1
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quaternionic matrix U

∆†U = 0 , (8.7)

where U is normalized as

U †U = 1 . (8.8)

The instanton gauge field Aµ is constructed as

AM = iU †∂MU , (8.9)

which yields the field strengths

FMN = −2ηaMNU
†
B(f ⊗ τa)B†U . (8.10)

Self-duality is explicit from ’t Hooft’s self-dual eta symbol

ηaMN = −ηaNM =

{
ǫaMN for M,N = 1, 2, 3

δaM for N = 4
. (8.11)

The action density, trF 2
MN , can be calculated directly from f , without recourse

to the null-space U and FMN [130]

trF 2
MN = 2

2 log |f | , (8.12)

where 2 ≡ ∂2
M , 2

2 = ∂2
N∂

2
M , and |f | is the determinant of f .

8.2.1 k = 1 instanton

The k = 1 instanton in the regular gauge is encoded in a quaternionic matrix

∆

∆ ≡
(

λ

−x+X

)
, ∆† ≡

(
λ† (−x+X)†

)
, (8.13)
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which yields

f−1 = ρ2 + (xM −XM)2 , (8.14)

after using (8.6). Here ρ (=
√
λ2
M) is the size and {XM} is the position of the

one instanton. The field strength is

FMN = WηaMN
τa

2

−4ρ2

((xM −XM)2 + ρ2)2
W † , (8.15)

which follows from (8.10) with

U =
ρ√

(xM −XM)2 + ρ2

(
−λ(x−X)†

ρ2

1

)
W † , B =

(
0

−1

)
, (8.16)

where ρ2 ≡ λ†λ and W ∈ SU(2). The action density follows from (8.15) or

(8.12)

trF 2
MN = 2

2 log f =
96ρ4

((xM −XM)2 + ρ2)4
, (8.17)

which gives the instanton number 1
16π2

∫
d4xtrF 2

MN = 1 by self duality. The

k = 1 instanton in the singular gauge is detailed in Appendix A.

8.2.2 k = 2 instanton

A charge 2 (k = 2) instanton in the regular gauge is encoded in a quaternionic

matrix ∆ [? ]

∆ ≡




λ1 λ2

−
[
x− (X +D)

]
u

u −
[
x− (X −D)

]


 , (8.18)

where the coordinates xM are defined as x = xMσ
M , and the moduli pa-

rameters are encoded in the free parameters λ1, λ2, X,D: |λi| ≡ ρi1 are the

size parameters, λ†1λ2/(ρ1ρ2) ∈ SU(2) is the relative gauge orientation, and

X ± D is the location of the constituents. u is not a free parameter and will

be determined in terms of other moduli parameters by the ADHM constraint
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(8.6).

Since we are interested in the relative separation we set X = 0, so that

∆ =




λ1 λ2

D − x u

u −D − x


 , ∆† ≡

(
λ†1 (D − x)† u†

λ†2 u† (−D − x)†

)
, (8.19)

which yields

∆†∆ (8.20)

=

(
‖λ1‖2 + ‖x−D‖2 + ‖u‖2 λ†1λ2 +D†u− u†D − (x†u+ u†x)[

λ†1λ2 +D†u− u†D − (x†u+ u†x)
]† ‖λ2‖2 + ‖x+D‖2 + ‖u‖2

)
.

The ADHM constraint (8.6) implies that each entry must be proportional to

1. The diagonal terms satisfy the constraint. The off-diagonal entries are also

proportional to 1 provided that u is chosen to be

u =
DΛ

2 |D|2
+ γD , Λ ≡ Im(λ†2λ1) =

1

2
(λ†2λ1 − λ†1λ2) , (8.21)

with γ an arbitrary real constant. The coordinate u is the inverse of the

coordinate D. It plays the role of the dual distance. Throughout we follow [?

] and choose γ = 0 for a physical identification of the moduli parameters. By

that we mean a k = 2 configuration which is the closest to the superposition

of two instantons in the regular gauge at large separation. In Appendix A, we

briefly discuss a minimal k = 2 configuration in the singular gauge.

Inserting u into (8.20) yields

f−1 =


ρ

2
1 + (xM −DM)2 +

ρ21ρ
2
2−(λ1·λ2)2

4D2
M

λ1 · λ2 + 2x · u
λ1 · λ2 + 2x · u ρ2

2 + (xM +DM)2 +
ρ21ρ

2
2−(λ1·λ2)2

4D2
M


 ,

where we introduced the notation q · p for two quaternions q and p

q · p ≡
∑

M

qMpM . (8.22)

ρi =
√
λi · λi are the size parameters, ±DM the relative positions of the in-
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stantons, and

2x · u =
1

D ·D
[
(λ2 ·D)(λ1 · x) − (λ1 ·D)(λ2 · x) − ǫMNPQ(λ2)M(λ1)NDPxQ

]
.

We made use of the identity

σP σ̄MN = δPMσN − δPNσM − ǫPMNQσQ ,

σ̄MN ≡ 1

2
(σ̄MσN − σ̄NσM) , ǫ1234 = 1 . (8.23)

8.2.3 Explicit Parametrization

Without loss of generality, we may choose the moduli parameters to be

λ1 = ρ1 (0, 0, 0, 1) , λ2 = ρ2

(
θ̂a sin| θ| , cos| θ|

)
, D =

(
d

2
, 0, 0, 0

)
,(8.24)

with a = 1, 2, 3, | θ| ≡
√

(θ1)2 + (θ2)2 + (θ3)2 and θ̂a ≡ θa

| θ| . The spatial x1 axis

is chosen as the separation axis of two instantons at large distance d. The

flavor orientation angles (θa) are relative to the λ1 orientation. We assign an

SU(2) matrix U to the relative angle orientations in flavor space

U ≡ λ†1λ2

ρ1ρ2
= eiθaτa ∈ SU(2) , (8.25)

which is associated with the orthogonal SO(3) rotation matrix R as

Rab =
1

2
tr
(
τaUτbU

†)

= δab cos 2| θ| + 2θ̂aθ̂b sin
2| θ| + ǫabcθ̂c sin 2| θ| . (8.26)

For instance Rab reads




cos 2θ3 sin 2θ3 0

− sin 2θ3 cos 2θ3 0

0 0 1


 ,




1 0 0

0 cos 2θ1 sin 2θ1

0 − sin 2θ1 cos 2θ1


 , (8.27)

for θ1 = θ2 = 0 and θ2 = θ3 = 0 respectively. Note the double covering in

going from SU(2) to SO(3).
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In this coordination for the moduli space,

Λ = ρ1Im(λ†2) = ρ1ρ2(−iθ̂aτa sin| θ|) , (8.28)

u =
DΛ

2 |D|2
=
iτ 1Λ

d
=
ρ1ρ2

d
sin| θ| θ̂aτ 1τa , (8.29)

uM =
ρ1ρ2

d
sin| θ|

(
0,−θ̂3, θ̂2, θ̂1

)
, (8.30)

x · u =
ρ1ρ2 sin | θ|

d

(
θ̂1x4 + θ̂2x3 − θ̂3x2

)
, (8.31)

and the inverse potential f−1 is written as

f−1 =

(
g− + A B

B g+ + A

)
, (8.32)

g± ≡ x2
α +

(
x1 ±

d

2

)2

+ ρ2 , x2
α ≡ x2

2 + x2
3 + x2

4 ,

A ≡ ρ4 sin2 | θ|
d2

, B ≡ ρ2

(
cos | θ| + 2

d
sin | θ|

[
θ̂1z + θ̂2x3 − θ̂3x2

])
,

with ρ ≡ ρ1 = ρ2. The action density can be assessed using (8.12). In terms

of this notation, for the k = 1 instanton in the regular gauge (8.14), the

logarithmic potential log |f | is

log f± = − log g± , (8.33)

where the subscript ± refers to the position ∓d
2

of the instanton along the x1

axis. For the k = 2 instanton (8.32), we have

log |f−+| ≡ − log
[
(g− + A) (g+ + A) − B2

]
. (8.34)

8.2.4 Asymptotics

To understand in details the structure of the k = 2 instanton it is best to work

out its asymptotic form for the case d/ρ ≫ 1. For that we use (8.10) in the

special case

Fiz = −2U †
B(f ⊗ τ i)B†U , (8.35)
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with

B =




0 0

−1 0

0 −1


 . (8.36)

Below, we will show that the field strength Fiz sources the pion-nucleon cou-

pling in the axial gauge Az = 0 for the quantum fluctuations. The asymptotics

is useful for a physical identification of the coset parameters.

Near the singularity center with x = D, (8.19) approximates to

∆† ≈
(
λ†1 0 u†

λ†2 u† −2D†

)
, (8.37)

whose null vector U is

U ≈




− 1
ρ1
u†

1
|u|2

1
ρ1
u
(
λ†2u

† + 2ρ1D
†
)

1


DΛ†D†. (8.38)

From (8.8) and (8.21) it follows that

U ≈




0

1−
(
ρ
d

)2 1
2
sin 2|θ| θ̂a(iτ 1τaτ 1)(

ρ
d

)2
sin |θ| θ̂a(iτ 1τaτ 1)


+




O
(
ρ
d

)3

O
(
ρ
d

)4

O
(
ρ
d

)4


 . (8.39)

We have used the explicit parametrization (8.24) and (8.28). We may expand

f near the center X = D,

f |X≈D =

(
1
g+

+ O
(

1
d

)4 −λ1λ2+2x·u
g−g+

+ O
(

1
d

)4

−λ1λ2+2x·u
g−g+

+ O
(

1
d

)4 1
g−

+ O
(

1
d

)2

)
. (8.40)

For X = D, the leading contributions to f11, f12, and f21 are of order 1/d2

while that of f22 is of order d0.

From (8.36) and (8.39) we have

U †B|X≈D =

(
−1+ O

(ρ
d

)2

,O
(ρ
d

)2
)

≡
(
b
†
1, b

†
2

)
, (8.41)
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which yields (8.35)

Fiz|X≈D = −2U †B(f ⊗ τ i)B†U |X≈D

= −2
(
f11b

†
1τ
ib1 + f12b

†
1τ
ib2 + f21b

†
2τ

ib1 + f22b
†
2τ

ib2

)

= −2
τ i

g+

+ O(d−4) . (8.42)

Thus

F a
iz|X≈D ≈ −2δia

1

g+
(8.43)

A rerun of the argument for the center x = −D yields

F a
iz|X≈−D ≈ −2Ria τ

i

g−
, (8.44)

since U † ∼ (0, 0,1). For asymptotic distances d/ρ≫ 1 the k = 2 configuration

splits into two independent k = 1 configurations with relative flavor orientation

Rab. This separation makes explicit the physical interpretation of the coset

parameters: ρ the instanton size, d the instanton relative separation, u the

inverse or dual separation and R their relative orientations asymptotically.

8.3 Baryons in hQCD

Baryons in hQCD are sourced by instantons in bulk. The induced action by

pertinent brane embeddings and its instanton content was discussed in [? ].

The 5D effective Yang-Mills action is the leading terms in the 1/λ expansion of

the DBI action of the D8 branes after integrating out the S4. The 5D Chern-

Simons action is obtained from the Chern-Simons action of the D8 branes by

integrating F4 RR flux over the S4, which is nothing but NC . The action

reads [28, 30]

S = SYM + SCS , (8.45)

SYM = −κ
∫
d4xdz tr

[
1

2
K−1/3

F
2
µν +M2

KKKF
2
µz

]
, (8.46)

SCS =
Nc

24π2

∫

M4×R
ω
U(Nf )
5 (A) , (8.47)
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where µ, ν = 0, 1, 2, 3 are 4D indices and the fifth(internal) coordinate z is

dimensionless. There are three things which are inherited by the holographic

dual gravity theory: MKK, κ, and K. MKK is the Kaluza-Klein scale and we

will set MKK = 1 as our unit. κ and K are defined as

κ = λNc
1

216π3
≡ λNca , K = 1 + z2 . (8.48)

A is the 5D U(Nf ) 1-form gauge field and Fµν and Fµz are the components of

the 2-form field strength F = dA − iA ∧ A. ω
U(Nf )
5 (A) is the Chern-Simons

5-form for the U(Nf ) gauge field

ω
U(Nf )
5 (A) = tr

(
AF

2 +
i

2
A

3
F − 1

10
A

5

)
, (8.49)

The exact instanton solutions in warped xM space are not known. Some

generic properties of these solutions can be inferred from large λ whatever the

curvature. Indeed, since κ ∼ λ, the instanton solution with unit topological

charge that solves the full equations of motion, follows from the YM part only

in leading order. It has zero size at infinite λ. At finite λ the instanton size

is of order 1/
√
λ. The reason is that while the CS contribution of order λ0 is

repulsive and wants the instanton to inflate, the warping in the z-direction of

order λ0 is attractive and wants the instanton to deflate in the z-direction [30,

34].

These observations suggest to use the flat space instanton configurations to

leading order in Ncλ, with 1/λ corrections sought in perturbation theory. The

latter is best achieved by rescaling the coordinates and the instanton fields as

xM = λ−1/2x̃M , x0 = x̃0 ,

AM = λ1/2
ÃM , A0 = Ã0 ,

FMN = λF̃MN , F0M = λ1/2
F̃0M . (8.50)
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The corresponding energy density associated to the action (8.47) reads [30]

E = 8π2κ

[
1

16π2

∫
d3x̃dz̃tr F̃ 2

MN

]

+
κ

λ

∫
d3x̃dz̃

[
− z̃

2

6
tr F̃ 2

ij + z̃2tr F̃ 2
iz −

1

2
(∂̃M

̂̃
A0)

2 − 1

32π2a
̂̃
A0tr F̃

2
MN

]
.

(8.51)

All quantities are dimensionless in units of MKK. The U(1) contribution
̂̃
A0

follows from the equation of motion [30]

2̃
̂̃
A0 =

1

32π2a
tr F̃ 2

MN . (8.52)

The
̂̃
A0 field can be obtained in closed form using (8.12),

̂̃
A0 =

1

32π2a
2̃ log |f | . (8.53)

According to (8.50) both the size of the instanton ρ and the distance d between

two instantons are rescaled, i.e. ρ̃ =
√
λρ and d̃ =

√
λd. While the size ρ̃ is

fixed to ρ̃0 (see below) by the energy minimization process, the distance is not.

Therefore, when discussing the energy at the subleading order, the distance d̃

is always short for
√
λd. It will be recalled whenever appropriate. The first

term in (8.51) is 8π2κ × instanton number, which is identified with the bare

soliton mass. The second term (≡ ∆E) is subleading and corresponds to the

correction to the mass or the interaction energy

∆E =
κ

λ

∫
d3x̃dz̃

[
− z̃

2

6
tr F̃ 2

ij + z̃2tr F̃ 2
iz −

1

2
(∂̃M

̂̃
A0)

2 − 1

32π2a
̂̃
A0tr F̃

2
MN

]

=
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
2̃ log |f |

)
2̃

2 log |f | , (8.54)

where we used the self-duality, tr F̃ 2
ij = 2tr F̃ 2

iz = 1
2
tr F̃ 2

MN , and integrated

(∂M
̂̃
A0)

2 by part so that it can be reduced to the form
̂̃
A0tr F̃

2
MN .
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8.3.1 One baryon

The one baryon solution is the k = 1 instanton. This is best seen through the

holonomy (8.1). Indeed from (8.14) it follows that

f−1 = ρ̃2 + x̃2
M , (8.55)

for k = 1, for which

U(~x) = eiτ ·~xF (~x) , (8.56)

with the Skyrmion profile F (~x) = π|~x|√
~x2+ρ2

. We have set X̃i = 0 by translational

symmetry. We have also set X̃4 = 0 as a finite X̃4 costs energy [30]. Thus

2̃ log f = −4
x̃2
M + 2ρ̃2

(x̃2
M + ρ̃2)2

, (8.57)

2̃
2 log f =

96ρ̃4

(x̃2
M + ρ̃2)4

. (8.58)

The mass correction ∆M ≡ ∆E, reads

∆M(ρ) =
κ

6λ

∫
d3x̃dz̃

(
z̃2 +

37π2

4

x̃2
M + 2ρ̃2

(x̃2
M + ρ̃2)2

)
96ρ̃4

(x̃2
M + ρ̃2)4

(8.59)

=
8π2κ

λ

(
ρ̃2

6
+

1

320π4a2

1

ρ̃2

)
. (8.60)

It depends on the size ρ̃ as plotted in Fig.(8.1). All integrals in ∆M are

analytical, since 2̃ log |f | and 2̃
2 log |f | are simple. For k = 2 the expressions

for ∆M are more involved and require numerical unwinding. As a prelude to

these numerics, we have carried the integrals in (8.59) both analytically and

numerically as illustrated in Fig.(8.1).

The one-instanton stabilizes for

ρ̃0 =

√
1

8π2a

√
6

5
∼ 9.64 , (8.61)

with a mass correction

∆M(ρ̃0 ∼ 9.64) ∼ 0.365 . (8.62)
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Figure 8.1: ∆M/Nc: solid (exact) and dotted (numerical).

We recall that the physical instanton size ρ0 = ρ̃0/
√
λ following the unscaling

as detailed above.

8.3.2 Two baryon

The two baryon solution corresponds to the k = 2 instanton. The correspond-

ing potential f for the k = 2 instanton is given in (8.32) and yields

tr F̃ 2
µν = 2̃

2 log |f |

= −2̃
2 log

[(
g−(x̃M) +

ρ̃2
1ρ̃

2
2 sin2 | θ|
d̃2

)(
g+(x̃M ) +

ρ̃2
1ρ̃

2
2 sin2 | θ|
d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos | θ| + 2

d̃
sin | θ|

[
θ̂1x̃0 + θ̂2x̃3 − θ̂3x̃2

])2
]
. (8.63)

Its leading contribution in (8.51) is

8π2κ

[
1

16π2

∫
d3x̃dz̃tr F̃ 2

MN

]
= 2 × 8π2κ ,

as expected by self-duality. To order Ncλ the energy of the 2-baryon system is

just 2M0 or twice the bare soliton mass. There is complete degeneracy in the

moduli parameters d̃ and θa. This degeneracy is lifted at order Ncλ
0, which is

the next contribution in (8.51). This will be detailed below.

Here we recall briefly some labeling for Skyrmion-Skyrmion interaction in

the context of the product ansat, for which most NN-potential were obtained.
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For 2-Skyrmions at large relative separation, the ansatz reads

U2(~x) = U(~x+ ~d/2)UU(~x− ~d/2)U † , (8.64)

with U , SU(2) valued as defined in (8.25). For U = 1 the 2-Skyrmions are

said to be in the defensive configuration, while for U = iτx, they are said

to be in the combed configuration. The defensive configuration is maximally

repulsive with U2(~x) = U(~x)2 for ~d = 0. The combed configuration is partially

attractive.

For two parallel instantons | θ| = 0 and the instanton action density (8.63)

reads

tr F̃ 2
µν = −2̃

2 log
[
g−(x̃M)g+(x̃M) − ρ̃2

1ρ̃
2
2

]
. (8.65)

The baryon number distribution in space follows from

B(x) =
1

16π2

∫ +∞

−∞
dz trF 2

µν , (8.66)

which integrates to 2. Since the instanton in bulk is localized near z ≈ ρ ≈
1/
√
λ, we may approximate the integral by the value of the integrand for z ≈ 0,

or B(x) ≈ tr F̃ 2
µν(z ≈ 0)/16π2. In Fig.(8.2) we show tr F̃ 2

µν for z̃ = x̃3 = 0

and ρ̃1 = ρ̃2 = 9.64 for various separations d̃ in the (x̃1, x̃2) space for two

paralell Skyrmions. The separation is in units of the size ρ̃0 = 9.64. For small

separations a narrow Skyrmion develops on top of the broad Skyrmion. The

configuration is maximally repulsive (defensive Skyrmions).

A paralell and antiparalell Skyrmion (combed Skyrmions) corresponds to

the choice θ1 = θ2 = 0 and θ3 = π
2

or | θ| = π/2. This is a π rotation along

x3 in the SO(3) notation (8.26). The resulting instanton action density (8.63)

reads

tr F̃ 2
µν = −2̃

2 log

[(
g−(x̃M ) +

ρ̃2
1ρ̃

2
2

d̃2

)(
g+(x̃M) +

ρ̃2
1ρ̃

2
2

d̃2

)
− 4

ρ̃2
1ρ̃

2
2

d̃2
x̃2

2

]
. (8.67)

In Fig.(8.3) we show the baryon density in the plane (x1, x2) for various sepa-

rations in units of the instanton size with ρ̃1 = ρ̃2 = 9.64. For large separation

two lumps form along the x1 axis. For smaller separation the two lumps are
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Figure 8.2: Defensive Skyrmions: (a) d̃ = 2, (b) d̃ =
√

2, (c) d̃ = 1, (d)

d̃ = 10−5

seen to form in the orthogonal or x2 direction. In between a hollow baryon 2

configuration is seen which is the precursor of the donut seen in the baryon

number 2 sector of the Skyrme model [131]. The concept of d̃ as a separation

at small separations is no longer physical given the separation taking place

in the transverse direction. What is physical is the dual distance u in the

transverse plane.

For two Skyrmions orthogonal to each other, the choice of angles is θ1 =

θ2 = 0, θ3 = π
4
. The corresponding action density is given by (8.63)

tr F̃ 2
µν = −2̃

2 log

[(
g−(x̃M) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)(
g+(x̃M ) + ρ̃2

2 +
ρ̃2

1ρ̃
2
2 sin2 θ3

d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos θ3 −

2x̃2

d̃
sin θ3

)2
]
, (8.68)

which is also seen to reduce to (8.65) and (8.67) for θ3 = 0 or π and θ3 = π/2

respectively. The θ3 = π
4

is our two orthogonal Skyrmions. This configuration

is shown in Fig.(8.4). For small separations a narrow Skyrmion develops on top

of a broad one, a situation reminiscent of the Defensive Skyrmion configuration
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Figure 8.3: Combed Skyrmions: (a) d̃ = 2.5, (b) d̃ = 1.7, (c) d̃ =
√

2, (d)

d̃ = 1

above. This situation can be seen in many other relative orientations and is

somehow generic.

8.4 Skyrmion-Skyrmion Interaction

The Skyrmion-Skyrmion interaction in hQCD is of order Nc/λ and it follows

from (8.54) which is the second term in (8.51). The baryon two minimum

energy configuration should follow by minimizing this contribution in the 6-

dimensional coset space ρ, d, θ. This will be reported elsewhere. Instead, we

report on the interaction energy between two Skyrmions versus their separation

for a size fixed in the baryon 1 sector and different relative orientations θa.

In the adiabatic quantization scheme, θa are raised to collective coordinates.

They are not fixed by minimization. This approach will be subsumed here.

We note that the mass shift are of order Ncλ
0.
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Figure 8.4: Orthogonal Skyrmions: (a) d̃ = 2.5, (b) d̃ = 1.7, (c) d̃ = 1.2, (d)

d̃ = 0.6.

8.4.1 General

Consider the case where θ1 = θ2 = 0 and θ3 6= 0, with fixed sizes ρ̃1 = ρ̃2 = ρ̃0.

Here ρ̃0 is the value fixed by minimization in the 1 Skyrmion sector (8.61). In

Fig. (8.5) we show the interaction energy (∆E− 2∆M)/Nc versus the relative

distance d in units of the instanton size, where

∆E =
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
2̃ log |f |

)
2̃

2 log |f | , (8.69)

|f | =

(
g−(x̃M) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)(
g+(x̃M) +

ρ̃2
1ρ̃

2
2 sin2 θ3

d̃2

)

−ρ̃2
1ρ̃

2
2

(
cos θ3 −

2x̃2

d̃
sin θ3

)2

. (8.70)

The interaction energy is repulsive for all values of θ3. The repulsion decreases

for θ3 in the range 0 → π/2, that is from the defensive to combed configuration.

The combed or θ3 = π/2 is still repulsive even for small relative distances,

as the two Skyrmions separate in the transverse direction. In Fig. (8.6) we

show separatly the interaction energy for the defensive configuration (left)
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Figure 8.5: Skyrmion-Skyrmion interaction in regular gauge.

Figure 8.6: Skyrmion-Skyrmion interaction: Defensive (left) and Combed
(right)

and combed configuration (right). The repulsion is seen to drop by 3 orders

of magnitude.

The core interaction is modified in the singular gauge as we detail in Ap-

pendix A and B. In Fig. (8.7) we show the analogue of Fig. (8.5) in the singular

gauge. The switch from repulsion to attraction follows from the switch from

repulsive Coulomb (regular gauge) to attractive dipole (singular gauge) inter-

actions. The plot is versus d̃ which is the rescaled distance in units of the

rescaled size ρ̃. In the unscaled distance d, the dipole attraction is of order

Nc/λ
4 and subleading.

8.4.2 Interaction at Large Separation

To understand the nature of the Skyrmion-Skyrmion interaction to order Nc/λ

as given by the classical instantons in bulk, we now detail it for large separa-
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Figure 8.7: Skyrmion-Skyrmion interaction in singular gauge

tions between the instanton cores, i.e. d ≫ ρ but still smaller than the pion

range (which is infinite for massless pions). We recall that the interaction

follows from the subleading contribution in (8.51), which can be split

∆E[f ] = Ncb (C[f ] + cD[f ]) , (8.71)

C[f ] ≡
∫
d3x̃dz̃ z̃2

2̃
2 log |f | , (8.72)

D[f ] ≡ −
∫
d3x̃dz̃ ( 2̃

2 log |f | ) 1

2̃
( 2̃

2 log |f | ) , (8.73)

with b = 1
6·216π3 and c ≡ 37π2

24 .

For large separations between the cores or d≫ ρ, we have from (8.34)

log |f−+| = − log

[
(g−g+)

(
1 + A

g− + g+

g−g+

+
A2 − B2

g−g+

)]

≈ − log g− − log g+ − A
g− + g+

g−g+

+
B2

g−g+

, (8.74)

after dropping the A2 contribution as it is subleading in ρ/d. We note that

after fixing the size of the single instanton to ρ̃0 and unscaling the distance d̃

as we indicated above, the expansion ρ̃/d̃ is an expansion in ρ̃0/(
√
λd).

The Skyrmion-Skyrmion core interaction follows from

V = ∆E[f−+] − ∆E[f−] − ∆E[f+] , (8.75)

after subtraction of the classical self-energies which are of order Ncλ
0. The
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C[f ] contribution to the interaction reads

VC = sin2 | θ|VCα + sin2 | θ| θ̂2
1VCβ + sin2 | θ| (θ̂2

2 + θ̂2
3)VCγ + cos2 | θ| VCδ , (8.76)

with

VCα ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

2̃
2

(
g− + g+

g−g+

)
, (8.77)

VCβ ≡ Ncb
ρ̃4

d̃2

∫
d̃3x̃dz̃ z̃2

2̃
2

(
4z̃2

g−g+

)
, (8.78)

VCγ ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

2̃
2

(
4x̃2

2

g−g+

)
, (8.79)

VCδ ≡ Ncb
ρ̃4

d̃2

∫
d3x̃dz̃ z̃2

2̃
2

(
1

g−g+

)
, (8.80)

where the cross term in B2 drops by parity and we have rescaled the variable

x̃M/d̃→ x̃M . Thus g± → x̃2
α +
(
x̃1 ± 1

2

)2
+ ρ̃2/d̃2. All integrals are understood

in dimensional regularization that preserves both gauge and O(4) symmetry.

The results are

VCα = −VCβ = −VCγ = Ncb
ρ̃4

d̃2
16π2 , VCδ = 0 . (8.81)

The D[f ] contribution to the interaction reads

VD ≈ −2bcNc

∫
( 2̃

2 log g− )
1

2̃
( 2̃

2 log g+ ) . (8.82)

The Coulomb propagator 1/2̃ = −1/(4π2|x̃+−x̃−|2) in 4-dimensions. At large

separations |x̃+ − x̃−| ≈ d̃ and (8.82) simplifies to

VD ≈ 128π2 bcNc
1

d2

∣∣∣∣
1

16π2

∫
d3x̃dz̃ 2̃

2 log g

∣∣∣∣
2

=
27πNc

2

1

d̃2
, (8.83)

where the || integrates to the baryon charge 1. VD captures the Coulomb

repulsion between two unit baryons in 4 dimensions in the regular gauge. This

is not the case in the singular as we show in Appendix B.

We note that after unscaling d̃ =
√
λd, VD ≈ Nc/λ. In regular gauge,

this monopole core repulsion is the Coulomb repulsion between 4-dimensional
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Coulomb charges. We show in Appendix C that this is the natural extension

of the 3-dimensional omega repulsion at shorter distances in holography. The

repulsion dominates the many-body problem at finite chemical potential as

discussed recently in [15, 17]. Indeed, for baryonic matter at large baryonic

density nB, the energy is dominated by the Coulomb repulsion (8.83). The

corresponding effective interaction is

Veff =
1

2

∫
~dx ~dy

(
φ+φ

)
(~x)VD(~x− ~y)

(
φ+φ

)
(~y) , (8.84)

leading to an energy per volume of order Nc n
5/3
B /λ as in [17].

8.5 Nucleon-Nucleon Interaction: Core

At large separation, the nucleon-nucleon core interaction can be readily ex-

tracted from the Skyrmion-Skyrmion core interaction (8.76) as it is linear in

the SO(3) rotation R. Indeed, using the standard decomposition [121]

Rab =
1

3
(Rab

T + δabRS) , (8.85)

with

RS = trR , Rab
T = 3Rab − δabtrR , (8.86)

the spin RS and tensor RT contributions respectively, we may decompose the

core potential as

V = V1 + VSRS + V ab
T Rab

T . (8.87)

The scalar V1, spin VS and tensor VT contributions can be unfolded by a

pertinent choice of orientations of the core Skyrmion-Skyrmion interaction. In

general,

V = V1 + VS
(
4 cos2| θ| − 1

)
+ V ab

T

[(
6θ̂aθ̂b − 2δab

)
sin2| θ| + 3ǫabcθ̂c sin 2| θ|

]
,
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after using the SO(3) parametrization (8.26)

Rab = δab cos 2| θ| + 2θ̂aθ̂b sin2| θ| + ǫabcθ̂c sin 2| θ| . (8.88)

The axial symmetry V (θ1, θ2, θ3) = V (θ1, θ3, θ2) implies that the tensor

components of the core satisfy V 22
T = V 33

T , V 12
T = V 31

T , and V 13
T = V 21

T . Thus,

V is reduced to

V (θ1, θ2, θ3) = V1 + VS
(
4 cos2| θ| − 1

)
+ (V 11

T − V 22
T )(6θ̂2

1 − 2) sin2| θ|
+(V 12

T + V 13
T )(6θ̂1(θ̂2 + θ̂3)) sin2| θ|) + (V 12

T − V 13
T )(3(θ̂2 + θ̂3) sin 2| θ|)

+(V 23
T + V 32

T )(6θ̂2θ̂3 sin2| θ|) + (V 23
T − V 32

T )(3θ̂1 sin 2| θ|) . (8.89)

In particular,

V (0, 0, 0) = V1 + 3VS , V (0, 0, π/2) = V1 − VS − 2(V 11
T − V 22

T ) , (8.90)

V (π/2, 0, 0) = V1 − VS + 4(V 11
T − V 22

T ) , (8.91)

so that

V1 =
1

4
[V (0, 0, 0) + V (0, 0, π/2) + V (0, π/2, 0) + V (π/2, 0, 0)] , (8.92)

VS =
1

4

[
V (0, 0, 0) − 1

3
(V (0, 0, π/2) + V (0, π/2, 0) + V (π/2, 0, 0))

]
,(8.93)

V 11
T − V 22

T =
1

6
[V (π/2, 0, 0)− V (0, 0, π/2)] . (8.94)

Using (8.77)-(8.80) we deduce the scalar, spin and tensor core contributions

in the form

V1 =
1

4
(3VCα + VCβ + 2VCγ + VCδ) + VD = VD ,

VS =
1

4

(
−VCα −

1

3
VCβ −

2

3
VCγ + VCδ

)
= 0 ,

V 11
T − V 22

T =
1

6
(VCβ − VCγ) = 0 .

The off-diagonal tensor VT core contribution vanishes. This is clear from (8.76).
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Figure 8.8: V1, VS, VT in regular gauge

Indeed (8.76) can be decomposed as

V = sin2 | θ| VCα + sin2 | θ| θ̂2
1VCβ + sin2 | θ| (θ̂2

2 + θ̂2
3)VCγ + cos2 | θ|VCδ + VD

= sin2 | θ| (VCα + VCγ) + sin2 | θ| θ̂2
1(VCβ − VCγ) + cos2 | θ|VCδ + VD

=
1

4
(3VCα + VCβ + 2VCγ + VCδ) + VD

+
1

4

(
−VCα −

1

3
VCβ −

2

3
VCγ + VCδ

)(
4 cos2| θ| − 1

)

+
1

6
(VCβ − VCγ)(6θ̂

2
1 − 2) sin2| θ| , (8.95)

in agreement with (8.95). In summary

V1 = VD , (8.96)

and all others vanish. For general distances, we plot V1, VS and VT with (8.92)-

(8.94) in Fig.(8.8) in the regular gauge. The relative separation d̃ is in units

of the core size ρ̃ = 9.64.

In the singular gauge, the VC core contribution to the nucleon-nucleon

interaction remains unchanged while the VD contribution changes. As a result,

the spin and tensor channels remain the same for both regular and singular

gauges. The central or scalar channel V1 = VD changes from repulsive Nc/λd̃
2

(regular) to attractive −Nc/λ
4d̃8 (singular) asymptotically. The flip is from

monopole to dipole as we detail in Appendix B. The short distance repulsion

in the regular gauge is the 4-dimensional extension of the 3-dimensional omega
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Figure 8.9: V1, VS, VT in singular gauge

repulsion. In Fig.(8.9) we show V1, VS and VT with (8.92)-(8.94) and (8.164)

in the singular gauge.

8.6 Nucleon-Nucleon Interaction: Cloud

To assess the nucleon-nucleon interaction beyond the core contribution we need

to do a semiclassical expansion around the k = 2 configuration, thereby in-

cluding the effects of pions and vector mesons as quantum fluctuations around

the core. We refer to these contributions as the cloud. The semiclassical ex-

pansion around the k = 2 configuration parallells entirely the same expansion

around the k = 1 instanton as detailed in [19]. The expansion will be carried

out in the axial gauge Az = 0 for the fluctuations. This gauge has the merit

of exposing explicitly the pion-nucleon coupling. All cloud calculations will be

carried with the background k = 2 instanton in the regular gauge. Some of

the results in the singular gauge are reported in Appendix.

8.6.1 Pion

In the axial gauge Az = 0 for the fluctuations, the pion coupling to the flavor

instanton is explicit in bulk. Indeed, following the general expansion in [19]

we have for the pion-instanton linear coupling

S = −κ
∫
d4xdz∂z

(
KF a

zµC
µ,a
)
, (8.97)
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with the explicit pion field

Cµ,a ≡ 1

fπ
∂µΠaψ0 , ψ0 =

2

π
arctan z , (8.98)

and fπ = 4κ/π. As noted in [19] all linear meson couplings to the flavor instan-

ton are boundary-like owing to the soliton character of the k = 2 instanton.

Since KFziψ0 is odd in z, for a static instanton,

S = κ

∫
d4xF a

ziKψ0

∣∣∣
B

∂iΠ
a

fπ
. (8.99)

Here B = ±zc refers to boundary of the core when using the non-rigid quanti-

zation scheme. To avoid double counting, for z < zc the mesons are excluded

in the holographic direction. zc plays the role of the bag radius. It will be

reduced to zc → 0 at the end of all calculations, making the non-rigid quanti-

zation constraint point-like.

The linear pion-2-instanton vertex (8.99) contributes to the energy through

second order perturbation. Specifically,

VΠ =
4κ2K(zc)

2ψ0(zc)
2

2f 2
π

∫
d~xd~yF a

iz(~x, zc)〈∂iΠ(~x)a∂jΠ(~y)b〉F b
jz(~y, zc)

=
κ2K(zc)

2ψ0(zc)
2

2πf 2
π

∫
d~xd~yF a

iz(~x, zc)∂i∂j
1

|~x− ~y|F
a
jz(~y, zc) , (8.100)

for massless pions. At large separations, the field strength F a
iz splits into two

single instantons of relative distance d and flavor orientation R. At large

relative separation d, (8.100) simplifies to

VΠ ≈ 9

16πf 2
π

JaiA (0)DijJ
Raj
A (0) , (8.101)

with Dij = (3d̂id̂j− δij)/d3. The spatial component of the axial vector current

JA is unrotated while JRA is rotated. From Appendix D, its zero momentum

limit reads

JaiA (0) ≡ JaiA (~q = 0) = −4

3
κK(zc)ψ0(zc)

∫
d~xF a

iz(~x, zc) . (8.102)
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The projected potential VΠ yields

〈s1t1s2t2|VΠ|s1t1s2t2〉 =
9

16πf 2
π

〈s1t1|JaiA (0)|s1t1〉Dij〈s2t2|JRAjA (0)|s2t2〉

≡ 1

16π

(
gA
fπ

)2
1

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2) , (8.103)

where gA = 32κπρ2/3 is the axial-vector charge of the nucleon as detailed in

Appendix D. gA ≈ Ncλ
0 in hQCD.

In the Az = 0 gauge, the linear pion-2-instanton vertex (8.97) yields a

tensor contribution to the nucleon-nucleon potential

VT,Π =
1

16π

(
gA
fπ

)2
1

d3
. (8.104)

This is in agreement with the pseudo-vector one-pion exchange potential

VT,Π =
(gπNN/2M)2

4π

1

d3
, (8.105)

if we identify

gπNN
MN

=
gA
fπ

. (8.106)

This is just the Goldberger-Treiman relation which is also satistified by the

holographic construction in the Az = 0 gauge and for massless pions.

In reaching (8.103) and the relation (8.106) there is a subtlety. Indeed in

(8.101) the pion propagator Dij is supposed to be longitudinal and the axial

vector source J ijA transverse, so that the contraction vanishes. The subtlety

arises from the ambiguity in the axial vector source at zero momentum and

for massless pions as discussed in Appendix D. The contraction is ambiguous

through 0/0. The ambiguity is lifted by the order of limits detailed in Appendix

D, which effectively amounts to a longitudinal component of the axial vector

source at zero momentum. This result is independently confirmed by using

the strong coupling source theory discussed in Appendix C.

Finally, the pion coupling (8.99) in the axial gauge is pseudoscalar and

strong and of order
√
Nc/λ. The reader may object that this conclusion maybe

at odd with naive 1/Nc power counting whereby the pseudovector coupling is
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of order
√
Nc/Nc ≈ 1/

√
Nc with the extra 1/Nc suppression brought about by

the γ5 in the nucleon axial vector source [121]. In strongly coupled models such

as hQCD the nucleon source is of order N0
c not 1/Nc, and yet chiral symmetry

is fully enforced in the nucleon sector. hQCD is a chiral and dynamical version

of the static Chew model of the ∆ for strong coupling [132]. Also, the reader

may object that the one-pion iteration which is producing a potential of order

Nc/λ, may cause an even stronger correction by double iteration of order

(Nc/λ)2 and so on. This does not happen though, since the direct and crossed

diagram to order (Nc/λ)2 cancel at strong coupling. The same cancellation

is at the origin of unitarization in π N → π N scattering (Bhabha-Heithler

mechanism).

8.6.2 Axials

The linear vertex (8.97) also couples vector and axial vector mesons to the

2-instanton solution at the core in bulk. For instance, the axial-vector meson

contribution follows from (8.97) by inserting

Cµ,a ≡ aa,nµ ψ2n , (8.107)

so that

S = 2κ

∫
d4x

(
KF

b,zµab,nµ ψ2n

) ∣∣∣
z=zc

. (8.108)

The sum over n is subsumed. We have used the fact that KFziψ2n is odd in

z (axial exchange) and that the surface contribution at z = ∞ is zero since

F b
zν ∼ δ(z) is localized in bulk to leading order in 1/λ.

In second order perturbation, (8.108) contributes a static potential

VA = 2κ2K(zc)
2ψ2n(zc)ψ2m(zc)

∫
d~xd~yF a

iz(~x, zc)∆
mn,ab
ij F b

jz(~y, zc) . (8.109)

At large separations, the field strength F a
iz splits into two single instantons

of relative distance d and flavor orientation R = RT
1R2. At large relative
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separation d, (8.109) simplifies to 2

VA ≈ 9

16π

∑

n

JaiA (0)

(
ψ2n

ψ0

)2(
−δij +

∂i∂j
m2

2n

)
e−m2nd

d
JRajA (0)

=
9

16π

∑

n

JaiA (0)

(
ψ2n

ψ0

)2 [(
1 +

2

m2nd
+

3

m2
2nd

2

)
d̂id̂j

−δij
(

1 +
1

m2
2nd

2

)]
e−m2nd

d
JRajA (0) , (8.110)

where JaiA (0) is defined in (8.102) and the spatial component of the axial vector

current JA is unrotated while JRA is rotated. The projected potential VA yields

〈s1t1s2t2|VA|s1t1s2t2〉

≈ g2
A

16π

∑

n

(
ψ2n

ψ0

)2

e−m2nd

(
−1

d
− 1

m2
2nd

3

)
(~σ1 · ~σ2) (~τ1 · ~τ2)

+
g2
A

16π

∑

n

(
ψ2n

ψ0

)2

e−m2nd

(
1

d
+

2

m2nd2
+

3

m2
2nd

3

)
(~σ1 · d̂)(~σ2 · d̂) (~τ1 · ~τ2)

≈ g2
A

16π

∑

n

(
ψ2n

ψ0

)2
e−m2nd

d

[
(~σ1 · d̂)(~σ2 · d̂) − (~σ1 · ~σ2)

]
(~τ1 · ~τ2) ,

which contributes to the spin VS,A and tensor part VT,A of the NN interaction.

Specifically,

VS,A ≈
∑

n

G2
SA,2n

e−m2nd

4π d
, VT,A ≈

∑

n

G2
TA,2n

e−m2nd

4π d
, (8.111)

GSA,2n ≡ −gAψ2n√
6ψ0

∼ gAm2n/
√
κ , GTA,2n ≡ gAψ2n√

12ψ0

∼ gAm2n/
√
κ ,

with GSA,2n ≈
√
Nc/λ and GTA,2n ≈

√
Nc/λ the spin and tensor couplings of

the tower of axials to the nucleon.

8.6.3 Vectors

For the vector mesons the time component F0z contribution is leading in Nc

compared to the space component Fiz. This is the opposite of the axial vector

2For simplicity we often omit |z=zc
and ψn ≡ ψn(zc).
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contribution. For the SU(2) part (rho, rho’, ...), we have

VV =
1

2π

∑

n

κ2K(zc)
2ψ2

2n−1(zc)

∫
d~xd~yF a

0z(~x, zc)
e−m2n−1|~x−~y|

|~x− ~y| F a
0z(~y, zc)

≈ 1

4π

∑

n

Jaψ2
2n−1

e−m2n−1d

d
JRa , (8.112)

where Ja ≡
∫
d~x2κKF a

z0

∣∣∣
z=zc

is the unrotated angular momentum in [? ]. We

note that R = RT
1R2 and that Rab

2 J
b = −Ia2 where Ia2 is the unrotated isovector

charge of the nucleon labelled 2. The same holds for label 1. Thus

〈s1t1s2t2|VV |s1t1s2t2〉 ≈
∑

n

1

4
ψ2

2n−1

e−m2n−1d

4π d
(~τ1 · ~τ2) , (8.113)

which is seen to contribute to the isospin part of the central potential

V −
1,V ≈

∑

n

G2
1V,2n−1

e−m2n−1d

4π d
, (8.114)

with G1V,2n−1 = ψ2n−1/2 ≈ 1/
√
Ncλ. This contribution is subleading in the

potential.

Similarly, the U(1) vector contribution part (omega, omega’, ...) reads

V
bV ≈ N2

c

16π

∑

n

Bψ2
2n−1

e−m2n−1d

d
B =

N2
c

4

∑

n

ψ2
2n−1

e−m2n−1d

4πd
, (8.115)

where B ≡
∫
d~x 4

Nc
κKF̂z0

∣∣∣
z=zc

is the baryon number introduced in [19]. This

contribution to the central potential is leading

V1,bV ≡ V
bV ≈

∑

n

G2
bV ,2n−1

e−m2n−1d

4π d
, (8.116)

G
bV ,2n−1 ≡

Nc

2
ψ2n−1 , (8.117)

with G
bV ,2n−1 ≈

√
Nc/λ.

For completeness, we quote the spatial contributions from the vectors, both

of which are subleading in the potential. The SU(2) vector meson contribution
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is

V −
V = 2κ2K(zc)

2ψ2n−1(zc)ψ2m−1(zc)

∫
d~xd~yF a

iz(~x, zc)∆
mn,ab
ij F b

jz(~y, zc) .(8.118)

At large separations, the field strength F a
iz splits into two single instantons

of relative distance d and flavor orientation R = RT
1R2. At large relative

separation d, (8.109) simplifies to

V −
V ≈ 9

16π

∑

n

JaiV (0) (ψ2n−1)
2

(
−δij +

∂i∂j
m2

2n−1

)
e−m2n−1d

d
JRajA (0)

=
9

16π

∑

n

JaiV (0) (ψ2n−1)
2

[(
1 +

2

m2n−1d
+

3

m2
2n−1d

2

)
d̂id̂j

−δij
(

1 +
1

m2
2n−1d

2

)]
e−m2n−1d

d
JRajV (0) ,(8.119)

where JaiV (0) ≡ −(4/3)κK
∫
d~xF a

iz and the spatial component of the vector

current JV is unrotated while JRV is rotated. The projected potential V ′
V yields

〈s1t1s2t2|V −
V |s1t1s2t2〉

≈ g2
V

16π

∑

n

(ψ2n−1)
2 e−m2n−1d

(
−1

d
− 1

m2
2n−1d

3

)
(~σ1 · ~σ2) (~τ1 · ~τ2)

+
g2
V

16π

∑

n

(ψ2n−1)
2 e−m2n−1d

(
1

d
+

2

m2n−1d2
+

3

m2
2n−1d

3

)

(~σ1 · d̂)(~σ2 · d̂) (~τ1 · ~τ2)

≈ g2
V

16π

∑

n

(ψ2n−1)
2 e

−m2n−1d

d

[
(~σ1 · d̂)(~σ2 · d̂) − (~σ1 · ~σ2)

]
(~τ1 · ~τ2) ,

(8.120)

with JaiV (0) = gV Rai. To leading order gV = O(1/Nc),

JaiV (0) =
2

3

∫
d~xκKF a

zi(~x, z)1

∣∣∣∣
z=B

=
2

3

∫
d~xκK R

ai 4ρ2

(ξ2 + ρ2)2
1

∣∣∣∣
z=B

= 0 ,

since KF a
zi(~x, z)1 is even in z. (8.120) contributes to both the spin V −

S,V and
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tensor part V −
T,V of the NN interaction,

V −
S,V ≈ 1

4π

∑

n

G2
SV,2n−1

e−m2n−1d

d
, V −

T,V ≈ 1

4π

∑

n

G2
TV,2n−1

e−m2n−1d

d
,

GSV,2n ≡ −gV ψ2n−1√
6

, GTV,2n ≡ gV ψ2n−1√
12

. (8.121)

The holographic description of the nucleon-nucleon potential is consistent with

the meson-exchange potentials in nuclear physics. Holography allows a sys-

tematic organization of the NN potential in the context of semiclassics, with

the NN interaction of order Nc/λ in leading order.

8.7 Holographic NN potentials

In general, the NN potential in holography is composed of the core and the

cloud contributions to order Nc/λ. For non-asymptotic distances, both the

core and cloud contributions have a non-linear dependence on the rotation

matrix R(U), making the projection on the NN channel involved. Formally,

the potential (core plus cloud) can be expanded using the irreducible repre-

sentations of SU(2). Specifically

V (d, U) =

∞∑

j=0

+j∑

m=−j
Vjm(d)Dj

mm(U) , (8.122)

where Dj
m,m′(U) are U-valued Wigner functions. For k = 2 the azimuthal

symmetry restrics m′ = m with Vjm = Vj,−m. In particular

Vjm(d) =
2π2

(2j + 1)

∫
dU V (d, U)Dj ∗

m,m(U) . (8.123)

The projection on the NN channel follows by sandwiching (8.122) between the

normalized NN states D1/2(1)⊗D1/2(2). While straightforward, this procedure

is involved owing to the complicated nature of the k = 2 instanton both in the

core and in the cloud on R(U). In general

V (d, U) = Vcore(d, U) + Vcloud(d, U) . (8.124)
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Vcore(d, U) is defined as

Vcore(d, U) ≡ ∆E[f−+] − ∆E[f−] − ∆E[f+] ,

∆E[f ] =
κ

6λ

∫
d3x̃dz̃

(
z̃2 − 37π2

24
2̃ log |f |

)
2̃

2 log |f | , (8.125)

where

log |f−+| ≡ − log
[
(g− + A) (g+ + A) − B2

]
, (8.126)

log |f±| = − log g± , (8.127)

g± =
∑

α=2,3,4

x̃2
α +

(
x̃1 ±

d̃

2

)2

+ ρ̃2 , A =
ρ̃4 sin2 | θ|

d̃2
, (8.128)

B = ρ̃2

(
cos | θ| + 2

d̃
sin | θ|

[
θ̂1z̃ + θ̂2x̃3 − θ̂3x̃2

])
. (8.129)

Vcloud(d, U) is defined as

Vcloud(d, U) ≡ 2κ2K2
∑

n

ψ2
n

∫
d~xd~y

[
F a
iz(xM ;−+)∆ij

n (~x− ~y)F a
iz(yM ;−+) + F̂0z(xM ;−+)∆00

n (~x− ~y)F̂0z(yM ;−+)

−2F a
iz(xM ;−)∆ij

n (~x− ~y)F a
jz(yM ;−) − 2F̂0z(xM ;−)∆00

n (~x− ~y)F̂0z(yM ;−)
]∣∣∣
z=zc

,

where F a
iz(xM ;−) and F a

iz(xM ;−+) are the field strengths of the k = 1 and

the k = 2 SU(2) instanton respectively,

F a
iz(xM ;−) = −2δaiτ

a ρ2

(ξ2
− + ρ2)2

, (8.130)

F a
iz(xM ;−+) = −2δaiU

†
B (f−+ ⊗ τa) B

†U , (8.131)

B
† =

(
0 −1 0

0 0 −1

)
, f−1

−+ =

(
g− + A B

B g+ + A

)
,

g± ≡ x2
α +

(
x1 ±

d

2

)2

+ ρ2 , x2
α ≡ x2

2 + x2
3 + x2

4 ,

A ≡ ρ4 sin2 | θ|
d2

, B ≡ ρ2

(
cos | θ| + 2

d
sin | θ|

[
θ̂1z + θ̂2x3 − θ̂3x2

])
,

(
λ†1

d
2
τ 1 − x† ρ2

d
sin| θ| θ̂aτaτ 1

λ†2
ρ2

d
sin| θ| θ̂aτaτ 1 −d

2
τ 1 − x†

)
U = 0 , U †U = 1 .
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The U(1) fields F̂z0(xM ;−+) = ∂zÂ0(xM ;−+) and F̂z0(xM ;−) = ∂zÂ0(xM ;−)

follow from

Â0(xM ;−+) =
1

32π2a
2 log |f−+| , Â0(xM ;−) =

1

32π2a
2 log |f−| . (8.132)

The propagators are defined as

∆ij
n (~x− ~y) = (−δij + ∂̂i∂̂j)

e−mn|~x−~y|

4π |~x− ~y| , ∆00
n (~x− ~y) =

e−mn|~x−~y|

4π |~x− ~y| . (8.133)

If we were to saturate (8.122) by j = 0, 1 which is exact asymptotically as

we have shown both for the core and cloud, then the projection procedure is

much simpler. In particular, the NN potential simplifies to

VNN = V +
1 + ~τ1 · ~τ2 V −

1 + ~σ1 · ~σ2

(
V +
S + ~τ1 · ~τ2 V −

S

)
(8.134)

+
(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

) (
V +
T + ~τ1 · ~τ2 V −

T

)
, (8.135)

with the core contributions

V +
1,core =

1

4
[V (0, 0, 0) + 2V (0, 0, π/2) + V (π/2, 0, 0)] , (8.136)

V −
S,core =

1

4

[
V (0, 0, 0) − 2

3
V (0, 0, π/2) − 1

3
V (π/2, 0, 0)

]
, (8.137)

V −
T,core = V 11

T − V 22
T =

1

6
[V (π/2, 0, 0)− V (0, 0, π/2)] , (8.138)

as detailed above. The cloud contributions V1, VS and VT remain the same.

At large distances d the core contribution is dominant and repulsive in the

regular gauge (8.83)

V +
1,core ≈

27πNc

2λ

1

d2
, (8.139)

and subdominant and attractive in the singular gauge (8.166)

V +
1,core ≈ −81πNc

λ4

ρ6

d8
. (8.140)
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The dominant cloud contributions are

V +

1,bV
≈
∑

n

G2
1bV ,2n−1

e−m2n−1d

4π d
, G1bV ,2n−1 ≡

Nc

2
ψ2n−1 ∼

√
Nc

λ
,

V −
S,A ≈

∑

n

G2
SA,2n

e−m2nd

4πd
, GSA,2n ≡ −gAψ2n√

6ψ0

∼
√
Nc

λ
,

V −
S,V ≈

∑

n

G2
SV,2n−1

e−m2n−1d

4πd
, GSV,2n ≡ −gV ψ2n−1√

6
∼ 1√

λNc

V −
T,A ≈

∑

n

G2
TA,2n

e−m2nd

4πd
, GTA,2n ≡ gAψ2n√

12ψ0

∼
√
Nc

λ
,

V −
T,V ≈

∑

n

G2
TV,2n−1

e−m2n−1d

4πd
, GTV,2n ≡ gV ψ2n−1√

12
∼ 1√

λNc

,

V −
T,Π ≈ 1

16π

(
gA
fπ

)2
1

d3
∼ Nc

λ
.

from (8.104), (8.111), (8.116), and (8.121). To order Nc/λ we note that V −
1 =

V +
S = V +

T = 0.

The relative vector-to-pion contribution to the tensor potential, can be

assessed asymptotically. For a realistic estimate, we make the pion massive.

Thus

V −
T,A

V −
T,Π

≈
1
4π
G2
TA,2e

−m2d

1
48π

(
gAmπ

fπ

)2

e−mπd

≈
(
fπψ2

mπψ0

)2

e(mπ−m1)d ≈ 60.8 e(mπ−m1)d

with ψ2/ψ0 ∼ 11.4, fπ ∼ 93MeV and mπ ∼ 136MeV.

8.8 Conclusions

We have extended the holographic description of the nucleon suggested in [30]

to the two nucleon problem. In particular, we have shown how the exact k = 2

ADHM instanton configuration applies to the NN problem. The NN potential

is divided into a short distance core contribution and a large distance cloud

contribution that is meson mediated. This is a first principle description of

meson exchange potentials sucessfully used for the nucleon-nucleon problem

in pre-QCD [133].
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The core contribution in the regular gauge is of order Nc/λ. It is Coulomb

like in the central channel. Remarkably, the repulsion is 4-dimensional Coulomb,

a hallmark of holography. This repulsion dominates the high baryon den-

sity problem in holography as discussed recently in [15, 17]. The dominant

Coulomb repulsion is changed to subdominant dipole attraction for instantons

in the singular gauge.

We have shown in the context of semiclassics, that the meson-instanton

interactions in bulk is strong and of order
√
Nc/λ. In the Born-Oppenheimer

approximation they contribute to the potentials to order Nc/λ. These cloud

contributions dominate at large distances. The central potential is dominated

by a tower of omega exchanges, the tensor potential by a tower of pion ex-

changes, while the spin and tensor potentials are dominated by a tower of

axial-vector exchanges. The isovector exchanges are subdominant at large Nc

and strong coupling. Holography, fixes the potentials at intermediate and

short distances without recourse to adhoc form factors [133] or truncation as

in the Skyrme model [? ].

The present work provides a quantitative starting point for an analysis of

the NN interaction in strong coupling and large Nc. For a realistic comparison

with boson exchange models, we need to introduce a pion mass. It also offers

a systematic framework for discussing the deuteron problem, NN form factors

and NN-meson and NN-photon emissions in the context of holography. We

plan to address some of these issues next.

8.9 Appendix

8.9.1 Strong Source Theory

In this Appendix, we check our cloud calculation in the singular gauge using

the strong coupling source theory used for small cores in [132, 134] and more

recently in holography in [32]. This method provides an independent check on

our semiclassics in the k = 2 sector.

The energy in the leading order of λ is

E = κ tr

∫
d3xdz

(
1

2
K−1/3F 2

ij +KF 2
iz

)
+
κ

2

∫
d3xdz

(
1

2
K−1/3F̂ 2

ij +KF̂ 2
iz

)
.

200



where, in the region 1 ≪ ξ,

Â0 ≈ − 1

2aλ
(G− +G+) ,

Aai ≈ −2π2ρ2
((
ǫiaj∂+j − δia∂+Z

)
G+ +Rab

(
ǫibj∂−j − δib∂−Z

)
G−
)
,

Aaz ≈ −2π2ρ2
(
∂+aH+ +Rab∂−bH−

)
,

with

G± ≈ κ

∞∑

n=1

ψn(z)ψn(±Z)Yn

(∣∣~x− ~X±
∣∣
)
,

H± ≈ κ

∞∑

n=0

φn(z)φn(±Z)Yn

(∣∣~x− ~X±
∣∣
)
,

φ0(z) ≡
1√

κπK(z)
, φn(z) =

1√
λn
∂zψn(z) (n = 1, 2, 3, · · · ) ,

Yn

(∣∣~x− ~X±
∣∣
)
≡ −e

−
√
λn

∣∣~x− ~X±

∣∣

4π
∣∣~x− ~X±

∣∣ , ∂±a ≡
∂

∂Xa
±
, ∂±Z ≡ ∂

∂Z±
.

Pion

The pion contribution stems from

EΠ =
κ

2

∫
d3xdzK (∂iA

a
z) (∂iA

a
z) , (8.141)

where

Aaz ≈ −2π2ρ2
(
∂+aH+ +Rab∂−bH−

)
, (8.142)

with φ0(z) only. After subtracting the self-energy the pion interaction energy

(VΠ) is

VΠ = κ
(
2π2ρ2

)2
Rab

∫
d3xdzK (∂i∂+aH+) (∂i∂−bH−)

≈ 1

2 32π

Ncλρ
4

d3
Rab

(
d̂ad̂b −

δab
3

)
, (8.143)
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after using 2∂a = −∂±a and dropping the surface terms. ~X+ = − ~X− =
~d
2

and

Zc ≈ 0. The matrix element of (8.143) in the 2-nucleon state is

〈s1s2t1t2|VΠ|s1s2t1t2〉 =
1

2 35π

Ncλρ
4

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2)

≡ 1

4M2

g2
πNN

4π

1

d3

(
3(~σ1 · d̂)(~σ2 · d̂) − ~σ1 · ~σ2

)
(~τ1 · ~τ2) , (8.144)

after using 〈s1s2t1t2|Rab|s1s2t1t2〉 = 1
9
σa1σ

b
2~τ1 ·~τ2. The last equality follows from

the canonical π N pseudovector coupling. Thus

(gπNN
M

)2

=
8Ncλρ

4

35
=

(
ĝA
fπ

)2

, (8.145)

where ĝA = 64
3
κπρ2 obtained in [32], and f 2

π = 4κ/π. This is just the

Goldberger-Treiman relation following from the NN interaction using the strongly

coupled source approximation [32]. As noted in Appendix D, our normaliza-

tion of the axial-vector current appears to be twice the normalization of the

same current used in [32].

Omega

The ω contribution stems from

E
bV =

κ

2

∫
d3xdzK

(
∂zÂ0

)(
∂zÂ0

)
, (8.146)

where

Â0 ≈ − 1

2aλ
(G− +G+) . (8.147)

After subtracting the self-energy the ω interaction energy (V
bV ) is

V
bV =

κ2ψn(Z+)ψn(Z−)m2
2n−1

(2aλ4π)2

∫
d~x

e−m2n−1(|~x− ~X−|+|~x− ~X+|)

|~x− ~X−||~x− ~X+|
(8.148)

≈ N2
c

(8π)2
ψ2
nm

2
2n−1

∫
dr(4πr2)

e−m2n−1(r+d)

rd
(8.149)

≈ Nc

4

∑

n

ψ2
2n−1

e−m2n−1d

4πd
, (8.150)
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where we used

κ

∫
dzK(z)∂zψn(z)∂zψm(z) = m2

2n−1δnm . (8.151)

The result is in agreement with (8.115). At large separations, the strongly cou-

pled source theory and the semiclassical quantization yields the same results.

This outcome is irrespective of the use of the singular gauge (strong coupling)

or regular gauge (semiclassics). This a consequence of gauge invariance.

At short distances, gauge invariance is upset by the delta-function singu-

larities present in the singular gauge. Indeed, for ρ ≪ ξ ≪ 1 the omega

contribution stems from

E
bV =

κ

2

∫
d3xdzK

(
∂zÂ0

)(
∂zÂ0

)
, (8.152)

with now K ≈ 1 and

Â0 ≈ − 1

2aλ
(Gflat

− +Gflat
+ ) , (8.153)

Gflat
± = − 1

4π2

1

ξ2
±
, (8.154)

from [32]. After subtracting the self-energy the ω interaction energy (V ′
bV
) is

V ′
bV

=
κ

(2aλ4π)2

∫
d~xdz

4z2

(
(x1 − d/2)2 + x2

α

)2 (
(x1 + d/2)2 + x2

α

)2

=
27Nc

2πλd2

∫
d~xdz

z2

(
(x1 − 1/2)2 + x2

α

)2 (
(x1 + 1/2)2 + x2

α

)2

≈ 27πNc

4λd2
. (8.155)

We have rescaled the variable xM → xM/d in the second line and carried

numerically the integration through

∫
d~xdz

z2

(
(x1 − 1/2)2 + x2

α

)2 (
(x1 + 1/2)2 + x2

α

)2 ≈ 4.9348 ≈ π2

2
. (8.156)

The omega repulsion at short distance is about V
bV /2 in (8.83). The discrep-

ancy may be due to the singularities introduced in the singular gauge and/or
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the approximation in the matching region ρ ≪ ξ ≪ 1. It is worth noting

that the standard omega repulsion at large ditances (8.150) transmutes to a

4-dimensional Coulomb repulsion in holography.

8.9.2 Singular gauge

Instantons in Singular gauge

The k = 1 instanton in the singular gauge follows from (8.9) through a gauge

transformation g−1 = ξ̂ = ξ/|ξ| which is singular at ξ = x − X = 0. This

is achieved through the shift U → Ug, which amounts in general to the new

inverse potential 1/f = 1 + ρ2/ξ2
M . The corresponding action density is

trF 2
MN = 2

2 log f =
96ρ4

((xM −XM)2 + ρ2)4
− 16π2δ(xM −XM) . (8.157)

The instanton in the singular gauge is threaded by an antiinstanton of zero

size at its center. Its topological charge is strictly speaking zero. It is almost

1 if the center x = X is excluded. This point is usually subsumed. Singular

instantons have more localized gauge fields than regular instantons.

The ADHM solution for k = 2 in singular gauge is not known. Following

the k = 1 argument, we may seek it from the regular gauge by applying a

doubly singular gauge transformation

g−1 ≡ g−1
+ g−1

− = ξ̂+ ξ̂− , (8.158)

which is singular at the centers ξ± = x ± D = 0 in quaternion notations.

This amounts to shifting U → Ug in the ADHM construction. We guess that

(8.158) yields the new inverse potential

f−1 → f−1

(|x−D||x+D|) , (8.159)

in the singular gauge. As a result, the instanton topological charge is

trF 2
MN = 2

2 log f → 2
2 log f − 16π2 (δ(ξ+M) + δ(ξ−M)) . (8.160)

The k = 2 ADHM density is now threaded by two singular anti-instantons at
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ξ± = 0. Singular instantons have more localized gauge fields AM than regular

instantons. While this point is of relevance for gauge variant quantitities, it is

irrelevant for gauge invariant quantities with the exception of the topological

charge. This point is important for the central nucleon-nucleon potential as

we now explain.

Core in Singular gauge

In the singular gauge we substitute |f | as (8.159), which results in

2 log |f | → 2 log |f | + 4

ξ̃2
+

+
4

ξ̃2
−
, (8.161)

2
2 log |f | → 2

2 log |f | − 16π2
(
δ(ξ̃+M) + δ(ξ̃−M)

)
. (8.162)

This gives extra contributions in addition to the result in regular gauge after

the subtraction of the self-energy

∆E → ∆E + ∆Es ,

∆Es ≡
( κ

6λ

)(37π2

24

)∫
d3x̃dz̃

[
32π2

{
2̃ log |f±|

(
δξ̃+M) + δ(ξ̃−M)

)

−2̃ log |f+| δ(ξ̃+M) − 2̃ log |f−| δ(ξ̃−M)
}

+16π2

(
δ(ξ̃−M)

4

ξ̃2
+

+ δ(ξ̃+M)
4

ξ̃2
−

)]
, (8.163)

which comes from the second term in (8.69) while the first term in (8.69)

remains the same. f±, f+, and f− are short for the expressions in the regular

gauge in (8.33)-(8.34). Thus

∆Es =
Nc27π

8

[∫
d3x̃dz̃

[
2̃ log |f |

(
δ(ξ̃+M) + δ(ξ̃−M)

) ]
+

16

ρ̃2
+

4

d̃2

]
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=
Nc27π

2

{
4

ρ̃2
+

1

d̃2

− 2d̃2
[
d̃6(2d̃4 + 5d̃2ρ̃2 + 4ρ̃4) + d̃4ρ̃2 cos2 |θ| (−2d̃4 − 4d̃2ρ̃2 − 3ρ̃4 cos(2 |θ|))

+2d̃4ρ̃2(d̃4 + 4d̃2ρ̃2 + 5ρ̃4) sin2 |θ| + d̃2ρ̃6(3d̃2 + 8ρ̃2) sin4 |θ| + 2ρ̃10 sin6 |θ|
]

÷ ρ̃2
[
d̃4(d̃2 + ρ̃2) − d̃4ρ̃2 cos2 |θ| + d̃2ρ̃2(d̃2 + 2ρ̃2) sin2 |θ| + ρ̃6 sin4 |θ|

]2}

(8.164)

= −
(
Nc27π

2λ

)
1 + 4 cos(2 |θ|)

d2
+ O(d−4) (d≫ 1) .

For large d, the monopole contribution in (8.164) is cancelled by the monopole

contribution (8.83) in the regular gauge. This cancellation leads to a dipole

attraction in the singular gauge.

The net dipole attraction in the singular gauge is best seen by noting that

(8.82) now reads

VD ≈ −2bcNc

∫ (
2̃

2 log
(
1 + ρ̃2/ξ̃2

+

)) 1

2̃

(
2̃

2 log
(
1 + ρ̃2/ξ̃2

−

))
,(8.165)

where x̃± refers to the shifted instanton positions. For large separations d̃/ρ̃≫
1, the leading contribution to VD is

VD ≈ −768π2 bcNc
ρ̃6

d̃8
= −81πNc

ρ̃6

d̃8
, (8.166)

by repeated use of the 4-dimensional formulae

2
1

ξ2n
= −4π2 δn1 δ

4(ξ) + 2n(2(n+ 1) − 4)
1

ξ2(n+1)
. (8.167)

This contribution is of order Nc/λ
4 following the unscaling of d̃ =

√
λd. (8.166)

is dipole-like and attractive. As expected, the threading antiinstanton in the

singular gauge cancels the leading Nc/λ repulsive monopole contribution in 4-

dimensional Coulomb’s law, resulting in the attractive dipole-like contribution

(van der Waals).
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Chapter 9

Conclusion

The final chapter summarize what we have learned in the course of this thesis

about holographic QCD.

In chapter2 we defined SS model and collected the relevant formulas to

appear in the subsequent chapters. SS model is composed of two actions:

Dirac-Born-Infeld(DBI) action and Chern-Sioms(CS) action. The relevant de-

gree of freedom are U(Nc) gauge field living in the background of the curved

metric field and Ramond-Ramond field. By choosing a suitable gauge field we

can study many aspects of hadronic physics. We also presented D3/D7 model

for comparison with SS model. D3/D7 model is discussed and compared with

SS model in Ch4 and Ch5.

In chapter 3 we studied thermodynamics of dense matter. Hot and dense

hadronic matter in QCD is difficult to track from first principles in current

lattice simulations owing to the sign problem.

In the homogeneous phase we provide a holographic method to study

hadronic matter at finite density (or chemical potential) in the context of

the SS model [15]. In the canonical ensemble the baryon number density is in-

troduced through compact D4 branes wrapping S4 at the tip of D8-D8 branes.

Each baryon acts as a chiral point-like source distributed uniformly over R3,

and leads a non-vanishing U(1)V potential on the brane. We derive the baryon

density (or chemical potential) effect on the energy density.1 For fixed baryon

charge density nB we analyze the energy density and pressure using the canon-

1In the grand canonical ensemble we can introduce the baryon chemical potential
through the external U(1)V field in the DBI action of the D8 branes [14].
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ical formalism. The baryonic matter with point like sources is always in the

spontaneously broken phase of chiral symmetry, whatever the density. The

point-like nature of the sources and large Nc cause the matter to be repulsive

as all baryon interactions are omega mediated.

We investigate inhomogeneous cold dense matter in the context of SS model

in the Wigner-Seitz approximation. In bulk, baryons are treated as instantons

on S3 × R1 in each Wigner-Seitz cell. In holographic QCD, Skyrmions are

instanton holonomies along the conformal direction. The high density phase

is identified with a crystal of holographic Skyrmions with restored chiral sym-

metry at about 4M3
KK/π

5. As the average density goes up, it approaches to

uniform distribution while the chiral condensate approaches to p-wave over

a cell. The chiral symmetry is effectively restored in long wavelength limit

since the chiral order parameter is averaged to be zero over a cell. The energy

density in dense medium varies as n
5/3
B , which is the expected power for non-

relativistic fermion. This shows that the Pauli exclusion effect in boundary is

encoded in the Coulomb repulsion in the bulk.

In chapter 4 we investigated the response of dense hQCD to a static and

baryonic electric field E using the SS model [18]. At zero temperature Strong

fields with E > (
√
λMKK)2 free quark pairs, causing the confined vacuum and

matter state to decay. At high temperature and density we derived the con-

ductivity by using Ohm’s law and this macroscopic result has been confirmed

by the microscopic approach using real-time AdS/CFT in the small electric

field limit.

In chapter 5 The response function of a homogeneous and dense hadronic

system to a time-dependent (baryon) vector potential is discussed for holo-

graphic dense QCD (D4/D8 embedding) both in the confined and deconfined

phases. Confined holographic QCD is an uncompressible and static baryonic

insulator at large Nc and large λ, with a gapped vector spectrum and a mass-

less pion. Deconfined holographic QCD is a diffusive conductor with restored

chiral symmetry and a gapped transverse baryonic current. Similarly, dense

D3/D7 is diffusive for any non-zero temperature at large Nc and large λ. At

zero temperature dense D3/D7 exhibits a baryonic longitudinal visco-elastic

mode with a first sound speed 1/
√

3 and a small width due to a shear viscosity

to baryon ratio η/nB = ~/4. This mode is turned diffusive by arbitrarily small
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temperatures, a hallmark of holography.

In chapter 6 we studied the effects of the fixed baryon charge density nB on

the pion and vector meson masses and couplings in the homogeneous matter

studied in the chapter 3.

In chapter 7 the baryon form factor was computed. In the SS model,

baryons are chiral solitons sourced by D4 instantons in bulk of size 1/
√
λ with

λ = g2Nc. We quantize the D4 instanton semiclassically using ~ = 1/(Ncλ)

and non-rigid constraints on the vector mesons. The holographic baryon is a

small chiral bag in the holographic direction with a Cheshire cat smile. The

vector-baryon interactions occur at the core boundary of the instanton in D4.

They are strong and of order 1/
√

~. To order ~
0 the electromagnetic current is

entirely encoded on the core boundary and vector-meson dominated. To this

order, the electromagnetic charge radius is of order λ0. The meson contribution

to the baryon magnetic moments sums identically to the core contribution.

The proton and neutron magnetic moment are tied by a model independent

relation similar to the one observed in the Skyrme model.

In chapter 8 nuclear force was obtained. In the holographic model of QCD,

baryons are chiral solitons sourced by D4 flavor instantons in bulk of size 1/
√
λ

with λ = g2Nc. Using the ADHM construction we explicit the exact two-

instanton solution in bulk. We use it to construct the core NN potential to

order Nc/λ. The core sources meson fields to order
√
Nc/λ which are shown

to contribute to the NN interaction to order Nc/λ. In holographic QCD, the

NN interaction splits into a small core and a large cloud contribution in line

with meson exchange models. The core part of the interaction is repulsive in

the central, spin and tensor channels for instantons in the regular gauge. The

cloud part of the interaction is dominated by omega exchange in the central

channel, by pion exchange in the tensor channel and by axial-vector exchange

in the spin and tensor channels. Isovector meson exchanges are subdominant

in all channels.

Outlook

For the last decade gauge/gravity duality has been applied to various strongly

coupled gauge theories and helped in understanding strongly coupled QCD

such as sQGP and low energy hadron physics. However there are many open
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problems in applying the holographic approach.

There is no exact dual model of QCD yet, so we often resort to the univer-

sality argument. Furthermore, because of asymptotic freedom, QCD cannot

be entirely described by the supergravity limit. Eventually it is important to

go beyond the supergravity approximation for a more complete description of

QCD. Within the supergravity approximation, we should understand its ap-

plicability more precisely: what properties of QCD can be studied, in what

regime of QCD, and with what accuracy.

In spite of its many successes, the SS model has an apparent shortcoming

that there is no parameter related to the bare quark mass or chiral condensa-

tion. There have been a few provoking proposals [136–140] but this issue has

not been resolved yet.

With the advent of the Large Hadron Collider (LHC) we will soon ex-

plore a higher temperature regime than studied at the RHIC. This is par-

ticularly interesting because a gravity description worked well at the RHIC.

Any new surprise from LHC will inspire gravity dual theory. It is often

called gravity/hydrodynamics (or fluid dynamics) duality. More interestingly

it is also closely related to the application of gauge theory to black hole

physics [141, 142].

Last but not least, the recent active application of the gauge/gravity duality

to condensed matter system is very intriguing [12]. It is now being applied to

superfluidity, superconductivity, the Hall effect, and phase transitions.

I believe the gauge/gravity duality will be the key paradigm shift for un-

derstanding both gauge theory and gravity. It is clearly a very useful tool and

worth more study.
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