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Abstract of the Dissertation

Lithosphere Deformation Methods and Models Constrained by

Surface Fault Data on Mars

by

Lada L. Dimitrova

Doctor of Philosophy

in

Geosciences

Stony Brook University

2009

Models of lithospheric deformation tie observed field measurements of gravity and to-
pography with surface observations of tectonic features. An understanding of the sources
of stress, and the expected style, orientation, and magnitudes of stress and associated elastic
strain is important for understanding the evolution of faulting on Mars and its relationship
to loading. At the same time, theoretical models of deformation mechanisms and forces,
when tied to tectonic observations, can be interpreted in terms of major tectonic events
and allow insights into the planet’s history and evolution as well as its internal structure
and processes. This is particularly important for understanding solid planetary bodies other
than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g.
Mars. This kind of research has implications for, and benefits from, an understanding of
the petrology and surface processes.

In this work, I use MGS MOLA and Radio Science data products (topography and
gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics
on Mars as a function of time, while satisfying geologic surface observations (surface fea-
tures) that have been and are being catalogued and studied from Viking, MOLA, MOC, and
THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects),
(2) loading from the surface and base of lithosphere, and the effects of this loading on mem-
brane and flexural strains and stresses, and (3) the role of global contraction, all viewed in
the context of how the surface elastic layer has changed as the planet has evolved. I show
that deviatoric stresses associated with gravitational potential differences do a good job at
matching the normal faults; however, fitting all the surface-breaking faults is more difficult.
I argue that global planetary contraction is an unlikely source of significant deformation.
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Instead, the simplest inverse models show that small lateral variations (1− 6%) in crust
and mantle density in conjunction with small vertical displacement, O(100m), provide suf-
ficient additional GPE and membrane stress to fit the majority of the data. These inverse
models are consistent with lithosphere modification by erosion from running water.
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Introduction

Tectonic features, observed on the surface of planetary bodies, present important clues

to the history and evolution of the solar system. These geologic features reflect the structure

and the dynamic processes which have shaped each planet. Together with topography and

gravity, maps of surface features are also one of the easiest and most commonly collected

spatial data.

Models of lithospheric deformation tie observed field measurements of gravity and to-

pography with surface observations of tectonic features. An understanding of the sources

of stress, and the expected style, orientation, and magnitudes of stress and associated elastic

strain is important for understanding the evolution of faulting on Mars and its relationship

to loading. At the same time, theoretical models of deformation mechanisms and forces,

when tied to tectonic observations, can be interpreted in terms of major tectonic events

and allow insights into the planet’s history and evolution as well as its internal structure

and processes. This is particularly important for understanding solid planetary bodies other

than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g.

Mars. This kind of research has implications for, and benefits from, an understanding of

the petrology and surface processes.

Since the late 1960s, it was recognized that plate tectonics explains many and diverse

features on Earth. Consequently, even though there is much debate on the driving forces

behind plate tectonics, it has been accepted by geoscientists in all disciplines. In contrast,

the remaining rocky planetary bodies show little to no evidence of active plate tectonics.

In the case of smaller bodies, such as Mercury and the Moon, this is due to their relatively

small size. Earth-sized and larger, including superearth, bodies are expected to have plate

tectonics (Valencia et al., 2007) although they may not if, for example, they have lost their

water, e.g. Venus. Consequently, processes other than plate tectonics play a significant

role in these planets’ evolution; yet such processes are difficult to study on Earth due to the

overwhelming dominance of plate tectonics.

Level of tectonic activity also differentiates the rocky planets in our solar system. On

one hand, Earth and Venus have experienced sufficient activity that most of their early
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histories have been destroyed; on the other hand, Mercury and the Moon seem to have

experienced little to no activity after the first two to three billion years. In contrast, Mars

appears to have just the right conditions such as to maintain geologic and tectonic activ-

ity throughout its life and to have preserved this record in features exposed at the surface.

Tectonic features on Mars are abundant. Brittle-frictional deformation is indicated by a

variety of structural features – tensional (simple and complex grabens, rifts, tension cracks,

troughs) (Wise et al., 1979; Tanaka and Golombek, 1989; Frey, 1979), compressional (wrin-

kle ridges, lobate scarps) (Watters and Maxwell, 1986; Chicarro et al., 1985), and to a

much smaller extent strike-slip (Schultz, 1989; Mangold et al., 2000; Okubo and Schultz,

2006). Although some have argued for the presence of plate tectonics in early Mars history

(Sleep, 1994; Connerney et al., 1999, e.g.), the evidence is scant and not commonly ac-

cepted. Thus, insights into the composition, structure, and history of Mars are fundamental

to understanding the solar system as a whole, and also provide additional insight into the

evolutionary history of Earth.

The unprecedented volume, quality, and coverage of data that has become available

over the last decade make it now possible to apply mature theoretical dynamic models (pre-

viously applied to Earth) that may help resolve longstanding scientific issues such as the

formation and timing of extensive graben sets radial to Tharsis (Banerdt et al., 1992; An-

derson et al., 2001), origin and distribution of wrinkle ridges (Watters, 1991, 2003; Head

et al., 2002; Schultz, 2000b,a, 2003), the relative contribution of surface and intra litho-

sphere loading (Banerdt and Golombek, 2000; Phillips et al., 2001; Dimitrova et al., 2006)

and internal loading due to chemical or convection buoyancies (Sleep and Phillips, 1985;

Harder and Christensen, 1996; Harder, 2000; Zhong, 2002; Lowry and Zhong, 2003).

In this work, I use MGS MOLA and Radio Science data products (topography and

gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics

on Mars as a function of time, while satisfying geologic surface observations (surface fea-

tures) that have been and are being catalogued and studied from Viking, MOLA, MOC,

and THEMIS IR images (Anderson et al., 2001; Schultz, 2000b, 2003; Neuffer and Schultz,

2006; Artita and Schultz, 2005; Knapmeyer et al., 2006, e.g.). I investigate (1) the role of

internal loads (internal body force effects), (2) loading from the surface and base of litho-
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sphere, and the effects of this loading on membrane and flexural strains and stresses, and

(3) the role of global contraction, all viewed in the context of how the surface elastic layer

has changed as the planet has evolved.

The sources of stress, elastic strain, and permanent deformation include (1) body forces

associated with gravitational potential energy (GPE) differences (Molnar and Lyon-Caen,

1998; Fleitout, 1991; Jones et al., 1996; Flesch et al., 2001) within the lithosphere (inferred

from topography and crustal thickness estimates on Mars (Zuber et al., 2000; Neumann

et al., 2004), (2) membrane and flexural elastic response to surface loads as well as loads

applied from below Turcotte et al. (1981); Willemann and Turcotte (1982); Banerdt (1986);

Phillips et al. (2001), and (3) contractional (compressional) stresses. Although radial and

tangential basal tractions associated with mantle convection (inferred from observationally

constrained large-scale mantle circulation models) (Kiefer et al., 1996; Zhong and Zuber,

2001; Zhong, 2002; Roberts and Zhong, 2004) may impact the lithospheric stresses, they

are not included in this study. Instead, I investigate when and where the GPE, flexural

and membrane, and global contraction stresses are insufficient to explain the faulting and

consequently require an additional source of stress such as mantle circulation.

The load distribution responsible for lithospheric stresses and strains is directly con-

strained by crustal thickness estimates (Zuber et al., 2000; Neumann et al., 2004) inferred

from MOLA topography (Zuber et al., 2000; http://pds.nasa.gov, accessed 2003) and MGS

gravity models (Tyler et al., 2001; Lemoine et al., 2001; http://pds.nasa.gov, accessed

2003). I begin by assuming that, to first order, the boundary between crust and under-

lying mantle at the time of faulting was the same as today (Nimmo and Tanaka, 2005). I

then consider additional sources of stress - either due to global contraction, or membrane

and GPE stresses. The latter is separated into effects due to the assumptions of uniform

crust and mantle densities and dynamic processes that may have modified the lithosphere

since the time of faulting.

The dissertation is organized as follows. It consists of an Introduction and Conclusion

chapters: Chapter 1 and 6 respectively. Chapter 2 focuses on the Tharsis province, which

due to its large scale and complex deformation, has long been the focus of studies on the

Martian geologic evolution. It presents the deviatoric stress field associated with horizontal
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gradients in gravitational potential energy (GPE) and briefly discusses the importance of

using the correct reference level for GPE calculations. It compares the expected fault style

and orientation associated with the GPE stress field and the normal faulting in Tharsis, as

mapped by Anderson et al. (2001), using an inner product measure. The excellent fit of

the model to the data suggests that at the time of faulting elastic thicknesses and membrane

stresses were small, a combination of brittle and ductile lithospheric deformation was likely

to be widespread, GPE stresses dominated, and the topography was supported by buoyancy

forces. Chapter 2 is published in Geophysical Research Letters (Dimitrova et al., 2006).

Currently there are two datasets of normal faults – the dataset of Anderson et al. [2001] and

the dataset of Knapmeyer et al. [2006]. We compare these data in the appendix of Chapter

2. In the appendix of chapter 2, I compare the normal fault data in the western hemisphere

of Mars from the studies of Anderson et al. (2001) and Knapmeyer et al. (2006). I also

compare two end-member flexure models – the model of Banerdt and Golombek [2000]

and a new model based on pressure differences at the bottom of the lithosphere – with the

normal fault data in Tharsis. I point out the inability of these models to match the fault

data. Subsequent chapters use the global reverse and normal fault data of Knapmeyer et al.

(2006). Chapter 3, submitted to the Journal of Geophysical Research-Planets, returns to

the GPE associated stress field and includes the full 3-D spherical methodology as well as

a comparison with the global fault data. In addition, I investigate if global contraction, in

the presence of the GPE stress field, can explain the reverse faults. Chapter 4 examines

the assumptions in the GPE associated model that (1) present-day topography is the pale-

otopography, (2) present-day crustal thickness is the paleo-crustal thickness, (3) the crustal

and mantle densities are uniform, 2900kg/m3 and 3500kg/m3 respectively, consistent with

values assumed by Neumann et al. (2004) for the crustal thickness model. I invert for

the minimum additional stress filed, associated with perturbations in gravitational poten-

tial energy differences and vertical displacements, and argue that small lateral variations

in density as well as possible material removal and/or subsidence associated with crater

excavation and erosion since the time of faulting are sufficient to explain the faulting. This

work is in preparation to be submitted to the Journal of Geophysical Research-Planets. The

thin-sheet and flexure approximations taken in present-day lithospheric stress models as-
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sume zero vertical gradients in horizontal or vertical velocity or displacement respectively.

In Chapter 5 I discuss a new methodology, which not only avoids these assumptions, but

also addresses many of the numerical challenges in modeling of lithospheric deformation,

e.g., large horizontal to vertical aspect ratio of the area geometry, discontinuous material

properties, and layers that pinch out. This chapter is a part of a paper in preparation for

Geophysical Journal International.
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Faulting: The Contribution of Gravitational Potential Energy

Lada L. Dimitrova, William E. Holt, A. John Haines, and R. A. Schultz

(Published in Geophysical Research Letters, 33, L08202, 2006)

Abstract

Current stress solutions for Mars match the long wavelength signal of present day to-

pography and gravity but fail to match many surface faults, including the normal faults in

northern Claritas Fossae north to Tantalus and Alba Fossae. A deviatoric stress field associ-

ated with horizontal gradients of gravitational potential energy (GPE) provides an excellent

fit, as measured by objective functions, to many of the normal faults in the western Martian

hemisphere as well as wrinkle ridges circumferential to Tharsis; ∼ 70% of the faults have

a misfit ≤0.1. The fit of faults to the GPE-derived stress field reflects the thermal state of

the planet at the times of faulting, and suggests that at such times elastic thicknesses and

membrane stresses were small, and topography was supported by buoyancy forces.

2.1 Introduction

The quantification of lithospheric dynamics on Mars is of fundamental importance to

the understanding of Martian geologic history and surface morphology. An understanding

of the sources of stress, and the expected style, orientation, and magnitudes of stress and

associated strain is important for understanding the evolution of faulting on Mars and its

relationship to loading. The unprecedented volume, quality, and coverage of the data make

it now possible to apply mature theoretical dynamic models (previously applied to Earth)

that may help resolve long-standing scientific issues such as the formation and timing of

extensive graben sets radial to Tharsis and the distribution of wrinkle ridges (Banerdt et al.,

1992; Banerdt and Golombek, 2000; Anderson et al., 2001; Watters, 1993; Head et al.,

2002; Schultz, 2000, 2003).
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The Tharsis province, due to its large scale and complex deformation, has long been

the focus of studies on the Martian geologic evolution, and has been intensely studied with

Viking, Mariner, and Mars Global Surveyor (MGS) data. Early models seemed to require

more than one mechanism – a combination of lithospheric uplift, isostasy, and flexure – to

explain the region’s evolution (Banerdt et al., 1992, and references therein). More recently,

Banerdt and Golombek (2000) proposed that the seeming need of multiple mechanisms

was due to the quality of data available prior to MGS, and Phillips et al. (2001) furthermore

argued that the faulting is explained by membrane flexure alone.

Banerdt and Golombek (2000) calculated the deflection of the lithosphere due to the

Tharsis load alone while satisfying the long wavelength signal of present day topography

and gravity. The resulting stress field has radial compressive stresses throughout Thar-

sis. Banerdt and Golombek (2000) show only the extensional component of the strains,

which is consistent with normal faulting on pre-existing faults radial to Tharsis and away

from the load, e.g. Memnonia, Sirenum, Thaumasia, southern Claritas, and Tempe Fos-

sae. However, the faulting extending from northern Claritas Fossae north to Tantalus and

Alba Fossae is not well explained by the membrane model, which predicts zero extension

in these areas (Banerdt and Golombek, 2000), where the density of normal faults is high

(Anderson et al., 2001).

Therefore, as pointed out by Banerdt and Golombek (2000), these faults may have

formed under different conditions (topography and gravity) than we see today. In particular,

while the bulk of the crust formed 4.5 Ga and later additions were volumetrically minor

(Nimmo and Tanaka, 2005), gravity and elastic thicknesses are unlikely to have remained

unchanged for the last 4.5 Gy. For example, it is conceivable that mantle circulation rather

than flexure played a significant role in the early support of Tharsis, producing a different

gravity field during that time (Lowry and Zhong, 2003, and references therein).

In this paper we consider a different source of stress – stress associated with internal

buoyancy forces, i.e., gravitational potential energy (GPE), constrained by topography and

crustal thickness models of Zuber et al. (2000); Neumann et al. (2004). We test the validity

of the stress model by comparing it with the strain geometry of the surface faults.
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2.2 Methodology

We solve the 3-D force-balance equations for the vertically integrated deviatoric stress

field associated with topography and crustal thickness variations using the thin-sheet method

discussed in Flesch et al. (2001), which is appropriate when the horizontal scale of the fea-

tures is much larger than the layer thickness and horizontal gradients in basal tractions

are small. The deviatoric stress solution is the unique solution that balances the body

force distribution, in this case GPE differences, while providing a global minimum of the

second invariant of stress. This finite element thin-sheet approach does not require de-

tailed descriptions of the lithosphere rheology, but only a decision of whether we choose

to treat the lithosphere as generally viscous or elastic. The solution is computed over

a global grid of 2.5◦×2.5◦ resolution, which is based on the ability of current gravity

models to resolve crustal thickness differences down to wavelengths of 300km. The in-

tegrated vertical stress, whose gradients need to be balanced by the gradients of the inte-

grated horizontal deviatoric stresses, has units of potential energy per unit area. We assume

ρcrust=2900kg/m3,ρmantle=3500kg/m3, and g=3.7m/s2, consistent with the values used

by Neumann et al. (2004) in estimating the crustal thickness model.

GPE is calculated by integrating to a depth, L, as the base of the thin shell (Molnar and

Lyon-Caen, 1988), which corresponds to the highest point within the lithosphere where

decoupling occurs below the elastic layer. For example, if there is decoupling between the

brittle upper crust and ductile lower crust, this depth is the brittle-ductile transition. On

the other hand, if there is coupling between the brittle and ductile lithosphere, this depth

is the contact between the mantle lithosphere and the convecting mantle. Assuming no

brittle-ductile lithospheric decoupling, the shallowest choice for such uniform depth is the

deepest extent of the crust on the planet (L∼92.84 km below zero topography level at Arsia

Mons). Although estimates of elastic thickness have shown variability (Banerdt et al.,

1992; Nimmo and Tanaka, 2005, and references therein), such effects are likely to be of

second order as long as L encompasses the elastic layer in all regions.
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2.3 Results

The Martian deviatoric stress field associated with horizontal GPE gradients shows, to

first order, deviatoric extension over topographically high areas transitioning to deviatoric

compression at topographically low areas (Fig. 1) due to the large degree 1 signal of the

topographic and crustal dichotomy. A notable exception to this pattern is areas with low

topography but thin crust, which exhibit propensity for deviatoric extension, e.g., Isidis

Plantitia and to a smaller extent Utopia, Argyre, and Acidalia Planitae. This effect is am-

plified if we consider greater depths L, i.e., thicker coupled layers (see Fig. S4).

We calculate the expected fault styles associated with the dynamic model. Anderson

(1951) showed how styles of faulting in the upper crust relate to principal stress magnitudes

and orientations, connecting the three major fault types to tectonic regimes. Since the

Martian surface is a free surface and the vertical stress is a principal stress, we can define a

normalized parameter

A0 = (τ1 + τ2)/
√

τ2
1 + τ2

2 (1)

to discriminate among the three major geologic fault styles associated with the styles of

the deviatoric stress field from the dynamic solution. Here τ1 and τ2 are the principal hor-

izontal deviatoric stresses, and the vertical deviatoric stress is −(τ1 + τ2) . Apart from the

exceptions already noted in connection with low topography and thin crust, normal faulting

is predicted as the dominant fault style for topographically high areas, thrust faulting for

topographically low areas, and strike-slip faulting potentially in between (Fig. 2).

We develop objective measures for the fit of stresses and associated strains with surface

fault data (fault strike θ, rake λ, dip δ, and slip magnitude u). For each area k, we perform

a Kostrov (1974) moment tensor summation to estimate the total strain tensor, εk
i j, in which

it is assumed that the unit moment tensor mk
i j(θ,λ,δ) and the slip magnitude uk do not vary

with depth within the faulted layer (Schultz, 2003).

We define objective functions that measure the correlation and misfit between the dy-

namically predicted stress field and the strain from fault observations as

C f ull = (ε · τ)/ (ET ), M f ull = 0.5 (1−C f ull), (2)
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where the metrics E and T and the inner product ε · τ are defined as

E =
√

εi jεi j, T =
√τi jτi j, ε · τ = εi jτi j. (3)

Here εi j is the 3-D strain from the Kostrov (1974) summation of fault data, and τi j is the

vertically integrated 3-D deviatoric stress (or strain) tensor obtained from the solution to

the force-balance equations. This objective function is minimized when the tensor solution

of stress or strain from the dynamic calculations is consistant with the formation of faults

with the same strike and style as the fault data; thus, it accounts for fault strike and fault

style, defined by the relative magnitudes of the principal axis of the stress tensor. The misfit

function has values from 0 to 1, with 0 misfit indicating a perfect fit.

Fig. 3B shows the misfit of 19,897 normal fault segments as identified in Anderson

et al. (2001) with the GPE model from Fig. 1. We have assumed a uniform amount of slip

for each fault as a first approximation. Although fault displacements scale primarily with

length, mechanical length depends on fault segmentation, spacing and linkage, which are

not recognized in the data set at the scale of the study. Thus, our εi j reflects the simplest

and least biased approach to incorporating fault-related strain to compare with the stress

model. Furthermore, the strain tensor is linearly proportional to the slip, and the misfit

function M f ull is insensitive to scalar multiples of either the strain or stress tensor, and thus

it is insensitive to the actual value of uk. The GPE model fits a large fraction of the normal

faults (69% of the faults have M f ull ≤ 0.1). The exceptions are areas in Margaritifer Terra,

Olympus Mons and north of Alba Patera. Since the misfit measure in Eqn. 2 reflects both

misfit to the fault strike and the fault style, we need a second measure to explain the cause

of the misfit.

A second measure of misfit between the fault data and stress data can be obtained if we

consider whether the stress field is consistent with the strike and style of pre-existing faults.

That is, we rotate the horizontal coordinates for fault strain and model stress such that the

x′ direction is aligned with the fault, and the metric and inner products are defined as

E =
√

ε′iyε′iy, T =
√

τ′iyτ′iy, ε · τ = ε′iyτ′iy. (4)
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Using these in Eqn. 2, we define a misfit Mpre−existing of the model stress to the pre-existing

faults, which measures whether the model stress field is aligned with the prescribed fault

strike such as to produce the style of faulting, in our case normal faulting, and ignores any

along strike stresses. This new misfit is plotted in Fig. 3C, and overall a slight improvement

to the fit is observed (Fig. 3.D, 71% of the faults have Mpre−existing≤0.1). A few areas

show a marked improvement (much lower Mpre−existing than M f ull), e.g., the east-west fault

at 170−157.5oW,−15oS, indicating that there we largely misfit the relative magnitudes of

the along-strike stress as compared to the fault-normal stress. Otherwise, in areas of misfit

to the normal faults, the misfit is to the stress orientation and the fault-normal stress style.

We calculate vertically integrated deviatoric stresses, and thus it is possible that the

misfitted faults were created in response of near-surface stress that is not representative

of the entire column, as may happen for example for shallow faults in the presence of a

detachment layer.

We have also performed a preliminary investigation of the shortening directions for

several sets of wrinkle ridges as identified by Watters (1993); Head et al. (2002); Withers

and Neumann (2001). While the fit to the north-trending wrinkle ridges in Solis and south-

ern Lunae Planae is poor (Fig. 4A), our GPE deviatoric stresses fit a large portion of the

wrinkle ridges in the northern plains (Fig. 4B).

2.4 Conclusions

Previous stress solutions for Mars match the long wavelength signal of present day

topography and gravity but fail to match many of the surface faults, including northern

Claritas Fossae north to Tantalus and Alba Fossae. Here, we have shown that a deviatoric

stress field associated with horizontal gradients of gravitational potential energy provides

an excellent fit to most of the normal faults in Tharsis as well as many wrinkle ridges

circumferential to Tharsis. This result suggests that many of the faults were created at times

when elastic thicknesses and membrane and flexural stresses were small, a combination of

brittle and ductile deformation was likely to be widespread, and GPE stresses dominated.

Normal faults and wrinkle ridges are not synchronous, according to the inferred strati-
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graphic ages (Anderson et al., 2001). Our model considers the time-averaged effect of

internal buoyancy forces on the deviatoric lithospheric stresses. These buoyancy forces,

together with radial basal tractions, supported the topography during the times of faulting.

Perhaps the timing of faulting, as well as the misfit of existing models with the faulting

in some regions, could be explained by systematic modeling of time-dependent sources

of stress. Such sources include sub- and intra- lithospheric volcanic loads (McGovern

et al., 2001), as well as localized reduction in elastic strength (and membrane and flexural

stresses) due to heating associated with volcanism, against a background of progressive

cooling and thickening of the lithosphere resulting in increase of membrane and flexural

stresses. For example, it is possible that the GPE associated stresses, during times of low

elastic strength, may be responsible for most of the normal faults in the Tharsis province

and the wrinkle ridges in the northern plains, while a time-dependent combination of stress

sources may explain the normal faults in Tantalus and Tempe Fossae and the wrinkle ridge

structures in Lunae and Solis Planae.
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Figure 1: Vertically integrated (L = 92.8km) deviatoric lithospheric stresses associated with
GPE variations calculated from MOLA topography and inferred crustal thickness (Neu-
mann et al., 2004), and assuming Poisson’s ratio of 0.5. Red arrows represent deviatoric
extension, while black arrows represent deviatoric compression. Global map is given in
Fig. S3.
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Figure 2: Predicted fault style, as defined in Eqn. 1 from the deviatoric stress field in Fig.
1. Global map is given in Fig. S5.
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Figure 3: A) Normal faults as identified by Anderson et al. (2001) (stage 1 – Noachian,
stage 2 – Late Noachian-Early Hesperian, stage 3 – Early Hesperian, stage 4 – Late
Hesperian-Early Amazonian, stage 5 – Middle-Late Amazonian). Areas discussed in the
text include Alba Fossae (AF), Alba Patera (AP), Claritas Fossae (CF), Lunae Planum
(LP), Mareotis Fossae (MaF), Memnonia Fossae (MeF), Margaritifer Terra (MT), Olym-
pus Mons (OM), Sirenum Fossae (SF), Solis Planum (SP), Tantalus Fossae (TaF), Tempe
Fossae (TeF), Thaumasia Fossae (ThF), and Valles Marineris (VM). B) The misfit M f ull as
defined in 2 between the faults in A) and the full deviatoric stress field from Fig. 1. C) The
misfit Mpre−existing as defined in the text between the faults in A) and the deviatoric stress
field from Fig. 1 while ignoring along fault-strike components of stress. D) Histograms of
the percent and length of faults fitted for various values of the misfits in B and C.
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Figure 4: Wrinkle ridge structures with transects roughly perpendicular to the ridges in
A) Solis Planum and B) northern flank of Alba Patera (Montesi and Zuber, 2003, and
references therein) overlain by the GPE deviatoric stress field from Fig. 1. Additional
maps are given in Figs. S7, S8.
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Evaluating Gravitational Potential Energy Stress Models and Global
Contraction Hypothesis from a Global Dataset of Surface Faults

Lada L. Dimitrova and William E. Holt

(Submitted to Journal of Geophysical Reseach – Planets)

Abstract

It has long been known that the cooling of a planet gives rise to global deviatorically

compressive thermal stresses. These thermal stresses have been considered as a possible

explanation for reverse faulting on Mercury and Mars. I have evaluated the contribution of

global contraction as recorded by the global fault data set in the presence of a lithospheric

stress field associated with horizontal GPE gradients.

Fitting only the reverse faults, while disregarding other tectonic features, can be achieved

trivially with global contraction stresses. The associated strains, radius decrease, and re-

quired temperature changes, are very small and are consistent with forward thermodynam-

ical models of global contraction. However, global contraction cannot fit both normal and

reverse faults. Consequently, the normal faults may have formed before the southern hemi-

sphere reverse faulting. Alternatively, either the global contraction stresses dissipated after

the formation of the southern reverse faults, but before the formation of the radial grabens

in the Tharsis province, or an additional source of stress is needed, and this stress must

be large and deviatorically extensional in the center of Tharsis and deviatorically compres-

sional in the periphery. Both scenarios are problematic, suggesting that global contraction

may not be a significant contributing factor for the formation of the reverse faults on Mars.

3.1 Introduction

A planet’s evolution is recorded, in part, in the surficial expression of the tectonic fea-

tures observed today. Theoretical models of deformation mechanisms and forces, when

tied to these tectonic observations, can be interpreted in terms of major tectonic events and
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allow some insights into the planet’s internal structure and processes (Carr, 1974, 1981;

Wise et al., 1979; Banerdt et al., 1992). This is particularly important for understanding

solid planetary bodies other than Earth, where the seismic data is either sparse, e.g. the

Moon, or non-existent, e.g. Mars.

In the past few decades a series of missions – flybys, orbiting spacecrafts, stationary

and roving landers on the Martian surface – have produced a wealth of images and data

on the surficial and global scale properties of Mars. Overall studies of the tectonic and

geologic history of Mars as well as small scale detailed tectonic and geologic features

have been produced from Mariner and Viking images (Plescia and Saunders, 1982; Scott

and Tanaka, 1986; Tanaka and Scott, 1987; Greeley and Guest, 1987; Tanaka et al., 1992;

Banerdt et al., 1992).

Several studies have focused on the classification, distribution and formation of com-

pressional features (Chicarro et al., 1985; Golombek et al., 1991; Watters, 1991; Watters,

1993). The most abundant compressional tectonic features are wrinkle ridges followed

by lobate scarps and high relief ridges, and can be found on both the eastern and western

hemisphere on Mars. Both regional and global origin for these features has been proposed.

Regional explanations have included a detached thicker cap underneath Tharsis (Banerdt

and Golombek, 1990), cooling and subsidence of volcanic plains or removal of overburden

by erosion in a laterally confined region (Watters, 1993, and references therein). On a global

scale, it was also recognized that horizontally isotropic stress due to global contraction may

have played a significant role in the formation of the compressional tectonic features (Sleep

and Phillips, 1985; Tanaka et al., 1991). Such global contraction is predicted by thermal

history models Schubert et al. (1992).

In a cooling planet, the cold lithosphere alone can support deviatoric stresses and adjusts

to decreasing volume of the interior. The resultant stresses are horizontally isotropic surface

stresses, whose magnitude increases with time, while the vertical stress remains constant,

equal to the depth integral of density and gravity with depth. In such a stress field, the

associated contractional features are expected to be random, which is generally not the

case on Mars. Therefore, the stresses from global contraction must be superposed on non-

hydrostatic horizontal stresses.
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Recently, two different models of the lithospheric stress have been employed to explain

the majority of the faulting in and around Tharsis. The model of Banerdt and Golombek

(2000) is dominated by the deflection of the lithosphere due to the Tharsis load, while the

model of Dimitrova et al. (2006) is a solution to the depth integrated three dimensional

force-balance equations for depth-integrated deviatoric stresses. In the model of Dimitrova

et al. (2006) the forces are related to horizontal variations in the depth integrals of vertical

stress, or gravity potential energy per unit area (hereafter referred to as GPE). The GPE

values are constrained by existing crustal structure (Zuber et al., 2000; Neumann et al.,

2004), which is generally uncompensated. The surface deviatoric stresses of Banerdt and

Golombek (2000) and the depth integrated deviatoric stresses of Dimitrova et al. (2006)

differ in magnitudes and, in many areas, have opposite patterns. Neither of these models

incorporates the possible role of global contraction. The response of global contraction is

added to the background deviatoric stress tensor field and this total stress tensor response

can be compared with observations, such as strain patterns (faulting). The choice of a

background deviatoric horizontal stress tensor field can therefore have a profound effect on

the calculation of global contraction.

To date, the question of what, if any, is the role of global contraction in the tectonic

history of Mars remains open. Mangold et al. (2000) have argued that compressional de-

formation is not due directly to the filling and cooling of volcanic plains based on the

chronology of both tectonic features and the plains. They further argue that thermal com-

pressive stress, initiated after the crust is formed, can produce a global contractional phase

consistent with the timing of the peak of compressional tectonism in Late Hesperian. Hauck

et al. (2003) note that strains from global contraction due to either long-term cooling of the

interior or cooling of the mantle associated with an episode of high volcanic flux are gener-

ally too small, and only (among the thermally driven hypotheses) global climate change can

produce the contractional strains with large temperature excursion on the order of a hun-

dred years (or small ones over longer time period). Searls and Phillips (2007) concluded

that differential compaction within Utopia and gravitational slumping of material towards

the basin center does not affect the predicted faulting, and invoked global contraction as a

possible explanation for the faulting.
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These studies have elucidated the major problems that need to be addressed in order to

explain the compressional tectonics on Mars: (1) What is the precise timing of reverse fault-

ing and the emplacement of volcanic plains? (2) What was the non-hydrostatic background

stress before contraction? and (3) What are the effects/constraints imposed by multiphase

deformation associated with normal faulting?

In this study we examine the depth integrated deviatoric stress field solution of Dim-

itrova et al. (2006) and compare it with the normal and reverse fault data from Knapmeyer

et al. (2006). We then solve for the additional, horizontally hydrostatic, stress needed to fit

subsets of the fault data. We show that it is possible to fit the reverse fault data alone with

small stresses and associated radius change. However, when we consider the timing of the

normal and reverse faults together, global contraction becomes a problematic solution to

the problem of the tectonic history on Mars.

3.2 Lithospheric Stress Model Associated with Gravita-

tional Potential Energy Differences

3.2.1 Thin Sheet Methodology

We solve the depth-integrated three-dimensional force-balance equations for the depth

integrated deviatoric stress field in the lithosphere (Flesch et al., 2001). These solutions do

not require detailed descriptions of the lithosphere rheology, but only a decision of whether

we choose to treat the lithosphere as generally viscous or elastic. We will outline the

major equations in Cartesian form below. In actuality, we use the corresponding equations

for a spherical planet, which have the same structure but a more complicated form (see

Appendix).

The 3-D Stoke’s equations for steady motion with no rate of change of momentum are

given by:
∂σi j

∂x j
+ρgẑ = 0, (1)

where σi j is the total stress, ρ is the density, g is the gravitational acceleration, ẑ is the
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unit vector in the vertical direction, and a 3-D summation notation is implied (i.e., j takes

values x, y, and z).

Following England and McKenzie (1982) and Flesch et al. (2001), we adopt a thin shell

approximation. In this approach both ∂σxz
∂x and ∂σyz

∂y are much less than ρg, and hence vanish.

This approximation enables us to use the third equation in (1), where i = 3, to define

σzz(z) =−
∫ z

−h
ρ(z′)gdz′, (2)

We define the deviatoric stress tensor as

τi j = σi j− 1
3

σkkδi j = σi j− (σzz− τzz)δi j, (3)

with a 3-D summation notation implied. Using equation (3) to substitue for total stress, σi j,

in the force-balance equations in (1), and then depth integrating these equations through a

lithospheric thickness L we obtain:

∂
∂xβ

(
ταβ + τγγδi j

)
=−Fα, (4)

where ταβ is the vertically integrated horizontal deviatoric stress tensor, Fα are the applied

horizontal body forces, and a 2-D summation notation with τγγ = τxx +τyy =−τzz is implied

(i.e., α,β,γ take values x and y). For example, Fα = ∂σzz
xα

for GPE differences, Fα =−ταz(L)

for tractions τxz(L) and τyz(L) at the base of the lithosphere, L, from mantle convection (not

included in this model), and F(L) ∝ ∂U r/r
∂xα

for elastic membrane strains and stresses, where

σzz =−
∫ L

−h

[∫ z

−h
ρ(z′)gdz′

]
dz, (5)

is the vertically integrated vertical stress of a column of lithosphere and has units of po-

tential energy per unit area on the planet surface (GPE), U r(φ,θ) =
∫ L
−hUr(r,φ,θ)dr is the

radial displacement due to loading, h is the topography, and L is the depth to the bottom of

the deforming lithosphere. If the depth L varies from a constant depth, then the associated

sliding tractions need to be accounted for. However, Ghosh et al. (2008) have shown that
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in practice the effect from the variable depth cancel out with the effect of the associated

sliding tractions, i.e., it is sufficient to integrate down to a constant depth below a mean

elevation. The system of differential equations is linear in stress, allowing for separate so-

lutions to the stress field from the various sources, Fα, to be summed to produce the total

lithospheric deviatoric solution. In this model we focus on the GPE terms.

Using a finite-element approach we solve the force balance differential equations using

the method of Flesch et al. (2001). In this methodology the global integral of the second

invariant of deviatoric stress is minimized in the process of satisfying the Stoke’s equation

i.e. we minimize a functional:

I =
∫

S

1
µ

[
ταβταβ + τ2

γγ

]
dS +

∫

S
2λα

[
∂

∂xβ
(ταβ + τγγδαβ)+Fα

]
dS, (6)

where λα are the Lagrange multipliers for the Stoke’s equation and S is the planet surface.

Using the variational principle we obtain:

ταβ =
1
2

[
∂λα
∂xβ

+
∂λβ

∂xα

]
. (7)

Note that ταβ has the same functional dependence on the Lagrange multipliers λα as the

strain/strain rate has on displacement/velocity.

Substituting the expression for ταβ from equation (7) into equation (4) yields the force

balance equations and the minimization of the functional I becomes equivalent to minimiz-

ing a functional:

J =
∫

S











τxx

τyy

τxy


−




Φobs
xx

Φobs
yy

Φobs
xy







T

V−1







τxx

τyy

τxy


−




Φobs
xx

Φobs
yy

Φobs
xy











dS (8)

where the covariance matrix V−1 relates to the Poisson’s ratio ν and the potentials vector
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Φobs relates to the body forces by

V−1 =




1
1−ν

v
1−ν 0

v
1−ν

1
1−ν 0

0 0 2


 , (9)

and 


Φobs
xx

Φobs
yy

Φobs
xy


 =




−σzz/3

−σzz/3

0


 (10)

In other words, the minimization of the functional J leads to a solution of the force

balance equations for the minimum vertically integrated deviatoric stress field associated

with GPE differences (Flesch et al., 2001).

The methodology of using optimization of equation (8) to solve the force balance equa-

tions for depth-integrated deviatoric stresses has been benchmarked (Ghosh et al., 2008)

with independent deviatoric stress output from a long wavelength (degree 12) full three-

dimensional mantle circulation model. Ghosh et al. (2008) showed that the absolute vis-

cosity of the lid (lithosphere) does not need to be known, only the input body force equiva-

lent terms (spatial variations in depth-integrated vertical stresses (GPE), and applied basal

tractions τxz(L) and τyz(L) associated with mantle convection). The combined contribution

from these two sources yielded a total deviatoric stress field in the thin shell calculation

that matched nearly exactly the deviatoric stress output for the lithospheric lid in the full

3-D calculation (Ghosh et al., 2008). The benchmarking exercises of Ghosh et al. (2008)

demonstrate the suitability of choice of functionals I and J for solving the depth-integrated

force-balance equations for cases of constant lid viscosity. In the case of Mars we assume

that τxz(L) and τyz(L) from mantle convection are negligible. However, the crustal structure

for Mars has been estimated (Zuber et al., 2000; Neumann et al., 2004) and elevations are

known. Thus, the depth integrals of vertical stress, from the surface of variable elevation

down to a common-depth reference level, L, can be computed precisely. In the method-

ology that we employ, the topography need not be compensated. That is, σzz(L) can be

variable, which is the case for Mars. For example, in the benchmarking exercise there was
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significant dynamic topography, and the thin shell method recovered the stresses precisely.

In summary, if the crustal structure were accurate and basal tractions negligible, our thin

shell methodology would accurately recover the depth integrated deviatoric stresses within

the lithosphere of Mars.

For the thin shell calculations, it is important to define a reference level, L, as the base

of the thin shell. This reference level corresponds to the highest point within the litho-

sphere where decoupling occurs below the elastic layer, and can be spatially variable. For

example, in the case where there is complete decoupling between brittle upper crust and

lower crust, this reference level consists of the brittle-ductile transition. In the case where

there is coupling between brittle lithosphere and ductile lithosphere, then the reference level

consists of the contact between convecting and non-convecting mantle/crust (base of litho-

sphere). The simplest reason for considering different reference levels is the case where

elastic thickness will increase as the planet cools. Since we do not have good constraint for

the variable bottom of the lithsophere, we choose a constant reference level, equal to the

depth of the deepest crust (L≈ 92.84) km. In choosing this reference level, we assume that

there is no mantle convection acting on the variable base of lithosphere, and no dynamic

topography.

3.2.2 Model

Figures 1 and 2 show the horizontal deviatoric lithospheric stress fields associated with

horizontal gradients in GPE derived from the topography of Zuber et al. [2000] and the

crustal thickness model of Neumann et al. [2004]. We assume ρcrust = 2900kg.m−3,

ρmantle = 3500kg.m−3, g = 3.7m.s−2, consistent with the crustal thickness inversion pa-

rameters. In the absence of indicators for a brittle-ductile transition we have chosen the

reference level L = 92.84km, corresponding to the deepest extent of the crust below the

areoid. Larger choices of L do not lead to significant differences in stress orientations; how-

ever, they do lead to somewhat larger stress magnitudes (supplementary figure 1). Finally,

we use a Poisson’s ratio ν = 0.5, which corresponds to either a viscous or incompressible

elastic rheology.
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To first order the GPE solution shows deviatoric extension over topographically high

areas transitioning to deviatoric compression at topographically low areas. A notable ex-

ception to this pattern are areas with low topography but thin crust, which exhibit propen-

sity for extensional faulting, e.g. Isidis Plantia and to a smaller extent Utopia, Argyre, and

Acidalia Plantiae. This effect is amplified if we consider elastic layers extending below the

nominal reference level.

3.2.3 Comparison with Global Fault Datasets

To date there are two datasets of global fault features on Mars. Anderson et al. [2001]

examined Viking images of the western hemisphere and compiled a database of reverse and

normal faults in the western hemisphere of Mars. Recently the study was extended to cover

the eastern hemisphere as well (Anderson et al., 2006, 2008). An alternative dataset was

produced by Knapmeyer et al. (2006) based on the MOLA maps. Both studies focus on

normal and reverse faulting, since only a few strike-slip faults have been identified (Schultz,

1989; Mangold et al., 2000; Tanaka et al., 2003; Okubo and Schultz, 2006). Both studies

dated each fault based on the unit containing the fault and absolute ages were reassigned

afterwards, based on crater chronology models of Hartmann and Neukum (2001)]. For

this study we have used the most recent MOLA-based dataset of Knapmeyer et al. (2006),

which consist of 7000 reverse and normal faults (Figure 3). Note that the normal faults

are located predominantly in the western hemisphere. In addition, almost all normal faults

are located in high topography areas, with the exception of faults along the dichotomy

boundary in the eastern hemisphere and north/northeast of Alba Patera. The reverse faults

have a more global distribution, although there are only a few areas where normal and

reverse faults overlap.

We first perform a Kostrov (1974) moment tensor summation to estimate the total strain

tensor, εi j, for a given volume, V , for that period:

εi j =
1

2µV ∑M0mi j(θ,λ,δ), (11)

where µ is the shear modulus, M0 is the moment of slip on the fault and mi j is the unit
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moment tensor, which is a function of the fault strike, θ, rake, λ, and dip, δ . The moment

of slip is defined as:

M0 = µLDu, (12)

where L is the fault length, D is the depth of faulting, and u is the magnitude of slip.

Substituting into equation (A1) above we have the average strain tensor associated with the

fault-related deformation within the volume l:

εl
i j =

1
2

n

∑
k=1

Lkuk

A
mk

i j(θ,λ,δ), (13)

where A is the area containing n fault segments, each having length Lk (Holt and Haines,

1995; Schultz, 2003). Therefore, the assumed thickness and shear modulus do not enter

into the final estimate of the strain tensor for the area, since it is implicitly assumed in this

formula that mi j(θ,λ,δ) and u do not vary with depth within the faulted or elastic layer.

Although fault displacements scale primarily with length, mechanical length depends

on fault segmentation, spacing, and linkage, which are often not recognized in the global

datasets. Hence, we assume uniform slip on each fault segment. The resulting εi j reflects

the simplest and least-biased approach to incorporating fault-related strain to compare with

the stress model. As would be seen later, the objective function that we plan to use to

measure the fit between the faults and the stress models is insensitive to scalar multiples of

either the strain or stress tensor, and thus it is insensitive to the actual value of u.

The strain from the Kostrov (1974) calculation for the normal and reverse faults of

Knapmeyer et al. (2006) assuming unit slip, is shown in Figures 4,5,6 and 7. The major-

ity of the deviatorically extensional strain is either circumferential to Tharsis and Elysium,

since it arises from systems of radial grabens, or to a smaller extent, parallel to the to-

pographic gradient near the dichotomy boundary, since it arises from a few normal faults

parallel to the boundary. The deviatorically compressional strain on the other hand is radial

to Tharsis, Hellas and Utopia, since it arises from circumferential compressional features.

Note that we have assumed a uniform amount of slip for each fault as a first approxima-

tion. Consequently, the magnitude of the calculated strain does not reflect the real absolute

strain and we will be comparing only the relative magnitudes and orientations of the princi-
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pal strains with the relative magnitudes and orientations of the modeled principal deviatoric

stresses.

We introduce a quantitative method to compare the model stress field associated with

GPE gradients and the strain derived from Kostrov summation of the faults, where we seek

to correlate the model stress with the fault strike and style. Thus we seek a correlation

between the directions and relative magnitudes of the principal stresses, but not their ab-

solute magnitudes. Following Flesch et al. (2007) and Dimitrova et al. (2006), we define

objective functions that measure the correlation C between the strain derived from the fault

data and the dynamically predicted stress field, as well as the misfit M between these as

C =
ε·τ
ET

and M =
1
2

(1−C) , (14)

where the metrics E and T and the inner product are defined as:

E =
√

εi jεi j,T =
√τi jτi j,ε·τ = εi j·τi j (15)

This objective function is minimized when the tensor solution of stress or strain from the

dynamic calculations is consistent with the formation of faults with the same strike and

style as the fault data; thus, it accounts for fault strike and fault style, defined by the relative

magnitudes of the principal axis of the stress tensor. The misfit function has values from 0

to 1, with 0 misfit indicating a perfect fit. A value of 0.5 indicates decorrelation between

the model stress and fault strain fields, e.g. a predicted strike-slip fault rotated by 45◦

from the actual normal or reverse fault. In addition, the correlation and misfit functions are

insensitive to the stress or strain magnitudes due to the normalization of the ε·τ term by

both E and T .

The misfit of the GPE stress field to the fault data is shown in Figures 8 and 9. Almost

all normal faults are located in high topography areas, with the exception of very few faults

at low elevation along the eastern part of the dichotomy boundary and north/northeast of

Alba Patera. Since the GPE associated stresses tend to be deviatorically extensional in

areas of high topography, the fit to the normal faults is generally of high quality (figure 8).
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Conversely, the abundance of reverse faults in the high topography areas of the southern

hemisphere leads to a much poorer fit of the GPE associated stresses to the reverse faults

(figure 9). Note that the northern hemisphere reverse faults are already fitted by the GPE

model, and hence, they provide no constraint on the estimates for global contraction.

3.3 Inversions for a Global Contractional Stresses

3.3.1 Methodology

As discussed in Sleep and Phillips (1985); Watters (1993), and many others, planetary

cooling can produce deviatoric stress due to the presence of an already cooled lithosphere,

which alone can support deviatoric stresses. As the lithosphere cools, the interior volume

decreases, and the horizontal stresses increase in magnitude, while the vertical stress re-

mains constant, equal to the depth integral of density and gravity with depth. Such a stress

field, when added to a non-horizontally hydrostatic stress field, changes the balance be-

tween the principal stress directions, pushing regions originally in deviatoric tension to de-

viatoric compression. Thus, we would like to solve for the horizontally homogeneous stress

field, which when added to the GPE associated stress, minimizes the misfit to the fault data

as defined in equations (14,8). Numerical stability, however, requires us to minimize a non-

normalized version of the misfit, M/E. It is important to note that we are solving for the

minimum global contractional stress that could fit the surface tectonic record; larger global

contraction may have occurred, especially on sufficiently long time scales such that the

resulting strains are small and can be accommodated in non brittle-frictional deformation.

3.3.2 Inversion Results

We show in Figures 10 and 11 the vertically integrated global stress field (GPE + global

contraction stresses) obtained from the inversion of only the reverse faults. Figure 12 shows

the misfit to the reverse faults overlaid on the reverse faults. Stresses associated with global

contraction, when added to the stresses associated with GPE differences, can fit most of the

reverse faults globally, although small misfits remain in Solis Planum, and north-northeast
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of Olympus Mons. Thus, global contraction, together with GPE, seems a possible mech-

anism for predicting the reverse faults alone globally. If global contraction stresses, in

addition to the GPE associated ones, are responsible for the reverse faulting in southern, or

all of, Mars, then the radius change resulting in the calculated global contraction stress is

given by

δR = R

[
1−

√
1

1+ ε

]
with ε =

σ
2µh

(16)

where R is the planet’s radius, ε is the horizontal strain, σ is the lithospheric thickness, σ is

the vertically integrated stress from global contraction, and µ is the shear modulus [Watters,

1993]. For the reverse faults, the vertically integrated global contraction stress required,

−0.7·1012N·m−1, for values of µ ranging between 4·1010Pa and 8·1010Pa translates to a

very small radius decrease of 0.08km to 0.16km, consistent with those inferred by Nahm

and Schultz [2007]. The associated temperature change is given by

δT =
3ε
αv

(17)

where αv is the volumetric coefficient of thermal expansion [e.g., Hauck et al., 2003]. For

reasonable values of αv on the order of 3·10−5K−1, this translates into temperature change

on the order of 5−10◦K, i.e., a very small temperature change.

However, the resultant stress field (Figure 10), produces radial compressional stresses

on Tharsis that dominate over the circumferential extensional stress, thus degrading the

fit to the normal faults, i.e., the combiend GPE and global contraction stresses from the

fit to the reverse faults misfit the majority of the normal faults on Tharsis. In fact, it is

impossible to find a contractional isotropic horizontal stress, which when added to the GPE

associated stresses, that can fit both the normal and reverse faults. Figures 13 and 14 show

the vertically integrated global stress field (GPE + global contraction stresses) obtained

from the inversion of the entire fault population of reverse and normal faults. Comparing

the misfit of this model (Figure 15) with the misfit from the inversion to the reverse faults

alone stresses (Figure 12), this combined stress field has a degraded fit to the reverse faults

in the southern hemisphere. Relative to the solution associated with GPE alone (Figures 8
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and 9), the inversion of both normal and reverse faults yields an improved fit only in Sabaea

Terra and Lunae Planum. In other words, in trying to fit the normal faults, the model fails

to improve the misfit to the majority of the reverse faults in the southern hemisphere.

Consequently, either the normal faults formed before the southern hemisphere reverse

faulting; or the stress regime needs to have changed back to one that that produces devia-

toric extension in Tharsis. Regional studies indicate that it is unlikely that the normal faults

formed before the southern hemisphere reverse faults (see also Fig 16). The stress results

suggest that in areas where the GPE stresses alone are deviatorically extensional, and the

combined GPE and global contraction stresses are deviatorically compressional (Figures

12 and 13), both normal and reverse faults would occur orthogonal to each other. In the

western hemisphere, this is observed in Sirenum Terra and to a lesser extent in Aonia Terra.

Areas around Olympus Mons and Alba Patera, however, have predominantly normal faults

with very few reverse faults. In the eastern hemisphere, the highlands north-northwest of

Hellas Plantia exhibit both normal and reverse faulting, but the remaining highlands do not.

The majority of the normal faulting extending south-southeast from Utopia Plantia is not

explained by either model.

If, however, the normal faults formed after the reverse faults, either global contractional

stresses must have dissipated after the formation of the reverse faults in the southern hemi-

sphere, but before the formation of the radial grabens in the Tharsis province; or a new,

larger, source of stress is needed. The former case requires more than 60% of the contrac-

tional stress to be accomodated by frictional sliding or ductile deformation, so that the GPE

associated stress field dominates again in the center of Tharsis. The latter case requires an

additional stress field that is extensional in the center of Tharsis, and compressional in

the periphery of Tharsis, i.e., opposite of that predicted by downward flexure-dominated

models (Banerdt and Golombek, 2000; Phillips et al., 2001; Searls and Phillips, 2007).

Upward flexure, due to a large mantle plume beneath Tharsis, can produce such a stress

field [Banerdt et al, 1992]; however, that would imply active mantle convection through the

Late Hesperian.

The crustal and mantle lithosphere have different rheological parameters (Poisson’s

ratio), so we performed a series of inversions, modifying the global contractional stress
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to reflect that difference. We considered contractional stresses, everywhere horizontally

isotropic, whose magnitude is proportional to the sum of crustal thickness and the mantle

thickness times the ratio of the Poisson’s parameter for the crust and the mantle lithosphere.

The latter was allowed to vary from 1 (illustrating the effect of variable lithospheric thick-

ness alone) to 5 in increments of 0.5. The resulting surface integrals of the misfit to the

reverse alone and both reverse and normal faults are shown in Table 1, where the base

model is the GPE and laterally unform global contraction model from figure 10, 11. The

biggest differences are due to the variable thicknesses, while the effect of the difference

in the Poisson’s ratios is small (also supplementary figure 2); however, all differences are

minor.

Watters (1993), based on the cumulative length of contractional features as a function

of age of the deformed units, noted that if the Early Hesperian is excluded, there is a

gradual decrease in compressional deformation, as expected by thermal models (Schubert

et al., 1992), and concluded that if global contraction was important for the formation of

tectonic features, its influence was most significant in the Early Hesperian. If we consider

the cumulative length of the contractional features in this study as a function of age (Figure

16), we see a peak of compressional deformation in Late Noachian, followed by a peak

throughout the Hesperian. In fact, very few contractional features have been mapped in the

Amazonian. There is also no clear gradual decrease in compressional tectonic deformation.

Such age analysis is applicable only ”if the tectonic features are roughly the same age

as the units in which they occur” (Watters, 1993). A subsequent study by Mangold et al.

(2000) shows that if chronological relationships between craters and structures are used in

dating the faults, the age progression may change significantly. Constraining the timing of

the normal and reverse faults, therefore, remains crucial to establish if global contraction is

a possible source of compressional tectonic deformation.

3.4 Summary

Theoretical models of deformation mechanisms can be compared to the surficial ex-

pression of the tectonic features observed today and interpreted in terms of major tectonic
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events, thus allowing us insights into the internal structure and processes on Mars. Pre-

vious workers hypothesized a period of global contraction during the Hesperian. In this

study we evaluate the contribution of global contraction as recorded by a global fault data

set in the presence of a lithospheric stress field associated with horizontal GPE gradients,

and estimate the associated radius decrease.

The GPE associated stresses fit the majority of the normal faults as well as the northern

hemisphere reverse faults. Stresses associated with global contraction and GPE differences

can fit most of the reverse faults alone. The associated radius decrease and temperature

difference are small, 0.08−0.16 km and 5−10◦ K respectively.

However, global contraction stresses, in conjunction with GPE associated stresses, can-

not fit both the normal and reverse faults. Consequently, the normal faults may have formed

before the southern hemisphere reverse faulting. Alternatively, either the global contrac-

tional stresses dissipated after the formation of the southern reverse faults, but before the

formation of the radial grabens in the Tharsis province, or an additional source of stress is

needed and this stress must be large and deviatorically extensional in the center of Tharsis

and deviatorically compressional in the periphery. Both scenarios are problematic, suggest-

ing that global contraction may not be a significant contributing factor for the formation of

the reverse faults on Mars.

If we consider the cumulative length of the contractional features in this study as a func-

tion of age, we see a peak of compressional deformation in Late Noachian, followed by a

peak throughout the Hesperian. In fact, very few contractional features have been mapped

in the Amazonian. There is also no clear gradual decrease in compressional tectonic de-

formation as would be expected from thermal cooling models. These results, however, are

biased due to the inherent assumption in the fault-age data that the tectonic features are

roughly the same age as the units in which they occur, and indicate that detailed studies of

the spatial and temporal distribution of faulting on Mars are needed.
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Ratio of Poisson’s parameters for the crust and mantle lithosphere
base 1 1.5 2 2.5 3 3.5

reverse 437.0 344.6 343.7 343.3 343.0 342.9 342.8
normal

and 1070 903.2 901.1 900.1 899.5 899.1 898.9
reverse

Ratio of Poisson’s parameters for the crust and mantle lithosphere
4 4.5 5

reverse 342.7 342.6 342.5
normal

and 898.7 898.5 898.4
reverse

Table 1: The surface integrals of the non-normalized misfit M/E (see text) to the reverse
alone and both reverse and normal faults for the inversions of GPE and laterally varying in
magnitude, but at each point horizontally isotropic, global contractional stress. The base
model consists of GPE stresses and no lateral variation in the global contraction stress mag-
nitude. For the remaining models, the magnitude of the contractional stress at each grid area
was allowed to vary proportionally to the sum of crustal thickness, and the mantle thick-
ness times the ratio of the Poisson’s parameter for the crust and the mantle lithosphere. The
latter was allowed to vary from 1 (illustrating the effect of variable lithospheric thickness
alone) to 5 in increments of 0.5.
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Figure 1: Vertically integrated (L = 92.84km) deviatoric lithospheric stresses associated
with GPE variations calculated from MOLA topography (Zuber et al., 2000) and inferred
crustal thickness (Neumann et al., 2004), and assuming Poisson’s ratio of 0.5 in the west-
ern hemisphere of Mars. White arrows represent deviatoric extension, while black arrows
represent deviatoric compression.
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Figure 2: Vertically integrated (L = 92.84km) deviatoric lithospheric stresses associated
with GPE variations calculated from MOLA topography (Zuber et al., 2000) and inferred
crustal thickness (Neumann et al., 2004), and assuming Poisson’s ratio of 0.5 in the east-
ern hemisphere of Mars. White arrows represent deviatoric extension, while black arrows
represent deviatoric compression.
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Figure 3: Normal (in red) and reverse (in black) faults from Knapmeyer et al. (2006).
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Figure 4: Deviatoric strain from Kostrov summation associated with the normal faults
of Knapmeyer et al. (2006) in the western hemisphere of Mars. White arrows represent
deviatoric extension. Note that we have assumed a uniform amount of slip for each fault as
a first approximation. Consequently, the magnitude of the calculated strain does not reflect
the real absolute strain, but only the orientation and relative magnitude of the tensor strain
field.
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Figure 5: Deviatoric strain from Kostrov summation associated with the normal faults
of Knapmeyer et al. (2006) in the eastern hemisphere of Mars. White arrows represent
deviatoric extension. Note that we have assumed a uniform amount of slip for each fault as
a first approximation. Consequently, the magnitude of the calculated strain does not reflect
the real absolute strain, but only the orientation and relative magnitude of the tensor strain
field.
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Figure 6: Deviatoric strain from Kostrov summation associated with the reverse faults
of Knapmeyer et al. (2006) in the western hemisphere of Mars. Black filled-in arrows
represent deviatoric compression. Note that we have assumed a uniform amount of slip for
each fault as a first approximation. Consequently, the magnitude of the calculated strain
does not reflect the real absolute strain, but only the orientation and relative magnitude of
the tensor strain field.
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Figure 7: Deviatoric strain from Kostrov summation associated with the reverse faults of
Knapmeyer et al. (2006) in the eastern hemisphere of Mars. Black filled-in arrows represent
deviatoric compression. Note that we have assumed a uniform amount of slip for each fault
as a first approximation. Consequently, the magnitude of the calculated strain does not
reflect the real absolute strain, but only the orientation and relative magnitude of the tensor
strain field.
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Figure 8: The misfit between the strain associated with the normal faults and the GPE
associated stresses. Red means a very good fit, while green and blue mean poor fit.
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Figure 9: The misfit between the strain associated with the reverse faults and the GPE
associated stresses. Red means a very good fit, while green and blue mean poor fit.
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Figure 10: The combined vertically integrated GPE and uniform global contraction stresses
for the inversion to the reverse faults in the western hemisphere of Mars. White arrows rep-
resent deviatoric extension, while black filled-in arrows represent deviatoric compression.
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Figure 11: The combined vertically integrated GPE and uniform global contraction stresses
for the inversion to the reverse faults in the eastern hemisphere of Mars. White arrows rep-
resent deviatoric extension, while black filled-in arrows represent deviatoric compression.
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Figure 12: The misfit of the stress field from Figures 10 and 11 to the reverse faults. The
reverse faults are shown in black.
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Figure 13: The combined vertically integrated GPE and uniform global contraction stresses
for the inversion to both the normal and reverse faults in the western hemisphere of Mars.
White arrows represent deviatoric extension, while black filled-in arrows represent devia-
toric compression.
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Figure 14: The combined vertically integrated GPE and uniform global contraction stresses
for the inversion to both the normal and reverse faults in the eastern hemisphere of Mars.
White arrows represent deviatoric extension, while black filled-in arrows represent devia-
toric compression.
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Figure 15: The misfit of the stress field from Figures 13 and 14 to both the normal and
reverse faults. The reverse faults are shown in black, while the normal faults are shown in
gray.
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Figure 16: Histogram of the cumulative length of the surface faults as a function of their
assigned age. Note that this age is based on the age of the deformed units containing the
faults.
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Abstract

Recent mapping of the surface of Mars has lead to the creation of expanded global

data sets of normal and reverse surface faults. The normal faults are located predominantly

in the Tharsis region and may not be the best indicator for global processes elsewhere.

The reverse fault are much more uniformly distributed and provide better constraints; in

particular, reverse faults in high topography areas are ill-fitted by a global solution of depth-

integrated deviatoric stress associated with horizontal gradients in gravity potential energy

per unit area (GPE).

The lithospheric stress models assume that (1) present-day topography is the pale-

otopography, (2) present-day crustal thickness is the paleo-crustal thickness, (3) uniform

crustal and mantle densities. However, many of the tectonically generated structures formed

early in the planet’s history and consequently possibly formed under different conditions

than we see today. Using an inverse method, I show that stresses associated with small per-

turbations to both GPE and membrane sources, when added to the GPE solution associated

with present day topography and crustal structure, provide an improved fit to many of the

faults. The inverse models show that small lateral variations (1− 6%) in crust and man-

tle density in conjunction with small vertical displacement, O(100m), provide sufficient

additional GPE and membrane stress to fit the majority of the fault data. The density dif-

ferences are only a few percent and are within the noise of the fit of the crustal model to the

gravity field. These inverse models are consistent with lithosphere modification by erosion

from running water since the time of faulting. The final depth integrated deviatoric stress

magnitudes are Earth-like, and consequently the ratio of brittle-frictional layer thickness
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to ductile layer thickness on Mars at the time of faulting may have been similar to what is

found on Earth today within moderately actively deforming orogens.

4.1 Introduction

Geologic features reflect the dynamic forces shaping the surfaces, crust, lithosphere and

deep interior of a planet. Identifying these features and how they are arranged relative to

one another can allow the global history of a planet to be reconstructed. For Mars, through

careful mapping from the Viking image data, geologic units and their relative age have long

been studied (Tanaka, 1986; Tanaka et al., 1992; Scott and Tanaka, 1986; Tanaka and Scott,

1987; Greeley and Guest, 1987; Tanaka et al., 1992; Banerdt et al., 1992) and continue to

be of interest (Tanaka et al., 2007, 2008). The resulting relative geologic history for Mars

reflects the main themes of the Martian evolution and the relative importance of different

processes through time (Head et al., 2001).

Tectonic features on Mars are abundant. Brittle-frictional deformation is indicated

by a variety of structural features – tensional (simple and complex grabens, rifts, ten-

sion cracks, troughs)(Wise et al., 1979; Frey, 1979), compressional (wrinkle ridges, lobate

scarps)(Watters and Maxwell, 1986; Chicarro et al., 1985), and to a much smaller extent

strike-slip (Schultz, 1989; Mangold et al., 2000; Tanaka et al., 2003; Okubo and Schultz,

2006). Theoretical models of deformation mechanisms can be compared to the surficial ex-

pression of the tectonic features observed today and interpreted in terms of major tectonic

events, thus allowing us insights into the internal structure and processes on Mars.

The Tharsis province, due to its large scale and complex deformation has long been the

focus of studies. Early models seemed to require more than one mechanism – a combina-

tion of lithospheric uplift, isostasy and flexure – to explain the region’s evolution (Banerdt

et al., 1992, and references therein). More recently, Banerdt and Golombek (2000) pro-

posed that the seeming need of multiple mechanisms was due to the quality of the data

available prior to MGS. The model of Banerdt and Golombek (2000) is dominated by the

flexural response due to a load centered on Tharsis. Consequently, the resulting stress field

has radial compressive stresses throughout Tharsis. Banerdt and Golombek (2000) show
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only the extensional component of the strains, which is consistent with normal faulting

on pre-existing faults radial to Tharsis and away from the load, for example, Memnonia,

Sirenum, Thaumasia, southern Claritas, and Tempe Fossae. However, the faulting extend-

ing from northern Claritas Fossae north to Tantalus and Alba Fossae is not well explained

by a flexure-dominated model, which predicts zero extension in these areas. Therefore, as

pointed out by Banerdt and Golombek (2000), these faults may have formed under differ-

ent conditions (topography and gravity) than we see today. Recent mappings (Anderson

et al., 2001, 2006; Knapmeyer et al., 2006; Anderson et al., 2008) have resulted in even

more extensional features in this area than in the Scott and Tanaka (1986) data. However, it

has been argued, e.g. Phillips et al. (2001), Head et al. (2001), and Golombek and Phillips

(2009) that the faulting is explained by membrane and flexure alone.

An alternative model (Dimitrova et al., 2006), based on stresses associated with gravita-

tional potential energy (GPE) differences, has been shown to fit (∼ 70%) faults in Tharsis,

as mapped by Anderson et al. (2001), with the majority of the misfit restricted to the region

north and northeast of Alba Patera. The GPE differences are double integrals of the density

with depth derived from the topography of Zuber et al. (2000) and the crustal thickness

model of Neumann et al. (2004). Benchmarking by Ghosh et al. (2008) shows that the

thinshell method used can recover the depth integrated deviatoric stresses within the litho-

sphere of Earth, even in the presence of significant dynamic topography. The excellent fit

of the GPE stress model of Dimitrova et al. (2006) to the normal fault data from Anderson

et al. (2001) implies that possibly the normal faults in and around Tharsis formed early in

the Martian history when elastic thicknesses, as well as membrane and flexural stresses,

were small, and viscous rather than elastic processes dominated. Alternatively, the com-

bined stress from other sources (e.g. flexure, global contraction, etc.), which may have

dominated the GPE stresses, must have a stress field style – orientation and relative magni-

tude of principal axes of the deviatoric stress field – that is similar to the stresses associated

with GPE differences.

The studies of Banerdt and Golombek (2000) and Dimitrova et al. (2006) were biased

towards the normal faults in the Tharsis province, in part due to the available datasets.

Continued mapping has lead to the creation of expanded fault data sets (Anderson et al.,
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2001, 2006; Knapmeyer et al., 2006; Anderson et al., 2008). In these data, the majority of

the normal faults mapped to date are clustered in the western hemisphere around Tharsis,

and hence, may provide a poor constraint on processes elsewhere. On the other hand, the

reverse faults are much more uniformly distributed. Consequently, a reevaluation of these

stress models outside of Tharsis is needed.

Watters (2003) argue that the normal faulting associated with the dichotomy boundary

in the eastern hemisphere, may be in response to bending stresses, but the formation of the

thrust faulting in the lowlands requires additonal stresses from erosion or global contrac-

tion. Searls and Phillips (2007) studied normal and reverse faulting in Utopia and show

that stresses resulting from the deflection of the lithosphere under the weight of the material

infilling the basin and also from self-deformation of the fill material itself are insufficient

to explain the fault patterns. Andrews-Hanna and Zuber (2007) show that the flexure dom-

inated model cannot fit recently mapped strike-slip faults on the flanks of Tharsis.

In Chapter 3, we reevaluated the fit of the GPE model to the global fault dataset of

Knapmeyer et al. (2006). Almost all normal faults are located in Tharsis, and consequently,

as in Dimitrova et al. (2006), the fit of the GPE model to them is very high. The GPE

associated stresses tend to be deviatorically extensional in areas of high topography, and

deviatorically compressional in areas of low topography. Consequently, the GPE stress

model fits the reverse faults in the northern hemisphere very well, but misfits those in

the southern hemisphere with the exception of the reverse faults in Hellas. In Chapter

3, we also evaluated if global contraction can be used to explain the misfitted southern

hemisphere faults, and find that although a small stress, and associated radius curvature (∼
0.08−0.16km) and temperature change ( 5−10◦K), can explain the reverse faulting alone,

the timing and the formation of the normal faulting then becomes a problem, suggesting

that global contraction may not be a signifficant contributing factor for the formation of the

reverse faults on Mars.

The GPE model assumes (1) that present-day topography is the paleotopography, (2)

that present-day crustal thickness is the paleo-crustal thickness, and (3) uniform crustal

and mantle densities. In this paper we consider if small perturbations in GPE or membrane

stresses, when added to the depth integrated deviatoric stresses associated with present
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day GPE differences, might explain the misfit to the faults. Perturbations in the GPE and

membrane-related stresses, which optimize the fit to the fault data, can be due to either

modifications of the lithosphere since the time of faulting and/or deviations from the as-

sumptions of laterally constant densities. Physical processes that modify the lithosphere

such as dynamic topography present at the time of Tharsis formation and/or faulting, vol-

canic construction, giant impacts, erosion, etc., lead to both a membrane displacement and

a GPE change. We estimate the minimum necessary modification of the lithosphere and

lateral variation in lithospheric densities for several scenarios for the timing of the normal

and reverse faulting.

4.2 Methodology

We perform inversions for stresses due to GPE variations and membrane displacements,

which when added to the GPE stress model of Dimitrova et al. (2006), minimize the surface

integral of a misfit function that quantifies the fit of the stress tensor field to the fault data.

We use the strain associated with the faults as discussed in Chapter 3 (Fig 3, 4,5, 6, 3.4 on

pages 48, 49,50, 51, 3.4).

First, we use the forward thin-sheet model (Flesch et al., 2001, also Chapter 3) to

calculate the Green’s function responses to forcing terms of spherical harmonics degree

and order 17. We take the thin sheet approach, which minimizes a functional J in order to

solve the depth-integrated 3-D force balance equations. This functional can be written in

spherical coordinates as

J =
∫ ∫









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Φobs
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θθ
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
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V−1


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


τφφ

τθθ

τφθ


−


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

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





cosθdφdθ

(1)

where θ,φ are longitude and co-latitude respectively, τi j are the depth integrated deviatoric
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stresses that balance the effective body force distribution, V−1 is given by

V−1 =




1
1−ν

v
1−ν 0

v
1−ν

1
1−ν 0

0 0 2


 , (2)

where ν is Poisson’s ratio. To construct the basis functions, we set the potentials, Φ, to be

components of spherical harmonics

Φobs
θθ = Φobs

φφ =





Plm(cosθ)cosmφ

Plm(cosθ)sinmφ
, Φobs

φθ = 0. (3)

The potentials, Φ, in 1 represent horizontal integrals of the effective body forces, which for

GPE are

Φobs
θθ = Φobs

φφ =−1
3

σzz,Φobs
θφ = 0, (4)

and for membrane response are

Φobs
θθ = Φobs

φφ =−2µ
r

ur,Φobs
θφ = 0, (5)

where µ is the shear modulus or shear viscosity.

We minimize the J functional for each component of spherical harmonics up to degree

and order 17 to define the global deviatoric stress field solution responses. These stress

fields are the GPE basis functions. For each degree and order, the membrane basis function

is the sum of the corresponding GPE basis function and an additional stress, τ̃i j, given by

τ̃θθ = τ̃φφ =−2µ
r

ur, τ̃θφ = 0. (6)

The GPE and membrane Green’s functions are not completely uncorrelated: a positive

vertical uplift leads to a positive GPE signal with a similar, but not identical stress field

response.

We invert for the coefficients (Alm and Blm for the Plm(cosθ)cosmφ and Plm(cosθ)sinmφ
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terms respectively) for these Green’s functions responses such that the resultant stress field,

when added to the GPE stress field, minimizes the surface integral of a misfit measure. We

modify the misfit measure M f ull of Dimitrova et al. (2006) as follows

Minv = T ∗M f ull =
1
2

(
T − ε·τ

E

)
, (7)

where the metrics E and T and the inner product are defined in terms of the fault strain εi j

and the model stress τi j as:

E =
√

εi jεi j,T =
√τi jτi j,ε·τ = εi j·τi j (8)

Like M f ull , Minv is minimized when the tensor solution of stress from the model stress is

consistent with the formation of faults with the same strike and style as the fault data; thus,

it accounts for fault strike and fault style, defined by the relative magnitudes of the principal

axis of the stress tensor. Likewise, Minv is insensitive to the strain magnitudes derived from

faulting due to the normalization of the ε·τ term by E; however, it is not insensitive to

the magnitude of the model stress, i.e., one way Minv can be minimized is by having zero

model stress. We use Minv rather than M f ull for numerical stability. The inversion for the

coefficients Alm and Blm that minimize 7 is performed using a conjugate gradient method

(Press et al., 1992, powell subroutine)

We sum the spherical harmonics weighted by these coefficients to calculate the corre-

sponding membrane displacements, δur, or GPE changes, δGPE. The perturbations to the

vertically integrated vertical stress (δGPE) is given by

δGPE(φ,θ) =−3∑
l

∑
m

Plm(cosθ) [Alm cosmφ+Blm sinmφ] , (9)

and the vertical displacement is given by

δur(φ,θ) =− r
2µ ∑

l
∑
m

Plm(cosθ) [Alm cosmφ+Blm sinmφ] . (10)

Recall that the base GPE solution is derived from present-day topography and crustal
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thickness, assuming laterally constant densities for the crust and mantle. Perturbations in

the GPE and membrane related stresses, which optimize the fit to the fault data, can be due

to either modifications of the lithosphere since the time of faulting and/or deviations from

the assumptions of laterally constant densities. Physical processes that modify the litho-

sphere such as dynamic topography present at the time of Tharsis formation and/or faulting,

volcanic construction, giant impacts, erosion, etc., lead to both a membrane displacement

and a GPE change. For the solved for membrane displacement, δur, the associated GPE

change is given by

GPEδur = ρcrust ∗g∗hcrust ∗δur +ρmantle ∗g∗ (
L0 +htopography−hcrust

)∗δur, (11)

where ρcrust = 2900kg.m−3 and ρmantle = 3500kg.m−3 are the crust and mantle densities,

g = 3.7m.s−2 is Mars gravity, hcrust is the crustal thickness, htopopgraphy is the surface to-

pography, and L0 ' 92.84km is the reference level (maximum depth of integration) from

the GPE model.

Errors in the crustal thickness model, e.g., from the assumptions of uniform lateral

crust and mantle densities, lead only to a GPE change. The GPE signal from the inversion

that is not accounted for by the GPE change associated with the membrane displacement,

δδGPE = δGPE−GPEδur , reflects possible errors in the crustal model due to assumptions

of laterally uniform mantle and crustal densities and small variations in mohography that

may not be uniquely reflected in the gravity data. Thus, we will interpret the δδGPE signal

as end-member cases for lateral variations in crustal density alone (δρcrust), mantle density

alone (δρmantle), and both crustal and mantle density with the constraint from the moment

of inertia that the crust-mantle density difference should be 600kg.m−3 (δρ).

For the end-member case for crust density variations alone we solve

δδGPE = δρcrust ∗g∗hcrust ∗
(

L0 +htopography− 1
2

hcrust

)
for δρcrust . (12)
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for the end-member case for mantle density variations alone we solve

δδGPE =
1
2

δρmantle ∗g∗ (
L0 +htopography−hcrust

)2 for δρmantle. (13)

Finally, for the end-member case for mantle density variations with crustal-mantle differ-

ence at 600kg.m−3 we solve

δδGPE = δρ∗g∗hcrust ∗
(

L0 +htopography− 1
2

hcrust

)
+

1
2

δρ∗g∗(L0 +htopography−hcrust
)2

(14)

for δρ, the perturbations to both the crust and mantle density.

4.3 Results

We performed inversions, minimizing the surface integral of the misfit Minv, for addi-

tional stresses due to GPE variations and/or membrane displacements. We examine sepa-

rately the fit to the normal and reverse faults. Due to the complementary nature of the areas

containing each type of fault, we also consider a combined dataset where we include areas

with either normal or reverse faulting but not both, i.e. we exclude the 3% of areas with

both normal and reverse faulting. For each of these strain fields, we performed inversions

minimizing the surface integral of the misfit for additional stresses due to GPE variations

only or membrane displacements only or both GPE and membrane, based on Greens basis

function responses to forcing terms of spherical harmonics degree and order 17. The re-

sulting surface integral of the residual misfit for each degree and order (up to 9) per number

of coefficients solved for, is shown in Figure 1.

The fit to the normal faults is better than the fit to the reverse faults. This is due to the

fact that the background GPE model fits the majority of the normal faults, while the reverse

faults in the southern highlands are misfitted. In all cases, there is a sharp improvement

of the fit to the data up to degree 5; at degree 9 almost all the faults are fitted well. The

number of coefficients solved for a given degree l is 2∗ (l−1)∗ (l +3).

We will consider two scenarios for the evolution of deformation on Mars: (1) that the
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normal and reverse faulting either happened simultaneously or interchangeably, and hence

we will invert to fit both normal and reverse faults, and (2) that the normal and reverse

faulting are a result of two distinct deformation events, and since the normal faults are well

fitted by the GPE base model, we will invert to fit the reverse faults only.

4.3.1 Inversion for both normal and reverse faults

We show the perturbation to the stress tensor field (the optimal sum of all basis stress

field solutions up to degree and order 5, obtained in the inversions, and hereby referred to as

the NR stress solution)(Figure 2), the combined GPE and NR stress tensor field (Figure 3),

and the misfit of the combined GPE and NR stress to the normal and reverse faults (Figure

4). The combined solution (Figure 3) continues to fit the normal faults in Tharsis and the

reverse faults in the northern hemipshere (see Figure 4 and compare with Fig 3.4, 3.4).

The normal faults along the dichotomy boundary are not well fitted. Watters (2003) argue

that features associated with the dichotomy boundary in the region formed as a result of

a combination of bending stresses related to the modification of the dichotomy boundary.

Although the normal faults associated with the region north of Alba Patera are better fitted

in the combined GPE and NR solution, some misfit remains (Fig. 4). However, Mege

(1999); Mege et al. (2003) argued these structures have been created by dike intrusions.

Overall, the combined GPE and NR model provides an improved fit to many of the

faults. For the normal faults, besides the the improvement north/north-east of Alba Patera,

additional improvement is seen in the north/northeast portion of Arabia Terra and minor

improvement is seen in the vicinity of Elysium Mons. For the reverse faults, significant

improvement is seen for the classical wrinkle ridges in Solis and Lunae Planae, while some

improvement is seen in Sirenum and Cimmeria Terrae and in the highlands surrounding

Hellas Planitia.

The solved for GPE variation, δGPE, and the membrane displacement, δur, show cor-

related changes (Fig 5, 6), requiring additional GPE and/or upward vertical displacement

west of Tharsis and at Margaritifer Terra and Meridiani Planum in the western hemisphere

and Hellas and Utopia Planitia in the eastern hemisphere, i.e., a decrease in GPE and verti-
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cal displacement since the time of faulting. The results for Tharsis may reflect deviations

from the average crustal density as proposed by Neumann et al. (2004), which will signif-

icantly affect the base GPE model. The variations in density of the crustal layer can result

through variations in the composition of the ascending and extruded material as proposed

by Woerner et al. (2009). If the extensional features north and north-east of Alba Patera are

dike intrusions, rather than faults, the additional GPE and/or upward vertical displacement

in the region may be unnecessary.

Physical processes that modify the lithosphere such as dynamic topography present at

the time of Tharsis formation and/or faulting, volcanic construction, giant impacts, ero-

sion, etc., lead to both a membrane displacement and a GPE change. For the solved for

membrane displacement, δur, the associated GPE, GPEδur , is given in Figure 7. Note that

GPEδur is an order of magnitude smaller than the solved for δGPE. Therefore, the differ-

ence, δδGPE = δGPE−GPEδur , is not much different than the solved for GPE perturbation

(Fig 8). This difference can be interpreted as possible lateral deviations in crust and/or man-

tle density from the uniform values assumed. If all the signal is attributed to lateral mantle

density deviations only, we have variations of ±170kg ·m−3(Figure 9). If all the signal is

attributed to lateral crust density deviations only, we have variation of ±72kg ·m−3(Figure

10). This range is smaller than the mantle density range since the crust is located at a larger

distance away from the GPE reference level (in this case, the base of the lithosphere). The

smallest variations of ±37kg ·m−3 (Figure 11) are achieved if we attribute δδGPE to lat-

eral density variations in both the crust and mantle such that the density contrast remains

600kg ·m−3 consistent with values derived from the moment of inertia. In all cases, these

density differences are only 1−5% and will not affect the gravity field significantly.

It is important to note that the vertical displacements are small– ±140m (Figure 6).

They are much smaller than the vertical displacements in the flexure and membrane models

(Chapter 2, Appendix). This is due to the fact that the base solution, in this case a GPE

stress model, calibrates the magnitude of the stresses needed to fit the data.
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4.3.2 Inversion for reverse faults only

We show the perturbation to the stress tensor field (the optimal sum of all basis stress

field solutions up to degree and order 5, obtained in the inversions, and hereby refereed to

as the R stress solution)(Figure 12) , the combined GPE and R stress (Figure 13), and the

misfit of the combined GPE and R stress to the reverse faults (Figure 14). The combined

GPE and R stress solution continues to fit the normal faults in the center of Tharsis, but

misfits the faults in the periphery of Tharsis (Fig 15). Therefore, fitting only the reverse

faults has resulted in a degraded fit to the normal faults. There is little to no significant

difference in the fit to the reverse faults between the GPE and NR model and the GPE and

R stress model from section 4.3.1 (compare Fig 4 and 14).

Since the GPE associated stress model fits almost all the normal fault data in Tharsis,

then the stress field at the time of normal fault formation was either the GPE stress field

alone (see Chapters 2,3) or a stress field similar in style and orientation to the GPE stress

field. However, such a stress field pattern is not consistent with models of upward or

downward flexure, global contraction, or planetary despinning (Banerdt et al., 1992, and

references therein). Therefore, so far the GPE associated stress field remains the one model

stress field that fits the normal fault data, and as such places an important constraint on the

timing of faulting and lithospheric modification. If the normal faults formed before the

reverse faults, then the majority of the processes (erosion, excavation, etc) which lead to

the lithosphere modification occurred after the reverse fault formation. More importantly,

this scenario requires an additional change to the stress regime following the formation

of the normal faults, but before the formation of the reverse faults. Such a stress field

change is opposite in stress style to the change after the reverse faulting, i.e., similar to the

one shown in Fig. 12. Alternatively, if the normal faults formed after the reverse faults,

then the majority of the lithosphere modification (opposite in sign to the scenario above)

occurred after the reverse faults formed, but before the normal faults formed.

The solved for GPE variation, δGPE, and membrane displacement, δur, show corre-

lated changes (Fig 16, 17) requiring additional GPE and/or upward vertical displacement

west of Tharsis and at Margaritifer Terra and Meridiani Planum in the western hemisphere
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and Hellas and Utopia Planitia in the eastern hemisphere, i.e., a decrease in GPE and ver-

tical displacement since the time of faulting. These areas also correlate with the results

from the combined GPE and NR model; however, the magnitude of the associated GPE

deviation and vertical displacement is a factor of 2 or 3 larger for the case obtained from

the inversion to the reverse faults alone. Furthermore, the areas of additional GPE and

displacement around Utopia is a factor of 2 to 3 more diffuse.

For the combined GPE and R stress the solved for membrane displacement, δur, and

the associated GPE, GPEδur , are given in Figures 16, 17. Note that again the GPEδur

is an order of magnitude smaller than the solved for δGPE. Therefore, the difference,

δδGPE = δGPE −GPEδur , is small (Figure 19). Interpretting this difference as possible

lateral deviations in crust and/or mantle density from the uniform values assumed gives

±212kg ·m−3 for the mantle density alone (Figure 20), ±82kg ·m−3 for the crust density

alone (Figure 21), and ±54kg ·m−3 for both the crust and mantle (Figure 22). In all cases,

these density differences are only 1−6% and will not affect the gravity field significantly.

The vertical displacements are ±240m.

4.4 Conclusions

Small lateral variations (1− 6%) in crust and mantle density in conjuncion with small

vertical displacement (O(100m)) provide sufficient additional GPE and membrane stress to

fit the majority of the data. At the time of faulting, the inversions predict additional GPE

and positive (upward) displacement (in comparison to today) in areas such as Margaritifer

Terra, Meridiani Planum, Utopia and Hellas Plantiae. These areas are associated with large

craters and/or networks of outflow channels. To first order, the models are consistent with

modification of the lithosphere by erosion, impact excavation (or post impact cooling and

associated subsidence), or other material transport processes since the time of faulting. In

particular, the material removed is of the same order of magnitude as the estimate of Hynek

and Phillips (2001) for liquid water erosion in Meridiani Planum and Margaritifer Terra

since the time of faulting.

The inversion models cannot distinguish whether the normal and reverse faulting oc-
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curred separately or intermittently. However, if they occurred separately two scenarios

exist: (1) The normal faults formed first, followed by lithospheric modification that re-

sulted in reverse faulting in the southern hemisphere. The stress style associated with this

lithosphere modification would have looked like the one shown in Fig. 12. Following

the southern hemisphere reverse faulting, a second lithosphere modification must have oc-

curred in opposite sense, resulting in the present day structure and stress field. or (2) The

reverse faults formed first, followed by the majority of the lithosphere modification that

resulted in the normal faulting in the Tharsis province. The stress style associated with this

lithosphere modification would have looked opposite to the one shown in Fig. 12. After the

formation of the normal faults, little to no further stress style change is expected, and this

can happen if there is no further lithosphere modification, or through significant increase in

the strength of the lithosphere.

The final depth integrated deviatoric stress magnitudes we calculate are Earth-like

(1− 4 ∗×1012N/m)(Ghosh et al., 2008) and at least an order of magnitude smaller than

the stresses associated with flexure-dominated models (see also Chapter 2). These magni-

tudes are calibrated by the base stress solution – in this case the GPE associated stresses.

Like on earth, such stress magnitudes can lead to considerable permanent strain through ac-

cumulation of fault displacement over time. For the case of Mars, the total strain is small.

This small strain would not have lead to a significant relaxation of topography, and there-

fore would not have lead to significant change in stress magnitudes. If the inverted stress

magnitudes are correct, then the ratio of brittle-frictional layer thickness to ductile layer

thickness on Mars at the time of faulting may have been similar to what is found on Earth

today within moderately actively deforming orogens. On the other hand, the likely large

present-day elastic thickness on Mars, precludes the possibility of active faulting today.
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Figure 1: Surface integral of the residual misfit by spherical degree and order cut-off,
inversion, and type of fault for each inversion. Red lines indicate inversions to the normal
fault data only; blue lines indicate inversions to the reverse fault data only; and purple
lines indicate inversions to both the normal and reverse data. Solid lines indicate inversions
for perturbations in both GPE and membrane stresses; dashed lines indicates inversions
for perturbations to GPE alone; and dotted lines indicates inversions for perturbations to
membrane stresses alone
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5.1 Mathematical Development

Finite difference techniques optimize a functional of the form

∫

V

W (ui,∇ jui)dV −
∫

∂V

u ·T dS (1)

for static or pseudo-static problems to obtain the Euler-Lagrange equations

∇ j

(
∂W

∂(∇ jui)

)
− ∂W

∂ui
= 0. (2)

A choice of W such that
∂W

∂(∇ jui)
= σi j (3)

is the stress tensor and

−∂W
∂ui

= fi (4)

are the body forces, where u is velocity (fluid case) or displacement (elastic case), gives the

force balance equations.

We modify the standard Euler-Lagrange variational approach for constructing the gov-

erning equations as follows to improve the stability and accuracy of numerical calculations.

The key innovation is that, for the geophysical flow and elastic deformation problems of in-

terest, the calculations are performed by separating all spatial dependencies into terms that

can be related to coordinates on a reference surface and variations perpendicular to that

surface. This results in considerable computational efficiency, as the problems are reduced

to finite element calculations only in terms of the coordinates on the reference surface.

The second key ingredient, in common with the methodology developed for general
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wave scattering problems Haines and de Hoop (1996); Haines et al. (2004), is that the

computations are performed using only physical field quantities that are continuous across

discontinuities in the medium, i.e., velocities/displacements and tractions. The advantage

in this case is computational accuracy for laterally varying layers, including pinch outs. To

formulate the problem in this way requires modification of the standard Euler-Lagrange

variational approach for constructing the governing equations.

We introduce the key elements of solving the force balance equations using COMSOL

Multiphysics. First, we will outline the geometry including the transformed vertical co-

ordinates, the forms of tangential derivative and surface normals. We then explain the

variational approach, including the forms of the functional minimized and the boundary

constraints. Last, we discuss how medium properties are incorporated, to show that the the

methodology can handle rheologies that are linear and non linear, spatially varying, and

isotropic or anisotropic, followed by detailed expressions for the isotropic case.

5.1.1 Geometry

We address the aspect ratio problem of conventional finite difference methods by sepa-

rating the problem into a horizontal component on a reference surface and a vertical com-

ponent. In other words, we want to convert all non vertical surface integrals to integrals

on the reference surface, and all volume integrals to integrals on the reference surface and

integrals over the vertical coordinate. For reasons discussed below, the reference surface

needs to be a line or a circle for 2-D problems, and a plane or a sphere for 3-D prob-

lems. Generally shaped reference surfaces cannot be used because of a need for forms

of the spatial derivatives with respect to the reference-surface coordinates to be tangen-

tial to the reference surface at all points in the medium. However, sphere/circle reference

surfaces (and plane/lines if using the flat-planet approximation) are perfectly adequate for

real-planet problems where the deviation of the actual surface normal from the radial di-

rection is small. We will denote the circle or sphere radius by r0, where the line and plane

case are derived in the limit of r0 → ∞.
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We begin by introducing a modified depth χ below the reference surface:

χ =
1

NrN−1
0

(
rN

0 − rN)
=

r0

N

[
1−

(
r
r0

)N
]

, (5)

where r is the radius at the point in question, measured from the origin of the reference

surface, and N = 2 or 3 is the dimension.

Consider a general layered geometry, with layer boundaries chosen where disconti-

nuities can exist in physical quantities (e.g. viscosity) and where quantities, for which

we solve, are discontinuous (e.g. displacements across fault surfaces). Note that vertical

boundaries project on the reference surface as curves and will be treated separately. The

shape of each boundary can be denoted by χk (φ,θ) for k = 1,2, . . ., where φ is the longitude

and θ is the latitude. We introduce a general depth coordinate ξ, which has a constant value

at the layer boundaries. Inside the kth layer we define, using linear interpolation,

χ(ξ,φ,θ) = (k−ξ)χk−1 (φ,θ)+(ξ+1− k)χk (φ,θ) (6)

Note that χ(k,φ,θ) = χk (φ,θ), and that within each layer, say the kth layer,

∂χ
∂ξ

= χk (φ,θ)−χk−1 (φ,θ) , (7)

which is constant, and equals the layer thickness in terms of the modified depth χ within

each layer.

Next we convert all spatial derivatives to either tangential derivatives on the reference

surface or derivatives with respect to the layer based depth coordinate ξ. We note that the

tangential derivative with respect to the reference surface is given by

∇⊥0 =
r
r0

(
∇− x̂

∂
∂r

)
, (8)

where x̂ is the unit radial vector. Using eq. 5 in eq. 8 we obtain

∇ =
r0

r

{
∇⊥0 − x̂

[
1−N

χ
r0

]
∂

∂χ

}
, (9)
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In the above expression, the ∇⊥0 is the tangential derivative of functions defined solely

on the reference surface, where χ = 0 and r = r0. The r0
r factor in front of ∇⊥0 modifies

∇⊥0 to give the contribution to ∇ from derivatives with respect to the tangential coordinates

at other values of χ or r. What we want is the contribution to ∇ from derivatives with

respect to the tangential derivatives for fixed values of ξ, not χ. The expressions that follow

are valid only when the reference surface is a sphere, a circle, a plane or a line. We will

use˜ to denote variables in expressions where ξ and not χ is held fixed, i.e. the curvilinear

coordinates (χ,φ,θ) are transformed to coordinates
(
ξ, φ̃, θ̃

)
, where χ = χ

(
φ̃, θ̃

)
,φ = φ̃,θ =

θ̃, the velocity/displacement u becomes ũ, etc.

Equation 9 can then be rewritten as

∇ =
r0

r
∇⊥0 +(∇χ)

∂
∂χ

. (10)

A similar expression for ∇ is obtained in terms of ∇̃⊥ and ξ

∇ =
r0

r
∇̃⊥+(∇ξ)

∂
∂ξ

, (11)

where ∇̃⊥ is the tangential derivative with respect to the reference surface with ξ fixed and

relates to the tangential derivative with respect to the reference surface,∇⊥0 by

∂χ
∂ξ

∇⊥0 =
∂χ
∂ξ

∇̃⊥−
(

∇̃⊥χ
) ∂

∂ξ
. (12)

The gradient, ∇ξ, and the derivative, ∂
∂ξ , of ξ are expressed in terms of the known expres-

sions for ∇χ, ∇̃⊥χ, and ∂χ
∂ξ as follows

∂χ
∂ξ

(∇ξ) =−r0

r
∇̃⊥χ− x̂

r0

r

(
1−N

χ
r0

)
, and (13)

∂
∂ξ

=
∂χ
∂ξ

∂
∂χ

. (14)

Finally, a scaled normal to layer boundaries (and all surface defined by ξ = const) is
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given by

ñ =−∇̃⊥χ− x̂
[

1−N
χ
r0

]
. (15)

Rewriting eq. 13 and eq. 11 in terms of ñ results in

∂χ
∂ξ

(∇ξ) =
r0

r
ñ, and (16)

∂χ
∂ξ

∇ =
r0

r

{
∂χ
∂ξ

∇̃⊥+ ñ
∂
∂ξ

}
(17)

Lastly, we will note that within each layer, functions are defined as polynomials, and con-

sequently, the lower the order of polynomials the more accurate the computation. To that

effect, ñ is a linear function of ξ within each layer, since χ is a linear function of ξ within

each layer.

5.1.2 Modified Euler-Lagrange Equations

The functional optimized is

∫

V

W
(
ui,∇ jui

)
dV −

∫

∂VT

u ·T dS (18)

−
∫

∂Vu

τ · (u−U)dS,

where ∂VT and ∂Vu are the portions of the boundary ∂V of the volume V , with the traction

boundary condition, T , applied on ∂VT , and the velocity/displacement boundary condi-

tion U applied velocity/displacement on ∂Vu. τ is the Lagrange multiplier introduced so

that optimizing with respect to τ determines that the corresponding velocity/displacement

boundary condition is satisfied on ∂Vu.

To use COMSOL Multiphysics, the integrals involved in this functional have to be

converted into combinations of integrals on the reference surface and integrals with respect

to the layer based depth coordinate ξ. Therefore, we subdivide V into the volumes Vk in L

layers k = 1, . . . ,L, and some geometries will have vertical boundaries to the Vk volumes.
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Then eq. 18 becomes

L

∑
k=1





∫

Vk

WdV −
∫

∂V k
T

u ·T dS−
∫

∂V k
u

τ · (u−U)dS





(19)

−
∫

ξ=0
x∈∂VT

u ·T dS−
∫

ξ=0
x∈∂Vu

τ · (u−U)dS

−
L−1

∑
k=1





∫

ξ=k

vk ·
(

T k+1−T k
)

dS

−
∫

ξ=k

τk ·
(

uk+1−uk
)

dS





−
∫

ξ=L
x∈∂VT

u ·T dS−
∫

ξ=L
x∈∂Vu

τ · (u−U)dS.

Here ∂V k
T and ∂V k

u denote the portions of the vertical boundaries (if any) of the kth layer

where traction and velocity/displacement boundary conditions are applied;
{

ξ=0
x∈∂VT

}
,
{

ξ=0
x∈∂Vu

}
,

and
{

ξ=L
x∈∂VT

}
,
{

ξ=L
x∈∂Vu

}
, are the corresponding portions of the top (ξ = 0) and bottom (ξ = L)

boundaries of the model, T k and T k+1are the tractions, and uk and uk+1are the veloci-

ties/displacements on the kth and (k +1)th layer on either side of the layer boundary k = ξ.

For the intermediate layer boundaries (ξ = 1, . . . ,L−1) we have introduced Lagrange con-

straints to ensure continuity of tractions and velocity/displacement with the associated La-

grange multipliers denoted by vk and τk. Increments in volume dV are given by

dV =
∂χ
∂ξ

dξdS0. (20)

Increments in surface area dS is given by

ndS =±r0

r
ñdS0 (21)

for surfaces on which ξ = const, where dS0 is the increment in area of the projection onto
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the reference surface of dS, and

ndS =±r0

r
n0dl0

∂χ
∂ξ

dξ (22)

for vertical boundaries, where dl0 is the increment in arc-length of the projection onto

the reference surface of dS, and n0 is the normal to that projection curve in the reference

surface.

We next note that the functions integrated in the surface integrals of eq. 19 are all of the

form of velocity/displacement multiplied by a traction/traction-like term, i.e., the surface

integral terms are generally of the form

∫
u ·T dS =

∫
uiTidS (23)

=
∫

uiσi jn jdS

=




±∫∫

uiσi j
r0
r ñ jdS0 for boundaries ξ=const

±∫∫
uiσi j

r0
r n0

jdl0
∂χ
∂ξ dξ for vertical boundaries

=




±∫∫

ũiσ̃indS0 for boundaries ξ=const

±∫∫
ũiσ0

indl0
∂χ
∂ξ dξ for vertical boundaries

,

where we have introduced the modified velocity/displacement

ũ =
r0

r
u, (24)

and modified tractions

σ̃in = σi jñ j for boundaries ξ=const (25)

σ0
in = σi jn0

j for vertical boundaries. (26)
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The gradient of velocity/displacement u can be expressed using eq. 17 and 24 as

∂χ
∂ξ

∇ jui =
∂χ
∂ξ

∇̃⊥j ũi + ñ j
∂ũi

∂ξ
+

∂χ
∂ξ

x̂ j
ũi

r0
. (27)

The quantities ũi, ∇̃⊥j ũi, and σ̃in are continuous across non-vertical interfaces, while
∂ũi
∂ξ is not. Therefore, we convert to using ũi, ∇̃⊥j ũi, and σ̃in as the basic variables in the

variational approach. We first note that

σ̃in =
∂W

∂
(

∂ũi
∂ξ

) ∂χ
∂ξ

, (28)

and define a new functional

W̃
(

ũi, ∇̃⊥j ũi, σ̃in

)
= σ̃in

∂ũi

∂ξ
−W

∂χ
∂ξ

. (29)

Derivatives of W̃ are given by:

∂W̃
∂σ̃in

=
∂ũi

∂ξ
, (30)

∂W̃
∂ũi

=
∂χ
∂ξ

(
r
r0

fi− 1
r0

σi jx̂ j

)
, (31)

and
∂W̃

∂(∇̃⊥j ũi)
=−∂χ

∂ξ
σil(δ jl− x̂ jx̂l), (32)

where (δ jl− x̂ jx̂l) is the horizontal projection operator. We thus define f̃i = r
r0

fi. Note that

then u · f = ũ · f̃ .
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We replace W ∂χ
∂ξ with

[
σ̃in

∂ûi
∂ξ −W̃

]
in eq. 19 to obtain

L

∑
k=1

k∫

k−1





∫

S0

[
σ̃in

∂ûi

∂ξ
−W̃

]
dS0−




∫

∂Sk
0T

ũ ·T 0dl0−
∫

∂Sk
0u

τ0 · (ũ−Ũ
)

dl0


 ∂χ

∂ξ





dξ (33)

+
∫

ξ=0
x∈∂VT

ũ · T̃ ξdS0 +
∫

ξ=0
x∈∂Vu

τ̃ξ · (ũ−Ũ
)

dS0

−
L−1

∑
k=1





∫

ξ=k

ṽk ·
(

σ̃k+1
in − σ̃k

in

)
dS0 +

∫

ξ=k

τ̃ξk ·
(

ũk+1− ũk
)

dS0





−
∫

ξ=L
x∈∂VT

ũ · T̃ ξdS0−
∫

ξ=L
x∈∂Vu

τ̃ξ · (ũ−Ũ
)

dS0,

where T 0
i = σi jn0

j and T̃ ξ
i = σi jñ j.

On optimizing eq. 33 with respect to σ̃in we get back eq. 30

∂ũi

∂ξ
=

∂W̃
∂σ̃in

, (34)

and optimizing eq. 33 with respect to ũi and integrating by parts with respect to the hori-

zontal coordinates as well as ξ, the Euler-Lagrange equation is then

−∂σ̃in

∂ξ
=

∂W̃
∂ũi

− ∇̃⊥j

(
∂W̃

∂(∇̃⊥j ũi)

)
. (35)

Additionally we get T 0
i = σi jn0

j = τ0
i , T̃

ξ
i = σ̃in = τ̃ξ

i , and σ̃k+1
in = σ̃k

in.

Together eqs. 34 and 35 define the dependence of ũi and σ̃in on the depth coordinate ξ.

All that remains to be done is to obtain expressions for σi j and ∂W̃
∂σ̃in

, which will require the

additional of the stress-strain relationship and will account for the material properties.
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5.1.3 Material Properties

To obtain expressions for σi j and ∂W̃
∂σ̃in

, we need the stress-strain relation, which depends

on the material properties. We begin by showing the relations for an anisotropic rheology,

which have a compact form, and then give the expression for an isotropic rheology.

Anisotropic Rheology

Consider an anisotropic rheology with W of the form

W (ui,∇ jui) =
1
2

F(D2)−ui fi, (36)

where

D2 = νi jpq(∇ jui)(∇puq) and νi jpq = νqp ji. (37)

For such a rheology, eq. 3 gives

σi j =
∂W

∂(∇ jui)
= F ′(D2)νi jpq(∇puq), (38)

where F ′(D2) is the derivative of F(D2) with respect to D2. Examples include power-law

rheologies

F(D2) = b
2n

(n+1)
D1+ 1

n , F ′(D2) = bD
1
n−1, (39)

where the case n = 1 corresponds to a standard linear anisotropic relationship between σi j

and ∇ jui.

Recall that from eq. 25 and 27

∂χ
∂ξ

∇ jui =
∂χ
∂ξ

[
∇̃⊥j ũi +

1
r0

x̂ jũi

]
+ ñ j

∂ũi

∂ξ
, and (40)

σ̃in = σi jñ j (41)

We want to convert the relationship between σi j and ∇ jui into a relationship between σi j
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and a combination of ũi, ∇̃⊥j ũi and σ̃in. We define

dpq = ∇̃⊥p ũq +
1
r0

x̂pũq, (42)

ν̃inpq = νi jpqñ j, (43)

ν̃i jnq = νi jpqñp, (44)

ν̃innq = νi jpqñ jñp, (45)

and η̃iq will denote the second-rank tensor inverse of ν̃innq. From

∂χ
∂ξ

σi j =
∂χ
∂ξ

F ′(D2)νi jpqdpq +F ′(D2)ν̃i jnq
∂ũq

∂ξ
(46)

it follows that
∂χ
∂ξ

σ̃in =
∂χ
∂ξ

F ′(D2)ν̃inpqdpq +F ′(D2)ν̃innq
∂ũq

∂ξ
, (47)

and hence,
∂ũi

∂ξ
=

∂χ
∂ξ

{
1

F ′(D2)
η̃ikσ̃kn− η̃ikν̃knrsdrs

}
. (48)

The right-hand side of this last equation (48) is one of the desired expressions, that for ∂W̃
∂σ̃in

.

To obtain the expression for σi j we substitute for ∂ũq
∂ξ into the first of the above equations

(46):

σi j = F ′(D2)
[
νi jrs− ν̃i jnqη̃qkν̃knrs

]
drs + ν̃i jnqη̃qkσ̃kn (49)

Isotropic Rheology

For a linear rheology F(D2) = D2. Then F ′(D2) = 1 and equation 38 becomes

σi j = νi jpq∇puq (50)

In terms of the Lamé parameters λ and µ the constitutive relation in the isotropic case is

given by

σi j = λεkkδi j +2µεi j, (51)
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where εi j = 1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
is the strain, δi j is the Kronecker delta function, and summation

notation is implied, i.e., εkk is the dilatation. Rewriting in terms of ∇puq gives

σi j =
[
λδi jδpq +µ

(
δipδ jq +δiqδ jp

)]
∇puq. (52)

Then

νi jpq = λδi jδpq +µ
(
δipδ jq +δiqδ jp

)
, (53)

and equations 43-45 become

ν̃inpq = νi jpqñ j = λñiδpq +µ
(
δipñq +δiqñp

)
(54)

ν̃i jnq = νi jpqñp = λδi jñq +µ
(
δ jqñi +δiqñ j

)
(55)

ν̃innq = νi jpqñ jñp = λñiñq +µ
(
ñiñq +δiq|ñ|2

)
(56)

= (λ+2µ) ñiñq +µ|ñ|2
(

δiq− ñiñq

|ñ|2
)

.

The second rank tensor inverse of ν̃innq is

η̃iq =
1

(λ+2µ) |ñ|4 ñiñq +
1

µ|ñ|2
(

δiq− ñiñq

|ñ|2
)

. (57)

The last term that needs to be evaluated for equation 48 is

η̃ikν̃knrs = λ
(λ+2µ)|ñ|2 ñiδrs + 2µ

(λ+2µ)|ñ|4 ñiñrñs (58)

+ 1
|ñ|2

[(
δir− ñiñr

|ñ|2
)

ñs +
(

δis− ñiñs
|ñ|2

)
ñr

]

Finally, for equation 49 we need to evaluate

νi jrs− ν̃i jnqη̃qkν̃knrs = 2λµ
λ+2µ

(
δi j− ñiñ j

|ñ|2
)(

δrs− ñrñs
|ñ|2

)
(59)

+ µ
[(

δir− ñiñr
|ñ|2

)(
δ js− ñ j ñs

|ñ|2
)

+
(

δis− ñiñs
|ñ|2

)(
δ jr− ñ j ñr

|ñ|2
)]

.
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5.2 2-D Example for a Two Layer Lithosphere on a Circle

We consider a simple 2-D example on a circle consisting of a crust with density of

2900kg.m−3 and mantle with density of 3500kg.m−3 and shear modulus or viscosity ratio of

crust to mantle of 0.5. We define a mountain with sinusoidal shape with adjusted maximum

height (-χ) of 0.005 on a unit circle (see Fig 1). These numbers correspond roughly to the

height and wavelength of Tharsis on Mars. The crustal thickness is calculated as the one

needed to achieve Airy isostasy, which results in a pinch out in the mantle layer underneath

the peak. In addition, since the pressure differences at the base of the lithosphere are zero,

we expect no flexural stresses. We insert a zero thickness layer between the crust and the

mantle, which we use to allow for slip between the two layers.

We show the radial (Ur) and tangential (U p) adjusted displacements (Figure 2), radial

(Tr) and tangential (T p) adjusted tractions (Figure 3), and the three components of adjusted

stress (Figure 4) for three cases with increasing amount of slip between the layers.

In all three cases, the radial displacement is large and negative (pointing downwards) at

the peak and gradually transitions to smaller and positive in the periphery. The tangential

displacement is symmetric around the peak. This is consistent with the expected behavior

of a mountain relaxation and slight overall crustal thickening. If no slip is allowed between

the two layers, the displacements are continuous. As we increase the amount of slip be-

tween the layers, a larger portion of the displacement is accommodated by the slip, leading

to decreased displacement in the mantle. At slip of 5e− 1, ∼ 40% of the horizontal dis-

placements in the upper layer are accounted for in the slip layer, leaving ∼ 60% for the

lower layer. At slip of 5e0, ∼ 80% of the horizontal displacements in the upper layer are

accounted for in the slip layer, leaving ∼ 20% for the lower layer.

The tractions are continuous, and do not change much for the different slip cases, be-

cause they are dominated by the pressure, which also dominated the mean normal stress

component (Srr +Spp)/2.

Layers that pinch out represent a singularity for the system of differential equations

we solve. However, singularities in this method are well contained both spatially and in

magnitude (see the (Spp−Srr)/2 component of stress for the no slip case in Fig. 4).
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Figure 1: Geometry of a 2-D example on a circle in terms of adjusted depth χ consisting of
3 layers – crust, mantle and an infinitesimally thin layer used to allow for slip between the
other two layers. The layer boundaries ξ take values from 1 to 4.
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Conclusions

In this work, I use MGS MOLA and Radio Science data products (topography and

gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics

on Mars as a function of time, while satisfying geologic surface observations (surface fea-

tures) that have been and are being catalogued and studied from Viking, MOLA, MOC,

and THEMIS IR images. Normal faults and wrinkle ridges are not synchronous according

to the inferred stratigraphic ages.

I investigate (1) the role of internal loads (internal body force effects), (2) loading from

the surface and base of lithosphere, and the effects of this loading on membrane and flexural

strains and stresses, and (3) the role of global contraction, all viewed in the context of how

the surface elastic layer has changed as the planet has evolved.

Previous stress solutions for Mars match the long wavelength signal of present day to-

pography and gravity but fail to match many of the surface faults, including northern Clar-

itas Fossae north to Tantalus and Alba Fossae. Here, I have shown that a deviatoric stress

field associated with horizontal gradients of gravitational potential energy (GPE) provides

an excellent fit to most of the normal faults in Tharsis as well as many wrinkle ridges cir-

cumferential to Tharsis. This result suggests that many of the faults were created at times

when elastic thicknesses and membrane and flexural stresses were small, a combination of

brittle and ductile deformation was likely to be widespread, and GPE stresses dominated.

Global stress models need to be scored by global tectonic data. Currently two datasets

of surface breaking normal and reverse faults exist – Anderson [2001], Anderson et al.

[2008] and Knapmeyer et al. [2006]. I compare the two datasets using a misfit function

designed to compare fault styles and strikes only. The two datasets are similar, with very

few exceptions. Firstly, while both Anderson et al. [2001] and Knapmeyer et al. [2006]

mapped faults whose strikes vary into two or more segments, only the Knapmeyer [2006]

dataset retains the information about the segmentation. Therefore, the absolute magnitude

of the strain will vary depending on which dataset is used. The spatial coverage by the two

datasets differs only in the periphery of Tharsis.

I also consider end-member flexure-dominated models. I examine the flexure-dominated
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model of Banerdt and Golombek [2000] and a membrane model, associated with dynamic

topography, and show that they fail to fit coevally the current fault data. These models

demonstrate just a few of the possible scenarios for the non-unique problem of the loading

history of Tharsis. Yet, neither model fits the normal faults in and around Tharsis as well

as the GPE model. Since the faults reflect the thermal state of the planet at the time of their

formation, I argue that many of the faults were created at times when elastic thicknesses

and membrane and flexural stresses were small and topography was supported by buoyancy

forces.

It has long been known that the cooling of a planet gives rise to global deviatorically

compressive thermal stresses. These thermal stresses have been considered as a possible

explanation for reverse faulting on Mercury and Mars. I have evaluated the contribution of

global contraction as recorded by the global fault data set in the presence of a lithospheric

stress field associated with horizontal GPE gradients.

Fitting only the reverse faults, while disregarding other tectonic features, can be achieved

trivially with global contraction stresses. The associated strains, radius decrease, and re-

quired temperature changes, are very small and are consistent with forward thermodynam-

ical models of global contraction. However, global contraction cannot fit both normal and

reverse faults. Consequently, the normal faults may have formed before the southern hemi-

sphere reverse faulting. Alternatively, either the global contraction stresses dissipated after

the formation of the southern reverse faults, but before the formation of the radial grabens

in the Tharsis province, or an additional source of stress is needed, and this stress must

be large and deviatorically extensional in the center of Tharsis and deviatorically compres-

sional in the periphery. Both scenarios are problematic, suggesting that global contraction

may not be a significant contributing factor for the formation of the reverse faults on Mars.

The lithospheric stress models assume that (1) present-day topography is the pale-

otopography, (2) present-day crustal thickness is the paleo-crustal thickness, (3) uniform

crustal and mantle densities. However, many of the tectonically generated structures formed

early in the planet’s history and consequently possibly formed under different conditions

than we see today. I show that stresses associated with small perturbations to both GPE

and membrane sources, improve the fit to many of the faults. The inverse models show
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that small lateral variations (1−6%) in crust and mantle density in conjunction with small

vertical displacement, O(100m), provide sufficient additional GPE and membrane stress to

fit the majority of the fault data. The density differences are only a few percent and are

within the noise of the fit of the crustal model to the gravity field. The results from the

inverse models are consistent with lithosphere modification by erosion from running water.

Thinsheet and flexure models solve the force-balance equations using simplified as-

sumptions of zero vertical gradients in horizontal or vertical velocities. In discontinuous

media, derivatives of displacement/velocity perpendicular to interfaces are not continuous

and are not adequately represented in discretization schemes that are not aligned with the

interfaces. Also, problems are often encountered where material properties are discontin-

uous as well as where layers pinch out, requiring infinitesimally small elements for fully

accurate results.

I present a new approach, which has neither of these deficiencies. The key innovation

is that, for the geophysical flow and elastic deformation problems of interest, the calcula-

tions are performed by separating all spatial dependencies into terms that can be related

to coordinates on a reference surface and variations perpendicular to that surface. This

results in considerable computational efficiency, as the problems are reduced to finite el-

ement calculations only in terms of the coordinates on the reference surface. The second

key ingredient is that the computations are performed using only physical field quantities

that are continuous across discontinuities in the medium, i.e., velocities/displacements and

tractions. The advantage in this case is computational accuracy for laterally varying layers,

including layer pinch-outs.
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Appendix 1.2. Comparison of Two Normal Fault Datasets for Tharsis,

Mars

Overall studies of the tectonic and geologic history of Mars as well as small scale de-

tailed tectonic and geologic features have been produced from Mariner and Viking images;

however, there are very few attempts to produce datasets on a global stratigraphic frame-

work. Some of the earlier maps show grabens present mostly in the western hemisphere

and wrinkle ridges spread through both hemispheres (Banerdt et al., 1992, and references

therein)(Figure S9A).

Anderson et al. (2001) examined Viking images of the western hemisphere and com-

piled a database of 24 452 tectonic features in the western hemisphere of Mars (Figure

S9B). Of those, 19,896 were identified as extensional features distributed radially and 4,556

compressional features distributed concentrically around Tharsis. For simplicity, curvilin-

ear features were broken into multiple linear segments at points where the trend seemed to

diverge and information on fault segmentation, spacing and linkage was not recognized in

the data set. Mapped features were assigned the age of the youngest stratigraphic unit they

crossed and the faults were assigned to one of five time stages. Recently the study was ex-

tended to cover the eastern hemisphere as well (Anderson et al., 2006, 2008) (Figure S9C).

The extensional features are predominantly in the western hemisphere and are associated

with Tharsis and Elysium, while the compressional features are found in both hemispheres

and can be associated with large impact crates and Syria Planum.

An alternative dataset was produced by Knapmeyer et al. (2006) (Figure S9D). Based on

MOLA maps artificially illuminated from two orthogonal viewing directions, they mapped

faults 4km or longer. They focused on normal and thrust faults only and dated each fault

based on the unit containing the fault. Such ages represent an upper limit only since the

fault could have formed any time after the formation of the geologic unit. Absolute ages

were reassigned afterwards based on frequency of craters with diameter or larger and up-

dated polynomial crater chronology model of Hartmann and Neukum (2001).

A natural question arises: are there differences between the two datasets? Both studies

focus on normal and reverse faulting, since only a few strike-slip faults have been identified
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(Schultz, 1989; Mangold et al., 2000; Tanaka et al., 2003; Okubo and Schultz, 2006). Both

studies dated each fault based on the unit containing the fault and absolute ages were reas-

signed afterwards, based on crater chronology models of Hartmann and Neukum (2001).

Therefore, differences, if they exist, will be in the completeness of each fault data set and

the interpretation of the style of faulting.

For geodynamics studies such as the one presented in Chapter 2, the proper comparison

of a model stress field is with the paleo-strain. The strain that can be inferred from observed

faults is just one component of the paleo-strain field. Yet, for Mars these fault data sets are

the only current evidence available for the paleo-strain. The strain that can be inferred from

these faults is only a lower bound to this paleo-strain. Additional sources of strain, which

could be either large or small compared to the fault strain, include residual elastic strain,

accommodated in non brittle-frictional deformation, as well as strain taken up by faults that

either never broke the surface or were subsequently buried. Therefore, using fault data to

constrain anything more than orientation and relative magnitude of paleo-strain would be

over-interpreting the observations.

For each dataset, we calculate the Kostrov (1974) tensor summation estimate of the total

strain tensor, εi j, for a given volume, V , for each fault

εi j =
1

2µV ∑M0mi j(θ,λ,δ), (A1)

where µ is the shear modulus, M0 is the moment of slip on the fault and mi j is the unit

moment tensor, which is a function of the fault strike, θ, rake, λ, and dip, δ . The moment

of slip is defined as:

M0 = µLDu, (A2)

where L is the fault length, D is the depth of faulting, and u is the magnitude of slip.

Substituting into equation (A1) above we have the average strain tensor associated with the

fault-related deformation within the volume l:

εl
i j =

1
2

n

∑
k=1

Lkuk

A
mk

i j(θ,λ,δ), (A3)
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where A is the area containing n fault segments, each having length Lk (Holt and Haines,

1995; Schultz, 2003). Note that the assumed thickness and shear modulus do not enter

into the final estimate of the strain tensor for the area, since it is implicitly assumed in this

formula that mi j(θ,λ,δ) and u do not vary with depth within the faulted or elastic layer.

Although fault displacements, u, scale primarily with length, mechanical length de-

pends on fault segmentation, spacing, and linkage, which are often not recognized in global

datasets. In particular, while both Anderson et al. (2001) and Knapmeyer et al. (2006)

mapped faults whose strikes vary into two or more segments, only the Knapmeyer et al.

(2006) dataset retains the information about the segmentation. Therefore, the absolute

magnitude of the strain will vary depending on which dataset is used.

To compare the two datasets, we assume uniform slip on each fault segment. The

resulting εi j reflects the simplest and least-biased approach to incorporating fault-related

strain to compare with the stress model. Furthermore, we define the objective function

that measures the fit between the fault datasets such that it is insensitive to scalar multiples

of either fault data strain tensor, and thus it is insensitive to the actual value of u. This

objective function is given by

C f ull = (ε · τ)/ (ET ), M f ull = 0.5 (1−C f ull), (A4)

where the metrics E and T and the inner product ε · τ are defined as

E =
√

εi jεi j, T =
√τi jτi j, ε · τ = εi jτi j. (A5)

Here εi j and τi j are the 3-D strain from the (Kostrov, 1974) summation of the two fault

datasets.

This objective function is minimized when the two fault data sets have, in each grid

area, faults in the same style and orientation as each other. The misfit function has values

from 0 to 1, with 0 misfit indicating a perfect fit. For example the misfit function will have

a value of 0 in a grid area if both datasets have normal fault(s) with the same strike, 0.5 if

one of them predicts strike slip fault(s) with the same orientation instead, and 1 if one of
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them predicts a reverse fault with the same orientation instead.

The misfit, M f ull , between the strain fields associated with the Anderson et al. (2001)

and Knapmeyer et al. (2006) datasets, assuming unit slip and that faulting extended through

the entire lithosphere is shown in Fig S10. Note that in general there is excellent agreement

between the two datasets. The few areas in yellow reflect variation of fault strike between

the datasets. The coverage by the two datasets differs only in the periphery of Tharsis as

signified by the gray (Anderson et al. (2001) data but no Knapmeyer et al. (2006) data) and

black (Knapmeyer et al. (2006) data but no Anderson et al. (2001) data).
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Figure S10: Misfit between the strain fields derived from Anderson et al. (2001) and Knap-
meyer et al. (2006) datasets for the normal faults in the western hemisphere. Red indicates
good fit, while yellow through green to blue indicates a misfit. Gray signifies areas where
data exists in the Anderson et al. (2001) data set but not in the Knapmeyer et al. (2006)
dataset, while black signifies areas where data exists in the Knapmeyer et al. (2006) dataset
but not in the Anderson et al. (2001) dataset.
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Appendix 1.3. Flexure-Dominated Stress Models for Tharsis, Mars

The Tharsis province, due to its large scale and complex deformation, was the focus

of the majority of the early studies. These early models seemed to require more than one

mechanism - a combination of lithospheric uplift, isostasy, and flexure - to explain the

region’s evolution (Banerdt et al., 1992, and references therein). Downward displacement,

due to a surface load, produces radial compression within Tharsis and concentric extension

in the periphery. Upward displacement, caused by a load at the base of the lithosphere,

produces stresses of the same orientation but opposite sign, i.e., radial extension within

Tharsis and concentric compression in the periphery. Isostatic stresses, defined as those

stresses which result when buoyancy forces were balanced such that there was no deflection

(and thus no contribution to the stress field from flexure), exhibit a pattern similar to that

due to upward displacement.

Neither one of these mechanisms could coevally produce the radial grabens in Tharsis

to their fullest extent and presented a major problem in the creating of a self-consistent

history of the evolution of the lithosphere connecting the observed tectonic features with

the stress models.

More recently, Banerdt and Golombek (2000) proposed that the seeming need of mul-

tiple mechanisms was due to the quality of data available prior to MGS. They calculated

the deflection of the lithosphere due to the Tharsis load alone while satisfying the long

wavelength signal of present day topography and gravity. The resulting stress field has

radial compressive stresses throughout Tharsis. Banerdt and Golombek (2000) show only

the extensional component of the strains, which is consistent with normal faulting on pre-

existing faults radial to Tharsis and away from the load, for example, Memnonia, Sirenum,

Thaumasia, southern Claritas, and Tempe Fossae. However, the faulting extending from

northern Claritas Fossae north to Tantalus and Alba Fossae is not well explained by the

membrane model, which predicts zero extension in these areas (Fig. S11).

Golombek and Phillips (2009) show the extensional component as well as the radial

compressional component of the strains from the Banerdt and Golombek (2000) model

(Fig S11). For each panel, the colour of pixels 3.5 x 3.5 was extracted and assigned a
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value based on the scale provided with the panel (scripts provided by Mark Haines). These

values represent the magnitudes of the principal strains, which we use to calculate the

expected fault styles associated with this model following Anderson (1951). Since the

Martian surface is a free surface and the vertical stress is a principal stress, we can define a

normalized parameter

A0 = (τ1 + τ2)/
√

τ2
1 + τ2

2 (A6)

to discriminate among the three major geologic fault styles associated with the styles of

the deviatoric stress field from the dynamic solution. Here τ1 and τ2 are the principal

horizontal deviatoric stresses, and the vertical deviatoric stress is −(τ1 + τ2). The results

are plotted in Figure S12 together with the normal and reverse faults from Knapmeyer

et al. (2006). We note that while the magnitude of the circumferential principal strain was

extracted wherever it is extensional, we have no information as to the magnitude of the

compressional circumferential principal strain in Figure S11, i.e., in central Tharsis. This

means that in these regions, our measure will predict more extensional regime than the

actual model would, i.e., the model could be predicting pure thrust, whereas our mesure

will be predicting oblique-thrust. Note that besides the normal faults in central Tharsis,

this model fits only the reverse faults in Lunae and Solis planea and misfits the remaining

circumferential wrinkle ridges. It is important to note that the strains shown are applied on

the original deformed layer; the strains experienced by the load are not shown. However, it

is unclear which faults are on the load and which are on the underlying crust, and for those

faults that are not on the load, how far they extend underneath the load.

We calculate a model of membrane stresses due to dynamic topography (calculated

using the deviation from average pressure at the reference level L = 92.84), as opposed to

volcanic surface loads, inferred from the topography and crustal thickness models (Zuber

et al., 2000; Neumann et al., 2004). Firstly, we calculate the pressure at the reference level.

Then, for each grid area we calculate the vertical displacement by which the column of

lithosphere needs to be shifted up or down to achieve the average pressure. Once the vertical

displacement is known (see Fig. S13A), the associated membrane stress is calculated (see

Chapter 4 for details). Note that the flexural contributions are ignored; however, flexure
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and membrane act in the same direction. In addition, flexural stresses integrate to zero

vertically, and thus only membrane stresses contribute to the depth-integrated stress.

To first order, membrane deviatoric stresses associated with dynamic topography show

similar results to the GPE ones, but with circumferential deviatoric compression on the

flanks of Tharsis and deviatoric extension occurring over the areas with low topography

and thin crust (Figure S13). The stress field is consistent with two diffuse centers of ex-

tensional features - a small one in the Tharsis region and a much larger one antipodal to

Tharsis. Comparing the models of stresses associated with horizontal GPE gradients with

the model of membrane stress associated with dynamic topography, we can see that the fit

has worsened (only %46 of the faults have M f ull ≤ 0.1).

Note that this model predicts fault styles opposite those expected from the model of

Banerdt and Golombek (2000) due to the different source of membrane stress. The driving

force for their models is a downward force on a uniform elastic layer due to the load of

Tharsis. The driving force for our membrane model is the vertical force required to push

the topography up or down from a reference state with uniform pressure at the reference

depth. This driving force can be attributed to a combination of radial push from mantle

convection and flexural resistance to that push.

The two models discussed above represent the two end-member hypotheses for the

origins of Tharsis topographic and aeroid signal. The first hypothesis proposes that Thar-

sis rise represents volcanically constructed surface load (Willemann and Turcotte, 1982;

Solomon and Head, 1982; Banerdt and Golombek, 2000; Phillips et al., 2001), while the

second attributes Tharsis topography and aeroid as a dynamic response to internal loading

from a buoyancy due to basalt depletion or a single-plume mantle convection (Kiefer et al.,

1996; Harder and Christensen, 1996; Harder, 2000).

We have examined two end-member flexure dominated models and compared them

with the normal and reverse faults in the western hemisphere of Mars. The range of

the associated vertical displacements is similar (∼ 13km). Assuming shear modulus of

4− 8× 1010Pa, the surface flexure stresses of Banerdt and Golombek (2000) are on aver-

age an order of magnitude larger than the GPE associated stresses. These flexural strains

would dominate the surface strains and stress field, if present at the time of faulting. Shal-
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low faults may respond to the stresses within a shallow layer of the lithosphere and hence

surface stresses may be an appropriate comparison. However, displacement/length/width

relationships for the faults indicate that the majority of the faults are sufficiently long to

be breaking the majority of the lithosphere (Knapmeyer et al., 2006). In this case, the

appropriate comparison is with the depth-integrated stresses. However, the depth integral

of any flexural stresses is zero (Turcotte and Schubert, 2002) leaving only the membrane

component. Since the flexural stresses dominate the surface stresses shown by Banerdt and

Golombek (2000), it is unclear what the magnitude of the vertically integrated membrane

and isostatic stresses will be in their model. However, the style of the membrane response

is similar to the style of the surface flexural response, which is known and fails to fit many

of the normal and reverse faults in the western hemisphere of Mars (Figure S12). Our dy-

namic topography model shows that membrane stresses do not have to dominate the GPE

stresses, especially outside of Tharsis: the stresses vary from being much larger than the

GPE associated stresses (e.g., Arsia and Olympus Mons, Valles Marineris) to being roughly

the same order of magnitude (periphery of Tharsis).

The flexure-dominated model of Banerdt and Golombek (2000), the isostatic model

in Banerdt et al. (1992), and our membrane model, associated with dynamic topography,

demonstrate just a few of the possible scenarios for the non-unique problem of the loading

history of Tharsis. Yet, none of these models fit the normal faults in and around Tharsis as

well as the GPE model. Since the faults reflect the thermal state of the planet at the time

of their formation, these results argue that many of the faults were created at times when

elastic thicknesses and membrane and flexural stresses were small, a combination of brittle

and ductile deformation was likely to be widespread, and GPE stresses dominated.
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Figure S11: Magnitude(in colour) and direction(black arrow) of A) the circumferential
deviatorically extentionsal horizontal strain and B) the radial deviatorically compressional
horizontal strain of the flexure model of Banerdt and Golombek (2000) (from Golombek
and Phillips (2009))
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Figure S12: Predicted fault style from the deviatoric strain in Fig S11. Overlain are A) the
normal and B) reverse faults from Knapmeyer et al. (2006).
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Figure S13: A) Misfit, defined by objective function, between the normal faults of Anderson
et al. (2001) and the B) GPE, C) membrane (from dynamic topography, opposite in sign
to surface loading), and D) combined CPE and membrane stress fields from Figure 1. The
GPE stresses fit the fault styles and orientations well, while the fit for membrane only and
the combined GPE and membrane stresses is worse.
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Appendix 2. Auxiliary Material for Chapter 3

Appendix 2.1. Spherical Treatment of the Thin Sheet Methodology

The 3-D Stoke’s equation is given by

∇ ·σ+ρg = 0, (B1)

where g is a vector in the negative radial direction. In spherical coordinates, the deviatoric

stress tensor (equation 3) is:

σi j = τi j +δi j(σrr− τrr), (B2)

Expanding equation (B1) in spherical coordinates gives:

1
cosθ

∂
∂φ

(
r2σφφ

)
+

1
cos2 θ

∂
∂θ

(
r2σφθ cos2 θ

)
+

∂
∂r

(
r3σφr

)
= 0 (B3)

1
cosθ

∂
∂φ

(
r2σφθ

)
+

1
2

∂
∂θ

(
r2[σθθ +σφφ

])
(B4)

+
1

2cos2 θ
∂

∂θ

(
r2 cos2 θ

[
σθθ−σφφ

])
+

∂
∂r

(
r3σθr

)
= 0

1
r cosθ

∂σφr

∂φ
+

1
r cosθ

∂
∂θ

(
cosθσθr

)
+

1
r

(
2σrr−σφφ−σθθ

)
+

∂σrr

∂r
−ρg = 0 (B5)

Vertically integrating equations (B3),(B4) gives:

1
cosθ

∂
∂φ

(∫ r0

rL

r2σφφdr
)

+
1

cos2 θ
∂

∂θ

(∫ r0

rL

r2σφθdr cos2 θ
)

(B6)

+r3
0σφr(r0)− r3

Lσφr(rL) = 0
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and

1
cosθ

∂
∂φ

(∫ r0

rL

r2σφθ

)
+

1
2

∂
∂θ

(∫ r0

rL

r2[σθθ +σφφ
])

(B7)

+
1

2cos2 θ
∂

∂θ

(∫ r0

rL

r2 cos2 θ
[
σθθ−σφφ

])

+r3
0σθr(r0)− r3

Lσθr(rL) = 0

where r0 is the radius from the center of the planet to the surface and rL is the radius

from the center to the reference level. Substitute σrr− 1
3σkk for τrr in equations (B6),(B7)

and note that σφr(r0) = 0 and σθr(r0) = 0 to obtain:

1
cosθ

∂
∂φ

(∫ r0

rL

r2τφφdr
)
− 1

cosθ
∂

∂φ

(∫ r0

rL

r2τrrdr
)

(B8)

+
1

cos2 θ
∂

∂θ

(
cos2 θ

∫ r0

rL

r2τφθdr
)

+
1

cosθ
∂

∂φ

(∫ r0

rL

r2σrrdr
)
− r3

Lτφr(rL) = 0

and

1
cosθ

∂
∂φ

(∫ r0

rL

r2τφθdr
)

+
1
2

∂
∂θ

(∫ r0

rL

r2τθθdr +
∫ r0

rL

r2τφφdr
)

(B9)

− ∂
∂θ

(∫ r0

rL

r2τrrdr
)

+
1

2cos2 θ
∂

∂θ

(
cos2 θ

[∫ r0

rL

r2τθθdr−
∫ r0

rL

r2τφφdr
])

+
∂

∂θ

(∫ r0

rL

r2σrrdr
)
− r3

Lτθr(rL) = 0,

which are equivalent to equations (4).

For a thin sheet, the gradients of σφr and σθr are negligibly small, and 1
r (2σrr−σφφ−

σθθ) is small compared to ρg. Hence, equation (B5) can be approximated as

∂σrr

∂r
−ρg = 0 (B10)

which implies

σrr =−
∫ r0

r
ρgdr (B11)
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so that the equation (5) in spherical coordinates is equivalent to

∫ r0

rL

r2σrrdr = −
∫ r0

rL

r2
[∫ r0

r
ρgdr′

]
dr =−

∫ r0

rL

ρg
[∫ r′

rL

r2dr
]

dr′ (B12)

= −
∫ r0

rL

1
3

ρg
(
r′3− r3

L
)
dr′

The I functional in equation (6) is given by

I =
∫ ∫ 1

µ

[
τ2

φφ +2τ2
φθ + τ2

θθ +(τφφ + τθθ)2
]

cosθdφdθ (B13)
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∂σrr

∂θ

]}
cosθdφdθ

where τi j are the vertically integrated deviatoric stresses, σrr is the vertically integrated

vertical stress, or GPE, λφ,λθ are the Lagrange multipliers.

The J functional in equation (8) can be written in spherical coordinates as
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(B14)

where

τφφ = µ
(

1
cosθ

∂λφ

∂φ
−λθ tanθ

)
, (B15)

τθθ = µ
∂λθ
∂θ

, (B16)

τφθ =
µ
2

(
∂λφ

∂θ
+

1
cosθ

∂λθ
∂φ

+λφ tanθ
)

, (B17)
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V−1 =




1
1−ν

v
1−ν 0

v
1−ν

1
1−ν 0

0 0 2


 , (B18)

and 


Φobs
φφ

Φobs
θθ

Φobs
φθ


 =




−σrr/3

−σrr/3

0


 (B19)

Appendix 3. Auxiliary Material for Chapter 5

Appendix 3.1. Expanded Geometry Expressions

For the 3-D case of a reference sphere of radius r0, the tangential derivative with χ fixed

is

∇⊥0 = (−sinφ,cosφ,0)
1

r0 cosθ
∂

∂φ
(C1)

+(−sinθcosφ,−sinθsinφ,cosθ)
1
r0

∂
∂θ

,

and is equivalent to eq. 8 for the unit radial vector x̂ = (cosθcosφ,cosθsinφ,sinθ). The

tangential derivative with ξ fixed is:

∇̃⊥ =
(−sin φ̃,cos φ̃,0

) 1
r0 cos θ̃

∂
∂φ̃

(C2)

+
(−sin θ̃cos φ̃,−sin θ̃sin φ̃,cos θ̃

) 1
r0

∂
∂θ̃

.

Eqns. 10, 11 are obtained as follows. First we note that from eq. 9 for φ we have ∇φ =
r0
r

{
∇⊥0 φ− x̂

[
1−N χ

r0

]
∂φ
∂χ

}
= r0

r ∇⊥0 φ, and similarly we have ∇θ = r0
r ∇⊥0 θ, ∇φ̃ = r0

r ∇⊥0 φ̃,
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and ∇θ̃ = r0
r ∇⊥0 θ̃. Then

∇ = (∇φ)
∂

∂φ
+(∇θ)

∂
∂θ

+(∇χ)
∂

∂χ
(C3)

=
(r0

r
∇⊥0 φ

) ∂
∂φ

+
(r0

r
∇⊥0 θ

) ∂
∂θ

+(∇χ)
∂

∂χ

=
r0

r
∇⊥0 +(∇χ)

∂
∂χ

, and

∇ =
(
∇φ̃

) ∂
∂φ̃

+
(
∇θ̃

) ∂
∂θ̃

+(∇ξ)
∂
∂ξ

(C4)

=
(r0

r
∇̃⊥φ̃

) ∂
∂φ̃

+
(r0

r
∇̃⊥θ̃

) ∂
∂θ̃

+(∇ξ)
∂
∂ξ

=
r0

r
∇̃⊥+(∇ξ)

∂
∂ξ

.

Likewise, for the 3-D case of a reference plane (a flat-planet case with r0 → ∞), χ = z

and the tangential derivative with χ fixed is

∇⊥0 =
(

∂
∂x

,
∂
∂y

,0
)

, (C5)

and is equivalent to eq. 8 for the unit radial vector x̂ = (0,0,1). The tangential derivative

with ξ fixed is:

∇̃⊥ =
(

∂
∂x̃

,
∂
∂ỹ

,0
)

. (C6)

Eqns. 10, 11 are obtained as follows

∇ = (∇x)
∂
∂x

+(∇y)
∂
∂y

+(∇χ)
∂

∂χ
(C7)

=
(

∇⊥0 x
) ∂

∂x
+

(
∇⊥0 y

) ∂
∂y

+(∇χ)
∂

∂χ

= ∇⊥0 +(∇χ)
∂

∂χ
, and
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∇ = (∇x̃)
∂
∂x̃

+(∇ỹ)
∂
∂ỹ

+(∇ξ)
∂
∂ξ

(C8)

=
(

∇̃⊥x̃
) ∂

∂x̃
+

(
∇̃⊥ỹ

) ∂
∂ỹ

+(∇ξ)
∂
∂ξ

= ∇̃⊥+(∇ξ)
∂
∂ξ

.

Likewise, for the 2-D case of a reference circle of radius r0. the tangential derivative

with χ fixed is

∇⊥0 = (−sinφ,cosφ)
1
r0

∂
∂φ

, (C9)

and is equivalent to eq. 8 for the unit radial vector x̂ = (cosφ,sinφ). The tangential deriva-

tive with ξ fixed is:

∇̃⊥ =
(−sin φ̃,cos φ̃

) 1
r0

∂
∂φ̃

. (C10)

Eqns. 10, 11 are obtained as follows

∇ = (∇φ)
∂

∂φ
+(∇χ)

∂
∂χ

(C11)

=
(r0

r
∇⊥0 φ

) ∂
∂φ

+(∇χ)
∂

∂χ

=
r0

r
∇⊥0 +(∇χ)

∂
∂χ

, and

∇ =
(
∇φ̃

) ∂
∂φ̃

+(∇ξ)
∂
∂ξ

(C12)

=
(r0

r
∇̃⊥φ̃

) ∂
∂φ̃

+(∇ξ)
∂
∂ξ

=
r0

r
∇̃⊥+(∇ξ)

∂
∂ξ

.

Likewise, for the 2-D case of a reference line (a flat-planet case with r0 → ∞), χ = z

and the tangential derivative with χ fixed is

∇⊥0 =
(

∂
∂x

,0
)

, (C13)

and is equivalent to eq. 8 for the unit radial vector x̂ = (0,1). The tangential derivative with
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ξ fixed is:

∇̃⊥ =
(

∂
∂x̃

,0
)

. (C14)

Eqns. 10, 11 are obtained as follows

∇ = (∇x)
∂
∂x

+(∇χ)
∂

∂χ
(C15)

=
(

∇⊥0 x
) ∂

∂x
+(∇χ)

∂
∂χ

= ∇⊥0 +(∇χ)
∂

∂χ
, and

∇ = (∇x̃)
∂
∂x̃

+(∇ξ)
∂
∂ξ

(C16)

=
(

∇̃⊥x̃
) ∂

∂x̃
+(∇ξ)

∂
∂ξ

= ∇̃⊥+(∇ξ)
∂
∂ξ

.

Appendix 3.2. Expanded Expressions for the Modified Variational Ap-

proach

For the 3-D case of a reference sphere of radius r0, integrals on the reference sphere are

of the form ∫
dS0 = r2

0

∫∫
cosθdφdθ = r2

0

∫∫
cos θ̃dφ̃dθ̃, (C17)

and volume integrals are of the form

∫
dV =

∫ [∫
dχ

]
dS0 = r2

0

∫∫∫
dχcosθdφdθ (C18)

= r2
0

∫∫∫ ∂χ
∂ξ

dξcos θ̃dφ̃dθ̃.

Likewise, for the 3-D case of a reference plane (a flat-planet case with r0 → ∞), χ = z
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and integrals on the reference plane are of the form

∫
dS0 =

∫∫
dxdy =

∫∫
dx̃dỹ, (C19)

and volume integrals are of the form

∫
dV =

∫ [∫
dχ

]
dS0 =

∫∫∫
dχdxdy (C20)

=
∫∫∫ ∂χ

∂ξ
dξdx̃dỹ.

Likewise, for the 2-D case of a reference circle of radius r0. integrals on the reference

circle are of the form ∫
dS0 = r0

∫
dφ = r0

∫
dφ̃, (C21)

and volume integrals are of the form

∫
dV =

∫ [∫
dχ

]
dS0 = r0

∫∫
dχdφ (C22)

= r2
0

∫∫ ∂χ
∂ξ

dξdφ̃.

Likewise, for the 2-D case of a reference line (a flat-planet case with r0 → ∞), χ = z

and integrals on the reference line are of the form

∫
dS0 =

∫
dx =

∫
dx̃, (C23)

and volume integrals are of the form

∫
dV =

∫ [∫
dχ

]
dS0 =

∫∫
dχdx (C24)

=
∫∫ ∂χ

∂ξ
dξdx̃.

The gradient of velocity/displacement u (eq. 27) can be expressed using eq. 17 and 24
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as

∂χ
∂ξ

∇ jui =
r0

r

{
∂χ
∂ξ

∇̃⊥j ui + ñ j
∂ui

∂ξ

}
(C25)

=
r0

r

{
∂χ
∂ξ

∇̃⊥j

(
r
r0

ũi

)
+ ñ j

∂
∂ξ

(
r
r0

ũi

)}

=
r0

r

{
∂χ
∂ξ

r
r0

∇̃⊥j ũi +
∂χ
∂ξ

ũi

r0
∇̃⊥j r

+ñ j
r
r0

∂
∂ξ

ũi + ñ j
ũi

r0

∂
∂ξ

r
}

=
∂χ
∂ξ

∇̃⊥j ũi + ñ j
∂ũi

∂ξ

+
ũi

r0

r0

r

{
∂χ
∂ξ

∇̃⊥j r + ñ j
∂r
∂ξ

}

=
∂χ
∂ξ

∇̃⊥j ũi + ñ j
∂ũi

∂ξ
+

ũi

r0

∂χ
∂ξ

∇ jr

=
∂χ
∂ξ

∇̃⊥j ũi + ñ j
∂ũi

∂ξ
+

ũi

r0

∂χ
∂ξ

x̂ j

Eq. 28 can be obtained by first differentiating W
(
ui,∇ jui

)
with respect to ũi

ξ using the

chain rule
∂W

∂
(

ũi
ξ

) =
∂ui

∂
(

ũi
ξ

) ∂W
∂ui

+
∂∇ jui

∂
(

ũi
ξ

) ∂W
∂∇ jui

. (C26)

Since ui is not dependent on ũi
ξ (see eq. 24), the first term is 0. Multiply the remaining

terms by ∂χ
∂ξ to obtain

∂χ
∂ξ

∂W

∂
(

ũi
ξ

) =
∂χ
∂ξ

∂
(
∇ jui

)

∂
(

ũi
ξ

) ∂W
∂∇ jui

, (C27)

Note that from eq. 27 we have that ∂χ
∂ξ ∇ jui depends on ũi

ξ only through ñ j. Therefore,

∂χ
∂ξ

∂W

∂
(

ũi
ξ

) = ñ jσi j = σ̃in, (C28)

where we have also used the definitions of σi j and σ̃in from eq. 3 and 25.
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In order to obtain eq. 30, we differentiate eq. 29 as follows

∂W̃
∂σ̃in

=
∂

∂σ̃in

{
σ̃kn

∂ũk

∂ξ
−W

∂χ
∂ξ

}
(C29)

= δik
∂ui

∂ξ
+ σ̃kn

∂
(

∂uk
∂ξ

)

∂σ̃kn
− ∂

(
∇ juk

)

∂σ̃in

∂W
∂
(
∇ juk

) ∂χ
∂ξ

Differentiating eq. 27 with respect to σ̃kn, and noting that ũ and ∇̃⊥j uk are not dependent on

σ̃kn gives us

∂
(
∇ juk

)

∂σ̃in

∂χ
∂ξ

= ñ j

∂
(

∂uk
∂ξ

)

∂σ̃in
(C30)

Substituting eq. 3 and C30 into the third term of eq. C29 we get

∂W̃
∂σ̃in

= δik
∂ui

∂ξ
+ σ̃kn

∂
(

∂uk
∂ξ

)

∂σ̃kn
− ñ j

∂
(

∂uk
∂ξ

)

∂σ̃in
σi j (C31)

Since σ̃in = ñ jσi j (eq. 25) the second and third term above cancel and we are left with eq.

30
∂W̃
∂σ̃in

= δik
∂ui

∂ξ
=

∂uk

∂ξ
. (C32)

In order to obtain eq. 31, we differentiate eq. 29 as follows

∂W̃
∂ũi

=
∂

∂ũi

{
σ̃kn

∂ũk

∂ξ
−W

∂χ
∂ξ

}
(C33)

apply product rule with ∇̃⊥j ui and σ̃inheld fixed for all i, j

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
− ∂W

∂ũi

∂χ
∂ξũi

apply the chain rule for W considered as a function

of
(

ũp, ∇̃⊥q ũp,
∂ũp

∂ξ

)

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
−

{
∂ũp

∂ũi

∂W
∂ĩp

+
∂
(
∇̃⊥q ũp

)

∂ũi

∂W
∂
(
∇̃⊥q ũp

)

+
∂
(

∂ũp
∂ξ

)

∂ũi

∂W

∂
(

∂ũp
∂ξ

)




∂χ
∂ξ
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noting that the third term is 0

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
−



δip

∂W
∂ũp

+
∂
(

∂ũp
∂ξ

)

∂ũi

∂W

∂
(

∂ũp
∂ξ

)




∂χ
∂ξ

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
− ∂W

∂ũi

∂χ
∂ξ
−

∂
(

∂ũp
∂ξ

)

∂ũi

∂W

∂
(

∂ũp
∂ξ

) ∂χ
∂ξ

apply the chain rule for W considered as a function of

(us,∇tus) and note that ui depends only on ũi(eq. 24)

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
− ∂us

∂ũi

∂W
∂us

∂χ
∂ξ

−




∂(∇tus)
∂ũi

+
∂
(

∂ũp
∂ξ

)

∂ũi

∂(∇tus)

∂
(

∂ũp
∂ξ

)




∂W
∂(∇tus)

∂χ
∂ξ

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
− ∂us

∂ũi

∂W
∂us

∂χ
∂ξ

−∂(∇tus)
∂ũi

∂W
∂(∇tus)

∂χ
∂ξ
−

∂
(

∂ũp
∂ξ

)

∂ũi

∂W

∂
(

∂ũp
∂ξ

) ∂χ
∂ξ

substituting eq. 28 in the fourth term

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂ũi
− ∂us

∂ũi

∂W
∂us

∂χ
∂ξ
− ∂(∇tus)

∂ũi

∂W
∂(∇tus)

∂χ
∂ξ
−

∂
(

∂ũp
∂ξ

)

∂ũi
σ̃pn

= −∂us

∂ũi

∂W
∂us

∂χ
∂ξ
− ∂(∇tus)

∂ũi

∂W
∂(∇tus)

∂χ
∂ξ

using eq. 27 in the first term and eq. 4 in the second term

=
(

r
r0

fi− 1
ro

σi jx̂ j

)
∂χ
∂ξ
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Similarly eq. 32 is obtained

∂W̃

∂
(

∇̃⊥j ui

) =
∂

∂ũi

{
σ̃kn

∂ũk

∂ξ
−W

∂χ
∂ξ

}
(C34)

applying the chain rule twice

= σ̃kn

∂
(

∂ũk
∂ξ

)

∂
(

∇̃⊥j ui

) −

 ∂

(
∂ũk
∂ξ

)

∂
(

∇̃⊥j ui

) ∂
(
∇puq

)

∂
(

∂ũk
∂ξ

)

+
∂
(
∇puq

)

∂
(
∇̃ jũi

)
]

∂W
∂
(
∇puq

) ∂χ
∂ξ

the first two terms cancel

= −∂
(
∇puq

)

∂
(
∇̃ jũi

) ∂W
∂
(
∇puq

) ∂χ
∂ξ

using ∇̃⊥j ui =
(
δ jl− x̂ jx̂l

)
∇̃⊥l ui and eq. 3

=
(
δ jl− x̂ jx̂l

)
σil

∂χ
∂ξ

To optimizing eq. 33 with respect to σ̃in we first let σ̃in → σ̃in + εψi, where ψi is an

arbitrary function. We require that first order terms in ε sum to zero for all functions of ψi

0 =
L

∑
k=1

k∫

k−1





∫

S0

[
εψi

∂ũi

∂ξ
− εψi

∂W̃
∂σ̃in

]
dS0



dξ (C35)

= ε
L

∑
k=1

k∫

k−1





∫

S0

ψi

[
∂ũi

∂ξ
− ∂W̃

∂σ̃in

]
dS0



dξ,

i.e. 0 = ∂ũi
∂ξ − ∂W̃

∂σ̃in

Similarly, to optimize optimizing eq. 33 with respect to ũi we first let ũi → ũi + εψi,

where ψi is an arbitrary function. We require that first order terms in ε sum to zero for all
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functions of ψi

0 =
L

∑
k=1

k∫

k−1





∫

S0

[
εσ̃in

∂ψi

∂ξ
− εψi

∂W̃
∂ũi

(C36)

−ε∇̃⊥j ψi
∂W̃

∂
(

∇̃⊥j ũi

)

dS0

−
[∫

∂Sk
oT

εψiT 0
i dl0 +

∫

∂Sk
0u

ετ0
i ψidl0

]
∂χ
∂ξ

}
dξ

+
∫

ξ=0
x∈∂VT

εψiT̃
ξ

i dS0 +
∫

ξ=0
x∈∂Vu

ετ̃ξ
i ψidS0

−
∫

ξ=L
x∈∂VT

εψiT̃
ξ

i dS0−
∫

ξ=L
x∈∂Vu

ετ̃ξ
i ψidS0

= ε
L

∑
k=1

k∫

k−1





∫

S0

ψi

[
−∂σ̃in

∂ξ
− ∂W̃

∂ũi

+∇̃⊥j


 ∂W̃

∂
(

∇̃⊥j ũi

)




dS0

−




∫

∂Sk
0T

ψi



T 0

i
∂χ
∂ξ

+n0
j

∂W̃

∂
(

∇̃⊥j ũi

)


dl0

+
∫

∂Sk
0u

ψi



T 0

i
∂χ
∂ξ

+n0
j

∂W̃

∂
(

∇̃⊥j ũi

)


dl0








dξ

+
∫

ξ=0
x∈∂VT

ψi

{
T̃ ξ

i − σ̃in

}
dS0 +

∫

ξ=0
x∈∂Vu

ψi

{
τ̃ξ

i − σ̃in

}
dS0

−
L−1

∑
k=1

∫

ξ=k

ψi

(
σ̃k+1

in − σ̃k
in

)
dS0

−
∫

ξ=L
x∈∂VT

ψi

{
T̃ ξ

i − σ̃in

}
dS0−

∫

ξ=L
x∈∂Vu

ψi

{
τ̃ξ

i − σ̃in

}
dS0
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