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Abstract of the Dissertation 

Residual Logistic Regression 

by 

Fabiola Berenice Báez-Revueltas 

Doctor in Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2009 

 

In biostatistical analysis it is often necessary to filter out potential confounding 

variables and mature techniques have been developed to do so in the setting of matched 

data analysis and multiple regression analysis among others, especially when the 

response variable is continuous. Satisfactory methods, however, have not been developed 

in the setting of dichotomous outcomes. We propose the residual logistic regression 

analysis for logistic regression controlling for confounding variables. This method is 

compared to existing methods including the Pearson residual analysis. The pros and cons 

of this and other methods are discussed and guidelines are provided for the users.  

 

Another traditional method for controlling confounding variables is through subject 

matching or pairing. We  examined the pros and  cons of whether one should analyze the 
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original independent samples or a selected subset of the  paired sample extracted from the 

original samples. A resampling technique is adopted to examine whether the paired 

sample selected is unbiased or not. The powers of these two approaches are compared 

through simulation studies for tests on population means and proportions.  

 

Finally, methods proposed and discussed in this thesis are applied to a study conducted at 

the NYU Alzheimer's Disease Core Center (ADCC) where the goal is to determine if the 

mental decline rate is the same for subjects with or without subjective complaints of 

cognitive impairment. It is shown that the proposed residual logistic regression analysis 

yielded superior and yet consistent results in comparison to other existing methods. 
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Introduction 

 

In statistical analyses it is often critical to filter out the influence from potential 

confounding variables. In the past few decades mature techniques have been developed 

for multiple linear regression where the response variable is continuous. Satisfactory 

methods, however, have not been developed in the setting of a logistic regression where 

the response variable is dichotomous. 

 

Confounding variables in a statistical model are those variables correlated to both the 

independent and dependent variables. Thus they can affect the results obtained from the 

study by adding a considerable amount of bias and rendering the conclusions 

meaningless.  

 

Several methods are available to control for potential confounding variables. These 

include[50]: 

 In study designs 
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 Restriction 

 Random allocation of subjects to study groups to even out unknown confounders 

 Matching subjects on potential confounders 

 

 In data analysis 

 Stratified analysis using the Mantel Haenszel method to adjust for confounders 

 Case-control studies  

 Model fitting using regression techniques 

 

The advantages and disadvantages of these methods are: 

 Matching methods call for subjects with exactly the same characteristics and have a 

risk of either over or under matching 

 In stratified analyses some strata might become too small and thus create loss of 

information 

 For regression methods the techniques already developed can lead to estimation 

problems when the data is not handled properly 

 

The goal of this work is to provide solutions and guidelines on how to manage the 

confounding variables especially when the outcome is binary. We will focus on two 

related issues. First we will examine the potential bias of a selected matched sample from 

the original independent samples, and compare the power of these two approaches for the 

inference of two population proportions or means. Secondly, we propose a novel method 

of logistic regression controlling for confounding variables, the ‘residual logistic 
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regression analysis’. This approach is compared to other existing methods including the 

Pearson residual analysis and the hierarchical logistic regression analysis. Comparisons 

are made through simulation studies as well as in a real life data set from the NYU 

Alzheimer's Disease Core Center comparing the mental decline rates between subjects 

with or without subjective complaints of cognitive impairment. The latter has motivated 

our research from the very beginning.  

 

 

Paired vs. Independent Samples 

 

 In the last decades, the problem of whether or not to match data in clinical trials 

with dichotomous response has gathered much attention[74].The motivation for our work 

in this area originates from the analysis of data on aging and Alzheimer’s Disease 

collected through the NYU Alzheimer's Disease Core Center1; such data consist on 

subjects that were recruited initially trough clinical referrals or  voluntary enrollment 

(upon reading advertisements from internet or newspapers or other sources). These 

subjects are then followed up and monitored periodically on the conditions of their 

mental and Physical health. Given such a study design the existence of confounding 

variables became unavoidable.  For example the individuals considered in the study were 

classified into different cognitive level using the Global Deterioration Scale [Barry 

Reisberg, et. al, 1999][56], which consist of seven different stages; the first two levels of 

this measurement represent subjects with full cognitive capabilities, while the third level 

                                                 
1 This is one of thirty centers nationwide sponsored by the National Institute on Aging 
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represents Mild Cognitive Impaired people and levels beyond this are considered 

Alzheimer sufferers. 

 

Even though the first two levels represent subjects with their full potential in cognitive 

performance, their difference is that individuals in level 1 (we will call GDS1) are normal 

and people in level 2 (GDS2) have complains of cognitive impairment; the goal is to 

compare if, along the study, they stayed within these two levels or if they progressed to 

higher levels on the Global Deterioration Scale (GDS); i.e. if there was any significant 

difference on the way subjects achieved higher or equal to GDS3 levels, depending on 

what was their initial status.  

 

From this we  can see that we are dealing with a sample where the subjects are 

categorized into two different groups which, after doing a preliminary statistical analysis, 

showed significant differences with respect to their demographic characteristics, such as, 

age and gender among others2, therefore, the analysis tat can be performed has two 

options:  

a) To analyze the initial independent samples of GDS 1 and GDS 2 subjects 

b) To match the subjects from the two groups on their demographic characteristics 

and, subsequently, analyze the smaller paired samples.  

 

In this work, we compare these two approaches through straightforward theoretical 

derivations as well as simulation and resampling studies to elucidate the pros and cons of 

                                                 
2 For more detailed information see Chapter 5 
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each method and to provide guidelines to analysts in the field as to when to use which 

method. 

 

The topic of concern is vital in statistical inferences, and thus much effort has been 

devoted in such comparisons. Regrettably, little can be found in formal documentations. 

Empirical study has shown that both the paired and the unpaired methods have their own 

advantages and disadvantages[39]. For example, the independent samples tend to have 

smaller standard errors (for the individual samples) and more degrees of freedom than an 

extracted paired sample. On the other hand, when pairing we are able to reduce the 

variability between and within subjects. Also, by pairing we control better for 

confounding variables and often yield more statistically efficient analyses [7, 60]. 

In our situation, we also wary about the potential bias induced through the matching 

process4. The modern bootstrap resampling methodology is employed to gauge whether a 

certain matched sample is unbiased.  

 

 

 

 

 

                                                 
4 When subtracting a matched sample from an independent some of the pairs are created in an objective 
way, specially if we are dealing a 1:1 matched sample where, sometimes for a case,  we will have more 
than one control that can be matched with and the final decision of which one is chosen is left to the person 
gathering the sample, therefore if we think about it, we could gather a considerable amount if different data 
sets where at least one pair will not be equal and that might or might not change the conclusions we make 
about the sample. That is why is important to analyze if the paired sample being studied is a good 
representation of all the possible paired samples that can be obtained. 
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Residual Logistic Regression 

 

Among various types of statistical analysis, regression analysis is perhaps the most 

ideal platform for incorporation and filtration of confounding variables. For multiple 

regression analysis where the response variable is continuous, the two-stage residual 

linear regression analysis strategy has been well developed and adopted through the 

years[10, 33, 42]. Such is not true for logistic regression analysis (or any generalized linear 

models other than the general linear model) when the response is categorical. In this 

work, we propose a novel two-stage residual logistic regression analysis in the same spirit 

as the residual linear regression analysis. However, our model features a more general 

rationale based on residual link function and can be naturally extended to any generalized 

linear model. This model is compared to other common strategies for confounding 

variable controlling including the Pearson residual analysis [36] and the hierarchical 

logistic regression analysis. Pros and cons are discussed and guidelines provided.  
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Chapter 1  

Paired vs. Independent Data Analysis 

 

 As discussed previously, extracting matched pairs from the original independent 

samples [7, 39] present a solution to the problem of potential confounding variables in 

certain data analysis scenarios. In this Chapter, we discuss the evaluation of matched 

sample bias using the bootstrap resampling method. We also present some quick 

theoretical and simulation studies comparing the power using the paired or the 

independent samples approaches for inferences on population means and proportions to 

extend the documentation in published.  

 

In order to perform a paired sample analysis the variables (except the dependent variable 

of interest) that will be analyzed need to be separated into two categories: potential 

confounding variables and non-confounding variables. This is usually determined 

through prior knowledge and a univariate test comparing the distribution of these 

variables between groups of interest. For example, when comparing the decline rate or 
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time to decline to GDS stage 3 or above, for subjects who are at the GDS 1 or GDS 2 

stage upon initial enrollment, we will first conduct an independent samples tests 

(parametric or nonparametric) comparing age, gender, years of education etc. between the 

two groups (GDS 1 and GDS 2). All these factors listed are deemed relevant to mental 

decline based on field knowledge. The subsequent univariate test indicated significantly 

different distribution on any of these covariates, they are deemed as potential 

confounding variables this study. Thus, they should be used to form the strata for the 

subsequent matching and matched pairs selection [39].  

 

In our particular analysis we will consider 1:1 matching, also it is important to point out 

that before this paired sample is analyzed we need to validate whether this sample is 

unbiased. That is, whether or not it is representative of all the possible paired samples 

that can be obtained through the original independent samples. We employed a 

resampling method for such evaluations. 

 

 

1.1 Resampling  

 

Resampling is a nonparametric statistical method tied to Monte Carlo simulations 

where the main idea is to take samples from the original sample (of the same size or 

smaller) in order to obtain estimates and confidence intervals for population parameters 

without making assumptions about the form of the population distribution [4, 8, 25].  
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There are four main types of resampling [26, 31, 44]: cross validation [61, 69], permutation test 

[30, 44], jackknife [27, 29, 62] and bootstrap [21, 25, 26, 44, 63].  Among these methods bootstrap is 

the most general and popular methodology, mainly because the other methods are neither 

as flexible nor as reliable as this method is; the bootstrap method allows the researcher to 

draw as many sub-samples as possible (unlike, for example, the jackknife, that is limited 

by the sample size). Besides, bootstrap usually provides less biased and more consistent 

results and even though the other methods might be easier to compute for certain 

situations, this method is usually a better option, specially because it can be applied to 

any statistic [23]. 

 

The main idea behind bootstrap goes back at least two centuries, and it was Bradley 

Efron [25] who developed it, Moone and Duval in the gave also important applications of 

this technique [50]. Where the basic algorithm is as follows: 

 

1. Given a sample  of size n, a bootstrap subsample of it is a sample 

of the     form , where each value  is randomly 

sampled with replacement from , therefore for distinctive values 

 

with independent choices of  for . Therefore repeated values are 

allowed since the sample size of  is p, then some values in x will be left out.  

2. Compute the statistic  for the subsample obtained. 
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3. Repeat steps 1 and 2, B number of times (B=1000 typically [8]) where the 

bootstrap resampled values for the estimator are: 

          

4. Approximate the standard error and the mean of the bootstrap replications as 

follows: 

 

5. So, calculate the confidence intervals, the percentile method is employed, which 

uses the  and  the  quantiles for the  level confidence interval. 

 

For example, the 95% confidence interval for  would be constructed with the 

upper and lower 2.5% quantiles of the sampled values . Specifically, the bootstrap 

percentile 95% confidence interval for  is  where for this purpose, the 

values  are sorted in increasing order  where , with U 

rounded down to the nearest integer, the only exception to this when 0<U<1/2, in 

which U is rounded up to 1. 
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1.1.1 Resampling method for paired data 

 

The bootstrap method just presented is mainly designed for independent data. 

Because of that we proposed a method to generate match-paired samples at random [39] 

and, subsequently an entire set of them, in order to determine if the sample that will be 

used for the analysis is representative of the underlying distribution of all the possible 

subsamples in terms of the major variables under study. 

 

The mechanism is as follows: 

1. Paired sample database.  

In order to obtain a match-paired sample it is necessary to determine which 

subjects can be matched based on the matching factors criteria and which will be 

ignored.  

Let consider 1:1 pairing, for this just a set of individuals from the original dataset 

will qualify to be matched, i.e. have a potential match, therefore they will be on a 

“new” sample we will call paired-sample database where, a subject might have 

more than one option for pairing and therefore which will create clusters of 

options. 

 

For example, let’s consider  as the matching factors in that order of 

importance, therefore the process would be as follows: First separate the sample 

by  (in our particular example is the two GDS levels),  creating with this 

clusters for each value of it; second, each of these clusters is divided by  
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creating even more groups (in our case this variable is Age and we create Age-

GDS level clusters); third, each of these new groups is divided by the third 

matching factor (in our case this variable is Gender and we will create GDS level 

– Age – Gender clusters) and so on. It is important to point out that the grouping 

should finish before the strata become too small and too much information is lost, 

therefore it is likely that we will ignore the criteria of the least important factors in 

order to obtain a substantial sample7. At the end the clusters created are the 

matched depending on their characteristics (see Fig.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Generate a random sample.  

Because we want to create bootstrap resamples, the following must be done:  

a. Determine how many pairs can be obtained from each matched cluster. 

                                                 
7 We would like to keep a big percentage of the original data’s information on the new match-paired data 
set. 

Figure 1: Paired sample database and distribution. 
As mentioned before, in our case X1 is the GDS levels (2 groups, GDS1 
and GDS2) and X2 is the Age; it can be seen that  a block of subjects in 
group 1 can be paired with a block  of  subjects in  group 2, and, given 
that we are performing a 1:1 matching,  we have several options for each 
subject. This situation can be  observed  several  times in the match-
paired sample database together with  cases  where  there  is  only  1  
subject  in  a block  that can be matched with a block that also has only 
one person.                             
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b. Sample with replacement B times from each cluster (If the cluster contains 

only one subject then this subject will be always selected for the paired 

samples. If there are more than one, say three, but only two pairs can be 

created from it then two subjects will be sampled with replacement each time) 

 

3. Examine the distribution of the paired samples.  

This is done in order to set the standards of a “good” paired sample. Therefore, 

the standard error, mean and confidence intervals of the main variables  are 

calculated. If the paired sample that will be used on the analysis behaves within 

the characteristics given by the bootstrap samples, then we can proclaim that it is 

a representative sample. 

 

As an additional check, the same analyzes that are performed on the single paired 

data can also be performed on all these subsamples in order to observe the 

distribution of the estimators. This can be considered optional given that it 

requires very extensive computations. 

 

The SAS code that we employed for the creation of this database after clustering 

the data as we just mentioned in Fig.1 is as follows 

 

Renaming each cluster 

%MACRO LOOP; 

%DO i = 1 %TO 60; 
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DATA b&i; 

SET RESAMPLE.TEST; 

IF b=&i; 

RUN; %END; %MEND; %LOOP; 

For cluster with more subjects than the amount of pairs that can be obtained 

from them we reduce them randomly 

DATA b1a; 

  SET b1; 

  RANDOM = RANUNI(0); 

  RUN; 

  PROC SORT; 

  BY RANDOM; 

RUN;  

DATA b1b; 

  SET b1a; 

  IF _N_<2; 

  DROP RANDO; RUN; 

Bootstraping per cluster 1000 samples are taken 

%MACRO BOOT; 

%DO i = 1 %TO 1000;   

DATA ANALYSIS_BOOT_1; 

CHOICE = INT(RANUNI(2765551+&i)*n)+1;  

    SET bi POINT = CHOICE NOBS = n; 



 15 

    j+1;                                

    IF j > n THEN STOP; 

    RUN; 

 DATA ANALYSIS_BOOT1; 

 ST ANALYSIS_BOOT_1; 

 BOOTSAMPLE=&i; RUN; 

%IF &i = 1 %THEN %DO; 

DATA BOOTS1; 

SET ANALYSIS BOOT1; 

RUN; 

%END; 

%ELSE %DO; 

DATA BOOTS1; 

SET BOOTS1 ANALYSIS_BOOT1; RUN; %END; 

Merging all the bootstrap samples into a whole data set 

DATA ALL_BOOT; 

MERGE BOOTS1 BOOTS2 BOOTS3 BOOTS4 BOOTS5 BOOTS6 BOOTS7 

BOOTS8 BOOTS9 BOOTS10; 

BY b; RUN; %END; %MEND; %BOOT; 
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1.2 Power 

 

The power of a statistical test is highly correlated to the sample size, where the 

test commonly describes how close or different are the subgroups that conform the 

sample that is being analyzed. 

 

In our analysis we will consider two data sets, the independent and the paired one, we 

assume each of these samples can be divided by two exclusive strata (case and controls) 

and that they have a common response variable. We will examine inferences on both 

means and proportions for large samples. 

 

In hypothesis testing we have the possibility of committing two types of errors and, by 

definition, the power is the complement of the Type II error rate, defined as:  

     (1) 

 

Here  is defined as the Type I error rate or the significance level. Also, for a one-sided 

test a general equation relating the difference being analyzed  (  for means 

and  for proportions), the Type I error and the Type II is [40]: 

     (2) 
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1.2.1 Inference on means 

 

Let  be a  random sample of size N from a population distributed  

consisting of two exclusive strata  and 8 where  and  are 

the sample sizes respectively.  

 

 

- Independent sample design 

 

For a normally distributed population a z-test can be considered where the 

hypotheses for the comparison of two means is as follows: 

 

 

Let the sample sizes of the two groups be such that ,  with  and 

, with  unknown therefore, because of this last characteristic, the 

standardized z-test is based on the T statistic9 

 

where ,  and        

 
                                                 
8 Because the overall population is distributed normal we can consider each of the stratums to be normally distributed 
as well. 
9 This test was introduced by William Sealy Gosetin 1908 [27] 
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Therefore, the power of the test is given by 

                where , therefore 

           

           

            where , 

therefore 

            

 

 

- Paired sample design  

 

 Following the same criteria as with the independent data analysis; the hypotheses 

to be tested are 

 

 

For this case, let the sample size be  and . Because this is a paired 

sample we have that 
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          if    then              

            

 

This means that for the paired analysis the variance is increased. 

 

 

Therefore the test statistic is 

          where  and  

 

Given this, the power is  

 

           

           

          

where , therefore 
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- Trials 

Paired 
K n  eff. Independent    

1 0.5487 
2 0.6534 
3 0.6979 
4 

25 

0.7222 

0.6279 0.7814 0.9594 

1 0.8027 
2 0.8917 
3 0.9210 
4 

50 

0.9347 

0.8896 0.9677 0.9992 

1 0.9700 
2 0.9923 
3 0.9962 
4 

100 

0.9976 

0.9916 0.9994 1.0000 

1 0.9962 
2 0.9957 
3 0.9986 
4 

150 

0.5 

0.9999 

0.9995 0.9999 1.0000 

1 0.9676 
2 0.9914 
3 0.9927 
4 

25 

0.9973 

0.9869 0.9985 0.9992 

1 0.9994 
2 0.9997 
3 1.0000 
4 

50 

1.0000 

0.9993 0.9999 1.0000 

1 1.0000 
2 1.0000 
3 1.0000 
4 

100 

1.0000 

1.0000 1.0000 1.0000 

1 1.0000 
2 1.0000 
3 1.0000 
4 

150 

1 

1.0000 

1.0000 1.0000 1.0000 

Table 1: Simulations performed to estimate the power of a paired and an independent sample given the characteristics described on the 
top of the table. We can observe that when the sample gets bigger and the variance smaller then the power converges to one. 
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1.2.2 Inferences on Proportions 

 

Consider two Bernoulli populations with parameters  and  . Independent 

random samples of sizes n1 and n2 available for these two populations. Let 

 and  [67]. 

 

 

- Independent samples 

 

            The test for two proportions is based on the test statistic  under [12, 40] 

 

 

 where 

 

  under  

      and  under  

 

Using equation (2), we obtain that 
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Subsequently we can obtain the power (1-β) from: 

 

 

 

- Paired Samples 

 

 In 1947 the American psychologist Quinn McNemar introduced a non-parametric 

method designed for nominal data to determine the difference between paired 

proportions. In recent years, researchers like Connet, Smith and McHugh [11] among 

others, derived the power for the McNemar’s [24] test. 

 

For this example, let us consider a match-paired large sample of size M with a 1-1 

matching where each member was sampled independently. Each subject had a response 

 (i=1,2 depending on the group that the subject belongs). Therefore, for each pair 

there are four possibilities that depend on these responses as follows 

  Y2 

  0 1 

0 p00 p01 
Y1 

1 p10 p11 
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Where  , such that are the probabilities that an individual has 

a response  and  with sample sizes    

 

The test statistic is based on  under the hypotheses [24] 

 

 

 Let the estimator of the proportion be such that 

 

Therefore 

 under  

 under  

 

Let, for the null hypothesis , where  is the chance of a discordant pair, 

and 

 

therefore 

 under  
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 under  

 

Following equation (2), we obtain 

 

Subsequently we can obtain the power (1-β) from: 
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- Trials 

Independent 
n P1 P2 

k=1 k=2 
Paired 

0.2 0.8051 0.8389 0.9505 

0.4 0.9904 0.9985 1.0000 

0.6 1.0000 1.0000 1.0000 
0.2 

0.8 1.0000 1.0000 1.0000 

0.2 0.6179 0.7054 0.5753 

0.4 0.8496 0.8749 0.9505 

0.6 0.9916 0.9985 1.0000 
0.4 

0.8 1.0000 1.0000 1.0000 

0.2 0.9177 0.9686 0.9554 

0.4 0.5832 0.6700 0.5948 

0.6 0.8461 0.8749 0.9505 
0.6 

0.8 0.9904 0.9985 0.9980 

0.2 0.9918 0.9988 1.0000 

0.4 0.9177 0.9686 0.8438 

0.6 0.6179 0.7054 0.6772 

50 

0.8 

0.8 0.8051 0.8389 0.9505 

0.2 0.7291 0.7734 0.9505 

0.4 0.9953 0.9864 1.0000 

0.6 1.0000 1.0000 1.0000 
0.2 

0.8 1.0000 1.0000 1.0000 

0.2 0.8599 0.6664 0.8340 

0.4 0.7642 0.8133 0.9505 

0.6 0.9956 0.9875 1.0000 
0.4 

0.8 1.0000 1.0000 1.0000 

0.2 0.9956 0.9345 1.0000 

0.4 0.8432 0.6368 0.6406 

0.6 0.7642 0.8133 0.9505 
0.6 

0.8 0.9953 0.9864 1.0000 

0.2 1.0000 0.9943 1.0000 

0.4 0.9955 0.9345 0.9846 

0.6 0.8599 0.6664 0.5199 

100 

0.8 

0.8 0.7291 0.7734 0.9505 

Table 2: Simulations for the estimation of the power for a paired and an independent sample 
given the characteristics described on the top of the table. We can observe that when the 
sample gets bigger and the variance smaller then the power converges to one. These 
calculations differ from the ones obtained by Wacholder and Weinberg [74] since we are 
summing large samples 
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1.3 Logistic Regression 

 

Regression models are part of Generalized linear Models and represent a powerful 

device for analyzing data. They allow the researcher to focus on the behavior of a 

dependent variable as a function of one or more covariates. They can be used for 

prediction, inference, hypothesis testing and modeling causal relationships. 

 

Logistic regression is a particular kind of regression analysis designed specifically for 

dichotomous outcomes. For this model we consider the odds of the event occurring for 

each individual on the population as the dependent variable, which creates the basic 

logistic regression equation of the form [54, 55] 

 

Where  is the probability of success for the ith subject. It can be obtained as follows 

 

 

Each observation  follows a Bernoulli distribution. Therefore the estimators are 

obtained using MLE. The likelihood in terms of the probability of success of each 

individual is [54] 
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In the following Chapter, we present a novel method of residual logistic regression for 

the controlling of confounding variables in logistic regression analysis based on the 

original independent samples. When we use the matched sample extracted from the 

original independent samples, we can utilize the conditional logistic regression model 

customized for paired data as discussed below.  

 

 

1.3.1 Logistic Regression for Paired Data 

 

This model was designed for retrospectively matched samples of cases and 

controls, for either 1:1 matching or 1:N. This model assumes that the covariates have a 

common effect for the odds of response for all the matched sets and allows that each one 

of them have a unique risk of the response given by the intercept . 

 

There are two possible methods that can be applied for this purpose: conditional and 

unconditional logistic regression. The first one is used for finely matched case-control 

studies, i.e. when the number of observations in each matched set is small. The second 

one might be used when the sample is frequency matched and/or when we are interested 

in including the matching variables as explanatory variables. That is actually our case, 

because that way we will be able to analyze better the behavior of the confounding 

variables and also, that way we will e able to compare the method more accurately. 
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Now, consider a matched set formed by N pairs where individuals are being matched by a 

set of covariates (the matching factors). Let us consider a 1:1 case-control study where 

one subject from the case group is matched with a subject from the control group by 

having the almost the same, if not identical, characteristics under the matching factors. 

Denote  as the binary indicator of the pairs, where  means that the subject j 

(j=1,2) is from the control group and  that the subject is from the case group. Let 

also consider the outcome of each member of the pairs as  when the individual has 

a positive outcome and 0 when it doesn’t. 

 

The unconditional logistic regression model for a single covariate with a single binary 

covariate Cox [17] suggested using a model assuming with a constant odds ratio for the 

pairs to be tested such as: 

 

where  

 

 

This leads to a log odds ratio that considers the exposed and non-exposed members as: 
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Now, each pair consist of two members that were sampled independently given the value 

of the matching variable. Therefore the terms of the members within each pair are 

conditionally independent [47] so that the likelihood is a binomial product for the ith 

independent pair as follows: 

 

 

For multiple covariates (let consider t covariates) the likelihood of the model is of the 

form: 

 

 

The conditional model actually comes from the model we just presented where a 

principle of conditioning originally attributed to Fisher is applied; Cox [16] assumed that 

the common log odds ratio can be estimated without estimating the nuisance parameters 

through conditioning where the disagreements between the subjects that conform each 

match are the ones that are being analyzed.  
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Chapter 2 

Residual Logistic Regression 

 

2.1 Residual Linear Regression 

 

It is a very common analysis that implies two stages and the use of residuals. The 

first stage considers only the confounding factors in the model and the second considers 

the estimated error from the first stage as a dependent variable for a model where only the 

non-confounding variables will be tested. To illustrate this method let us consider a 

population of size N with a continuous outcome Y and t explanatory variables 

 

 

Let k ( ) of the explanatory variables be potential confounding factors, therefore 

the model that will be fitted for Stage 1 is as follows: 
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The estimated error . These residuals [68] follow zero, constant variance, 

normal distribution and ,  

 

Stage two defines a new dependent variable to be tested that is not correlated any more 

with the confounding factors and is created with the residuals obtained from the first 

stage of the analysis. Therefore, let , this will be fitted with the rest of the 

variables (the non-confounding ones) as follows 

 

 

This last model will be analyzed using a variable selection method (the most commonly 

applied is stepwise selection) in order to see which other variables add explanation to the 

variability on Y after controlling for the confounding factors. 

 

The method just presented has several flaws [20] that come up because it has two possible 

sources of bias, one of which can make it too conservative and another one that can make 

it too liberal: 

 Conservative bias  

Occurs specially when the independent variable of interest is correlated with the 

confounding variables and as this correlation increases the chances of this 

happening are grow. 

 Liberal bias (gives significant results more often that it should) 
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It is strongest when four conditions meet: Small sample size, many confounding 

variables, independent variable of interest is independent of the confounding 

variable and there are fixed scores i.e. that the scores do not vary randomly in the 

sample but are rather fixed. 

 

 

2.2 Residual Logistic Regression 

 

In logistic regression analysis, it is necessary to account for covariates such as gender 

and race. The traditional hierarchical logistic regression modeling approach does not 

facilitate variable selection and suffers from collinearity [65]. Here we propose a novel 

method of ‘residual logistic regression analysis’ for controlling confounding covariates 

(gender, race, etc.) when the response variable Y (whether the subject is a case) is 

dichotomous. This method would enable best-subset or stepwise variable selection 

among variables of interest such that the maximum amount of risk explainable by 

covariates of interest can be estimated while accounting for potential confounding 

factors. Our procedure is a novel two-stage logistic regression analogous to that of the 

residual linear regression analysis and can be summarized as follows. 

 

Let be potential covariates/confounding variables such as gender, race, etc. 
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Stage 1.  

Fit   

to obtain  

 

Stage 2.  

Fit the residual logistic link function [38] using genetic variables of interest  

as follows:  

 

This is equivalent to fitting a new logistic regression of the form: 

  

where T is a variable with a fixed coefficient of 1. Now one can compile a customized 

SAS or MATLAB program to perform stepwise or best-subset variable selection among 

variables of interest (while holding T in the equation) to achieve maximum prediction 

power.  

 

The merits of this procedure are  

1) Easy variable selection 

2) Intuitive interpretation of risk odds accounted for by covariates of interest since both 

levels are logistic regression analysis.  
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The rationale for our approach in terms of fitting the residual link function on stage 2 is 

in complete agreement with the residual linear regression analysis where its second stage 

can be equivalently expressed in residual link function as follows: 

 

 

 

2.3 Pearson Residual Analysis 

 

In linear regression the residuals are the difference between the observed and 

predicted values of Y and they are calculated straightforwardly from the regression 

equation. But in logistic regression the error variance is a function of the conditional 

mean unlike in linear regression where this error is independent of such conditional 

mean. For that reason residuals in logistic regression need to be standardized[31] . 

 

The most common residual for logistic regression is the Pearson or standardized or chi 

residual [49] 

 

which, for large samples is normally distributed with mean 0 and standard deviation 1, 

where large positive or negative values of it indicates a poor fit for case j and where the 

estimated probability that we will be using here is the one obtained from stage 1 as: 
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There are other alternatives for the estimation of the residuals in logistic regressions such 

as, deviance residual, which is basically the predicted probability of  correct group, is the 

contribution of each case; and the logit residual, which is very similar to the Pearson 

residual, but it is divided by its variance instead of its standard deviation [49]. 

 

For our approach we will consider the Pearson residual due to the similarity that it has to 

the residual used in Residual linear Regression and because of the advantage that it has 

when we are analyzing large samples by having an asymptotic distribution normal.  

 

Therefore, the second stage of our method will consist of considering this Pearson 

residual as the new dependent variable that will be used as dependent variable in stage 2. 

So, for a sample large enough, this new outcome is normally distributed. Let 

. Given this characteristic then the second part of the analysis can be 

done by using a linear regression model instead of a logistic one of the form: 

 

 

As we did in Residual Linear Regression, we will perform a variable selection using 

stepwise selection in order to see which non confounding variables can be added to the 

explanation of the original dependant variable. 
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Of course there are possible flaws of this method and they are similar to the ones we had 

with residual linear regression: 

 The Pearson residual is considered a number that summarizes the agreement 

between the observed and the fitted values. Its advantage (as well as 

disadvantage) is that is a single number that summarizes too much information 

[Hosmer and Lemeshow] [36] 

 Given that this residual, like the one in linear regression is measuring the 

possible error of the fit, it has similar potential problems when it is being used 

as a new dependant variable, specially the one concerning conservative bias. 

This is because when the residuals are obtained from Stage 1 they are usually 

uncorrelated with all the confounding factors which makes them unable to be 

correlate with any variable which itself is correlated to the confounding 

variables, no matter how much that variable might be contributing to the model. 

 

 

2.4 Hierarchical Logistic Regression 

 

Multilevel or hierarchical models can be considered as extensions of regressions 

models [34] where data can be structured in groups and the coefficients can vary 

depending on the group. 
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When working to control confounding factors we would like to see two different things; 

one, to minimize the possible amount of bias that the confounding factors might add to 

the analysis. Two, to still consider the effect these variables are providing to the model 

without this affecting the final results. Therefore we need to control then in order to see 

what else can explain the variability of the outcome.  

 

With simple logistic regression we cannot really do this labor [6], given that all variables 

are treated equally and therefore we aren’t really controlling for any effect.  Residual 

Logistic Regression, on the other hand, does control for the confounding variables effect. 

It involves several non automatic analysis just to obtain results for one single group of 

variables. 

 

Hierarchical models are a very new technique that can deal with this problem 

automatically by grouping the data depending on the confounding factors using indicators 

that will specify the grouping. These kind of models are called varying-intercept model10, 

because the model calculates a different intercept within each group[29].  

 

Traditional techniques applied on hierarchical or multilevel data has two big problems. 

One is that they consider all the observations as independent without any type of 

correlation among individuals. However patients within the same outcome for a particular 

confounding variable such as demographic characteristics (that are very common 

                                                 
10 HILL, G.J. Data Analysis Using Regression and Multilevel Hierarchical Models. Cambridge University 
Press, 2007 
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confounding effects) may share characteristics and their outcome are, most likely, 

dependant of one another. 

 

On the other hand a big disadvantage of hierarchical models is that, if the groups created 

for each level of the confounding factors are very small we might suffer lack of power in 

the tests we perform and possibly bias [6]. 

 

Originally this kind of models where used to analyze nested sources of variability in 

hierarchical data; taking account of the variability associated with each level of hierarchy, 

that is, they take account of the variability at each level of hierarchy and thus allow each 

effect to be analyzed within the models accounting for clustering of observations while 

traditional logistic regression and residual logistic regression models assume 

independence of observations. 

 

The basic idea of hierarchical modeling (also known as multilevel modeling, empirical 

Bayes, random coefficient modeling, or growth curve modeling) is to think of the lowest-

level units (smallest and most numerous) as organized into a hierarchy of successively 

higher-level units. For example, in our data, subjects have an MMS level, with, 

depending on each MMS level then the Gender of the subject, then the Age and finally 

the initial GDS level. We can then describe outcomes for an individual as a sum of 

effects for the individual student, for her/his MMS level, for the gender, for the Age, for 

the GDS group. Each of these effects can often be regarded as one of an exchangeable 



 39 

collection of effects drawn from a distribution described by a variance component. There 

may also be regression coefficients at some or all of the levels. 

 

More formally, this analysis works as follows:  

It starts with a traditional logistic regression model , where i is the 

subject level indicator and j is the level indicator for X.  

 

A simple way to account for effects of higher-level units is to add dummy variables into 

the initial equation. These dummy variables are added as an intercept for each higher-

level unit. The most sophisticated way to do this is to treat the intercept as a random 

variable with specified probability distribution, which leads to a random intercept model 

and more conservative estimate. The new model would be 

 where  

 

Here the effect is measured by the random intercepts , a linear combination of a grand 

mean  and a deviation from that mean and the intercepts from the independent 

variable measure the differences between the different levels, controlling for other effects 

in the models such as the risk factor of the subjects. 

 

So the analysis is performed in several levels: 
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 Level 1, We express the outcome as the sum of an intercept for the subjects and 

the subjects risk factor 

 Level 2: We specify the level intercept as the sum of an overall mean and the 

random deviation from that mean  

 Finally: The equations for the two levels are combined into the equation 

 

this is called a mixed model given that it has both fixed and random effects. 

 

 

2.5 Quasi-Complete Separation 

 

We will also consider the case of quasi-complete separation that occurs when a 

certain categorical covariate/group combination is null. For example, the controls do not 

have a certain genotype. The (ordinary or residual) logistic regression analysis may fail to 

converge in this case. If this happens, one should adopt the usual Pearson residual 

analysis for logistic regression. As discussed above (and recapped briefly here), this is 

also a two-stage procedure with Stage 1 being identical to our residual logistic regression. 

In Stage 2, letting  if the subject is a case and 0 otherwise, one would compute the 

Pearson residual  
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where  is the Stage 1 estimate, and subsequently fit a linear regression model:  

 

 

Significant predictors can be chosen similarly using the stepwise or best-subset variable 

selection method. The drawback is that the intuitive interpretation of risk accounted for 

by covariates of interest is lost.  The derivation of the quasi-complete separation is 

presented below in a simplified setting.  

 

Proof: Quasi-complete separation 

 

For a logistic regression model of the form: 

,  

where  are two dummy variables representing a certain categorical covariate of 

interest with 3 possible categories, we have 
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We will find that the maximum likelihood estimate of  is ln(0) which is impossible to 

obtain when one of the categories has probability of 0. One solution to this problem is the 

Pearson residual analysis where the second stage regression is linear as discussed before.  
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Chapter 3.  

Applications and Results 

 

3.1 Data Overview 

 

Alzheimer’s Disease (AD) is one of the most common types of dementia that 

consist on a  neurodegeneration characterized by a progressive cognitive deterioration; 

that, with time, causes significant decline on the performance of the person on activities 

of daily living together with several mood and behavioral changes. 

 

In the United States several surveys reveal that an estimated 5.1 million subjects suffer 

AD. This number includes both, elderly subjects (subjects over 65 years old) and non-

elderly subjects (people younger than 65 years old)[2] .  

 



 44 

The NYU ADCC is one of 30 centers in the United States where the mission is to work 

toward better treatment options and care for dementia patients. The data provided here is 

part of a  longitudinal study where the goal is to determine whether the mental decline 

rate is the same for subjects with complains of cognitive impairment and subjects that 

don’t have any complains. 

 

Two hundred and thirteen healthy persons evaluated from 1/1/1984 to 12/31/1997 with a 

follow up data obtained up until 12/31/2001 were utilized. The subjects, diagnosed as 

normal, were classified based on the Global Deterioration Scale (GDS) (Reisberg et al. 

[57]) as either GDS stage 1 (GDS1) or GDS stage 2 (GDS2)11 at the onset of the study.  

For this classification all the subjects were evaluated on a variety of cognitive abilities, 

which included: verbal recall, associative recall, visual recognition, memory, immediate 

memory, language function, visuospatial praxis, and psychomotor speed12.  This creates 

the two exclusive groups that we have been talking about, with 47 subjects evaluated as 

GDS1 and 166 subjects as GDS2 with seven covariates to be analyzed Age, Gender, 

Education, Mini Mental Score (MMS), Psychometric Deterioration Scale (PDS), Brief 

Cognitive Scale (BCR), Depression Scale (HDT) and Total Amount of Days the Patient 

Has Been in the Study (DAYSTOT) [3]. 

 

                                                 
11 A person can be diagnosed as normal even if it has complains of cognitive impairment. 
12 The GDS1 is a stage in which older persons are free of subjective or objective impairments. The GDS2 is a stage in 
which older persons have subjective cognitive impairment only [57].   
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An exploratory statistical analysis [1] found significant differences between important 

demographic characteristics of the two groups, for example, Age13 and MMS14 

(Independent 2-sided  t-test, p = 0.0202 and p < 0.0001 respectively). It was thought that 

gender would be also significantly different just by looking at the rates (55% of the 47 

GDS1 subjects are female while 65% of the 166 GDS2 persons are) but such difference 

came up as not significant (Independent 2-sided t-test, p = 0.2242).   

 

It is important to point out that during the follow up of the subjects the stages were each 

of them was classified changed. Many subjects ended up on higher GDS levels (i.e. they 

declined to higher stages of dementia or AD)15, while others stayed within their original 

stages16.  

 

 

3.2 Independent vs. Paired Data Analysis 

 

Several reasons have been given to either support or not a matched data analysis 

(in our particular case a 1:1) and we can keep adding reasons to this list to either go for it 

or not. 

 

                                                 
13 Given the phenomenon we are analyzing, age is an important factor because the chances of a subject to 
suffer cognitive impairment are bigger with age. 
14 The Mini Mental Score (MMS) is the most commonly used score for complaints of memory problems. Is a series of 
questions and tests, each of which scores points if answered correctly. If every answer is correct, a maximum score of 
30 points is possible. People with Alzheimer’s disease generally score 26 points or less. It is important t say that this is 
not a test for Alzheimer's disease. There are many other reasons why a person might score less than 26 points [2]. 
15 The GDS classification scale consists of 7 stages where GDS3 is MCI, and 4 and above are stages that describe the 
severity of Alzheimer on the patient [3] 
16 In the case of some of the GDS1 subjects they ended up with a GDS2 



 46 

In the data we will be studying we have one big problem, which is unbalance, ie. one of 

the groups is considerably bigger than the other which might lead to biased results. 

Therefore, by matching we are expecting to balance the data and obtain better results, 

although, as we mention before, by doing this we can lose a considerable amount of 

information. In order to avoid this we will try to obtain a matched sample that can 

represent any possible matched sample from the original data set. In order to test this we 

will employ resampling methods. 

 

The method to obtain a matched sample is widely known and consists basically in the 

following: 

1. Separate the variables into two main categories: 

a. Factors that might be associated with the condition or disease of the patient 

(medical characteristics that might define the disease such as heart rate, blood 

pressure, etc.) 

b. Factor that are not associated but that might add variability to the condition 

(this are usually demographic characteristics such as age, gender, race, etc) 

The second group can be considered as confounding variables given that they can 

add variability to the data and therefore bias to the analysis if they are not handled 

with care. 

2. Set the level of importance of these factors and match accordingly 

 

In the current study the matching factors are Age, Education, Gender and MMS (in that 

order of importance), as we mentioned before, it was found that the first two variables 
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have significant differences between the two groups, besides, all these variables are 

known to be highly correlated to the decline of cognitive abilities in subjects [48, 58, 64], 

which makes them potential candidates for confounding factors, something that have to 

be taken into account given that can bring, also, a big amount of bias to the results 

 

.  

3.2.1 Results 

 

Original Data 

 

 From the 213 subjects, 54% of the subjects with GDS2 declined while only 

15% of GDS1 did. It was found that the declining percentage from GDS2 is significantly 

larger than the one from GDS1 (Fisher’s exact test, p<0.0001). 

 

In addition, the average decline time20 for the 7 GDS1 subjects was 3212 days while the 

average decline time for the 90 GDS2 individuals was 1919 days. The time to decline to 

GDS ≥3 for the GDS2 group is significantly shorter than the one for GDS1 (Savage two-

sample test for event time, p=0.0007). 

 

However, as we mentioned before, these two GDS groups are significantly different with 

respect to age (mean difference = 3.424 years, std. err.=1.464, p=0.020) and Mini Mental 

                                                 
20 This means the number of days between the start date of the subject in the study to the point where a 
GDS3 or higher was detected. 
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Score or MMS (mean difference=0.662 point, std. err.=0.184, p<0.0001). There also 

appeared to be a gender difference between the two groups (26 of the 47 GDS1, i.e. 55%, 

subjects are female while 108 of the 166 GDS2 subjects, i.e. 65%, are female) although 

such difference is not significant (p=0.147). Therefore the observed group difference in 

decline proportion and time to decline might be potentially confounded by the difference 

in Age and Mini Mental Score [58]. 

 

 

 

Paired Data  

 

 Twenty eight pairs of subjects (12 male, 16 female) were obtained by matching 

their Gender, Age and MMS scores between a cohort of 47 GDS1 and a cohort of 166 

GDS2 subjects. There are no significant differences (GDS2 – GDS1) between groups for 

Age (mean difference=0.028 years, std. err.=1.907, p = 0.988) and MMS (perfect match; 

mean difference = 0, std. err. = 0.257, p = 1.000).  

 

Of the 28 pairs, 15 subjects with GDS2 declined to GDS ≥3 and only 5 persons from 

GDS1 did. The percentage of individuals that declined from the GDS2 group is 

significantly larger than the one for GDS1 (McNemar’s test, p=0.008). 

 

In addition, the average decline time for the 5 GDS1 subjects was 3643 days while the 

average decline time for the 15 GDS2 individuals was 2059 days. The time to decline to 
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GDS ≥3 for the GDS2 group is significantly shorter than the one for GDS1 (Savage two-

sample test for event time, p=0.020). 

 

 

Comparison of the two data sets 

 

 So far is seen that the two data sets yield similar results on the difference 

between decline proportions and decline time for the two groups (GDS1 and GDS2). It 

can also be said that the two methods support the same theory that is that the GDS2 group 

has a larger decline proportion with faster decline time to GDS ≥3 than the GDS1 group.   

 

Furthermore, the two data approaches where analyzed more meticulously to evaluate if 

one of them is a better approach and can give more accurate and better information about 

the phenomenon. For this the paired and the independent data were examined through 

logistic regression and conditional logistic regression. 

 

The following logistic model was fitted to both data sets: 

 

where  is the probability of declining to GDS ≥3.  
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There was found a significant group effect for both data sets. The estimated odds ratios 

for the two groups (GDS2 and GDS1) and their corresponding 95% confidence intervals 

were: 

Original: 4.960 (odds ratio);   (2.015, 12.208)  

Paired:    7.563 (odds ratio);   (1.734, 32.977) 

 

Therefore, when controlling for Gender, Age, MMS and Education the subjects in the 

GDS2 group are more likely to decline than the individuals of the GDS1 group or, in 

other words, the odds for the GDS2 group to decline is larger than the odds for the GDS1. 

 

The correlations’ matrices for the two data sets are as follows: 

 

Original Data 

 Age Gender Educ MMS PDS BCRtot HDTtot Daystot 

Age 1.000 0.0413 -0.0336 -0.2120* 0.3327* 0.3010* 0.0750 -0.0433 

Gender  1.0000 -0.0270 -0.1070 0.2020* -0.0080 -0.0930 0.0100 

Educ   1.0000 0.1180* 0.3784* 0.1110 0.0460 0.0667 

MMS    1.0000 -0.3780* -0.3329* -0.1789* 0.0462 

PDS     1.0000 0.2730* 0.0050 -0.1565* 

BCRtot      1.0000 0.2000* 0.0224 

HDTtot       1.0000 -0.1167 

DAYStot        1.0000 

 
Table 3. Pearson correlation coefficients from the correlation matrix for the Alzheimer’s data  

where * means values that are significant for Ho: Rho=0 
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Paired Data 

 Age Gender Educ MMS PDS BCRtot HDTtot Daystot 

Age 1.000 -0.0897 0.0783 -0.1672 0.1813 0.1996 0.0323 -0.0158 

Gender  1.0000 -0.0398 -0.1092 0.2055 0.0396 -0.2895* -0.0624 

Educ   1.0000 0.0199 0.3654* -0.0457 0.0551 0.1699 

MMS    1.0000 -0.3236* -0.1323 -0.1794 0.0918 

PDS     1.0000 0.1475 0.1200 -0.2463 

BCRtot      1.0000 0.2116 0.1402 

HDTtot       1.0000 0.1099 

DAYStot        1.0000 

Tale 4. Pearson correlation coefficients from the correlation matrix for the Alzheimer’s data  
where * means values that are significant for Ho: Rho=0 

 

 

 

Additional Predictors for Declining 

 

 It was shown that Group is a predictor of decline. Using the stepwise variable 

selection procedure we were able to obtain a model that can define the declining of the 

subjects 

 

With a model including all the covariates as follows 

 

where p is the probability of declining to GDS≥3.  
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The corresponding p-values, estimated odds ratios and their 95% confidence intervals as 

well as the goodness of fit are: 

 

Original data 

Age                p= 0.0064;    1.065 (odds ratio);   (1.018, 1.115) 

PDS:       p=<0.0001;   2.145 (odds ratio);   (1.461, 3.151)  

BCRTOT:      p=<0.0001;   1.467 (odds ratio);    (1.212, 1.777) 

DAYSTOT:   p=<0.0001;   1.001 (odds ratio);    (1.001, 1.001) 

Goodness-of-fit = 0.2033 

 

Paired Data 

Age                p= 0.0425;    1.133 (odds ratio);   (1.004, 1.278) 

PDS:       p= 0.7624;    1.152 (odds ratio);   (0.461, 2.876)  

BCRTOT:      p= 0.0054;    1.931 (odds ratio);   (1.214, 3.070) 

DAYSTOT:   p= 0.0178;    1.001 (odds ratio);   (1.000, 1.002) 

Goodness-of-fit = 0.3931 

 

As we can see the models have the same tendency and are quite similar, we can also see 

that the goodness of fit is greater for the paired data and this might be due to the fact that 

the confounding variables are not so well controlled as with the paired data model. 
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Resample 

 

It is critical to examine how representative the selected paired sample (IPD) is of 

all the possible paired samples. For this purpose, we calculated the mean, standard error 

and confidence intervals of the results obtained from the bootstrap resampling. 

 

The number of resamples obtained was B=1000. It was found that, like the IPD, there are 

no significant differences (GDS2–GDS1) where the variables behaved as follows 

AGE        Original: GDS1= 65.480                               GDS2= 65.507    

 Resample 95% CI: GDS1= (65.45,65.54)    GDS2= (65.49,65.54) 

EDUC     Original: GDS1= 15.500      GDS2= 15.778  

 Resample 95% CI: GDS1= (15.21,15.79)    GDS2= (15.52,16.11) 

MMS Original: GDS1= 29.540      GDS2= 29.540  

 Resample 95% CI: GDS1=SAME ALL       GDS2= SAME ALL 

 

 

For the 1000 resamples we found that the average decline time for the GDS1 subjects 

was 3643 (in comparison to 3643 for the IPD) days while the average decline time for the 

GDS2 individuals was 2006 days ( and it was 2059 days for the IPD).  Therefore the 

same conclusion as with the IPD can be made, that means that the GDS2 group declines 

faster than the GDS1. 
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The estimators of the different regressions and the survival analysis were also checked in 

order to confirm if the IPD is unbiased. We found the following: 

1- For the model  

 

 

There was a significant group effect for the paired data set and the resamples, below we 

show the original estimator and the 95% confidence interval obtained from the resamples 

IPD:  Group estimate = 6.293 

Resample: 95% CI for group estimate= 5.000, 8.166 

 

For the final model we performed the same variable selection used on the IPD to each 

subsample and it was found that more than 50% had the exact same conclusions as the 

IPD for all the models. 

 

 

3.3 Logistic Regression with Independent Samples 

 

Alzheimer’s disease is a type of dementia highly correlated to demographical 

characteristics, especially during the onset of the disease, and these factors also can affect 

highly the performance of the subjects during the psychometric tests that the subjects go 

through, therefore it is important to handle them with care given their potential to be 

confounding variables. 
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For the methods proposed for Residual Logistic Regression we have that the stage 1 

model is as follows: 

 

where  is the probability of declining to GDS ≥3.  

 

Pearson Residual Analysis 

 

After the stage 1 model ws fitted, the estimated probability of decline for each 

individual is calculated and with this the Pearson residual that we will rename as , the 

sample size of our sample is large enough (n=213 subjects), therefore we can assume that 

this residual is distributed normal with mean zero and standard deviation of one. This 

estimated value will be the new dependant variable to test the effect of the non-

confounding variables as follows:  

 

 

Where, as we mentioned before, because the new dependent variable is not dichotomous 

any more, we apply a linear regression instead of the initial logistic regression. 

 

After a stepwise selection the final model is as follows: 

 

with the corresponding p-value 
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DAYSTOT    p=<  0.0001 

 

Residual Logistic Regression Analysis 

From the stage 1 of the method we obtain a new covariate for our final model, 

defined as: 

 
where the estimators are as follows: 

 

 

This variable compiles all the information that the confounding variables provide to the 

dependant variable and it will be added as a fixed effect into a “complete” model where 

all the variables will be tested as follows:  

 

where 
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After a stepwise selection the final model is: 

  

with the corresponding p-values and odds ratio as follows: 

PDS                p=   0.0011;     1.904 (odds ratio); (1.293, 2.805) 

BCRTOT       p=< 0.0001;     1.473 (odds ratio); (1.214, 1.786) 

DAYSTOT    p=<  0.0001;    1.001 (odds ratio); (1.001, 1.001) 

 

Hierarchical Logistic Regression Model 

 

For this model the potential confounding variables where set as the different 

levels of hierarchy, setting Group (the GDS level) as the first level, Age as the second, 

Education as third, Gender as fourth and finally MMS as fifth. After running this analysis 

we didn’t found any significant variables. 

 

We ran a second model where the fifth level wasn’t considered and found significant 

variables that stayed in the model after a stepwise selection and they are the following, 

with their corresponding p-values: 

PDS                p=0.0041 

BCRTOT        p= 0.0070 

DAYSTOT     p=0.0027 
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Chapter 4 

Discussion and Conclusions 

 

First it is important to mention that the resample data showed that the IPD is a 

good representation of all the potential paired samples that can be obtained from the 

sample. Given this the IPD can be considered as unbiased.   

 

The power analysis showed that for most of the significant variables (the matching 

factors and the ones that were considered for the final model) the paired sample approach 

is a better approximation yielding higher power than its independent samples counterpart. 

 

The consistency between the paired and independent samples analysis confirmed that the 

GDS1 and GDS2 groups decline at significantly different rates. From here we can 

conclude that people on GDS2 group decline much faster and in a higher proportion than 

people in the GDS1 group. 
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The analyses performed give us a general view of the behavior of Alzheimer’s disease for 

these two GDS groups. We can also obtain a reliable conclusion thanks to the similarities 

among most of the models present, especialy the traditional logistic regression model and 

the residual logistic regression method, although the latter is more justifiable and flexible 

(in variable selection etc.).  The Pearson residual analysis has a very significantly 

different final model than any of the other methods and this is due to the high levels of 

correlation based on the original data, which leads to conservative bias and less 

significant results. The hierarchical logistic regression has a different issue. If we go 

ahead and set all the levels of hierarchy necessary to cover all the potential confounding 

variables we end up with no significant variables. However if we eliminate the least 

important confounding variable (in this case MMS) then we obtain the exact same model 

that we obtained from the traditional logistic regression and the residual logistic 

regression analysis. The reason of this is because, as we set the hierarchy levels we are 

creating strata that become smaller and smaller within each hierarchy and by leaving 

MMS as one of the levels the strata became too small and therefore the analysis becomes 

less powerful. 

 

Besides all the issues mentioned before, it is important  to point out as well that both 

Pearson residual analysis and Hierarchical logistic regression do not provide an odds ratio 

of the covariates of interest which render them as weaker options unless, of course, that is 

not an important factor. However, we also point out that when the rare case of quasi-

complete separation happens, the Pearson residual analysis is the only viable approach. 
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Appendix A 

Residual Logistic Regression Variable Selection 

 

The SAS code for the proposed model for our example is as follows: 

 

Stage 1 

PROC LOGISTIC DATA=AD DESCENDING; 

MODEL Y = GROUP AGE MMS GENDER EDUC; 

RUN; 

After the estimators for the parameters of the potential confounding variables are 

calculated then we create a new variable as follows: 

 

Stage 2 

 

DATA AD_T; 

SET AD; 
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T= 
 

RUN; 

QUIT; 

DATA AD_RLR; 

SET AD_T; 

OFFSETVAL=T; 

RUN; 

QUIT; 

PROC LOGISTIC DATA=AD_RLR DESCENDING; 

MODEL Y = PDS HDTTOT BCRTOT/ OFFSET=OFFSETVAL 

SELECTION=STEPWISE; 

RUN; 

 

 

 

 

 

 

 

 

 


