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Abstract of the Dissertation
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Long Term Survivors and a Mixture of Two Exponential Distributions

by
Samuel Cook
Doctor of Philosophy
in
Applied Mathematics and Statistics
(Statistics)
Stony Brook University

2009

Mixture models for fitting long-term survivors (LTS) have an extensive research
history and mixture models assuming a mixture of two component exponentials
with finite means has, more recently, been researched. These tests of mixture
mechanisms in survival data have a fundamental importance in bio-statistical
research. While the tests are well documented, an analysis of power of these tests
has seen little attention. A simulation program to replicate these situations is

developed, as is software for the computation of these tests. The null distribution

of a single exponential with LTS is shown to be 7,7, +(1—7,) ;(12 , where 7,

represents the proportion of zero likelihood ratio test statistics and is confirmed to



converge to % Zo+ % 1 as n goes to infinity for a finite study. The null

distribution for a mixture of two components appears to be 7, v, +(1—7,) ;(VZ] .

When studying the power of a two component exponential mixture, mixing
proportion of the components, and the difference in component means were the
primary variables considered in the alternative hypothesis. A 50-50 mixture with
greatest difference of component means (difference equals 1.5) has power near 1
for both censoring patterns and censoring rates, even for sample size. For skewed
mixing proportions (that is, m=0.85) with greatest difference of component
means, the power increases with increasing sample size, as expected. For smaller
difference of component means (difference equals 0.5) for both symmetric
(m=0.50) and skewed mixtures, the power is low for both censoring patterns and
both censoring rates. In the mixture model fitting LTS the length of the study and
the proportion of LTS were the primary variables considered. The longer the
study and the larger the proportion of LTS provided the highest power, with
power near 1 for large samples and study lengths of at least 5 times the
distribution mean. A model to estimate the power for both models is developed to

help estimate the model’s effectiveness based on the properties of ones sample.
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Chapter 1. Introduction

In survival analysis, the variable of primary interest is the time between a
specified originating event and the occurrence of the event of interest. For
example, the time from treatment to death or the time from treatment to remission
are variables of importance.

Mixture models for fitting long-term survivors (LTS) have an long
research history (Farewell 1982), and mixture models assuming a mixture of two
component exponentials with finite means has, more recently, been researched
(Ye 2006). These tests of mixture mechanisms in survival data have a
fundamental importance in bio-statistical research. While the tests are well
documented, an analysis of power of these tests has received little attention.

There is a wide range of applications where mixture distributions are
important. This is due to their flexibility in mirroring complex situations.
Various mixture survival models have been proposed over the last century
(Bohning and Seidel, 2003).

A common mixture survival model is the cure rate model. This is a
survival distribution that is the mixture of two components, in which one
component follows a population who have expected responses and the other
component has a survival distribution of patients given a treatment for a disease.
It has been presented in medical and biomedical applications, clinical

applications, and epidemiological applications. The modeling of a cancer patient



who had received a specific treatment was developed by Boag (1949). He
estimated the fraction of patients “cured” by a cancer therapy using a lognormal
model with maximum likelihood. Berkson and Gage (1952) considered a model in
which the survival time of a patient with cancer was modeled as the mixture of
the survival distribution of the general population and a survival distribution
determined by the cancer. The survival distribution determined by the cancer was
modeled as the survival distribution of the general population reduced by a
negative exponential decay factor linear in time. Haybittle (1965) developed an
“extrapolated actuarial” two-parameter model that also incorporated survival
functions for treated patients that are functional modifications of the “normal
population”.

This dissertation follows the LTS model given by Farewell (1982).
Farewell defines LTS as a noticeable proportion of subjects who, by the end of
the study, do not see their event of interest. Farewell (1982) assumed a fraction of
LTS in a survival study. In a later work, Farewell (1986) examined the use of
mixture models for LTS. Maller and Zhou (1992) developed an independent non-
parametric censoring model for estimating the proportion of LTS in a censored
sample. In a subsequent paper Zhou and Maller (1995) discussed the test for
identifying the presence of LTS in the population and goodness of fit tests for the
parametric description of the data. They developed its asymptotic theory and used

the likelihood ratio test statistic (LRTS) to test whether a non-zero proportion of



LTS is indeed present in the population. Their procedure used the exponential
distribution for non-LTS subjects. Copas and Heydari (1997) developed an
exponential mixture model for recidivism of criminals that explicitly allows for
delay. They estimated the risk of return to the judicial system, where the survival
time including both the time from release to the first re-offence and the time from
this re-offence to conviction. Peng et al. (1998) proposed a mixture model by
using the generalized F distribution family. Tsodikov (2001) provided a
parametric cure model and the corresponding algorithm to estimate the cure rate.

He estimated the distribution function F'(#) non-parametrically as if the cure rates

were known. Tsodikov (2002) developed a series of semi-parametric survival
models and algorithms to deal with the combining of long-term and short-term
covariate effects in cancer survival analysis. Tsodikov et al. (2003) considered the
utility of the bounded cumulative hazard model as an alternative to the two-
component mixture model in the cure rate estimation. Corbiere et al. (2009),
suggest a penalized likelihood approach, which allows for flexible modeling of
the hazard function for susceptible individuals when studying individuals, who
may experience the event of interest, and non-susceptible individuals that will
never experience it.

The power of these models has seen little attention. Furukawa et al. (2009),

studied the power of risk assessment applying to age-time trends and susceptible



subgroups. Broet et al. (2003) studied the power of the inclusion of long term
survivors in a two sample tests in randomized designs.
Broet et al. (2001) proposed statistics for testing a two-sample comparison of
survival times with long-term survivors. Lam et al. (2005) provided a model for
the recurrence of breast cancer in long term survivors with a focus on censored
data.
I will study the LTS model (Ls) considered by Zhou and Maller (1995) and the
mixture model (Ly,) considered by Ye (2006) in tests against a single exponential
test distribution (Ly).
This dissertation addresses the following questions:
1. How does a finite study duration affect the null distribution of the test for
Ls against L,?

2. Is it possible to estimate the power for the test HO: Ly vs H1:Lg or the test
HO: Ly vs H1:Ly?

3. What are the range of parameters (e.g. sample size, fraction of LTS and
censoring rate) in which the power of the LRTS exceeds 50%?

Chapter 2 of this dissertation presents the methods including the numerical
algorithms for each model. The Nelder-Mead (NM) algorithm (Nelder and Mead
1965) is used to estimate the maximimum likelihood estimators with different
settings of starting values. For the L), model, different numbers of starting values

are considered and compared to maximize the probability of finding the



maximum. Numerical algorithms are programmed in C++ for Linux. They also
can be run in any Windows operating system with use of a Linux emulator. This
software is available on request from me and will soon be available for use on my
website.

Chapter 3 of this dissertation gives the simulation results for the MLE’s, the
null distribution of the LRTS, and the approximate alternative distribution of the
LRTS. It gives the observed simulated power and the fitted estimated power
models. For the Lg estimated power model, the limitations are studied in depth.

Chapter 4 of this dissertation contains the conclusion and a discussion of

issues raised in the simulation study as well as the future direction of this work.



Chapter 2: Methods

2.1 - Definitions:

The probability density function (PDF) of the exponential distribution

(exp(L))is f(¢)=Ae ™.t >0 with a mean of % . The uniform distribution

a+b

(U(a,b)) has a PDF of f(¢)= %,b >a,a<t<b. Its expected value is
—a

2.11 - Long Term Survivors:

The survival function of a random variable whose cumulative distribution
function is F(x) is defined to be S(x) = P(X > x) =1— F(x). The hazard function
1s the instantaneous death rate and is defined to be

h(x):hmP(xSXSx+Ax|XZx) :f(x)
Ax—0 Ax s(x)

. (Klein & Moeschberger 2003).

2.12 - Censoring

I denote the true observed time of the i observation as ti* and its
censoring time as u,. The observed time 7, = min(z, ,u,),(1<i <n). The
ordered survival times are denoted 7,y (¢, <?;) <...<{,). For each observation
a censoring indicator is recorded such that ¢, =1 indicates an absence of

censoring (i.e., ¢, =t; ) and ¢, =0 otherwise (i.., #, =u, ). If there are multiple



1,y with equal responses, then they will be ordered by first listing those that have

not been censored.

2.13 - Censoring Distributions

When determining censoring times, [ will follow Peng et al. (2001) and

use a uniform censoring pattern, as well as an exponential censoring pattern. The

exponential censoring pattern has a mean of 1 , and the uniform is U[0, b]. The

parameters 3 and b are calculated so that the expected proportion of censoring
will be a specified value such as 10%, 30% or 45%. I assume the censoring
distribution is independent of the survival distribution.

2.14 - Likelihood Function: Single exponential (L):

. e . 1 it
A single component exponential distribution with mean R f(t)=e",

has a survival function of S(f)=e *. With censoring, the likelihood function for

a random sample of n censored observations is

Ly(ty, 1yt A) = [ [I(Ae™) (€)' ™]. The log-likelihood function for the

i=1
modelis ; _ jog(2,) = 3" fe, log( 1)~ 21,1} + (1 - ¢, flog( e~ )] - The maximum

2.6
likelihood estimate of A is A =~ (Maller and Zhou 1996).

>

i=1



2.15 - Single exponential with survivors (Ls):

Long Term Survivors (LTS) include in practice those subjects who, by the
end of the study, did not observe the event of interest. Mathematically LTS is

defined as LTS =1-1im F(¢) (Farewell 1982).
t—
The survival function of a single exponential with fraction LTS is

S(t)=1—(LTS)+(LTS)e™ The likelihood function is

Ly(tystyss t,, 4, p,) = [ (LTS )Ae ™) (1= (LTS ) + (LTS ye ")~ .

i=1
Its log-likelihood function is

log(Ly) = Zn: {c,[log(LTS) +log(1) — At,1} + (1—c)[log(1— (LTS) + (LTS)e )]} .

i=1

(Zhou and Maller 1995). I will refer to this model as Lg.

2.151 - Finite Censoring without LTS:

I consider censoring with a finite study duration of time D; that is, at time
D there will be active participants who will not be followed further. I will
consider any subject still active at the end of the study to be censored at D. For
example, suppose X ~ EXP(1), and the data is censored according to an
independent exponential censoring pattern ¥ ~ EXP(B). The proportion of

uncensored observations is then P((X < Y)N (X <c¢)). This will dictate a larger



censoring pattern mean parameter than would hold for an indefinitely long study,
so that we can still ensure the expected proportion of censored responses we

specify. This is illustrated in Figure 2.1.

Figure 2.1:
Regions With Censoring For A Finite Duration Study.
y
Observed
(uncensored)

censored

D X

Then the proportion of uncensored observations for a study of duration D

is given by:
P(x <¥)n(x<e)=[[ e y//’dydx [[etPax
| IB e—(x+x/ﬂ) |c _ ﬂ _ ﬂ e—(c+c/ﬂ)
= = o |l=t—-—t—
p+1 pg+1 p+1

It may not be possible to have an expected censoring rate » with study

duration D. Table 2.1 gives P(X > D) for specified D.



Table 2.1 P(X > D) For Specified D.
Study Duration D= D=5 D=4 D=3 D=25 D=2 D=1.5
Proportion Yet to be 0% 0.67% 1.83% 4.98% 8.21% 13.53% 22.3%
observed at D

When considering a finite study duration, D observations will be censored
for two reasons: still active at D and censored by Y before D. For example, in a
study of duration 4, where 10% of all observations are censored, the 10% that are
censored will be divided into an expected 1.83% with X > 4, and an expected
8.17% that will be censored by Y before 4. This reduction in the proportion of
observations, that take the censoring distribution time from 10% to 8.17%, will
dictate a censoring pattern mean that is different from the mean that satisfies

P(X >Y)=0.10, which describes a study of infinite duration.

2.152 - Finite Censoring with LTS:

In considering a finite study duration, the inclusion of LTS brings a third
censoring issue. The censored data is still a combination of events censored at
end of study D and events censored by Y before X < D. However, the proportion
of events censored at D will increase due to the proportion of LTS. Thatis, a LTS
will always be active at the end of study D and is hence censored. The proportion

of non LTS is P(X, > D| E(X,) = u), where u is the mean of non-LTS survival

times. It must be set to p - LTS. The expected proportion censored 7, is:

10




r=(LTS)+ [1 - (LTS)]- [l —P(x<Y)n(x < c))] . Table 2.2 reports the expected

proportion censored at D plus the expected LTS.

Table 2.2:

Proportion of Observations Censored at D For Selected Fractions LTS with
Expected Survival Mean = 1.

Study LTS
Duration

(D) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2
1.00 0.3679 | 0.374 | 0.381 | 0.387 | 0.393 | 0.399 | 0.406 | 0.412 | 0.418 | 0.425 | 0.431 | 0.463 | 0.494
1.25 0.2865 | 0.294 | 0.301 | 0.308 | 0.315 | 0.322 | 0.329 | 0.336 | 0.344 | 0.351 | 0.358 | 0.394 | 0.429
1.50 0.2231 | 0.231 | 0.239 | 0.246 | 0.254 | 0.262 | 0.270 | 0.278 | 0.285 | 0.293 | 0.301 | 0.340 | 0.379
1.75 0.1738 | 0.182 | 0.190 | 0.199 | 0.207 | 0.215 | 0.223 | 0.232 | 0.240 | 0.248 | 0.256 | 0.298 | 0.339
2.00 0.1353 | 0.144 | 0.153 | 0.161 | 0.170 | 0.179 | 0.187 | 0.196 | 0.205 | 0.213 | 0.222 | 0.265 | 0.308
2.25 0.1054 | 0.114 | 0.123 | 0.132 | 0.141 | 0.150 | 0.159 | 0.168 | 0.177 | 0.186 | 0.195 | 0.240 | 0.284
2.50 0.0821 | 0.091 | 0.100 | 0.110 | 0.119 | 0.128 | 0.137 | 0.146 | 0.156 | 0.165 | 0.174 | 0.220 | 0.266
2.75 0.0639 | 0.073 | 0.083 | 0.092 | 0.101 | 0.111 | 0.120 | 0.129 | 0.139 | 0.148 | 0.158 | 0.204 | 0.251
3.00 0.0498 | 0.059 | 0.069 | 0.078 | 0.088 | 0.097 | 0.107 | 0.116 | 0.126 | 0.135 | 0.145 | 0.192 | 0.240
3.25 0.0388 | 0.048 | 0.058 | 0.068 | 0.077 | 0.087 | 0.096 | 0.106 | 0.116 | 0.125 | 0.135 | 0.183 | 0.231
3.50 0.0302 | 0.040 | 0.050 | 0.059 | 0.069 | 0.079 | 0.088 | 0.098 | 0.108 | 0.117 | 0.127 | 0.176 | 0.224
3.75 0.0235 | 0.033 | 0.043 | 0.053 | 0.063 | 0.072 | 0.082 | 0.092 | 0.102 | 0.111 | 0.121 | 0.170 | 0.219
4.00 0.0183 | 0.028 | 0.038 | 0.048 | 0.058 | 0.067 | 0.077 | 0.087 | 0.097 | 0.107 | 0.116 | 0.166 | 0.215
4.25 0.0143 | 0.024 | 0.034 | 0.044 | 0.054 | 0.064 | 0.073 | 0.083 | 0.093 | 0.103 | 0.113 | 0.162 | 0.211
4.50 0.0111 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.070 | 0.080 | 0.090 | 0.100 | 0.110 | 0.159 | 0.209
4.75 0.0087 | 0.019 | 0.028 | 0.038 | 0.048 | 0.058 | 0.068 | 0.078 | 0.088 | 0.098 | 0.108 | 0.157 | 0.207
5.00 0.0067 | 0.017 | 0.027 | 0.037 | 0.046 | 0.056 | 0.066 | 0.076 | 0.086 | 0.096 | 0.106 | 0.156 | 0.205
5.25 0.0052 | 0.015 | 0.025 | 0.035 | 0.045 | 0.055 | 0.065 | 0.075 | 0.085 | 0.095 | 0.105 | 0.154 | 0.204
5.50 0.0041 | 0.014 | 0.024 | 0.034 | 0.044 | 0.054 | 0.064 | 0.074 | 0.084 | 0.094 | 0.104 | 0.153 | 0.203
5.75 0.0032 | 0.013 | 0.023 | 0.033 | 0.043 | 0.053 | 0.063 | 0.073 | 0.083 | 0.093 | 0.103 | 0.153 | 0.203
6.00 0.0025 | 0.012 | 0.022 | 0.032 | 0.042 | 0.052 | 0.062 | 0.072 | 0.082 | 0.092 | 0.102 | 0.152 | 0.202
6.25 0.0019 | 0.012 | 0.022 | 0.032 | 0.042 | 0.052 | 0.062 | 0.072 | 0.082 | 0.092 | 0.102 | 0.152 | 0.202
6.50 0.0015 | 0.011 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.071 | 0.081 | 0.091 | 0.101 | 0.151 | 0.201
6.75 0.0012 | 0.011 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.071 | 0.081 | 0.091 | 0.101 | 0.151 | 0.201
7.00 0.0009 | 0.011 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.071 | 0.081 | 0.091 | 0.101 | 0.151 | 0.201
7.25 0.0007 | 0.011 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.071 | 0.081 | 0.091 | 0.101 | 0.151 | 0.201
7.50 0.0006 | 0.011 | 0.021 | 0.031 | 0.041 | 0.051 | 0.061 | 0.071 | 0.081 | 0.091 | 0.100 | 0.150 | 0.200
7.75 0.0004 | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.150 | 0.200
8.00 0.0003 | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.150 | 0.200
0 0.0000 | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.150 | 0.200

11




2.153 - Finite Censoring with Study Duration:

I considered exponential censoring and uniform censoring. Any
simulation setting that use exponential censoring is possible because the
exponential distribution is unbounded. Uniform censoring can change the desired
study duration because the censoring distribution is bounded. That is, if one were
to use uniform censoring to simulate a 30% censoring rate, the censoring pattern

would be x ~U(0,3.2). Therefore if one wanted to simulate a study of duration 5

times the expected event time with 30% censoring, the uniform censoring pattern
has the undesirable property that censoring will not occur between 3.2 and 5.0.

In settings that use a uniform distribution, only those with an upper bound
greater than the duration of the study are used.

2.16 — Mixture of Two Exponentials (Ly):

Under the alternative hypothesis, the survival function is
S(ty=me ™ +(1-m)e™, (t>00<m<10< A, <A)

where m is the proportion from the exponential component with smaller

mean,/%. The log-likelihood function /(4,,4,,m) s
1

I(4y, 4,m) =log(l,) = i{ci[logfn%éﬂ“”’ +(1=m)Ae ™ 1+(1=c)[logtne ™ +(1-m)e ™")]}-

(Ye 2006). 1 will refer to this model as Ly,.

12



2.17—Lgvs Lg:

I developed an algorithm to calculate the MLE of Lg in the programming
language C++ with the NM alorithim. The programming methodology is
discussed in section 2.3. The programming code for Lg can be found in Appendix

Al.

2.171 — Settings:

The null distribution is a single exponential with a finite study duration
and censoring. The sample sizes in the simulation are 50, 100, 200, 500, 1000,
2000 and 10,000. I used an exponential(f) and uniform(0, b) censoring pattern
with distribution means set such that simulations had 10%, 30% and 50%
expected censoring rate. I also considered a finite study duration of 3 times the
mean of the event distribution (short study) and a study duration of 5 times the
event mean (long study). These simulations are summarized by mean LRTS,
variance of the LRTS, the fraction of zero LRTS values observed (where nearly
zero is defined as an LRTS less than 0.0001), the mean of the non-zero LRTS
values and LRTS values at selected percentiles. There were 42 different
simulations under exponential censoring as shown in Table 3.3. The results are
presented in section 3.23. There were 21 uniform simulations as shown in Table

3.4. The results are presented in section 3.23.

13



2.172 — Choosing number of Random Starting Points:

In section 2.182 the number of random starting points for the mixture
model I studied is discussed in detail. For the Ly model 9 random starting points
arranged in a 3 by 3 grid was sufficient to find the LRTS. In a pilot study of 200
replicates, all 200 required 9 RSP or fewer to obtain the LRTS value observed
with 100 RSP arranged in a 10 by 10 grid.

2.173 — Power Study:

I estimated the LRTS and the fraction of zero LRTS values with a linear

regression calculated with data collected from simulations. In results section 3.23

I show that it is plausible the null distribution follows z,y; +(1-7,) . , where
7, 1s the estimated fraction of zero LRTS values as given in equation 3.1 I used

that distribution to estimate the 75", 90™, 95™ 99™ 'and 99.9"™ percentiles for the
sample sizes used. The analysis of these results are discussed in detail in section
3.23 . Tused the estimated 99" percentile for each sample size as the 1% critical
value when measuring power. I simulated the power of L,, using 1000
replications for the following settings:
1. Two censoring patterns P: exponential (1) or uniform (0) censoring
pattern;

2. Six sample sizes » : 200, 350, 500, 750, 1000, or 2000;

14



3. Two study durations D: Longer Indicator (1, duration 5) or Shorter (0,

duration 3)

4. Three censoring rates R of 15%, 30% or 45%.

5. Three proportions of Long Term Survivors LTS: 2%, 5%, or 8%.

In the regression analysis of power, I considered a probit regression with the
dependent variable is © ' (P) , where ?(2) = P(Z < 2) with Z having a
standard normal distribution and 7 is the observed power.

2,18 — Ly vs Ly:

Ye (2006) developed an algorithm that computes the maximum likelihood
estimates (MLEs) of the mixing proportion and means of a survival distribution
that is the mixture of two exponential components. Then the likelihood ratio test
statistic (LRTS) of the null hypothesis that a survival distribution is exponential
against the alternative that the survival distribution is the mixture of two
exponentials is easily calculated.

I have extended this algorithm using a simulation program [ wrote in C++.
The base used for the coding was the software developed by Ye, in the
programming language R. The programming methodology is discussed in
section 2.3. The programming code I developed for L;, can be found in Appendix

A2.
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2.181 — Settings:

Each simulation incorporates a sample size (S), censoring pattern (P),
censoring rate (R), mixing proportion (M), and a difference (D) in mixture means.
I follow Peng et al. (2001), who used uniform U[0, ] and exponential censoring
distributions, where Exp(f) denotes the exponential censoring distribution with

1
mean F . The values of b and g are calculated so that the expected fraction

censored is either 10% or 30%. The means of the distributions are calculated
from the properties of the mixing proportion and the desired mean differences.

I will define the vector generated by RSP random starting points on rep
repetitions and L, rsprep (8> P M, D, R) . For example, L, 125200 (500, EXP, 0.50,

1.0, 0.10) is the vector of length 200 whose i entry is the maximum log
likelihood found using the 500 observations, with exponential censoring, 50%
mixing proportion, a difference of exponential means of 1.0 and a 10% censoring
rate based on 175 random starting points.

2.182 — Choosing number of Random Starting Points:

A problem faced in the completion of a power study is the computing time
needed to yield results. Ye (2006) suggested the use of 175 random starting
points to maximize the likelihood. When simulating 500 replicates per setting,
175 random starting points required considerable computing time. I first ran a

small pilot study to confirm that the use of 175 random starting points was
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sufficient. To do this I took three different sets of simulation settings at 100
replicates each and ran a simulation at 175 random starting points. I then ran the
same simulation with 1000 random starting points. The pilot study confirmed that
the difference between 175 random starting points and 1000 random starting
points was not important, as there was no difference between the maximum LRTS
value at 175 RSP compared to the maximum with 1000 RSP in 599 of the 600
samples. The one difference was an increase from 0.32 to 1.57. That s, I
confirmed that a simulation with 175 RSP is highly likely to locate the maximum
and will use it in my simulation study. This pilot study is summarized in Table
2.3.

Table 2.3:

Proportion of LRTS Values Consistent for 175 and 1000 random starting values

. .. Difference . Fraction Replicates with
Censoring Sample Mixing Censoring  Average larger LRTS for
. ; of of zero .
pattern size proportion Rate LRTS sample size
means LRTS 1000

EXP 200 0.50 1.5 0.10 50.5 0.00 0
EXP 500 0.75 1.5 0.30 15.8 0.00 0
EXP 750 0.85 1.0 0.10 7.8 0.00 0
UNIF 200 0.85 1.0 0.30 2.1 0.14 0
UNIF 500 0.50 0.5 0.30 29 0.04 1
UNIF 750 0.65 1.0 0.10 17.8 0.00 0

(Each setting was run with 100 replicates)
In the next part of my pilot study I used 800 samples to examine whether
fewer than 175 random starting points could be used. I used 175 RSP as the

threshold for an accurate LRTS calculation. That is, if the LRTS value calculated
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with x number of random starting points was the same as calculated with 175 RSP
then I concluded that x random starting points were enough for an accurate
calculation.

For each of 8 settings, I generated 100 replicates. A simulation was run at
12 different numbers of random starting points ranging from 1 to 175. In the pilot
study it was found that 227 cases yielded a LRTS value of 30 or larger at 175
RSP, 413 cases yielded a LRTS value between 15 and 30, and 160 cases yielded a
LRTS value less than 15. I will call an LRTS of 15 or less small, an LRTS
between 15 and 30 medium and an LRTS greater than 30 large. In cases where
the average LRTS value for a setting is large, the maximum value was located
using the first or second starting point for 226 of 227 samples checked.
Consequently, I set eight random starting points rather than two, concluding that
was sufficient to locate an accurate result when the pilot mean LRTS value was
over 30. For medium LRTS values, eighteen random starting points provided an
accurate result for 410 of 413 samples checked. For medium cases I set 36 RSP.
Even for small LRTS values, 150 random starting points was accurate for 158 of
the 160 samples. I set 175 random starting points for small cases.

The LRTS value is calculated within a few seconds for a single random

starting point. Therefore, LRTS size that leads to the chosen number of random

%
starting points was obtained by running a simulation at Lm,l,loo . An average of

18



those 100 replicates was taken and the result gave an approximate pilot mean
LRTS. This average classified the setting definition as producing small, medium
or large LRTS values, and determined how many random starting points were to
be used for this setting

2.183 — Checking Simulation output versus past results:

Simulated uniform and exponential censoring data were checked for
accuracy by taking samples of size 100, 500, 1000, 5000, 10,000 and 50,000 and
checking the mean, and variance and also applying a basic chi-square goodness of
fit test to each to confirm distribution properties. The accuracy of the MLE
choice made by the transcribed algorithm was checked by inputting the data
simulated in Ye’s R program into the converted C++ program and checking for
identical results. Simulated C++ data was also used in the R program as a further
check. I also re-ran the parameters Ye (2006) used in her simulations to confirm
her results. These simulations were done independently of her simulations using
new simulated data. In addition I incorporated additional sample sizes to model
power values over a greater number of settings.

2.184 — Power Study:

Using the NM algorithm I estimated the LRTS and the fraction of zero

LRTS values with a linear regression calculated with data collected from

. . .. . Vv
simulations. I assumed that the non-zero values follow the distribution F(7°,2)
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to estimate the 75, 90™, 95 99" and 99.9" percentiles for the sample sizes

used. The correlation between estimated percentile and simulated percentile is

0.985. T used the estimated 99™ percentile for each sample size as our 1% critical

value when measuring power. I simulated the power of L,, using 500

replications for the following settings:

1.

2.

S.

Two censoring patterns P: exponential or uniform censoring pattern;

Four sample sizes n : 200, 350, 500, or 750;

Four mixing proportions M for the component with smaller mean: 0.50,
0.65, 0.75, or 0.85;

Three differences D between means: 0.50, 1.00, or 1.50, as shown in Table
2.4;

Two censoring rates R of 10% or 30%.

In the regression analysis of power, I considered a probit regression with the

dependent variable is © ' (P) , where ?(2) = P(Z < 2) with Z having a

standard normal distribution and 7 is the observed power.
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Table 2.4.

Parameters of the two-component mixture of exponentials used in power study.

The mixing
proportion with Different Mean
smaller mean

M Smaller Larger
Mean Mean

0.75 1.25

0.50 0.50 1.50

0.25 1.75

0.825 1.325

0.65 0.650 1.650
0.475 1.975

0.875 1.375

0.75 0.750 1750
0.625 2.125

0.925 1.424

0.8 0.850 1.850
0.775 2.275

2.2 - Nelder-Mead (NM) algorithm:

The Nelder Mead algorithm (1965) takes a function of n variables and
minimizes it. It evaluates the function at the vertices of a (7 + 1) simplex and
then iteratively uses reflection, contraction and expansion of the simplex as better
points are found. A vertex is replaced by points with a better value of the function

until the minimal function value is obtained.
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Figure 2.2 Flow diagram of Nelder-Mead algorithm.
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Here @ is a positive constant called the reflection coefficient; # is called

the contraction coefficient and lies between 0 and 1; 7 is called the expansion

coefficient. I use the recommended reflection factor of 1.0, a contraction factor

equal of 0.5, and an expansion factor equal of 2.0. (Nelder and Mead 1965)
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Chapter 3. Results

3.1 — Programming:

3.11 — Programming Time-To-Event Data:

First, I used an if-then statement to determine whether each participant

was a LTS. If the uniform value U, < LTS , then the subject was set to be an LTS

(E; =Max Value, ¢; = C) and marked it censored. For each participant an indicator

was assigned to indicate if a lack of censoring was observed (i.e., E; <c,).

I checked the properties of the procedure by generating a group of size
10,000 and confirming the sample mean and variance closely matched the pattern
parameters. I also ran a 14-group chi-square goodness of fit test. These results

can be found in Table 3.1.

I checked the proportion of censoring by generating 50 replicates of time-
to-event data and calculating the sample proportion of participants censored for
each. Ithen ran at test to check that the average sample proportion was
consistent with the expected censoring rate. A sample of these results can be seen

in Table 3.2.
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Table 3.1: Chi-Square Fit Test for Distributions

Distribution Tested | Mean | Variance | Chi-Square Test Stat | p-value
Exponential(1) 1.004 1.009 9.72 0.716
Exponential(5) 4.982 5.021 7.56 0.871

Exponential(10) | 10.04 10.09 10.21 0.677
Uniform(0,10) 5.02 2.93 21.25 0.323
Uniform(0, 5) 2.24 1.48 17.35 0.566

Table 3.2: Average Fraction Censored Compared To Expected Censoring Rate

Censoring Pattern Cefs);? if:ga te Average Censored | t Stat | p-value
Exponential 10% 10.05% 0.533 | 0.596
Exponential 30% 29.68% -1.38 | 0.1743

Uniform 10% 9.94% -0.633 | 0.529
Uniform 30% 30.2% 0.769 | 0.446

3.12 — Programming MLE Calculations:

In methods I discussed the procedure for determining the number of
random starting points used for general simulation situations. When calculating
the MLE in my c-programming I used a publically available version of the NM
algorithm (GSL-Website, 2007). This procedure was checked with grid searches

globally and locally. Results are discussed in detail in section 3.22.

3.2 — Single Exponential w/ LTS:

3.21 — Null distribution of LRTS for Lg vs Ly

I begin with the LRTS for model Ly (single exponential with LTS) against

model Ly I set the null hypothesis as L), where the survival time follows a single
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exponential and the alternative hypothesis is Ls, where there survival time follows

a single exponential with a LTS proportion equal to 1-p. As discussed in
methods, the LRTS is d, =—2(log iﬁoo —log iﬁlo) and is calculated using the NM

algorithm with 9 random starting points (in a 3 by 3 grid). I calculated 1000

replications per setting.

3.22 — Global and Local Maximum checks of maximization software

Recall LS(tl,t2 yees fn,ﬂ,(LTS )):

T((278)2e Y (1= (LT5)+ (LTS)e ™ | . To test the validity of the

i=1
maximizing routine, I took a sample of Lg output from the routine. For example,
the sub-routine in C++ for a sample of 1000 was generated with uniform
censoring at a 10% censoring rate and 5% LTS for a sample of 200. The log-
likelihood value was -195.468 calculated from an MLE for A equal 0.9877 and a
p of 0.9615. Using Excel, I calculated Lg (A;, p;) for a grid of A, and p; values.
For each A; I calculated Ls (A, p;) with p; = 0.01, 0.05, 0.10, 0.15, ..., 0.85, 0.90,

0.95 and 0.99 and report Lg (A;, ©) = max [Ls (A;, p;)], as shown in Figure 3.1. 1
Pj

use 0.54,0.554....,0.904,0.914,...,1.104,1.154,1.651 , for the grid A;. I then find Ls (-,

)= max [Ls (A, -)] and calculate Lg (/i ,p)-Ls(, ). The maximum log-
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likelihood found by the subroutine, -195.468, is larger than the largest log-

likelihood found by the global grid search ( L;(—195.65,0.98)).

Additionally, I used a grid search of the neighborhood of ( A, p). The

settings of p; are p;= p—0.005, p—0.0045, ..., p+0.005. The settings of A;

are \; =0.981 , 0.9814 Y ey 1.021. A local minimum grid search was done by

using the exact MLE value calculated by the sub-routine and testing 20 values

from (p—0.005, p+0.005) within 0.01 of the calculated p-hat value to ensure the

minimum was found as shown in Figure 3.2.

Figure 3.1: Plot of Lg(4,,-), 4 =0.50,0.55,...1.65

Ay Ls Ry Ls
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075 201 55 107 196 28
080 198 95 108 196 41
0.85 -197.22 1.09 -196.55
0.90 -196.19 1.10 19671
0.91 -196.05 1.15 -197.62
0.92 19594 1.20 -198.73
093 -195 84 125 -200 02
0.94 19577 1.30 -201.20
0.95 19571 1.35 -202.39
096 195 68 140 -203 69
097 -195 66 145 20510
0.98 -195.65 1.50 -206.58
0.99 19567 1.55 -208.13
1.00 -195.70 1.60 -209.75
1.01 -195.74 1.65 -211.42

max Ls(m,p)

Plot of Max Ls( %;,. Jvs A;

08 13 1.7
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Figure 3.2: Plot of L(0.987739, p), p =0.9565,0.9570.,...,0.9665

phat | Ts Plot of L(0.987739,p)

0.9565 |-195.5083

0.9570 |-195.5009 195465

0.9575 |-195.4943 185.470 :

0.9580 |-195.4883 i :

0.9585 |-195.4832 -195.475 f t

0.9590 |-195.4787 |

0.9595 |-195.4751 ~195.480 - '
0.9600 |-195.4722 195.485 y i
0.9605 |-195.4702

0.9510 |-195.4689 9B -195.490

0.9615 |-195.4685
0.9620 |-195.4689 =195.495
0.9625 |-195.4702

0.9630 |-195.4724 -1es.500

0.9635 |-195.4755 195,505 }
0.9640 |-195.4795 ,

0.9645 |-195.4844 -195.510

0.9650 |-195.4904

0.9655 |-195.4973 -185.515 4 i ‘ '

0.9660 |-195.5052 0956 oee0 o

0.9665 |-195.5742

o

T
0.068

Next I tested the subroutine’s max likelihood estimate of the A parameter
(which was 0.987739). In the local grid search for p , the max log-likelihood

estimate of -195.4685 at a p-hat 0o 0.9615 is plausibly the maximum as the local
search found the same maximum at the calculated p-hat. Next I tested the

subroutine’s max likelihood estimate of the p parameter (which was 0.9615)

which can be seen in Figure 3.3.
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Figure 3.3: Plot of Ly(4,0.9615), 0.968 < 1 <1.0075
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In the local grid search for A, the max log-likelihood estimate of -195.4685
at a p-hat of 0.9615 is plausibly the maximum value, as the local search found the

same maximum at the calculated intensity level.

3.23 —Estimated Null Percentiles For Test of LTS:

The fraction of zero LRTS, 7,, is between 0.48 and 0.74 with average

fraction of zero LRTS equal to 0.56. The fraction of zero LRTS values decreases
on average as n increases and appears to approach 0.50 asymptotically. The mean
of the non-zero LRTS appears to be 1. Tables 3.3 and 3.4 summarize the results
of the null distribution of the LRTS. In my summary, I consider an LRTS value

zero as an LRTS value less than 0.0001.
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Table 3.3:
Table 3.11: Mean, Variance and Simulated Percentiles of the null distribution of
LRT. (Ls) (exponential censoring)

7Ty

Mean of

. Percentile
Sarpple Study  Censoring Mean  Variance Fraction Non-

Size Length Rate of zero Zero 750, 90 959, 999,
LRTS LRTS 0 0 (1) (1)
10% 0.419 0.959 0.556 0.944 0.342 1.515 2232 4.642

Short 30% 0.488 1.259 0.549 1.083 0.437 1.555 2.591 5.01
50 50% 0.412 0.992 0.619 1.081 0.22 1.502 2467 4997
10% 0.436 1.379 0.657 1.272 0.163 1.421 2918 5.803
Long 30% 0.336 0.756 0.64 0.933 0.143 1.111 2.057  4.639
50% 0.37 0.975 0.655 1.073 0.136 1.219 2.158 5.466
10% 0.415 0.89 0.545 0913 0.32 1.375 2252 4.732
Short 30% 0.477 1.135 0.54 1.037 0.447 1.523 2762  4.956

100 50% 0.406 0.923 0.579 0.965 0.298 1.369 2.178  4.508
10% 0.405 0.948 0.654 1.171 0.277 1.434 22 5.214
Long 30% 0.382 1.018 0.686 1.216 0.078 1.348 2.393 5.224

50% 0.436 1.429 0.648 1.239 0.138 1.446 2.835 5.495

10% 0.429 0.965 0.544 0.941 0.390 1.391 2454 4571

Short 30% 0.445 1.346 0.511 0.91 0.306 1.343 2.282 5.235

200 50% 0.509 1.464 0.531 1.086 0.414 1.77 2.639 6.065
10% 0.385 1.067 0.603 0.97 0.185 1.205 2.155 5.449

Long 30% 0.405 1.365 0.642 1.131 0.174 1.308 2.348 5.385
50% 0.407 1.244 0.624 1.082 0.166 1.276 2.616 5.089

10% 0.521 1.55 0.529 1.105 0.432 1.712 3.04 5.485

Short 30% 0.484 1.103 0.511 0.99 0.454 1.593 2.668 5.173

500 50% 0.477 1.297 0.532 1.018 0.442 1.512 2.354  5.298
10% 0.449 0.998 0.529 0.952 0.353 1.525 2.504  4.871
Long 30% 0.375 0.926 0.593 0.921 0.198 1.3 2.272 5.282
50% 0.384 0.87 0.608 0.98 0.19 1.347 2406 4252

10% 0.402 0.886 0.542 0.878 0.346 1.247 2.151 4.855
Short 30% 0.511 1.375 0.522 1.07 0.406 1.799 2.728 6.046
1000 50% 0.46 1.303 0.511 0.94 0.344 1.335 2.319 5.742
10% 0.431 0.944 0.508 0.875 0.365 1.4 2208  4.909
Long 30% 0.462 1.303 0.561 1.051 0.362 1.535 2476  4.719

50% 0.434 1.188 0.572 1.013 0.273 1.282 2.616 5.678
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Vs 0" Mean of

) Percentiles
Sarpple Study  Censoring Mean  Variance Fraction Non-
Size Length Rate of zero Zero 759 90% 95 999
LRTS  LRTS ’ ’ ’ ’
10% 0.475 1.142 0.527 1.005 0.492 1.659 2502 4419
Short 30% 0.444 1.007 0.519 0.924 0.396 1.485 2.34 5.457
2000 50% 0.46 0.953 0.508 0.935 0.459 1.579 2247  5.102
10% 0.497 1.258 0.494 0.983 0.441 1.544 2.44 5.6
Long 30% 0.422 0.995 0.559 0.958 0.273 1.478 2374  4.889
50% 0.402 0.952 0.582 0.963 0313 1.416 2223  4.832
10% 0.523 1.412 0.493 1.031 0.468 1.59 2929  5.844
Short 30% 0.53 1.31 0.5 1.06 0.524 1.644 2.873 5.479
10000 50% 0.491 1.071 0.501 0.985 0.491 1.622 2.59 4.952
10% 0.473 1.134 0.525 0.9965 0.383 1.53 2.603 5.527
Long 30% 0.525 1.59 0.545 1.154 0.359 1.774 2949  6.286
50% 0.432 1.195 0.535 0.931 0.337 1.309 2.535 4.956
Table 3.4: Mean, Variance and Simulated Percentiles of the null distribution of
LRT. (Ls) (uniform censoring).
. 7o Mean of Percentile
Sarpple Study  Censoring Mean  Variance Fraction Non-
Size Length Rate of zero Zero 75% 90% 95, 999,
LRTS LRTS (V] 0 (V] ()
Short 10% 0.467 1.089 0.542 1.02 0.384 1.654 2587  4.891
50 30% 0.466 1.258 0.579 1.108 0.339 1.604 2.748  5.616
Long 10% 0.364 0.964 0.740 1.398 0.012 1.311 2.274 5.463
Short 10% 0.465 1.198 0.513 0.955 0.417 1.437 2370 4978
100 30% 0.467 1.447 0.56 1.062 0.3 1.453 2.645  5.105
Long 10% 0.465 1.312 0.632 1.264 0.364 1.508 2.483 5.354
Short 10% 0.518 1.555 0.505 1.048 0.496 1.645 2596  6.189
200 30% 0.425 1.166 0.557 0.96 0.272 1.376 2.613 4936
Long 10% 0.426 1.151 0.551 0.949 0.264 1.422 2299  5.688
Short 10% 0.414 0.88 0.534 0.889 0.382 1.19 24 4.509
500 30% 0.458 1.178 0.523 0.96 0.383 1.388 2495 5483
Long 10% 0.38 0.992 0.585 0.916 0.255 1.217 2.089  4.653
Short 10% 0.443 1.173 0.535 0.953 0.33 1.457 2438  5.205
1000 30% 0.541 1.365 0.484 1.048 0.597 1.77 2.56 5.389
Long 10% 0.447 1.095 0.523 0.938 0.39 1.44 2291  4.788
Short 10% 0.493 1.306 0.52 1.026 0.425 1.542 2.64 5.774
2000 30% 0.5 1.392 0.508 1.017 0.436 1.585 2.808  5.289
Long 10% 0.481 1.11 0.521 1.005 0.403 1.632 2.816  5.002
Sh 10% 0.449 0.933 0.516 0.929 0.395 1.518 2.614  4.551
ort
10000 30% 0.551 1.374 0.489 1.079 0.462 1.812 3.134 6.26
Long 10% 0.469 1.116 0.505 0.948 0.436 1.145 2.435 54
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The function fit to the fraction of zero LRTS was dependent on sample
size (1 =8.40, p = 0) and the interaction of sample size and study duration D
(¢=10.60,p =0). Inashortstudy (D =3) I, =0and in a long study study

0.4864 +0.92061 ,

Jn

variation when predicting the fraction of zero LRTS values. The coefficients of

(D=5)1,=1. The function 0.50 + explains 79.1% of the

the censoring rate variable (p = 0.90) and censoring pattern indicator variable (p =
0.33) were not significant.
Equation 3.1:

N 0.4864 +0.92061,,

n

When long study and short study results were fitted separately, both the

0.50

long and short study duration intercepts appeared to be 0.50, with the rate of
convergence for the longer study duration being slower as shown in Figure 3.4.
The fit for the fraction of zero LRTS values for the longer study duration is

0.50+ %, which explained 71% of the variation in the model. The fit for the

n

0.4846

Jn

the model. The plot of residuals versus fitted values for these two models are

shorter study duration is 0.50 + , which explained 55% of the variation in

shown in Figures 3.5 and 3.6. 1 decided to model the fraction of zero LRTS

values for the null distribution of the LRTS as a function of only the sample size
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and interaction of sample size and study duration so that it matched the Zhou and
Maller asymptotic result. The study duration itself was marginally significant at

the 5% significance level (1 =2.1, p = 0.04).

Figure 3.4 Observed Fraction of Zero LRTS Values (Long Study and Short
Study)
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Figure 3.6~ Residual vs Fit of Fraction of Zero LRTS Values
Short Study, Fit 0.50 + 04846
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The mean of the non-zero LRTS values ranged from a minimum of 0.88 to

a maximum of 1.40. The average of all non-zero LRTS values was 1.02

(o? =0.011) and 50% of simulations had a non-zero mean between 0.94 and
1.07. The average variance of the non-zero LRTS values was 2.05 with a
standard deviation of 0.39.

As noted in chapter one, Zhou and Maller (1995) showed that the

asymptotic null distribution is an equal mixture of a chi-square random variable
, 1 , 1, .
with 1 degree of freedom and a mass at zero, > Xo + 5 . . The fraction of zeros

is apparently 0.50 asymptotically, the mean of the non-zero LRTS values is near
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1, and the average variance is near 2 (o> = 2.048 ). My simulation results are
consistent with the asymptotic distribution. To test, I selected eight simulations
and ran a goodness of fit test to test whether a chi-square random variable with
one degree of freedom described the non-zero LRTS values. I used 20 classes, 16
of width 0.25 (ranging from 0 through 4), 2 of width 1 (ranging from 4 through
6), 1 interval from 6 to 8, and the last from 8 to infinity. In each of the 8
distributions tested the null hypothesis of the chi-square one random variable was
accepted. P-values ranged from 18.5% to 95.5%. These tests are summarized in
Table 3.5.

Table 3.5 Chi Square Goodness of Fit Test
Non-Zero LRTS Values Fitted to y;

. Censorin Censorin Stud Chi-Square
Sample Size Distributi(%n Rate ¢ Durati}(])n Test(‘IStat P-value
500 Exponential 50% 5.0 9.95 0.954
1000 Exponential 30% 3.0 24.29 0.185
2000 Exponential 50% 3.0 21.56 0.307
2000 Exponential 30% 5.0 12.03 0.884
2000 Uniform 30% 3.0 9.90 0.955
10000 Exponential 30% 3.0 19.99 0.395
10000 Exponential 30% 5.0 22.65 0.253
10000 Uniform 10% 3.0 15.74 0.674

I estimated the null percentiles using the distribution 7,7, +(1—7,)x;,
where 7, is the estimated fraction of zero LRTS as given in equation 3.1. The

estimated null percentiles and the Maller-Zhou percentiles are summarized in
Table 3.6. The percentiles of the Maller-Zhou asymptotic distribution appear to

be conservative. That is, the critical values estimated from the fitted distribution
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are smaller than those of the asymptotic distribution. The actual proportion of
LRTS values greater than my calculated 99" percentile are reported in Table 3.7.
For sample sizes over 500, there is little difference between the fitted percentiles
and the asymptotic distribution. For the smaller sample sizes that are more
common in clinical trials, the estimated critical values will result in increased
power. A scatter plot for the estimated percentiles versus the simulated
percentiles can be seen in Figure 3.7. The estimated percentiles had a coefficient
of 0.992 and a model R” of 96.9%.

Table 3.6: Fitted Null Percentile Points For Lg

Sample Size DSt“d.y 75% 90% 95% 99% 99.9%
uration
50 0 0.31 1.43 2.47 5.15 9.28
1 0.05 0.94 1.92 4.53 8.62
100 0 0.35 1.49 2.54 5.23 9.36
1 0.15 1.18 2.19 4.84 8.94
200 0 0.38 1.54 2.59 5.29 9.42
1 0.24 1.33 2.36 5.03 9.14
350 0 0.40 1.56 2.62 5.32 9.45
1 0.29 1.41 2.45 5.13 9.25
500 0 0.41 1.58 2.63 5.33 9.47
1 0.32 1.45 2.49 5.18 9.30
250 0 0.42 1.59 2.65 5.35 9.48
1 0.34 1.49 2.53 5.22 9.35
1000 0 0.42 1.60 2.66 5.36 9.49
1 0.36 1.51 2.56 5.25 9.38
2000 0 0.43 1.61 2.67 5.37 9.51
1 0.39 1.55 2.60 5.30 9.43
10000 0 0.44 1.63 2.69 5.39 9.53
1 0.42 1.60 2.66 5.36 9.50
Maller-Zhou 0.45 1.64 2.71 5.41 9.55
Note: Fit 7,y +(1—7,)x; , where 7, = 0.50 + 04864 ?920611)
n
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Table 3.7: Proportion of LRTS Observed in Simulation Greater Than Estimated

99" Percentile

Sample | Censoring Study | Censoring EE(())E] nggf}} Sample | Censoring Study | Censoring EE‘(’)%‘:SSE
Size | Distribution | Duration Rate percentile Size | Distribution | Duration Rate percentile
Short 10% 0.5% Short 10% 0.4%
Short 30% 1.0% Short 30% 1.5%
Exponential Short 50% 0.9% Exponential Short 50% 0.9%
Long 10% 1.7% Long 10% 1.3%
50 Long 30% 1.2% 1000 Long 30% 0.7%
Long 50% 1.5% Long 50% 1.3%
Short 10% 0.8% Short 10% 1.1%
Uniform Short 30% 1.2% Uniform Short 30% 1.3%
Long 10% 1.4% Long 10% 0.7%
Short 10% 0.0% Short 10% 1.3%
Short 30% 0.9% Short 30% 0.7%
Exponential Short 50% 0.7% Exponential Short 50% 0.7%
Long 10% 1.3% Long 10% 1.1%
100 Long 30% 1.3% 2000 Long 30% 1.3%
Long 50% 1.3% Long 50% 1.3%
Short 10% 0.7% Short 10% 1.3%
Uniform Short 30% 0.7% Uniform Short 30% 0.9%
Long 10% 1.3% Long 10% 0.0%
Short 10% 0.9% Short 10% 1.4%
Short 30% 1.1% Short 30% 1.0%
Exponential Short 50% 0.9% Exponential Short 50% 0.8%
Long 10% 1.3% Long 10% 1.4%
200 Long 30% 0.7% 10000 Long 30% 1.1%
Long 50% 1.1% Long 50% 0.5%
Short 10% 1.1% Short 10% 0.5%
Uniform Short 30% 0.0% Uniform Short 30% 1.3%
Long 10% 1.1% Long 10% 1.1%
Short 10% 1.1%
Short 302”’ 0-724’ (Standard Error = 0.03)
Exponential Short 50% 0.9%
Long 10% 0.4%
500 Long 30% 0.9%
Long 50% 0.4%
Short 10% 0.4%
Uniform Short 30% 1.1%
Long 10% 1.1%
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Figure 3.7: Observed Simulated LRTS Values vs Estimated LRTS Values for
Summarized Percentiles.

Simulated vs Estimated Percentiles

Simulated Percentile
£

4 6

o
N

Estimated Percentile
Note: The four clusters are the 75", 90", 95™ and 99" percentiles.

3.24 —Power:

There were 1000 replicates for each setting. I calculated the average
LRTS, the fraction of LRTS values with value nearly equal to zero, the average of
the non-zero LRTS values, and the power using an alpha level of 1% with the null
percentiles in Table 3.6. Tables 3.8 and 3.9 contain the power of Lg vs Ly. As
expected the sample size has a great effect on the power. For very small samples
sizes (200) the proportion of situations were power exceeded 50% was less than
25%. When the sample size was 2000, over 75% of situations had power
exceeding 50%. In samples of 500 or more, over 25% of situations had power

exceeding 95%. In small samples (200 and 350), only 13 percent of situations had
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power exceeding 95%. The average power for the sample size 200 was 33.8%,
and the average power was to 81.7% for the sample size 2000. When comparing
a smaller study duration to a longer study duration, the dispersion of the power
was similar (¢ = 0.35 and 6 = 0.32). The longer study duration had an average
factor increase of 1.55 power over the smaller study duration. As the censoring

rate increased, the power, on average, decreased.
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Table 3.8: Simulated Power and Summary Statistics of the LRTS of Lg vs Ly
(exponential censoring)

Sample | Study | Censoring | g |00 | var | 0os | NOM | 7500 | 90% | 95% | 99% | Power
size Length rate 0avg

2% | 129 | 374 0269 | 1.76 | 190 | 3.73 | 5.11 | 883 | 0.048

15% | 5% | 341 | 1LI8 | 0.057 | 361 | 501 | 797 | 9.61 | 1448 | 0233

8% | 692 | 2566 | 0.01 | 698 | 9.80 | 13.91 | 1640 | 22.51 | 0.565

2% | 1.08 | 338 | 033 | 161 | 138 | 3.25 | 493 | 7.98 | 0.043

3.0 30% | 5% | 237 | 726 | 0.2 | 2.67 | 3.63 | 607 | 7.35 | 10.73 | 0.140

8% | 458 | 1598 | 0.022 | 468 | 641 | 9.93 | 12.07 | 18.96 | 0.346

2% | 082 | 240 | 0402 | 136 | 095 | 2.60 | 424 | 697 | 0.029

45% | 5% | 151 | 506 | 0221 | 1.94 | 2.15 | 421 | 581 | 10.00 | 0.067

200 8% | 2.51 | 894 | 0.107 | 281 | 3.64 | 621 | 852 | 12.60 | 0.147

2% | 364 | 1612 | 0.096 | 403 | 545 | 899 | 1132 | 17.31 | 0.269

15% | 5% | 12.26 | 57.74 | 0.001 | 12.27 | 1626 | 22.53 | 26.38 | 34.78 | 0.833

8% | 23.56 | 9830 | 0 | 23.56 | 29.72 | 37.32 | 40.93 | 49.61 | 0.983

2% | 198 | 747 | 0287 | 277 | 3.09 | 578 | 760 | 11.71 | 0.123

5.0 30% | 5% | 602 | 27.69 | 0.049 | 6.34 | 8.84 | 13.20 | 15.70 | 23.06 | 0.476

8% | 11.72 | 52.44 | 0.006 | 11.79 | 16.04 | 21.45 | 25.55 | 32.47 | 0.808

2% | 1.07 | 368 | 0436 | 1.89 | 1.36 | 334 | 521 | 847 | 0.052

45% | 5% | 249 | 10.04 | 0213 | 3.16 | 3.62 | 687 | 9.57 | 1345 | 0.164

8% | 459 | 1928 | 0.093 | 507 | 699 | 10.75 | 13.09 | 17.04 | 0.369

2% | 177 | 549 | 0.197 | 221 | 2.52 | 477 | 672 | 10.19 | 0.088

15% | 5% | 549 | 1987 | 0016 | 558 | 7.85 | 11.71 | 13.75 | 19.53 | 0.44

8% | 1128 | 40.08 | 0 | 11.28 | 15.15 | 19.65 | 22.46 | 29.03 | 0.828

2% | 126 | 335 | 025 | 168 | 1.76 | 363 | 515 | 8.14 | 0.046

3.0 30% | 5% | 3.55 | 1329 | 0.057 | 3.76 | 5.06 | 7.98 | 10.66 | 17.23 | 0.237

8% | 7.37 | 28.17 | 0.004 | 740 | 10.08 | 14.56 | 18.04 | 23.12 | 0.581

2% | 0930 | 252 | 0342 | 1413 | 126 | 2.94 | 417 | 7.71 | 0.030

45% | 5% | 2.16 | 727 | 0.143 | 2.52 | 324 | 557 | 725 | 1245 | 0.108

150 8% | 420 | 16.13 | 0.041 | 438 | 6.18 | 9.66 | 11.89 | 17.28 | 0.313

2% | 569 | 2559 | 0.032 | 5.88 | 8.08 | 12.73 | 15.62 | 22.59 | 0.444

15% | 5% | 2094 | 9852 | 0 | 20.94 | 26.74 | 3442 | 39.02 | 49.24 | 0.972

8% | 4198 | 1923 | 0 | 41.98 | 49.96 | 59.10 | 65.87 | 8232 | 1

2% | 296 | 1190 | 0.137 | 344 | 429 | 7.67 | 10.16 | 15.85 | 0.186

5.0 30% | 5% | 10.04 | 5138 | 0.013 | 10.17 | 1422 | 19.77 | 23.24 | 30.99 | 0.701

8% | 1998 | 9951 | 0 | 19.98 | 26.25 | 33.52 | 37.81 | 4938 | 0.960

2% | 131 | 482 | 0357 | 204 | 1.87 | 417 | 550 | 10.30 | 0.057

45% | 5% | 3.60 | 1468 | 0.128 | 423 | 544 | 897 | 11.03 | 16.70 | 0.265

8% | 7.28 | 3597 | 0.031 | 7.52 | 1053 | 1551 | 19.41 | 25.56 | 0.551
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Sample

Study

Censoring

Non

. LTS avg var 0’s 75% | 90% | 95% 99% | Power
size Length rate 0 avg
2% 2.21 6.60 0.131 | 2.54 | 343 | 573 | 7.62 | 10.97 | 0.122
15% 5% 7.32 2791 | 0.008 | 7.39 | 10.25 | 14.25 | 17.64 | 23.60 | 0.591
8% | 1593 | 61.43 0 16.93 | 20.65 | 25.90 | 30.42 | 39.46 | 0.95
2% 1.62 4.71 0.209 | 2.05 | 2.41 | 445 | 6.11 9.39 0.08
3.0 30% 5% 5.19 20.30 | 0.017 | 528 | 7.26 | 11.39 | 13.57 | 19.98 | 0.398
8% 9.84 37.80 | 0.002 | 9.86 | 13.38 | 17.97 | 21.63 | 29.59 | 0.747
2% 1.01 2.88 0322 | 1.49 1.30 | 3.27 | 440 8.65 | 0.028
45% 5% 2.81 9.53 0.100 | 3.12 | 4.14 | 697 | 896 | 13.60 | 0.178
500 8% 5.30 1895 | 0.027 | 544 | 7.54 | 11.28 | 13.62 | 18.72 | 0.427
2% 7.85 3432 | 0.005 | 7.89 | 10.83 | 15.71 | 19.25 | 26.67 | 0.600
15% 5% | 3039 | 155.77 0 30.39 | 37.53 | 46.50 | 53.03 | 66.62 | 0.998
8% | 59.40 | 253.1 0 59.40 | 70.29 | 79.29 | 85.50 | 98.24 1
2% 3.68 16.09 | 0.092 | 4.05 | 528 | 9.08 | 11.79 | 17.51 | 0.252
5.0 30% 5% | 1340 | 67.31 | 0.004 | 13.45 | 18.23 | 24.90 | 28.36 | 36.20 | 0.84
8% | 2833 133.6 0 28.33 | 35.29 | 43.93 | 49.31 | 5947 | 0.991
2% 1.68 6.59 0296 | 238 | 240 | 5.02 | 6.83 | 11.71 | 0.093
45% 5% 4.82 22.83 | 0.078 | 522 | 7.08 | 11.08 | 14.19 | 21.17 | 0.359
8% | 10.13 | 49.24 | 0.008 | 10.21 | 13.91 | 19.18 | 23.63 | 31.14 | 0.723
2% 2.78 8.69 0.74 | 230 | 409 | 6.87 | 8.82 | 12.63 | 0.166
15% 5% | 11.00 | 42.86 | 0.001 | 11.01 | 14.99 | 20.08 | 23.53 | 28.25 | 0.785
8% | 23.23 | 84.85 0 23.23 | 28.84 | 35.86 | 39.55 | 46.83 | 0.991
2% 2.05 6.87 0.173 | 247 | 3.04 | 557 | 735 | 11.11 | 0.106
3.0 30% 5% 6.41 2335 | 0.013 | 6.50 | 9.20 | 13.05 | 15.67 | 20.72 | 0.505
8% 14.6 60.15 0 14.6 | 18.88 | 25.89 | 29.44 | 35.82 | 0.921
2% 1.29 4.10 0.268 | 1.77 1.75 | 3.69 | 5.28 9.22 0.05
45% 5% 3.61 13.15 | 0.073 | 3.89 | 544 | 844 | 10.41 | 15.27 | 0.255
750 8% 7.60 27.48 | 0.003 | 7.62 | 10.57 | 14.82 | 17.49 | 23.27 | 0.619
2% | 11.35 | 50.78 | 0.003 | 11.38 | 15.26 | 20.48 | 25.06 | 32.80 | 0.791
15% 5% | 46.24 | 215.65 0 46.24 | 55.70 | 65.48 | 72.53 | 85.97 1
8% | 89.30 | 393.6 0 89.30 | 102.7 | 116.7 | 123.6 | 1353 1
2% 5.11 2270 | 0.057 | 542 | 7.73 | 11.67 | 14.83 | 20.55 | 0.376
5.0 30% 5% | 20.02 | 99.74 0 20.02 | 25.87 | 33.69 | 38.59 | 47.84 | 0.952
8% | 4197 | 205.0 0 41.97 | 51.41 | 60.94 | 654 77.9 1
2% 1.92 7.18 0214 | 244 | 272 | 536 | 731 11.65 | 0.102
45% 5% 7.01 33.81 0.03 722 | 9.76 | 14.59 | 18.54 | 24.86 | 0.530
8% 14.3 67.6 0.002 | 1433 | 19.18 | 25.0 | 28.82 | 37.98 | 0.873
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Sample

Study

Censoring

Non

. LTS avg var 0’s 75% | 90% | 95% 99% | Power
size Length rate 0 avg
2% 3.57 13.29 | 0.066 | 3.818 | 5.16 | 8.01 | 10.81 | 16.84 | 0.244
15% 5% 14.64 | 58.01 | 0.001 | 14.66 | 19.30 | 25.15 | 29.39 | 37.01 | 0.928
8% 30.45 114 0 30.45 | 37.27 | 44.8 | 48.53 | 5839 | 0.999
2% 23 685 | 0.112 | 259 | 336 | 574 | 7.19 | 1195 | 0.124
3.0 30% 5% 8.71 36.67 | 0.004 | 875 | 11.90 | 16.63 | 19.64 | 29.02 | 0.668
8% 19.91 | 79.09 0 19.9 | 253 | 31.7 | 355 46.1 | 0.980
2% 1.52 4.59 10223 | 193 | 2.16 | 4.13 | 551 9.96 | 0.054
45% 5% 4.49 1548 | 0.039 | 4.67 | 6.55 | 10.02 | 12.39 | 16.81 | 0.334
1000 8% 9.82 | 37.22 | 0.005 | 9.87 | 13.24 | 18.19 | 21.70 | 27.46 | 0.744
2% 14.88 | 76.38 | 0.001 | 14.90 | 19.8 | 26.63 | 30.96 | 41.52 | 0.879
15% 5% 59.83 | 263.0 0 59.83 | 70.25 | 81.90 | 87.97 | 102.62 1
8% 118 5313 0 118 | 132.5 | 147.5 | 1559 | 178.0 1
2% 6.76 | 3192 | 0.026 | 695 | 9.67 | 1421 | 17.8 | 25.56 | 0.513
5.0 30% 5% 27.25 | 131.90 0 27.25 | 34.59 | 42.08 | 47.77 | 57.68 | 0.997
8% 55.37 | 2778 0 55.37 | 65.16 | 78.59 | 85.42 | 98.07 1
2% 244 9.38 |1 0.177 | 297 | 359 | 679 | 879 | 13.44 | 0.155
45% 5% 8.99 | 3839 | 0.011 | 9.09 | 12.94 | 17.67 | 20.85 | 26.10 | 0.669
8% 19 87.5 0 19 24.8 | 32.19 | 35.58 | 43.06 | 0.957
2% 591 22.1 | 0.013 | 599 | 840 | 12.06 | 152 | 20.77 | 0.46
15% 5% 26.92 | 109.39 0 26.92 | 33.12 | 41.05 | 46.37 | 55.03 | 0.997
8% 60.61 | 221.5 0 60.61 | 70.62 | 80.65 | 85.23 | 97.47 1
2% 3.8 14.67 | 0.056 | 4.0 5.51 879 | 1159 | 174 0.26
3.0 30% 5% 16.32 | 63.02 0 16.32 | 21.48 | 27.12 | 30.64 | 37.65 | 0.95
8% 37.32 | 136.2 0 37.32 | 44.41 | 52.78 | 57.28 | 68.64 | 0.999
2% 2.06 591 | 0.148 | 242 | 3.08 | 520 | 7.02 | 10.87 | 0.097
45% 5% 8.19 | 3194 | 0.002 | 821 | 11.38 | 1590 | 18.43 | 25.11 | 0.632
2000 8% 18.76 | 83.48 0 18.76 | 24.4 | 30.66 | 35.22 | 44.27 | 0.953
2% 28.45 | 141.5 0 28.45 | 354 | 448 | 497 60.4 | 0.993
15% 5% 118.2 | 587.9 0 118.2 | 132.9 | 150.1 | 160.9 | 181.4 1
8% 236.6 | 1051 0 236.6 | 258 | 2793|2922 | 3199 1
2% 12.4 59.7 10.003 | 12.46 | 16.8 | 22.6 | 277 349 | 0.823
5.0 30% 5% 532 | 2852 0 532 | 627 | 756 | 84.2 | 100.8 1
8% 110.3 499 0 1103 | 124.8 | 138.9 | 149 167.2 1
2% 4.2 17.47 | 0.068 | 4.51 6.46 | 9.65 | 1243 | 17.79 | 0.312
45% 5% 17.17 | 86.8 | 0.001 | 17.19 | 22.57 | 29.78 | 34.88 | 44.15 | 0.924
8% 37.85 | 189.2 0 37.85 | 46.72 | 55.47 | 62.51 | 74.03 1
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*(level of significance 0.01)

Table 3.9: Simulated Power and Summary Statistics of the LRTS of Lg vs Ly
(uniform censoring)

Sample | Study | Censoring Non 0

. LTS avg var 0’s 75% | 90% | 95% 99% | Power
size Length rate avg

2% 14 4.05 0.255 | 1.88 | 2.10 | 394 | 533 9.08 | 0.056

15% 5% 3.44 12.24 | 0.068 | 3.69 | 482 | 7.78 | 10.61 | 1539 | 0.224

8% 6.69 23.19 1 0.012 | 6.78 | 933 | 13.50 | 16.25 | 20.68 | 0.552

30 2% 1.06 3.23 0326 | 1.57 1.29 | 3.52 | 4.60 7.80 | 0.037

200 30% 5% 2.28 7.29 0.135 | 2.63 334 | 6.08 | 7.67 | 11.29 | 0.132

8% 4.7 16.92 0.04 | 489 | 6.61 | 10.11 | 12.89 | 18.53 | 0.361

2% 3.32 12.73 | 0.113 | 3.74 509 | 844 | 10.26 | 1493 | 0.246

5.0 15% 5% | 12.01 | 56.68 | 0.002 | 12.04 | 16.08 | 21.84 | 25.95 | 33.71 | 0.819

8% | 23.75 | 104.5 0 23.75 1 30.04 | 37.63 | 41.98 | 52.96 | 0.98

2% 1.94 6.86 0.185 | 238 | 2.86 | 484 | 697 | 12.41 | 0.085

15% 5% 5.57 21.14 0.01 5.63 7.88 | 11.84 | 1483 | 19.79 | 0.44

8% | 11.29 | 41.35 0 11.29 | 15.19 | 20.11 | 23.04 | 2991 | 0.818

30 2% 1.3 4.14 0.269 | 1.78 1.82 | 3.88 | 35.79 9.33 0.06

350 30% 5% 3.54 13.1 0.051 | 3.73 5.23 850 | 1046 | 1641 | 0.25

8% 7.5 28.17 1 0.004 | 7.53 | 10.55 | 14.83 | 17.77 | 23.09 | 0.599

2% 5.13 2295 10.033 | 531 749 | 11.90 | 14.96 | 20.06 | 0.392

5.0 15% 5% | 20.52 | 97.87 0 20.52 | 26.61 | 34.10 | 38.93 | 4745 | 0.971

8% | 41.15 | 178.2 0 41.15 | 4949 | 58.45 | 63.89 | 77.79 1

2% 2.15 7.7 0.154 | 254 | 296 | 6.06 | 790 | 12.19 | 0.135

15% 5% 7.54 29.23 1 0.007 | 7.59 | 10.31 | 15.08 | 18.80 | 23.63 | 0.591

8% | 15.64 | 57.02 0 15.64 | 20.04 | 25.41 | 29.54 | 36.88 | 0.95

30 2% 1.37 4.03 0211 | 1.74 1.83 3.85 | 5.51 9.03 | 0.057

500 30% 5% 4.81 16.66 0.03 496 | 6.72 | 10.82 | 1279 | 17.21 | 0.371

8% 9.96 40.06 0 9.96 | 13.57 | 18.45 | 21.34 | 28.29 | 0.748

2% 7.03 31.77 1 0.013 | 7.13 | 1046 | 14.66 | 17.65 | 24.22 | 0.532

5.0 15% 5% | 2855 | 1354 0 28.55 | 3543 | 44.28 | 48.62 | 59.90 | 0.996
8% 58 241 0 58 69.17 | 78.26 | 84.86 | 95.88 1
750 3.0 2% 2.93 10.56 | 0.095 | 323 | 426 | 732 | 9.29 | 1495 | 0.179
15% 5% | 11.21 | 43.88 0 11.21 | 14.73 | 20.36 | 24.29 | 30.20 | 0.803
8% 234 91.62 0 234 | 29.37 | 35.72 | 4049 | 49.98 | 0.99
30% 2% 1.79 5.45 0.166 | 2.15 | 2.59 | 484 | 649 | 10.67 | 0.081

5% 6.89 2443 1 0.012 | 697 | 9.77 | 14.06 | 16.70 | 21.09 | 0.558
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8% | 14.43 | 54.81 0 1443 | 18.59 | 24.79 | 28.26 | 36.17 | 0.919
2% | 10.09 | 437 0.005 | 10.14 | 13.98 | 19.13 | 22.15 | 30.28 | 0.727
5.0 15% 5% 424 190.9 0 424 | 51.22 | 60.08 | 66.20 | 81.29 1
8% | 87.36 | 387.7 0 87.36 | 100.1 | 112.8 | 119.5 | 134.8 1
Sample | Study | Censoring | ypg | o0 | yar | o5 [ NOMO L 9500 | 909 | 95% | 99% | Power
size Length rate avg
2% 3.44 12.3 0.053 | 3.63 | 5.02 | 824 | 10.68 | 1543 | 0.229
15% 5% | 14.68 | 55.23 0 14.68 | 19.07 | 24.60 | 28.36 | 35.15 | 0.92
3.0 8% | 30.46 | 110.24 0 30.46 | 36.87 | 44.89 | 49.89 | 57.88 1
’ 2% 2.24 7327 10124 | 256 | 331 | 587 | 7.58 | 1141 | 0.124
1000 30% 5% 8.8 36.67 | 0.004 | 8.83 | 12.60 | 17.37 | 2091 | 2545 | 0.658
8% | 19.66 75.8 0 19.66 | 25.07 | 31.45 | 34.97 | 43.76 | 0.966
2% | 13.12 | 60.12 | 0.005 | 13.19 | 18.08 | 23.09 | 27.38 | 35.78 | 0.84
5.0 15% 5% 56.5 285.8 0 56.5 | 66.89 | 79.84 | 86.60 | 100.2 1
8% 116 537.6 0 116 | 130.8 | 145.6 | 1563 | 1759 1
2% 597 | 22.18 | 0.012 | 6.05 | 846 | 12.37 | 14.79 | 20.71 | 0475
15% 5% | 27.89 | 102.78 0 27.89 | 34.02 | 41.55 | 46.86 | 54.9 | 0.999
3.0 8% 614 | 2442 0 614 | 71.53 | 82.25 | 87.75 | 100.3 1
’ 2% 3.58 14.02 | 0.054 | 3.78 | 530 | 831 [ 11.01 | 15.08 | 0.248
2000 30% 5% | 16.32 65 0 16.32 | 20.94 | 27.15 | 31.17 | 39.36 | 0.943
8% | 37.37 | 1422 0 37.37 | 45.15 | 52.96 | 58.17 | 65.34 1
2% 25.4 121.5 0 254 | 32.40 | 40.20 | 45.59 | 5291 | 0.989
5.0 15% 5% | 113.1 556 0 113.1 | 1274 | 143.2 | 153.8 | 170.5 1
8% | 231.6 | 979.3 0 231.6 | 251.3 | 272.2 | 283.4 | 310.7 1

*(level of significance 0.01)

I used a multiple regression model with each of the factors (i.e. n, P, r, D,
and (LTS)), the two factor interactions nP, nr, nD, n(LTS), Pr, PD, P(LTS), rc,
r(LTS) and ¢(LTS,) and all sub-hierarchical interactions. The dependent variable
was the inverse normal cdf of the power of the LRTS test using level of

significance 1%. I recorded all simulations with 100% power as

3.719 = ¢7'(0.9999) . The censoring pattern was not found to be significant in
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any of the interactions and was removed from the model (p-values ranging from
0.25 t0 0.78). Since the fitted model had a non-significant constant value (¢=0.32,
p=0.75), the model was fit without a constant term. The fitted model is:

O (p) = 202 3,93 42,161, +79.19(LTS) + 2oL S143ULTS)
Jn Vn Jn

(t=-83) (t=-5.3) (t=12.0) (t=19.6) (t=2.4) (t=-6.2) (t=-4.9) (t=-83.9)

—3.0871, —45.36r(LTS)

The R’ for the fitted model is 92% and shows a good fit. All variables

r

N

other factors have p-values less than 0.001. There is increase in power with

were highly significant. The variable had the largest p-value (0.0167). All

increased sample size and increased study duration. The power also increases as
the proportion of LTS increases. The interactions of the censoring rate, sample
size, study duration and proportion of LTS are significant. When LTS or study
duration in the interaction are held constant, the interaction associations are that
power decreases as the expected proportion censored increases. However, the
cumulative effect of the interaction with LTS or Study duration is not large
enough to negate the increase of power for increasing LTS and increased study
length. For example, the proportion of LTS increases the estimated transformed
power variable by a factor of 0.8 for every 1% increase of LTS. The interaction
with censoring rate has a fitted decrease of a factor of 0.45. Even for censoring
rates = 0.50 the interaction decrease is 0.225 (=0.45x0.50), so that an increase in

LTS will result in a net gain in power.
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3.25 —Model Limits:

The estimated power as a function of sample size is summarized
by censoring rate and proportion of LTS in Figures 3.8 through 3.15. Each Figure
is summarized over censoring rates that range from 10% to 50% and proportion of
LTS that ranges from 2% to 8%. These are the range of the independent variables
used when the model was selected.

When the proportion of LTS is small, the power is small, unless the
sample size is large. In the event of many censored observations a sample size of
many thousand would be required to reject the null hypothesis. In the case of
long study durations, power near 50% can be achieved in some smaller sample
size situations. Thus, if it is hypothesized that there is a very small proportion of
LTS and an increase in sample size is not possible, the duration of the study can
be extended to increase the probability of the model being detected.

Specifically, when 10% of observations are observed as censored in a
longer study, there is an estimated power of at least 50% with fewer than 150
observations for models with LTS > 0.04 , as shown in Figure 3.8. For models
with 0.02 < LTS < 0.04, 50% power is estimated with fewer than 300
observations. In addition, fewer than 200 observations are required for an
estimated 80% power with LTS > 0.05.

In a shorter study duration with 10% censoring at least 50% estimated

power is observed with fewer than 300 observations for models with LTS > 0.05,
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as shown in Figure 3.9. At least 80% estimated power is observed with fewer

than 550 observations for models with L7S > 0.05 .

As shown in Figures 3.10 through 3.13, as the proportion censored

increases from 10%, the power drops rapidly for smaller sample sizes. However,

in longer studies high power is still possible

In situations with censoring rates 50%, estimated power of at least 50% is

still achievable in both long and short studies for samples of less than 1000, as

shown in Figures 3.14 and 3.15. This level of power requires at least 5% LTS.

Only small censoring rates will estimate power over 50% for LTS < 0.05.

Figure 3.8: Estimated Power by Sample Size
10% Expected Censoring, Longer Study
10% Censoring - Longer Study
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Figure 3.9: Estimated Power by Sample Size
10% Expected Censoring, Shorter Study
10% Censoring - Shorter Study
1
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g 07 / — Power (2% LTS)
L 06 — Power (4% LTS)
T o / — Power (5% LTS)
.E 04 — Power (6% LTS)
5 / — Power (8% LTS)
0.2 /
0.1
0 ‘W T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
Sample Size

Figure 3.10:  Estimated Power by Sample Size

20% Expected Censoring, Longer Study
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20% Censoring - Longer Study
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Figure 3.11:  Estimated Power by Sample Size
20% Expected Censoring, Shorter Study
20% Censoring - Shorter Study
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Figure 3.12:  Estimated Power by Sample Size

30% Expected Censoring, Longer Study
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30% Censoring - Longer Study
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Figure 3.13:

Estimated Power by Sample Size
30% Expected Censoring, Shorter Study
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Figure 3.14:

Estimated Power by Sample Size
50% Expected Censoring, Longer Study
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50% Censoring - Longer Study
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Figure 3.15:

Estimated Power by Sample Size
50% Expected Censoring, Shorter Study
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Table 3.10 provides the minimum sample size required for an estimated

50% and 80% power. It is clear that for LTS = 0.02 one must run a long study to

be able to have large power. However, even in long studies if the proportion

censored is large it will take a large sample size to obtain power over 50%. In the

event that a study is short, there will be estimated power of over 50% for large

sample sizes with proportion of LTS at least 5%.

Table 3.10: Summary of Estimated Sample Size Required for 50% and 80%

Power
Sample Size Sample Size
Censoring Study LTS Reqlslg(;zl for Rqu:)r;zl for
Rate Duration Estimated Estimated
Power Power
2% 210 410
Longer 5% 125 180
0 8% 100 125
0% 2% 1495 sk
Shorter 5% 305 540
8% 175 240
2% 320 855
Longer 5% 165 250
9 8% 120 160
20% 2% 3950 ok
Shorter 5% 395 825
8% 210 305
30% 2% 640 4400
Longer 5% 225 405
8% 155 215
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2% k3 k3
Shorter 5% 570 1580
8% 260 415
2% 2800 roH
Longer 5% 365 865
40% 522 2*1*0 3*3*0
Shorter 5% 965 ko
8% 345 620
2% kk kk
Longer 5% 805 4400
50% gzﬁ: 3*3*0 6*0*5
Shorter 5% 2400 ko
8% 505 1125

** indicates a sample over 5000 is required.
When observing 250 or fewer observations, my estimated power function

shows that an estimated power of at least 50% is predicted for samples sizes as
small as 100 for certain situations.

In Figures 3.16 through 3.19, the power function is modeled as a function
of censoring rate (» > 0.08) for a longer study. For these smaller sample sizes,
when the proportion of censored responses exceeds 20%, the estimated power is
generally under 50%. However, in a clinical trial with under 250 participants, if
over 80% of the participants complete the study, the LTS model can yield high
power. It is clear in comparing Figures 3.16 and 3.17 and an increase in sample
size from 100 to 150 has a large increase in power. While a sample size of 100
may not be practical, a sample of 150 is.

Figure 3.16:  Estimated Power by Censoring Rate
Sample Size 100, Longer Study
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Sample Size 100 - Longer Study
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Figure 3.17:  Estimated Power by Censoring Rate
Sample Size 150, Longer Study
Sample Size 150 - Longer Study
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Figure 3.18:  Estimated Power by Censoring Rate

Sample Size 200, Longer Study
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Figure 3.19:

Estimated Power by Censoring Rate
Sample Size 250, Longer Study
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In a shorter study, only models with at least 5% LTS had estimated power

above 25% in smaller sample sizes. Once the sample size exceeded 200, the

estimated power consistently was estimated at over 50% for LTS of at least 5%.
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For sample sizes under 150, the shorter study duration did not yield an estimated

power of over 20% and is not summarized. This is summarized in Figures 3.20

through 3.22.

Figure 3.20:  Estimated Power by Censoring Rate
Sample Size 150, Shorter Study

Sample Size 150 - Shorter Study
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Figure 3.21:  Estimated Power by Censoring Rate
Sample Size 200, Shorter Study
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Sample Size 200 - Shorter Study
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Figure 3.22:  Estimated Power by Censoring Rate
Sample Size 250, Shorter Study
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It is clear from these Figures that as the sample sizes increases, the power
also increases, but for relatively smaller sample sizes one can find moderate
power in models with a proportion of LTS above 5%.

3.3 — Mixture of Two Exponentials:

3.31 —Estimated Null Percentiles:

In preparation for studying the power of the mixture of two exponential
models (Ly), I decided to expand the simulation study in Ye (2006). Liu et al.
(2004), proved that in a two-component normal mixture model, the LRTS statistic

24, diverges at a rate of loglog(n). In a related paper the asymptotic behavior of

the LRTS for homogeneity against a mixture of gammas, is also shown to be
divergent at the rate loglog(n) (Liu et al. 2003). I used the log-log n
transformation in the regression analysis below. In my simulation I added
sample sizes of 1000 and 2000. Table 3.11 summarizes the results of the null

distribution of the LRTS. The fraction of zero LRTS, 7, is between 0.14 and
0.32 with average fraction of zero LRTS equal to 0.22. It decreases on average as
n increases. The regression function

®[(0.385£0.09) — (0.641+0.052) log(log(n))] explains 88.6% of the variation in
the fraction of zero LRTS ( p < 8x107"?, the standard error of regression

coefficient is given after £ ). The fraction of zero LRTS was not sensitive to the

censoring rate (p>0.98) or censoring pattern (p>0.11).
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Table 3.11: Mean, Variance and Simulated Percentiles of the null distribution of

LRT. (Ly)
7T Mean of Percentile

Sarpple C;n:tormg Cens<t)r1ng Mean  Variance Fraction I;on—
S1z¢€ attern rate OfZCI'O cro 75% 90% 95% 99%

LRTS  LRTS
Eevonential | 10% 1.18 343 032 174 168 358 487 817
5 P 30% 1.16 3.43 0.29 1.63 161 342 499 782
Uniform 10% 121 352 0.30 171 165 356 506 808
30% 1.28 331 0.26 174 196 359 498 801
boonenia | 10% 125 3.64 0.28 1.73 173 369 544 824
100 xponentia 30% 137 381 0.26 144 194 387 517 882
Uniform 10% 141 3.79 0.24 187 211 410 551 8.57
30% 123 3.07 025 1.65 182 345 441 8.44
200 a 10% 143 3.64 023 184 211 403 526 735
xponeiihia 30% 138 423 025 1.78 192 402 557 750
Uniform 10% 1.30 3.50 022 167 179 381 498 834
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30% 1.34 3.30 022 1.73 197 400 5.8

Exonential 10% 1.41 3.83 0.18 1.71 196  3.95 5.05

00 p 30% 1.60 4.44 0.18 194 237 441 5.45
Uniform 10% 1.61 3.20 0.17 1.93 244 453 559

30% 1.39 3.43 0.20 1.73 202 4.09 5.68

Exoomential 10% 1.51 4.02 0.19 186 223 391 575

1000 pone 30% 1.47 3.78 021 1.87 217 427 5.57
Uniform 10% 1.64 423 0.17 197 232 458 591

30% 1.59 4.85 0.19 197 215 436 618

Exoonential 10% 1.63 4.64 0.16 194 232 437 577

5000 p 30% 1.62 375 0.14 190 237 409 568
Uniform 10% 1.68 3.86 0.16 200 256 428 575

30% 1.57 4.20 0.16 187 225 422 537

7.93
9.57
10.70
8.08
7.98
8.87
8.30
9.44
9.98
10.65
9.09
8.30
9.13

Based on 1000 replications for each setting.

The estimated “degrees of freedom,” v, (that is, the mean of the non-zero

LRTS values), is between 1.44 and 2.00 with an average of 1.80. It also increases
on average as n increases. The regression function

(1.11£0.15) + (0.40 £ 0.09) log(log(n)) explains 49% of the variation in the mean
of the non-zero LRTS ( p < 0.0002 , standard error of regression coefficient given

after +). The mean non-zero LRTS was not sensitive to the censoring rate
(p>0.13) or censoring pattern (p>0.35).

I used these functions to estimate the percentiles of the null distribution
following the null distribution considered by Ye (2006). Following Ye (2006) the

null distribution of the LRTS used to test the mixture of two exponential

components without LTS is 7,y +(1—7,) szl , where r, is the fraction of zero

LRTS and ZVZI is a chi-square distribution with degrees of freedom v,. Table

3.12 contains the estimated 75™, 90", 95 99 and 99.9™ percentiles for the
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sample sizes used in the simulation study. I ran a bivariate regression to test for
correlation between the expected and observed percentile values. Figure 3.23 is a
plot of the simulated percentile against the estimated percentile for the 75", 90,
95" and 99" percentiles. The correlation between estimated percentile and
simulated percentile is 0.985. That is, estimated percentiles explain 97.1% of the
variance of the simulated percentiles in Table 3.12.

Table 3.12. Estimated Null Distribution Percentiles of LRTS

LM VS Lo

Sample Size 75% 90% 95% 99% 99.9%
50 1.66 3.34 4.65 7.73 12.20

100 1.84 3.55 4.87 7.98 12.48
200 1.98 3.72 5.06 8.19 12.71
350 2.08 3.84 5.18 8.33 12.87
500 2.14 391 5.26 8.42 12.96
750 2.20 3.98 5.33 8.50 13.06
1000 2.24 4.02 5.39 8.55 13.19
2000 2.33 4.13 5.50 8.69 13.27

Figure 3.23: Observed Simulated LRTS Values vs Estimated LRTS Values
for Summarized Percentiles (Ly).
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Simulated vs. Estimated Percentiles
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. th . .
I used the estimated 99 percentiles to calculate the power of the mixture
alternative.

3.32 — Power:

To study power I used a simulation study with 192 settings. I considered
expected censoring rate (10% or 30%), censoring pattern (exponential or
uniform), mixing proportion (50%, 65%, 75% or 85%), difference of expected
event times (0.5, 1.0 or 1.5) and sample size (200, 350, 500 or 750). For each
setting I ran 500 replicates. I calculated the average LRTS, the fraction of LRTS
values with result nearly equal to zero, where nearly zero is defined as an LRTS
less than 0.0001, the average of the non-zero LRTS values and the power using an
alpha level of 1% with the null percentiles in Table 3.12. Table 3.13 contains the

simulated power of this LRTS and other summary statistics. The 50-50 mixture
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with greatest difference of component means (difference equals 1.5) has power
near 1 for both censoring patterns and censoring rates, even for sample size 200.
For skewed mixing proportions (that is, m =0.85) with greatest difference of
component means, the power increases with increasing sample size, as expected.
For smaller difference of component means (difference equals 0.5) for both
symmetric (m =0.50) and skewed mixtures, the power is low for both censoring

patterns and both censoring rates.

Table 3.13: Simulated Power and Summary Statistics of the LRTS of Ly, vs Ly
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Mean

Censoring Sample Mixing Difference Censoring  Average Fraction of non-
Pattern size proportion me(:):ns Rate LRTS (Lf;%rg Zero Power
LRTS

P S M D R Y, Y; Y, Y,
1 200 0.50 1.5 0.10 48.40 0.00 48.40 1.00
1 200 0.50 1.5 0.30 36.43 0.00 36.43 1.00*
1 350 0.50 1.5 0.10 81.87 0.00 81.87 1.00
1 350 0.50 1.5 0.30 61.58 0.00 61.71 1.00*
1 500 0.50 1.5 0.10 118.44 0.00 118.44 1.00
1 500 0.50 1.5 0.30 88.38 0.00 88.38 1.00*
1 750 0.50 1.5 0.10 178.21 0.00 178.21 1.00
1 750 0.50 1.5 0.30 133.27 0.00 133.27 1.00
2 200 0.50 1.5 0.10 47.79 0.00 47.79 1.00
2 200 0.50 1.5 0.30 32.04 0.00 32.04 1.00*
2 350 0.50 1.5 0.10 81.89 0.00 81.89 1.00
2 350 0.50 1.5 0.30 55.19 0.00 55.3 1.00*
2 500 0.50 1.5 0.10 118.15 0.00 118.15 1.00
2 500 0.50 1.5 0.30 77.90 0.00 77.90 1.00*
2 750 0.50 1.5 0.10 174.88 0.00 174.88 1.00
2 750 0.50 1.5 0.30 115.56 0.00 115.56 1.00
1 200 0.65 1.5 0.10 23.25 0.00 23.25 0.96
1 200 0.65 1.5 0.30 14.71 0.00 14.71 0.74
1 350 0.65 1.5 0.10 39.59 0.00 39.59 1.00
1 350 0.65 1.5 0.30 24.05 0.00 24.05 0.96
1 500 0.65 1.5 0.10 56.24 0.00 56.24 1.00
1 500 0.65 1.5 0.30 332 0.00 332 0.99
1 750 0.65 1.5 0.10 85.70 0.00 85.70 1.00
1 750 0.65 1.5 0.30 49.52 0.00 49.52 1.00
2 200 0.65 1.5 0.10 21.93 0.00 21.93 0.94
2 200 0.65 1.5 0.30 10.81 0.00%* 10.86 0.62
2 350 0.65 1.5 0.10 37.76 0.00 37.76 1.00
2 350 0.65 1.5 0.30 17.79 0.00 17.79 0.84
2 500 0.65 1.5 0.10 53.83 0.00 53.83 1.00
2 500 0.65 1.5 0.30 23.85 0.00 23.85 0.96
2 750 0.65 1.5 0.10 81.23 0.00 81.23 1.00
2 750 0.65 1.5 0.30 35.51 0.00 35.51 1.00
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Mean

Censoring Sarpple Mixin.g lefirfence Censoring  Average 12? ;Ero;l of non- Power
Pattern size proportion means Rate LRTS LRTS Zero
LRTS
1 200 0.75 1.5 0.10 13.56 0.00%* 13.58 0.72
1 200 0.75 1.5 0.30 7.16 0.01 7.24 0.35
1 350 0.75 1.5 0.10 22.67 0.00 22.67 0.91
1 350 0.75 1.5 0.30 11.82 0.00%* 11.87 0.62
1 500 0.75 1.5 0.10 31.54 0.00 31.54 0.99
1 500 0.75 1.5 0.30 16.20 0.00 16.20 0.79
1 750 0.75 1.5 0.10 48.34 0.00 48.34 1.00
1 750 0.75 1.5 0.30 24.46 0.00 24.46 0.96
2 200 0.75 1.5 0.10 12.95 0.00%* 12.98 0.68
2 200 0.75 1.5 0.30 5.17 0.02 5.29 0.20
2 350 0.75 1.5 0.10 21.07 0.00 21.07 0.91
2 350 0.75 1.5 0.30 7.36 0.00 7.36 0.36
2 500 0.75 1.5 0.10 30.32 0.00 30.32 0.98
2 500 0.75 1.5 0.30 10.02 0.00 10.02 0.55
2 750 0.75 1.5 0.10 44.46 0.00 44.46 1.00
2 750 0.75 1.5 0.30 14.17 0.00 14.17 0.75
1 200 0.85 1.5 0.10 7.07 0.02 7.25 0.35
1 200 0.85 1.5 0.30 4.27 0.04 4.44 0.15
1 350 0.85 1.5 0.10 11.26 0.00%* 11.30 0.58
1 350 0.85 1.5 0.30 5.41 0.03 5.59 0.22
1 500 0.85 1.5 0.10 15.04 0.00 15.04 0.72
1 500 0.85 1.5 0.30 7.59 0.01 7.63 0.38
1 750 0.85 1.5 0.10 22.30 0.00 22.30 0.89
1 750 0.85 1.5 0.30 10.36 0.00* 10.38 0.54
2 200 0.85 1.5 0.10 6.50 0.02 6.60 0.31
2 200 0.85 1.5 0.30 2.47 0.09 2.72 0.04
2 350 0.85 1.5 0.10 9.75 0.00 9.75 0.51
2 350 0.85 1.5 0.30 3.16 0.04 3.28 0.07
2 500 0.85 1.5 0.10 12.98 0.00 12.98 0.69
2 500 0.85 1.5 0.30 3.98 0.03 4.10 0.11
2 750 0.85 1.5 0.10 19.88 0.00 19.88 0.86
2 750 0.85 1.5 0.30 4.98 0.01 5.04 0.18
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Mean

Censoring Sarpple Mixin.g lefirfence Censoring  Average 12? ;Ero;l of non- Power
Pattern size proportion means Rate LRTS LRTS Zero
LRTS
1 200 0.50 1.0 0.10 9.14 0.00* 9.16 0.51
1 200 0.50 1.0 0.30 6.95 0.00* 6.96 0.33
1 350 0.50 1.0 0.10 15.86 0.00 15.86 0.81
1 350 0.50 1.0 0.30 10.63 0.00* 10.65 0.62
1 500 0.50 1.0 0.10 22.07 0.00 22.07 0.94
1 500 0.50 1.0 0.30 14.52 0.00 14.52 0.76
1 750 0.50 1.0 0.10 31.81 0.00 31.81 0.99
1 750 0.50 1.0 0.30 20.64 0.00 20.64 0.92
2 200 0.50 1.0 0.10 9.25 0.00%* 9.27 0.47
2 200 0.50 1.0 0.30 541 0.01 5.46 0.21
2 350 0.50 1.0 0.10 14.91 0.00 14.91 0.78
2 350 0.50 1.0 0.30 8.61 0.00 8.61 0.47
2 500 0.50 1.0 0.10 21.68 0.00 21.68 0.93
2 500 0.50 1.0 0.30 11.23 0.00 11.23 0.64
2 750 0.50 1.0 0.10 31.12 0.00 31.12 0.99
2 750 0.50 1.0 0.30 15.83 0.00 15.83 0.84
1 200 0.65 1.0 0.10 6.81 0.01 6.88 0.32
1 200 0.65 1.0 0.30 4.65 0.02 4.77 0.15
1 350 0.65 1.0 0.10 10.78 0.00%* 10.80 0.56
1 350 0.65 1.0 0.30 6.70 0.00* 6.72 0.31
1 500 0.65 1.0 0.10 15.09 0.00* 15.12 0.77
1 500 0.65 1.0 0.30 8.77 0.00* 8.78 0.44
1 750 0.65 1.0 0.10 21.19 0.00 21.19 0.92
1 750 0.65 1.0 0.30 12.17 0.00 12.17 0.63
2 200 0.65 1.0 0.10 6.96 0.02 7.11 0.33
2 200 0.65 1.0 0.30 3.63 0.04 3.79 0.10
2 350 0.65 1.0 0.10 10.44 0.01 10.50 0.56
2 350 0.65 1.0 0.30 5.05 0.02 5.16 0.18
2 500 0.65 1.0 0.10 13.73 0.00 13.73 0.74
2 500 0.65 1.0 0.30 6.17 0.01 6.25 0.26
2 750 0.65 1.0 0.10 19.74 0.00 19.74 0.90
2 750 0.65 1.0 0.30 7.64 0.00* 7.66 0.34
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Difference Fraction Mean

Censoring Sample Mixin.g of Censoring  Average of zero of non- Power
Pattern size proportion means Rate LRTS LRTS Zero
LRTS
1 200 0.75 1.0 0.10 4.77 0.03 491 0.20
1 200 0.75 1.0 0.30 3.57 0.05 3.76 0.10
1 350 0.75 1.0 0.10 7.46 0.01 7.55 0.36
1 350 0.75 1.0 0.30 4.74 0.02 4.84 0.18
1 500 0.75 1.0 0.10 10.05 0.01 10.14 0.49
1 500 0.75 1.0 0.30 5.83 0.01 5.87 0.25
1 750 0.75 1.0 0.10 13.59 0.00 13.59 0.69
1 750 0.75 1.0 0.30 7.71 0.00* 7.72 0.37
2 200 0.75 1.0 0.10 4.77 0.02 4.88 0.17
2 200 0.75 1.0 0.30 2.64 0.08 2.87 0.05
2 350 0.75 1.0 0.10 7.17 0.02 7.28 0.35
2 350 0.75 1.0 0.30 3.36 0.04 3.51 0.08
2 500 0.75 1.0 0.10 9.55 0.00 9.55 0.49
2 500 0.75 1.0 0.30 3.53 0.03 3.64 0.10
2 750 0.75 1.0 0.10 13.41 0.00 13.41 0.70
2 750 0.75 1.0 0.30 5.03 0.01 5.08 0.17
1 200 0.85 1.0 0.10 3.03 0.06 3.23 0.06
1 200 0.85 1.0 0.30 2.49 0.10 2.77 0.04
1 350 0.85 1.0 0.10 4.46 0.03 4.61 0.16
1 350 0.85 1.0 0.30 2.88 0.07 3.09 0.06
1 500 0.85 1.0 0.10 5.63 0.02 5.76 0.24
1 500 0.85 1.0 0.30 3.59 0.03 3.70 0.10
1 750 0.85 1.0 0.10 7.54 0.00%* 7.57 0.33
1 750 0.85 1.0 0.30 4.63 0.03 4.78 0.16
2 200 0.85 1.0 0.10 3.52 0.05 3.72 0.10
2 200 0.85 1.0 0.30 1.95 0.12 221 0.02
2 350 0.85 1.0 0.10 4.29 0.03 4.42 0.13
2 350 0.85 1.0 0.30 2.17 0.06 2.32 0.02
2 500 0.85 1.0 0.10 5.03 0.02 5.14 0.21
2 500 0.85 1.0 0.30 245 0.07 2.67 0.04
2 750 0.85 1.0 0.10 7.13 0.01 7.19 0.34
2 750 0.85 1.0 0.30 2.78 0.05 291 0.04
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Difference Fraction

Censoring Sample Mixin.g of Censoring  Average of zero of non- Power
Pattern size proportion means Rate LRTS LRTS
LRTS
1 200 0.50 0.5 0.10 2.33 0.10 2.60 0.04
1 200 0.50 0.5 0.30 2.04 0.14 2.37 0.03
1 350 0.50 0.5 0.10 2.75 0.07 2.94 0.04
1 350 0.50 0.5 0.30 2.70 0.09 2.98 0.04
1 500 0.50 0.5 0.10 3.44 0.04 3.59 0.06
1 500 0.50 0.5 0.30 2.59 0.06 2.75 0.03
1 750 0.50 0.5 0.10 4.16 0.02 4.26 0.07
1 750 0.50 0.5 0.30 3.16 0.04 3.30 0.13
2 200 0.50 0.5 0.10 243 0.11 2.73 0.05
2 200 0.50 0.5 0.30 1.95 0.12 221 0.01
2 350 0.50 0.5 0.10 3.02 0.07 3.23 0.07
2 350 0.50 0.5 0.30 2.11 0.12 241 0.03
2 500 0.50 0.5 0.10 3.34 0.04 3.49 0.08
2 500 0.50 0.5 0.30 2.37 0.08 2.57 0.04
2 750 0.50 0.5 0.10 441 0.02 4.49 0.14
2 750 0.50 0.5 0.30 391 0.03 4.04 0.11
1 200 0.65 0.5 0.10 2.02 0.15 2.39 0.03
1 200 0.65 0.5 0.30 1.78 0.16 2.12 0.03
1 350 0.65 0.5 0.10 2.56 0.08 2.77 0.05
1 350 0.65 0.5 0.30 2.28 0.10 2.54 0.03
1 500 0.65 0.5 0.10 3.06 0.04 3.18 0.05
1 500 0.65 0.5 0.30 2.47 0.07 2.67 0.04
1 750 0.65 0.5 0.10 3.80 0.05 4.00 0.10
1 750 0.65 0.5 0.30 3.01 0.07 3.24 0.07
2 200 0.65 0.5 0.10 2.25 0.13 2.59 0.04
2 200 0.65 0.5 0.30 1.74 0.13 2.00 0.02
2 350 0.65 0.5 0.10 2.82 0.06 3.02 0.04
2 350 0.65 0.5 0.30 1.91 0.12 2.18 0.02
2 500 0.65 0.5 0.10 2.84 0.09 3.11 0.04
2 500 0.65 0.5 0.30 2.09 0.09 231 0.02
2 750 0.65 0.5 0.10 3.72 0.04 3.90 0.08
2 750 0.65 0.5 0.30 2.24 0.08 243 0.03
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Difference Fraction

Censoring Sample Mixing Censoring  Average of non-
Pattern size proportion me(:)zfns Rate LRTS (}Jfg;rso Power
LRTS
1 200 0.75 0.5 0.10 2.01 0.12 2.29 0.02
1 200 0.75 0.5 0.30 1.82 0.12 2.07 0.03
1 350 0.75 0.5 0.10 2.44 0.09 2.70 0.04
1 350 0.75 0.5 0.30 2.03 0.13 2.34 0.03
1 500 0.75 0.5 0.10 2.57 0.09 2.83 0.04
1 500 0.75 0.5 0.30 2.25 0.08 2.46 0.03
1 750 0.75 0.5 0.10 3.07 0.05 3.24 0.06
1 750 0.75 0.5 0.30 2.45 0.06 2.61 0.03
2 200 0.75 0.5 0.10 2.16 0.17 2.60 0.04
2 200 0.75 0.5 0.30 1.73 0.16 2.07 0.02
2 350 0.75 0.5 0.10 2.04 0.10 2.28 0.03
2 350 0.75 0.5 0.30 1.74 0.11 1.95 0.01
2 500 0.75 0.5 0.10 2.66 0.06 2.85 0.04
2 500 0.75 0.5 0.30 2.03 0.12 2.32 0.02
2 750 0.75 0.5 0.10 2.89 0.06 3.09 0.06
2 750 0.75 0.5 0.30 2.13 0.10 2.37 0.03
1 200 0.85 0.5 0.10 1.77 0.18 2.16 0.01
1 200 0.85 0.5 0.30 1.54 0.18 1.89 0.01
1 350 0.85 0.5 0.10 2.16 0.12 2.46 0.02
1 350 0.85 0.5 0.30 1.69 0.17 2.03 0.02
1 500 0.85 0.5 0.10 2.12 0.12 242 0.02
1 500 0.85 0.5 0.30 1.88 0.12 2.14 0.02
1 750 0.85 0.5 0.10 2.44 0.07 2.64 0.03
1 750 0.85 0.5 0.30 2.03 0.12 2.31 0.03
2 200 0.85 0.5 0.10 1.69 0.18 2.07 0.03
2 200 0.85 0.5 0.30 1.38 0.15 1.63 0.01
2 350 0.85 0.5 0.10 2.05 0.14 2.38 0.03
2 350 0.85 0.5 0.30 1.71 0.12 1.96 0.01
2 500 0.85 0.5 0.10 2.07 0.14 2.42 0.02
2 500 0.85 0.5 0.30 1.74 0.14 2.02 0.02
2 750 0.85 0.5 0.10 2.31 0.08 2.51 0.04
2 750 0.85 0.5 0.30 1.73 0.14 2.03 0.01
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I used a probit regression model with each of the factors (n, P, m, R, and
D), the two factor interactions Pm, PD, mD, PR, MR, DR, Plog(n), mlog(n),
Dlog(n), and Rlog(n) and all sub-hierarchical interactions to fit the inverse normal
cdf of the power of the LRTS test using level of significance 1%. The fitted model
is:
d7'(p)=-6.26+
1.62D +4.03m + 3.32R - 0.43P - 0.048log(log(S)) - 8.41(mD) - 5.84(mR) -
(t=1.1) (t=5.66) (t=2.0) (t=-2.3) (t=0.1) (t=-16.0)  (t=-2.7)
3.65(DR) + 0.235(DP) + 1.93(RP) + 4.54(Dlog(log(S)))

(t=-5.4) (t=1.7) (t=3.5) (t=5.5)

The R* for the fitted model of 95.4% and shows a good fit. The logarithm
of the sample size S is not significant at the 0.05 level, but its interaction with the
difference between means is significant, with increasing power associated with
increasing sample size. The mixing proportion m and difference between means D
are significant, especially in the m-D interactions. The censoring rate R, and
censoring pattern P are marginally significant. Larger difference between means,
more symmetric mixing proportion, and lower censoring rate are associated with

greater power.

69



Chapter 4. Conclusions

I studied the survival models assuming LTS (L) or the mixture of two
exponential components (L)) each with finite mean to test whether there is
indication of a mixture mechanism. The estimated power of the LRTS for the LTS
model and mixture survival model are modeled numerically in a simulation study.

In the model Ly a finite study duration is considered

In L, the null distribution of the LRTS used to test LTS is shown to be
plausibly asymptotically distributed as 50-50 mixture of a chi-square random
variable with 1 degrees of freedom and a mass at zero as proved by Zhou and
Maller (1995). Under the sample sizes, censoring patterns and study durations

studied, the simulation results show the null distribution of LRTS for Lg to be well

approximated by 7,7, +(1-7,,) .’ , where 7, is the fraction of zero LRTS,

which varies with #n. When considering study duration (D), I define /), as either

longer (/p =1) or shorter (Ip =0). The simulation results show 7, is fit by

N 0.4864 +0.92061

Jn

50%. For longer study durations, the convergence to 50% fraction of zeros is

0.50

, such that for large sample sizes the fraction of zeros is

shown to be slower than for shorter study durations. The censoring pattern and

censoring rates are not significant in fitting 7, .
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Power was estimated using the 99" percentile calculated under

Ton e +(1=7y,) 1 fit. A probit regression model was used to model the power

over the variables used in the simulation. The estimated power model fit is

O (p) =202 3037 +2.16D +79.19(LTS) + 2ot _ 214 34LTS)
n n Vn

The model was fitted for censoring rates between 10% and 50%, study durations

—3.08rD — 45.36r(LTS).

of 3 and 5 times the expected event time, LTS between 2% and 8% and sample

sizes through 2,000. The censoring pattern was not significant. The R* for the
fitted model is 92% and shows a good fit. All variables were highly significant.
When the proportion of LTS is small the power is small, unless the sample size is
large. In the event of high censoring rate a sample size of many thousand would
be required to reject the null hypothesis, especially for small LRTS. In the case of
long study durations, power near 50% can be achieved in some smaller sample
size situations. In a longer study fewer than 150 observations are required for
power of at least 50% when LTS > 0.04 and 10% of observations are observed as
censored. For models with 0.02 < LTS < 0.04, 50% power is estimated with
fewer than 300 observations. In addition, fewer than 200 observations are
required for an estimated 80% power with LTS > 0.05. The power steeply drops
from a longer study to a shorter study. In a shorter study duration at least 50%
estimated power is observed with fewer than 300 observations for models with

LTS >0.05. This is twice as many observations as required for the longer study.
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At least 80% estimated power is observed with fewer than 550 observations for
models with LTS > 0.05 for a shorter study.

The null distribution of the LRTS for Ly, vs Ly is well approximated

by s +(1-1m,) szl , where 7, is the fraction of zero LRTS values and is

estimated by ®[(0.385+0.09)—(0.641+£0.052)log(log(n))] and v, given by
(1.11+£0.15) +(0.40£0.09) log(log(rn)) . The fraction of zero LRTS, 7, is

between 0.14 and 0.32 with average fraction of zero LRTS equal to 0.22. It

decreases on average as n increases. The estimated “degrees of freedom,” v,

(that is, the mean of the non-zero LRTS values), is between 1.44 and 2.00 with an

average of 1.80. It also increases on average as n increases.

A 2x2x3x4x4 factorial experiment was run to estimate the power of
the LRTS to detect the mixture of two exponential components. The 50-50
mixture with greater difference of component means (difference equals 1.5) has
power near 1 for both censoring patterns and censoring rates, even for sample size
200. For skewed mixing proportions (mixing proportion equals 0.85) with greater
difference of component means, power increases with increasing sample size, as
expected. For smaller difference of component means (difference equals 0.50) for
both symmetric (mixing proportion equals 0.50) and skewed mixtures, power is
low for both censoring patterns and both censoring rates, and the power of test

does not change much when sample size increases. In intermediate settings, a
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difference of 1.0 and mixing proportions of 0.65 and 0.75, power ranges from
near zero to near one. The power is larger for smaller censoring rates. The probit
multiple regression analysis is applied to the estimated power. The fitted model
is:
®'(p)=-6.26+1.62D +4.03m + 3.32R - 0.43P - 0.048log(log(S)) - 8.41(mD)
-5.84(mR)-3.65(DR)+ 0.235(DP) + 1.93(RP) + 4.54(Dlog(log(S)))

In general, the mixing proportion, difference of two component means and
their interaction affected the average LRTS. The mixing proportion, difference of
two component means, censoring rate and their interaction, affected the power

and fraction of zero LRTS.

The extension of this dissertation is to study a model selection technique
in determining whether Ly, Ls or Ly, best fits a sample. A study of the Bayesian
Information Criteria (BIC) to select the model would be a valuable contribution.
The study of a mixture model with a long term survivor component is a further
generalization of interest. The study of a Box-Cox transformation to each of these

models would also be a valuable contribution.
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Appendix:

Al: C Code for simulation of L vs Lg
#include <stdio.h>

#include <math.h>

#include <gsl/gsl rng.h>

#include <gsl/gsl randist.h>

#include <gsl/gsl multimin.h>

#define debug 0

struct _power data
{

double *t;

double *u;

double *c;

int size;

}s

typedef struct power data power data;

double my_f(const gsl vector *v, void *params)
{

power data *my pwr data;

my pwr_data = (power data*)params;

double sumlog01 = 0;

double *t, *u, *c;

int n,i;

t=my pwr data->t;

u=my pwr_data->u;

c=my pwr_ data->c;

n=my pwr_ data->size;

double mul0 = gsl vector get(v, 0);
double mu20 = gsl vector_get(v, 1);
double phi = gsl_vector get(v, 2);
double lambdal0,lambda20,m0,expphi,x1,x2,logitem01;
lambdal0 = exp(mul0);

lambda20 = exp(mu20);

expphi = exp(phi);

mO0 = expphi /(1.0+expphi);

for(i=0;1<n;it+t)
{
x1 = mO0* exp(-(lambdal0) * t[i]);
x2 = (1-m0)*exp(-(lambda20)* t[i]);
logitemO1= c[i] * (log(lambdal0*x1+ lambda20*x2))+ (1-
c[i])*log(x1+x2);
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sumlog01 = sumlog01+ logitemO1;

}

return -sumlog01;

}

main()

{
/111111// GSL Initialization /////////////

/I GSL random number realated varibles
const gsl rng_type * T;

gsl g *r;

gsl g env_setup();

T = gsl rng default;

r=gsl rng alloc (T);

// GSL minimizer realated varibles

size tnp = 3;
const gsl multimin_fminimizer type *TT =
gsl multimin_fminimizer nmsimplex;

gsl multimin_fminimizer *s = NULL;
gsl vector *ss, *xx;

gsl multimin_function minex_func;
size titer=0, q;

xx = gsl vector alloc (np);

/11111// End GSL Initialization /////////////

// Changable parameters

int n = 500; // sample size

int rep = 100; // repition number

double m = 0.85; // mixing proportion (if no mixture then set to 1)
double d = 0.8; // difference in means

double LTS = 1.0; // Long Term Survivor rate (if no LTS then set to 1)
double p = 1; // censoring pattern (exp =1 & unif =2)

double lambdal =1 + d*(m-1);
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double lambda2 = 1+d*m,;

double a = 0.0; // uniform censoring min
double b = 10.66; // uniform censoring max 10.66=10% & 3.2=30%
double beta = 9.52; // exponential censoring param: 9.52=10% & 2.56=30%

// storage arrays and counters

int k;

double *select, *expLeft, *expRight, *u, *t, *tt, *c, *select LTS, *expLTS, *tt orig;
double *maxsumlog00, *lambda00;

double *maxsumlog01, *lambda0lhatl, *lambda0O1hat2, *mO1hat, *d0001,
*smallermeanO1hat, *largermeanO1hat, *meanOOhat;

// storage arrays and counters
double *v, *lamls, *lam2s, *ms;

//11]1] allocating memory

//arrays of size the sample size

select = malloc(sizeof(double)*n);
select LTS = malloc(sizeof(double)*n);
expLeft = malloc(sizeof(double)*n);
expRight = malloc(sizeof(double)*n);
expLTS = malloc(sizeof(double)*n);
u = malloc(sizeof(double)*n);

t = malloc(sizeof(double)*n);

tt_orig = malloc(sizeof(double)*n);

tt = malloc(sizeof(double)*n);

¢ = malloc(sizeof(double)*n);

//arrays of size of rep

maxsumlog00 = malloc(sizeof(double)*rep);
lambda00 = malloc(sizeof(double)*rep);
maxsumlog01 = malloc(sizeof(double)*rep);
lambdaOlhat]l = malloc(sizeof(double)*rep);
lambda01hat2 = malloc(sizeof(double)*rep);
mO1hat = malloc(sizeof(double)*rep);

d0001 = malloc(sizeof(double)*rep);
smallermean01hat = malloc(sizeof(double)*rep);
largermean(1hat = malloc(sizeof(double)*rep);
mean0O0hat = malloc(sizeof(double)*rep);
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// arrays of random size

lam1s = malloc(sizeof(double)*10);
lam2s = malloc(sizeof(double)*10);
ms = malloc(sizeof(double)*10);

/Il done allocating memory
printf("d0001\tmean00hat\tm01hat\tsmallermeanO1hat\tlargermean(01hat\n");
for(k = 0; k <rep; k++)

{ // start of k/repition loop

/I C code 1

int 1;

//filling the array of select expLeft and expRight
if(debug ==2)

printf(" select\t expLeft\t expRight\t tt \n");

double expLeft mean =0 ,expRight mean =0, select mean=0 ;
for(i=0;1<n;i++)
{

select[i] = gsl ran_flat(r,0.0,1.0);

expLeft[i] = gsl ran exponential(r,lambdal);

expRight[i] = gsl ran_exponential(r,lambda2);

expLeft mean = expLeft mean + expLeft[i]/(1.0*n);
expRight mean = expRight mean + expRight[i]/(1.0*n);
select mean = select mean + select[i]/(1.0*n);

if (select[i] <=m)

tt_orig[i] = expLeft[i];
else

tt_orig[i] = expRight[i];

if(debug == 2)
printf("%ft %f %f %f \n",select[i],expLeft[i],expRight[i],tt[i]);

/lexpLeft mean2 = expLeft mean2/(1.0*n);
//select_mean = select mean/(1.0*n);
/lexpLeft mean = expLeft mean/(1.0*n);
//lexpRight _mean= expRight mean/(1.0*n);
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double expLeft var =0 ,expRight var = 0, select var =0;
for(i=0;1<n;i++)
{
select var=select var +(select[i]-select mean)*(select[i]-select mean);
expLeft var=expLeft var +(expLeft[i]-expLeft mean)*(expLeft[i]-
expLeft mean);
expRight var= expRight var +(expRight[i]-expRight mean)*(expRight[i]-
expRight mean);

}

select var = select var/(1.0*n - 1.0);
expLeft var = expLeft var/(1.0*n - 1.0);
expRight var = expRight var/(1.0*n - 1.0);

if(debug ==2)

{

printf("lambdal= %f lambda2= %f \n"
"expLeft mean = %f expRight mean = %f, \n"
"select mean = %f realselect mean = %f, \n"
JJambdal,lambda2,expLeft mean,expRight mean,select mean,1.0/2);

printf("real expLeft var = %freal expRight var = %f\n"
"expLeft var = %f expRight var = %f \n"
"real select var = %f \n"
"select var = %f \n"
JJambdal*lambdal,lambda2*lambda2,
expLeft var,expRight var,
1.0/12.0,
select var);

}

// choosing a tt

// end C code 1

/I C code 1.5

/Milling the array of select expLeft and expRight
if(debug == 2)

printf(" select LTS\t exponLTS\t");

for(i=0; 1 <n;it++)
{
select LTS[i] = gsl ran_flat(r,0.0,1.0);
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expLTS[i] = gsl ran_exponential(r,9999); // assume the LTS mean = 9999
/Iselect LTS mean = select LTS mean + select LTS[i]/(1.0*n);
if (select LTS[i] <=LTS)
tt[i] = tt_orig[i];
else

tt[i] = expLTS[i];

//if(debug == 2)
/lprintf(" %t %t %f %f \n",select LTS[i],tt_orig[i],tt[i]);

/lexpLeft mean2 = expLeft mean2/(1.0*n);
//select_mean = select_mean/(1.0*n);
/lexpLeft mean = expLeft mean/(1.0*n);
//lexpRight _mean= expRight mean/(1.0*n);

// end C code 1.5

// C code 2

//filling the array of u

double mean u=0,mean_t=0;

if(debug == 2)
printf("ttu t ¢ \n");

if(p==2)
for(i=0; 1 <n;it++)
{

u[i] = gsl ran flat(r,a,b);

t[i] = fmin((double)tt[i],(double)u[i]);
mean_t = mean_t+t[i];
mean_u = mean_u+uli];

if (tt[i] <= u[i])
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c[i] = 1.0;
else c[i] = 0.0;

if(debug == 2)
printf("%f %f %f %f \n" tt[i],ulil,t[i],c[i]);

}
if(p==1)
for(i=0;1<n;it++)
{
u[i] = gsl ran_exponential(r,beta);
t[i] = fmin((double)tt[i],(double)u[i]);
mean_t = mean_t+t[i];
mean_u = mean_u+u[i];
if (tt[i] <= u[i])
c[i] = 1.0;
else c[i] = 0.0;
if(debug ==2)
printf("%ft %f %f %t \n" tt[1],u[i],t[i],c[i]);
}
s

mean_t=mean_t/(1.0%*n);
mean_u = mean_u/(1.0*n);

double t var =0 ,u_var = 0;
for(i=0; 1 <n;it++)
{

u_var=u_var +(u[i]-mean_u)*(u[i]-mean_u);

}

u var =u_var/(1.0*n - 1.0);

if(debug == 2)

{

printf( "mean_t = %f mean u = %f \n"
,mean_t,mean_u);

printf("real u var = %f \n"

"u_var = %f\n"
,((b-a)*(b-a))/12.0 ,u_var);
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// end C code 2

// C code 3

lambda00[k] = 0;

double csum = 0;

double tsum = 0;

double p0=1.0;

double logitem00;

double x;

double sumlog00 = 0;

for(i=0;1<n;it+)

{
csum = csum + ¢[i];
tsum = tsum + t[i];

lambda00[k] = csum/tsum;

for(i=0;1<n; i++)
{
x = exp(-lambda00[k] * t[i]);
logitem00 = c[i] * (log(p0)+log(lambda00[k]) - lambda00[k] * t[i] ) + (1.0-
c[i])*log(1.0 - p0 + p0*x);
if(debug == 2)
{
printf("x = %f \n",x);
printf("c[i] = %f \n",c[1]);
printf("p0 = %f \n",p0);
printf("lambda00[k] = %f \n",lambda00[k]);
printf("t[i] = %f \n",t[i]);
printf("logitem00 = %f sumlog00 = %f \n",logitem00, sumlog00);

sumlog00 = sumlog00 + logitem00;
H
maxsumlog00[k] = sumlog00;

// end C code 3
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// C code 4

for(i=0;1<10; i++)

{

lamls[i] = 1.0/(mean_t*(-log(1-gsl ran flat(r,0.0,1.0))));
/Nlamls <- 1/(mean(t)*(-log(1-v)));

//lam2s <- 1/(mean(t)*(-log(1-w)));

¥

for(i=0;1<10; i++)
lam2s[i] = 1.0/(mean_t*(-log(1-gsl ran flat(r,0.0,1.0))));

for(i=0;1<10; i++)

ms[i]=1-0.1*gsl ran flat(r,0.0,1.0);
/- <-runif(7,0,1);
//ms <- 1-0.1*u;

int j,kk;

power data my pwr data;
my pwr data.t=t;

my_ pwr_data.u=u;

my pwr_data.c = c;

my pwr_data.size = n;

/i =1;

/Ij=1;

/Ikk = 1;

double maxf=-100000, max1 = -100000,max2=-100000,max3 = -100000;

for(i=0;1<3;it+)

{

for(j =0;j <3;j++)

{

for(kk = 0; kk < 1; kk++)
{

if(debug ==1)
printf("i=%i j=%i kk=%1\n",1,j,kk);

s = gsl multimin_fminimizer alloc(TT, np);
ss = gsl_vector_alloc(np);

gsl vector set all (ss, 1.0);

gsl vector set(xx, 0, log(lam1s[i]));

gsl vector_set(xx, 1, log(lam2s[j]));

double tmpdata= log(ms[kk]/(1.0- ms[kk])) ;
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gsl vector set(xx, 2, tmpdata );
minex_func.f = &my f;
minex_func.n = np;
minex_func.params = (void *)&my pwr data;
gsl multimin_fminimizer set(s, &minex_func, xx, ss);
iter = 0;
int status;
double size;
do
{ .
iter++;
status = gsl multimin_fminimizer iterate(s);

if(status)
break;

size = gsl multimin_fminimizer size (s);
status = gsl multimin_test size (size, 1e-5);
if(status == GSL_SUCCESS && debug == 5)
{
printf("\n+++++++++++H+HHH A n'),
printf("step = %d \ninputs = (", iter);
printf("%f.", gsl vector get (s->x, 0));
printf("%f.", gsl vector get (s->x, 1));
printf("%f", gsl vector get (s->X, 2));
printf(")\nf = %f\n", s->fval);
printf("size = %f\n", size);
printf(" -+,
}

}
while (status == GSL_CONTINUE && iter < 1200);

/I if(iter > 1000)

I

I printf("\n+++++++HH ),
/l printf("step = %d ????? \n", iter);

I printf("+++++t ),
/1'}

//return status;
11T done minimizing /////11111117711111111111
//if (- randommaxlog01result $value > maxsumlogl0[k]) flag01 <- 1 else flag01 <- 0;
if(maxf < s->fval*-1.0)
{

if(debug ==7)

printf("maxf %10.17f will be replaced with %10.17f \n",maxf, s-
>fval*-.0);
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max1= gsl vector get (s->x, 0);
max2= gsl vector get (s->x, 1);
max3= gsl vector get (s->x, 2);
maxf= -1.0*s->fval;

}
if(debug ==17)
{
printf(" \n");
/lprintf("For starting points %f %f %f is %f \n",s->fval);
/!

printf(" starting point 1 %f \n",log(lam1s[i]));
printf(" starting point 2 %f \n",log(lam2s[j]));
printf(" starting point 3 %f \n",log(ms[kk]/(1.0- ms[kk])));
printf("fval is %10.17f \n",s->tfval);
printf(" \n");
}
gsl multimin_fminimizer free (s);
gsl vector free(ss);

Y

if(debug ==17)

{

printf(" \n");

printf("the last f is %f input (%f,%f,%f)\n",maxf,max1,max2,max3);
printf(" \n");

}

// end C code 4

// C code 5

maxsumlog10[k] = maxf;
lambdalOhat[k] = exp(max1);
mO1hat[k] = exp(max2) /(1.0+exp(max2));

if(debug == 7)

printf("maxsumlog00[k] = %10.17f maxsumloglO[k]) =%10.17f
\n",maxsumlog00[k],maxsumlog10[k]);

d0001[k] = -2.0*maxsumlog00[k]-(-2.0* maxsumlog10[k]) ;
meanl0hat[k] = 1/lambdalOhat[k];
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mean(00Ohat[k] = 1/lambda00[k];

//End C code 5

fflush(stdout);
fflush(stdout);

if (summary == 1)

{

printf("\n");

printf("Single Exponential:");
printf("\n");

printf("MLE mean: ");
printf("%f\n",mean00hat[k]);

printf("Max log0: ");
printf("%f\n",;maxsumlog00[k]);
printf("\n");

printf("Single Exponential w/ LTS:");
printf("\n");

printf("MLE mean: ");
printf("%f\n",mean10hat[k]);

printf("p-hat: ");
printf("%f\n",m01hat[k]);

printf("Max logl: ");
printf("%f\n",;maxsumlog10[k]);
printf("\n");

printf("LRTs sinlge w/ LTS vs single exponential: ");
printf("%f\n",d0001[k]);
printf("\n");

}

if (summary == 2)

{
printf("%f\n",d0001[k]);
}
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if (summary == 3)

{
printf("%10.17:\t%H\t%H\t %\t %

\n",d0001[k],mean00hat[k],mO01hat[k],mean10hat[k],mean10hat[k]);

J
fflush(stdout);

TN

}+ // end of k/repition loop

gsl vector free(xx);

//gsl_multimin_fminimizer free(s);
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A2: C Code for simulation of Ly vs Ly

#include <stdio.h>

#include <math.h>

#include <gsl/gsl rng.h>
#include <gsl/gsl randist.h>
#include <gsl/gsl multimin.h>
#define debug 0

struct _power data
{

double *t;

double *u;

double *c;

int size;

}s

typedef struct power data power data;

double my f(const gsl vector *v, void *params)

{

power data *my pwr data;
my pwr_data = (power_data*)param

double sumlog01 = 0;

double *t, *u, *c;

int n,i;

t=my pwr data->t;

u=my pwr_data->u;

c=my pwr_ data->c;

n=my pwr_ data->size;

double mul0 = gsl vector get(v, 0);
double mu20 = gsl vector_get(v, 1);
double phi = gsl_vector get(v, 2);

S5

double lambdal0,lambda20,m0,expphi,x1,x2,logitem01;

lambdal0 = exp(mul0);
lambda20 = exp(mu20);

expphi = exp(phi);
mO0 = expphi /(1.0+expphi);

for(i=0;1<n; i++)

{

x1 = mO0* exp(-(lambdal0) * t[i]);

x2 = (1-m0)*exp(-(lambda20)*

tli]);

logitemO1= c[i] * (log(lambdal0*x1+ lambda20*x2))+ (1-

c[i])*log(x1+x2);
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sumlog01 = sumlog01+ logitemO1;

}

return -sumlog01;

}

main()

{
/111111// GSL Initialization /////////////

/I GSL random number realated varibles
const gsl rng_type * T;

gsl g *r;

gsl g env_setup();

T = gsl rng default;

r=gsl rng alloc (T);

// GSL minimizer realated varibles

size tnp = 3;
const gsl multimin_fminimizer type *TT =
gsl multimin_fminimizer nmsimplex;

gsl multimin_fminimizer *s = NULL;
gsl vector *ss, *xx;

gsl multimin_function minex_func;
size titer=0, q;

xx = gsl vector alloc (np);

/11111// End GSL Initialization /////////////

// Changable parameters

int n = 500; // sample size

int rep = 100; // repition number

double m = 0.85; // mixing proportion (if no mixture then set to 1)
double d = 0.8; // difference in means

double LTS = 1.0; // Long Term Survivor rate (if no LTS then set to 1)
double p = 1; // censoring pattern (exp =1 & unif =2)

double lambdal =1 + d*(m-1);
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double lambda2 = 1+d*m,;

double a = 0.0; // uniform censoring min
double b = 10.66; // uniform censoring max 10.66=10% & 3.2=30%
double beta = 9.52; // exponential censoring param: 9.52=10% & 2.56=30%

// storage arrays and counters

int k;

double *select, *expLeft, *expRight, *u, *t, *tt, *c, *select LTS, *expLTS, *tt orig;
double *maxsumlog00, *lambda00;

double *maxsumlog01, *lambda0lhatl, *lambda0O1hat2, *mO1hat, *d0001,
*smallermeanO1hat, *largermeanO1hat, *meanOOhat;

// storage arrays and counters
double *v, *lamls, *lam2s, *ms;

//11]1] allocating memory

//arrays of size the sample size

select = malloc(sizeof(double)*n);
select LTS = malloc(sizeof(double)*n);
expLeft = malloc(sizeof(double)*n);
expRight = malloc(sizeof(double)*n);
expLTS = malloc(sizeof(double)*n);
u = malloc(sizeof(double)*n);

t = malloc(sizeof(double)*n);

tt_orig = malloc(sizeof(double)*n);

tt = malloc(sizeof(double)*n);

¢ = malloc(sizeof(double)*n);

//arrays of size of rep

maxsumlog00 = malloc(sizeof(double)*rep);
lambda00 = malloc(sizeof(double)*rep);
maxsumlog01 = malloc(sizeof(double)*rep);
lambdaOlhat]l = malloc(sizeof(double)*rep);
lambda01hat2 = malloc(sizeof(double)*rep);
mO1hat = malloc(sizeof(double)*rep);

d0001 = malloc(sizeof(double)*rep);
smallermean01hat = malloc(sizeof(double)*rep);
largermean(1hat = malloc(sizeof(double)*rep);
mean0O0hat = malloc(sizeof(double)*rep);
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// arrays of random size

lam1s = malloc(sizeof(double)*10);
lam2s = malloc(sizeof(double)*10);
ms = malloc(sizeof(double)*10);

/Il done allocating memory
printf("d0001\tmean00hat\tm01hat\tsmallermeanO1hat\tlargermean(01hat\n");
for(k = 0; k <rep; k++)

{ // start of k/repition loop

/I C code 1

int 1;

//filling the array of select expLeft and expRight
if(debug ==2)

printf(" select\t expLeft\t expRight\t tt \n");

double expLeft mean =0 ,expRight mean =0, select mean=0 ;
for(i=0;1<n;i++)
{

select[i] = gsl ran_flat(r,0.0,1.0);

expLeft[i] = gsl ran exponential(r,lambdal);

expRight[i] = gsl ran_exponential(r,lambda2);

expLeft mean = expLeft mean + expLeft[i]/(1.0*n);
expRight mean = expRight mean + expRight[i]/(1.0*n);
select mean = select mean + select[i]/(1.0*n);

if (select[i] <=m)

tt_orig[i] = expLeft[i];
else

tt_orig[i] = expRight[i];

if(debug == 2)
printf("%ft %f %f %f \n",select[i],expLeft[i],expRight[i],tt[i]);

/lexpLeft mean2 = expLeft mean2/(1.0*n);
//select_mean = select mean/(1.0*n);
/lexpLeft mean = expLeft mean/(1.0*n);
//lexpRight _mean= expRight mean/(1.0*n);
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double expLeft var =0 ,expRight var = 0, select var =0;
for(i=0;1<n;i++)
{
select var=select var +(select[i]-select mean)*(select[i]-select mean);
expLeft var=expLeft var +(expLeft[i]-expLeft mean)*(expLeft[i]-
expLeft mean);
expRight var= expRight var +(expRight[i]-expRight mean)*(expRight[i]-
expRight mean);

}

select var = select var/(1.0*n - 1.0);
expLeft var = expLeft var/(1.0*n - 1.0);
expRight var = expRight var/(1.0*n - 1.0);

if(debug ==2)

{

printf("lambdal= %f lambda2= %f \n"
"expLeft mean = %f expRight mean = %f, \n"
"select mean = %f realselect mean = %f, \n"
JJambdal,lambda2,expLeft mean,expRight mean,select mean,1.0/2);

printf("real expLeft var = %freal expRight var = %f\n"
"expLeft var = %f expRight var = %f \n"
"real select var = %f \n"
"select var = %f \n"
JJambdal*lambdal,lambda2*lambda2,
expLeft var,expRight var,
1.0/12.0,
select var);

}

// choosing a tt

// end C code 1

/I C code 1.5

/Milling the array of select expLeft and expRight
if(debug == 2)

printf(" select LTS\t exponLTS\t");

for(i=0; 1 <n;it++)
{
select LTS[i] = gsl ran_flat(r,0.0,1.0);
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expLTS[i] = gsl ran_exponential(r,9999); // assume the LTS mean = 9999
/Iselect LTS mean = select LTS mean + select LTS[i]/(1.0*n);
if (select LTS[i] <=LTS)
tt[i] = tt_orig[i];
else

tt[i] = expLTS[i];

//if(debug == 2)
/lprintf(" %t %t %f %f \n",select LTS[i],tt_orig[i],tt[i]);

/lexpLeft mean2 = expLeft mean2/(1.0*n);
//select_mean = select_mean/(1.0*n);
/lexpLeft mean = expLeft mean/(1.0*n);
//lexpRight _mean= expRight mean/(1.0*n);

// end C code 1.5

// C code 2

//filling the array of u

double mean u=0,mean_t=0;

if(debug == 2)
printf("ttu t ¢ \n");

if(p==2)
for(i=0; 1 <n;it++)
{

u[i] = gsl ran flat(r,a,b);

t[i] = fmin((double)tt[i],(double)u[i]);
mean_t = mean_t+t[i];
mean_u = mean_u+uli];

if (tt[i] <= u[i])
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c[i] = 1.0;
else c[i] = 0.0;

if(debug == 2)
printf("%f %f %f %f \n" tt[i],ulil,t[i],c[i]);

}
if(p==1)
for(i=0;1<n;it++)
{
u[i] = gsl ran_exponential(r,beta);
t[i] = fmin((double)tt[i],(double)u[i]);
mean_t = mean_t+t[i];
mean_u = mean_u+u[i];
if (tt[i] <= u[i])
c[i] = 1.0;
else c[i] = 0.0;
if(debug ==2)
printf("%ft %f %f %t \n" tt[1],u[i],t[i],c[i]);
}
s

mean_t=mean_t/(1.0%*n);
mean_u = mean_u/(1.0*n);

double t var =0 ,u_var = 0;
for(i=0; 1 <n;it++)
{

u_var=u_var +(u[i]-mean_u)*(u[i]-mean_u);

}

u var =u_var/(1.0*n - 1.0);

if(debug == 2)

{

printf( "mean_t = %f mean u = %f \n"
,mean_t,mean_u);

printf("real u var = %f \n"

"u_var = %f\n"
,((b-a)*(b-a))/12.0 ,u_var);
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// end C code 2

// C code 3

lambda00[k] = 0;

double csum = 0;

double tsum = 0;

double p0=1.0;

double logitem00;

double x;

double sumlog00 = 0;

for(i=0;1<n;it+)

{
csum = csum + ¢[i];
tsum = tsum + t[i];

lambda00[k] = csum/tsum;

for(i=0;1<n; i++)
{
x = exp(-lambda00[k] * t[i]);
logitem00 = c[i] * (log(p0)+log(lambda00[k]) - lambda00[k] * t[i] ) + (1.0-
c[i])*log(1.0 - p0 + p0*x);
if(debug == 2)
{
printf("x = %f \n",x);
printf("c[i] = %f \n",c[1]);
printf("p0 = %f \n",p0);
printf("lambda00[k] = %f \n",lambda00[k]);
printf("t[i] = %f \n",t[i]);
printf("logitem00 = %f sumlog00 = %f \n",logitem00, sumlog00);

H
sumlog00 = sumlog00 + logitem00;

H
maxsumlog00[k] = sumlog00;
//'end C code 3
// C code 4
for(i=0;1<10; i++)
{

lamls[i] = 1.0/(mean_t*(-log(1-gsl ran flat(r,0.0,1.0))));
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//lamls <- 1/(mean(t)*(-log(1-v)));
//lam2s <- 1/(mean(t)*(-log(1-w)));
}

for(i=0;1<10; i++)
lam2s[i] = 1.0/(mean_t*(-log(1-gsl ran flat(r,0.0,1.0))));

for(i=0;1<10; i++)

ms[i]=1-0.1*gsl ran_ flat(r,0.0,1.0);
/- <-r1unif(7,0,1);
//ms <- 1-0.1*u;

int j,kk;

power data my pwr data;
my pwr data.t=t;

my pwr_data.u=u;
my_pwr_data.c =c;

my pwr_data.size = n;

/A =1;

/i =1;

Jkk = 1;

double maxf=-100000, max! = -100000,max2=-100000,max3 = -100000;

for(i=0;1<3;1++)

{

for(j =0;j <4; j++)

{

for(kk = 0; kk < 5; kk++)
{

if(debug ==1)
printf("i=%i j=%i kk=%i\n",1,j,kk);

s = gsl_multimin_fminimizer alloc(TT, np);
ss = gsl_vector_alloc(np);

gsl_vector set all (ss, 1.0);

gsl vector_set(xx, 0, log(lam1s[i]));

gsl vector set(xx, 1, log(lam2s[j]));

double tmpdata= log(ms[kk]/(1.0- ms[kk])) ;
gsl vector set(xx, 2, tmpdata );
minex_func.f= &my f;

minex_func.n = np;

minex_func.params = (void *)&my pwr data;
gsl multimin_fminimizer set(s, &minex_func, xx, ss);
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iter = 0;
int status;
double size;
do
{ .
iter++;
status = gs| multimin_fminimizer iterate(s);

if(status)
break;

size = gsl multimin_fminimizer size (s);
status = gsl multimin_test size (size, 1e-5);
if(status == GSL_SUCCESS && debug == 5)
{
printf("\n+-+HH4-+-HHA ),
printf("step = %d \ninputs = (", iter);
printf("%f.", gsl vector get (s->x, 0));
printf("%f.", gsl vector get (s->x, 1));
printf("%f", gsl_vector get (s->X, 2));
printf(")\nf = %f \n", s->fval);
printf("size = %f\n", size);
printf("++++++++HHHH - R);
}

}
while (status == GSL_CONTINUE && iter < 1200);

/I if(iter > 1000)

/I

// printf("\n+++++++H++HHH )
/! printf("step = %d ???77 \n", iter);

// printf("+++H++HHH )
/Y

//return status;
11T done mindmizing /////11111111711111111111
//if (- randommaxlog01result $value > maxsumlog01[k]) flag01 <- 1 else flag01 <- 0;
if(maxf < s->fval*-1.0)
{

if(debug ==7)

printf("maxf %10.17f will be replaced with %10.17f \n",maxf, s-
>tval*-1.0);

max1= gsl vector get (s->x, 0);
max2= gsl vector get (s->x, 1);
max3= gsl vector get (s->X, 2);
maxf= -1.0*s->fval;
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}
if(debug == 7)

{

printf(" \n");
//printf("For starting points %f %f %f is %f \n",s->fval);
//

printf(" starting point 1 %f \n",log(lam1s[i]));
printf(" starting point 2 %f \n",log(lam2s[j]));
printf(" starting point 3 %f \n",log(ms[kk]/(1.0- ms[kk])));
printf("fval is %10.17f \n",s->fval);
printf(" \n");
}
gsl multimin_fminimizer free (s);
gsl vector free(ss);

$iy
if(debug == 17)
{
printf(" \n");
printf("the last f is %f input (%f,%f,%f)\n",maxf,max1,max2,max3);
printf(" \n");
}

//end C 4

// C code 5

maxsumlog01[k] = maxf;
lambdaOlhat1[k] = exp(max1);
lambdaO1lhat2[k] = exp(max2);

mO1lhat[k] = exp(max3) /(1.0+exp(max3));

if(debug ==7)
printf("maxsumlog00[k] = %10.17f maxsumlog01[k]) =%10.17f
\n",maxsumlog00[k],maxsumlog01[k]);

d0001[k] = -2.0*maxsumlog00[k]-(-2.0* maxsumlogO1[k]) ;
smallermeanO1hat[k] = fmin(1/lambda0O1lhat1[k],1/lambda01hat2[k]);
largermean01hat[k] = fmax(1/lambdaOlhat1[k], 1/lambda0lhat2[k]);
if(lambda0O1lhat1[k] < lambdaOlhat2[k])

mOlhat[k] = I- mOlhat[k];

mean0O0hat[k] = 1/lambda00[k];
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//End C code 5

fflush(stdout);

printf("%10.17:\t%H\t%H\t %\t %
\n",d0001[k],mean00hat[k],m01hat[k],smallermean01hat[k],largermean01hat[k]);
fflush(stdout);

T
}+ // end of k/repition loop

gsl vector free(xx);
//gsl_ multimin_fminimizer free(s);
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