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Abstract of the Dissertation 
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in 
 

Applied Mathematics and Statistics 
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Stony Brook University 
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Mixture models for fitting long-term survivors (LTS) have an extensive research 

history and mixture models assuming a mixture of two component exponentials 

with finite means has, more recently, been researched.  These tests of mixture 

mechanisms in survival data have a fundamental importance in bio-statistical 

research. While the tests are well documented, an analysis of power of these tests 

has seen little attention.  A simulation program to replicate these situations is 

developed, as is software for the computation of these tests.  The null distribution 

of a single exponential with LTS is shown to be , where 2
0

2
00 1

)1( χπχπ −+ 0π  

represents the proportion of zero likelihood ratio test statistics and is confirmed to 
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converge to 2
1

2
0 2

1
2
1 χχ +  as n goes to infinity for a finite study. The null 

distribution for a mixture of two components appears to be . 

When studying the power of a two component exponential mixture, mixing 

proportion of the components, and the difference in component means were the 

primary variables considered in the alternative hypothesis.  A 50-50 mixture with 

greatest difference of component means (difference equals 1.5) has power near 1 

for both censoring patterns and censoring rates, even for sample size. For skewed 

mixing proportions (that is, =0.85) with greatest difference of component 

means, the power increases with increasing sample size, as expected. For smaller 

difference of component means (difference equals 0.5) for both symmetric 

( =0.50) and skewed mixtures, the power is low for both censoring patterns and 

both censoring rates.  In the mixture model fitting LTS the length of the study and 

the proportion of LTS were the primary variables considered.  The longer the 

study and the larger the proportion of LTS provided the highest power, with 

power near 1 for large samples and study lengths of at least 5 times the 

distribution mean.  A model to estimate the power for both models is developed to 

help estimate the model’s effectiveness based on the properties of ones sample.  

2
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Chapter 1. Introduction  

In survival analysis, the variable of primary interest is the time between a 

specified originating event and the occurrence of the event of interest.  For 

example, the time from treatment to death or the time from treatment to remission 

are variables of importance. 

Mixture models for fitting long-term survivors (LTS) have an long 

research history (Farewell 1982), and mixture models assuming a mixture of two 

component exponentials with finite means has, more recently, been researched 

(Ye 2006).  These tests of mixture mechanisms in survival data have a 

fundamental importance in bio-statistical research. While the tests are well 

documented, an analysis of power of these tests has received little attention.   

There is a wide range of applications where mixture distributions are 

important.   This is due to their flexibility in mirroring complex situations. 

Various mixture survival models have been proposed over the last century 

(Böhning and Seidel, 2003).  

A common mixture survival model is the cure rate model. This is a 

survival distribution that is the mixture of two components, in which one 

component follows a population who have expected responses and the other 

component has a survival distribution of patients given a treatment for a disease. 

It has been presented in medical and biomedical applications, clinical 

applications, and epidemiological applications. The modeling of a cancer patient 
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who had received a specific treatment was developed by Boag (1949). He 

estimated the fraction of patients “cured” by a cancer therapy using a lognormal 

model with maximum likelihood. Berkson and Gage (1952) considered a model in 

which the survival time of a patient with cancer was modeled as the mixture of 

the survival distribution of the general population and a survival distribution 

determined by the cancer. The survival distribution determined by the cancer was 

modeled as the survival distribution of the general population reduced by a 

negative exponential decay factor linear in time. Haybittle (1965) developed an 

“extrapolated actuarial” two-parameter model that also incorporated survival 

functions for treated patients that are functional modifications of the “normal 

population”.   

This dissertation follows the LTS model given by Farewell (1982).  

Farewell defines LTS as a noticeable proportion of subjects who, by the end of 

the study, do not see their event of interest. Farewell (1982) assumed a fraction of 

LTS in a survival study. In a later work, Farewell (1986) examined the use of 

mixture models for LTS.  Maller and Zhou (1992) developed an independent non-

parametric censoring model for estimating the proportion of LTS in a censored 

sample. In a subsequent paper Zhou and Maller (1995) discussed the test for 

identifying the presence of LTS in the population and goodness of fit tests for the 

parametric description of the data. They developed its asymptotic theory and used 

the likelihood ratio test statistic (LRTS) to test whether a non-zero proportion of 

2 



LTS is indeed present in the population. Their procedure used the exponential 

distribution for non-LTS subjects.  Copas and Heydari (1997) developed an 

exponential mixture model for recidivism of criminals that explicitly allows for 

delay. They estimated the risk of return to the judicial system, where the survival 

time including both the time from release to the first re-offence and the time from 

this re-offence to conviction. Peng et al. (1998) proposed a mixture model by 

using the generalized F distribution family. Tsodikov (2001) provided a 

parametric cure model and the corresponding algorithm to estimate the cure rate. 

He estimated the distribution function  non-parametrically as if the cure rates 

were known. Tsodikov (2002) developed a series of semi-parametric survival 

models and algorithms to deal with the combining of long-term and short-term 

covariate effects in cancer survival analysis. Tsodikov et al. (2003) considered the 

utility of the bounded cumulative hazard model as an alternative to the two-

component mixture model in the cure rate estimation.   Corbiere et al. (2009), 

suggest a penalized likelihood approach, which allows for flexible modeling of 

the hazard function for susceptible individuals when studying individuals, who 

may experience the event of interest, and non-susceptible individuals that will 

never experience it. 

)(tF

The power of these models has seen little attention.  Furukawa et al. (2009), 

studied the power of risk assessment applying to age-time trends and susceptible 
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subgroups.  Broet et al. (2003) studied the power of the inclusion of long term 

survivors in a two sample tests in randomized designs.   

Broet et al. (2001) proposed statistics for testing a two-sample comparison of 

survival times with long-term survivors.  Lam et al. (2005) provided a model for 

the recurrence of breast cancer in long term survivors with a focus on censored 

data.   

I will study the LTS model (LS) considered by Zhou and Maller (1995) and the 

mixture model (LM) considered by Ye (2006) in tests against a single exponential 

test distribution (L0). 

This dissertation addresses the following questions: 

1. How does a finite study duration affect the null distribution of the test for 

LS  against L0? 

2. Is it possible to estimate the power for the test H0: L0 vs H1:LS  or the test 

H0: L0 vs H1:LM ? 

3. What are the range of parameters (e.g. sample size, fraction of LTS and 

censoring rate) in which the power of the LRTS exceeds 50%? 

Chapter 2 of this dissertation presents the methods including the numerical 

algorithms for each model. The Nelder-Mead (NM) algorithm (Nelder and Mead 

1965) is used to estimate the maximimum likelihood estimators with different 

settings of starting values.  For the LM  model, different numbers of starting values 

are considered and compared to maximize the probability of finding the 
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maximum.  Numerical algorithms are programmed in C++ for Linux. They also 

can be run in any Windows operating system with use of a Linux emulator. This 

software is available on request from me and will soon be available for use on my 

website. 

Chapter 3 of this dissertation gives the simulation results for the MLE’s, the 

null distribution of the LRTS, and the approximate alternative distribution of the 

LRTS.  It gives the observed simulated power and the fitted estimated power 

models.  For the LS estimated power model, the limitations are studied in depth. 

Chapter 4 of this dissertation contains the conclusion and a discussion of 

issues raised in the simulation study as well as the future direction of this work. 
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Chapter 2: Methods 

2.1 - Definitions: 

The probability density function (PDF) of the exponential distribution 

(exp(λ)) is   with a mean of 0,)( >= − tetf tλλ
λ
1 .  The uniform distribution 

(U(a,b))  has a PDF of btaab
ab

tf <<>
−

= ,,1)( .  Its expected value is 
2

ba + . 

2.11 - Long Term Survivors: 

The survival function of a random variable whose cumulative distribution 

function is F(x) is defined to be ).(1)()( xFxXPxS −=>=   The hazard function 

is the instantaneous death rate and is defined to be 

)(
)()|(lim)(

0 xs
xf

x
xXxxXxPxh

x
=

∆
≥∆+≤≤

=
→∆

.  (Klein & Moeschberger 2003). 

2.12 - Censoring 

I denote the true observed time of the ith observation as  and its 

censoring time as .   The observed time .  The 

ordered survival times are denoted  (

*
it

iu )1(),,min( * niutt iii ≤≤=

( )it ( ) ( ) ( )nttt ≤≤≤ ...21 ).  For each observation 

a censoring indicator is recorded such that 1=ic  indicates an absence of 

censoring (i.e., ) and *
ii tt = 0=ic  otherwise (i.e., ii ut = ).  If there are multiple 
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( )it  with equal responses, then they will be ordered by first listing those that have 

not been censored.    

2.13 - Censoring Distributions 

When determining censoring times, I will follow Peng et al. (2001) and 

use a uniform censoring pattern, as well as an exponential censoring pattern.   The 

exponential censoring pattern has a mean of 
β
1 , and the uniform is U[0, b].  The 

parameters β and b are calculated so that the expected proportion of censoring 

will be a specified value such as 10%,  30% or 45%.  I assume the censoring 

distribution is independent of the survival distribution. 

2.14 - Likelihood Function: Single exponential (L0): 

 A single component exponential distribution with mean 
λ
1 ,  

has a survival function of .  With censoring, the likelihood function for 

a random sample of n censored observations is 

.  The log-likelihood function for the 

model is   .  The maximum 

likelihood estimate of λ is 

tetf λλ −=)( ,

tetS λ−=)(

∏
=

−−−=
n

i

ctct
n

iiii eetttL
1

1
210 ])()[(),,...,,( λλλλ

))]})[log(1(]})[log({)log(
1

0
it

ii

n

i
i ectcLl λλλ −

=

−+−== ∑

1

1

ˆ .

n

i
i
n

i
i

c

t
λ =

=

=
∑

∑
 (Maller and Zhou 1996). 
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2.15 - Single exponential with survivors (LS): 

Long Term Survivors (LTS) include in practice those subjects who, by the 

end of the study, did not observe the event of interest.  Mathematically LTS is 

defined as  (Farewell 1982).   )(lim1 tFLTS
t ∞→

−=

The survival function of a single exponential with fraction LTS  is 

  The likelihood function is 

. 

teLTSLTStS λ−+−= )()(1)(

iiii ct
n

i

ct
LnS eLTSLTSeLTSptttL −−

=

− +−= ∏ 1

1
21 ))()(1())((),,,...,,( λλλλ

Its log-likelihood function is  

.  

(Zhou and Maller 1995).    I will refer to this model as L

))]})()(1)[log(1(]})log()[log({)log(
1

it
ii

n

i
iS eLTSLTSctLTScL λλλ −

=

+−−+−+=∑

S.  

 2.151 - Finite Censoring without LTS: 

 I consider censoring with a finite study duration of time D; that is, at time 

D there will be active participants who will not be followed further.   I will 

consider any subject still active at the end of the study to be censored at D.  For 

example, suppose  X ~ EXP(1), and the data is censored according to an 

independent exponential censoring pattern Y ~ EXP(β).   The proportion of 

uncensored observations is then ( ) ( )( )cXYXP << I .  This will dictate a larger 
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censoring pattern mean parameter than would hold for an indefinitely long study, 

so that we can still ensure the expected proportion of censored responses we 

specify.   This is illustrated in Figure 2.1. 

Figure 2.1: 

 

 Then the proportion of uncensored observations for a study of duration D 

is given by: 

( ) ( )( )

)/(
0

)/(

0

)/(

0

/
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|
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β
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β
β

β
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yx
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 It may not be possible to have an expected censoring rate r with study 

duration D.  Table 2.1 gives P(X > D) for specified D. 
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Table 2.1           For Specified D. )( DXP >
 

Study Duration D =  ∞ D = 5 D = 4 D = 3 D = 2.5 D = 2 D = 1.5 
Proportion Yet to be 

observed at D  
0% 0.67% 1.83% 4.98% 8.21% 13.53% 22.3% 

 
When considering a finite study duration, D observations will be censored 

for two reasons: still active at D and censored by Y before D. For example, in a 

study of duration 4, where 10% of all observations are censored, the 10% that are 

censored will be divided into an expected 1.83% with X > 4, and an expected 

8.17% that will be censored by Y before 4.  This reduction in the proportion of 

observations, that take the censoring distribution time from 10% to 8.17%, will 

dictate a censoring pattern mean that is different from the mean that satisfies 

, which describes a study of infinite duration. 10.0)( => YXP

2.152 - Finite Censoring with LTS: 

In considering a finite study duration, the inclusion of LTS brings a third 

censoring issue.   The censored data is still a combination of events censored at 

end of study D and events censored by Y before X < D. However, the proportion 

of events censored at D will increase due to the proportion of LTS.  That is, a LTS 

will always be active at the end of study D and is hence censored. The proportion 

of non LTS is ))(|( µ=> ii XEDXP , where µ is the mean of non-LTS survival 

times.  It must be set to p - LTS. The expected proportion censored r, is: 

10 



[ ] ( ) ( )( )[ cXYXPLTSLTSr ]<∩<−⋅−+= 1)(1)( . Table 2.2 reports the expected 

proportion censored at D plus the expected LTS. 

Table 2.2: 

Proportion of Observations Censored at D For Selected Fractions LTS with 
Expected Survival Mean = 1. 
 

LTS Study 
Duration 

(D) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 
1.00 0.3679 0.374 0.381 0.387 0.393 0.399 0.406 0.412 0.418 0.425 0.431 0.463 0.494 
1.25 0.2865 0.294 0.301 0.308 0.315 0.322 0.329 0.336 0.344 0.351 0.358 0.394 0.429 
1.50 0.2231 0.231 0.239 0.246 0.254 0.262 0.270 0.278 0.285 0.293 0.301 0.340 0.379 
1.75 0.1738 0.182 0.190 0.199 0.207 0.215 0.223 0.232 0.240 0.248 0.256 0.298 0.339 
2.00 0.1353 0.144 0.153 0.161 0.170 0.179 0.187 0.196 0.205 0.213 0.222 0.265 0.308 
2.25 0.1054 0.114 0.123 0.132 0.141 0.150 0.159 0.168 0.177 0.186 0.195 0.240 0.284 
2.50 0.0821 0.091 0.100 0.110 0.119 0.128 0.137 0.146 0.156 0.165 0.174 0.220 0.266 
2.75 0.0639 0.073 0.083 0.092 0.101 0.111 0.120 0.129 0.139 0.148 0.158 0.204 0.251 
3.00 0.0498 0.059 0.069 0.078 0.088 0.097 0.107 0.116 0.126 0.135 0.145 0.192 0.240 
3.25 0.0388 0.048 0.058 0.068 0.077 0.087 0.096 0.106 0.116 0.125 0.135 0.183 0.231 
3.50 0.0302 0.040 0.050 0.059 0.069 0.079 0.088 0.098 0.108 0.117 0.127 0.176 0.224 
3.75 0.0235 0.033 0.043 0.053 0.063 0.072 0.082 0.092 0.102 0.111 0.121 0.170 0.219 
4.00 0.0183 0.028 0.038 0.048 0.058 0.067 0.077 0.087 0.097 0.107 0.116 0.166 0.215 
4.25 0.0143 0.024 0.034 0.044 0.054 0.064 0.073 0.083 0.093 0.103 0.113 0.162 0.211 
4.50 0.0111 0.021 0.031 0.041 0.051 0.061 0.070 0.080 0.090 0.100 0.110 0.159 0.209 
4.75 0.0087 0.019 0.028 0.038 0.048 0.058 0.068 0.078 0.088 0.098 0.108 0.157 0.207 
5.00 0.0067 0.017 0.027 0.037 0.046 0.056 0.066 0.076 0.086 0.096 0.106 0.156 0.205 
5.25 0.0052 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.154 0.204 
5.50 0.0041 0.014 0.024 0.034 0.044 0.054 0.064 0.074 0.084 0.094 0.104 0.153 0.203 
5.75 0.0032 0.013 0.023 0.033 0.043 0.053 0.063 0.073 0.083 0.093 0.103 0.153 0.203 
6.00 0.0025 0.012 0.022 0.032 0.042 0.052 0.062 0.072 0.082 0.092 0.102 0.152 0.202 
6.25 0.0019 0.012 0.022 0.032 0.042 0.052 0.062 0.072 0.082 0.092 0.102 0.152 0.202 
6.50 0.0015 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101 0.151 0.201 
6.75 0.0012 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101 0.151 0.201 
7.00 0.0009 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101 0.151 0.201 
7.25 0.0007 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101 0.151 0.201 
7.50 0.0006 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.100 0.150 0.200 
7.75 0.0004 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.150 0.200 
8.00 0.0003 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.150 0.200 
∞  0.0000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.150 0.200 
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2.153 - Finite Censoring with Study Duration: 

 I considered exponential censoring and uniform censoring.  Any 

simulation setting that use exponential censoring is possible because the 

exponential distribution is unbounded. Uniform censoring can change the desired 

study duration because the censoring distribution is bounded.   That is, if one were 

to use uniform censoring to simulate a 30% censoring rate, the censoring pattern 

would be .  Therefore if one wanted to simulate a study of duration 5 

times the expected event time with 30% censoring, the uniform censoring pattern 

has the undesirable property that censoring will not occur between 3.2 and 5.0.   

)2.3,0(~ Ux

 In settings that use a uniform distribution, only those with an upper bound 

greater than the duration of the study are used. 

2.16 – Mixture of Two Exponentials (LM): 

Under the alternative hypothesis, the survival function is  

1 2( ) (1 )t tS t me m eλ λ− −= + − , )0,10,0( 12 λλ ≤≤≤≤≥ mt     

where  is the proportion from the exponential component with smaller 

mean,

m

1

1
λ

. The log-likelihood function ),,( 21 ml λλ is 

)]})1()[log(1(])1([log({)log(),,( 2121
21

1
21

iiii tt
i

tt
n

i
in emmecememcLml λλλλ λλλλ −−−−

=

−+−+−+== ∑ . 

(Ye 2006).    I will refer to this model as LM. 
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2.17 – LS vs L0: 

I developed an algorithm to calculate the MLE of LS in the programming 

language C++ with the NM alorithim.  The programming methodology is 

discussed in section 2.3.  The programming code for LS can be found in Appendix 

A1. 

2.171 – Settings:  

The null distribution is a single exponential with a finite study duration 

and censoring.  The sample sizes in the simulation are 50, 100, 200, 500, 1000, 

2000 and 10,000.  I used an exponential(β) and uniform(0, b) censoring pattern 

with distribution means set such that simulations had 10%, 30% and 50% 

expected censoring rate.  I also considered a finite study duration of 3 times the 

mean of the event distribution (short study) and a study duration of 5 times the 

event mean (long study).   These simulations are summarized by mean LRTS, 

variance of the LRTS, the fraction of zero LRTS values observed (where nearly 

zero is defined as an LRTS less than 0.0001), the mean of the non-zero LRTS 

values and LRTS values at selected percentiles.  There were 42 different 

simulations under exponential censoring as shown in Table 3.3.  The results are 

presented in section 3.23.  There were 21 uniform simulations as shown in Table 

3.4.   The results are presented in section 3.23. 
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2.172 – Choosing number of Random Starting Points: 

In section 2.182 the number of random starting points for the mixture 

model I studied is discussed in detail.  For the Ls model 9 random starting points 

arranged in a 3 by 3 grid was sufficient to find the LRTS.  In a pilot study of 200 

replicates, all 200 required 9 RSP or fewer to obtain the LRTS value observed 

with 100 RSP arranged in a 10 by 10 grid. 

2.173 – Power Study:

I estimated the LRTS and the fraction of zero LRTS values with a linear 

regression calculated with data collected from simulations.  In results section 3.23 

I show that it is plausible the null distribution follows , where 2
10

2
00 )1( χπχπ −+

0π  is the estimated fraction of zero LRTS values as given in equation 3.1  I used 

that distribution to estimate the 75th, 90th, 95th, 99th, and 99.9th percentiles for the 

sample sizes used.  The analysis of these results are discussed in detail in section 

3.23 .   I used the estimated 99th percentile for each sample size as the 1% critical 

value when measuring power.  I simulated the power of  using 1000 

replications for the following settings:   

ML

1. Two censoring patterns P:  exponential (1) or uniform (0) censoring 

pattern; 

2. Six sample sizes n : 200, 350, 500, 750, 1000, or 2000; 
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3. Two study durations D:   Longer Indicator (1, duration 5) or Shorter (0, 

duration 3) 

4. Three censoring rates R of 15%,  30% or 45%.  

5. Three proportions of Long Term Survivors LTS:  2%, 5%, or 8%.  

In the regression analysis of power, I considered a probit regression with the 

dependent variable is )ˆ(1 p−Φ , where )()( zZPz ≤=Φ  with Z having a 

standard normal distribution and p̂  is the observed power.  

2.18 – LM vs L0: 

Ye (2006) developed an algorithm that computes the maximum likelihood 

estimates (MLEs) of the mixing proportion and means of a survival distribution 

that is the mixture of two exponential components.  Then the likelihood ratio test 

statistic (LRTS) of the null hypothesis that a survival distribution is exponential 

against the alternative that the survival distribution is the mixture of two 

exponentials is easily calculated.   

I have extended this algorithm using a simulation program I wrote in C++.  

The base used for the coding was the software developed by Ye, in the 

programming language R.   The programming methodology is discussed in 

section 2.3.  The programming code I developed for LM can be found in Appendix 

A2. 

 

 

15 



2.181 – Settings:  

Each simulation incorporates a sample size (S), censoring pattern (P), 

censoring rate (R), mixing proportion (M), and a difference (D) in mixture means.  

I follow Peng et al. (2001), who used uniform U[0, b] and exponential censoring 

distributions, where Exp(β) denotes the exponential censoring distribution with 

mean β
1

. The values of b and β  are calculated so that the expected fraction 

censored is either 10% or 30%.  The means of the distributions are calculated 

from the properties of the mixing proportion and the desired mean differences.   

I will define the vector generated by RSP random starting points on rep 

repetitions and .  For example, (500, EXP, 0.50, 

1.0, 0.10) is the vector of length 200 whose i

),,,,(*
,, RDMPSL repRSPm

*
200,175,mL

th entry is the maximum log 

likelihood found using the 500 observations, with exponential censoring, 50% 

mixing proportion, a difference of exponential means of 1.0 and a 10% censoring 

rate based on 175 random starting points. 

2.182 – Choosing number of Random Starting Points: 

A problem faced in the completion of a power study is the computing time 

needed to yield results.   Ye (2006) suggested the use of 175 random starting 

points to maximize the likelihood.    When simulating 500 replicates per setting, 

175 random starting points required considerable computing time.   I first ran a 

small pilot study to confirm that the use of 175 random starting points was 
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sufficient.   To do this I took three different sets of simulation settings at 100 

replicates each and ran a simulation at 175 random starting points.  I then ran the 

same simulation with 1000 random starting points.  The pilot study confirmed that 

the difference between 175 random starting points and 1000 random starting 

points was not important, as there was no difference between the maximum LRTS 

value at 175 RSP compared to the maximum with 1000 RSP in 599 of the 600 

samples.  The one difference was an increase from 0.32 to 1.57.  That is, I 

confirmed that a simulation with 175 RSP is highly likely to locate the maximum 

and will use it in my simulation study.  This pilot study is summarized in Table 

2.3.   

Table 2.3:   

Proportion of LRTS Values Consistent for 175 and 1000 random starting values 

Censoring 
pattern 

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Replicates with 
larger LRTS for 

sample size 
1000 

EXP 200 0.50 1.5 0.10 50.5 0.00 0 
EXP 500 0.75 1.5 0.30 15.8 0.00 0 
EXP 750 0.85 1.0 0.10 7.8 0.00 0 
UNIF 200 0.85 1.0 0.30 2.1 0.14 0 
UNIF 500 0.50 0.5 0.30 2.9 0.04 1 
UNIF 750 0.65 1.0 0.10 17.8 0.00 0 
(Each setting was run with 100 replicates) 

In the next part of my pilot study I used 800 samples to examine whether 

fewer than 175 random starting points could be used.  I used 175 RSP as the 

threshold for an accurate LRTS calculation.  That is, if the LRTS value calculated 
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with x number of random starting points was the same as calculated with 175 RSP 

then I concluded that x random starting points were enough for an accurate 

calculation.   

For each of 8 settings, I generated 100 replicates.  A simulation was run at 

12 different numbers of random starting points ranging from 1 to 175.  In the pilot 

study it was found that 227 cases yielded a LRTS value of 30 or larger at 175 

RSP, 413 cases yielded a LRTS value between 15 and 30, and 160 cases yielded a 

LRTS value less than 15.   I will call an LRTS of 15 or less small, an LRTS 

between 15 and 30 medium and an LRTS greater than 30 large.  In cases where 

the average LRTS value for a setting is large, the maximum value was located 

using the first or second starting point for 226 of 227 samples checked.  

Consequently, I set eight random starting points rather than two, concluding that 

was sufficient to locate an accurate result when the pilot mean LRTS value was 

over 30.  For medium LRTS values, eighteen random starting points provided an 

accurate result for 410 of 413 samples checked.  For medium cases I set 36 RSP.  

Even for small LRTS values, 150 random starting points was accurate for 158 of 

the 160 samples.  I set 175 random starting points for small cases. 

The LRTS value is calculated within a few seconds for a single random 

starting point.  Therefore, LRTS size that leads to the chosen number of random 

starting points was obtained by running a simulation at .  An average of 
*

100,1,mL
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those 100 replicates was taken and the result gave an approximate pilot mean 

LRTS.  This average classified the setting definition as producing small, medium 

or large LRTS values, and determined how many random starting points were to 

be used for this setting 

2.183 – Checking Simulation output versus past results: 

Simulated uniform and exponential censoring data were checked for 

accuracy by taking samples of size 100, 500, 1000, 5000, 10,000 and 50,000 and 

checking the mean, and variance and also applying a basic chi-square goodness of 

fit test to each to confirm distribution properties.   The accuracy of the MLE 

choice made by the transcribed algorithm was checked by inputting the data 

simulated in Ye’s R program into the converted C++ program and checking for 

identical results.  Simulated C++ data was also used in the R program as a further 

check.  I also re-ran the parameters Ye (2006) used in her simulations to confirm 

her results.   These simulations were done independently of her simulations using 

new simulated data.  In addition I incorporated additional sample sizes to model 

power values over a greater number of settings. 

2.184 – Power Study:

Using the NM algorithm I estimated the LRTS and the fraction of zero 

LRTS values with a linear regression calculated with data collected from 

simulations.  I assumed that the non-zero values follow the distribution )2,
2

( 0νΓ  
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to estimate the 75th, 90th, 95th, 99th, and 99.9th percentiles for the sample sizes 

used. The correlation between estimated percentile and simulated percentile is 

0.985.   I used the estimated 99th percentile for each sample size as our 1% critical 

value when measuring power.  I simulated the power of  using 500 

replications for the following settings:   

ML

1. Two censoring patterns P:  exponential or uniform censoring pattern; 

2. Four sample sizes n : 200, 350, 500, or 750; 

3. Four mixing proportions M for the component with smaller mean: 0.50, 

0.65, 0.75, or 0.85; 

4. Three differences D between means: 0.50, 1.00, or 1.50, as shown in Table 

2.4; 

5. Two censoring rates R of 10% or 30%.  

In the regression analysis of power, I considered a probit regression with the 

dependent variable is )ˆ(1 p−Φ , where )()( zZPz ≤=Φ  with Z having a 

standard normal distribution and p̂  is the observed power.  
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Table 2.4.  

Parameters of the two-component mixture of exponentials used in power study.  

 
The mixing 

proportion with 
smaller  mean 

Different Mean 

M Smaller 
Mean 

Larger 
Mean 

0.50 

 
0.75 
0.50 
0.25 

 
1.25 
1.50 
1.75 

0.65 

 
0.825 
0.650 
0.475 

 
1.325 
1.650 
1.975 

0.75 

 
0.875 
0.750 
0.625 

 
1.375 
1.750 
2.125 

0.85 

 
0.925 
0.850 
0.775 

 
1.424 
1.850 
2.275 

 
 

2.2 - Nelder-Mead (NM) algorithm: 

The Nelder Mead algorithm (1965) takes a function of n variables and 

minimizes it. It evaluates the function at the vertices of a ( 1+n ) simplex and 

then iteratively uses reflection, contraction and expansion of the simplex as better 

points are found. A vertex is replaced by points with a better value of the function 

until the minimal function value is obtained. 
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Figure 2.2   Flow diagram of Nelder-Mead algorithm. 

 
Source: Nelder and Mead (1965). 

Here α is a positive constant called the reflection coefficient; β  is called 

the contraction coefficient and lies between 0 and 1; γ  is called the expansion 

coefficient. I use the recommended reflection factor of 1.0, a contraction factor 

equal of 0.5, and an expansion factor equal of 2.0. (Nelder and Mead 1965) 
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Chapter 3. Results   

3.1 – Programming: 

3.11 – Programming Time-To-Event Data: 

First, I used an if-then statement to determine whether each participant 

was a LTS.  If the uniform value LTSiU ≤ , then the subject was set to be an LT

(E

S 

.e., E ).   

i = Max Value, ci = C) and marked it censored. For each participant an indicator 

was assigned to indicate if a lack of censoring was observed (i c≤ ii

I checked the properties of the procedure by generating a group of size 

10,000 and confirming the sample mean and variance closely matched the pattern 

parameters.  I also ran a 14-group chi-square goodness of fit test.  These results 

can be found in Table 3.1. 

I checked the proportion of censoring by generating 50 replicates of time-

to-event data and calculating the sample proportion of participants censored for 

each.  I then ran a t test to check that the average sample proportion was 

consistent with the expected censoring rate.  A sample of these results can be seen 

in Table 3.2. 
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Table 3.1:   Chi-Square Fit Test for Distributions 

Distribution Tested Mean Variance Chi-Square Test Stat p-value 
Exponential(1) 1.004 1.009 9.72 0.716 
Exponential(5) 4.982 5.021 7.56 0.871 

Exponential(10) 10.04 10.09 10.21 0.677 
Uniform(0,10) 5.02 2.93 21.25 0.323 
Uniform(0, 5) 2.24 1.48 17.35 0.566 

 

Table 3.2:   Average Fraction Censored Compared To Expected Censoring Rate 

Censoring Pattern Expected  
Censoring Rate Average Censored t Stat p-value 

Exponential 10% 10.05% 0.533 0.596 
Exponential 30% 29.68% -1.38 0.1743 

Uniform 10% 9.94% -0.633 0.529 
Uniform 30% 30.2% 0.769 0.446 

 

3.12 – Programming MLE Calculations: 

In methods I discussed the procedure for determining the number of 

random starting points used for general simulation situations.  When calculating 

the MLE in my c-programming I used a publically available version of the NM 

algorithm (GSL-Website, 2007). This procedure was checked with grid searches 

globally and locally.  Results are discussed in detail in section 3.22.  

3.2 – Single Exponential w/ LTS: 

3.21 – Null distribution of LRTS for LS vs L0

I begin with the LRTS for model LS (single exponential with LTS) against 

model L0.  I set the null hypothesis as L0, where the survival time follows a single 
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exponential and the alternative hypothesis is LS, where there survival time follows 

a single exponential with a LTS proportion equal to 1-p.  As discussed in 

methods, the LRTS is 00 10
ˆ ˆ2(log log )n H HL L= − −  and is calculated using the NM 

algorithm with 9 random starting points (in a 3 by 3 grid).  I calculated 1000

d

 

replicat

lobal and Local Maximum ch

ions per setting. 

3.22 – G ecks of maximization software

Recall ( )( ) =LTStttL nS ,,,...,, 21 λ  

1

)( cn

i

c −

=

maximizing routine, I took a sample of L

( )( ) ( ) ( )( ) )1(
1 iiii tt eLTSLTSeLTS −− +−∏ λλλ .  To test the validity of the 

the

of 0.9615.  Using Excel, I calculated LS (λ

For each λ  I calculated L  (λ , pj) with p  = 0.01, 0.05, 0.10, 0.15, … , 0.85, 0.90, 

λ 1,ˆ15.1,ˆ10.1,...,ˆ , for the grid λi. I then find LS (· , 

·) = 

S  output from the routine.  For example, 

 sub-routine in C++ for a sample of 1000 was generated with uniform 

censoring at a 10% censoring rate and 5% LTS for a sample of 200.  The log-

likelihood value was -195.468 calculated from an MLE for λ equal 0.9877 and a 

p̂ i, pj) for a grid of λi and pj values.  

i S i j

0.95 and 0.99 and report LS (λi, ·) = 
jp

max  [LS (λi, pj)], as shown in Figure 3.1.  I 

use λλλλ ˆ65.91.0,ˆ90.0,...,ˆ55.0,ˆ5.0 λλ

iλ
max  [LS (λi, ·)] and calculate LS ( λ̂ , p̂ ) - LS (· , ·).  The maximum log-
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likelihood found by the subroutine, -195.468, is larger than the largest log-

likelihood found by the global grid search ( )98.0,65.195(−SL ).  

Additionally, I used a grid search of the neighborhood of ( λ̂ , p̂ ).  The 

 

settings of pj are pj = 005.0ˆ −p , 0045.0ˆ −p , … , 005.0ˆ +p .  The settings of λi 

are λi = , , … , .  A local mini

using the exact MLE value calculated by the sub-routine and testing 20 values 

from  within 0.01 of the calculated p-hat value to ensure the 

minimum was found as shown in Figure 3.2.   

Figure 3.1: Plot of 

λ̂98.0 λ̂981.0 λ̂02.1 mum grid search was done by 

 )005.0ˆ,005.0ˆ( +− pp

( )⋅,iSL λ , 65.1,...,55.0,50.0=iλ  
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Figure 3.2: Plot of ( )pLS ,987739.0 , 9665.0,...,9570.0,9565.0ˆ =p  

 

Next I tested the subroutine’s max likelihood estimate of the λ parameter 

(which was 0.987739).  In the local grid search fo , the max log-likelihood 

estimate of -195.4685 at a p-hat of 0.9615 is aximum as the local 

search found the same maximum at the ca ext I tested the 

 

r p̂

 plausibly the m

lculated p-hat.  N

subroutine’s max likelihood estimate of the p  parameter (which was 0.9615) 

which can be seen in Figure 3.3. 
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Figure 3.3: Plot of ( )9615.0,λSL , 0075.1968.0 ≤≤ λ  

 

 In the local grid search for λ, th  log ood ate of -195.4685 

p-ha 9615 usi  ma  va  the searc d th

e ma  at lcul tensity level. 

3.23 –Estimated Null Percentiles For Test of LTS:

e max -likelih  estim

at a t of 0.  is pla bly the ximum lue, as  local h foun e 

sam ximum the ca ated in

 

T ctio ro Lhe fra n of ze RTS, 0π̂ , is between 0.48 and 0.74 with average 

fraction o o LR ual 6. T tion ro L alues ase

verag n inc  an ars oach  asy cally me

of the no o LR pea e 1. s 3.3  3.4 s rize ult

of the nu ribu  the .  In umm  con an LR lue

 as a S v ss t 0001

 

 

f zer TS eq  to 0.5 he frac  of ze RTS v  decre s 

on a e as reases d appe to appr  0.50 mptoti .  The an 

n-zer TS ap rs to b  Table  and umma the res s 

ll dist tion of  LRTS  my s ary, I sider TS va  

zero n LRT alue le han 0. . 
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Table 3.3
le 3 ean nc imu Perc s of ll dis on 

LRT. (LS onen nso

Percentile 

:  
  Tab .11: M , Varia e and S lated entile the nu tributi of 

) (exp tial ce ring) 

Sam le 
Size 

St  
Length 

Cens ring 
Rate M n Var nce p udy o ea ia

0π̂ : 
Fraction 
of zero 
LRTS 

Mean of 
N
Zero 

LRTS 75% 90% 95% 99% 

on-

10% 0.419 0.959 0.55 342 1.515 2.232 4.642 6 0.944 0.
30% 0.488 1.259 0. 0.437 591 5.01 549 1.083 1.555 2.Short 
50% 0.412 0.992 0.619 1.081 0.22 1.502 2.467 4.997 
10% 0.436 1.379 0.657 1.272 0.163 1.421 2.918 5.803 
30% 0.336 0.756 0.64 0.933 0.143 1.111 2.057 4.639 

50 

Long 
50% 0.37 0.975 0.655 1.073 0.136 1.219 2.158 5.466 
10% 0.415 0.89 0.545 0.913 0.32 1.375 2.252 4.732 
30% 0.477 1.135 0.54 1.037 0.447 1.523 2.762 4.956 Short 
50% 0.406 0.923 0.579 0.965 0.298 1.369 2.178 4  .508
10% 0.405 0.948 0.654 1.171 0.277 1.434 2.2 5.214 
30% 0.382 1.018 0.686 1.216 0.078 1.348 2.393 5.224 

100 

Long 
50% 0.436 1.429 0.648 1.239 0.138 1.446 2.835 5.495 
10% 0.429 0.965 0  .544 0.941 0.390 1.391 2.454 4.571 
30% 0.445 1.346 0.511 0.91 0.306 1.343 2.282 5.235 Short 
50% 0.509 1.464 0.531 1.086 0.414 1.77 2.639 6.065 
10% 0.385 1.067 0.603 0.97 0.185 1.205 2.155 5.449 
30% 0.405 1.365 0.642 1.131 0.174 1.308 2.348 5.385 

200 

Long 
616 5.089 50% 0.407 1.244 0.624 1.082 0.166 1.276 2.

10% 0.521 1.55 0.529 1.105 0.432 1.712 3.04 5.485 
30% 0.484 1.103 0.511 0.99 0.454 1.593 2.668 5.173 S
50% 0.477 1.297 0.53 0.442 1 .354 5.298 

hort 
2 1.018 .512 2

10% 0.449 0.998 0.529 0.952 0.353 1. 504 4.871 525 2.
30% 0.375 0.926 0.593 0.921 0.198 1.3 2.272 5.282 

500 

Long 
50% 0.384 0.87 0.608 0.98 0.19 1.347 2.406 4.252 
10% 0.402 0.886 0.542 0.878 0.346 1.247 2.151 4.855 
30% 0.511 1.375 0.522 1.07 0.406 1.799 2.728 6.046 Short 
50% 0.46 1.303 0.511 0.94 0.344 1.335 2.319 5.742 
10% 0.431 0.944 0.508 0.875 0.365 1.4 2.208 4.909 
30% 0.462 1.303 0.561 1.051 0  .362 1.535 2.476 4.719 

1000 

Long 
50% 0.434 1.188 0.572 1.013 0.273 1.282 2.616 5.678 

 
 
  

      

 
 
 
 

 

29 



Percentiles 
S  

Size 
Ce g V  ample Study 

Length 
nsorin
Rate Mean ariance

0π̂ : 
Fraction 

LRTS 

Mean of 

of zero 
Non-
Zero 

LRTS 75% 90% 95% 99% 

10% 0  .475 1.142 0.527 1.005 0.492 1.659 2.502 4.419 
30% 0.444 1.007 0.519 0.924 0.396 1.485 2.34 5.457 Short 
50% 0.46 0.953 0.508 0.935 0.459 1.579 2.247 5.102 
10% 0.497 1.258 0.494 0.983 0.441 1.544 2.44 5.6 
30% 0.422 0.995 0.559 0.958 0.273 1.478 2.374 4  .889

2000 

Long 
50% 0.402 0.952 0.582 0.963 0.313 1.416 2.223 4.832 
10% 0.523 1.412 0.493 1.031 0.468 1.59 2.929 5.844 
30% 644 2.873 5.479 0.53 1.31 0.5 1.06 0.524 1.S
50% 0.491 1.071 0.501 0.985 0.491 1.622 2.59 4.952 

hort 

10% 0.473 1. 34 525 0.9965 0.383 1 0. 1.53 2.603 5.527 
30% 0.525 1. 545 1.154 0.359 59 0. 1.774 2.949 6.286 

10000 

L n
2.535 4.956 

o g 
50% 0.432 1.195 0.535 0.931 0.337 1.309 

 

LRT. (L
Table 3.4:  Mean, Variance and Simulated Percentiles of the null distribution of 

Percentile 

S) (uniform censoring). 

Sample 
Size 

St
Length Rate 

udy Censoring Mean Variance 
0π̂ : 

Fraction 
Mean of 

Non-
of zero 
LRTS 

Zero 
LRTS 75% 90% 95% 99% 

10% 0.467 1.089 0.542 1.02 0.384 1.654 2.587 4.891 Short 
30% 0.466 1.258 0.579 1.108 0.339 1.604 2.748 5.616 50 

L ng 10% 0.364 0.964 0.740 1.398 0.012 1.311 2.274 5.463 o
10% 0.465 1.198 0.513 0.955 0.417 1.437 2.370 4.978 Short 

645 5.105 30% 0.467 1.447 0.56 1.062 0.3 1.453 2.100 
Long 483 5.354 10% 0.465 1.312 0.632 1.264 0.364 1.508 2.

10% 0.518 1.555 0.505 1.048 0.496 1.645 2.596 6.189 S
2.613 4.936 

hort 
30% 0.425 1.166 0.557 0.96 0.272 1.376 200 

Long 10% 0.426 1.151 0.551 0.949 0.264 1.422 2.299 5.688 
10% 0.414 0.88 0.534 0.889 0.382 1.19 2.4 4.509 S
30% 0.458 1.178 0.523 0.96 0.383 1.388 2.495 5.483 

hort 500 
L 2.089 4.653 ong 10% 0.38 0.992 0.585 0.916 0.255 1.217 

10% 0.443 1.173 0.535 0.953 0.33 1.457 2.438 5.205 Short 
56 5.389 30% 0.541 1.365 0.484 1.048 0.597 1.77 2.1000 

Long 10% 0.447 1.095 0.523 0.938 0.39 1.44 2.291 4.788 
10% 0.493 1.306 0.52 1.026 0.425 1.542 2.64 5.774 S

0.5 2.808 5.289 
hort 

30% 1.392 0.508 1.017 0.436 1.585 2000 
Long 10% 0.481 1.11 0.521 1.005 0.403 1.632 2.816 5.002 

10% 0.449 0.933 0.516 0.929 0.395 1.518 2.614 4.551 S
3.134 6.26 

hort 
30% 0.551 1.374 0.489 1.079 0.462 1.812 10000 

Long 10% 0.469 1.116 0.505 0.948 0.436 1.145 2.435 5.4 
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The function fit to the fraction of zero LRTS was dependent on sample 

size ( 40.8=t , 0≈p ) and the interaction of sample size and study duration D 

( 60.10=t , 0≈p ).   In a short study ( 3=D ) 0=DI and in a long study study 

) .  The function ( 5=D 1=DI
n

I9206.04864.0 D50.0 +
+  explains 79.1% of the 

f 

ng rate variable (p = 0.90) and censoring pattern indicator variable (p = 

0.33) were not significant.   

variation when predicting the fraction of zero LRTS values.  The coefficients o

the censori

Equation 3.1: 

 
n

ID9206.04864.050.0 +
+  

hen long study and short study results were fitted separately, both the 

 the rate of 

 du a on being slower as shown in Figure 3.4. 

he fit for the fraction of zero LRTS values for the longer study duration is 

W

long and short study duration intercepts appeared to be 0.50, with

convergence for the longer study r ti

T

382
n

shorter study duration is 

.150.0 + , which explained 71% of the variation in the model.  The fit for the 

n
4846.050.0 + , which explained 55% of the variation in 

the model.  The plot of residuals versus fitted values for these two models are 

shown in Figures 3.5 and 3.6.  I decided to model the fraction of zero LRTS 

values for the null distribution of the LRTS as a function of only the sample size 
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and interaction of sample size and study duration so that it matched the Zhou and 

Maller asymptotic result.  The study duration itself was marginally significant at 

the 5% significance level ( 1.2=t , 04.0≈p ). 

Figure 3.4    Observed Fraction of Zero LRTS Values (Long Study and Short 
Study) 
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Figure 3.5       Residual vs Fit of Fraction of Zero LRTS Values 

  Long Study, Fit 
n

50.0 +  382.1
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Figure 3.6       Residual vs Fit of Fraction of Zero LRTS Values 

  Short Study, Fit 
n

50.0 +  

 

4846.0

 

The mean of the non-zero LRTS values ranged from a minimum of 0.88 to 

a max 0.  erage o non-ze TS v  was  

.02 =σ mulations had a non-zero me twee 4 and

1.07.  Th rage varia e of the ero LR alues 2.05 a 

standard deviation of 0.39. 

As noted in chapter one, Zhou and Maller (1995) showed that the 

asymptot ll distribu n is an e ixture chi-s  ran ariab

with 1 degree of freedom and a ma zero,

imum of 1.4 The av f all ro LR alues  1.02

( 011) and 50% of si an be n 0.9  

e ave nc non-z TS v  was  with 

ic nu tio qual m  of a quare dom v le 

ss at  2
1

2χ +0 2
1

2
1 χ e fra  of ze

is apparently 0.50 asymptotically, the mean of n-ze TS s is n

.  Th ction ros 

the no ro LR value ear 

33 



1, and th ge varia e is near .22 =  My s ation lts ar

consistent w ptotic dist on.  To  I sel  eigh ulatio

nd ran a goodness of fit test to test whether a chi-square random variable with 

ne degree of freedom described the non-zero LRTS values.  I used 20 classes, 16 

f width 0.25 (ranging from 0 through 4), 2 of width 1 (ranging from 4 through 

m 6 to 8, and the last from 8 to infinity.  In each of the 8 

rib ted ull i i-sq e 

8.5%

Table 3.5. 

ble 3.5        Chi e Go ss of F st 
  Non-Zero LRTS Values Fitted to 

Sample Cen
stri

C ing 
 

 
ation 

Chi-Squ
Test St -valu

e avera nc 2 (σ 048 ). imul  resu e 

ith the asym ributi  test, ected t sim ns 

a

o

o

6), 1 interval fro

dist

accepted.  P-values rang

utions tes  the n

ed from

 hypothes

 1

s of the ch

 to 95.5%.  These tests are summ

uare on random variable was 

arized in 

Ta Squar odne it Te
2
1χ  

 Size Di
soring 
bution 

ensor
Rate

Study
Dur

are 
at P e 

500 Expo  .0 9.95 0.954 nential 50% 5
1000 Expo  .0 24.29 0.185 nential 30% 3
2000 Expo  .0 21.56 0.307 nential 50% 3
20 po  .0 12.0 884 00 Ex nential 30% 5 3 0.
2000 Uni  .0 9.90 0.955 form 30% 3

10000 Expo  .0 9.99 0.395 nential 30% 3 1
10000 Expo  .0 22.65 0.253 nential 30% 5
10000 Uni  .0 15.74 0.674 form 10% 3

  
I estimated the null pe iles u he distribution 1( πχπ −+

wher

rcent sing t 2
10)χ , 2

00

e 0π  is the es d fra  of ze TS as given in .1

estimated null percentiles and the Malle u percentiles are summarize

Table 3.6.  The percentiles of the Maller-Zhou asymptotic distribution appear to 

 co   T , the al values estimated from the fi

timate ction ro LR  equation 3 . The 

r-Zho d in 

be nservative. hat is critic tted distribution 
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are smaller than th  the tic distribution.  The actual proportion of 

LRTS values greater than my lated ercentile are reported in Table 3.7.    

For sam es o 0, th  little e fitted percentiles 

and the asymptotic distribution.  For the smaller sample sizes that are more 

ommon in clinical trials, the estimated critical values will result in increased 

e estimated percentiles had a coefficient 

of 0.992 and a model R2 of 96.9%. 

Table 3.6:    Fitted Null Percentile Points For LS
 

Sample Size Study 
Duration 75% 90% 95% 99% 99.9% 

ose of asympto

 calcu  99th p

ple siz ver 50 ere is  difference between th

c

power.  A scatter plot for the estimated percentiles versus the simulated 

percentiles can be seen in Figure 3.7.  Th

0 0.31 1.43 2.47 5.15 9.28 50 
1 0.05 0.94 1.92 4.53 8.62 
0 0.35 1.49 2.54 5.23 9.36 100 
1 0.15 1.18 2.19 4.84 8.94 
0 0.38 1.54 2.59 5.29 9.42 200 
1 0.24 1.33 2.36 5.  9.14 03
0 0.40 1.56 2.62 5.32 9.45 350 
1 0.29 1.41 2.45 5.13 9.25 
0 0.41 1.58 2.63 5.33 9.47 500 
1 0.32 1.45 2.49 5.18 9.30 
0 0.42 1.59 2.65 5.35 9.48 750 
1 0.34 1.49 2.53 5.22 9.35 
0 0.42 1.60 2.66 5.36 9.49 1000 
1 0.36 1.51 2.56 5.25 9.38 
0 0.43 1.61 2.67 5.37 9.51 2000 
1 0.39 1.55 2.60 5.30 9.43 
0 0.44 1.63 2.69 5.39 9.53 10000 
1 0.42 1.60 2.66 5.36 9.50 

Maller-Zhou 0.45 1.64 2.71 5.41 9.55 

 Note:  Fit 22 )1( χπχπ −+ , where 1000 n
I9206.04864.0

0
D50.0 +

+=π  
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Table 3.7:  Proportion of LRTS Observed in Simulation Greater Than Estimated 
th

 
ple 

ze 
Censoring 

Distribution 
Study 

Duration 
Censoring 

Rate above 99

 

 

99  Percentile 

Sam
Si

Proportion 
th 

percentile 
Short 10% 0.5% 
Short 30% 1.0% 
Short 50% 0.9% 

 
Sample 

Size 
Censoring 

Distribution 
Study 

Duration 
Censoring 

Rate 

Proportion 
above 99th 
percentile 

Short 10% 0.4% 
Short 

Long 10% 1.7% 
Long 30% 1.2% 

Exponential 

Long 50% 1.5% 
Short 10% 0.8% 
Short 30% 1.2% 

30% 1.5% 
Short 50% 0.9% 
Long 10% 1.3% 
Long 30% 0.7% 50 

Uniform 
Long 10% 1.4% 

Exponential 

Long 50% 1.3% 
Short 

Short 10% 0.0% 
Short 30% 0.9% 
Short 50% 0.7% 
Long 10% 1.3% 
Long 30% 1.3% 

Exponential 

Long 50% 1.3% 
Short 10% 0.7% 
Short 30% 0.7% 

100 

Uniform 
Long 10% 1.3% 
Short 10% 0.9% 
Short 30% 1.1% 
Short 50% 0.9% 
Long 10% 1.3% 
Long 30% 0.7% 

Exponential 

Long 50% 1.1% 
Short 10% 1.1% 
Short 30% 0.0% 

200 

Uniform 
Long 10% 1.1% 
Short 10% 1.1% 
Short 30% 0.7% 
Short 50% 0.9% 
Long 10% 0.4% 
Long 30% 0.9% 

Exponential 

Long 50% 0

10% 1.1% 
Short 30% 1.3% 

1000 

Uniform 
Long 10% 0.7% 
Short 10% 1.3% 
Short 30% 0.7% 
Short 50% 0.7% 
Long 10% 1.1% 
Long 30% 1.3% 

Exponential 

Long 50% 1.3% 
Short 10% 1.3% 
Short 30% 0.9% 

2000 

Uniform 
Long 10% 0.0% 
Short 10% 1.4% 
Short 30% 1.0% 
Short 50% 0.8% 
Long 10% 1.4% 
Long 30% 1.1% 

Exponential 

Long 50% 0.5% 
Short 10% 0.5% 
Short 30% 1.3% 

10000 

Uniform 
Long 10% 1.1% 

 
(Standard Error = 0.03) 

 

.4% 
Short 10% 0.4% 
Short 30% 1.1% 

500 

Uniform 
Long 10% 1.1% 
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Figure 3.7:  Observed Simulated LRTS Values vs Estimated LRTS Values for 
Summarized Percentiles. 
 

   The fo ters 75th, th an rce
 

3.24 –Power:

Note: ur clus  are the  90th, 95 d 99th pe ntiles. 

 

There were 1000 replicates for each setting.  I calculated the average 

LRTS, the fraction of L  v wi e  t  r  

the non-zero LRTS values, and the power using an alpha level of 1% with the null 

percentiles in  3.6 abl  a  c  th e S . 

expected the sample siz s a t ef n t w or  sm am  

sizes (200) the proporti f s ns po x d  

25%.  When the sample  w 00 75 si n  po

exceeding 50%.  In sam  o r ove 5% u  w

exceeding 95%. In small samp 00 50 y rc f s o  

RTS alues th valu  nearly equal o zero, the ave age of

 Table .   T es 3.8 nd 3.9 ontain e pow r of L   vs L0  As 

e ha  grea fect o he po er.  F  very all s ples

on o ituatio   were wer e ceede  5  w0% a ss les than 

 size as 20 , over % of tuatio s had wer 

ples f 500 o more, r 2  of sit ations had po er 

les (2  and 3 ), onl 13 pe ent o ituati ns had
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power exceeding 95%.  a  p or t  sam iz  w .

and the averag wer to  f sa iz 00 h

a smaller study duration to a longer study duration, the dispersion of the power 

was similar (σ = 0.35 and σ = 0.32).  The longer study duration had an average 

factor increase of 1.55 power over the smaller study duration.  As the censoring 

rat sed pow  a e, d ased

 The verage ower f he ple s e 200 as 33 8%, 

e po was 81.7% or the mple s e 20 .    W en comparing 

e increa , the er, on verag ecre .   
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Table 3.8:  Simulated Power and Summary Statistics of the LRTS of LS  vs L0 
(exponential censoring) 

Sample 
size 

Study 
Length 

Censoring 
rate LTS avg var 0’s Non 

0 avg 75% 90% 95% 99% Power 

2% 1. 3.  29 74 0.269 1.76 1.90 3.73 5.11 8.83 0.048 
5% 3 1 0  .41 1.18 .057 3.61 5.01 7.97 9.61 14.48 0.233 15% 
8% 6.92 25.66 0.01 6.98 9.80 13.91 16.40 22.51 0.565 
2% 1.08 3.38 0.33 1.61 1.38 3.25 4.93 7.98 0.043 
5% 2.37 7.26 0  .12 2.67 3.63 6.07 7.35 10.73 0.140 30

4 1
% 

8% .58 5.98 0.022 4.68 6.41 9.93 12.07 18.96 0.346 
2% 0.82 2.40 0.402 1.36 0.95 2.60 4.24 6.97 0.029 
5% 1.51 5.06 0.  221 1.94 2.15 4.21 5.81 10.00 0.067 

3.0 

45
2

% 
8% .51 8.94 0.107 2.81 3.64 6.21 8.52 12.60 0.147 
2% 3.64 16.12 0.096 4.03 5.45 8.99 11.32 17.31 0.269 
5% 12.26 57.74 0.001 12.27 16.26 22.53 26.38 34.78 0.833 15

2
% 

8% 3.56 98.30 0 23.56 29.72 37.32 40.93 49.61 0.988 
2% 1.98 7.47 0.  287 2.77 3.09 5.78 7.60 11.71 0. 3 12
5% 6 0.  0. 6 .02 27.69 049 6.34 8.84 13.20 15.70 23.06 4730

1
% 

8% 1.72 52.44 0.006 11.79 16.04 21.45 25.55 32.47 0.808 
2% 1.07 3.68 0  .436 1.89 1.36 3.34 5.21 8.47 0.052 
5% 2.49 10.04 0  .213 3.16 3.62 6.87 9.57 13.45 0. 4 16

200 

5.0 

45
4 1

% 
8% .59 9.28 0.093 5.07 6.99 10.75 13.09 17.04 0.369 
2% 1.77 5.49 0.197 2.21 2.52 4.77 6.72 10.19 0.088 
5% 5 1.49 9.87 0.016 5.58 7.85 11.71 13.75 19.53 0.44 15

1 4
% 

8% 1.28 0.08 0 11.28 15.15 19.65 22.46 29.03 0.828 
2% 1.26 3.35 0  .25 1.68 1.76 3.63 5.15 8.14 0.046 
5% 3.55 13.29 0.  057 3.76 5.06 7.98 10.66 17.23 0. 7 2330

7
% 

8% .37 28.17 0.004 7.40 10.08 14.56 18.04 23.12 0.581 
2% 0.930 2.52 0  .342 1.413 1.26 2.94 4.17 7.71 0.030 
5% 2.16 7.27 0.  143 2.52 3.24 5.57 7.25 12.45 0.108 

3.0 

45
4 1

% 
8% .20 6.13 0.041 4.38 6.18 9.66 11.89 17.28 0.313 
2% 5.69 25.59 0.032 5.88 8.08 12.73 15.62 22.59 0.444 
5% 20.94 98.52 0 20.94 26.74 34.42 39.02 49.24 0.972 15

4
% 

8% 1.98 192.3 0 41.98 49.96 59.10 65.87 82.32 1 
2% 2.96 11.90 0.  137 3.44 4.29 7.67 10.16 15.85 0. 6 18
5% 1 0.  0. 1 0.04 51.38 013 10.17 14.22 19.77 23.24 30.99 7030

1 9
% 

8% 9.98 9.51 0 19.98 26.25 33.52 37.81 49.38 0.960 
2% 1.31 4.82 0.  357 2.04 1.87 4.17 5.50 10.30 0. 7 05
5% 3.69 1 0.  1  0. 5 4.68 128 4.23 5.44 8.97 1.03 16.70 26

350 

5.0 

45
7

% 
8% .28 35.97 0.031 7.52 10.53 15.51 19.41 25.56 0.551 

             

39 



 
 
 

 
 
 
 
 

 
 
 

  

Sample 
size 

Study 
Length 

Censoring 
rate LTS avg var 0’s Non 

0 avg 75% 90% 95% 99% Power 

2% 2.21 6.60 0.131 2.54 3.43 5.73 7.62 10.97 0.122 
5% 7.32 27.91 0.008 7.39 10.25 14.25 17.64 23.60 0.591 15% 
8% 15.93 61.43 0 16.93 20.65 25.90 30.42 39.46 0.95 
2% 1.62 4.71 0.209 2.05 2.41 4.45 6.11 9.39 0.08 
5% 5.19 20.30 0.017 5.28 7.26 11.39 13.57 19.98 0.398 30% 
8% 9.84 37.80 0.002 9.86 13.38 17.97 21.63 29.59 0.747 
2% 1.01 2.88 0.322 1.49 1.30 3.27 4.40 8.65 0.028 

3.0 

5% 2.81 9. 0.  1353 100 3.12 4.14 6.97 8.96 .60 0.178 45% 
8% 5.30 1  0  8.95 .027 5.44 7.54 11.28 13.62 18.72 0.427 
2% 7.85 34.32 0.005 7.89 10.83 15.71 19.25 26.67 0.600 
5% 30.39 155.77 0 30.39 37.53 46.50 53.03 66.62 0.998 15% 
8% 59.40 253.1 0 59.40 70.29 79.29 85.50 98.24 1 
2% 3.68 16.09 0.092 4.05 5.28 9.08 11.79 17.51 0.252 
5% 13.40 67.31 0.004 13.45 18.23 24.90 28.36 36.20 0.84 30% 
8% 2  8.33 133.6 0 28.33 35.29 43.93 49.31 59.47 0.991 
2% 1.68 6.59 0.296 2.38 2.40 5.02 6.83 11.71 0.093 
5% 4.82 22.83 0.078 5.22 7.08 11.08 14.19 21.17 0.359 

500 

5.0 

0. 8 
45% 

8% 10.13 49.24 00 10.21 13.91 19.18 23.63 31.14 0.723 
2% 2.78 8.69 0.74 2.30 4.09 6.87 8.82 12.63 0.166 
5% 11.00 42.86 0.001 11.01 14.99 20.08 23.53 28.25 0.785 15% 
8% 23.23 84.85 0 23.23 28.84 35.86 39.55 46.83 0.991 
2% 2.05 6.87 0.173 2.47 3.04 5.57 7.35 11.11 0.106 
5% 6.41 23.35 0.013 6.50 9.20 13.05 15.67 20.72 0.505 30% 
8% 14.6 60.15 0 14.6 18.88 25.89 29.44 35.82 0.921 
2% 1.29 4.10 0.268 1.77 1.75 3.69 5.28 9.22 0.05 
5% 3.61 13.15 0. 3 07 3.89 5.44 8.44 10.41 15.27 0.255 

3.0 

0. 3 0. 9 
45% 

8% 7.60 27.48 00 7.62 10.57 14.82 17.49 23.27 61
2% 1 5  1.35 0.78 0.003 11.38 15.26 20.48 25.06 32.80 0.791 
5% 46.24 215.65 0 46.24 55.70 65.48 72.53 85.97 1 15% 
8% 89.30 393.6 0 89.30 102.7 116.7 123.6 135.3 1 
2% 5.11 22.70 0.057 5.42 7.73 11.67 14.83 20.55 0.376 
5% 20.02 99.74 0 20.02 25.87 33.69 38.59 47.84 0.952 30% 
8% 41.97 205.0 0 41.97 51.41 60.94 65.4 77.9 1 
2% 1.92 7.18 0.214 2.44 2.72 5.36 7.31 11.65 0.102 
5% 7.01 33.81 0  .03 7.22 9.76 14.59 18.54 24.86 0.530 

750 

5.0 

1 0. 2 1  0. 3 
45% 

8% 4.3 67.6 00 4.33 19.18 25.0 28.82 37.98 87

40 



 

 

 

 
Sam le 

size 
Study 
Length 

Censoring 
rate LTS avg var 0’s Non 

0 avg 75% 90% 95% 99% Power p

2% 3.57 13.29 0.066 3.818 5.16 8.01 10.81 16.84 0.244 
5% 14.64 58 1 0.  19 25 29 37.0 001 14.66 .30 .15 .39 .01 0.928 15% 
8% 30.45 114  0 30.45 37.27 44.8 48.53 58.39 0.999 
2% 2.3 6.85 0.112 2.59 3.36 5.74 7.19 11.95 0.124 
5% 8.71 36.67 0. 4 00 8.75 11.90 16.63 19.64 29.02 0.668 30% 
8% 19.91 79.09 0 19.9 25.3 31.7 35.5 46.1 0. 0 98
2% 1.52 4.59 0.223 1.93 2.16 4.13 5.51 9.96 0.054 
5% 4.49 15.48 0.039 4.67 6.55 10.02 12.39 16.81 0.334 

3.0 

 0. 5 
45% 

8% 9.82 37.22 00 9.87 13.24 18.19 21.70 27.46 0.744 
2% 14.88 76.38 0.001 14.90 19.8 26.63 30.96 41.52 0.879 
5% 59.83 263.0 0 59.83 70.25 81.90 87.97 102.62 1 15% 
8% 118 531.3 0 118 132.5 147.5 155.9 178.0 1 
2% 6.76 31.92 0.026 6.95 9.67 14.21 17.8 25.56 0.513 
5% 27.25 131.90 0 27.25 34.59 42.08 47.77 57.68 0.997 30% 
8% 55.37 277.8 0 55.37 65.16 78.59 85.42 98.07 1 
2% 2.44 9.38 0.177 2.97 3.59 6.79 8.79 13.44 0.155 
5% 8.99 38.39 0. 1 01 9.09 12.94 17.67 20.85 26.10 0.669 

1000 

5.0 

0. 7 
45% 

8% 19 87.5 0 19 24.8 32.19 35.58 43.06 95
2% 5.91 22.1 0. 3 01 5.99 8.40 12.06 15.2 20.77 0.46 
5% 26.92 1 9 0. 7 09.3 0 26.92 33.12 41.05 46.37 55.03 9915% 
8% 60.61 221.5 0 60.61 70.62 80.65 85.23 97.47 1 
2% 3.8 14.67 0.056 4.0 5.51 8.79 11.59 17.4 0.26 
5% 16.32 63.02 0 16.32 21.48 27.12 30.64 37.65 0.95 30% 
8% 37.32 136.2 0 37.32 44.41 52.78 57.28 68.64 0.999 
2% 2.06 5.91 0.148 2.42 3.08 5.20 7.02 10.87 0.097 
5% 8.19 31.94 0.002 8.21 11.38 15.90 18.43 25.11 0.632 

3.0 

45% 
2 44.27 0.953 8% 18.76 83.48 0 18.76 24.4 30.66 35.2

2% 28.45 141.5 0 28.45 35.4 44.8 49.7 60.4 0.993 
5% 118.2 587.9 0 118.2 132.9 150.1 160.9 181.4 1 15% 
8% 236.6 1051 0 236.6 258 279.3 292.2 319.9 1 
2% 12.4 59.7 0.003 12.46 16.8 22.6 27.7 34.9 0.823 
5% 53.2 285.2 0 53.2 62.7 75.6 84.2 100.8 1 30% 
8% 110.3 499 0 110.3 124.8 138.9 149 167.2 1 
2% 4.2 17.47 0.068 4.51 6.46 9.65 12.43 17.79 0.312 
5% 17.17 86.8 0.001 17.19 22.5 29.78 7 34.88 44.15 0.924 

2000 

8% 37.85 189.2 0 37.85 46.72 55.47 62.51 74.03 1 

5.0 

45% 
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*(level of significance 0.0

 

1) 

 

 

Sample 
size 

Stud
Length rate avg 99% Power 

Table 3.9:  Simulated Power and Summary Statistics of the LRTS of LS  vs L0 
(uniform censoring) 

y Censoring LTS avg var 0’s Non 0 75% 90% 95% 

2% 1.4 4.05 0.255 1.88 2.10 3.94 5.33 9.08 0.056 
5% 3.4 12.24 0.068 3.69 4.82 7.78 10.61 4 15.39 0.224 15% 
8% 6.69 23.19 0.012 6.78 9.33 13.50 16.25 20.68 0.552 
2% 1.06 3.23 0.326 1.57 1.29 3.52 4.60 7.80 0.037 
5% 2.28 7.29 0.135 2.63 3.34 6.08 7.67 11.29 0.132 

3.0 

8% 4.7 16.92 0.04 4.89 6.61 10.11 12.89 18.53 0.361 
30% 

2% 3.32 12.73 0.113 3.74 5.09 8.44 10.26 14.93 0.246 
5% 12.01 56.68 0.002 12.04 16.08 21.84 25.95 33.71 0.819 

200 

52.96 0.98 
5.0 15% 

8% 23.75 104.5 0 23.75 30.04 37.63 41.98 
2% 1.94 6.86 0.185 2.38 2.86 4.84 6.97 12.41 0.085 
5% 5.57 21.14 0.01 5.63 7.88 11.84 14.83 19.79 0.44 15% 

23.04 29.91 0.818 8% 11.29 41.35 0 11.29 15.19 20.11 
2% 1.3 4.14 0.269 1.78 1.82 3.88 5.79 9.33 0.06 
5% 3.54 13.1 0.051 3.73 5.23 8.50 10.46 16.41 0.25 

3.0 

30% 
8% 7.5 28.17 0.004 7.53 10.55 14.83 17.77 23.09 0.599 
2% 5.13 22.95 0.033 5.31 7.49 11.90 14.96 20.06 0.392 
5% 20.52 97.87 0 20.52 26.61 34.10 38.93 47.45 0.971 

350 

8% 41.15 178.2 0 41.15 49.49 58.45 63.89 77.79 1 
5.0 15% 

2% 2.15 7.7 0.154 2.54 2.96 6.06 7.90 12.19 0.135 
5% 7.54 29.23 0.007 7.59 10.31 15.08 18.80 23.63 0.591 15% 

36.88 0.95 8% 15.64 57.02 0 15.64 20.04 25.41 29.54 
2% 1.37 4.03 0.211 1.74 1.83 3.85 5.51 9.03 0.057 
5% 4.81 16.66 0.03 4.96 6.72 10.82 12.79 17.21 0.371 

3.0 

30% 
8% 9.96 40.06 0 9.96 13.57 18.45 21.34 28.29 0.748 
2% 7.03 31.77 0.013 7.13 10.46 14.66 17.65 24.22 0.532 
5% 28.55 135.4 0 28.55 35.43 44.28 48.62 59.90 0.996 

500 

8% 58 241 0 58 69.17 78.26 84.86 95.88 1 
5.0 15% 

2% 2.93 10.56 0.095 3.23 4.26 7.32 9.29 14.95 0.179 
5% 11.21 43.88 0 11.21 14.73 20.36 24.29 30.20 0.803 15% 
8% 23.4 91.62 0 23.4 29.37 35.72 40.49 49.98 0.99 
2% 1.79 5.45 0.166 2.15 2.59 4.84 6.49 10.67 0.081 

750 

30% 
5% 6.89 24.43 0.012 6.97 9.77 14.06 16.70 21.09 0.558 

3.0 
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8% 14.43 54.81 0 14.43 18.59 24.79 28.26 36.17 0.919 
2% 10.09 43.7 0.005 10.14 13.98 19.13 22.15 30.28 0.727 
5% 42.4 190.9 0 42.4 51.22 60.08 66.20 81.29 1 5.0 15% 
8% 87.36 387.7 0 87.36 100.1 112.8 119.5 134.8 1 

 
 
 
 
 

 
 

 

    
 

 

       

 
 

Sample 
size 

Study Censoring Non 0 99% Power Length rate LTS avg var 0’s avg 75% 90% 95% 

2% 3.44 12.3 0.053 3.63 5.02 8.24 10.68 15.43 0.229 
5% 14.68 55.23 0 14.68 19.07 24.60 28.36 35.15 0.92 15% 
8% 30.46 110.24 0 30.46 36.87 44.89 49.89 57.88 1 
2% 2.24 7327 0.124 2.56 3.31 5.87 7.58 11.41 0.124 
5% 8.8 36.67 0.004 8.83 12.60 17.37 20.91 25.45 0.658 

3.0 

30% 
8% 19.66 75.8 0 19.66 25.07 31.45 34.97 43.76 0.966 
2% 13.12 60.12 0.005 13.19 18.08 23.09 27.38 35.78 0.84 
5% 56.5 285.8 0 56.5 66.89 79.84 86.60 100.2 1 

1000 

5.0 15
175.9 1 

% 
8% 116 537.6 0 116 130.8 145.6 156.3 
2% 5.97 22.18 0.012 6.05 8.46 12.37 14.79 20.71 0.475 
5% 27.89 102.78 0 27.89 34.02 41.55 46.86 54.9 0.999 15% 
8% 61.4 244.2 0 61.4 71.53 82.25 87.75 100.3 1 
2% 3.58 14.02 0.054 3.78 5.30 8.31 11.01 15.08 0.248 
5% 16.32 65 0 16.32 20.94 27.15 31.17 39.36 0.943 

3.0 

30% 
8% 37.37 142.2 0 37.37 45.15 52.96 58.17 65.34 1 
2% 25.4 121.5 0 25.4 32.40 40.20 45.59 52.91 0.989 
5% 113.1 556 0 113.1 127.4 143.2 153.8 170.5 1 

2000 

310.7 1 
5.0 15% 

8% 231.6 979.3 0 231.6 251.3 272.2 283.4 
       *(level of significance 0.01) 

I used a multiple regression model with each of the factors (i.e. n, P, r, D, 

and (LTS)), the two factor interactions 

was the inverse normal cdf of the power of the LRTS test using level of 

significance 1%. I record

= φ .  The censoring pattern was not found to be significant in 

nP, nr, nD, n(LTS), Pr, PD, P(LTS), rc, 

r(LTS) and c(LTS,) and all sub-hierarchical interactions.  The dependent variable 

ed all simulations with 100% power as 

1− )9999.0(719.3
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any of  

lue (t=0.32

the interactions and was removed from the model (p-values ranging from

0.25 to 0.78).  Since the fitted model had a non-significant constant va , 

p=0.75), the model was fit without a constant term.  The fitted model is:  

)(36.4508.3)(34.51488.39)(1.7916.293.32.36)ˆ(1 LTIrp ++−
−

=Φ− 9 LTSrrILTSrS DD −−−+

         (t = -83.9) 
nnn

 = -8.3)    (t = -5.3)  (t = 12.0)   (t = 19.6)       (t = 2.4)           (t = -6.2)  (t = -4.9) (t 

The 2R  for the fitted model is 92% and shows a good fit. All variables 

were highly significant.  The variable 
n

other factors have p-values less than 0.001.  There is increase in power with 

increased sample size and increased study duration.  The power also increases as 

the proportion of LTS increases.  The interactions of the censo am

r  had the largest p-value (0.0167).  All 

ring rate, s ple 

ze, study duration and proportion of LTS are significant.  When LTS or study 

teraction associations are that 

power decreas reases.  However, the 

cumulative effect of the interaction with LTS or Study duration is not large 

nough to negate the increase of power for increasing LTS and increased study 

ngth.  For example, the proportion of LTS increases the estimated transformed 

rease of LTS.  The interaction 

ith censoring 5.  Even for censoring 

rates = 0.50 the interaction decrease is 0.225 (=0.45x0.50), so that an increase in 

LTS will result in a net gain in power. 

si

duration in the interaction are held constant, the in

es as the expected proportion censored inc

e

le

power variable by a factor of 0.8 for every 1% inc

w  rate has a fitted decrease of a factor of 0.4
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3.25 –Model Limits: 

 The estimated power as a function of sample size is summarized 

by censoring rate and proportion of LTS in Figures 3.8 through 3.15.  Each Figure 

is summarized over censoring rates that range from 10% to 50% and proportion of 

LTS that ranges from 2% to 8%.  These are the range of the independent variables 

used when the model was selected. 

When the proportion of LTS is small, the power is small, unless the 

sample size is large.  In the event of many censored observations a sample size of 

l hypothesis.  In the case of 

ng study dur  some smaller sample 

size situations.  Thus, if it is hypothesized that there is a very small proportion of 

, the duration of the study can 

e extended to g detected.  

 Specifically, when 10% of observations are observed as censored in a 

longer study, there is an estimated power of at least 50% with fewer than 150 

observations for models with , as shown in Figure 3.8.  For models 

with , 50% power is estimated with fewer than 300 

 200 observations are required for an 

estim .  

In a shorter study duration with 10% censoring at least 50% estimated 

power is observed with fewer than 300 observations for models with , 

many thousand would be required to reject the nul

lo ations, power near 50% can be achieved in

LTS and an increase in sample size is not possible

b  increase the probability of the model bein

04.0≥LTS

04.002.0 <≤ LTS

observations.  In addition, fewer than

ated 80% power with 05.0≥LTS

05.0≥LTS
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as shown in Figure 3.9.   At least 80% estimated power is observed with fewer 

than 550 observations for models with .   

As shown in Figures 3.10 through 3.13, as the proportion censored 

increases from 10%, the power drops rapidl aller sample sizes.  However, 

in longer studies high power is still possible  

In situations with censori ated power of at least 50% is 

still achievable in both l ples of less than 1000, as 

shown in Figures 3.14 and 3.15.  This level of power requires at least 5% LTS.   

Only small censoring rates will estimate power o er 50% fo . 

 

Figure 3.8:       Estimated Power by Sample Size 
10% Expected Censoring, Longer Study 
 

05.0≥LTS

y for sm

ng rates 50%, estim

ong and short studies for sam

v r 05.0<LTS
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Figure 3.9:       Estimated Power by Sample Size 

10% Expected Censoring, Shorter Study 
 

 

Figure 3.10:     Estimated Power by Sample Size 
20% Expected Censoring, Longer Study 
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Figure 3.11:     Estimated Power by Sample Size 
20% Expected Censoring, Shorter Study 

 

 

Figure 3.12:     Estimated Power by Sample Size 
30% Expected Censoring, Longer Study 
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Figure 3.13:     Estim er by Sam Size 
30% Expected Censoring, Shorter Study 

 

ated Pow ple 

 

Figure 3.14:     Estimated Power by Sample Size 
50% Expected Censoring, Longer Study 
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Figure 3.15:     Estimated Power by Sample Size 
50% Expected Censoring, Shorter Study 
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Table 3.10 provides the minimum sample size required for an estimated 

50% and 80% power.  It is clear that for 02.0=LTS one must run a long study to 

be able to have large power.  However, even in long studies if the proportion 

censored is large it will take a large sample size to obtain power over 50%.  In the 

event that a study is short, there will be estimated power of over 50% for large 

sample sizes with proportion of LTS at least 5%.   

 

 

 

Table 3.10:   Summary of Estimated Sample Size Required for 50% and 80% 
Power 
 

Censoring 
Rate 

Study 
Duration LTS 

Sample Size 
Required for 

50% 
Estimated 

Power 

Sample Size 
Required for 

80% 
Estimated 

Power 
2% 210 410 
5% 125 180 Longer 
8% 100 125 
2% 1495 ** 
5% 305 540 

10% 

Shorter 
8% 175 240 
2% 320 855 
5% 165 250 Longer 
8% 120 160 
2% 3950 ** 
5% 395 825 

20% 

Shorter 
8% 210 305 
2% 640 4400 
5% 225 405 

30% 
Longer 

8% 155 215 
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2% ** ** 
5% 570 1580 Shorter 
8% 260 415 
2% 2800 ** 
5% 365 865 Longer 
8% 210 330 
2% ** ** 
5% 965 ** 

40% 

Shorter 
8% 345 620 
2% ** ** 
5% 805 4400 Longer 
8% 330 605 
2% ** ** 
5% 2400 ** 

50% 

Shorter 
8% 505 1125 

 
** indicates a sample over 5000 is required. 

ion 

 

te ) for a longer study.   For these smaller sample sizes, 

hen the proportion of censored responses exceeds 20%, the estimated power is 

enerally under 50%.  However, in a clinical trial with under 250 participants, if 

ver 80% of the participants complete the study, the LTS model can yield high 

power.  It is clear in comparing Figures 3.16 and 3.17 and an increase in sample 

size from 100 to 150 has a large increase in power.  While a sample size of 100 

may not be practical, a sample of 150 is. 

igure 3.16:     Estimated Power by Censoring Rate 
Sample Size 100, Longer Study 

When observing 250 or fewer observations, my estimated power funct

shows that an estimated power of at least 50% is predicted for samples sizes as 

small as 100 for certain situations.   

In Figures 3.16 through 3.19, the power function is modeled as a function

of censoring ra ( 08.0≥r

w

g

o

F
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Sample Size 100 - Longer Study
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Figure 3.17:     Estimated Power by Censoring Rate 
Sample Size 150, Longer Study 
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Figure 3.18:     Estimated Power by Censoring Rate 
Sample Size 200, Longer Study 
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Sample Size 200 - Longer Study
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Figure 3.19:     Estimated Power by Censoring Rate 
Sample Size 250, Longer Study 
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In a shorter study, only models with at least 5% LTS had estimated power 

bove 25% in smaller sample sizes.  Once the sample size exceeded 200, the 

stimated power consistently was estimated at over 50% for LTS of at least 5%.  

a

e
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For sample sizes under 150, the shorter study duration did not yield an estimated 

ower of over 20% and is not summarized.  This is summarized in Figures 3.20 

through 3.22. 

 

 

 

 

 

Sample Size 150, Shorter Study 

p

Figure 3.20:     Estimated Power by Censoring Rate 
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Figure 3.21:     Estimated Power by Censoring Rate 
Sample Size 200, er St
 

Short udy 
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Sample Size 200 - Shorter Study
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Figure 3.22:     Estimated Power by Censoring Rate 
Sample Size 250, Shorter Study 
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It is clear from these Figures that as the sample sizes increases, the power 

also increases, but for relatively sm p oderate 

power in models with a proportion of LTS above 5%. 

3 – Mixt  Two Ex ntials:

aller sam le sizes one can find m

3. ure of pone  

1 –Estim  Null Pe iles:3.3 ated rcent  

In preparation for studying the power of the mixture of two exponential 

models (LM), I decided to expand the simulation study in Ye (2006).  Liu et al. 

(2004), proved that in a two-component normal mixture model, the LRTS statistic 

nλ2

divergen

transform

samp

 diverges at a rate of loglog(n).  In a related paper the asymptotic behavior of 

the LRTS for homogeneity against a mixture of gammas, is also shown to be 

t at the rate loglog(n) (Liu et al. 2003).  I used the log-log n 

ation in the regression analysis below.   In my simulation I added 

le sizes of 1000 and 2000.  Table 3.11 summarizes the results of the null 

distribution of the LRTS. The fraction of zero LRTS, 1π̂ , is between 0.14 and 

0.32 with average fraction of

n increases.   The regression function 

explains 88.6% of the variation in 

, the standard error of regression 

 was not sensitive to the 

censoring rate (p>0.98) or censoring pattern (p>0.11).   

 zero LRTS equal to 0.22. It decreases on average as 

))]log(log()052.0641.0()09.0385.0[( n±−±Φ

the fraction of zero LRTS ( 12108 −×<p

coefficient is given after ± ). The fraction of zero LRTS
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Table 3.11: Mean, Variance and Simulated Percentiles of the null distribution of 
LRT. (LM) 

Percentile 
Sample 

size 
Censorin  

Pattern
Censoring 

rate Mean Variance 
1π̂ : 

g
 

Fraction 
of zero 
LRTS 

Mean of 
Non-
Zero 

LRTS 
75% 90% 95% 99% 

10% 1.18 3.43 0.32 1.74 1.68 3.58 4.87 8.17 Exponential 
30% 1.16 3.43 0.29 1.63 1.61 3.42 4.99 7.82 
10% 1.21 3.52 0.30 1.71 1.65 3.56 5.06 8.08 

50 
Uniform 

30% 1.28 3.31 0.26 1.74 1.96 3.59 4.98 8.01 
10% 1.25 3.64 0.28 1.73 1.73 3.69 5.44 8.24 

Exponential 
30% 1.37 3.81 0.26 1.44 1.94 3.87 5.17 8.82 
10% 1.41 3.79 0.24 1.87 2.11 4.10 5.51 8.57 

100 
Uniform 

30% 1.23 3.07 0.25 1.65 1.82 3.45 4.41 8.44 
10% 1.43 3.64 0.23 1.84 2.11 4.03 5.26 7.35 

Exponential 
30% 1.38 4.23 0.25 1.78 1.92 4.02 5.57 7.50 

200 

Uniform 10% 1.30 3.50 0.22 1.67 1.79 3.81 4.98 8.34 
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30% 1.34 3.30 0.22 1.73 1.97 4.00 5.18 7.93 
10% 1.41 3.83 0.18 1.71 1.96 3.95 5.05 9.57 Exponent l 30% 1.60 4.44 0.18 1.94 2.37 4.41 5.45 10.70 
10% 1.61 3.20 0.17 1.93 2.44 4.53 5.59 8.08 500 

Uniform 30% 1.39 3.43 0.20 1.73 2.02 4.09 5.68 7.98 
10% 1.51 4.02 0.19 1.86 2.23 3.91 5.75 8.87 Exponential 30% 1.47 3.78 0.21 1.87 2.17 4.27 5.57 8.30 
10% 1.64 4.23 0.17 1.97 2.32 4.58 5.91 9.44 1000 

Uniform 30% 1.59 4.85 0.19 1.97 2.15 4.36 6.18 9.98 
10% 1.63 4.64 0.16 1.94 2.32 4.37 5.77 10.65 Exponent l 30% 1.62 3.75 0.14 1.90 2.37 4.09 5.68 9.09 
10% 1.68 3.86 0.16 2.00 2.56 4.28 5.75 8.30 2000 

Uniform 30% 1.57 4.20 0.16 1.87 2.25 4.22 5.37 9.13 

ia

ia

Based on 1000 replications for each setting.   

ated “degrees of freedomThe estim ,” 1̂ν  (tha  m h ero 

LRTS values), is between 1.44 and 2.00 with an average of 1.80. It also increases 

on average as n increases. The regression function 

explains 49% of the variation in the mean 

, standard error of regression coefficient given 

sensitive to the censoring rate 

(p>0.13) or censoring pattern (p>0.35).  

I used these functions to estimate the percentiles of the null distribution 

following the null distribution considered by Ye (2006).  Following Ye (2006) the 

null distribution of the LRTS used to test the mixture of two exponential 

components without LTS is , where 

t is, the ean of t e non-z

))log(log()09.040.0()15.011.1( n±+±

of the non-zero LRTS ( 0002.0<p

after ± ). The mean non-zero LRTS was not 

2
1

2
01 1

)1( νχπχπ −+ 1π  is the fraction of zero 

LRTS and  is a chi-square distribution with degrees of freedom 2
1νχ 1ν .  Table 

3.12 contains the estimated 75th, 90th, 95th, 99th, and 99.9th percentiles for the 
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sample sizes used in the simulation study.  I ran a bivariate regression to test for 

correlation between the expected and observed percentile values.  Figure 3.23 is a 

plot of the simulated percentile against the estimated percentile for the 75th, 90th, 

95th, and 99th percentiles. The correlation between estimated percentile and 

simulated percentile is 0.985.  That is, estimated percentiles explain 97.1% of the 

variance of the simulated percentiles in Table 3.12. 

Table 3.12. Estimated Null Distribution Percentiles of LRTS 

LM  vs L0  

Sample Size 75% 90% 95% 99% 99.9% 
50 1.66 3.34 4.65 7.73 12.20 

100 1.84 3.55 4.87 7.98 12.48 
200 1.98 3.72 5.06 8.19 12.71 
350 2.08 3.84 5.18 8.33 12.87 
500 2.14 3.91 5.26 8.42 12.96 
750 2.20 3.98 5.33 8.50 13.06 
1000 2.24 4.02 5.39 8.55 13.19 
2000 2.33 4.13 5.50 8.69 13.27 

  

Figure 3.23:  Observed Simulated LRTS Values vs Estimated LRTS Values 
for Summarized Percentiles (LM). 
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  Note: The four clusters are the 75th, 90th, 95th and 99th percentiles. 

 I used the estimated 99th percentiles to calculate the power of the mixture 

alternative. 

3.32 – Power: 

To study power I used a simulation study with 192 settings.  I considered 

expected censoring rate (10% or 30%), censoring pattern (exponential or 

uniform), mixing proportion (50%, 65%, 75% or 85%), difference of expected 

event times (0.5, 1.0 or 1.5) and sample size (200, 350, 500 or 750).  For each 

setting I ran 500 replicates.  I calculated the average LRTS, the fraction of LRTS 

values with result nearly equal to zero, where nearly zero is defined as an LRTS 

less than 0.0001, the average of the non-zero LRTS values and the power using an 

alpha level of 1% with the null percentiles in Table 3.12.   Table 3.13 contains the 

simulated power of this LRTS and other summary statistics. The 50-50 mixture 
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with greatest difference of component means (difference equals 1.5) has power 

near 1 for both censoring patterns and censoring rates, even for sample size 200.  

For skewed mixing proportions (that is, =0.85) with greatest difference of 

component means, the power increases with increasing sample size, as expected. 

For smaller difference of component means (difference equals 0.5) for both 

symmetric ( =0.50) and skewed mixtures, the power is low for both censoring 

patterns and both censoring rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.13:  Simulated Power and Summary Statistics of the LRTS of LM  vs L0 

m

m
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Censoring 
Pattern  

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Mean 
of non-

zero 
LRTS 

Power 

P S M D R Y1 Y3 Y4 Y2

1 200 0.50 1.5 0.10 48.40 0.00 48.40 1.00 
1 200 0.50 1.5 0.30 36.43 0.00 36.43 1.00* 
1 350 0.50 1.5 0.10 81.87 0.00 81.87 1.00 
1 350 0.50 1.5 0.30 61.58 0.00 61.71 1.00* 
1 500 0.50 1.5 0.10 118.44 0.00 118.44 1.00 
1 500 0.50 1.5 0.30 88.38 0.00 88.38 1.00* 
1 750 0.50 1.5 0.10 178.21 0.00 178.21 1.00 
1 750 0.50 1.5 0.30 133.27 0.00 133.27 1.00 
2 200 0.50 1.5 0.10 47.79 0.00 47.79 1.00 
2 200 0.50 1.5 0.30 32.04 0.00 32.04 1.00* 
2 350 0.50 1.5 0.10 81.89 0.00 81.89 1.00 
2 350 0.50 1.5 0.30 55.19 0.00 55.3 1.00* 
2 500 0.50 1.5 0.10 118.15 0.00 118.15 1.00 
2 500 0.50 1.5 0.30 77.90 0.00 77.90 1.00* 
2 750 0.50 1.5 0.10 174.88 0.00 174.88 1.00 
2 750 0.50 1.5 0.30 115.56 0.00 115.56 1.00 
1 200 0.65 1.5 0.10 23.25 0.00 23.25 0.96 
1 200 0.65 1.5 0.30 14.71 0.00 14.71 0.74 
1 350 0.65 1.5 0.10 39.59 0.00 39.59 1.00 
1 350 0.65 1.5 0.30 24.05 0.00 24.05 0.96 
1 500 0.65 1.5 0.10 56.24 0.00 56.24 1.00 
1 500 0.65 1.5 0.30 33.2 0.00 33.2 0.99 
1 750 0.65 1.5 0.10 85.70 0.00 85.70 1.00 
1 750 0.65 1.5 0.30 49.52 0.00 49.52 1.00 
2 200 0.65 1.5 0.10 21.93 0.00 21.93 0.94 
2 200 0.65 1.5 0.30 10.81 0.00* 10.86 0.62 
2 350 0.65 1.5 0.10 37.76 0.00 37.76 1.00 
2 350 0.65 1.5 0.30 17.79 0.00 17.79 0.84 
2 500 0.65 1.5 0.10 53.83 0.00 53.83 1.00 
2 500 0.65 1.5 0.30 23.85 0.00 23.85 0.96 
2 750 0.65 1.5 0.10 81.23 0.00 81.23 1.00 
2 750 0.65 1.5 0.30 35.51 0.00 35.51 1.00 
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Censoring 
Pattern  

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Mean 
of non-

zero 
LRTS 

Power 

1 200 0.75 1.5 0.10 13.56 0.00* 13.58 0.72 
1 200 0.75 1.5 0.30 7.16 0.01 7.24 0.35 
1 350 0.75 1.5 0.10 22.67 0.00 22.67 0.91 
1 350 0.75 1.5 0.30 11.82 0.00* 11.87 0.62 
1 500 0.75 1.5 0.10 31.54 0.00 31.54 0.99 
1 500 0.75 1.5 0.30 16.20 0.00 16.20 0.79 
1 750 0.75 1.5 0.10 48.34 0.00 1.00 

0.96 
0.68 

48.34 
24.46 
12.98 

1 750 0.75 
0.75 

1.5 
1.5 

0.30 24.46 
12.95 

0.00 
0.00* 2 200 0.10 

2 200 0.75 0.30 5.17 0.20 

2 
1.5 0.10 

2 

0.02 

1.5 0.02 5.29 
2 350 0.75 1.5 0.10 21.07 0.00 21.07 0.91 

350 0.75 1.5 0.30 7.36 0.00 7.36 0.36 
2 500 0.75 30.32 0.00 30.32 0.98 
2 500 0.75 1.5 0.30 10.02 0.00 10.02 0.55 

750 0.75 1.5 0.10 44.46 0.00 44.46 1.00 
2 750 0.75 1.5 0.30 14.17 0.00 14.17 0.75 
1 200 0.85 1.5 0.10 7.07 7.25 0.35 
1 0.04 

1.5 0.10 0.58 
5.41 0.03 

1 500 15.04 
1.5 

1 22.30 22.30 
0.85 0.54 

1.5 0.10 6.50 

200 0.85 1.5 0.30 4.27 4.44 0.15 
1 350 0.85 11.26 0.00* 11.30 
1 350 0.85 1.5 0.30 5.59 0.22 

0.85 1.5 0.10 15.04 0.00 0.72 
1 500 0.85 0.30 7.59 0.01 7.63 0.38 

750 0.85 1.5 0.10 0.00 0.89 
1 750 1.5 0.30 10.36 0.00* 10.38 
2 200 0.85 0.02 6.60 0.31 
2 200 0.85 1.5 0.30 2.47 0.09 2.72 0.04 
2 350 0.85 1.5 0.10 9.75 0.00 9.75 0.51 
2 350 0.85 1.5 0.30 3.16 0.04 3.28 0.07 
2 500 

4.10 

2 

0.85 1.5 0.10 12.98 0.00 12.98 0.69 
2 500 0.85 1.5 0.30 3.98 0.03 0.11 
2 750 0.85 1.5 0.10 19.88 0.00 19.88 0.86 

750 0.85 1.5 0.30 4.98 0.01 5.04 0.18 
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Cen ing 
Pattern  

S  M  
pro

Dif ce 

means 

Ce g A  
LRTS 

Fraction 
o  
LRTS 

Mean 
o

LRTS 

Power 

0.50 1.0 

feren f non-nsorin veragesor ample
size 

ixing f zeroof zero Rate portion 

1 200 0.10 9.14 0.00* 9.16 0.51 
1 200 0.50 1.0 0.30 6.95 0.00* 6.96 0.33 

1 350 0.50 1.0 0.30 10.63 0.00* 10.65 0.62 
1 500 0.50 1.0 0.10 22.07 0.00 22.07 0.94 
1 500 0.50 1.0 0.30 14.52 0.00 14.52 0.76 
1 750 0.50 1.0 0.10 31.81 0.00 31.81 0.99 
1 750 0.50 1.0 0.30 20.64 0.00 20.64 0.92 
2 200 0.50 1.0 0.10 9.25 0.00* 9.27 0.47 

1 350 0.50 1.0 0.10 15.86 0.00 15.86 0.81 

2 200 0.50 1.0 0.30 5.41 0.01 5.46 0.21 
2 350 0.50 1.0 0.10 14.91 0.00 14.91 0.78 
2 350 0.50 1.0 0.30 8.61 0.00 8.61 0.47 
2 500 0.50 1.0 0.10 21.68 0.00 21.68 0.93 
2 500 0.50 1.0 0.30 11.23 0.00 11.23 0.64 
2 750 0.50 1.0 0.10 31.12 0.00 31.12 0.99 
2 750 0.50 1.0 0.30 15.83 0.00 15.83 0.84 
1 200 0.65 1.0 0.10 6.81 0.01 6.88 0.32 
1 200 0.65 1.0 0.30 4.65 0.02 4.77 0.15 

0.56 
1 350 0.65 1.0 0.30 6.70 0.00* 6.72 0.31 

0.77 
1 500 0.65 1.0 0.30 8.77 0.00* 8.78 0.44 

 0.00 21.19 0.92 
1 750 0.65 1.0 0.30 12.17 0.00 12.17 0.63 

6.96 0.02 7.11 0.33 

1 350 0.65 1.0 0.10 10.78 0.00* 10.80 

1 500 0.65 1.0 0.10 15.09 0.00* 15.12 

1 750 0.65 1.0 0.10 21.19

2 200 0.65 1.0 0.10 
2 200 0.65 1.0 0.30 3.63 0.04 3.79 0.10 

0 0.65 1.0 0.10 10.44 0.01 10.50 0.56 
2 350 0.65 1.0 0.30 5.05 0.02 5.16 0.18 
2 500 0.65 1.0 0.10 13.73 0.00 13.73 0.74 
2 500 0.65 1.0 0.30 6.17 0.01 6.25 0.26 
2 750 0.65 1.0 0.10 19.74 0.00 19.74 0.90 
2 750 0.65 1.0 0.30 7.64 0.00* 7.66 0.34 
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Censoring 
Pattern  

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Mean 
of non-

zero 
LRTS 

Power 

1 200 0.75 1.0 0.10 4.77 0.03 4.91 0.20 
1 200 0.75 1.0 0.30 3.57 0.05 3.76 0.10 
1 350 0.75 1.0 0.10 7.46 0.01 7.55 0.36 
1 350 0.75 1.0 0.30 4.74 0.02 4.84 0.18 
1 500 0.75 1.0 0.10 10.05 0.01 10.14 0.49 
1 500 0.75 1.0 0.30 5.83 0.01 5.87 0.25 
1 750 0.75 1.0 0.10 13.59 0.00 13.59 0.69 
1 750 0.75 1.0 0.30 7.71 0.00* 7.72 0.37 
2 200 0.75 1.0 0.10 4.77 0.02 4.88 0.17 
2 200 0.75 1.0 0.30 2.64 0.08 2.87 0.05 
2 350 0.75 1.0 0.10 7.17 0.02 7.28 0.35 
2 350 0.75 1.0 0.30 3.36 0.04 3.51 0.08 
2 500 0.75 1.0 0.10 9.55 0.00 9.55 0.49 
2 500 0.75 1.0 0.30 3.53 0.03 3.64 0.10 
2 750 0.75 1.0 0.10 13.41 0.00 13.41 0.70 
2 750 0.75 1.0 0.30 5.03 0.01 5.08 0.17 
1 200 0.85 1.0 0.10 3.03 0.06 3.23 0.06 
1 200 0.85 1.0 0.30 2.49 0.10 2.77 0.04 
1 350 0.85 1.0 0.10 4.46 0.03 4.61 0.16 
1 350 0.85 1.0 0.30 2.88 0.07 3.09 0.06 
1 500 0.85 1.0 0.10 5.63 0.02 5.76 0.24 
1 500 0.85 1.0 0.30 3.59 0.03 3.70 0.10 
1 750 0.85 1.0 0.10 7.54 0.00* 7.57 0.33 
1 750 0.85 1.0 0.30 4.63 0.03 4.78 0.16 
2 200 0.85 1.0 0.10 3.52 0.05 3.72 0.10 
2 200 0.85 1.0 0.30 1.95 0.12 2.21 0.02 
2 350 0.85 1.0 0.10 4.29 0.03 4.42 0.13 
2 350 0.85 1.0 0.30 2.17 0.06 2.32 0.02 
2 500 0.85 1.0 0.10 5.03 0.02 5.14 0.21 
2 500 0.85 1.0 0.30 2.45 0.07 2.67 0.04 
2 750 0.85 1.0 0.10 7.13 0.01 7.19 0.34 
2 750 0.85 1.0 0.30 2.78 0.05 2.91 0.04 
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Censoring 
Pattern  

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Mean 
of non-

zero 
LRTS 

Power 

1 200 0.50 0.5 0.10 2.33 0.10 2.60 0.04 
1 200 0.50 0.5 0.30 2.04 0.14 2.37 0.03 
1 350 0.50 0.5 0.10 2.75 0.07 2.94 0.04 
1 350 0.50 0.5 0.30 2.70 0.09 2.98 0.04 
1 500 0.50 0.5 0.10 3.44 0.04 3.59 0.06 
1 500 0.50 0.5 0.30 2.59 0.06 2.75 0.03 
1 750 0.50 0.5 0.10 4.16 0.02 4.26 0.07 
1 750 0.50 0.5 0.30 3.16 0.04 3.30 0.13 
2 200 0.50 0.5 0.10 2.43 0.11 2.73 0.05 
2 200 0.50 0.5 0.30 1.95 0.12 2.21 0.01 
2 350 0.50 0.5 0.10 3.02 0.07 3.23 0.07 
2 350 0.50 0.5 0.30 2.11 0.12 2.41 0.03 
2 500 0.50 0.5 0.10 3.34 0.04 3.49 0.08 
2 500 0.50 0.5 0.30 2.37 0.08 2.57 0.04 
2 750 0.50 0.5 0.10 4.41 0.02 4.49 0.14 
2 750 0.50 0.5 0.30 3.91 0.03 4.04 0.11 
1 200 0.65 0.5 0.10 2.02 0.15 2.39 0.03 
1 200 0.65 0.5 0.30 1.78 0.16 2.12 0.03 
1 350 0.65 0.5 0.10 2.56 0.08 2.77 0.05 
1 350 0.65 0.5 0.30 2.28 0.10 2.54 0.03 
1 500 0.65 0.5 0.10 3.06 0.04 3.18 0.05 
1 500 0.65 0.5 0.30 2.47 0.07 2.67 0.04 
1 750 0.65 0.5 0.10 3.80 0.05 4.00 0.10 
1 750 0.65 0.5 0.30 3.01 0.07 3.24 0.07 
2 200 0.65 0.5 0.10 2.25 0.13 2.59 0.04 
2 200 0.65 0.5 0.30 1.74 0.13 2.00 0.02 
2 350 0.65 0.5 0.10 2.82 0.06 3.02 0.04 
2 350 0.65 0.5 0.30 1.91 0.12 2.18 0.02 
2 500 0.65 0.5 0.10 2.84 0.09 3.11 0.04 
2 500 0.65 0.5 0.30 2.09 0.09 2.31 0.02 
2 750 0.65 0.5 0.10 3.72 0.04 3.90 0.08 
2 750 0.65 0.5 0.30 2.24 0.08 2.43 0.03 
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Censoring 
Pattern  

Sample 
size 

Mixing 
proportion 

Difference 
of 

means 

Censoring 
Rate 

Average 
LRTS 

Fraction 
of zero 
LRTS 

Mean 
of non-

zero 
LRTS 

Power 

1 200 0.75 0.5 0.10 2.01 0.12 2.29 0.02 
1 200 0.75 0.5 0.30 1.82 0.12 2.07 0.03 
1 350 0.75 0.5 0.10 2.44 0.09 2.70 0.04 
1 350 0.75 0.5 0.30 2.03 0.13 2.34 0.03 
1 500 0.75 0.5 0.10 2.57 0.09 2.83 0.04 
1 500 0.75 0.5 0.30 2.25 0.08 2.46 0.03 
1 750 0.75 0.5 0.10 3.07 0.05 3.24 0.06 
1 750 0.75 0.5 0.30 2.45 0.06 2.61 0.03 
2 200 0.75 0.5 0.10 2.16 0.17 2.60 0.04 
2 200 0.75 0.5 0.30 1.73 0.16 2.07 0.02 
2 350 0.75 0.5 0.10 2.04 0.10 2.28 0.03 
2 350 0.75 0.5 0.30 1.74 0.11 1.95 0.01 
2 500 0.75 0.5 0.10 2.66 0.06 2.85 0.04 
2 500 0.75 0.5 0.30 2.03 0.12 2.32 0.02 
2 750 0.75 0.5 0.10 2.89 0.06 3.09 0.06 
2 750 0.75 0.5 0.30 2.13 0.10 2.37 0.03 
1 200 0.85 0.5 0.10 1.77 0.18 2.16 0.01 
1 200 0.85 0.5 0.30 1.54 0.18 1.89 0.01 
1 350 0.85 0.5 0.10 2.16 0.12 2.46 0.02 
1 350 0.85 0.5 0.30 1.69 0.17 2.03 0.02 
1 500 0.85 0.5 0.10 2.12 0.12 2.42 0.02 
1 500 0.85 0.5 0.30 1.88 0.12 2.14 0.02 
1 750 0.85 0.5 0.10 2.44 0.07 2.64 0.03 
1 750 0.85 0.5 0.30 2.03 0.12 2.31 0.03 
2 200 0.85 0.5 0.10 1.69 0.18 2.07 0.03 
2 200 0.85 0.5 0.30 1.38 0.15 1.63 0.01 
2 350 0.85 0.5 0.10 2.05 0.14 2.38 0.03 
2 350 0.85 0.5 0.30 1.71 0.12 1.96 0.01 
2 500 0.85 0.5 0.10 2.07 0.14 2.42 0.02 
2 500 0.85 0.5 0.30 1.74 0.14 2.02 0.02 
2 750 0.85 0.5 0.10 2.31 0.08 2.51 0.04 
2 750 0.85 0.5 0.30 1.73 0.14 2.03 0.01 
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I used a probit regression model with each of the factors (n, P, m, R, and 

D), the two factor interactions Pm, PD, mD, PR, MR, DR, Plog(n), mlog(n), 

Dlog(n), and Rlog(n) and all sub-hierarchical interactions to fit the inverse normal 

cdf of the power of the LRTS test using level of significance 1%. The fitted model 

is:  

)ˆ(1 p−Φ =-6.26+ 

1.62D + 4.03m + 3.32R - 0.43P - 0.048log(log(S)) - 8.41(mD) - 5.84(mR) - 

(t=1.1)    (t=5.66)  (t=2.0)  (t=-2.3)  (t=0.1)                (t=-16.0)       (t=-2.7)        

3.65(DR) + 0.235(DP) + 1.93(RP) + 4.54(Dlog(log(S))) 

(t=-5.4)          (t=1.7)            (t=3.5)          (t=5.5) 

 

The 2R  for the fitted model of 95.4% and shows a good fit. The logarithm 

of the sample size S is not significant at the 0.05 level, but its interaction with the 

difference between means is significant, with increasing power associated with 

increasing sample size. The mixing proportion m and difference between means D 

are significant, especially in the m·D interactions. The censoring rate R, and 

censoring pattern P are marginally significant.  Larger difference between means, 

more symmetric mixing proportion, and lower censoring rate are associated with 

greater power.  



Chapter 4.  Conclusions 

I studied the survival models assuming LTS (LS) or the mixture of two 

exponential components (LM) each with finite mean to test whether there is 

indication of a mixture mechanism. The estimated power of the LRTS for the LTS 

model and mixture survival model are modeled numerically in a simulation study.  

In the model LS a finite study duration is considered 

In LS, the null distribution of the LRTS used to test LTS is shown to be 

plausibly asymptotically distributed as 50-50 mixture of a chi-square random 

variable with 1 degrees of freedom and a mass at zero as proved by Zhou and 

Maller (1995). Under the sample sizes, censoring patterns and study durations 

studied, the simulation results show the null distribution of LRTS for LS to be well 

approximated by  , where 2
1,0

2
0,0 )1( χπχπ nn −+ n,0π  is the fraction of zero LRTS, 

which varies with n. When considering study duration (D), I define ID as either 

longer (ID =1) or shorter (ID =0).  The simulation results show n,0π  is fit by 

n
ID9206.04864.050.0 +

+ , such that for large sample sizes the fraction of zeros is 

50%.  For longer study durations, the convergence to 50% fraction of zeros is 

shown to be slower than for shorter study durations.  The censoring pattern and 

censoring rates are not significant in fitting n,0π .    
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Power was estimated using the 99th percentile calculated under 

 fit. A probit regression model was used to model the power 

over the variables used in the simulation.  The estimated power model fit is 

2
1,0

2
0,0 )1( χπχπ nn −+

).(36.4508.3)(34.51488.39)(19.7916.293.32.36)ˆ(1 LTSrrD
n
LTS

n
rLTSDr

n
p −−−+++−

−
=Φ−

The model was fitted for censoring rates between 10% and 50%, study durations 

of 3 and 5 times the expected event time, LTS between 2% and 8% and sample 

sizes through 2,000.  The censoring pattern was not significant.  The 2R  for the 

fitted model is 92% and shows a good fit. All variables were highly significant.  

When the proportion of LTS is small the power is small, unless the sample size is 

large.  In the event of high censoring rate a sample size of many thousand would 

be required to reject the null hypothesis, especially for small LRTS.  In the case of 

long study durations, power near 50% can be achieved in some smaller sample 

size situations.  In a longer study fewer than 150 observations are required for 

power of at least 50% when  and 10% of observations are observed as 

censored.  For models with 

04.0≥LTS

04.002.0 <≤ LTS , 50% power is estimated with 

fewer than 300 observations.  In addition, fewer than 200 observations are 

required for an estimated 80% power with .  The power steeply drops 

from a longer study to a shorter study.  In a shorter study duration at least 50% 

estimated power is observed with fewer than 300 observations for models with 

.   This is twice as many observations as required for the longer study.  

05.0≥LTS

05.0≥LTS
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At least 80% estimated power is observed with fewer than 550 observations for 

models with  for a shorter study.   05.0≥LTS

The null distribution of the LRTS for LM vs L0 is well approximated 

by , where 2
1

2
01 1

)1( νχπχπ −+ 1π  is the fraction of zero LRTS values and is 

estimated  by ))]log(log()052.0641.0()09.0385.0[( n±−±Φ  and 1ν  given by 

.  The fraction of zero LRTS, ))log(log()09.040.0()15.011.1( n±+± 1π̂ , is 

between 0.14 and 0.32 with average fraction of zero LRTS equal to 0.22. It 

decreases on average as n increases.   The estimated “degrees of freedom,” 1̂ν  

(that is, the mean of the non-zero LRTS values), is between 1.44 and 2.00 with an 

average of 1.80. It also increases on average as n increases. 

A  factorial experiment was run to estimate the power of 

the LRTS to detect the mixture of two exponential components. The 50-50 

mixture with greater difference of component means (difference equals 1.5) has 

power near 1 for both censoring patterns and censoring rates, even for sample size 

200. For skewed mixing proportions (mixing proportion equals 0.85) with greater 

difference of component means, power increases with increasing sample size, as 

expected. For smaller difference of component means (difference equals 0.50) for 

both symmetric (mixing proportion equals 0.50) and skewed mixtures, power is 

low for both censoring patterns and both censoring rates, and the power of test 

does not change much when sample size increases. In intermediate settings, a 

44322 ××××
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difference of 1.0 and mixing proportions of 0.65 and 0.75, power ranges from 

near zero to near one.  The power is larger for smaller censoring rates.  The probit 

multiple regression analysis is applied to the estimated power.  The fitted model 

is: 

log(S)))4.54(Dlog(  1.93(RP)  0.235(DP)  3.65(DR) - 5.84(mR) -
 8.41(mD) - og(S))0.048log(l - 0.43P - 3.32R  4.03m 1.62D -6.26)ˆ(1

+++
+++=Φ− p

 

In general, the mixing proportion, difference of two component means and 

their interaction affected the average LRTS. The mixing proportion, difference of 

two component means, censoring rate and their interaction, affected the power 

and fraction of zero LRTS. 

The extension of this dissertation is to study a model selection technique 

in determining whether L0, LS or LM best fits a sample.  A study of the Bayesian 

Information Criteria (BIC) to select the model would be a valuable contribution. 

The study of a mixture model with a long term survivor component is a further 

generalization of interest.  The study of a Box-Cox transformation to each of these 

models would also be a valuable contribution. 
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Appendix: 
 
A1:  C Code for simulation of L0 vs LS 
#include <stdio.h> 
#include <math.h> 
#include <gsl/gsl_rng.h> 
#include <gsl/gsl_randist.h> 
#include <gsl/gsl_multimin.h> 
#define debug 0 
 
struct _power_data  
{ 
 double *t; 
 double *u; 
 double *c; 
 int size; 
};  
typedef struct _power_data power_data; 
 
double  my_f(const gsl_vector *v, void *params) 
{ 
       power_data *my_pwr_data; 
       my_pwr_data = (power_data*)params; 
 
       double sumlog01 = 0; 
       double *t, *u, *c; 
       int n,i; 
       t = my_pwr_data->t; 
       u = my_pwr_data->u; 
       c = my_pwr_data->c; 
       n = my_pwr_data->size; 
       double mu10 = gsl_vector_get(v, 0);  
       double mu20 = gsl_vector_get(v, 1);  
       double phi = gsl_vector_get(v, 2); 
       double lambda10,lambda20,m0,expphi,x1,x2,logitem01; 
       lambda10 = exp(mu10); 
       lambda20 = exp(mu20); 
       expphi =  exp(phi); 
       m0 =  expphi /(1.0+expphi); 
 
       for(i = 0; i < n; i++) 
       { 
                x1 = m0* exp(-(lambda10) * t[i]); 
                x2 = (1-m0)*exp(-(lambda20)* t[i]); 
                logitem01= c[i] * (log(lambda10*x1+ lambda20*x2))+ (1-
c[i])*log(x1+x2); 
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                sumlog01 = sumlog01+ logitem01; 
        } 
 
return -sumlog01;  
} 
 
 
 
 
 
main() 
{ 
//////// GSL Initialization ///////////// 
 
// GSL random number realated varibles 
const gsl_rng_type * T; 
gsl_rng * r; 
gsl_rng_env_setup(); 
T = gsl_rng_default; 
r = gsl_rng_alloc (T); 
 
 
// GSL minimizer realated varibles 
 
size_t np = 3; 
const gsl_multimin_fminimizer_type *TT = 
         gsl_multimin_fminimizer_nmsimplex; 
 
gsl_multimin_fminimizer *s = NULL; 
gsl_vector *ss, *xx; 
gsl_multimin_function minex_func; 
size_t iter = 0, q; 
xx = gsl_vector_alloc (np); 
      
 
//////// End GSL Initialization ///////////// 
 
 
// Changable parameters 
int n = 500; // sample size 
int rep = 100; // repition number 
double m = 0.85; // mixing proportion  (if no mixture then set to 1) 
double d = 0.8; // difference in means 
double LTS = 1.0;  // Long Term Survivor rate (if no LTS then set to 1) 
double p = 1;  // censoring pattern (exp = 1  & unif = 2) 
double  lambda1 = 1 + d*(m-1);   

77 



double  lambda2 = 1+d*m; 
 
double a = 0.0; // uniform censoring min 
double b = 10.66; // uniform censoring max 10.66=10% & 3.2=30% 
double beta = 9.52; // exponential censoring param:  9.52=10% & 2.56=30% 
 
 
// storage arrays and counters 
int k; 
double *select, *expLeft, *expRight, *u, *t, *tt, *c, *select_LTS, *expLTS, *tt_orig; 
double *maxsumlog00, *lambda00; 
double *maxsumlog01, *lambda01hat1, *lambda01hat2, *m01hat, *d0001, 
*smallermean01hat, *largermean01hat, *mean00hat; 
 
// storage arrays and counters 
double *v, *lam1s, *lam2s, *ms; 
 
/////// allocating memory 
 
 
//arrays of size the sample size 
select = malloc(sizeof(double)*n); 
select_LTS = malloc(sizeof(double)*n); 
expLeft = malloc(sizeof(double)*n); 
expRight = malloc(sizeof(double)*n); 
expLTS = malloc(sizeof(double)*n); 
u = malloc(sizeof(double)*n); 
t = malloc(sizeof(double)*n); 
tt_orig = malloc(sizeof(double)*n); 
tt = malloc(sizeof(double)*n); 
c = malloc(sizeof(double)*n); 
 
//arrays of size of rep 
maxsumlog00 = malloc(sizeof(double)*rep); 
lambda00 = malloc(sizeof(double)*rep); 
maxsumlog01 = malloc(sizeof(double)*rep); 
lambda01hat1 = malloc(sizeof(double)*rep); 
lambda01hat2 = malloc(sizeof(double)*rep); 
m01hat = malloc(sizeof(double)*rep); 
d0001 = malloc(sizeof(double)*rep); 
smallermean01hat = malloc(sizeof(double)*rep); 
largermean01hat = malloc(sizeof(double)*rep); 
mean00hat = malloc(sizeof(double)*rep); 
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// arrays of random size 
 
lam1s = malloc(sizeof(double)*10); 
lam2s = malloc(sizeof(double)*10); 
ms = malloc(sizeof(double)*10); 
 
/////// done allocating memory 
printf("d0001\tmean00hat\tm01hat\tsmallermean01hat\tlargermean01hat\n"); 
for(k = 0; k < rep; k++) 
{ // start of k/repition loop 
 
 
// C code 1 
int i; 
//filling the array of select expLeft and expRight 
if(debug == 2) 
printf(" select\t expLeft\t expRight\t tt \n"); 
 
double expLeft_mean = 0 ,expRight_mean = 0, select_mean = 0 ; 
for(i = 0; i < n; i++) 
{ 
 select[i] = gsl_ran_flat(r,0.0,1.0); 
 expLeft[i] = gsl_ran_exponential(r,lambda1); 
 expRight[i] = gsl_ran_exponential(r,lambda2); 
  
 expLeft_mean  = expLeft_mean  + expLeft[i]/(1.0*n); 
 expRight_mean = expRight_mean + expRight[i]/(1.0*n); 
 select_mean = select_mean + select[i]/(1.0*n); 
  
 if (select[i] <= m )  
  tt_orig[i] = expLeft[i];  
 else  
  tt_orig[i] = expRight[i]; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",select[i],expLeft[i],expRight[i],tt[i]); 
 
} 
 
 
//expLeft_mean2 = expLeft_mean2/(1.0*n); 
//select_mean = select_mean/(1.0*n); 
//expLeft_mean = expLeft_mean/(1.0*n); 
//expRight_mean= expRight_mean/(1.0*n); 
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double expLeft_var =0 ,expRight_var = 0, select_var =0; 
for(i = 0; i < n; i++) 
{ 
 select_var= select_var +(select[i]-select_mean)*(select[i]-select_mean);  
 expLeft_var= expLeft_var +(expLeft[i]-expLeft_mean)*(expLeft[i]-
expLeft_mean);  
 expRight_var= expRight_var +(expRight[i]-expRight_mean)*(expRight[i]-
expRight_mean);  
 
} 
 select_var = select_var/(1.0*n - 1.0); 
 expLeft_var = expLeft_var/(1.0*n - 1.0); 
 expRight_var = expRight_var/(1.0*n - 1.0); 
 
 
 if(debug == 2) 
 { 
 printf("lambda1= %f lambda2= %f \n" 
        "expLeft_mean = %f expRight_mean = %f ,  \n" 
        "select_mean = %f realselect_mean = %f ,  \n" 
        ,lambda1,lambda2,expLeft_mean,expRight_mean,select_mean,1.0/2); 
         
        printf("real_expLeft_var = %f real_expRight_var = %f \n" 
               "expLeft_var = %f expRight_var = %f \n" 
        "real_select_var = %f \n" 
        "select_var = %f \n" 
        ,lambda1*lambda1,lambda2*lambda2, 
        expLeft_var,expRight_var, 
        1.0/12.0, 
        select_var); 
 } 
 
// choosing a tt 
 
// end C code 1 
 
 
// C code 1.5 
//filling the array of select expLeft and expRight 
if(debug == 2) 
printf(" select_LTS\t exponLTS\t"); 
 
 
for(i = 0; i < n; i++) 
{ 
 select_LTS[i] = gsl_ran_flat(r,0.0,1.0); 
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 expLTS[i] = gsl_ran_exponential(r,9999); // assume the LTS mean = 9999  
  
 //select_LTS_mean = select_LTS_mean + select_LTS[i]/(1.0*n); 
  
 if (select_LTS[i] <= LTS )  
  tt[i] = tt_orig[i];  
 else  
  tt[i] = expLTS[i]; 
  
 //if(debug == 2) 
 //printf("%f %f %f %f \n",select_LTS[i],tt_orig[i],tt[i]); 
 
} 
 
 
//expLeft_mean2 = expLeft_mean2/(1.0*n); 
//select_mean = select_mean/(1.0*n); 
//expLeft_mean = expLeft_mean/(1.0*n); 
//expRight_mean= expRight_mean/(1.0*n); 
 
// end C code 1.5 
 
 
 
 
 
 
// C code 2 
 
//filling the array of u   
 
 
 
double mean_u=0,mean_t=0; 
 
if(debug == 2) 
printf("tt u t c \n"); 
 
if(p == 2) 
for(i = 0; i < n; i++) 
{ 
 u[i] = gsl_ran_flat(r,a,b); 
 t[i] = fmin((double)tt[i],(double)u[i]); 
        mean_t = mean_t+t[i]; 
        mean_u = mean_u+u[i]; 
 if (tt[i] <= u[i])  
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        c[i] = 1.0;  
        else c[i] = 0.0; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",tt[i],u[i],t[i],c[i]); 
} 
 
 
if(p == 1) 
for(i = 0; i < n; i++) 
{ 
 u[i] = gsl_ran_exponential(r,beta); 
 t[i] = fmin((double)tt[i],(double)u[i]); 
        mean_t = mean_t+t[i]; 
        mean_u = mean_u+u[i]; 
 if (tt[i] <= u[i])  
        c[i] = 1.0;  
        else c[i] = 0.0; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",tt[i],u[i],t[i],c[i]); 
} 
 
 
//////////////////// 
mean_t = mean_t/(1.0*n); 
mean_u = mean_u/(1.0*n); 
 
double t_var =0 ,u_var = 0; 
for(i = 0; i < n; i++) 
{ 
 u_var= u_var +(u[i]-mean_u)*(u[i]-mean_u);  
 
} 
u_var = u_var/(1.0*n - 1.0); 
 
if(debug == 2) 
{ 
printf( "mean_t = %f mean_u = %f \n" 
       ,mean_t,mean_u); 
        
printf("real_u_var = %f \n"  
       "u_var = %f \n" 
       ,((b-a)*(b-a))/12.0 ,u_var); 
 
} 
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///////////////////// 
// end C code 2 
 
// C code 3 
 
lambda00[k]  = 0; 
double csum = 0; 
double tsum = 0; 
double  p0 = 1.0; 
double logitem00; 
double x; 
double sumlog00 = 0; 
for(i = 0; i < n; i++) 
{ 
 csum = csum + c[i]; 
 tsum = tsum + t[i]; 
} 
        lambda00[k] =  csum/tsum; 
 
for(i = 0; i < n; i++) 
{ 
                x  =  exp(-lambda00[k] * t[i]); 
                logitem00 = c[i] * (log(p0)+log(lambda00[k]) - lambda00[k] * t[i] ) + (1.0-
c[i])*log(1.0 - p0 + p0*x); 
  if(debug == 2) 
  { 
   printf("x = %f \n",x); 
   printf("c[i] = %f \n",c[i]); 
   printf("p0 = %f \n",p0); 
   printf("lambda00[k] = %f \n",lambda00[k]); 
   printf("t[i] = %f \n",t[i]); 
                 printf("logitem00 = %f   sumlog00 = %f \n",logitem00,  sumlog00); 
                } 
  sumlog00 = sumlog00 + logitem00; 
} 
maxsumlog00[k] = sumlog00; 
 
// end C code 3 
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// C code 4 
for(i = 0; i < 10; i++) 
{ 
lam1s[i] =  1.0/(mean_t*(-log(1-gsl_ran_flat(r,0.0,1.0)))); 
//lam1s <-  1/(mean(t)*(-log(1-v))); 
//lam2s <- 1/(mean(t)*(-log(1-w))); 
} 
 
for(i = 0; i < 10; i++) 
lam2s[i] =  1.0/(mean_t*(-log(1-gsl_ran_flat(r,0.0,1.0)))); 
 
for(i = 0; i < 10; i++) 
  ms[i]=1-0.1*gsl_ran_flat(r,0.0,1.0); 
//u  <- runif(7,0,1); 
//ms <- 1-0.1*u; 
 
int j,kk; 
power_data my_pwr_data; 
my_pwr_data.t = t; 
my_pwr_data.u = u; 
my_pwr_data.c = c; 
my_pwr_data.size = n; 
 
 
//i =1; 
//j =1; 
//kk = 1; 
 
double maxf=-100000, max1 = -100000,max2=-100000,max3 = -100000; 
 
for(i = 0; i < 3; i++) 
{ 
for(j = 0; j < 3; j++) 
{ 
for(kk = 0; kk < 1; kk++) 
{ 
        if(debug == 1) 
 printf("i=%i j=%i kk=%i\n",i,j,kk); 
  
 s = gsl_multimin_fminimizer_alloc(TT, np); 
 ss = gsl_vector_alloc(np); 
 gsl_vector_set_all (ss, 1.0); 
 gsl_vector_set(xx, 0, log(lam1s[i])); 
 gsl_vector_set(xx, 1, log(lam2s[j])); 
 double tmpdata= log(ms[kk]/(1.0- ms[kk])) ; 
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 gsl_vector_set(xx, 2, tmpdata ); 
minex_func.f = &my_f; 
 minex_func.n = np; 
 minex_func.params = (void *)&my_pwr_data; 
 gsl_multimin_fminimizer_set(s, &minex_func, xx, ss); 
        iter = 0; 
 int status; 
 double size; 
        do 
        { 
           iter++; 
           status = gsl_multimin_fminimizer_iterate(s); 
      
           if(status) 
             break; 
      
           size = gsl_multimin_fminimizer_size (s); 
           status = gsl_multimin_test_size (size, 1e-5); 
           if(status == GSL_SUCCESS && debug == 5) 
           { 
             printf("\n++++++++++++++++++++++++\n"); 
             printf("step   = %d \ninputs = (", iter); 
             printf("%f,", gsl_vector_get (s->x, 0)); 
             printf("%f,", gsl_vector_get (s->x, 1)); 
             printf("%f", gsl_vector_get (s->x, 2)); 
             printf(")\nf      = %f \n", s->fval); 
             printf("size   = %f\n", size); 
             printf("++++++++++++++++++++++++\n"); 
          } 
        } 
       while (status == GSL_CONTINUE && iter < 1200); 
    //  if(iter > 1000) 
    //  { 
    //         printf("\n++++++++++++++++++++++++\n"); 
    //         printf("step   = %d ????? \n", iter); 
    //         printf("++++++++++++++++++++++++\n"); 
 
     // } 
       //return status; 
//////////////////// done minimizing ///////////////////////// 
//if (- randommaxlog01result $value > maxsumlog10[k])  flag01 <- 1 else flag01 <- 0; 
            if(maxf < s->fval*-1.0) 
     { 
  if(debug == 7) 
      printf("maxf %10.17f will be replaced with %10.17f \n",maxf, s-
>fval*-.0); 
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         max1=  gsl_vector_get (s->x, 0); 
             max2=  gsl_vector_get (s->x, 1); 
             max3=  gsl_vector_get (s->x, 2); 
             maxf= -1.0*s->fval; 
     } 
 if(debug == 7) 
 { 
 printf("============================\n"); 
 //printf("For starting points %f %f %f  is %f \n",s->fval); 
 // 
 printf(" starting point 1 %f \n",log(lam1s[i])); 
 printf(" starting point 2 %f \n",log(lam2s[j])); 
 printf(" starting point 3 %f \n",log(ms[kk]/(1.0- ms[kk]))); 
 printf("fval is %10.17f \n",s->fval); 
 printf("============================\n"); 
 } 
 gsl_multimin_fminimizer_free (s); 
        gsl_vector_free(ss); 
 
}}} 
 if(debug == 7) 
 { 
 printf("============================\n"); 
 printf("the last f is %f input (%f,%f,%f)\n",maxf,max1,max2,max3); 
 printf("============================\n"); 
 } 
 
// end C code 4 
 
 
 
 
// C code 5 
 
 maxsumlog10[k] = maxf; 
 lambda10hat[k] = exp(max1); 
 m01hat[k] = exp(max2) /(1.0+exp(max2)); 
 
if(debug == 7) 
printf("maxsumlog00[k] = %10.17f  maxsumlog10[k]) =%10.17f 
\n",maxsumlog00[k],maxsumlog10[k]); 
 
 
d0001[k] = -2.0*maxsumlog00[k]-(-2.0* maxsumlog10[k]) ; 
mean10hat[k] = 1/lambda10hat[k]; 
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mean00hat[k] = 1/lambda00[k]; 
 
//End C code 5 
 
 
fflush(stdout); 
fflush(stdout); 
 
if (summary == 1) 
{ 
printf("\n"); 
printf("Single Exponential:"); 
printf("\n"); 
printf("MLE mean: "); 
printf("%f\n",mean00hat[k]); 
 
 
printf("Max log0: "); 
printf("%f\n",maxsumlog00[k]); 
printf("\n"); 
 
printf("Single Exponential w/ LTS:"); 
printf("\n"); 
 
printf("MLE mean: "); 
printf("%f\n",mean10hat[k]); 
 
printf("p-hat: "); 
printf("%f\n",m01hat[k]); 
 
 
printf("Max log1: "); 
printf("%f\n",maxsumlog10[k]); 
printf("\n"); 
 
printf("LRTs sinlge w/ LTS vs single exponential:  "); 
printf("%f\n",d0001[k]); 
printf("\n"); 
} 
 
if (summary == 2) 
{ 
printf("%f\n",d0001[k]); 
} 
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if (summary == 3) 
{ 
printf("%10.17f\t%f\t%f\t%f\t%f 
\n",d0001[k],mean00hat[k],m01hat[k],mean10hat[k],mean10hat[k]); 
 
} 
fflush(stdout); 
 
////////////////////////////// 
 
} // end of k/repition loop 
 
 
 
 
       gsl_vector_free(xx); 
 
       //gsl_multimin_fminimizer_free(s); 
 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

88 



 
A2:  C Code for simulation of L0 vs LM
 
#include <stdio.h> 
#include <math.h> 
#include <gsl/gsl_rng.h> 
#include <gsl/gsl_randist.h> 
#include <gsl/gsl_multimin.h> 
#define debug 0 
 
struct _power_data  
{ 
 double *t; 
 double *u; 
 double *c; 
 int size; 
};  
typedef struct _power_data power_data; 
 
double  my_f(const gsl_vector *v, void *params) 
{ 
       power_data *my_pwr_data; 
       my_pwr_data = (power_data*)params; 
 
       double sumlog01 = 0; 
       double *t, *u, *c; 
       int n,i; 
       t = my_pwr_data->t; 
       u = my_pwr_data->u; 
       c = my_pwr_data->c; 
       n = my_pwr_data->size; 
       double mu10 = gsl_vector_get(v, 0);  
       double mu20 = gsl_vector_get(v, 1);  
       double phi = gsl_vector_get(v, 2); 
       double lambda10,lambda20,m0,expphi,x1,x2,logitem01; 
       lambda10 = exp(mu10); 
       lambda20 = exp(mu20); 
       expphi =  exp(phi); 
       m0 =  expphi /(1.0+expphi); 
 
       for(i = 0; i < n; i++) 
       { 
                x1 = m0* exp(-(lambda10) * t[i]); 
                x2 = (1-m0)*exp(-(lambda20)* t[i]); 
                logitem01= c[i] * (log(lambda10*x1+ lambda20*x2))+ (1-
c[i])*log(x1+x2); 
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                sumlog01 = sumlog01+ logitem01; 
        } 
 
return -sumlog01;  
} 
 
 
 
 
 
main() 
{ 
//////// GSL Initialization ///////////// 
 
// GSL random number realated varibles 
const gsl_rng_type * T; 
gsl_rng * r; 
gsl_rng_env_setup(); 
T = gsl_rng_default; 
r = gsl_rng_alloc (T); 
 
 
// GSL minimizer realated varibles 
 
size_t np = 3; 
const gsl_multimin_fminimizer_type *TT = 
         gsl_multimin_fminimizer_nmsimplex; 
 
gsl_multimin_fminimizer *s = NULL; 
gsl_vector *ss, *xx; 
gsl_multimin_function minex_func; 
size_t iter = 0, q; 
xx = gsl_vector_alloc (np); 
      
 
//////// End GSL Initialization ///////////// 
 
 
// Changable parameters 
int n = 500; // sample size 
int rep = 100; // repition number 
double m = 0.85; // mixing proportion  (if no mixture then set to 1) 
double d = 0.8; // difference in means 
double LTS = 1.0;  // Long Term Survivor rate (if no LTS then set to 1) 
double p = 1;  // censoring pattern (exp = 1  & unif = 2) 
double  lambda1 = 1 + d*(m-1);   
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double  lambda2 = 1+d*m; 
 
double a = 0.0; // uniform censoring min 
double b = 10.66; // uniform censoring max 10.66=10% & 3.2=30% 
double beta = 9.52; // exponential censoring param:  9.52=10% & 2.56=30% 
 
 
// storage arrays and counters 
int k; 
double *select, *expLeft, *expRight, *u, *t, *tt, *c, *select_LTS, *expLTS, *tt_orig; 
double *maxsumlog00, *lambda00; 
double *maxsumlog01, *lambda01hat1, *lambda01hat2, *m01hat, *d0001, 
*smallermean01hat, *largermean01hat, *mean00hat; 
 
// storage arrays and counters 
double *v, *lam1s, *lam2s, *ms; 
 
/////// allocating memory 
 
 
//arrays of size the sample size 
select = malloc(sizeof(double)*n); 
select_LTS = malloc(sizeof(double)*n); 
expLeft = malloc(sizeof(double)*n); 
expRight = malloc(sizeof(double)*n); 
expLTS = malloc(sizeof(double)*n); 
u = malloc(sizeof(double)*n); 
t = malloc(sizeof(double)*n); 
tt_orig = malloc(sizeof(double)*n); 
tt = malloc(sizeof(double)*n); 
c = malloc(sizeof(double)*n); 
 
//arrays of size of rep 
maxsumlog00 = malloc(sizeof(double)*rep); 
lambda00 = malloc(sizeof(double)*rep); 
maxsumlog01 = malloc(sizeof(double)*rep); 
lambda01hat1 = malloc(sizeof(double)*rep); 
lambda01hat2 = malloc(sizeof(double)*rep); 
m01hat = malloc(sizeof(double)*rep); 
d0001 = malloc(sizeof(double)*rep); 
smallermean01hat = malloc(sizeof(double)*rep); 
largermean01hat = malloc(sizeof(double)*rep); 
mean00hat = malloc(sizeof(double)*rep); 
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// arrays of random size 
 
lam1s = malloc(sizeof(double)*10); 
lam2s = malloc(sizeof(double)*10); 
ms = malloc(sizeof(double)*10); 
 
/////// done allocating memory 
printf("d0001\tmean00hat\tm01hat\tsmallermean01hat\tlargermean01hat\n"); 
for(k = 0; k < rep; k++) 
{ // start of k/repition loop 
 
 
// C code 1 
int i; 
//filling the array of select expLeft and expRight 
if(debug == 2) 
printf(" select\t expLeft\t expRight\t tt \n"); 
 
double expLeft_mean = 0 ,expRight_mean = 0, select_mean = 0 ; 
for(i = 0; i < n; i++) 
{ 
 select[i] = gsl_ran_flat(r,0.0,1.0); 
 expLeft[i] = gsl_ran_exponential(r,lambda1); 
 expRight[i] = gsl_ran_exponential(r,lambda2); 
  
 expLeft_mean  = expLeft_mean  + expLeft[i]/(1.0*n); 
 expRight_mean = expRight_mean + expRight[i]/(1.0*n); 
 select_mean = select_mean + select[i]/(1.0*n); 
  
 if (select[i] <= m )  
  tt_orig[i] = expLeft[i];  
 else  
  tt_orig[i] = expRight[i]; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",select[i],expLeft[i],expRight[i],tt[i]); 
 
} 
 
 
//expLeft_mean2 = expLeft_mean2/(1.0*n); 
//select_mean = select_mean/(1.0*n); 
//expLeft_mean = expLeft_mean/(1.0*n); 
//expRight_mean= expRight_mean/(1.0*n); 
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double expLeft_var =0 ,expRight_var = 0, select_var =0; 
for(i = 0; i < n; i++) 
{ 
 select_var= select_var +(select[i]-select_mean)*(select[i]-select_mean);  
 expLeft_var= expLeft_var +(expLeft[i]-expLeft_mean)*(expLeft[i]-
expLeft_mean);  
 expRight_var= expRight_var +(expRight[i]-expRight_mean)*(expRight[i]-
expRight_mean);  
 
} 
 select_var = select_var/(1.0*n - 1.0); 
 expLeft_var = expLeft_var/(1.0*n - 1.0); 
 expRight_var = expRight_var/(1.0*n - 1.0); 
 
 
 if(debug == 2) 
 { 
 printf("lambda1= %f lambda2= %f \n" 
        "expLeft_mean = %f expRight_mean = %f ,  \n" 
        "select_mean = %f realselect_mean = %f ,  \n" 
        ,lambda1,lambda2,expLeft_mean,expRight_mean,select_mean,1.0/2); 
         
        printf("real_expLeft_var = %f real_expRight_var = %f \n" 
               "expLeft_var = %f expRight_var = %f \n" 
        "real_select_var = %f \n" 
        "select_var = %f \n" 
        ,lambda1*lambda1,lambda2*lambda2, 
        expLeft_var,expRight_var, 
        1.0/12.0, 
        select_var); 
 } 
 
// choosing a tt 
 
// end C code 1 
 
 
// C code 1.5 
//filling the array of select expLeft and expRight 
if(debug == 2) 
printf(" select_LTS\t exponLTS\t"); 
 
 
for(i = 0; i < n; i++) 
{ 
 select_LTS[i] = gsl_ran_flat(r,0.0,1.0); 
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 expLTS[i] = gsl_ran_exponential(r,9999); // assume the LTS mean = 9999  
  
 //select_LTS_mean = select_LTS_mean + select_LTS[i]/(1.0*n); 
  
 if (select_LTS[i] <= LTS )  
  tt[i] = tt_orig[i];  
 else  
  tt[i] = expLTS[i]; 
  
 //if(debug == 2) 
 //printf("%f %f %f %f \n",select_LTS[i],tt_orig[i],tt[i]); 
 
} 
 
 
//expLeft_mean2 = expLeft_mean2/(1.0*n); 
//select_mean = select_mean/(1.0*n); 
//expLeft_mean = expLeft_mean/(1.0*n); 
//expRight_mean= expRight_mean/(1.0*n); 
 
// end C code 1.5 
 
 
 
 
 
 
// C code 2 
 
//filling the array of u   
 
 
 
double mean_u=0,mean_t=0; 
 
if(debug == 2) 
printf("tt u t c \n"); 
 
if(p == 2) 
for(i = 0; i < n; i++) 
{ 
 u[i] = gsl_ran_flat(r,a,b); 
 t[i] = fmin((double)tt[i],(double)u[i]); 
        mean_t = mean_t+t[i]; 
        mean_u = mean_u+u[i]; 
 if (tt[i] <= u[i])  
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        c[i] = 1.0;  
        else c[i] = 0.0; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",tt[i],u[i],t[i],c[i]); 
} 
 
 
if(p == 1) 
for(i = 0; i < n; i++) 
{ 
 u[i] = gsl_ran_exponential(r,beta); 
 t[i] = fmin((double)tt[i],(double)u[i]); 
        mean_t = mean_t+t[i]; 
        mean_u = mean_u+u[i]; 
 if (tt[i] <= u[i])  
        c[i] = 1.0;  
        else c[i] = 0.0; 
  
 if(debug == 2) 
 printf("%f %f %f %f \n",tt[i],u[i],t[i],c[i]); 
} 
 
 
//////////////////// 
mean_t = mean_t/(1.0*n); 
mean_u = mean_u/(1.0*n); 
 
double t_var =0 ,u_var = 0; 
for(i = 0; i < n; i++) 
{ 
 u_var= u_var +(u[i]-mean_u)*(u[i]-mean_u);  
 
} 
u_var = u_var/(1.0*n - 1.0); 
 
if(debug == 2) 
{ 
printf( "mean_t = %f mean_u = %f \n" 
       ,mean_t,mean_u); 
        
printf("real_u_var = %f \n"  
       "u_var = %f \n" 
       ,((b-a)*(b-a))/12.0 ,u_var); 
 
} 
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///////////////////// 
// end C code 2 
 
// C code 3 
 
lambda00[k]  = 0; 
double csum = 0; 
double tsum = 0; 
double  p0 = 1.0; 
double logitem00; 
double x; 
double sumlog00 = 0; 
for(i = 0; i < n; i++) 
{ 
 csum = csum + c[i]; 
 tsum = tsum + t[i]; 
} 
        lambda00[k] =  csum/tsum; 
 
for(i = 0; i < n; i++) 
{ 
                x  =  exp(-lambda00[k] * t[i]); 
                logitem00 = c[i] * (log(p0)+log(lambda00[k]) - lambda00[k] * t[i] ) + (1.0-
c[i])*log(1.0 - p0 + p0*x); 
  if(debug == 2) 
  { 
   printf("x = %f \n",x); 
   printf("c[i] = %f \n",c[i]); 
   printf("p0 = %f \n",p0); 
   printf("lambda00[k] = %f \n",lambda00[k]); 
   printf("t[i] = %f \n",t[i]); 
                 printf("logitem00 = %f   sumlog00 = %f \n",logitem00,  sumlog00); 
                } 
  sumlog00 = sumlog00 + logitem00; 
} 
maxsumlog00[k] = sumlog00; 
 
// end C code 3 
 
 
// C code 4 
for(i = 0; i < 10; i++) 
{ 
lam1s[i] =  1.0/(mean_t*(-log(1-gsl_ran_flat(r,0.0,1.0)))); 
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//lam1s <-  1/(mean(t)*(-log(1-v))); 
//lam2s <- 1/(mean(t)*(-log(1-w))); 
} 
 
for(i = 0; i < 10; i++) 
lam2s[i] =  1.0/(mean_t*(-log(1-gsl_ran_flat(r,0.0,1.0)))); 
 
for(i = 0; i < 10; i++) 
  ms[i]=1-0.1*gsl_ran_flat(r,0.0,1.0); 
//u  <- runif(7,0,1); 
//ms <- 1-0.1*u; 
 
int j,kk; 
power_data my_pwr_data; 
my_pwr_data.t = t; 
my_pwr_data.u = u; 
my_pwr_data.c = c; 
my_pwr_data.size = n; 
 
 
//i =1; 
//j =1; 
//kk = 1; 
 
double maxf=-100000, max1 = -100000,max2=-100000,max3 = -100000; 
 
for(i = 0; i < 3; i++) 
{ 
for(j = 0; j < 4; j++) 
{ 
for(kk = 0; kk < 5; kk++) 
{ 
        if(debug == 1) 
 printf("i=%i j=%i kk=%i\n",i,j,kk); 
  
 s = gsl_multimin_fminimizer_alloc(TT, np); 
 ss = gsl_vector_alloc(np); 
 gsl_vector_set_all (ss, 1.0); 
 gsl_vector_set(xx, 0, log(lam1s[i])); 
 gsl_vector_set(xx, 1, log(lam2s[j])); 
 double tmpdata= log(ms[kk]/(1.0- ms[kk])) ; 
 gsl_vector_set(xx, 2, tmpdata ); 
 minex_func.f = &my_f; 
 minex_func.n = np; 
 minex_func.params = (void *)&my_pwr_data; 
 gsl_multimin_fminimizer_set(s, &minex_func, xx, ss); 
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        iter = 0; 
 int status; 
 double size; 
        do 
        { 
           iter++; 
           status = gsl_multimin_fminimizer_iterate(s); 
      
           if(status) 
             break; 
      
           size = gsl_multimin_fminimizer_size (s); 
           status = gsl_multimin_test_size (size, 1e-5); 
           if(status == GSL_SUCCESS && debug == 5) 
           { 
             printf("\n++++++++++++++++++++++++\n"); 
             printf("step   = %d \ninputs = (", iter); 
             printf("%f,", gsl_vector_get (s->x, 0)); 
             printf("%f,", gsl_vector_get (s->x, 1)); 
             printf("%f", gsl_vector_get (s->x, 2)); 
             printf(")\nf      = %f \n", s->fval); 
             printf("size   = %f\n", size); 
             printf("++++++++++++++++++++++++\n"); 
          } 
        } 
       while (status == GSL_CONTINUE && iter < 1200); 
    //  if(iter > 1000) 
    //  { 
    //         printf("\n++++++++++++++++++++++++\n"); 
    //         printf("step   = %d ????? \n", iter); 
    //         printf("++++++++++++++++++++++++\n"); 
 
     // } 
       //return status; 
//////////////////// done minimizing ///////////////////////// 
//if (- randommaxlog01result $value > maxsumlog01[k])  flag01 <- 1 else flag01 <- 0; 
            if(maxf < s->fval*-1.0) 
     { 
  if(debug == 7) 
      printf("maxf %10.17f will be replaced with %10.17f \n",maxf, s-
>fval*-1.0); 
      
         max1=  gsl_vector_get (s->x, 0); 
             max2=  gsl_vector_get (s->x, 1); 
             max3=  gsl_vector_get (s->x, 2); 
             maxf= -1.0*s->fval; 
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     } 
 if(debug == 7) 
 { 
 printf("============================\n"); 
 //printf("For starting points %f %f %f  is %f \n",s->fval); 
 // 
 printf(" starting point 1 %f \n",log(lam1s[i])); 
 printf(" starting point 2 %f \n",log(lam2s[j])); 
 printf(" starting point 3 %f \n",log(ms[kk]/(1.0- ms[kk]))); 
 printf("fval is %10.17f \n",s->fval); 
 printf("============================\n"); 
 } 
 gsl_multimin_fminimizer_free (s); 
        gsl_vector_free(ss); 
 
}}} 
 if(debug == 7) 
 { 
 printf("============================\n"); 
 printf("the last f is %f input (%f,%f,%f)\n",maxf,max1,max2,max3); 
 printf("============================\n"); 
 } 
 
// end C 4 
 
 
 
// C code 5 
 
 maxsumlog01[k] = maxf; 
 lambda01hat1[k] = exp(max1); 
 lambda01hat2[k] = exp(max2); 
 m01hat[k] = exp(max3) /(1.0+exp(max3)); 
 
if(debug == 7) 
printf("maxsumlog00[k] = %10.17f  maxsumlog01[k]) =%10.17f 
\n",maxsumlog00[k],maxsumlog01[k]); 
 
 
d0001[k] = -2.0*maxsumlog00[k]-(-2.0* maxsumlog01[k]) ; 
smallermean01hat[k] = fmin(1/lambda01hat1[k],1/lambda01hat2[k]); 
largermean01hat[k] = fmax(1/lambda01hat1[k], 1/lambda01hat2[k]); 
if(lambda01hat1[k] < lambda01hat2[k])  
      m01hat[k]  = 1- m01hat[k]; 
 
mean00hat[k] = 1/lambda00[k]; 
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//End C code 5 
 
fflush(stdout); 
printf("%10.17f\t%f\t%f\t%f\t%f 
\n",d0001[k],mean00hat[k],m01hat[k],smallermean01hat[k],largermean01hat[k]); 
fflush(stdout); 
 
 
////////////////////////////// 
 
} // end of k/repition loop 
       gsl_vector_free(xx); 
       //gsl_multimin_fminimizer_free(s); 
 
} 
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