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Abstract of the Dissertation

Dynamics of complex unicritical polynomials

by

Davoud Cheraghi

Doctor of Philosophy

in

Mathematics

Stony Brook University

2009

In this dissertation we study two relatively independent problems in one

dimensional complex dynamics. One on the parameter space of unicritical

polynomials and the other one on measurable dynamics of certain quadratic

polynomials with positive area Julia sets.

It has been conjectured that combinatorially equivalent non-hyperbolic uni-

critical polynomials are conformally conjugate. The conjecture has been al-

ready established for finitely renormalizable unicritical polynomials. In the

first part of this work we prove that a type of compactness, called a priori

bounds, on the renormalization levels of a unicritical polynomial, under a cer-

tain combinatorial condition, implies this conjecture.

It has been recently shown that there are quadratic polynomials with pos-

itive area Julia set. The second part of this work investigates typical trajecto-

ries of quadratic polynomials with a non-linearizable fixed point of high return
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type. This class contains the examples with positive area Julia set mentioned

above. In particular, we prove that Lebesgue almost every point in the Julia

set of these maps accumulates on the non-linearizable fixed point. We show

that the post-critical sets of these maps, which are the measure theoretic at-

tractors, have measure zero and are connected subsets of the plane. This has

some interesting corollaries such as, almost every point in the Julia set of such

maps is non-recurrent, or, there is no finite absolutely continuous invariant

measure supported on the Julia set of these maps.
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Chapter 1

Introduction

In this work we study two different problems in one dimensional holomorphic

dynamics. The first one is on combinatorial rigidity of a class of unicritical

maps. The second one describes typical (with respect to the Lebesgue measure)

trajectories of certain quadratic polynomials with positive area Julia set. Below

we describe the content of these two studies.

Part 1. Dynamics of a rational map on the Riemann sphere breaks into

two pieces; dynamics on the Fatou set and dynamics on the Julia set. Fatou

set of a map is “nicely behaved” part of the dynamics, and it is completely

understood through works of Fatou [Fat19], [Fat20a], [Fat20b], Julia [Jul18]

and Sullivan [Su85]. The Julia set of a rational map is the “chaotic” part of

the dynamics. Substantial work by many people has been devoted to under-

standing these two sets for different families of rational maps. Basic properties

of these sets has been collected in several books and surveys: See for example

Beardon [Be91], Milnor [M06], Blanchard [Bl84], and Lyubich [Ly86].

Hyperbolic maps form a class of thoroughly understood and well behaved

maps. These are rational maps for which the orbits of all critical points tend

to attracting periodic points. For every map in this class, there exists a finite
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subset of the Riemann sphere such that a full measure set of points on the

sphere is attracted to this set under dynamics of the map. One of the main

conjectures in holomorphic dynamics, which goes back to Fatou, states that

the hyperbolic maps are dense in the space of rational maps of degree d (also

in the space of polynomials of degree d). By an approach developed through

the work of R. Mãne, P. Sad and D. Sullivan [MSS83] for rational maps to

tackle this problem, “studying families of rational maps has been reduced to

studying of dynamics of individual maps on their Julia set”.

Every polynomial with one critical point, which is referred as unicritical

polynomial through this thesis, can be written (up to conformal conjugacy)

in the form z 7→ zd + c, for some complex number c. If the critical point

0 tends to infinity under iteration of such a map (attracted to the super-

attracting fixed point at infinity), the map is hyperbolic. The Julia set is a

Cantor set in this case. Therefore, attention reduces to parameters for which

orbit of 0 stays bounded under iteration. The set of such parameters is called

the connectedness locus or the Mulribrot set, (the well-known Mandelbrot set

corresponds to d = 2) see Figures 2.1 and 2.2.

There is a way of defining graded partitions of the Multibrot set into pieces

such that dynamics of maps in each piece have some special combinatorial

property. All maps in a given piece of partition of a certain level will be called

combinatorially equivalent up to that level. Conjecturally, combinatorially

equivalent (up to all levels) non-hyperbolic maps in the uniciritcal family are

conformally conjugate. As stated in [DH82] for d = 2, this Rigidity Conjecture

is equivalent to the local connectivity of the Mandelbrot set (MLC for short)

and naturally extends to degree d unicritical polynomials. In [DH82], they

prove that MLC implies Density of hyperbolic quadratic polynomials among
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quadratic polynomials. These discussions have been extended to degree d

unicritical polynomials by D. Schleicher in [Sch04].

Roughly speaking, the rigidity conjecture says that combinatorics of a map

in this class uniquely determines (fine scale) geometry of the chaotic part of

the dynamics of that map. In particular, combinatorics of such map determine

the parameter c up to a finite number of values.

A unicritical polynomial f is called Douady-Hubbard renormalizable, or

renormalizable for short, if there exist a neighborhood U of the critical point

and an integer n > 1, such that f ◦n : U → V is a degree d proper branched

covering with U compactly contained in V , and f ◦nk(0) ∈ U , for k = 0, 1, 2, . . . .

By [DH85], such a map f ◦n : U → V , denoted by R1(f), is conjugate to a uni-

critical polynomial, which we denote it by SR1(f), of the same degree as the

one of f . Moreover, this renormalization, under a certain combinatorial condi-

tion which will be clear later, provides a homeomorphism from a subset of the

connectedness locus onto all of the connectedness locus. Such homeomorphim

is determined up finite number of rotations, however, one can make it unique

by marking a particular point on the connectedness locus (which will be made

clear later). We will denote the corresponding maximal homeomorphic copy

of the connectedness locus (domain of this homeomorphism) within the actual

connectedness locus by τ(f). By maximal homeomorphic copy we mean that

it is not strictly contained in any other homeomorphic copy except the actual

connectedness locus.

Given a renormalizable unicritical polynomial f , if R(f) is also renormal-

izable we say that f is twice renormalizable. So, a unicritical polynomial is

called infinitely renormalizable if the renormalization process defined above can

be carried out infinite number of times, that is, the sequence R(f), R(R(f)),
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R(R(R(f))), . . . is well defined. Combinatorics of an infinitely renormalizable

unicritical polynomial is defined as the sequence of maximal homeomorphic

copies 〈τ(f), τ(SR1(f)), τ((SR)2(f)), . . . 〉 of the connectedness locus.

In 1990’s, J. C. Yoccoz [H93] proved MLC conjecture at all non-hyperbolic

parameter values which are at most finitely renormalizable. He also proved lo-

cal connectivity of the Julia set for such maps with all periodic points repelling.

Degree 2 assumption was essential in his argument. Local connectivity of Julia

sets for unicritical degree d polynomials which are at most finitely renormal-

izable, and with all their periodic points repelling has been established by

J. Kahn and M. Lyubich [KL05] in 2005. Their proof is based on “controlling”

geometry of a Modified principal nest. The same controlling technique is used

to settle the rigidity problem for these parameters in [AKLS05].

The rigidity conjecture for quadratic maps z2 +c with c real is proved inde-

pendently by M. Lyubich [Ly97] and J. Graczyk, G. Śwa̧etek [GS98]. Recently,

the conjecture has been proved for polynomials with all their critical points real

and non-degenerate by O. Kozlovski, W. Shen and S. Van Strien in [KSvS07].

An infinitely renormalizable unicritical polynomial satisfies a priori bounds

condition, a notion introduced by D. Sullivan [S92], if infimum of moduli of

annuli Vn \ Un is non-zero, where (Rn(f))tn : Un → Vn is a renormalization of

Rn(f). Here we prove that this property, under certain combinatorial assump-

tion, implies the rigidity conjecture. We say that an infinitely renormalizable

map satisfies the secondary limbs condition, denoted by SL for short, if the

maximal connectedness loci copies τ(f), τ(R1(f)), . . . in the definition of the

combinatorics of f belong to finite number of secondary limbs of the connect-

edness locus.

Theorem 1.1 (Rigidity). If fc is an infinitely renormalizable degree d uni-
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critical polynomial, with a priori bounds, and satisfies SL condition, then it is

combinatorially rigid.

This result was proved in part II of [Ly97] for degree 2 polynomials. The

main difference between our proof and the one in [Ly97] is in the construction

of the Thurston conjugacy. In [Ly97] such a conjugacy is built along the whole

principal nest and uses linear growth of moduli along this nest. However, such

a growth is not known for arbitrary degree unicritical polynomials. Certain

annuli in the modified principal nest introduced in [KL05] have definite module

and this helps us to “pass” over principal nest much easier. This makes the

whole construction simpler and more general to include arbitrary degree d.

To prove this statement, we first construct a quasi-conformal map of the

plane which conjugates the two combinatorially equivalent maps on their post-

critical sets. It does not respect the dynamics outside of the post-critical sets,

but it is in a “right” homotopy class of homeomorphisms of the complex plane

minus the post-critical sets. Verifying such a topological property with the rich

possibilities of combinatorics of these maps is the source of difficulty in the

proof. Being in such a homotopy class enables one to lift this quasi-conformal

map infinite number of times (via the two polynomials) and obtain an actual

quasi-conformal conjugacy in the limit. Finally, this quasi-conformal conjugacy

can be promoted to a conformal conjugacy by an open-closed argument.

Different classes of maps are known to enjoy a priori bounds property;

real infinitely renormalizable unicritical polynomials (see [LvS98] and [LY97]),

primitive infinitely renormalizable maps of bounded type in [K06], parameters

under a Decorations condition in [KL06], and in [KL07] under a Molecule

condition. The class of maps satisfying the molecule condition contains the

primitive infinitely renormalizable parameters of bounded type and the ones
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satisfying decoration condition. We will see that the combinatorial class SL
contains the combinatorial class of all these parameters. Therefore, combining

the above theorem with [KL07] we obtain the following:

Corollary 1.2. Infinitely renormalizable, combinatorially equivalent, quadratic

polynomials satisfying the molecule condition are conformally equivalent.

Part 2. Let f : Ĉ → Ĉ be a rational map of the Riemann sphere. A

central problem in dynamics of a system is to understand behaviour of orbit of

a typical point; z, f(z), f 2(z), . . . , fn(z), . . . . Indeed, this is a rather old sub-

ject in holomorphic dynamics starting with contributions of Koenigs [Ko84],

Schröder [Sch71], Böttcher [Bö04] in the late 19th century on the local dynam-

ics of holomorphic maps. Let f : U ⊆ C → C be a holomorphic map defined

on some neighborhood of z0 with f(z0) = z0 and multiplier f ′(z0) = λ. If

|λ| 6= 0, 1, by [Ko84], it is known that there exists a local conformal change

of coordinate near z0, with ϕ(z0) = 0, and ϕ ◦ f ◦ ϕ−1(z) = z 7→ λz near

zero. There is a similar normal form by [Le97] and [Bö04] when λ = e2π p

q
i,

and λ = 0, respectively. See [M06] for these results and more. This describes

orbits near such fixed points.

If the multiplier at a fixed point is λ = e2παi with α ∈ R\Q, f is called lin-

earizable at that fixed point, if there exists a conformal change of coordinate on

a neighborhood of the fixed point so that in the new system of coordinate the

map becomes the linear map z 7→ e2παiz. If there is such a domain of lineariza-

tion, the maximal domain of linearizability is called Siegel disk, otherwise the

fixed point is called Cremer fixed point. G. Pfeiffer [Pf17] found first examples

of rational maps with a non linearizable fixed point, and H. Cremer [Cre38]

proved that for a Baire generic choice of α in (0, 1) every rational map with a

fixed point of multiplier e2παi is non linearizable. C. L. Siegel [Sie42] showed
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that for Lebesgue almost every α in (0, 1) every germ with a fixed point of mul-

tiplier e2παi is linearizable. However, these results did not cover all rotations.

It was apparent from Cremer and Siegel’s proofs that the answer to this

problem depends on the arithmetic nature of α. Let

α = [a1, a2, a3, . . . ] :=
1

a1 + 1
a2+...

denote the continued fraction expansion of α, and pn

qn
= [a1, a2, · · · , an] denote

its rational approximants. Following Siegel’s ideas, Brjuno [Brj71] proved that

given approximants pn

qn
of α, under the weaker condition

∞∑

n=1

log(qn+1)

qn
<∞,

every germ with a fixed point of multiplier e2παi is locally linearizable. We say

that a real number α is Brjuno, and write α ∈ B, if the above series is finite.

Yoccoz [Yoc95] showed that the Brjuno condition is sharp for the quadratic

maps. In other words, if α /∈ B, Pα(z) = e2παiz + z2 is not linearizable at 0.

Now assume that f : C → C is a quadratic polynomial. As the dynamics

on the Fatou set is very well understood, we have a complete understanding of

typical orbits of a map, if Julia set of that map has zero area. Indeed, this is

known in several cases including

• if f is hyperbolic,

• if f has a parabolic cycle, see [DH82] or [Ly83b],

• if f is at most finitely renormalizable with all periodic points repelling,

see [Ly91] or [Sh91],

• if f has a Siegel disk with rotation number satisfying log an = O(
√
n),

see [PZ04],
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In particular, siegel disks of bounded type have been studied in greater

detail. In [Mc98] and [Ya08] two different types of renormalization technique

have been used to describe geometry of the coresponding Julia sets and the

dynamics of the map on them.

However, X. Buff and A. Chéritat [BC05] in 2005, by completing a program

initiated by A. Douady, proved that there are quadratic polynomials with a

Cremer fixed point and positive area Julia set. This motivates the problem

of describing typical orbits of points in the Julia set of such quadratic poly-

nomials. In the presence of a Cremer fixed point, there is only one Fatou

component, the basin of infinity, which is the set of points that tend to the at-

tracting fixed point at infinity under iteration. The Julia set is known to have

a complicated topology. For example, it is a non locally connected subset of

the plane. Furthermore, by Mañé [Ma83], the finite critical point is recurrent

and its orbit accumulates on the Cremer fixed point.

Given N > 0, let IrrN denote the set of irrational numbers α = [a1, a2, . . . ],

with ai ≥ N for i = 1, 2, . . . . Our first result in this direction is that

Theorem 1.3. There exists a constant N such that if α ∈ IrrN is a non-

Brjuno number, then orbit of almost every point in the Julia set of Pα(z) =

e2παiz + z2 accumulates on the 0 fixed point.

The statement of the above theorem is trivial if the Julia set has zero area.

However, the positive area Julia sets constructed by Buff and Chéritat fall into

class of maps satisfying our conditions in the above theorem. Thus, above

theorem applies to these examples.

Proof of this theorem uses a Douady-Ghys type renormalization; return

map to a certain domain. In a fruitful work by H. Inou and M. Shishikura [IS06]

in 2005 this renormalization was developed to study large iterate of maps

8



near fixed points of high return times. They have introduced a compact (in

compact-open topology) class of maps with “large enough” domain of definition

which is invariant under this renormalization. More precisely, consider P (z) =

z(1+z)2 : U → C, where U is a certain domain containing the 0 fixed point and

the −1/3 critical point. The Inou-Shishikura class, IS, is defined as the class of

maps P ◦ϕ−1 : Uϕ → C, where ϕ : U → Uϕ is a conformal map with ϕ(0) = 0,

ϕ′(0) = e−2παi. They show that there exists a constant N > 0 such that every

map in this class with α ∈ IrrN is infinitely many times renormalizable, and all

the renormalizations belong to this class. This result has proved to be useful

in studying local dynamics of maps with a neutral fixed point. For example,

it was used in Buff and Chéritat’s proof of existence of positive area Julia sets

to control post-critical set of such maps.

The idea of the proof of above theorem is to construct infinitely many

“gates” with the 0 fixed point on their boundary such that almost every point

in the Julia set has to go through them. We can also control diameter of gates

in terms of the Brjuno function and conclude that these diameters shrink to

zero once α is a non-Brjuno number. The orbit of the critical point goes

through all these gates (without any assumption on the area of the Julia set).

Therefore, a corollary of the above theorem is the following:

Corollary 1.4. If α is a non-Brjuno number in IrrN (same N as in the above

theorem) then every map in the Inou-Shishikura class with the fixed point of

multiplier e2παi at 0 is non-linearizable. In particular, if f is a rational map

of the form e2παi · P ◦ h, with α ∈ IrrN , where h is an arbitrary rational map

of the Riemann sphere satisfying

• h(0) = 0, h′(0) = 1,

• no critical value of h belongs to U (domain of P ),
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Then f is not linearizable at 0.

For a rational map of the Riemann sphere f , the post-critical set PC(f)

is defined as closure of orbits of all critical points of f . It is proved by Lyu-

bich [Ly83b] that the post-critical set of a rational map is the measure theoretic

attractor of points in the Julia set of that map. That is, for every neighborhood

of the post-critical set, orbit of almost every point in the Julia set eventually

stays in that neighborhood. A central result in our work on this class of

quadratic maps is the following:

Theorem 1.5. There exists a constant N such that for every non-Bruno α ∈
IrrN , the post-critical set of Pα is connected and has zero area.

A straight corollary of the above theorem is the following:

Corollary 1.6. Almost every point in the Julia set of Pα with a non-Brjuno

α ∈ IrrN is non-recurrent. In particular, there is no finite absolutely continu-

ous invariant measure on the Julia set.
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Chapter 2

Preliminaries

2.1 Julia and Fatou sets

Let U be an open subset of the Riemann sphere Ĉ and F be a family of holo-

morphic maps defined on U . The family F is called normal in U , if every

infinite sequence {fn}∞n=1 in F , contains a subsequence which converges uni-

formly on all compact subsets of U to a holomorphic map defined on U . Given

a rational map f : Ĉ → Ĉ, we can consider the family of n-fold compositions

of f by itself, {fn}∞n=0, defined on Ĉ. The Fatou set of f , denoted by F (f),

is defined as the largest open subset of Ĉ on which the sequence of iterates

{fn}∞n=0 is normal. The Julia set J(f) is defined as the complement of the

Fatou set. By definition, these two sets are invariant.

The post-critical set of f , which plays an important role in understanding

the dynamics of f , is defined as

PC(f) :=
⋃

c:f ′(c)=0

∞⋃

n=1

fn(c),

that is, topological closure of forward images fk(c) with k > 0, of critical points

of f .
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A point z ∈ Ĉ is called periodic of period p if f p(z) = z and f j(z) 6= z for

1 < j < p. It’s multiplier is defined as λ = (f p)′(z). By definition, periodic

points are characterized as attracting, repelling, or neutral, depending on if

|λ| < 1, |λ| > 1, or |λ| = 1, respectively. It is called super attracting if λ = 0.

It is easy to see that every attracting periodic point is contained in the Fatou

set and every repelling one is contained in the Julia set. Indeed, by works

of Julia and Fatou, the Julia set is equal to topological closure of repelling

periodic points.

A neutral periodic point is called parabolic if its multiplier is e2πi
p

q for a

rational number p/q. Parabolic periodic points belong to the Julia set. A fixed

point z with multiplier e2παi is called linearizabale, if there exists a change of

coordinate φ defined on some neighborhood of z with φ(z) = 0, and

φ−1 ◦ f ◦ φ = z 7→ e2παiz

on that neighborhood. If there is no such a coordinate, z is called a Cremer

fixed point. In the linearizable case, the maximal domain of linearization is

called a Siegel disk. Linearizable periodic points and Cremer periodic points

are defined similarly. Every linearizable periodic point belongs to Fatou set

and every Cremer one belongs to Julia set.

It turns out that the linearizability of a neutral fixed point with an irrational

rotation depends on the arithmetic nature of the rotation. Every irrational

number can be written as a continued fraction of the form

1

a1 + 1
a2+ 1

...

,

which produces best rational approximants

pn

qn
=

1

a1 + 1
a2+ 1

... 1
an

,
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for every n ≥ 1. The following theorem gives a combinatorial condition on the

rotation which implies linearizability at a neutral fixed point.

Theorem 2.1 (Siegel, Brjuno). If
∞∑

n=1

log qn+1

qn
<∞,

then every holomorphic germ with a fixed point of multiplier e2παi is locally

linearizable.

In the other direction we have,

Theorem 2.2 (Yoccoz). If the above sum is divergent, then the quadratic

polynomial z → e2παiz + z2 is not linearizable at 0.

By a theorem of Sullivan [Su85] every component of Fatou set is eventually

periodic. Let U be a periodic component of Fatou set of a rational map f of

period p. There are only five possibilities for f p on U listed below.

1. Supper attracting case: there exists a super attracting periodic point

z ∈ U , attracting orbit of every point in U under f p.

2. Attracting case: there exists a periodic point z ∈ U , 0 < |(f p)′(z)| <
1, attracting orbit of every point in U under f p.

3. Parabolic case: there exits a periodic point z ∈ ∂U with (f p)′(z) = 1,

attracting orbit of every point in U under f p.

4. Siegel disk: U is conformally isomorphic to a disk, and f p acts as an

irrational rotation on U .

5. Herman Ring: U is conformally isomorphic to an annulus, and f p acts

as an irrational rotation on U .

Finally, M. Shishikura [Sh87] proves a conjeture on an upper bound for number

of priodic Fatou components.

13



2.2 Dynamics of polynomials

Let f : C → C be a monic polynomial of degree d, f(z) = zd + a1z
d−1 + · · · +

ad,∞ is a super attracting fixed point of f and its basin of attraction is defined

as

Df (∞) = {z ∈ C : fn(z) → ∞}.

Its complement is called the filled Julia set; K(f) = C \ Df(∞). The Julia

set J(f) is the common boundary of K(f) and Df(∞). It is known that the

Julia set and the filled Julia set of a polynomial are connected if and only if

all critical points stay bounded under iteration.

With f as above, there exists a conformal change of coordinate, Böttcher

coordinate, Bf which conjugates f to the dth power map z 7→ zd throughout

some neighborhood of infinity Uf . It is defined as,

Bf : Uf → {z ∈ C : |z| > rf ≥ 1},

Bf (z) := lim
n→∞

dn
√
fn(z)

(2.1)

where dnth root is chosen such that Bf is tangent to the identity map at infinity.

By definition, it satisfies the equivariance relation Bf(f(z)) = (Bf (z))
d, and

Bf(z) ∼ z as z → ∞.

In particular, if the filled Julia set is connected, Bf coincides with the

Riemann mapping of Df(∞) onto the complement of the closed unit disk,

normalized to be tangent to the identity map at infinity.

The external ray Rθ = Rθ
f of angle θ is defined as

B−1
f

(
{reiθ : rf < r <∞}

)
.

The equipotential Er = Er
f of level r > rf is defined as

B−1
f

(
{reiθ : 0 ≤ θ ≤ 2π}

)
.

14



It follows from equivariance relation that f(Rθ) = Rdθ, and f(Er) = Erd

.

A ray Rθ is called periodic ray of period p if f p(Rθ) = Rθ. A ray is fixed

(p = 1) if and only if θ is a rational number of the form 2πj/(d − 1). By

definition, a ray Rθ lands at a well defined point z in J(f) if the limiting value

of the ray Rθ (as r → rf) exists and equals to z. Such a point z ∈ J(f) is

called the landing point of Rθ. The following theorem characterizes landing

points of periodic rays. See [DH82] for further discussions.

Theorem 2.3. Let f be a polynomial of degree d ≥ 2 with connected Julia

set. Every periodic ray lands at a well defined periodic point which is either

repelling or parabolic. Vice versa, every repelling or parabolic periodic point is

the landing point of at least one, and at most finitely many periodic rays with

the same ray period.

In particular, this theorem implies that the external rays landing at a pe-

riodic point are organized in several cycles. Let a = {ak}p−1
k=0 be a repelling or

parabolic cycle of f and let R(ak) be union of all external rays landing at ak.

The configuration

R(a) =

p−1⋃

k=0

(R(ak))

with the rays labeled by their external angles, is called the periodic point por-

trait of f associated to the cycle a.

2.3 Unicritical family and the connectedness

locus

Any degree d polynomial with only one critical point is affinely conjugate to

Pc(z) = zd + c for some complex number c. A case of especial interest is the
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following fixed point portrait. The d−1 fixed rays R2πj/(d−1) land at d−1 fixed

points called βj , and moreover, these are the only rays that land at βj ’s. These

fixed points are non-dividing, that is, K(F )\βj is connected for every j. If the

other fixed point, called α, is also repelling, there are at least 2 rays landing

at it. Thus, α-fixed point is dividing and by Theorem 2.3, the rays landing

at α-fixed point are permuted under the dynamics. The following statement

has been shown in [M95] for quadratic polynomials. The same ideas apply to

prove it for degree d unicritical polynomials.

Proposition 2.4. If at least 2 rays land at the α fixed point of Pc, we have:

• The component of C\P−1
c (R(α)) containing the critical value is a sector

bounded by two external rays.

• The component of C\P−1
c (R(α)) containing the critical point is a region

bounded by 2d external rays landing in pairs at the points e2πj/dα, for

j = 0, 1, . . . , d− 1.

The Connectedness locus Md of degree d is defined as the set of parameters

c in C for which J(Pc) is connected, or equivalently, the critical point of Pc

does not escape to infinity under iteration of Pc. In particular, M2 is the well-

known Mandelbrot set. See Figures 2.1 and 2.2. A well-known result due to

Douady and Hubbard [DH82] shows that the connectedness loci are connected.

Their argument is based on constructing an explicit conformal isomorphism

BMd
: C \Md → {z ∈ C : |z| > 1}

given by BMd
(c) = Bc(c), where Bc is the Böttcher coordinate for Pc.

By means of conformal isomorphism BMd
, the parameter external rays

Rθ and equipotentials Er are defined, similarly, as the BMd
-preimages of the

straight rays going to infinity and round circles around 0.
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Figure 2.1: The Mandelbrot set

A polynomial Pc (and the corresponding parameter c) is called hyperbolic if

Pc has an attracting periodic point. The set of hyperbolic parameters in Md,

topologically open by definition, is the union of some components of intMd.

These components are called hyperbolic components.

The main hyperbolic component is defined as the set of parameter values c

for which Pc has an attracting fixed point. Outside of the closure of this set all

fixed points become repelling. Now, consider a hyperbolic component H ⊂
intMd, and suppose bc is the corresponding attracting cycle with period k. On

the boundary of H this cycle becomes neutral, and there are d−1 parameters

ci ∈ ∂H where Pci
has a parabolic cycle with multiplier equal to one. One of

these parameters ci, denoted by croot, which divides the connectedness locus

into two pieces, is called root of H (See [DH82] for quadratic polynomials and

[Sch04] for arbitrary degree unicritical polynomials). Indeed, any hyperbolic

component has one root and d−2 co-roots. The root is the landing point of two

parameter rays, while every co-root is the landing point of a single parameter

ray, See Figure 2.3.
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Figure 2.2: Figure on the left shows the connectedness locus M3. The figure

on the right is an enlargement of a primary limb in M3. The dark regions

show some of the secondary limbs

Let c belong to a hyperbolic component H , different from main component

of the connectedness locus, with attracting cycle b̄c. The basin of attraction of

b̄c, denoted by Ac, is defined as the set of points z ∈ C with P n
c (z) converges

to the cycle bc. The boundary of the component of Ac containing c is a jordan

curve which we denote it by Dc. The map P k
c on Dc is topologically conjugate

to θ 7→ dθ on the unit circle. Therefore, there are d − 1 fixed points of P k
c on

this jordan curve which are repelling periodic points (of Pc) of period dividing

period of b̄c (its period can be strictly less than period of bc). Among all rays

landing at these repelling periodic points, let θ1 and θ2 be the angles of the

external rays bounding the sector containing the critical value of Pc (See Figure

2.3). The following theorem makes a connection between external rays Rθ1 ,

Rθ2 and the parameter external rays Rθ1
, Rθ2

on the parameter plane. See

[DH82] or [Sch04] for proofs.
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Rθ1

Rθ2

Rθ3
-ray landing at a co-root

Rθ2
-ray landing at a root

Rθ1
-ray landing at a root

Figure 2.3: Figure on the left shows a primitive renormalizable Julia set and

the external rays Rθ1 and Rθ2 landing at the corresponding repelling periodic

point. The figure on the right is the corresponding primitive little multibrot

copy. It also shows the parameter external rays Rθ1
and Rθ2

landing at the

root point.

Theorem 2.5. The parameter external rays Rθ1
and Rθ2

land at the root point

of H , and these are the only rays that land at this point.

Closure of the two parameter external rays Rθ1
and Rθ2

cut the plane into

two components. The one containing the component H , with the root point

attached to it, is called the wake WH . So, a wake is an open set with a root

point attached to its boundary. For a wake WH and an equipotential of level

η, Eη, the truncated wake WH (η) is the bounded component of WH \ Eη.

Part of the connectedness locus contained in the wake WH with the root point

attached to it is called the limb LH of the connectedness locus originated

at H . In other words, the limb LH is part of Md contained in WH . By
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definition, every limb is a closed set.

The wakes attached to the main hyperbolic component of Md are called

primary wakes and a limb associated to such a primary wake will be called

primary limb. If H is a hyperbolic component attached to the main hyperbolic

component, all the wakes attached to such a component H (except WH itself)

are called secondary wakes. Similarly, a limb associated to a secondary wake

will be called secondary limb. A truncated limb is obtained from a limb by

removing a neighborhood of its root. Some secondary limbs are shown in

Figure 2.2.

Given a parameter c in H , we have the attracting cycle bc as above, and the

associated repelling cycle ac which is the landing point of the external rays Rθ1

and Rθ2 . The following result gives the dynamical meaning of the parameter

values in the wake WH which is bounded by parameter external rays Rθ1
and

Rθ2
(See [Sch04] for the proof).

Theorem 2.6. For parameters c in WH \{root point}, the repelling cycle ac

stays repelling and moreover, the isotopic type of the ray portrait R(ac) is fixed

throughout WH .

2.4 Quasi-conformal mappings

There are several equivalent definitions of quasi-conformal mappings conve-

nient in different situations. A good source on the subject is Ahlfor’s book

[Ah66]. An analytic definition is more appropriate for us. Let Ω be an open

subset of the complex plane. A homeomorphism φ : Ω → C is called absolutely

continuous on lines if for every rectangle R contained in Ω with sides parallel

to x and y axis, φ is absolutely continuous on almost every horizontal and

almost every vertical line in R. Such function has partial derivatives almost
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every where in Ω. Let φz denote 1
2
(φx − iφy), and φz̄ denote 1

2
(φx + iφy), with

z = x+ iy.

An orientation preserving homeomorphism φ : Ω → C is called K-quasi-

conformal, K-q.c. for short, if

• φ is absolutely continuous on lines,

• |φz̄| ≤ k|φz| almost every where in Ω, where k = K−1
K+1

.

The measurable function µφ = φz̄/φz is called complex dilatation of φ and the

smallest value of K satisfying above definition is called dilatation of φ. Some

properties of q.c. mappings which will be used in our work is listed in the

following theorem. One may refer to [Ah66] for their proofs.

Theorem 2.7. Quasi-conformal mappings satisfy the following properties:

• Composition of a K1-q.c. and a K2-q.c. map is a K1K2-q.c. map.

• The space of K-q.c. mappings from Ĉ to Ĉ fixing three points 0, 1, and

∞ is a compact class (under uniform convergence on compact sets).

• A 1-q.c. map is conformal.

We will be interested in solving Beltrami equation µφ = µ for a given

measurable function µ : Ĉ → Ĉ. Solution to this problem is referred to as

measurable Riemann mapping theorem.

Theorem 2.8. For any measurable µ : Ĉ → Ĉ with ‖µ‖∞ < 1, there exists a

unique normalized q.c. mapping φµ with complex dilatation µ that leaves 0, 1,

∞ fixed.

Any topological annulus is conformally isomorphic to one of C\{0}, B(0, 1)\
{0}, or B(0, r) \ B(0, 1) for some r > 1. It’s modulus, denoted as mod A, is
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defined as ∞ in the first two cases and 1
2π

log r in the last case. It turns out

that this quantity is quasi-invariant under q.c. mappings. That is, given a

K-q.c. mapping φ : A→ C, we have 1
K

mod A ≤ mod φ(A) ≤ K mod A.

The following theorem makes the connection between q.c. mappings on Ω

and maps on boundary of Ω. For convenience we will assume that Ω is upper

half plane.

Theorem 2.9 (boundary correspondence). Let φ be a K-q.c. mapping of upper

half plane onto itself which maps ∞ to itself. Then φ induces a homeomorphism

h : R → R which satisfies

M(K)−1 ≤ h(x+ t) − h(x)

h(x) − h(x− t)
≤M(K),

for some constant M(K) depending only on K. Vice versa, every homeomor-

phism h : R → R with h(∞) = ∞ that satisfies above inequality for some M ,

extends to a q.c. mapping of the upper half plane with dilatation depending only

on M .

2.5 Polynomial-like maps

A holomorphic proper branched covering of degree d, f : U ′ → U , where U and

U ′ are simply connected domains with U ′ compactly contained in U , is called a

polynomial-like map. Reader can consult [DH85] for the following material on

polynomial-like maps. Every polynomial can be viewed as a polynomial-like

map once restricted to an appropriate neighborhood of its filled Julia set. In

what follows we will only consider polynomial-like maps with one branched

point of degree d (which is assumed to be at zero after normalization) and

refer to them as unicritical polynomial-like maps.
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The filled Julia set K(f) of a polynomial-like map f : U ′ → U is naturally

defined as

K(f) = {z ∈ C : fn(z) ∈ U ′, n = 0, 1, 2, . . .}.

The Julia set J(f) is defined as the boundary of K(f). They are connected if

and only if K(f) contains critical point of f .

Two polynomial-like maps f and g are said topologically (quasi-conformally,

conformally, affinely) conjugate if there is a choice of domains f : U ′ → U and

g : V ′ → V and a homeomorphism h : U → V (quasi-conformal, conformal, or

affine isomorphism, respectively) such that h ◦ f |U ′ = g ◦ h|U ′.

Two polynomial like maps f and g are hybrid or internally equivalent if

there is a q.c. conjugacy h between f and g with ∂h = 0 on K(f). The

following theorem due to Douady and Hubbard [DH85] makes the connection

between polynomial-like maps and polynomials.

Theorem 2.10 (Straightening). Every polynomial-like map f is hybrid equiv-

alent to (suitable restriction of) a polynomial P of the same degree. Moreover,

P is unique up to affine conjugacy when K(f) is connected.

In particular, any unicritical polynomial-like map with connected Julia set

corresponds to a unique (up to affine conjugacy) unicritical polynomial z 7→
zd + c with c in the connectedness locus Md. Note that zd + c and zd + c/λ

are conjugate via z 7→ λz for every d− 1th root of unity λ.

Given a polynomial-like map f : U ′ → U , we can consider the fundamental

annulus A = U \ U ′. It is not canonic because any choice of V ′ ⋐ V such

that f : V ′ → V is a polynomial-like map with the same Julia set will give a

different annulus. However we can associate a real number, modulus of f , to

any polynomial-like map f as follows:

mod(f) = sup mod(A)
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where the sup is taken over all possible fundamental annuli A of f .

It can be seen from the proof of the straightening theorem that dilatation

of the q.c. conjugacy between f and the corresponding polynomial Pc(f) : z 7→
zd + c(f) can be controlled by modulus of f .

Proposition 2.11. If mod(f) ≥ µ > 0 then dilatation of the q.c. conjugacy

obtained in the straightening theorem depends only on µ.

2.6 Holomorphic motions

In this section we consider analytic deformations of sets in Ĉ. Let A be a

subset of Ĉ. A holomorphic motion of A parametrized on a complex manifold

M is a map Φ : M × A→ Ĉ such that

• For any fixed z ∈ A, the map λ→ Φ(λ, z) is holomorphic in M .

• For any fixed λ ∈M , the map z → Φ(λ, z) is an injection.

• There exists a point λ0 ∈M with Φ(λ0, z) = z, for every z ∈ A.

The following remarkable result due to Mané-Sad-Sullivan [MSS83] relates

holomorphic dynamics with q.c. mappings.

Theorem 2.12 (λ-Lemma). If Φ : M ×A→ Ĉ is a holomorphic motion, then

Φ has an extension to Φ̃ : M × Ā→ Ĉ, with

• Φ̃ is a holomorphic motion of Ā.

• Each Φ̃(λ, ·) : Ā→ Ĉ is quasi-conformal.

An important result about holomorphic motions is Slodkowski’s generalized

λ-lemma [Sl91] stating that a holomorphic motion of a set A extends to a

holomorphic motion of the whole Riemann sphere.
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Chapter 3

Combinatorial Rigidity in the

Unicritical Family

3.1 Modified principal nest

3.1.1 Yoccoz puzzle pieces

Recall that for a parameter c ∈ Md outside of the main component of the

connectedness locus, Pc has a unique dividing fixed point αc. The q ≥ 2

external rays R(αc) landing at this fixed point together with an arbitrary

equipotential Er, cut the domain inside Er into q closed topological disks

Y 0
j , j = 0, 1, . . . , q − 1, called puzzle pieces of level zero. That is, Y 0

j ’s are the

closures of the bounded components of C \ {Er ∪ R(ᾱc) ∪ {αc}}. The main

property of this partition is that Pc(∂Y
0
j ) does not intersect interior of any

piece Y 0
i .

Now the puzzle pieces Y n
i of level or depth n are defined as the closures of

the connected components of f−n(int(Y 0
j )). They partition the neighborhood

of the filled Julia set bounded by equipotential f−n(Er) into finite number of
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closed disks. By definition all puzzle pieces are bounded by piecewise analytic

curves. The label of each puzzle piece is the set of the angles of external rays

bounding that puzzle piece. If the critical point does not land on the αc-fixed

point, there is a unique puzzle piece Y n
0 of level n containing the critical point.

The family of all puzzle pieces of Pc of all levels has the following Markov

property :

• Puzzle pieces are disjoint or nested. In the latter case, the puzzle piece

of higher level is contain in the puzzle piece of lower level.

• Image of any puzzle piece of level n > 1 is a puzzle piece of level n− 1.

Moreover, Pc : Y n
j → Y n−1

k is d-to-1 branched covering or univalent,

depending on whether Y n
j contains the critical point or not.

On the first level, there are d(q−1)+1 puzzle pieces. One critical piece Y 1
0 ,

q−1 ones, denoted by Y 1
i , attached to the fixed point αc, and the (d−1)(q−1)

symmetric ones, denoted by Z1
i , attached to P−1

c (αc) \ {αc}. Moreover f |Y 1
0

d-to-1 covers Y 1
1 , f |Y 1

i univalently covers Y 1
i+1, for i = 1, . . . , q−2, and f |Y 1

q−1

univalently covers, Y 1
0 ∪ ⋃(d−1)(q−1)

i=1 Z1
i . Thus f q(Y 1

0 ) truncated by f−1(Er) is

the union of Y 1
0 and Z1

i ’s.

We will assume after this that P n
c (0) 6= αc for all n, so that the critical

puzzle pieces of all levels are well defined. As it will be apparent in a moment,

this condition is always the case for renormalizable polynomials.

3.1.2 The complex bounds in the favorite nest and renor-

malization

For a puzzle piece V ∋ 0, let RV : Dom RV ⊆ V → V denote the first return

map to V . It is defined at every points z in V for which there exists a positive
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integer t with P t
c (z) ∈ intV . Then RV (z) is defined as P t

c (z) where t is the

first positive moment when P t
c (z) ∈ intV . Markov property of puzzle pieces

implies that any component of Dom RV is contained in V and the restriction of

this return map (P t
c , for some t) to such a component is d-to-1 or 1-to-1 proper

map onto V . The component of the Dom RV which contains the critical point

is called the central component of RV . If the image of critical point under the

first return map belongs to the central component, the return is called central

return.

The first landing map LV to a puzzle piece V ∋ 0 is defined at all points

z ∈ C for which there exists an integer t ≥ 0 with P t
c (z) ∈ intV . It is the

identity map on the component V and univalently maps each component of

Dom LV onto V .

Consider a puzzle piece Q ∋ 0. If the critical point returns back to Q under

iteration of Pc, the central component P ⊂ Q of RQ is the pullback of Q by P p
c

along the orbit of the critical point, where p is the first moment when critical

orbit enters intQ. This puzzle piece P is called the first child of Q. Recall

that P p
c : P → Q is a proper map of degree d.

The favorite child Q′ of Q is constructed as follows; Let p > 0 be the first

moment when Rp
Q(0) ∈ int(Q \ P ) (if it exists) and q > 0 be the first moment

(if it exists) when Rp+q(0) ∈ intP (p + q is the moment of the first return

back to P after the first escape of the critical point from P under iterates of

RQ). Now Q′ is defined as the pullback of Q under Rp+q
Q containing the critical

point. Markov property of puzzle pieces implies that the map P k
c = Rp+q

Q

(for an appropriate k > 0) from Q′ to Q is proper of degree d. The main

property of the favorite child is that the image of the critical point under the

map P k
c : Q′ → Q belongs to the first child P .
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Consider a unicritical polynomial Pc with q rays landing at its α fixed point

and form the corresponding Yoccoz puzzle pieces. The map Pc is called satellite

renormalizable, or immediately renormalizable if

P lq
c (0) ∈ Y 1

0 , for l = 0, 1, 2, . . . .

The map P q
c : Y 1

0 → P q
c (Y 1

0 ) is proper of degree d but its domain is not

compactly contained in its range. By slight “thickening” of Y 1
0 so that Y 1

0 is

compactly contained in P q
c (Y 1

0 ) (see [M00]), P q
c can be turned into a unicritical

polynomial-like map. Note that the above condition implies that the critical

point does not escape its domain of definition and therefore the corresponding

little Julia set is connected.

If Pc is not satellite renormalizable, then there is a first moment k such

that P kq
c (0) belongs to some Z1

i . Define Q1 as the pullback of this Z1
i under

P kq
c . By the above construction we form the first child, P 1, and the favorite

child ,Q2, of Q1. Repeating the above process we get a nest of puzzle pieces

Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ · · · ⊃ Qn ⊃ P n ⊃ · · · (3.1)

where P i is the first child of Qi, and Qi+1 is the favorite child of Qi.

The above process stops if and only if one of the following happens:

• The map Pc is combinatorially non-recurrent, that is, the critical point

does not return to some critical puzzle piece.

• The critical point does not escape the first child P n under iterates of RQn

for some n, or equivalently, returns to all critical puzzle pieces of level

bigger than n are central.

In the former case, combinatorial rigidity in the critically non-recurrent

case has been taken care of in [M00].
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In the latter case, RQn = P k
c : P n → Qn (for an appropriate k) is a

unicritical polynomial-like map of degree d with P n compactly contained in

Qn. The map P is called primitively renormalizable in this case. Note that

the corresponding little Julia set is connected because all the returns of critical

point to Qn are central by definition.

A map Pc : C → C is called renormalizable if it is satellite or primitively

renormalizable.

To deal with non-renormalizable and recurrent polynomials, the following

a priori bounds has been proved in [AKLS05].

Theorem 3.1. There exists δ > 0 such that for every ε > 0 there exists

n0 = n0(ε) > 0 with the following property. For the nest of puzzle pieces

Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ · · · ⊃ Qm ⊃ Pm ⊃ · · ·

as above, if mod (Q1 \ P 1) > ε and n0 < n < m then mod (Qn \ P n) > δ.

If a map Pc is combinatorially recurrent, the critical point does not land

at α-fixed point, therefore puzzle pieces of all levels are well defined. The

combinatorics of Pc up to level n is an equivalence relation on the set of angles

of puzzle pieces up to level n. Two angles θ1 and θ2 are equivalent if the

corresponding rays Rθ1 and Rθ2 land at the same point. One can see that the

combinatorics of a map up to level n+t determines the puzzle piece Y n
j of level

n containing the critical value f t(0). Two non-renormalizable maps are called

combinatorially equivalent if they have the same combinatorics up to arbitrary

level n,that is, they have the same set of labels of puzzle pieces and the same

equivalence relation on them. Combinatorics of a renormalizable map will be

defined in section 3.1.3.

Two unicritical polynomials Pc and Pc̃ with the same combinatorics up to

level n are called pseudo-conjugate (up to level n) if there is an orientation
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preserving homeomorphism H : (C, 0) → (C, 0), such that H(Y 0
j ) = Ỹ 0

j for

j = 0, 1, 2, . . . and H ◦ Pc = Pc̃ ◦H outside of the critical puzzle piece Y n
0 . A

pseudo-conjugacy H is said to match the Böttcher marking if near infinity it

becomes identity in the Böttcher coordinates for Pc and Pc̃. Thus a pseudo-

conjugacy is the identity map in the Böttcher coordinate outside of ∪jY
n
j by

its equivariance property.

Let qm and pm be the levels of the puzzle pieces Qm and Pm, that is,

Qm = Y qm

0 and Pm = Y pm

0 . The following statement is the main technical

result of [AKLS05] which will be used frequently in our construction.

Theorem 3.2. Assume that a (finite) nest of puzzle pieces

Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ · · · ⊃ Qm ⊃ Pm (3.2)

is obtained for Pc. If Pc̃ is combinatorially equivalent to Pc, then there exists a

K-q.c. pseudo-conjugacy H (up to level qm where Qm = Y qm

0 ) between Pc and

Pc̃ which matches the Böttcher marking.

Proposition 3.3. Assume that the nest of puzzle pieces in the above theorem

is defined using equipotential of level η, then dilatation of the q.c. pseudo-

conjugacy, K = K(c, c̃), obtained in that theorem depends only on the distance

between c and c̃ in the primary wake truncated by equipotential of level η and

equipped with the Poincaré metric.

Proof. To prove the proposition we need a brief sketch of the proof of the above

theorem. For more details refer to [AKLS05]. Combinatorial equivalence of Pc

and Pc̃ up to level zero implies that the parameters c and c̃ belong to the same

truncated wake W (η) attached to the main component of the Connectedness

locus. Inside W (η), the q external rays R(α) and the equipotential E(h) (for
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every h > η) move holomorphically in C \ 0. That is, there exists a holomor-

phic motion Φ of R(α) ∪ E(h), given by B−1
c̃ ◦ Bc in the second coordinate,

parametrized on W (η) such that

φ(c̃,R(α) ∪ E(h)) = (c̃, R̃(α) ∪ Ẽ(h)).

Outside of equipotential E(h), this holomorphic motion extends to a mo-

tion holomorphic in both variables (c, z) which is coming from the Böttcher

coordinate near ∞. By [Sl91] the map φc̃ ◦ (φc)−1 extends to a K0 q.c.

map G0 : (C, 0) → (C, 0), where K0 only depends on the hyperbolic dis-

tance between c and c̃ in the truncated wake W (η). This gives a q.c. map

G0 : (C, 0) → (C, 0) which conjugates Pc and Pc̃ outside of puzzle pieces of

level zero.

By adjusting the q.c. map G0 inside equipotential E(h) such that it sends

c to c̃, we get a q.c. map (not necessarily with the same dilatation) G′
0. By

lifting G′
0 via Pc and f̃ we get a new q.c. map G1. Repeating this process,

for i = 1, 2, . . . , n = qm, which is adjusting the q.c. map Gi inside union of

puzzle pieces of level i+1 so that it sends c to c̃ and lifting it, we obtain a q.c.

map Gi+1 (not with the same dilatation) conjugating Pc and Pc̃ outside union

of puzzle pieces of level i + 1. At the end we will have a q.c. map Gn which

conjugates Pc and Pc̃ outside of equipotential E(h/dn).

The nest of puzzle pieces

Q̃1 ⊃ P̃ 1 ⊃ Q̃2 ⊃ P̃ 2 ⊃ · · · ⊃ Q̃m ⊇ P̃m

for Pc̃ is defined as the image of the nest of puzzle pieces in (3.2) under the

map Gn. Combinatorial equivalence of Pc and Pc̃ implies that this new nest

has the same properties as the one for Pc. In other words, Q̃i+1 is the favorite

child of Q̃i and P̃ i is the first child of Q̃i. Hence Theorem 3.1, applies to this
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nest too. By properties of these nests, one constructs a K-q.c. map Hn from

the critical puzzle piece Qn to the corresponding one Q̃n where K only depends

on the a priori bounds δ and the hyperbolic distance between c and c̃ in the

truncated wake W η. The pseudo-conjugacy Hn is obtained from univalent lifts

of Hn onto other puzzle pieces.

If Pc is renormalizable, the process of constructing modified principal nest

stops at some level and returns to the critical puzzle pieces after this level are

central. One can see that critical puzzle pieces do not shrink to 0.

3.1.3 Combinatorics of a map

If Pc0 : z 7→ zd +c0 is renormalizable, there is a homeomorphic copy M1
d ∋ c0 of

the connectedness locus within the connectedness locus satisfying the following

properties (see[DH85]): For c ∈ M1
d \ {the root point}, Pc : z 7→ zd + c is

renormalizable, and there is a holomorphic motion of the dividing fixed point

αc and the rays landing at it on a neighborhood of M1
d \{the root point}, such

that the renormalization of Pc is associated to this fixed point and external

rays. In other words, all parameters in this copy have Yoccoz puzzle pieces of

all levels with the same labels. This homeomorphism is not unique because of

the symmetry in the connectedness locus. However, we define it uniquely by

sending the unique root point of the copy to the landing point of the parameter

external ray of angle 0.

We show below that among all renormalizations of Pc, there is a unique one

denoted by RPc which corresponds to a maximal copy (not included in any

other copy except Md itself) of the connectedness locus inside the connected-

ness locus.

Assume that RPc is equal to P j
c : U → U ′, for some positive integer j and
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topological disk U compactly contained in U ′. By straightening theorem, RPc

is conjugate to a unicritical polynomial Pc′. That is, there exists a q.c. mapping

χ : U ′ → C, with χ ◦ P j
c (z) = Pc′ ◦ χ(z), for every z ∈ U . This polynomial

Pc′ is determined up to conformal equivalence in the theorem. However, there

are only d − 1 conformally equivalent polynomials in each class. We make

this parameter unique by choosing the image of c under the homeomorphism

uniquely determined above.

If Pc′ is also renormalizable, Pc is called twice renormalizable. Let positive

integer k, and topological disks V and V ′ be such that P k
c′ : V → V ′ is a renor-

malization of Pc′. Define Ṽ and Ṽ ′ as χ-preimage of V and V ′, respectively.

One can see that χ conjugates P jk
c : Ṽ → Ṽ ′ with P k

c′ : V → V ′. Therefore,

P jk
c : Ṽ → Ṽ ′ is also a polynomial-like map. We denote this map by R2Pc.

Above process may be continued to associate a canonical finite or infinite

sequence Pc,RPc,R2Pc, . . ., of polynomial-like maps to Pc, and accordingly,

call Pc at most finitely, or infinitely renormalizable. Equivalently, there is a

finite or infinite sequence τ(Pc) := 〈M1
d,M2

d, . . .〉, of maximal connectedness

locus copies associated to Pc, where Mn
d corresponds to the renormalization

RnPc of Rn−1Pc. In the infinitely renormalizable situation, τ(Pc) is called the

combinatorics of Pc.

Two infinitely renormalizable maps are called combinatorially equivalent

if they have the same combinatorics, i.e. correspond to the same sequence of

maximal connectedness locus copies.

We say an infinitely renormalizable map Pc satisfies the secondary limbs

condition, if all of the connectedness copies in the combinatorics τ(Pc) belong

to a finite number of truncated secondary limbs. Let SL stand for the class

of infinitely unicritical polynomial-like maps satisfying the secondary limbs
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condition.

An infinitely renormalizable map Pc has a priori bounds, if there is an ε > 0

with mod (RmPc) ≥ ε, for all m ≥ 0.
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3.2 Proof of the rigidity theorem

In this section we begin to prove the rigidity theorem in a slightly more general

form as follows.

3.2.1 Reductions

Theorem 3.4 (Rigidity theorem). Let f and f̃ be two infinitely renormalizable

unicritical polynomial-like maps satisfying SL condition with a priori bounds.

If f and f̃ are combinatorially equivalent, then they are hybrid equivalent.

Remark. If the two maps f and f̃ in the above theorem are polynomials,

then hybrid equivalence becomes conformal equivalence. That is because the

Böttcher coordinate, which conformally conjugates the two maps on the com-

plement of the Julia sets, can be glued to the hybrid conjugacy on the Julia

set. See Proposition 6 in [DH85] for a precise proof of this.

The proof breaks into following steps:

combinatorial equivalence

⇓

topological equivalence

⇓

q.c. equivalence

⇓

hybrid equivalence

It has been shown in [J00] that any unbranched infinitely renormalizable

map with a priori bounds has locally connected Julia set. A renormalization
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fn : U → V is called unbranched if PC(f) ∩ U = PC(fn : U → V ). Here,

unbranched condition follows from our combinatorial condition and a priori

bounds (see [Ly97] Lemma 9.3). Then the first step, topological equivalence

of combinatorially equivalent maps, follows from the local connectivity of the

Julia sets by the Carathéodory theorem. Indeed by [Do93] there is a topological

model for the Julia set of these maps based on their combinatorics.

The last step in general follows from McMullen’s Rigidity Theorem [Mc94]

(Theorem 10.2). He has shown that an infinitely renormalizable quadratic

polynomial-like map with a priori bounds does not have any nontrivial invari-

ant line field on its Julia set. The same proof works for degree d unicritical

polynomial-like maps. It follows that any q.c. conjugacy h between f and f̃

satisfies ∂h = 0 almost everywhere on the Julia set. Therefore, h is a hybrid

conjugacy between f and f̃ . However, if all infinitely renormalizable unicrit-

ical maps in a given combinatorial class satisfy a priori bounds condition, it

is easier to show that q.c. conjugacy implies hybrid conjugacy for that class

rather than showing that there is no nontrivial invariant line field on the Julia

set. Since we are finally going to apply our theorem to combinatorial classes

for which a priori bounds have been established, we will prove it in Proposi-

tion 3.20.

So assume that f and f̃ are topologically conjugate. We want to show the

following:

Theorem 3.5. Let f and f̃ be infinitely renormalizable unicritical polynomial-

like maps satisfying a priori bounds and SL conditions. If f and f̃ are topo-

logically conjugate then they are q.c. conjugate.
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3.2.2 Thurston equivalence

Suppose two unicritical polynomial-like maps f : U2 → U1 and f̃ : Ũ2 → Ũ1

are topologically conjugate. A q.c. map

h : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃))

is a Thurston conjugacy if it is homotopic to a topological conjugacy

ψ : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃))

between f and f̃ relative ∂U1 ∪ ∂U2 ∪PC(f). Note that a Thurston conjugacy

is not a conjugacy between two maps. It is a conjugacy on the postcritical set

and homotopic to a conjugacy on the complement of the postcritical set. We

will see in the next lemma that it is in the “right” homotopy class.

The following result is due to Thurston and Sullivan [S92] which originates

the “Pull-Back Method” in holomorphic dynamics.

Lemma 3.6. Thurston conjugate unicritical polynomial-like maps are q.c. con-

jugate.

Proof. Assume h1 : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃)) is a Thurston conjugacy

homotopic to a topological conjugacy Ψ : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃))

relative ∂U1 ∪ ∂U2 ∪ PC(f).

As f : U2 \ {0} → U1 \ {f(0)} and f̃ : Ũ2 \ {0} → Ũ1 \ {f̃(0)} are covering

maps, h1 : U1 \ {f(0)} → Ũ1 \ {f̃(0)} can be lifted to a homeomorphism

h2 : U2 \ {0} → Ũ2 \ {0}. Moreover, since h1 satisfies the equivariance relation

h1◦f = f̃ ◦h1 on the boundary of U2, h2 can be extended onto U1\U2 by h1. It

also extends to the critical point by sending it to the critical point of f̃ . Let us

denote this new map by h2. For the same reason, every homotopy ht between
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Ψ and h1 can be lifted to a homotopy between Ψ and h2. As f and f̃ are

holomorphic maps, h2 has the same dilatation as dilatation of h1. This implies

that the new map h2 is also a Thurston conjugacy with the same dilatation as

the one of h1. By definition, the new map h2 satisfies the equivariance relation

on the annulus U2 \ f−1(U2).

Repeating the same process with h2, we obtain a q.c. map h3 and so on.

Thus, we have a sequence of K-q.c. maps hn from U1 to Ũ1 which satisfies

equivariance relation on the annulus U2 \ f−n(U2). All these maps can be

extended onto complex plane (see Theorem 2.9) with a uniform bound on their

dilatation. This family of q.c. maps is normalized at points 0, f(0), f 2(0), . . . by

mapping them to the corresponding points 0, f̃(0), f̃ 2(0), . . . . Compactness of

this class, Theorem 2.7, implies that there is a subsequence hnj
which converges

to a K-q.c. map H on U1.

For every z outside of the Julia set, the sequence hnj
(z) stabilizes and,

by definition, eventually hnj
◦ f(z) = f ◦ hnj

(z). Taking limit of both sides

will imply that H ◦ f(z) = f ◦H(z) for every such z. As filled Julia set of an

infinitely renormalizable unicritical map has empty interior, conjugacy relation

for an arbitrary z on the Julia set follows from continuity of H .

By the a priori bounds assumption in the theorem, there are topological

disks Vn,0 ⋐ Un,0 containing 0 such that Rnf = f tn : Vn,0 → Un,0 is a unicritical

degree d polynomial-like map and mod (Un,0\Vn,0) ≥ ε. By going several levels

down, i.e. considering f tn : f−ktn(Vn) → f−ktn(Un) for some positive integer

k, we may assume that mod (Un \ Vn) and mod (Ũn \ Ṽn) are proportional.

Also by slightly shrinking the domains, if necessary, we may assume that these

domains have smooth boundaries. Thus we have

- For every n ≥ 1, we have mod (Un,0\Vn,0) ≥ ε, and mod (Ũn,0\Ṽn,0) ≥ ε,
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- There exits a constant M such that for every n ≥ 1,

1

M
≤ mod (Un \ Vn)

mod (Ũn \ Ṽn)
≤M,

- For every n ≥ 1, Un,0 and Ũn,0 have smooth boundaries.

We use the following notations throughout the rest of this note.

f : V0 → U0, K0,0 = K(f),

Rf = f t1 : V1,0 → U1,0, K1,0 = K(Rf),

R2f = f t2 : V2,0 → U2,0, K2,0 = K(R2f),

...

Rnf = f tn : Vn,0 → Un,0, Kn,0 = K(Rnf),

...

The domain Vn,i, for i = 1, 2, . . . , tn − 1, is defined as the pullback of

Vn,0 under f−i containing the little Julia set Jn,i := f tn−i(Jn,0) and Un,i as the

component of f−i(Un,0) containing Vn,i so that f tn : Vn,i → Un,i is a polynomial-

like map. The domain Wn,i is defined as the preimage of Vn,i under the map

f tn : Vn,i → Un,i.

Accordingly, Kn,i is defined as the component of f−i(Kn,0) inside Vn,i.

Note that Rnf : Vn,i → Un,i is a polynomial-like map with the filled Julia

set Kn,i which is conjugate to Rnf : Vn,0 → Un,0 by conformal isomorphism

f i : Un,i → Un,0. It has been proved in [Ly97] (Lemma 9.2) that there is al-

ways definite space in between Julia sets in the primitive case for parameters

under our assumption. Compare the proof of Lemma 3.13. It has been shown

in [Mc96] that definite space between little Julia sets implies that there exist

choice of domains Un,i which are disjoint for different i’s and moreover the

annuli Un,i \Vn,i have definite moduli. So we will assume that on the primitive

levels, the domains Un,i are disjoint for different i’s.
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In all of the above notation, the first lower subscripts denote the level of

renormalization and the second lower subscripts run over little filled Julia sets,

Julia sets and their neighborhoods accordingly. In what follows all correspond-

ing objects for f̃ will be marked with a tilde and any notation introduced for

f will be automatically introduced for f̃ too.

To build a Thurston conjugacy, we first introduce multiply connected do-

mains Ωn(k),i (and Ω̃n(k),i) in C for an appropriate subsequence n(k) of the

renormalization levels and a sequence of q.c. maps with uniformly bounded

distortion

hn(k),i : Ωn(k),i → Ω̃n(k),i

for k = 0, 1, 2, . . . and i = 0, 1, 2, . . . , tn(k) − 1. These domains will satisfy the

following properties:

• Each Ωn(k),j , for n(k) ≥ 0, is a topological disk minus n(k+1) topological

disks Dn(k+1),i.

• Each Ωn(k),i, for n(k) ≥ 1, is well insideDn(k),i which means that the mod-

ulus of the annulus obtained from Dn(k),i \ Ωn(k),i is uniformly bounded

below for all n(k) and i.

• Every little postcritical set Jn(k),i ∩ PC(f) is well inside Dn(k),i.

• Every Dn(k),i is the pullback of Dn(k),0 under f−i containing Jn(k),i∩PC(f)

and every Ωn(k),i is the component of f−i(Ωn(k),0) inside Dn(k),i.

Finally, we construct a Thurston conjugacy by an appropriate gluing of the

maps hn(k),i : Ωn(k),i → Ω̃n(k),i together on the complement of all these multiply

connected domains (which is a union of annuli). See Figure 3.1.
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Figure 3.1: The multiply connected domains and the buffers

3.2.3 The domains Ωn,j and the maps hn,j

By applying the straightening theorem to the polynomial-like map

Rn−1f : Vn−1,0 → Un−1,0

we get a K1(ε)-q.c. map and a unicritical polynomial fcn−1
, such that

Sn−1 : (Un−1,0, Vn−1,0, 0) → (Υ0
n−1,Υ

1
n−1, 0), (3.3)

Sn−1 ◦ Rn−1f = fcn−1
◦ Sn−1.

See Figure 3.2.

Remark. To make notations easier to follow, we will drop the second subscript

whenever it is zero and it does not create any confusion. Also, all objects

on the dynamic planes of fcn−1
and fc̃n−1

(the ones after straightening) will be

denoted by bold face of notations used for objects on the dynamic planes of

f and f̃ .

To define Ωn−1,j and hn−1,j, because of of the difference in type of renor-

malizations, we will consider the following three cases:
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A . Rn−1f is primitively renormalizable.

B. Rn−1f is satellite renormalizable and Rnf is primitively renormalizable.

C . Rn−1f is satellite renormalizable and Rnf is also satellite renormalizable.

For a given infinitely renormalizable map fc, the renormalization on each

level is of primitive or satellite type. Therefore, we can associate a word

P . . . PS . . . SP . . .

of P and S where a P or a S in the i’s place means that the i’s renormaliza-

tion of fc is of primitive or satellite type, respectively. Corresponding to any

such word, we define a word of cases A m1Bm2C m3 . . . (for non-negative mj’s)

defined as follows. Starting from left, a P is replaced by A , SP by B, and

SS by CS. By repeating this process, we obtain a word of cases which is used

to decide which case to pick at each step.

Case A :

We need the following lemma to show that there are equipotentials of suffi-

ciently high level η(ε) inside Sn−1(Wn−1,0) and S̃n−1(W̃n−1,0) in the dynamic

planes of the maps fcn−1
and fc̃n−1

.

Lemma 3.7. If Pc : U ′ → U is a unicritical polynomial with connected Julia

set and mod (U \ U ′) ≥ ε, then U ′ contains equipotentials of level less than

η(ε) depending only on ε.

Proof. The map Pc on the complement of K(Pc) is conjugate to P0 on the

complement of the closed unit disk D1 by Böttcher coordinate Bc. Since levels

of equipotentials are preserved under this map and modulus is conformal in-

variant, it is enough to prove the statement for P0 : V ′ → V for V ′ compactly
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Figure 3.2: Primitive case

contained in V and mod (V \ V ′) ≥ ε. As P0 : P−1
0 (V \ V ′) → (V \ V ′) is a

covering of degree d, modulus of the annulus P−1
0 (V \ V ′) is ε/d which implies

that modulus of V ′ \D1 ≥ ε/d. By Grötzsch problem in [Ah66] (Section A in

Chapter III) we conclude that V ′ \D1 contains a round annulus Dη(ε) \D1.

By considering the equipotentials of level η(ε) (obtained in the previous

lemma) and the external rays landing at the dividing fixed points αn−1 and α̃n−1

of the maps fcn−1
, and fc̃n−1

, we can form the favorite nest of puzzle pieces (3.1)

introduced in Section 3.1.2. The hyperbolic distance between cn−1 and c̃n−1

in the truncated primary wake containing cn−1 and c̃n−1, W (η(ε)), is bounded

by some M(ε) depending only on ε and the combinatorial class SL . That
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is because cn−1 and c̃n−1 belong to a finite number of truncated limbs which

is a compact subset of this wake. Therefore, by Proposition 3.3, dilatation of

the pseudo-conjugacy obtained in Theorem 3.2 is uniformly bounded by some

constant K2(ε).

Let Qχn

n,0 = Y
qχn

n,0 and P χn

n,0 denote the last critical puzzle pieces obtained in

the nest (3.1), and hn−1 = hn−1,0 denote the corresponding K2(ε)-q.c. pseudo-

conjugacy obtained in Theorem 3.2. Components of f−i
cn−1

(Qχn

n,0) and f−i
cn−1

(P χn

n,0)

containing the little Julia sets Jn,i , for i = 0, 1, 2, . . . , tn/tn−1 − 1, are denoted

by Qχn

n,i and P χn

n,i , respectively. Note that that tn/tn−1 is the period of the first

renormalization of fcn−1
.

As the polynomials fcn−1
and fc̃n−1

also satisfy our combinatorial condition

and a priori bounds assumption, there is a topological conjugacy, denoted by

ψn−1, between them which is obtained from extending B−1
c̃n−1

◦ Bcn−1
onto the

Julia set.

Now we would like to adjust hn−1 : Qχn
n → Q̃χn

n using dynamics of

f tn/tn−1

cn−1
: P χn

n → Qχn

n , and f
tn/tn−1

c̃n−1
: P̃ χn

n → Q̃χn

n .

Let A0
n denote the closure of the annulus Qχn

n \P χn
n , and Ak

n, for k = 0, 1, 2, . . . ,

denote the component of f
−ktn/tn−1

cn−1 (A0
n) around Jn,0 by Ak

n. We can lift hn−1 by

f
tn/tn−1

cn−1 : Qχn
n → C and f

tn/tn−1

c̃n−1
: Q̃χn

n → C to obtain aK2-q.c. map g : A0
n → Ã0

n

which is homotopic to ψn−1 relative boundaries of A0
n. That is because by the

external rays connecting ∂P χn
n to ∂Qχn

n , the annulus A0
n is partitioned into

some topological disks and the two maps coincide on the boundaries of these

topological disks.

As f
ktn/tn−1

cn−1 : Ak
n → A0

n and f
ktn/tn−1

c̃n−1
: Ãk

n → Ã0
n are holomorphic un-

branched coverings, g can be lifted to a K2-q.c. map from Ak
n to Ãk

n, for every

k ≥ 1. All these lifts are the identity map in the Böttcher coordinate on the
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boundaries of these annuli. Hence, they match together to K2-q.c. conjugate

the two maps

f tn/tn−1

cn−1
: P χn

n \ Jn → Qχn

n \ Jn, and f
tn/tn−1

c̃n−1
: P̃ χn

n \ J̃n → Q̃χn

n \ J̃n.

Finally, we would like to extend this map further onto little Julia set Jn.

This is a especial case of a more general argument presented below.

Given a polynomial f with connected Julia set J , the rotation of angle θ on

C \ J is defined as the rotation of angle θ in the Bötcher coordinate on C \ J ,

that is, B−1
c (eiθ · Bc). By means of straightening, one can define rotations on

the complement of the Julia set of a polynomial-like map. It is not canonical

as it depends on the choice of straightening map. However, its effect on the

landing points of external rays is canonical.

Proposition 3.8. Let f : V2 → V1 be a polynomial-like map with connected

Julia set J . If φ : V1 \ J → V1 \ J is a homeomorphism which commutes with

f , then there exists a rotation of angle 2πj/(d−1), ρj, such that ρj ◦φ extends

as the identity map onto J .

Proof. Consider an external ray R landing at the non-dividing fixed point

β0 of f . As this ray is invariant under f and φ commutes with f , we have

f ◦ φ(R) = φ ◦ f(R) = φ(R). Thus, φ(R) is also invariant under f which

implies that φ(R) lands at a non-dividing fixed point βj of f . Now, choose ρj

such that ρj(φ(R)) lands at β0. Let ψ denote ρj ◦ φ and R′ denote ρj(φ(R)).

For such a rotation ρj , ψ also commutes with f and R′ is also invariant under

f .

The external ray R cuts the annulus V1 \ V2 into a quadrilateral I0,1. The

preimage f−1(I0,1) produces d quadrilaterals denoted by

I1,1, I1,2, . . . , I1,d,
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ordered clockwise starting with R. Similarly, the fn-preimage of I0,1 produces

dn quadrilaterals In,1, In,2, . . . , In,dn (also ordered clockwise starting with R).

In the same way, the external ray R′ produces quadrilaterals denoted by I ′n,j

ordered clockwise starting with R′. First we will show that the Euclidean

diameter of In,j (and I ′n,j) goes to zero as n tends to infinity.

Denote f−i(V1) by Vi+1 and let di+1 denote the hyperbolic distance on the

annulus Vi+1 \J . As In,j ⊆ Vn+1, and the intersection of the nest of topological

disks Vn is equal to J , the quadrilaterals In,j converge to the boundary of V1\J
as n goes to infinity. In order to show that the Euclidean diameter of these

quadrilaterals go to zero, it is enough to show that their hyperbolic diameters in

(V1\J, d1) stay bounded. Since fn−1 : (Vn\J, dn) → (V1\J, d1) is an unbranched

covering of degree dn−1, therefore an isometry, and closure of fn−1(In,j) is a

compact subset of V1\J , we conclude that In,j has bounded hyperbolic diameter

in (Vn \ J, dn). Finally, contraction of the inclusion map from (Vn \ J, dn) to

(V1 \ J, d1) implies that In,j has bounded hyperbolic diameter in (V1 \ J, d1).

With the same type of argument, one can show that the hyperbolic distance

between In,j and I ′n,j inside (V1 \ J, d1) is also uniformly bounded.

Since ψ is a conjugacy it sends In,j to I ′n,j, and therefore, as w converges to

J , w and ψ(w) belong to In,j and I ′n,j with larger and larger index n. Combining

with the above argument, we conclude that the Euclidean distance between

these two points tends to zero. This implies that ψ can be extended as the

identity map on the Julia set.

A particular case of above proposition is that every homeomorphism which

commutes with a quadratic polynomial-like map can be extended onto Julia

set.

Applying the above lemma to ψ−1
n−1 ◦ g with V1 = Qχn

n , V2 = P χn
n , and an
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external ray connecting ∂Qχn
n to Jn,0 we conclude that g can be extended as

ψn−1 onto Jn,0. It also follows from proof of the above lemma that g and ψn−1

are homotopic relative Jn ∪ ∂Qχn
n . That is because the quadrilaterals obtained

in the above lemma cut the puzzle piece Qχn
n into infinite number of topological

disks such that g and ψn−1 are equal on their boundaries.

Similarly, hn−1 can be adjusted on the other puzzle pieces Qχn

n,i, and more-

over, hn−1 is homotopic to ψn−1 on Qχn

n,i relative Jn,i ∪ ∂Qχn

n,i. We will denote

the map obtained from extending hn−1 onto little Julia sets Jn,i with the same

notation hn−1.

The final argument is to prepare hn−1 for the next step of the process. It

is stated in the following lemma.

Lemma 3.9. The map hn−1 can be adjusted (through a homotopy) on a neigh-

borhood of ∪iJn,i to a q.c. map h′
n−1 which maps Vn,i = Sn−1(Vn,i) onto

Ṽn,i = S̃n−1(Ṽn,i). Moreover, dilatation of h′
n−1 is uniformly bounded by a

constant K2(ε) depending only on ε.

Proof. The basic idea is move all of hn−1(Vn,i) simultaneously close enough to

little Julia sets Jn,i, and then move them back to Ṽn,i. We will do this more

precisely below. Let Un,i denote Sn−1(Un,i) and Ũn,i denote S̃n−1(Ũn,i).

The annuli hn−1(Vn,i) \ J̃n,i and Ṽn,i \ J̃n,i have moduli bigger that ε/dK

where K is the dilatation of hn−1. Therefore, there exist topological disks

L̃n,i with smooth boundaries and a constant r > 1 satisfying the following

properties

• Ln,i ⊂ hn−1(Vn,i) ∩ Ṽn,i

• mod (L̃n,i \ J̃n,i) ≥ r − 1

• mod (Ṽn,i \ Ln,i) ≥ ε/2dK and mod (hn−1(Vn,i) \ L̃n,i) ≥ ε/2dK.
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Now we claim that there exist q.c. maps

χi :
(
hn−1(Un,i),hn−1(Vn,i), L̃n,i, Jn,i

)
→

(
D5, D3, D2, D1

)

with uniformly bounded dilatation. That is because all the annuli Ln,i \ Jn,i,

hn−1(Vn,i) \ L̃n,i, and hn−1(Un,i) \hn−1(Vn,i) have moduli uniformly bounded

from below and above. The homotopy gt : Dom (h) → C, for t ∈ [0, 1], is

defined as

gt(z) :=





hn−1(z) if z /∈ ⋃
i hn−1(Vn,i)

χ−1
i

(
(−t

3
sin (|χi◦hn−1(z)|−1)π

4
+ 1) · χi ◦ hn−1(z)

)
if z ∈ hn−1(Vn,i).

It is straight to see that g0 ≡ hn−1, gt is a well defined homeomorphism for

every fixed t, and depends continuously on t fro every fixed z. For every

z ∈ ∂Vn,i, at time t = 1, we have g1(z) = χ−1
i (2

3
· χi ◦ hn−1(z)) ∈ ∂L̃n,i. That

is, g1 maps ∂Vn,i to ∂L̃n,i. For the returning part, we consider a q.c. map

Θi :
(
Ũn,i, Ṽn,i, Ln,i, Jn,i

)
→

(
D5, D3, D2, D1

)
,

and define gt+1 : Dom hn−1 → C, for t ∈ [0, 1], as

gt+1(z) :=





g1(z) if z /∈ g−1
1 (

⋃
i Ũn,i)

Θ−1
i

(
( t√

2
sin (|χi◦g1(z)|−1)π

4
+ 1) · Θi ◦ g1(z)

)
if z ∈ g−1

1 (Ũn,i).

The homotopy gt for t ∈ [0, 2] is the desired adjustment and the map g2 :

Dom hn−1 → Range hn−1 is denoted by h′
n−1.

Let ∆n−1,0 denote the Sn−1-preimage of the domain bounded by the equipo-

tential of level η(ε) in the dynamic plane of fcn−1
. The multiply connected

domain Ωn−1,0 is defined as

∆n−1,0 \
tn/tn−1⋃

i=0

Vn,itn−1
.
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The domains ∆n−1,i and Ωn−1,i, for i = 1, 2, . . . , tn−1, are defined as the pull

back of ∆n−1,0 and Ωn−1,i, respectively, under f−i along the orbit of the critical

point.

Consider the map

hn−1,0 := S̃−1
n−1 ◦ h′

n−1 ◦ Sn−1 : ∆n−1,0 → ∆̃n−1,0, (3.4)

and then,

hn−1,i := f̃−i ◦ hn−1,0 ◦ f i : ∆n−1,i → ∆̃n−1,i. (3.5)

As these maps are compositions of two K1(ε)-q.c., a K2(ε)-q.c., and possibly

some holomorphic maps, they are q.c. with a uniform bound on their dilatation.

By our adjustment in Lemma 3.9 we have hn−1,i maps Ωn−1,i onto Ω̃n−1,i.

Finally, the annulus Vn−1,0 \Wn−1,0, with modulus bigger than ε/2 encloses

Ωn−1,0 and is contained in Vn−1,0. This proves that the domain Ωn−1,0 is well

inside the disk Vn−1,0. Similarly, appropriate preimages of Vn−1,0 \Wn−1,0 un-

der the conformal maps f−i introduce definite annuli around Ωn−1,i which are

contained in Vn−1,i. In this case, the topological disks Dn,i are the domains Vn,i

which contain the little Julia sets Jn,i well inside themselves.

Case B:

Here, fcn−1
is satellite renormalizable and its second renormalization is of primi-

tive type. Let αn−1 denote the dividing fixed point of fcn−1
, and αn the dividing

fixed point of it’s first renormalization Rfcn−1
. In this situation, the Julia set

of the primitive renormalization Rfcn−1
, and its forward images under fcn−1

can

get arbitrarily close to αn−1 (which is a non-dividing fixed point of Rfcn−1
).

Our idea is to skip the satellite renormalization in this case which essentially

imposes the secondary limbs condition on us.
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Consider an equipotential of level η(ε) contained in Sn−1(Wn−1,0), the ex-

ternal rays landing at αn−1, and the external rays landing at the fcn−1
-orbit

of αn (see Figure 3.3). These rays and the equipotential Eη(ε) depend holo-

morphically on the parameter within the secondary wake W (η) containing the

parameter cn−1. Let us denote f
tn/tn−1

cn−1 by g for simplicity of notation through

this case.

b

Ray landing at αn−1

Qχ1

n
A0

1

C0
0

B0
i

A0
j

Ray landing at αn

fcn−1

Figure 3.3: Figure of an infinitely renormalizable Julia set. The first renormal-

ization is of satellite type and the second one is of primitive type. The puzzle

piece at the center, Qχ1

n , is the first puzzle piece in the favorite nest.

Now, using the above rays and equipotential, we introduce some new puzzle

pieces. Let Y 0
0 , as before, denote the puzzle piece containing the critical point

and bounded by E(η), the external rays landing at αn−1 and the external rays

landing at fcn−1
-preimages of αn−1 (i.e. at all ωαn−1 with ω a dth root of unity).

The External rays landing at αn and their g-preimages, cut the puzzle piece Y 0
0

into finitely many pieces. Let us denote the one containing the critical point
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by C0
0 , the non-critical ones which have a boundary ray landing at αn by B0

i

and the rest of them by A0
j (these ones have a boundary external ray landing

at some ωαn).

The g-preimage of Y 0
0 along the postcritical set is contained in itself. As

all processes of making modified principal nest and the pseudo-conjugacy in

Theorem 3.2 are based on pullback arguments, the same ideas are applicable

here. The only difference is that we do not have equipotentials for the second

renormalization. As we will see in a moment, certain external rays and part

of the equipotential bounding Y 0
0 will play the role of an equipotential for the

second renormalization of fcn−1
.

By definition of satellite and primitive renormalizability, every gn(0) be-

longs to Y 0
0 , for n ≥ 0, and there is a first moment t with gt(0) ∈ A0

1 (by

rearranging the indices if required). Pulling back A0
1 under gt along the critical

orbit, we obtain a puzzle piece Qχ1

n ∋ 0, such that C0
0 \Qχ1

n is a non-degenerate

annulus. That is because C0
0 is bounded by the external rays landing at αn

and their g-preimage. Therefore, if Qχ1

n intersects ∂C0
0 at some point on the

rays, orbit of this intersection under gk, for k ≥ 1, stays on the rays landing at

αn. This implies that image of Qχ1

n can not be A0
1. Also, they can not intersect

at equipotentials as they have different levels. Now, consider the first moment

m > t when gm(0) returns back to Qχ1

n , and pullback Qχ1

n under gm along the

critical orbit to obtain P χ1

n . The map gm is a unicritical degree d branched

covering from P χ1

n onto Qχ1

n . This introduces the first two pieces in the favorite

nest. The rest of the process to form the whole favorite nest is the same as in

Section 3.1.2.

Consider the map f
tn/tn−1

cn−1 : Y 0
0 → f

tn/tn−1

cn−1 (Y 0
0 ), and the corresponding tilde

one. One applies Theorem 3.2 to these maps, using the favorite nests intro-
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duced in the above paragraph, to obtain a q.c. pseudo-conjugacy

hn−1 : f tn/tn−1

cn−1
(Y 0

0 ) → f̃ tn/tn−1

cn−1
(Ỹ 0

0 ).

The equipotential of level η(ε), the external rays landing at αn−1, and the

external rays landing at the fcn−1
-orbit of αn depend holomorphically on the

parameter within the secondary wake W (η) containing the parameter cn−1.

Therefore, by Proposition 3.3, the dilatation of hn−1 depends on the hyperbolic

distance between cn−1 and c̃n−1 within one of the finite secondary wakes W (η)

under our combinatorial assumption. Thus, it only depends on the a priori

bounds ε and the combinatorial condition.

As f j
cn−1

: f
tn/tn−1−j
cn−1 (Y 0

0 ) → f
tn/tn−1

cn−1 (Y 0
0 ), for j = 1, 2, . . . , tn/tn−1 − 1, is

univalent, we can lift hn−1 on other puzzle pieces as

hn−1 := f̃−j
cn−1

◦ hn−1 ◦ f j
cn−1

: f tn/tn−1−j
cn−1

(Y 0
0 ) → f̃ tn/tn−1−j

cn−1
(Ỹ 0

0 )

for these j’s. Since all these maps match the Böttcher coordinates, they fit

together to build a q.c. map from a neighborhood of J(fcn−1
) to a neighborhood

of J(f̃cn−1
). Further, it can be extended as the identity map in the Böttcher

coordinates to a q.c. map from the domain bounded by equipotential Eη(ε) to

the corresponding tilde domain.

Finally, by Lemma 3.15, we adjust hn−1 to obtain a q.c. map h′
n−1,0 that

satisfies

h′
n−1(Sn−1(Vn+1,itn−1

)) = S̃n−1(Ṽn,itn−1
), for i = 0, 1, 2, . . . , tn+1/tn−1 − 1.

Now, ∆n−1,0 is defined as Sn−1-pullback of the domain bounded by the

equipotential Eη(ε). The domain Ωn−1,0 is

∆n−1,0 \
tn+1/tn−1−1⋃

i=0

Vn+1,itn−1
.
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The regions ∆n−1,i and Ωn−1,i, for i = 1, 2, 3, . . . , tn−1, are pullbacks of ∆n−1,0

and Ωn−1,0 under f i, respectively. Like in the previous case, hn−1,i is defined

as in Equations (3.4) and (3.5) and satisfies

hn−1,i(Ωn−1,i) = Ω̃n−1,i, for i = 1, 2, . . . , tn−1.

For the same reason as in Case A , Ωn−1,i is well inside the disk Dn−1,i := Vn−1,i.

Case C :

Here, fcn−1
is twice satellite renormalizable. The argument in this case relies

more on the compactness of the parameters under consideration rather than a

dynamical discussion.

Figure 3.4: A twice satellite renormalizable Julia set drawn in grey. The dark

part is the Julia Bouquet B2,0.
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Little Julia sets J1,i of the first renormalization of fcn−1
touch at the dividing

fixed point αn−1 of fcn−1
. Note that αn−1 is one of the non-dividing fixed

points of the first renormalization of fcn−1
. The union of these little Julia sets

is called Julia bouquet and denoted by B1,0. Similarly, the little Julia sets

J2,i, for i = 0, 1, 2, . . . , (tn+1/tn−1) − 1, of the second renormalization of fcn−1

are organized in pairwise disjoint bouquets, B2,j, touching at a periodic point.

That is, each B2,j consists of tn+1/tn little Julia sets J2,i touching at one of

their non-dividing fixed points. As usual, B2,0 denotes the bouquet containing

the critical point. See Figure 3.4.

By an equipotential of level η(ε) (which encloses Sn−1(Wn−1,0)) and the

external rays landing at αn−1, we form the puzzle pieces of level zero. Recall

that Y 0
0 denotes the one containing the critical point. The following lemma

states that the bouquets are well apart form each other.

Lemma 3.10. For parameters in a finite number of truncated secondary limbs,

modulus of the annulus Y 0
0 \B2,0 is uniformly bounded above and below.

To prove this lemma we first need to recall some definitions. Let X and Y

be compact subsets of C equipped with the Euclidean metric d. The Hausdorff

distance between X and Y is defined as

dH(X, Y ) := inf
ε
{ε : Y ⊂ Bε(X), and X ⊂ Bε(Y )}.

The space of all compact subsets of C endowed with this metric is a complete

metric space.

A set valued map c 7→ Xc, with Xc compact in C, is upper semi-continuous

if cn → c implies that Xc contains the Hausdorff limit of Xcn
.

A family of simply connected domains Uλ depends continuously on λ if there

exit choices of uniformizations ψλ : D1 → Uλ continuous in both variables.
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A family of polynomial-like maps (Pλ : Vλ → Uλ, λ ∈ Λ), parametrized on

a topological disk Λ, depends continuously on λ if Uλ is a continuous family

of simply connected domains in C, and for every fixed z ∈ C, Pλ(z) depends

continuously on λ where ever it is defined.

Proposition 3.11. Let (Pλ : Vλ → Uλ, λ ∈ Λ) be a continuous family of

polynomial like maps with connected filled Julia sets Kλ. The map λ 7→ Kλ is

upper semi-continuous.

Proof. Assume that λn → λ, Kλn
:= K(Pλn

), and Kλ := K(Pλ). To prove that

K := limKλn
is contained in Kλ, it is enough to show that for every ε > 0,

Kλn
⊆ Bε(Kλ) for sufficiently large n.

To see this, assume that z /∈ Bε(Kλ). If z /∈ Vλ, then by continuous

dependence of Vλ on λ, z /∈ Kλn
for large n. If z ∈ Vλ, then there exists a

positive integer l with P l
λ(z) ∈ Uλ \ Vλ. As Pλn

: Vλn
→ Uλn

converges to

Pλ : Vλ → Uλ, P
l
n(z) or P l+1

n (z) belongs to Uλn
\ Vλn

. Therefore, z /∈ Kλn
.

Proof of Lemma 3.10. Let cn−1 be a twice satellite renormalizable parameter

in a truncated secondary limb. Consider the external rays landing at the

dividing fixed point αn of Rfcn−1
and it’s preimages under Rfcn−1

. Let X0
0

denote the puzzle piece obtained from these rays which contains the critical

point. As fcn−1
is twice satellite renormalizable, R2fcn−1

: X0
0 → C is a branched

covering map over its image. One can consider a continuous thickening of X0
0 ,

described in Section 3.1.2, to form a continuous family of polynomial-like maps

parametrized over this truncated limb. The little Julia set of this map was

denoted by J2,0 and the Julia bouquet B2,0 is the connected component of

tn+1/tn−1−1⋃

i=0

fcn−1
(J2,0)

containing the critical point.
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For cn−1 in a finite number of truncated secondary limbs, the Julia bouquet

B2,0 is unoin of a finite number of little Julia sets. Hence, by above lemma, it

depends upper semi-continuously on cn−1. As B2,0 is contained well inside the

interior of Y 0
0 for such cn−1 which belongs to a compact set of parameters, we

conclude that modulus of Y 0
0 \B2,j is uniformly bounded below.

To see that this modulus is uniformly bounded above, one only needs to

observe that αn and 0 belong to B2,0 and are strictly apart from each other for

these parameters.

By Lemma 3.10 there are simply connected domains L′
n−1 ⊆ Ln−1 and

L̃′
n−1 ⊆ L̃n−1 such that moduli of the annuli

Y 0
0 \ Ln−1, Ln−1 \ L′

n−1, L′
n−1 \ B2,0

Ỹ 0
0 \ L̃n−1, L̃n−1 \ L̃′

n−1, L̃′
n−1 \ B̃2,0

are bigger than some constant depending only on the combinatorial class SL.

Moreover, the ratios

mod (Y 0
0 \ Ln−1)

mod (Ỹ 0
0 \ L̃n−1)

,
mod (Ln−1 \ L′

n−1)

mod (L̃n−1 \ L̃′
n−1)

,
mod (L′

n−1 \ B2,0)

mod (L̃′
n−1 \ B̃2,0)

are also uniformly bounded below and above independent of n.

Theorem 2.9, combined with above data, implies that there exits a q.c. map

hn−1 : Y 0
0 \ Ln−1 → Ỹ 0

0 \ L̃n−1, with a uniform bound on its dilatation, which

matches the Böttcher marking on the boundary of Y 0
0 . We further lift hn−1

via f−i
cn−1

and f−i
c̃n−1

to extend hn−1 to q.c. maps

hn−1 : f−i
cn−1

(Y 0
0 \ Ln−1) → f̃−i

cn−1
(Ỹ 0

0 \ L̃n−1), for i = 1, 2, . . . ,
tn
tn−1

− 1

with the same dilatation. The domain of each such map is a puzzle piece

Y 0
j (with j = tn/tn−1 − i) cut off by the equipotential of level η/dl and a

component of f−i
cn−1

(∂Ln−1). As all these maps match the Böttcher marking on
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the boundaries of Y 0
j , they can be glued together. Finally, one extends this map

as the identity in the Böttcher coordinates onto spaces between equipotential

of level η and equipotentials of level η/dl. we denote this extended map with

the same notation hn−1. As it is lifted under and extended by holomorphic

maps, there is a uniform bound on its dilatation.

Let ∆n−1,0 be the Sn−1-preimage of the domain inside equipotential E(η)

and Ln−1,i be the component of the Sn−1-preimage of f−i
cn−1

(Ln−1)) enclosing

the little Julia set Jn−1,i. We define the multiply connected regions

Ωn−1,0 := ∆n−1,0 \
tn/tn−1−1⋃

i=0

Ln−1,itn−1

Like before, ∆n−1,i and Ωn−1,i are defined as f i-preimage of ∆n−1,0 and Ωn−1,0

containing or enclosing Jn−1,i, respectively.

We have

hn−1,0 := S̃−1
n−1 ◦ hn−1 ◦ Sn−1 : ∆n−1,0 → ∆̃n−1,0, with hn−1,0(Ωn−1,0) = Ω̃n−1,0.

Also,

hn−1,i := f̃−i ◦ hn−1,0 ◦ f i : ∆n−1,i → ∆̃n−1,i, with hn−1,i(Ωn−1,i) = Ω̃n−1,i.

As the equipotential η(ε) is contained in Sn−1(Wn−1,0), Ωn−1,0 is contained

in Wn−1,0. Therefore, Ωn−1,0 is well inside Vn−1,0. Conformal invariance of

modulus implies that the other domains Ωn−1,i are also well inside Vn−1,i. This

completes the construction in Case C .

To fit together the multiply connected domains Ωn(k),i and the q.c. maps

hn(k),i : Ωn(k),i → Ω̃n(k),i, we follow the word of cases introduced at the be-

ginning of the construction. In Cases A and B, we have adjusted hn−1 such

that it sends ∂Vn−1,0 to ∂Ṽn−1,0. Therefore, if any of the three cases follows

Case A or B, we consider Rnf : Wn,0 → Vn,0 and straighten it with these
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choices of domains (instead of Rnf : Vn,0 → Un,0). If a case of construction

on level n is following Case C , the set ∆n,0 introduced on level n is replaced

by ∆n,0 ∩ Sn(L′
n−1), hn,0 is restricted to this set, and adjusted so that it sends

Sn(L′
n−1,i) to S̃n(L̃′

n−1,i). The annulus Ln−1 \ L′
n−1 provides a definite annulus

separating Ωn,0 and Ln−1,0.

In the following two sections, we will denote the holes of Ωn,i by Vn+1,j,

that is, Vn+1,j is Vn+1,j, if n belongs to Case A or B or Vn+1,j is S−1
n (Ln,j) if

n belongs to Case C .

3.2.4 The gluing maps gi
n(k)

In this section we build K ′(ε)-q.c. maps

gi
n(k) : Vn(k),i \ ∆n(k),i → Ṽn(k),i \ ∆̃n(k),i.

Every gi
n(k) has to be identical with hn(k),i on ∂Vn(k),i and with hn(k+1),i on

∂∆n(k),i (which is outer boundary of Ωn(k),i). Then gluing all these maps gi
n(k)

and hn(k),i produces a q.c. map H with dilatation bounded by maximum of K

and K ′(ε). In what follows, for simplicity of notation, we use index n instead

of n(k), and assume that n runs over subsequence n(k). So for all n, means

for all n(k)’s.

Like previous steps, it is enough to build g0
n for all n, and pull them back

by f−i to obtain gi
n. Properties of the maps hn,i and the domains Vn,i and

Ωn,i implies that these maps glue together on the boundaries of their domain’s

of definition. Again, we drop the superscript index if it is 0, i.e. gn denotes

the map g0
n. To build a q.c. map from an annulus to another annulus with

given boundary conditions, there is a choice in the number of “twists” one

may make. Moreover, to have a uniform bound on the dilatation of such a

map, the two annuli must have proportional moduli bounded below, and the
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number of twists has to be uniformly bounded. Note that the number of twists

effects on the homotopy class of the final map H .

In this section, we show that the corresponding annuli Vn,0 \ ∆n,0 and

Ṽn,0 \ ∆̃n,0 have proportional moduli with a constant depending only on ε. In

the next section we specify the number of twists needed for the isotopy class

of a Thurston conjugacy.

Lemma 3.12. Let U ′, U , and Ũ be three annuli whose inner boundaries are

D1 such that mod (U \ U ′) ≥ ε, and mod (U) ≤ M , for some constant M .

Let ψ be a K-q.c. map from U onto Ũ . For every r with Dr ⊂ U ′ ∩ ψ(U ′),

moduli of U \Dr and Ũ \Dr are proportional with a constant depending only

on M , K, and ε.

Proof. By properties of q.c. maps we have

ε ≤mod (U \Dr) ≤M,

ε

K
≤mod (Ũ \Dr) ≤ KM

which implies the lemma.

Lemma 3.13. Moduli of the annuli Vn,0\∆n,0 and Ṽn,0\∆̃n,0 are proportional

with a constant depending only on ε.

Proof. If level n follows Case A or B, one proves this by applying the above

lemma to images of Vn,0, Wn,0 = f−tn(Vn,0) and ∆n,0 under Bc(Rnf)◦Sn and the

corresponding tilde objects, where Bc(Rnf) is the Böttcher coordinate for Pcn
.

Note that ∆n,0 is mapped to Dr. To obtain an upper bound M , it is enough

to go several levels lower than the fundamental annulus to get an annulus with

bounded modulus.

If level n follows Case C , by definition, Vn,0 \∆n,0 is Ln \L′
n and Ṽn,0 \ ∆̃n,0

is L̃n \ L̃′
n which were chosen to be proportional.
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Given a curve ℓ ⊂ U which is given as γ : [a, b] → U with γ(a) on the inner

boundary of U (corresponding to the bounded component of C \ U) and γ(b)

on the outer boundary of U (corresponding to the unbounded one), define the

wrapping number ω(ℓ) as

1

2π

∫ b

a

∂π2(φ(γ(t)))

∂θ
dt.

where φ is a uniformization of the annulus U by a round annulus, and π2(z)

is the polar angle of the point z. Basically, ω(ℓ) is total turning of the curve ℓ

in the uniformized coordinate. Note that ω(ℓ) is invariant under the automor-

phism group of U . So, it is independent of the choice of uniformization and

just like winding number, it is constant over the homotopy class of all curves

with same boundary points.

Let A(r) denote the round annulus Dr \D1.

Proposition 3.14. Given fixed constants K ≥ 1 and r > 1, there exists a

constant N such that, for every K-q.c. map ψ : A(r) → A(r′), the wrapping

number of the curve ψ(t), t ∈ [1, r], belongs to the interval [−N,N ].

Proof. Consider the curve family L consisting of all ray segments in A(r) ob-

tained from rotating the real line segment [1, r] about the origin, that is, the

radial lines in A(r).

We denote by Γ(F ) the extremal length of a given curve family F . The in-

equality Γ(L)/K ≤ Γ(ψ(L)) ≤ KΓ(L) holds for the K-q.c. map ψ. See [Ah66]

for more details on curve families and extremal length properties.

It is easy to see that if the interval [1, r] is mapped to a curve with wrapping

number T , then every curve in L is mapped to a curve with wrapping number

between T + 1 and T − 1.

By definition of extremal length and choosing conformal metric ρ as the
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Euclidean metric, we obtain

KΓ(L) ≥ Γ(ψ(L)) = sup
ρ

inf ℓρ(ψ(γ))2

Sρ
≥ 4π(T − 1)2

R′2 − 1
,

and Γ(L) = logR/2π. By properties of q.c. mappings, we have R′ ≤ RK which

implies

T ≤ 1

π

√
K log(R)(R2K − 1)

8
+ 1

Lemma 3.15. Fix round annuli A(r), A(r′), a positive constant K1, and an

integer k with mod A(r′)/K1 ≤ mod A(r) ≤ K1 mod A(r′) and mod A(r) ≥
δ. If homeomorphisms h1 : ∂Dr → ∂Dr′ and h2 : ∂D1 → ∂D1 have K2-q.c.

extensions to some neighborhood of these circles for some K2, then there exists

a K-q.c. map h : A(r) → A(r′) such that

• h(z) = h1(z) for every z ∈ ∂Dr, and h(z) = h2(z) for every z ∈ ∂D1

• The curve h(t), for t ∈ [1, r], has wrapping number θ(h1(r))−θ(h2(1))+k.

Moreover, K depends only on K1, K2, k and δ.

Proof. One proves this statement by explicitly building such maps for every k.

More details left to reader.

Applying the above lemma to the uniformization of the annuli Vn,0 \ ∆n,0

and Ṽn,0 \ ∆̃n,0, the induced maps from hn−1,0 and hn,0 on their boundaries

and a number kn, which is specified later, gives the required K ′-q.c. maps gn.

In the next section we specify some especial numbers kn ,which are bounded

by a constant depending on ε, in order to make the K-q.c. map H , obtained

after gluing all these maps, homotopic to a topological conjugacy relative the

postcritical set.
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Definite moduli of the annuli Vn,i\∆n,i implies that the holes Vn,i shrink to

points in the postcritical set. Therefore, H can be extended to a well defined

K-q.c. map on the postcritical set. See [St55] for a detailed proof of this and

further results on quasi-conformal removability.

3.2.5 Isotopy

Denote by ψn the topological conjugacy between fcn
and fc̃n

obtained from

extending the identity map in the Böttcher coordinates onto Julia set. The lift

ψn,0 = S̃n
−1 ◦ ψn ◦ Sn is a topological conjugacy between Rnf and Rnf̃ on a

neighborhood of the little Julia set Jn,0. Note that this neighborhood covers

the domain Ωn,0. In the dynamic plane of fcn
, let U(η) denote the domain

enclosed by the equipotential of level η(ε).

Lemma 3.16. If level n belongs to one of Case A or B, then the q.c. map

hn,i : ∆n,i → ∆̃n,i, for i = 0, 1, . . . tn − 1, is homotopic to

ψn,i := f−i ◦ S̃−1
n ◦ψn ◦ Sn ◦ f i : ∆n,i → C

relative the little Julia sets Jn+1,j of level n+ 1 inside ∆n,i.

Note that ψn,i(∆n,i) is a neighborhood of the little Julia sets J̃n+1,i+tnj

contained in ∆̃n,i.

Proof. First assume that level n follows a Case A or B. From the definition

of the domains ∆n,i, Vn,i and the q.c. maps hn,i, it is enough to prove the

statement for i = 0. For other ones one pulls the homotopies back by f i, or

constructs them in the same way as for i = 0).

As ∆n,0, ψn,0, and the q.c. map hn,0 are lifts of ∆n,0, ψn, and h′
n,0 by the

straightening map, it is enough to make the homotopy on the dynamic planes

62



of fcn
and fc̃n

and then transfer it to the dynamic planes of Rnf and Rnf̃ by

the straightening map. Recall that in our construction, h′
n,0 is an adjustment

of hn,0 through a homotopy relative the little Julia sets of the next level. Thus,

to prove the lemma, we only need to prove that hn,0 and ψn are homotopic

relative the little Julia sets.

Assume that level n belongs to Case A . The idea of the proof, presented in

detail below, is to divide the domain ∆n,0, by means of rays and equipotential

arcs, into some topological disks and one annulus such that ψn and hn,0 are

identical on the boundaries of these domains.

Consider the puzzle pieceQχn

n,0 (Qχn

n,0 = Y
qχn

0 ). The equipotential f−χn
cn

(E(η)),

and the rays of the puzzles Qχn

n,i up to equipotential f−χn
cn

(E(η)), cut the domain

∆n,0 into one annulus ∆n,0\f−χn(U(η)) and some topological disks. The topo-

logical disks which do not intersect the little Julia sets of level n, the puzzle

pieces Qχn

n,i, and the remaining annulus E(η) \ f−χn(E(η)), are the appropriate

domains. By Theorem 3.2 the maps hn,0 and ψn are identical in the Böttcher

coordinate on the boundaries of these domains. Indeed, the topological con-

jugacy ψn between fcn
and fc̃n

is identity in the Böttcher coordinate and the

pseudo-conjugacy hn,0 obtained in Theorem 3.2 matches the Böttcher marking.

This proves that the two maps are homotopic outside of the puzzle pieces Qχn

n,i.

To find a homotopy inside the pieces Qχn

n,0, recall that we started with a

q.c. map on Qχn

n,0 \ P χn

n,0, which was homotopic to ψn relative the boundaries.

So all the pullbacks of this map on the annuli Ak
n \Ak+1

n are homotopic to ψn

relative boundaries. As the two maps are identical on the little Julia sets, we

conclude that the two maps are homotopic relative the little Julia sets.

If level n belongs to Case B, we repeat above argument on puzzle pieces

of level zero.
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The same proof works if level n follows Case C . The only difference is that

the domain of definition of the homeomorphisms are restricted to a smaller set.

Thus, we may restrict the homotopy onto that set.

In the following paragraphs we assign the number of twists kn for the gluing

maps gn.

If level n belongs to Case A or B, and it follows a Case A or B, consider

the uniformizations φ1 : A(s) → (Vn,0 \ Kn,0), φ2 : A(r) → (∆n,0 \ Kn,0),

φ̃1 : A(s̃) → (Ṽn,0 \ K̃n,0) and φ̃2 : A(r̃) → (∆̃n,0 \ K̃n,0) by round annuli.

The q.c. maps hn−1,0 and hn,0 lift via φi and φ̃i to q.c. maps ĥn−1,0 : A(s) →
V (s̃) and ĥn,0 : A(r) → V (r̃) with the same dilatation. By composing the

uniformizations with rotations, we may assume that the point one is mapped

to the point one by these two maps. By Proposition 3.14, the image of the

segment [1, s] under the q.c. map ĥn−1 has wrapping number ω1n bounded by

some N and image of the segment [1, r] under the q.c. map ĥn,0 has wrapping

number ω2n bounded by N which depends only on ε. Define kn as ω1n − ω2n,

and note that gluing ĥn,0 and ĥn−1,0 in Lemma 3.15 by such a choice makes

the image of the segment [1, s] under the two maps gn and ĥn,0 glued together,

homotopic to image of the segment [1, s] under ĥn−1,0 relative two boundary

circles. This homotopy lifts to a homotopy between hn−1,0 and the two maps

gn and hn,0 glued together.

Before we define kn for the other cases, we need to show that the q.c. map

h′
n−1, built in Case C , has a q.c. extension over the topological disk Ln−1.

Lemma 3.17. The q.c. map h′
n−1 introduced in Case C has a q.c. extension

onto Ln−1 with a uniform bound on its dilatation depending only on ε. More-

over, this extension can be made homotopic to ψn−1 relative the Julia bouquet

B2,0.
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Proof. Consider the fundamental annuli Sn−1(Un,0 \ Vn,0) and S̃n−1(Ũn,0 \ Ṽn,0)

for the first renormalizations of fcn−1
and fc̃n−1

. Let

gn : Sn−1(Un,0 \ Vn,0) → S̃n−1(Ũn,0 \ Ṽn,0)

be a q.c. map which satisfies the equivariance relation on the boundaries of

these annuli. By lifting gn on the preimages of these annuli we obtain a q.c.

map gn from complement of the little Julia set J1,0 to the complement of the

little Julia set J̃1,0 on the dynamic planes of fcn−1
and fc̃n−1

. By Lemma 3.8,

gn (or some rotation of it) can be extended as ψn−1 onto the Julia set J1,0.

Moreover these two maps are homotopic relative this little Julia set. We then

adjust gn so that it maps L′
n−1 to L̃′

n−1.

Consider the three annuli Y 0
0 \ Ln−1, Ln−1 \ L′

n−1, and L′
n−1 \B2,0, as well

as the corresponding tilde ones. We have hn−1 : Y 0
0 \ Ln−1 → Ỹ 0

0 \ L̃n−1

and gn : L′
n−1 \ B2,0 → L̃′

n−1 \ B̃2,0. To glue these two maps on the middle

annulus, we use the above argument to find the right number of twists on this

annulus. Consider a curve γ connecting a point a on the bouquet B2,0 to a

point d on the boundary of Y 0
0 such that it intersects the boundaries of L′

n−1

and Ln−1 only once which are denoted by b and c. Lets denote by γab, γbc, and

γcd each segment of this curve cut off by these four points. The real number

ω(ψ(γ))−ω(hn−1(γcd))−ω(gn(γab)) is uniformly bounded, by Proposition 3.14,

depending only on ε. If we glue hn−1 and gn by such a number of twists (see

Lemma 3.15), the resulting map will be homotopic to ψn−1 relative B2,0∪∂Y 0
0 .

Note that the two maps h′
n−1 and ψn−1 are identical on the boundary of Y 0

0 .

Thus, one can extend this map over the other topological disks Ln−1,i. We will

denote the final q.c. map by h′
n−1.

If a Case C follows a Case A or B, the number of twists kn is defined

as the one introduced above. If level n − 1 belongs to Case C and level n is
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any of the three cases, we use the uniformization of the annuli Vn,0 \Bn,0 and

∆n,0 \Bn,0, as well as the corresponding tilde ones, instead of the above annuli,

to define kn.

The following lemma is frequently used in the final proof of isotopy. Its

prove is left to reader.

Lemma 3.18. Let U and Ũ be closed annuli with ∂U = γ1 ∪ γ2, and ∂Ũ =

γ̃1 ∪ γ̃2. Also, let ht
i : γi → γ̃i, for t ∈ [0, 1], i = 1, 2, be two continuous

families of homeomorphisms, and the homeomorphism G0 : U → Ũ be an

interpolation of h0
1 and h0

2 on U . Then G0 can be extended to a continuous

family of interpolations of ht
1 and ht

2, for t ∈ [0, 1].

Proposition 3.19. The K-q.c. map H obtained from gluing all the maps gi
n

and hn,k is homotopic to the topological conjugacy Ψ relative the postcritical

set PC(f).

Proof. Let Hn denote the map obtained from gluing the maps g0
1,g

k, . . . , gl
n−1

and h1,0, h2,i, . . . , hn,j, for all possible indices i, j, k and l up to level n.

First, we show thatH1 is homotopic to the topological conjugacy Ψ between

fc and fc̃ relative the little Julia sets J1,i. Then we show that each Hn−1 is

homotopic to Hn relative the little Julia sets of level n + 1.

The map H1 is just h1,0 which is homotopic to ψ1,0, by Lemma 3.16 or

Lemma 3.17. It is homotopic to Ψ by Lemma 3.8.

Recall that the two maps Hn−1 and Hn are identical on the complement of

Vn,j. Inside ∆n,0, Hn−1 and Hn are hn−1,0 and hn,0, respectively.

The domain Vn,0 is divided into annulus Vn,0 \ ∆n,0 and the topological

disk ∆n,0. On ∆n,0, hn,0 and hn−1,0 are homotopic to ψn,0 relative ∪iJn+1,i by

Lemmas 3.16 and 3.17. Thus, there exists a homotopy ht
n, for t in [0, 1], which

starts with hn,0 and ends with hn−1,0, such that it maps ∂∆n,0 to ∂∆̃n,0, for all
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t ∈ [0, 1]. At time zero consider the map hn,0 on the inner boundary of this

annulus, hn−1,0 on the outer boundary of this annulus and the interpolation

G0
n = g0

n between them. Applying above lemma to the fixed homeomorphism

hn−1,0 on the outer boundary, and ht
n on the inner boundary, we obtain a

continuous family of interpolations Gt
n between them. The map G1

n is a home-

omorphism from the annulus to itself which is an interpolation of hn−1,0 on the

boundaries, but this interpolation has to be homotopic to hn−1,0 on the annu-

lus. Indeed, these two maps send a curve joining the two different boundaries

to two curves (joining the two boundaries) which are homotopic relative end

points. This comes from our choice of wrapping numbers for the gluing maps.

Let t0 = 0 < t1 < t2 < · · · < 1, be an increasing sequence of numbers

in [0, 1]. Assume that H t, for t in [t0, t1], denotes the homotopy obtained

above between Ψ and H1 relative the little Julia sets J1,i. Also, let H t, for

t ∈ [tn, tn+1], and n = 1, 2, . . . , denote the homotopy between Hn and Hn+1

relative the little Julia sets of level n+ 2.

It is clear from the construction that H t(z) eventually stabilizes for any

fixed z, and equals to H(z). Indeed, a priori bounds assumption implies that

the diameter of the topological disks Vn,i tends to zero as n→ ∞. Therefore,

the uniform distance between H t and H is going to zero as t→ 1. We conclude

that H t for t in [0, 1] is a homotopy between Ψ and the Thurston conjugacy H

relative the postcritical set.

3.2.6 Promotion to hybrid conjugacy

Proposition 3.20. Suppose all infinitely renormalizable unicritical polynomi-

als in a given combinatorial class τ = {M1,M2,M3, . . .}, satisfying SL con-

dition, enjoy a priori bounds. Then q.c. conjugacy implies hybrid conjugacy
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for maps in this class.

Proof. Assume that this is not correct and there are polynomials P1 and P2 in

this class which are q.c. equivalent but not hybrid equivalent. Define the set

Ω = {c ∈ C : Pc is q.c. equivalent to P1}

= {c ∈ C : Pc is q.c. equivalent to P2}.

We show that the set Ω is both open and closed in C which is not possible.

Theorem 3.4 implies that q.c. conjugacy is equivalent to combinatorial con-

jugacy for maps in this class. Since every combinatorial class is an intersection

of closed sets (connectedness locus copies), Ω is closed.

Consider a point P in Ω. The polynomial P is not hybrid equivalent to

both of P1 and P2 by assumption. Assume that it is not hybrid equivalent to P1

(for the other case just change P1 to P2). Let φ1 : C → C, K-q.c. conjugates P

to P1, i.e. φ1 ◦P = P1 ◦φ1. By pulling back the standard complex structure µ0

on C under φ1, we obtain a complex structure µ on C with dilatation bounded

by K−1
K+1

. Consider the complex structures µλ := λ ·µ, for λ in the disk of radius

K+1
K−1

around origin.

By applying measurable Riemann mapping Theorem 2.8 , there are q.c.

maps φλ which map complex structure µλ to µ0, and leave the points 0 and ∞
fixed. The maps Pλ := φ−1

λ ◦ P1 ◦ φλ, for λ in the disk of radius K+1
K−1

around

origin, are holomorphic maps of the same degree as the degree of P1, and send

infinity to infinity with the same local degree as the one of P1. Thus, they

are polynomials. For λ = 1 we obtain the polynomial P , and for λ = 0 we

obtain P1. By analytic dependence of the solution of the measurable Riemann

mapping theorem on the complex structure, Pλ cover a neighborhood of P in

Ω. This shows that P is an interior point in Ω. As P was an arbitrary point

in Ω, we conclude that Ω is open.
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3.2.7 Dynamical description of the combinatorics

In this section we give a dynamical definition of some combinatorial classes.

It has been proved in [KL05] that infinitely renormalizable parameters satis-

fying decorations enjoy a priori bounds. Let c be an infinitely renormalizable

parameter with renormalizations fn := Rn(Pc), their straightening fcn
, and

critical puzzle piece of level 1 denoted by Y 1
0 (n). The dynamical meaning of a

parameter c satisfying the decoration condition is that there exists a constant

M such that for every n ≥ 0 there are integers tn and qn, both bounded by M ,

with

• fkqn
n (0) ∈ Y 1

0 (n), for every k < tn, and every n ≥ 1,

• f tnqn
n (0) /∈ Y 1

0 , for every n ≥ 1.

In particular, this condition implies that the number of rays landing at the

dividing fixed point of fn (here qn) is uniformly bounded. An infinitely renor-

malizable parameter is of bounded type if the relative return times tn+1/tn of

the renormalizations Rn(f) = f tn are bounded by some constant M . It fol-

lows from definition that the decoration condition includes infinitely primitive

renormalizable parameters of bounded type.

In Section 3.1.3, we associated a sequence of maximal connectedness lo-

cus copies τ(f) = 〈M1,M2, . . . 〉 to every infinitely renormalizable unicritical

polynomial-like map f . Let πn(τ(f)) = Mn denote the projection map onto

n’s component. Define

τ(f, n) =

{
c ∈ Md

∣∣∣∣∣
c is at least n times renormalizable, and

πi(τ(f)) = πi(τ(Pc)), for i = 1, 2, . . . , n

}
.

In other words, the connectedness locus copy τ(f, n) is the set of at least n

times renormalizable parameters with the same combinatorics as of f up to
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level n.

Given an infinitely renormalizable map f , and an increasing sequence of

positive integers 〈ni〉, we define a sequence of relative connectedness locus

copies of Md as follows:

(τ̃(f), {ni}) := 〈M̃n1,M̃n2, . . . ,M̃nk, . . .〉,

where,

M̃nk := τ(Rnk−1f, nk − nk−1).

One can see that there is a one to one correspondence between the two

sequences τ(f) and (τ̃(f), {ni}) for every increasing sequence 〈ni〉. Thus, one

may take the latter one as definition of the combinatorics of f .

Consider the main hyperbolic component of the connectedness locus Md.

There are infinitely many primary hyperbolic components attached to this

component (corresponding to rational numbers). Similarly, there are infinitely

many hyperbolic components, secondary ones, attached to these primary com-

ponents, and so on. Consider the set of all hyperbolic components obtained

this way. That is, the ones which can be connected to the main hyperbolic

component by a chain of hyperbolic components bifurcating one from another.

The closure of this set after adding all possible components of its complement

is called the molecule Md.

We say that an infinitely renormalizable map f satisfies the molecule con-

dition, if there exists a positive constant η > 0 and an increasing sequence of

positive integers 〈ni〉∞i=1, such that for every i ≥ 1, Rnif is a primitive renormal-

ization of Rni−1f , and moreover, the Euclidean distance between M̃ni

d and the

molecule Md is at least η. Note that for a map satisfying this condition, there

may be infinitely many satellite renormalizable maps in the sequence {Rnf}.
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However, the condition requires that there are infinite number of primitive lev-

els with the corresponding relative connectedness locus copies uniformly away

from the molecule. One can see that the parameters in the decoration condition

satisfy the molecule condition.

For every ε ≥ 0, and every hyperbolic component of the connectedness

locus, there are at most finite number of limbs attached to this hyperbolic

component with diameter bigger than ε (see [H93]). This implies that for every

η > 0, all the secondary limbs except finite number of them are contained in the

η neighborhood of the molecule. This implies that the parameters satisfying the

molecule condition also satisfy SL condition, Therefore, we have the following.

Corollary 3.21. Let f and f̃ be two infinitely renormalizable quadratic poly-

nomials satisfying the molecule condition. If f and f̃ are combinatorially equiv-

alent, then they are conformally equivalent.
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Chapter 4

Typical Trajectories of complex

quadratic polynomials

4.1 Accumulation on the fixed point

4.1.1 Post-critical set as an attractor

Let f : U ⊆ Ĉ → Ĉ be a holomorphic map. Given a point z ∈ U , if f(z)

belongs to U we can define f 2(z) = f ◦ f(z). Similarly, if f 2(z) also belongs

to U , f 3(z) is defined and so on. Orbit of z, denoted by O(z), is the sequence,

z, f(z), f 2(z), . . . , as long as it is defined. So it might be a finite or an infinite

sequence. We say that O(z) eventually stays in a given set E ⊂ Ĉ, if there

exists an integer k such that f i(z) ∈ E, for every integer i ≥ k.

Distortion of a map f : U ⊆ Ĉ → Ĉ is the supremum of log(|f ′(z)/f ′(w)|)
(in the spherical distance) for all z and w in U , which might be finite or infinite.

We say that a simply connected domain U ⊂ C, different from C, has

bounded eccentricity, if there exists a univalent onto map ψ : B(0, 1) → U

(a uniformization) with bounded distortion. One can see that if a simply

72



connected domain U has bounded distortion M , then ratio of radii of smallest

circle containing U , and largest circle contained in U , is less than some constant

depending only on M .

We frequently use the following distortion theorem due to Koebe [P75] to

transfer areas under holomorphic maps.

Theorem 4.1. (Koebe distortion theorem) Suppose that f : B(0, 1) → C is a

univalent function with f(0) = 0, and f ′(0) = 1. For every z ∈ B(0, 1) we

have the following estimates

(1) |z|
(1+|z|)2 ≤ |f(z)| ≤ |z|

(1−|z|)2 ,

(2) 1−|z|
(1+|z|)3 ≤ |f ′(z)| ≤ 1+|z|

(1−|z|)3 ,

(3) 1−|z|
1+|z| ≤ |zf ′(z)/f(z)| ≤ 1+|z|

1−|z| .

This implies the 1/4 theorem: The domain f(B(0, 1)) contains B(0, 1/4).

The following result in [Ly83b] shows that the post-critical set of a rational

map attracts orbit of almost every point in the Julia set.

Proposition 4.2. Let f : Ĉ → Ĉ be a rational map with J 6= Ĉ and V be an

arbitrary neighborhood of PC(f). Then, the orbit of almost every point in the

Julia set of f eventually stays in V .

Here, we give a simple argument based on the Montel’s normal family

theorem for readers convenience. Also, we will use this approach in the next

section, with iterating a renormalization instead of the map itself, to examine

the Lebesgue measure of certain post-critical sets.

Proof. For a given domain V ⊃ PC(f), define the set

Γ := {z ∈ J | for infinitely many integer k > 0, fk(z) /∈ V }.
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If area of Γ is not zero, let z be a Lebesgue density point of Γ. Let nk

be an increasing sequence of positive integers with fnk(z) /∈ V , and let y be

an accumulation point of the sequence 〈fnk(z)〉. As y /∈ V , it has a def-

inite distance δ from PC(f). For sufficiently large nk, let Enk
denote the

component of f−nk(B(y, δ/2)) containing z. As B(y, δ/2) does not intersect

PC(f), fnk : Enk
→ B(y, δ/2) is univalent, and in addition, its inverse has a

univalent extension over the larger domain B(y, δ). By the Koebe distor-

tion theorem, all the domains Enk
have bounded eccentricity, and the maps

fnk : Enk
→ B(y, δ/2) have uniformly bounded distortion.

If Enk
’s do not shrink to z as nk → ∞, their uniformly bounded eccentricity

implies that Enk
’s contain a ball B(z, r), for some constant r > 0. Thus, every

member of the sequence 〈fnk〉 maps B(z, r) into B(y, δ). This implies that

{fnk} is a normal family by Montel’s theorem, contradicting the choice of z in

the Julia set. Therefore, diameter of Enk
tends to 0.

The family Enk
shrink regularly to z, i.e. there exists a constant c > 0 such

that for each Enk
, there exists a round ball B with

Enk
⊂ B, and area(Enk

) ≥ c · areaB.

As z is a Lebesgue density point of Γ (and so of J), Lebesgue’s Theorem implies

that,

lim
nk→∞

area(Enk

⋂
Γ)

area(Enk
)

= 1.

As fnk ’s have bounded distortion, and Γ is f invariant, we have

lim
nk→∞

area(fnk(Enk

⋂
Γ))

area(fnk(Enk
))

= lim
nk→∞

area(B(y, δ/2)
⋂

Γ)

area(B(y, δ/2))
= 1.

One concludes from the last equality, and that Γ ⊆ J , to get B(y, δ/2) ⊆ J .

This implies that J = Ĉ, contradicting our assumption.
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4.1.2 The Inou-Shishikura class and the near-parabolic

renormalization

Continued fractions: We use a slightly different type of continued

fractions defined as follows. Any irrational number α ∈ R \ Q can be written

as an accelerated continued fraction of the form:

α = a0 +
ε0

a1 +
ε1

a2 +
ε2

. . .

where an ∈ Z and εn = ±1, for n = 0, 1, 2, . . . . For any real number α ∈ R,

define ‖α‖ := min{|x−n| : n ∈ Z}. Let α0 = ‖α‖ and a0 be the closest integer

to α, so that α = a0 ± α0. For every n ≥ 0, let αn+1 = ‖ 1
αn
‖ and an+1 be the

closest integer to 1
αn

. Then the signs εn are determined by 1
αn−1

= an + εnαn.

Note that αn belongs to (0, 1/2) for every n ≥ 1.

Consider a map h : Dom (h) → C, where Dom (h) denotes domain of h.

Given a compact set K ⊂ Dom(h) and an ε > 0, a neighborhood of h is

defined as

N (h,K, ε) := {g : Dom (g) → C | K ⊂ Dom(g), and sup
z∈K

|g(z) − h(z)| < ε}.

By a sequence hn : Dom (hn) → C (not necessarily defined on the same set)

converges to h we mean that given an arbitrary neighborhood of h defined as

above, hn is contained in this neighborhood for sufficiently large n.

Inou-Shishikura class: Consider the cubic polynomial P (z) = z(1+z)2. This

polynomial has a parabolic fixed point at 0, a critical point at −1/3 which is

mapped to the critical value at −4/27, and another critical point at −1 which

is mapped to 0. See Figure 4.1
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Define

U := P−1(B(0,
4

27
e4π)) \ ((−∞,−1] ∪ B) (4.1)

where B is the component of P−1(B(0, 4
27
e−4π)) containing −1.

Figure 4.1: A schematic presentation of the Polynomial P , its domain, and

range. Similar colors and linestyles describe the map.

Define the class of maps

IS :=
{
P◦ϕ−1: Uf → C

∣∣∣
ϕ : U → Uf is univalent, ϕ(0) = 0, ϕ′(0) = 1, and

φ−1 extends onto Ūf as a continuous function

}
.

For a positive real number α∗, consider the following class

IS [α∗] := {e2παi · f | f ∈ IS, and α ∈ [0, α∗]}.

As the class IS[α∗] is identified with the space of univalent maps on the unit

disk with a neutral fixed point at 0, it is a compact class in the above topology.

Any map h = e2παif0 in IS[α∗], with α 6= 0 and f0 ∈ IS, has a fixed point

at 0 with multiplier e2παi, and another fixed point σh 6= 0. The σh fixed point

has asymptotic expansion σh = −4παi/f ′′
0 (0) + o(α), when h converges to f0

in a fixed neighborhood of 0. Clearly, σh → 0 as α→ 0.

See Figure 4.2 for the contents of the following theorem.
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Theorem 4.3. (Inou-Shishikura [IS06]) There exist a real number α∗ > 0,

and positive integers k, k̂ such that the class IS[α∗] satisfies the following:

(1) h′′(0) 6= 0 for any map h ∈ IS[α∗].

(2) For any map h : Uh → C in IS[α∗], there exist a domain Ph ⊂ Uh,

bounded by piecewise smooth curves, and a univalent map Φh : Ph → C

with the following properties:

(a) Ph is compactly contained in Uh. Moreover, it contains the criti-

cal point cph := ϕ(−1
3
) in its interior as well as 0 and σh on its

boundary.

(b) There exists a continuous branch of argument defined on Ph such

that

max
w,w′∈Ph

| arg(w) − arg(w′)| ≤ 2πk̂

(c) Φh(Ph) = {w ∈ C | 0 ≤ Re(w) ≤ ⌊1/α⌋ − k}. Also, Im Φh(z) →
+∞ when z ∈ Ph → 0 and Im Φh(z) → −∞ when z ∈ Ph → σh.

(d) Φh satisfies the Abel functional equation, that is,

Φh(h(z)) = Φh(z) + 1, whenever z and h(z) belong to Ph.

Moreover, Φh is unique once normalized to send cph to 0.

(e) The map Φh depends continuously on h.

We refer to the univalent map Φh obtained in the above theorem as Per-

turbed Fatou coordinate or sometimes Fatou Coordinate for short.

Remark. Parts (b) and (c) in the above theorem (existence of uniform k and k̂)

are not stated in [IS06] but it follows from their work. These are consequences

of the compactness of the class IS[α∗] and will become clear by Lemma 4.16

which we prove later.
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1 2 3 4

· · ·

Φh

0

σh

bcph
1
α
− k

Ph

Figure 4.2: An example of a perturbed Fatou coordinate and its domain.

Renormalization: Consider a map h : Uh → C in e2παiIS with α ≤ α∗ (α∗

is obtained in Theorem 4.3) and let Φh : Ph → C be the normalized Fatou

coordinate obtained in that theorem. Define

C := {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , −2 < Im Φh(z) ≤ 2}, and

C♯ := {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , 2 ≤ Im Φh(z)}.
(4.2)

By definition, C contains the critical value of h in its interior, and C♯ contains

0 (fixed point of h) on its boundary. For integers k > 0, let (C♯)−k denote the

unique connected component of h−k(C♯) with 0 on its boundary. Similarly, if

there exists a unique connected component of h−k(C) which has non-empty

intersection with (C♯)−k, it will be denoted by C−k. Let kh be the smallest

positive integer (if it exists) for which the sets C−kh and (C♯)−kh are contained

in the set

{z ∈ Ph | 0 < ReΦh(z) < 1/α− k − 1/2}.
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We define the set Sh as,

Sh := C−kh ∪ (C♯)−kh.

Consider the map

Φh ◦ hkh ◦ Φ−1
h : Φh(Sh) → C. (4.3)

By equivariance property of Φh (Abel functional equation), this map projects

via z = −4
27
e2πiw to a map of the form z 7→ e2π −1

α
iz + O(z2), defined on some

neighborhood of the origin.

Further conjugating this map by s : z 7→ z̄, to make the rotation number

at 0 positive, we obtain a map R(h) of the form z 7→ e
2π
α

iz +O(z2). The map

R(h) is called the near parabolic renormalization of h by Inou and Shishikura.

We simply refer to it as renormalization of h. One can see (Lemma 4.5) that

one time iterating R(h) corresponds to several times iterating the map h, or

in other words, many times iterating h is equal to composition of two changes

of coordinate and one iterate of R(h).

The following theorem in [IS06] states that the above definition of near

parabolic renormalization R can be carried out for maps in IS . For a given

positive integer N , let IrrN denote the set of real numbers α = [a0, a1, a2, . . . ]

with ai ≥ N .

Theorem 4.4. (Inou-Shishikura) There exist an integer N > 0 such that if

h ∈ e2παi · IS with α ∈ IrrN , then R(h) is well-defined and belongs to the class

IS[1/N ] (i.e. it can be written of the form R(h) = e
2π
α

i · P ◦ ψ−1).

The same conclusion holds for the map Pα(z) = e2παiz+ z2, that is, R(Pα)

is well-defined and belongs to IS[1/N ] provided α is small enough and belongs

to IrrN .

Although quadratic polynomials Pα = e2παiz+z2 do not belong to the class
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IS[α∗], the theorem states that one can define the Fatou coordinate for this

map and renormalize it by the above definition. Hence, the theorem guaranties

that for α in IrrN , the sequence of renormalizations

fn := Rn(Pα) : Un → C

are defined and belong to the class IS[1/N ]. For simplicity of notation, we

let f0 = Pα and α0 = α. Each map fn has a fixed point at 0 with multiplier

e2παni.

4.1.3 Sectors around the post-critical set

Here we introduce a sequence of subsets of C containing 0 on their boundary,

such that a.e. z in the Julia set of Pα has to visit these sets. From now on we

will assume that N is large enough or α∗ = 1/N is small enough so that the

class IS [1/N ] satisfies the conditions in Theorems 4.3 and 4.4. Moreover, for

technical reasons, we will assume that

α∗ ≤
1

k + k̂
(4.4)

for k and k̂ obtained in Theorem 4.3.

Change of coordinates: For every n ≥ 0, let Φn = Φfn
denote the Fatou

coordinate of the map fn : Un → C defined on the set Pn := Pfn
introduced in

Theorem 4.3. By part (b) of Theorem 4.3 and our assumption (4.4), there are

holomorphic inverse branches, ηn : Pn → C, of the map

Exp(z) := z 7−→ −4

27
s ◦ e2πiz : C → C∗, where s(z) = z̄,

with ηn(Pn) ⊂ Φn−1(Pn−1). There may be several choices for this map but we

choose one of them for each n and fix this choice whenever we refer to this

map.
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Now we can define ψn := Φ−1
n−1 ◦ ηn : Pn → Pn−1. Note that each ψn can

be continuously extended to 0, on the boundary of Pn, by mapping it to 0.

Consider the maps

Ψn := ψ1 ◦ ψ2 ◦ · · · ◦ ψn : Pn → P0

with values in the dynamical plane of the polynomial f0.

For each fn, n = 0, 1, 2, . . . , let Cn and C♯
n be the sets obtained in (4.2)

for fn. Let kn be the smallest positive integer for which C−kn
n and (C♯

n)−kn are

contained in Pn. We define the sector S0
n as

S0
n := C−kn

n ∪ (C♯
n)−kn ⊂ Pn.

By definition, the critical value of fn is contained in fkn
n (S0

n).

For every n ≥ 0 define

S1
n := ψn+1(S

0
n+1) ⊂ Pn.

In general for i ≥ 2, let

Si
n := ψn+1 ◦ · · · ◦ ψn+i(S

0
n+i) ⊂ Pn.

All these sectors contain 0 on their boundary. We will mainly consider Si
0, S

i
1,

and S0
i for i = 0, 1, 2, . . . . See Figure 4.3.

Lemma 4.5. Let z ∈ Pn−1 be a point with w := Exp ◦ Φn−1(z) ∈ Dom(fn).

There exists an integer ℓz with 2 ≤ ℓz ≤ ⌊ 1
αn−1

⌋ − k + kn−1 + 1 such that

• f ℓz

n−1(z) ∈ Pn−1,

• Exp ◦ Φn−1(f
ℓz

n−1(z)) = fn(w),

• z, fn−1(z), f
2
n−1(z), . . . , f

ℓz

n−1(z) ∈
⋃kn−1+⌊ 1

αn−1
⌋−k−1

i=0 f i
n−1(S

0
n−1),
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S0
n

C−1

(C♯)−1

b
bcp

cv

Figure 4.3: Figure shows the first generation of sectors. The grey curve ap-

proximates orbit of the critical point.

Moreover, if w ∈ int(Dom(fn)), then

z, fn−1(z), f
2
n−1(z), . . . , f

ℓz

n−1(z)

belong to the interior of
⋃kn−1+⌊ 1

αn−1
⌋−k−2

i=0 f i
n−1(S

0
n−1)

Proof. As w ∈ Dom(fn), by definition of renormalization R(fn−1) = fn, there

are

ζ ∈ Φn−1(S
0
n−1), ζ ′ ∈ Φn−1(Pn−1)

such that

Exp(ζ) = w, Exp(ζ ′) = fn(w), ζ ′ = Φn−1 ◦ fkn−1

n−1 ◦ Φ−1
n−1(ζ).

Since Exp(Φn−1(z)) = w too, and ζ ∈ Φn−1(S
0
n−1), then there exists an

integer l1 with −kn−1 + 1 ≤ l1 ≤ ⌊ 1
αn−1

⌋ − k such that Φn−1(z) + l1 = ζ (k is

the constant obtained in Theorem 4.3).
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By equivariance property of Φn−1, we have

ζ ′ = Φn−1 ◦ fkn−1

n−1 ◦ Φ−1
n−1(ζ)

= Φn−1 ◦ fkn−1

n−1 ◦ Φ−1
n−1(Φn−1(z) + l1)

= Φn−1 ◦ fkn−1+l1
n−1 ◦ Φ−1

n−1(Φn−1(z))

= Φn−1 ◦ fkn−1+l1
n−1 (z).

If we let ℓz := kn−1 + l1 + 1 then we have

2 ≤ ℓz ≤ kn−1 + ⌊ 1

αn−1
⌋ − k + 1, f ℓz

n−1(z) = Φ−1
n−1(ζ

′ + 1) ∈ Pn−1,

and

Exp ◦ Φn−1(f
ℓz

n−1(z)) = Exp ◦ Φn−1(Φ
−1
n−1(ζ

′ + 1)) = Exp(ζ ′ + 1) = fn(w)

This finishes the first two properties. For the last property, we can see that

one of the following two occurs

– there exists a positive integer j with f j
n−1(z) ∈ S0

n−1,

– there exists a non-negative integer j with z ∈ f j
n−1(S

0
n−1).

If the first case occurs (this is when l is positive), then

z, fn−1(z), . . . , f
j−1
n−1(z) ∈

kn−1+⌊ 1

αn−1
⌋−k−1⋃

i=kn−1

f i
n−1(S

0
n−1),

f j
n−1(z), . . . , f

ℓz

n−1(z) ∈
kn−1+1⋃

i=0

f i
n−1(S

0
n−1).

If the second case occurs (when l is negative), then

z, fn−1(z), . . . , f
ℓz

n−1(z) ∈
kn−1+1⋃

i=j

f i
n−1(S

0
n−1).
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The final statement follows from open mapping property of holomorphic

maps, that is, image of every open set under a holomorphic map is open. For

example, if w ∈ int(Dom(fn)) then ζ ∈ int(Φn−1(S
0
n−1)) which implies that z

belongs to the interior of the above union.

In the above lemma there are clearly many choices for ℓz. Indeed, there

are ⌊ 1
αn−1

⌋− k− 1 choices for ℓz, however, in the following two lemmas we will

make a specific choice of f ℓz

n−1(z) in order to control ℓz.

Lemma 4.6. For every n ≥ 1, the two maps

fn : Pn → fn(Pn) and f qn

0 : Ψn(Pn) → f qn

0 (Ψn(Pn))

are conjugate by Ψn, that is, the following diagram

Ψn(Pn)
fqn
0

// f qn

0 (Ψn(Pn))

Pn

Ψn

OO

fn
// fn(Pn)

Ψn

OO

commutes wherever it is defined.

Similarly for every n > m, fn : Pn → fn(Pn) is conjugate to some iterate

of fm defined on the set ψm+1 ◦ · · · ◦ ψn(Pn).

Proof. By definition of renormalization R, this property holds near 0 (fixed

point). so, by analytic continuation, they hold on their domain of definition.

The integers qn are the closest return times for the rotation of angle α0 near

the 0 fixed point.

Consider the map

fkn

n : S0
n → fkn

n (S0
n) ⊆ Pn.

The following lemma translates dynamics of this map to the dynamic plane of

f0.
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Lemma 4.7. The map fkn
n : S0

n → fkn
n (S0

n) is conjugate to

f
knqn+qn−1

0 : Ψn(S
0
n) → Ψn(fkn

n (S0
n)),

by Ψn.

Proof. Proof of this lemma is similar to the previous one. In this case knqn +

qn−1 is the return time for Ψn(S0
n) back to Ψn(Pn) under f0.

On each level j ≥ 0, we consider union of sectors

Ω0
j :=

kj+⌊ 1

αj
⌋−k−1⋃

i=0

f i
j(S

j
0).

Using the two previous lemmas, we transfer these sets to the dynamic plane of

f0 to obtain,

Ωn
0 :=

qn+1+(kn−k−1)qn⋃

i=0

f i
0(S

n
0 ),

for every n ≥ 0.

To transfer the sectors in Ω0
n from level n to level 0, the first kn sectors

give knqn + qn−1 sectors by Lemma 4.7, and the ⌊ 1
αn
⌋ − k − 1 remaining ones

produce qn(⌊ 1
αn
⌋ − k − 1) by Lemma 4.6. Thus, totally we obtain

(knqn + qn−1) + qn(⌊ 1

αn
⌋ − k − 1) = qn(⌊ 1

αj
⌋ + qn−1) + qn(kn − k − 1)

≤ qn+1 + qn(kn − k − 1),

by formula qn+1 = an+1qn + qn−1.

Proposition 4.8. For every n ≥ 0, we have the following:

1. Ωn+1
0 is compactly contained in the interior of Ωn

0

2. The post critical set of f0 is contained in the interior of Ωn
0
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Proof.

Part (1) : To show that Ωn+1
0 ⊂ Ωn

0 , it is enough to show that for every

z ∈ Sn+1
0 there are points z1, z2, . . . , zm in Sn

0 as well as non-negative integers

t1, t2, . . . , tm+1, for some positive integer m (indeed m = kn+1 +⌊ 1
αn+1

⌋−k−1),

with the following properties:

• f t1
0 (z1) = z and f

tm+1

0 (zm) = f
qn+2+(kn+1−k−1)qn+1

0 (z),

• f
tj
0 (zj−1) = zj , for j = 2, 3, . . . , tm−1,

• tj ≤ qn+1 + (kn − k − 1)qn, for every j = 1, 2, . . . , m+ 1.

For a given z ∈ Sn+1
0 , let ζ := Ψ−1

n+1(z) ∈ S0
n+1. By definition of S0

n+1, the

iterates

ζ, fn+1(ζ), f
2
n+1(ζ), . . . , f

kn+1+⌊ 1

αn+1
⌋−k−1

n+1 (ζ)

are defined and belong to the domain of fn+1.

By Lemma 4.5 for ψn+1(ζ), there are two points ξ1 (take ξ1 = ψn+1(ζ))

and ξ2 in Pn as well as a positive integer ℓ0 with Exp ◦ Φn(ξ1) = ζ , Exp ◦
Φn(ξ2) = fn+1(ζ) and f ℓ0

n (ξ1) = ξ2. Let σ1 ∈ S0
n and an integer ℓ1 with

1 ≤ ℓ1 ≤ kn + an+1 − k − 1 be such that f ℓ1
n (σ1) = ξ1. With the same lemma,

there is a point σ2 in the orbit

ξ1, fn(ξ1), f
2
n(ξ1), . . . , f

ℓ0−1
n (ξ1), ξ2

which belongs to S0
n. Let ℓ2 be the positive integer with 1 ≤ ℓ2 ≤ kn + ⌊ 1

αn
⌋ −

k − 1 that f ℓ2
n (σ1) = σ2.

By the same argument for ξ2 with Exp◦Φn(ξ2) = fn+1(ζ), we obtain points

σ3 ∈ S0
n, ξ3 ∈ Pn and a positive integer ℓ3 with 1 ≤ ℓ3 ≤ kn + an+1 − k − 1,

such that f ℓ3
n (σ2) = σ3.
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Repeating this argument for ξ3, ξ4, . . . , ξm, for m = kn+1 + ⌊ 1
αn+1

⌋ − k − 1,

one obtains a sequence

σ1, σ2, . . . , σm

of points in S0
n and positive integers

ℓ1, ℓ2, . . . , ℓkn+1+⌊ 1

αn+1
⌋−k−1, ℓm+1,

all bounded by kn + ⌊ 1
αn
⌋ − k − 1, which satisfy:

• f
ℓj+1

n (σj) = σj+1 for all j = 2, 3, . . . , m− 1

• f ℓ1
n (σ1) = ξ1 and f ℓm+1

n (σm) = ξm

Now we define zi := Ψn(σi) ∈ Sn
0 , for j = 1, 2, . . . , m. By definition

Ψn(ξ1) = z. We claim that Ψn(ξm) = f
qn+2+(kn+1−k−1)qn+1

0 (z). This is because

Exp ◦ Φn(ξm) = f
kn+1+⌊ 1

αn+1
⌋−k−1

n+1 (ζ)

which is mapped to f
qn+2+(kn+1−k−1)qn+1

0 (z) by Ψn+1 using Lemmas 4.6 and 4.7

for f0 and fn+1.

By Lemmas 4.6 and 4.7, ℓj times iterating fn corresponds to tj times

iterating f0, for each j = 1, 2, . . . , ℓm+1. With the same lemmas, as ℓj is

bounded by kn + ⌊ 1
αn
⌋ − k − 1, each tj is bounded by

knqn + qn−1 + (⌊ 1

αn
⌋ − k − 1)qn ≤ qn+1 + qn(kn − k − 1).

To show that Ωn+1
0 is compactly contained in the interior of Ωn

0 , we use the

open mapping property of holomorphic maps. So if z′ is a point in the closure

of Ωn+1
0 , as f0 is a polynomial defined on the whole complex plane, there exists

a point z in the closure of Sn+1
0 with f t0

0 (z) = z′ , for a non-negative integer

t0 less than qn+2 + (kn − k − 1)qn+1. The last statement in Lemma 4.5 implies
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that all the points σj in the above argument can be chosen in the interior of

S0
n. Hence, all the zi are contained in the interior of Sn

0 .

Part (2) : First we claim that for every n ≥ 0, the critical point of f0

belongs to Ωn
0 and can be iterated at least (an+1 − k − 1)qn times with in this

set.

To prove the claim, note that fn : S0
n → fkn

n (S0
n) is a degree two map. Thus,

by Lemma 4.7, f
knqn+qn+1

0 : Sn
0 → Ψn(fkn

n (S0
n)) is also a degree two map. That

means that the critical point of f0 is contained in the union ∪knqn+qn−1

i=0 f i
0(S

n
0 ).

Therefore, by definition of Ωn
0 , the critical point can be iterated at least

qn+1 + (kn − k − 1)qn − knqn − qn−1 = (an+1 − k − 1)qn

times with in Ωn
0 .

As an+1 − k − 1 ≥ 1 and qn growth (exponentially) to infinity as n goes to

infinity, combining with part (1), the critical point of f0 can be iterated infinite

number of times with in each Ωn
0 .

For every n ≥ 0, Ωn
0 contains closure of Ωn+1

0 in its interior and Ωn+1
0

contains orbit of the critical point. Therefore, the post-critical set is contained

in Ωn
0 .

In the next lemma we show that all the sectors contained in the union Ωn
0

are visited by almost every point in the Julia set of f0, that is,

Lemma 4.9. Let n and ℓ be positive integers with 0 ≤ ℓ ≤ qn+1+(kn−k−1)qn.

Then for almost all z in the Julia set of f0, there exists a non-negative integer

ℓz such that f ℓz

0 (z) ∈ f ℓ
0(S

n
0 ).

Proof. Obviously, it is enough to prove the lemma for ℓ = 0. We claim that

for every n ≥ 0, the set of points which visit Ωn+1
0 contains the set of points
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which visit Sn
0 . Assuming the claim for a moment, because the set of points in

the Julia set that visit Ωn+1
0 has full measure by Propositions 4.2 and 4.8, we

can conclude the lemma.

To prove the claim, let z be an arbitrary point in J for which there exists

an integer t1 ≥ 0 with f t1
0 (z) ∈ Ωn+1

0 . Let t2 ≥ t1 be a positive integer with

f t2
0 (z) ∈ f

qn+2+(kn+1−k−1)qn+1

0 (Sn+1
0 ).

Let ξ denote the point Ψ−1
n (f t2

0 (z)) in Pn. As ζ := Ψ−1
n+1(f

t2
0 (z)) = Exp ◦Φn(ξ)

belongs to Pn+1, fn+1(ζ) is defined. Hence, by Lemma 4.5, there exists a non-

negative integer j with the points ξ, fn(ξ), f
2
n(ξ), . . . , f j

n(ξ) contained in Pn and

the last point, f j
n(ξ), contained in S0

n. By Lemma 4.6, f t2+qnj
0 (z) belongs to

Sn
0 .

4.1.4 Size of the sectors

Now we want to control size of certain sectors contained in the unions Ωn
0 in

terms of Brjuno function. The following two lemmas are our main technical

tools. Their proof comes at the end of this section.

Lemma 4.10. There exists a constant M ≥ 1 such that for every integer n ≥ 1

there exists an integer τ(n) with kn ≤ τ(n) ≤ an+1 − k − 2, and

diam(f τ(n)
n (S0

n)) ≤Mαn.

Lemma 4.11. There exists a constant M ≥ 1 such that for every integer

n ≥ 1, there exists an integer κ(n), with 0 ≤ κ(n) ≤ an+1 − k− 1 that satisfies

the following:

For every w ∈ Pn+1,

(1) f
κ(n)
n ◦ ψn+1(w) ∈ Pn,
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(2) |fκ(n)
n ◦ ψn+1(w)| ≤Mαn|w|αn.

From now on we assume that M denotes a constant which satisfies these

two lemmas.

Proposition 4.12. There exists a constant C such that for every m ≥ 1, there

exist non-negative integers γ(m) and γ′(m) ≤ qn+1 + (kn − k − 1)qn for which

the following holds

(1) diam(f
γ(m)
1 (Sm

1 )) ≤ C · α1 · αα1

2 · αα1α2

3 · αα1α2α3

4 . . . αα1...αm−1

m .

(2) f
γ(m)
1 (Sm

1 ) ⊆ P1

(3) ψ1(f
γ(m)
1 (Sm

1 )) = f
γ′(m)
0 (Sm+1

0 ), that is, ψ1(f
γ(m)
1 (Sm

1 )) is among the sec-

tors in the union Ωm+1
0 .

Proof. For the constant M obtained for the two Lemmas 4.10 and 4.11, let

C = M ·Mα1 ·Mα1α2 ·Mα1α2α3 . . .

= M1+α1+α1α2+α1α2α3+...

≤M1+1/2+1/22+1/23+... = M2 <∞. (as αi < 1/2)

Given m ≥ 1, by Lemma 4.10, there exists τ(m) with km ≤ τ(m) ≤
km − k − 2, and

diam(f τ(m)
m (S0

m)) ≤ M · αm.

By Lemma 4.11 with n = m− 1, and w ∈ f
τ(m)
m (S0

m), we obtain

diam(f
κ(m−1)
m−1 ◦ ψm(f τ(m)

m (S0
m))) ≤M · αm−1 · (M · αm)αm−1 .

Now by Lemma 4.6 we have

diam(f
κ(m−1)
m−1 ◦ f τ(m)am+1+1

m−1 (ψm(S0
m)) ≤M ·Mαm−1 · αm−1 · ααm−1

m
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or equivalently

diam(f
κ(m−1)+τ(m)am+1+1
m−1 (S1

m−1) ≤ M ·Mαm−1 · αm−1 · ααm−1

m .

Again applying Lemma 4.11 with n = m − 2, the last inequality implies

that

diam(f
κ(m−2)
m−2 ◦ ψm−1(f

κ(m−1)+τ(m)am+1+1
m−1 (S1

m−1)) ≤

M · αm−2 · (M ·Mαm−1 · αm−1 · ααm−1

m )αm−2 .

which is equivalent, by Lemma 4.6, to

diam(f
κ(m−2)+(κ(m−1)+τ(m)am+1+1)am+1
m−2 (ψm−1(S

1
m−1))) ≤

M · αm−2 · (M ·Mαm−1 · αm−1 · ααm−1

m )αm−2 .

Repeatedly using Lemma 4.11 with n = m− 3, m− 4, . . . , 1, one obtains

diam(f
γ(m)
1 (Sm

1 )) ≤M · α1 · [M · α2[M · α3[. . . [M · αm]αm−1 ]αm−2 . . . ]α2 ]α1

for some integer γ(m). Therefore f
γ(m)
1 (Sm

1 ) has diameter less than

M ·Mα1 ·Mα1α2 . . .Mα1α2...αm−1 · α1 · αα1

2 · αα1α2

3 · αα1α2α3

4 . . . αα1...αm−1

m ≤

C · α1 · αα1

2 · αα1α2

3 · αα1α2α3

4 . . . αα1...αm−1

m .

this finishes the first Part of the proposition.

The second part of the proposition follows from above argument when

Lemma 4.11 was used with m = 1.

To see the third statement in the proposition, first note that τ(m) is chosen

strictly less than am+1 + km − k − 1. Therefor, ψ1(f
γ(m)
1 (Sm

1 )) is among the

sectors in the union Ωm+1
0 . Indeed, one can see that γ′(m) is strictly between

kmqm + qm−1 and qm+1 + (km − k − 1)qm.

91



Lemma 4.13. The sequence

{α1α
α1

2 α
α1α2

3 αα1α2α3

4 . . . α
α1...αk−1

k }k

converges to zero as k → ∞, if and only if the Brjuno sum

∞∑

n=0

log qn+1

qn

is divergent.

This is a purely combinatorial lemma and one may refer to [Yoc95] (page

13) for its proof.

Proof of Theorem 1.3. The set of points in the Julia set of f0 which accumulate

on the 0 fixed point is equal to the intersection of the sets

An = {z ∈ J : O(z) ∩ B(0, 1/n) 6= ∅}.

for n = 1, 2, . . . . To prove the theorem, it is enough to show that every An

has full Lebesgue measure in the Julia set. As the map ψ1 : P1 → P0 has

continuous extension to the boundary point 0, there exists a δn > 0 such that

if |w| < δn, for some w ∈ P1, then |ψ1(w)| < 1/n.

By Lemma 4.13, there exists an integer m > 0, for which

C · α1α
α1

2 α
α1α2

3 αα1α2α3

4 . . . α
α1...αk−1

k

is less than δn, where C is the constant obtained in Proposition 4.12. Now by

part (1) and (2) of Proposition 4.12, ψ1(f
γ(m)
1 (Sm

1 )) is contained in B(0, 1/n).

Part (3) of Proposition 4.12 and Lemma 4.9 implies that this set is visited

by almost every point in the Julia set of f0. This completes our proof of

Theorem 1.3.
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4.1.5 Perturbed Fatou coordinate

In order to prove Lemmas 4.10 and 4.11 in this section, we will give an

approximate formula for the Fatou coordinate Φh with a bound on its error.

Assume h(z) = e2παi · P ◦ ϕ−1(z) : ϕ(U) → C belongs to the class e2παiIS ,

and σh denotes its non-zero fixed point. In [IS06], N was chosen large enough

so that h(z) has only two fixed points 0 and σh in its domain of definition.

Therefore, one can write h(z) as

h(z) = z + z(z − σh)uh(z)

where uh(z) is a non-zero holomorphic function defined on the set ϕ(U). Dif-

ferentiating both sides of this equation at 0, one obtains

σh =
1 − e2παi

uh(0)
. (4.5)

Note also that the map uh(z) = (h(z) − z)/(z(z − σh)) depends continuously

on the map h(z).

Let

τh(w) :=
σh

1 − e−2πiαw

be the universal covering of the Riemann sphere minus two points 0 and σh

that has deck transformation group generated by

Tα(w) := w +
1

α
.

One can see that τh(w) → 0, as Im(αw) → ∞, and τh(w) → σh, as Im(αw) →
−∞.

Define the map

Fh(w) := w +
1

2παi
log

(
1 − σhuh(z)

1 + zuh(z))

)
, with z = τα(w)
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on the set of points w with τh(w) ∈ Dom(h). The branch of log in the above

formula is determined by −π < Im log(·) < π. The map Fh is defined on the

inverse image of Dom(h) under τα.

It is immediate calculation to see that

h ◦ τh = τh ◦ Fh, and Tα ◦ Fh = Fh ◦ Tα.

Indeed, Fh was defined using this relations.

We will see in a moment that the Fatou coordinate of a map in the class

IS[α∗] is “essentially” equal to τα for our purposes. Hence, we wish to further

control τh on certain domains.

For every real number R > 0, let Θ(R) denote the set

Θ(R) := C \
⋃

n∈Z

T n
α (B(0, R)).

Lemma 4.14. There exists a positive constant C1 such that

(1) For every Y > 0, there exists εY > 0, such that for every h ∈ e2παiIS,

with α < εY , we have

∀w ∈ Θ(Y ), |τh(w)| ≤ C1/Y

(2) For every r ∈ (0, 1/2), w ∈ Θ( r
α
), and every h ∈ IS [α∗] we have

|τh(w)| ≤ C1
α

r
e−2πα Imw.

Proof. The σh fixed point has the form (4.5) in terms of uh, where uh is a

non-zero function in a compact class. Therefore, there exists a constant C ′

such that for every h ∈ e2παiIS, |σh| < C ′α. The rest follows from analyzing

the explicit formula 1/(1 − e−2πiαw) on Θ (Y ).
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To see Part (1), fix an arbitrary Y > 0. If w ∈ Θ(Y ), then 1 − e2πiαw

belongs to complement of the ball of radius e−2παY − 1 centered at 0 in C.

Therefore

| σh

1 − e−2παY
| < C ′α

3παY
=

C ′

3πY

for small α.

To see part (2), one can observe that for such a w, |1− e−2πiαw| ≥ e2πr − 1,

and conclude that there exists a constant C ′′ with

|1 − e−2πiαw| ≥ C ′′re2πα Im w.

This implies that

|τh(w)| ≤ C ′

C ′′
α

r
e−2πα Im w.

Now we can take C1 as the maximum of C′

3π
and C′

C′′
.

Lemma 4.15. There exist positive constants ε0 > 0, C2, C3, C4 as well as

a positive integer j0, such that for every map h ∈ e2παiIS, with α ≤ ε0, the

induced map Fh is defined and is univalent on Θ(C2), and moreover

(1) For all w ∈ Θ(C2), we have

|Fh(w) − (w + 1)| < 1/4, and |F ′
h(w) − 1| < 1/4.

(2) For every r ∈ (0, 1/2), and w ∈ Θ( r
α

+ 1), we have

|Fh(w)− (w + 1)| < C3
α

r
e−2πα Im w, and |F ′

h(w)− 1| < C3
α

r
e−2πα Im w.

(3) cph ∈ B(0, 2)\B(0, .22). If i(h) is the smallest non-negative integer with

ReF
i(h)
h (cpFh

) ≥ C2, then i(h) ≤ min{j0, 1/α}.

(4) For every positive integer j ≤ j0 + 2
3α

, we have

| ImF j
h(cpFh

)| ≤ C4(1+ log j), and |ReF j
h(cpFh

)− j| ≤ C4(1 + log j).
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Proof.

Parts (1) and (2) : Consider a map h = e2παiP ◦ ϕ−1 : ϕ(U) → C in

e2παiIS . As cpP = −1/3 /∈ B(0, 1/3), by Koebe Distortion Theorem, cph =

φ(−1/3) /∈ B(0, 1/12). So, every h in the above class is defined and univalent

on B(0, 1/12). Applying part (1) of Lemma 4.14 with Y = 12C1, we obtain an

ε0 > 0 such that if α ≤ ε0, then

τh(Θ(Y )) ⊂ B(0, 1/12).

Therefore, the induced map Fh is defined and univalent on Θ(Y ).

For w ∈ Θ(Y ), using notation λ = e2παi, we have

Fh(w) = w +
1

2παi
log

(
1 − σhuh(z)

1 + zuh(z)

)
, with z = τh(w)

= w + 1 +
1

2παi
log

(1

λ
(1 − σhuh(z)

1 + zuh(z)
)
)
.

Now assume we want to show that

|Fh(w) − (w + 1)| =
∣∣∣ 1

2πα
log

(1

λ
(1 − σhuh(z)

1 + zuh(z)
)
)∣∣∣ < A

for some A with 0 < A < 1/4. As 2παA < 1, it is enough to prove

1

2πα

∣∣∣1
λ

(1 − σhuh(z)

1 + zuh(z)
) − 1

∣∣∣ < A

e
.

As |λ| = 1, it is enough to show that

1

2πα

∣∣∣1 − σhuh(z)

1 + zuh(z)
− λ

∣∣∣ < A

e
.

Replacing σh by its value from equation (4.5), and using |1 − λ| < 2πα, we

obtain

1

2πα

∣∣∣(1 − λ)(1 − uh(z)

(1 + zuh(z))uh(0)
)
∣∣∣ <

∣∣∣1 − uh(z)

(1 + zuh(z))uh(0)

∣∣∣.
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Since uh belongs to a compact class, it is possible to make

1 − uh(z)

(1 + zuh(z))uh(0)
(4.6)

less than 1
4e

by restricting z to a sufficiently small disk of radius δ around 0.

So,
∣∣∣1 − uh(z)

(1 + zuh(z))uh(0)

∣∣∣ < 1

4e
=

1/4

e
, on B(0, δ).

By Lemma 4.14, part (1), there is a constant C ′(δ) ≥ Y such that |z| =

|τα(w)| < δ holds for every w ∈ Θ(C ′(δ)). With this constant C ′(δ) (for C2),

we have the first inequality in part (1) of the lemma.

The second inequality in part (1) follows from the Cauchy estimate (integral

formula) applied to Fh(w) − w − 1, once we restrict w to smaller domain

Θ(C ′(δ) + 1). Hence, for C2 := C ′(δ) + 1 we have both inequalities.

For the first inequality in Part (2), using Taylor’s Theorem for Expres-

sion (4.6), one obtains

1 − uh(z)

(1 + zuh(z))uh(0)
< 2 · | u′h(0)

uh(0) − 1
||z|.

Moreover, as uh belongs to a compact class,

| u′h(0)

uh(0) − 1
| < D′

for some constant D′.

Using part (2) of Lemma 4.14, we conclude that for every w ∈ Θ( r
α
), we

have

|1 − uh(z)

(1 + zuh(z))uh(0)
| < 2D′C1

α

r
e−2πα Im w

=
2D′C1

e
α
r
e−2πα Im w

e
.

This proves the first inequality by introducing C3 := 2D′C1/e.
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The other inequality in (2) is also a consequence of Cauchy estimate, once

we restrict w to Θ( r
α

+ 1).

Part (3) : By explicit calculation one can see that e−2παh is univalent on

the ball B(0, 1 −
√

8/27e−2π) ⊃ B(0, 2/3). Koebe distortion Theorem applied

to this map on B(0, 2/3) implies that cph ∈ B(0, 2) \B(0, .22).

By above argument, there is a choice of cpFh
in τ−1

α (cph) that belongs to

a compact subset of C (independent of α). Since h converges to maps in the

compact class IS as α → 0, cpFh
visits Θ(C2) in a finite number of iterates

i(h), uniformly bounded by some constant j0 independent of h. For the same

reason,

|F i
h(cpFh

)| ≤ C ′, for i = 0, 1, . . . i(h)

for some constant C ′.

Part (4) :

It is enough to prove the inequalities for small values of α. For larger α,

there are only finite number of iterates to consider. Therefore, by our previous

argument in part (3), the inequalities hold for large enough C4. So, in the

following we assume that α ≤ min{C2

3
+ 5j0+5

24
, 1

8C2+41
}.

By the first part of this lemma, at each step j with i(h) ≤ j ≤ j0 + 2
3α

, we

have F j
h(cpFh

) ∈ Θ(C2),

C ′ +
3j

4
≤ ReF j

h(cpFh
) ≤ C ′ +

5

4
+

5j

4
.

and,

−C ′ − 1

6α
≤ −C ′ − j

4
≤ ImF j

h(cpFh
) ≤ C ′ +

j

4
≤ C ′ +

1

6α
.

Now, one can use part (2) with rj = jα
6

at F j
h(cpFh

), for j = i(h), . . . , j0+
2
3α

,
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to obtain:

|Fh(F
j
h(cpFh

)) − F j
h(cpFh

) − 1| ≤ C3
6

j
e2πα(C′+ 1

6α
)

≤ 6C3e
π(C′+ 1

3
)1

j

Putting above inequalities together using triangle inequality, we obtain the

following estimates for every j ≤ j0 + 2
3α

:

| ImF j
h(cpFh

)| ≤ C ′ + 6C3e
π(C′+ 1

3
)

j∑

m=i(h)

1

m

≤ C ′ + 6C3e
π(C′+ 1

3
)(1 + log j)

≤ C ′ + 6C3e
π(C′+ 1

3
)(1 + log

2

3α
),

similarly,

ReF j
h(cpFh

) ≤ C ′ + (j − i(h)) + 6C3e
π(C′+ 1

3
)(1 + log j), and

ReF j
h(cpFh

) ≥ −C ′ + (j − i(h)) − 6C3e
π(C′+ 1

3
)(1 + log |j − j0|)

This finishes part (4) by introducing the appropriate constant C4.

The following lemma is basically repeating existence of Fatou coordinate in

the second part of Theorem 4.3. There is a standard argument based on the

measurable Riemann mapping theorem to construct such a coordinate. Since

we need to further analyze this coordinate, we repeat this argument in the next

lemma.

For real constant Q > 0, let ΣQ denote the set

ΣQ := {w ∈ C : Q ≤ Re(w) ≤ 1

α
−Q}∪

{w ∈ C : Re(w) ≤ Q, and |Imw| ≥ −Re(w) + 2Q}∪

{w ∈ C : Re(w) ≥ 1

α
−Q, and |Imw| ≥ Re(w) − 1

α
+ 2Q}.
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ΣC2

b
b

la Fh

Re z

Im z

O

Figure 4.4: The gray region shows the domain ΣC2
.

Lemma 4.16. For every map h ∈ e2παiIS with α less than ε0 (obtained in

Lemma 4.15), there is a univalent map Lh : Dom (Lh) → C with the following

properties:

(1) ΣC2
∪ {cpFh

} ⊂ Dom(Lh) and

{w ∈ C : 0 ≤ Re(w) ≤ ⌊1/α⌋ − k} ⊆ Lh(Dom(Lh))

(same k as in Theorem 4.3).

(2) Lh satisfies

Lh(Fh(w)) = Lh(w) + 1 (Abel functional equation)

whenever both sides are defined. Moreover, Lh is unique once normalized

by mapping the critical value of Fh to 1.

Proof. Let la denote the vertical line {a + it : −∞ < t < +∞}, for a in

[C2,
1
α
− C2 − 5

4
]. If α ≤ ε0, by Lemma 4.15–(1), image of la under Fh does
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not intersect itself. By the same lemma, the two curves la and Fh(la) cut the

complex plane into three connected components. Denote closure of the one

with bounded real part by Kh.

Consider the homeomorphism

g : {w ∈ C : 0 ≤ Re(w) ≤ 1} → Kh

defined as

g(s+ it) := (1 − s)(a+ it) + sFh(a+ it).

The partial derivatives of g exist everywhere and can be calculated as

∂g

∂w
(s+ it) =

1

2
[
∂g

∂s
− i

∂g

∂t
](s+ it)

=
1

2
[Fh(a + it) − (a+ it) + 1 + s(F ′

h(a + it) − 1)],

∂g

∂w̄
(s+ it) =

1

2
[
∂g

∂s
+ i

∂g

∂t
](s+ it)

=
1

2
[Fh(a + it) − (a+ it) − 1 + s(1 − F ′

h(a + it))].

(4.7)

By the inequalities in part (1) of Lemma 4.15, dilatation of the map g,

|gw̄/gw|, is bounded by 1/3. Thus, it is a quasi-conformal map onto Kh. More-

over,

∀w ∈ la, g
−1(Fh(w)) = g−1(w) + 1.

The Beltrami differential

ν(w) :=
∂g/∂w̄

∂g/∂w
(w)

dw̄

dw

is the pull back of the standard complex structure on C by g. Using ν(T1(w)) =

ν(w), we can extend ν(w) over the whole complex plane C. By measurable

Riemann mapping theorem ([Ah66], Ch V, Theorem 3), there exists a unique

quasi-conformal mapping g1 : C → C which solves the Beltrami differential

equation ∂
∂w̄
g1 = ν · ∂

∂w
g1 and leaves the points 0 and 1 fixed.
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As g1 ◦ T1 ◦ g−1
1 is quasi-conformal and ∂(g1 ◦ T1 ◦ g−1

1 )/∂w̄ = 0, by explicit

calculation, Weyl’s Lemma ([Ah66], Ch II, Corollary 2) implies that this map is

a conformal map of the complex plane. As it is conjugate to T1, it can not have

any fixed point. Therefore, it is a translation of the plane. Finally, g1(0) = 1

implies that g1 ◦ T1 ◦ g−1
1 = T1, or in other words, g1(w + 1) = g1(w) + 1.

For the same reason, the map Lh := g1 ◦ g−1 : Kh → C is conformal and by

previous arguments satisfies Lh(Fh(w)) = Lh(w) + 1 on la. This relation can

be used to extend Lh on a larger domain. By part (1) of Lemma 4.15, for every

w ∈ ΣC2
there is an integer jw for which F jw

h (w) ∈ Kh. Thus domain of Lh

contains at least ΣC2
and by definition satisfies the Abel functional equation

on its domain of definition.

Note that Lh(a) = 0. Given any simply connected domain in C \ {0, σh},
there is a continuous inverse branch of τh defined on this domain. Further, if

image of such a domain under this branch, τ−1
h , is contained in domain of Lh,

composition of this branch and Lh is a Fatou coordinate for h. By uniqueness

in Theorem 4.3, there exists a constant th such that Lh ◦ τ−1
α + th = Φh is the

unique Fatou coordinate which sends cph to zero. This would imply that Lh

extends over a larger domain containing cpFh
on its boundary. Moreover, its

image contains the set

{w ∈ C : 0 ≤ Re(w) ≤ ⌊1/α⌋ − k}

for the constant k obtained in that theorem.

To control Fatou coordinate of a given map h, which is of the from Lh◦τ−1
h ,

we need to control Lh. First we give a rough estimate on derivative of Lh.

Lemma 4.17. There exists a positive constant C5 such that for every h ∈
e2παiIS, and every ζ with 1 ≤ Re ζ ≤ 1/α − k, we have 1/C5 ≤ |(L−1

h )′(ζ)| ≤
C5.
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Proof. Let G : (0, 1/α−k)× (−∞,∞) → C, denote the map L−1
h through this

proof. We will consider two separate cases. First assume ξ := G(ζ) ∈ Θ(C2)

and Im ζ ∈ (1.5, 1/α − k − 1.5). So, G is defined and univalent on B(ζ, 1.5)

and Fh(ξ) ∈ B(ξ+1, 1/4). Now, by 1/4 Theorem, |G′(ζ)|/4 ≤ (1+1/4) which

implies G′(ζ) ≤ 5. For the other direction, by Koebe distortion theorem, we

have

∀w ∈ B(ζ, 1), |G′(w)/G′(ζ)| ≤ 45.

By comparing distances d(ζ, ζ + 1) and d(ξ, Fh(ξ)), we obtain

45|G′(ζ)| ≥ 1 · sup
w∈B(ζ,1)

|G′(w)| ≥ 1 − 1/4 = 3/4,

which implies, |G′(ζ)| ≥ 1/36. This proves the lemma in this case.

Now if ξ ∈ Θ(C2) and ImLh(ξ) ∈ (1, 1/α−k). By Abel functional equation

in Lemma 4.16, at least one of ξ, Fh(ξ), F
2
h (ξ), F−1

h (ξ), F−2
h (ξ) satisfies above

condition. Differentiating Abel functional equation and using Lemma 4.15,

part (1), we see

3/4 ≤ |L′
h(Fh(ξ))|/|L′

h(ξ)| = |F ′
h(ξ)| ≤ 5/4,

which takes care of this case.

Finally, if ξ /∈ Θ(C2) then ξ belong to a compact subset of C. As the

normalized Fatou coordinate Lh is univalent and depends continuously on h

in the compact open topology, this case follows from compactness of the class

IS[α∗].

Finally, the following is our fine control of Lh. Let C6 > 1 be a positive

constant that satisfies C4(1 + log 5
4α

) + 2C5 ≤ C6/α.
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Lemma 4.18. There exists a positive constant C7 such that for every map Lh

with α(h) < ε0, every r ∈ (0, 1/2), and every w1, w2 ∈ Dom Lh with

– Rew1 = Rew2, and Imw1, Imw2 > −C6/α,

– for all t ∈ (0, 1), tw1 + (1 − t)w2 ∈ Θ( r
α

+ 1),

we have,

(1) |Re(Lh(w1) − Lh(w2))| ≤ C7/r

(2) | Im (Lh(w1) − Lh(w2)) − Im(w1 − w2)| ≤ C7/r

Proof. Given w1, w2 satisfying the conditions in the lemma, choose a vertical

line l with w1, w2 ∈ Kh in the construction of the map g in Lemma 4.16. Let

F
i(h)
h (cpFh

) be the first visit of cpFh
to ΣC2

, and let w∗ := F
i(h)+j
h (cpFh

) be the

first visit of this point to Kh. By part (1) of Lemma 4.15, j ≤ 1/2α
3/4

≤ 2
3α

.

Hence, (4) of the same lemma implies that

Imw∗ ∈ [−C4(1 + log
2

3α
), C4(1 + log

2

3α
)]. (4.8)

Let th be a complex constant with imaginary part in this set and

(Lh + th)(w
∗) = i(h) + j.

Then by Abel functional equation we conclude that cpFh
is mapped to 0 under

Lh + th. We will denote this map by the same notation Lh, thus Lh(w
∗) =

i(h) + j.

We have the following simple inequalities for the quasi-conformal map g−1

constructed using the choice of vertical line l:

| Im (g−1(w1) − g−1(w2)) − Im (w1 − w2)| ≤ 1/2,

|Re (g−1(w1)) − Re (g−1(w2))| ≤ 1/2.
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To prove similar results for Lh, we will compare it to g−1 using Green’s

integral formula. Choose t1 and t2 so that w1 and w2 are contained in the

curves s 7→ g(s + it1), and s 7→ g(s + it2), for 0 ≤ s ≤ 1, respectively. Using

notations ζ = s + it, dζ = ds + idt and dζ̄ = ds − idt, by Green’s Theorem

applied to the map g1(ζ) = Lh ◦ g on the rectangle

D := {ζ ∈ C : 0 ≤ Re(ζ) ≤ 1, t1 ≤ Im ζ ≤ t2}

we have

∫

∂D
g1(ζ) dζ =

∫∫

D
−∂g1(ζ)

∂ζ̄
dζ ∧ dζ̄. (Green’s formula)

If we let w = g(ζ), the complex chain rule for g1(ζ), using the Cauchy-

Riemann equation ∂Lh

∂w̄
= 0, can be written as

∂g1

∂ζ̄
=
∂(Lh ◦ g)

∂ζ̄
= (

∂Lh

∂w
◦ g)∂g

∂ζ̄
.

Therefore,

∣∣∣
∫∫

D

∂g1(ζ)

∂ζ̄
dζ ∧ dζ̄

∣∣∣ ≤
∫ t2

t1

∫ 1

0

2
∣∣∂g1(ζ)

∂ζ̄

∣∣ dsdt

≤
∫ t2

t1

∫ 1

0

4

3
· sup |L′

h| · C3
α

r
e−2πα Im g(s+it) dsdt.

The last inequality follows from (4.7) and Lemma 4.15–(2). By our assumption

on w1 and w2, the last integral is less than or equal to

∫ ∞

−C6/α

4

3
C5C3

α

r
e−2πα(t−1/4) dt

≤ 4C5C3

3πr
e−2πα(−C6/α−1/4)

≤ 4C5C3e
π(2C6+1)

3π

1

r
,

which is bounded independent of α.
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If we parametrize boundary of D as

ϑ1(ℓ) := iℓ, ℓ ∈ [t1, t2] ϑ2(ℓ) := ℓ+ it2, ℓ ∈ [0, 1]

ϑ3(ℓ) := 1 + i(t1 + t2 − ℓ), ℓ ∈ [t1, t2] ϑ4(ℓ) := 1 − ℓ, ℓ ∈ [0, 1]

the left hand side of the (Green’s formula) can be written as

∫ t2

t1

g1(iℓ)i dℓ+

∫ 1

0

g1(ℓ + it2) dℓ+

∫ t2

t1

g1(1 + i(t1 + t2 − ℓ))(−i) dℓ+

∫ 1

0

−g1(1 − ℓ) dℓ.

Replacing g1(ζ+1) by g1(ζ)+1 and making a change of coordinate in the third

integral, we obtain

−i(t2 − t1) +

∫ 1

0

g1(ℓ+ it2) dℓ+

∫ 1

0

−g1(1 − ℓ) dℓ.

Now we show that the above two integrals are in bounded distance of Lh(w2)

and −Lh(w1), as follows:

∣∣∣
∫ 1

0

g1(ℓ+ it2) dℓ− Lh(w2)
∣∣∣ ≤

∫ 1

0

|g1(ℓ+ it2) − Lh(w2)| dℓ

=

∫ 1

0

|g1(ℓ+ it2) − g1(ℓ1 + it2)| dℓ,

≤
∫ 1

0

sup
ζ∈[0,1]+it2

|g′1(ζ)| dℓ ≤
5

4
C5,

for some ℓ1 ∈ [0, 1]. Similarly

∣∣∣
∫ 1

0

−g1(1 − ℓ) dℓ+ Lh(w)
∣∣∣ ≤ 5

4
C5.

Now one infers parts (1) and (2) of the lemma by considering real part and

imaginary part of Green’s formula).

4.1.6 Proof of main technical lemmas

Proof of Lemma 4.10. It is enough to prove the statement for small values of

αn. That is because the sector fkn
n (S0

n) is contained in Dom fn ⊂ B(0, 4/27e4π).
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Therefore, it has uniformly bounded diameter. Now, one can choose a large

enough M to satisfy the inequality in the lemma once αn is not too small.

Let Ln denote the linearizing map Lfn
corresponding to fn that can be

obtained in Lemma 4.16. Consider the half-line

γ(t) := F ⌊1/2αn⌋
n (cpFn

) + it : [−1/αn − 4C7,∞) → C.

By part (4) of Lemma 4.15,

ReF ⌊1/2αn⌋
n (cpFn

) ∈ [⌊1/2αn⌋ − C4(1 + log
1

2αn

), ⌊1/2αn⌋ + C4(1 + log
1

2αn

)].

Thus, for sufficiently small αn, one can use Lemma 4.18, with r = 1/4, w1 =

F
⌊1/2αn⌋
n (cpFn

) and w2 any point on γ, to conclude that

diam{ReLn(γ(t)) − 1

2αn

: t ∈ Dom γ} ≤ 4C7,

ImLn(γ(−1/αn − 4C7)) ≤ −1/αn.

Hence, the set
⋃

t∈Dom γ

B(Ln(γ(t)), 4C7 + 2)

contains the half-strip

A := {ζ ∈ C : ⌊ 1

2αn
⌋ − 1/2 ≤ Re ζ ≤ ⌊ 1

2αn
⌋ + 1/2, Im ζ ≥ − 1

αn
}. (4.9)

Now, by Lemma 4.17, image of this strip under L−1
n must be contained in the

set
⋃

t∈Dom γ

B(γ(t), C5(4C7 + 2)),

which is, by Lemma 4.15 part (4), a subset of the half-strip

B :=
{
ζ ∈ C : |Re ζ − ⌊ 1

2αn

⌋| ≤ C4(1 + log
1

2αn

) + C5(4C7 + 2),

Im ζ ≥ −1

αn
− 4C7 − C4(1 + log

1

2αn
) − C5(4C7 + 2)

}
.

107



By definition of S0
n,

fkn

n (S0
n) = {z ∈ Pn : 1/2 ≤ Re Φn(z) ≤ 3/2, Im Φn(z) ≥ −2}.

Equivariance relation, (Theorem 4.3–b) ), implies that

fkn+⌊1/2αn⌋−1
n (S0

n)

= {z ∈ Pn : ⌊ 1

2αn
⌋ − 1/2 ≤ ReΦn(z) ≤ ⌊ 1

2αn
⌋ + 1/2, ImΦn(z) ≥ −2}.

Since Φ−1
n = τn◦L−1

n , to conclude the lemma, It is enough to bound diam τn(B).

For small αn, Lemma 4.14 with r = 1/4 applies and we obtain diam τn(B) ≤
Mαn, where M = 4C1e

π(2+4C7+C5(4C7+2)+3C4). We have further shown that:

∀ζ ∈ A, |τn(ζ)| ≤ Mαn (4.10)

Which will be used later.

Proof of Lemma 4.11. If αn is large and |w| is also bounded below then one

can make choose the constant M large enough. So we only consider other

cases.

First assume that αn is small so that the following argument works. Recall

that ηn+1 is an arbitrarily chosen inverse branch of Exp on Pn+1. So we may

assume that Re(ηn+1(Pn+1) ⊂ [0, k̂] by Theorem 4.3. If we let ζ = ηn+1(w),

then Im ζ = −1
2π

log 27|w|
4
. Now, let κ(n) := ⌊ 1

2αn
⌋.

It follows from Lemma 4.15 and 4.18 with r = 1/4 (for small enough αn)

that L−1
n (ζ + κ(n)) satisfies the following:

1

4αn

≤ ReL−1
n (ζ + κ(n)) ≤ 3

4αn

,

ImL−1
n (ζ + κ(n)) ≥ −1

2π
log

27|w|
4

− 4C7 − C4(1 + log
1

2αn
).
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Now one uses Lemma 4.14 part (2), with r = 1/4, to obtain

|fκ(n)
n (ψn+1(w))| = |τn(L−1

n (ζ + κ(n)))|

≤ 4C1αne
−2παn Im L−1

n (ζ)

≤ 27C1e
(4C7+2)π · αn|w|αn.

which proves the lemma in this case.

The lemma for larger αn and sufficiently small |w| follows from compactness

of the class IS [α∗]. Indeed, fn belongs to the class IS [α∗] with αn ∈ [ε, α∗] for

some ε and one can see that the associated map Fn converges geometrically

to z → z + 1 as Im z → ∞. This implies that the linearizing map Ln is

bounded away from a translation at points with large imaginary part. Now

one uses continuous dependence of linearizing map L−1
h on the map Fh on

a compact set [ε, α∗] × [−2, large number] to conclude that the translation

constant must have a bounded absolute value. Therefore, if ζ = ηn+1(w), then

| ImL−1
n (ζ) − Im ζ | ≤ M ′ for some constant M ′. Like above argument this

implies that for any choice of κ(n) ∈ [0, 1
αn

− k − 1] we have

|fκ(n)
n ◦ ψn+1(w)| ≤M ′′ · αn · |w|αn,

for some constant M ′′.

A corollary of our proof of Theorem 1.3 is the following.

Corollary 4.19. Let P (z) = z(1 + z)2, U be the domain defined in (4.1), and

α be a non-Brjuno number in IrrN . If h is a rational map of the Riemann

sphere with the following properties

• h(0) = 0, h′(0) = 1,

• h(c) /∈ U , if c is a critical point of h.
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Then the rational map g(z) := e2παi · P ◦ h is non-linearizable at 0.

Note that we do not assume in the above corollary that the corresponding

Julia set has positive area.

Proof. Above conditions on h implies that g restricted to U belongs to IS[α∗].

All the sectors Sn
0 are defined for g and satisfy the estimates in Proposition 4.12.

Thus, the critical point which visits all the sectors, by definition, must accu-

mulate on the fixed point. Hence, g is not linearizable at 0.
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4.2 Measure and topology of the attractor

In this section we consider Lebesgue measure (area) and topology of the post-

critical set of quadratic polynomials with a non-Brjuno multiplier of high return

times.

We will show that intersection of the sets Ωn
0 , which contains the post-

critical set by Proposition 4.8, has area zero, by showing that it does not

contain any Lebesgue density point. Strategy of our proof is to show that

given any point z in this intersection, one can find balls of arbitrarily small

size but comparable to their distance to z in the complement of the intersection.

The balls will be introduced in domains of the renormalized maps fn and then

transferred through our changes of coordinates to the dynamic plane of Pα.

We will use the Koebe distortion theorem to derive required properties about

shape, size, and the distance to z of the image balls.

4.2.1 Balls in the complement

The following lemma guarantees the complementary balls within the domain

of each fn.

Lemma 4.20. There are positive constants δ1 and r∗ such that for every ζ ∈ C

with Im ζ ≤ 1
2π

log 1
αn+1

, and Exp(ζ) ∈ Ω0
n+1 for some integer n ≥ 1, there

exists a line segment γn : [0, 1] → C with γn(0) = ζ satisfying the following

properties:

(1) Exp
(
B(γn(1), r∗)

)
∩ Ω0

n+1 = ∅, fn+1

(
Exp(B(γn(1), r∗))

)
∩ Ω0

n+1 = ∅,

(2) Exp
(
Bδ1(B(γn(1), r∗) ∪ γn[0, 1])

)
⊆ Dom(fn+1) \ {0},

(3) diam Re
(
Bδ1(B(γn(1), r∗) ∪ γn[0, 1])

)
≤ 1 − δ1,
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(4) mod Bδ1(B(γn(1), r∗) ∪ γn[0, 1]) \ (B(γn(1), r∗) ∪ γn) ≥ δ1.

Proof. First assume αn+1 ≤ min{ 1
k′′+k

, 1
8(k+1)

, ε0}, where ε0 is the constant

obtained in Lemma 4.15. Consider the line segment

ϑ(t) := t− (2 + t/2)i : [2,
1

2αn+1
] → C

between the two points 2−3i, and 1
2αn+1

− (2+ 1
4αn+1

)i. For every t ∈ [2, 1
2αn+1

],

under our assumption αn+1 ≤ 1
4(k+1)

, we have

B(ϑ(t), t/2) ⊂ {w ∈ C : 0 ≤ Re(w) ≤ 1

αn+1
− k, Imw ≤ −2},

B(ϑ(t), t/2) + 1 ⊂ {w ∈ C : 0 ≤ Re(w) ≤ 1

αn+1
− k, Imw ≤ −2}.

(4.11)

Similarly (when αn+1 ≤ 1/8k) one can see that

B(ϑ(t), 3t/4) ⊂ {w ∈ C : 0 ≤ Re(w) ≤ 1

αn+1

− k} = Φn+1(Pn+1)

which gives the following lower bound for conformal modulus:

mod (Φn+1(Pn+1) \B(ϑ(t), t/2)) ≥ 1

2π
log

3

2
. (4.12)

The idea of the proof is to show that lifts of Φ−1
n+1(B(ϑ(t), t/2)) via Exp

provide balls satisfying the required properties in the lemma. First we will

consider lifts of the curve Φ−1
n+1 ◦ ϑ, via Exp and show that they start from

a bounded height and reach the needed height 1
2π

log 1
αn+1

. Then we consider

lifts of Φ−1
n+1(B(ϑ(t), t/2)) and show that they contain balls of a definite size.

Recall that Φ−1
n+1 = τn+1 ◦ L−1

n+1. By Lemma 4.17 we have

|L−1
n+1(ϑ(2)) − cvFn+1

| ≤ sup |L−1
n+1| · |(2,−3) − (1, 0)|

≤ C5

√
10.

Since τn+1 maps the critical value cvFn+1
to −4/27, one can see that every point

in Exp−1(Φ−1
n+1(ϑ(2))) has imaginary part uniformly bounded above by some

constant δ.
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For the other end point, ϑ( 1
2αn+1

) belongs to the half-strip A defined in

(4.9). Thus by (4.10), we have

|Φ−1
n+1(ϑ(

1

2αn+1
))| ≤Mαn+1.

This implies that every point in Exp−1(Φ−1
n+1(ϑ( 1

2αn+1
))) has imaginary part

bigger than 1
2π

log 1
αn+1

− 1
2π

log 27M
4
.

To transfer the balls, consider the map

ηn+1 ◦ τn+1 ◦ L−1
n+1 : Φn+1(Pn+1) → C (4.13)

where ηn+1 is an arbitrary inverse branch of Exp defined on C minus a ray

landing at 0.

We claim that there exists a constant M ′ such that derivative of the above

map at every point t−2i ∈ C, t ∈ Dom ϑ, is at least M ′/t. By compactness of

the class IS[α∗] and continuous dependence of linearizing map in the compact-

open topology it is enough to prove the claim for values of t bigger than some

constant (indeed when C4(1+log t) ≤ t/2)). Also by Koebe distortion theorem,

it is enough to prove this for integer values of t bigger than that constant. For

such t’s, L−1
n+1(t) = F t

n+1(cvFn+1
). So by Lemma 4.15 part (4), we have

| ImL−1
n+1(t)| ≤ C4(1 + log t), and |ReL−1

n+1(t) − t| ≤ C4(1 + log t).

Hence, by Lemma 4.17,

| ImL−1
n+1(t− 2i)| ≤ C4(1 + log t) + 2C5, (4.14)

|ReL−1
n+1(t− 2i) − t| ≤ C4(1 + log t) + 2C5.

Define the set Ot as follows:

Ot := {ξ ∈ C : | Im ζ | ≤ C4(1+log t)+2C5, and |Re ζ−t| ≤ C4(1+log t)+2C5}
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The point t belongs to Ot, and by an explicit calculation one can see than

(ηn+1 ◦ τn+1)
′(t) ≥ 1/2t.

As mod (C∗ \ Ot) is bounded below independent of t (indeed, it is increasing

in terms of t), Koebe distortion theorem implies that there exists a constant

M ′′ such that for every ξ ∈ Ot, we have

(ηn+1 ◦ τn+1)
′(ξ) ≥M ′′/t.

Since L−1
n+1(t− 2i) ∈ Ot, by (4.14), combining with Lemma 4.17 we have

(ηn+1 ◦ τn+1 ◦ L−1
n+1)

′(t− 2i) ≥ M ′′

C5

1

t
.

Again Koebe distortion theorem, using (4.12), implies that

∀ξ ∈ B(ϑ(t), t/2) we have, (ηn+1 ◦ τn+1 ◦ L−1
n+1)

′(ξ) ≥ M ′/t

for some constant M ′ independent of t and αn+1. Therefore, image of the ball

B(ϑ(t), t/2) under the map (4.13) contains a ball of constant radius r∗ around

Exp pre-images of Φ−1
n+1(ϑ(t)).

Domain of fn+1 contains the ball of radius .22, therefore, every point in C

with positive imaginary part is mapped into Dom fn+1 under Exp. To associate

a curve γn to the given point ζ , we consider the following two separate cases:

If Im ζ ≥ 1, by previous argument, there exists a point ζ ′ in a lift of

Φ−1
n+1(ϑ) (under Exp) which satisfies Re(ζ − ζ ′) ≤ 1/2 and Im(ζ − ζ ′) ≤

max{δ, 1
2π

log 27M
4

}. Define γn : [0, 1] → C as the straight line segment be-

tween ζ and ζ ′ with γn(0) = ζ and γn(1) = ζ ′. Thus, B(γn(1), r∗) ∪ γn[0, 1]

projects into Dom fn+1. Moreover, if r∗ is chosen less than 1/4, we have

diam(Re(B(γn(1), r∗) ∪ γn[0, 1])) ≤ 3/4.
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Hence, Exp is univalent on the 1/4 neighborhood of B(γn(1), r∗) ∪ γn[0, 1].

Part (1) of the lemma follows from (4.11) and that (when αn+1 ≤ 1
k′′+k

)

kn+1−1⋃

j=0

f j
n+1(S

0
n+1) ∩ {w ∈ Pn+1 : Im Φn+1(w) < −2} = ∅.

Parts (2) and (3) follows form definition.

Now assume that Im ζ is uniformly bounded above, or αn+1 is bounded

below (which implies Im ζ is bounded above). In this case our argument is

based on the compactness of the class IS[α∗]. Indeed, there exists a δ′ > 0

such that

Bδ′(Ω
0
n+1) ⊂ Dom fn+1. (4.15)

Since ξ = Exp(ζ) is away from 0 and has uniformly bounded diameter, there

exists a (uniformly bounded) real number s > 1, with

B(sξ, δ′/2) ∩ Ω0
n+1 = ∅, and fn+1(B(sξ, δ′/2)) ∩ Ω0

n+1 = ∅.

Now, define γ′(t) := tξ + (1 − t)sξ : [0, 1] → Dom fn+1. The curve γn is

defined as the lift of γ′ starting at ζ . Thus, Exp−1(B(sξ, δ′/2)) contains a ball

of radius r∗ satisfying the lemma in this case as well.

Lemma 4.21. There exists a real constant δ2 ≤ δ1 such that for every ξ ∈ C

with Exp(ξ) ∈ Ω0
n+1, we have

• Exp(B(ξ, δ2)) ⊂ Dom(fn+1),

• ∀n ∈ Z, Exp(B(n, δ2)) ⊂ int fkn
n (S0

n) ⊂ Ω0
n.

Proof. It follows from continuous dependence of the Fatou coordinate in the

compact-open topology, that there exists a real constant δ > 0 such that for

every n ≥ 0,

B(−4/27, δ) ⊂ fkn

n (S0
n) = {ξ ∈ C : Im ξ > −2, 1/2 ≤ Re ξ ≤ 3/2}.
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The first inclusion in the lemma follows from (4.15) and the second one follows

from above observation.

For every integer n ≥ 1 and every integer j, with 0 ≤ j < 1
αn

−k, we define

curves In,j as follows

In,j := Φ−1
n {ξ ∈ C : Re ξ = j, Im ξ > −2}.

Each In,j is a smooth curve contained in Ω0
n, and connects boundary of Ω0

n

to 0. Also one can see that for every such n and j, every closed loop (image

of a continuous curve with the same initial and terminal point) contained in

Ω0
n \ In,j is contractible in C∗. This implies that there is a continuous inverse

branch of Exp defined on every Ω0
n \ In,j.

By compactness of the class IS[α∗] there exists a positive integer k′ such

that

∀j with 0 ≤ j < 1
αn

− k, sup
z∈Ω0

n\In,j

arg(z) ≤ 2πk′, (4.16)

for every continuous branch of argument defined on Ω0
n \ In,j. We assume the

following technical condition on αn’s

αn ≤ 1

2k′ + k
(4.17)

during this section.

4.2.2 Going down the renormalization tower

Fix an arbitrary point z0 in
⋂∞

n=0 Ωn
0 different from 0. We associate a sequence

of quadruples

{(zi, wi, ζi, σ(i))}∞i=0 (4.18)

116



to z0, where zi and wi are points in Dom(fi), ζi is a point in Φi(Pi) and σ(i) is

a non-negative integer. This sequence will serve us as a guide to transfer the

balls in the previous lemma to the dynamic plane of f0.

The sequence of quadruples (4.18) is defined inductively as follows: Since

z0 ∈ ∪1/α0−k+kn−1
j=0 f j

0 (S0
0), we have one of the following two possibilities:

Case I z0 ∈ P0, and one of the following two occurs:

− Re Φ0(z0) ∈ [k′ + 1/2, 1/α0 − k],

− Φ0(z0) ∈ B(j, δ2) for some j = 1, 2, . . . , k′

Case II z0 ∈ P0, Re Φ0(z0) ∈ [0, k′ + 1/2), and Φ0(z0) /∈ B(j, δ2), for j =

1, 2, . . . , k′.

Or,

z0 /∈ P0.

If case I occurs, define w0 := z0, σ(0) := 0, and ζ0 := Φ0(w0).

If case II occurs, let w0 ∈ S0
0 , and positive integer σ(0) ≤ k0+k

′ be such that

f
σ(0)
0 (w0) = z0. The point w0 satisfying this property is not necessarily unique,

however, one can take any of them. The positive integer σ(0) is uniquely

determined. Indeed when σ(0) ≤ k0 − 1 or |z0| is small enough, such w0 is

unique , otherwise, there are at most two choices for w0. The point ζ0 is

defined as Φ0(w0). This defines the first quadruple (z0, w0, ζ0, σ(0)).

Now, let z1 := Exp(ζ0). Since z0 belongs to Ω1
0, One can see that z1 belongs

to ∪1/α1−k+k1−1
j=0 f j

1 (S0
1). Thus, we can repeat the above process (replacing 0 by

1 in the above cases) to define the quadruple (z1, w1, ζ1, σ(1)) and so on. In
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general, for every l ≥ 0,

zl = Exp(ζl−1), zl ∈ ∪1/αl−k+kl−1
j=0 f j

l (S0
l ),

f
σ(l)
l (wl) = zl, Φl(wl) := ζl,

0 ≤ σ(l) ≤ kl + k′ ≤ k′′ + k′

(4.19)

where k′′ is a uniform bound on the integers kl.

By definition of this sequence, for every n ≥ 0 we have

k′ + 1/2 ≤ Re ζn ≤ 1

αn

− k, or,

ζn ∈ B(j, δ2), for some j ∈ {1, 2, . . . , k′}.
(4.20)

The following lemma guarantees that some of ζj in the above sequence reach

the balls provided in the previous lemma.

Lemma 4.22. Assume that z0 ∈ ∩∞
n=0Ω

n
0 \ {0}, and α is a non-Brjuno num-

ber in IrrN . If {ζj}∞j=0 is the above sequence associated to z0, then there are

arbitrarily large positive integers m with

Im ζm ≤ 1

2π
log

1

αm+1

.

To see this, we need the following lemma. Let D1 be a constant such that

D1

αn+1
≥ 1

4αn+1
+ C2 + 4C7 + C4(1 + log

1

αn+1
)

for every αn+1 ∈ [1/2,∞), where the constants C2,C4, and C7 were introduced

in Lemmas 4.15 and 4.18.

Lemma 4.23. There exists a positive constant D2 such that for every n > 0,

we have

if Im ζn+1 ≥
D1

αn+1
,

then Im ζn+1 ≤
1

αn+1
Im ζn − 1

2παn+1
log

1

αn+1
+

D2

αn+1
. (4.21)
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Proof. Given ζn+1 with Im ζn+1 ≥ D1/αn+1, there is an integer i with −1
αn+1

≤
i ≤ 1

αn+1
such that ReL−1

n+1(ζn+1 + i) ∈ [ 1
2αn+1

, 1
2αn+1

+ 2]. By part (4) of

Lemma 4.15, and Lemma 4.18, both with r = 1/4, we obtain

ImL−1
n+1(ζn+1 + i) ≥ Im(ζn+1 + i) − 4C7 − C4(1 + log

1

αn+1
).

By our assumption on Im ζn+1, this implies that

ImL−1
n+1(ζn+1 + i) ≥ 1

4αn+1
+ C2.

Now, one uses part (1) of Lemma 4.15, to conclude that i iterates of L−1
n+1(ζn+1+

i) under Fn+1 stay in Θ(C2), and moreover,

ImL−1
n+1(ζn+1) = ImF−i

n+1(L
−1
n+1(ζn+1 + i))

≥ ImL−1
n+1(ζn+1 + i) − i

4

≥ Im ζn+1 − 4C7 − C4(1 + log
1

αn+1
) − 1

4αn+1
.

Using Lemma 4.14 with r = 1/4 at L−1
n+1(ζn+1) implies that

|τn+1(L
−1
n+1(ζn+1))| ≤ 4C1αn+1e

−2παn+1

(
Im ζn+1−4C7−C4(1+log 1

αn+1
)− 1

4αn+1

)
.

Hence, Φn+1(wn+1) = ζn+1 implies

|wn+1| = |Φ−1
n+1(ζn+1)|

≤ 4C1e
2παn+1(+4C7+C4(1+log 1

αn+1
)+ 1

4αn+1
)
αn+1e

−2παn+1 Im ζn+1

≤ Cαn+1e
−2παn+1 Im ζn+1 ,

for some constant C.

As wn+1 is mapped to zn+1 in a bounded number of iterates σ(n) under

fn+1 which belongs to a compact class, |zn+1| ≤ C ′|wn+1| for some constant

C ′. Therefore,

4/27e−2π Im ζn = | − 4/27e−2πiζn|

= |zn+1| ≤ CC ′αn+1e
−2παn+1 Im ζn+1 .
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Multiplying by 27/4 and then taking log of both sides, one obtains Inequal-

ity (4.21) for some constant D2.

Proof of Lemma 4.22. Given integer ℓ ≥ 1, we will show that there exists

m ≥ ℓ satisfying the inequality in the lemma. For arbitrary α, one of the

following two occurs

(∗) There exists a positive integer n0 ≥ ℓ such that for every j ≥ n0, we have

Im ζj ≥ D1

αj
.

(∗∗) There are infinitely many integers j, j ≥ ℓ, with Im ζj <
D1

αj
.

Assume conclusion of the lemma is not correct, that is, for every m greater

than or equal to ℓ we have Im ζm > 1
2π

log 1
αm+1

. We will show that each of the

above cases leads to a contradiction.

If (∗) holds, we can use Lemma 4.23 for every j ≥ n0. So, for every integer

n bigger than n0, using Relation (4.21) repeatedly, we obtain

Im ζn ≤ 1

αnαn−1 · · ·αn0

Im ζn0−1 −
1

2παnαn−1 · · ·αn0

log
1

αn0

− 1

2παnαn−1 · · ·αn0+1

log
1

αn0+1

· · · − 1

2παn

log
1

αn

+D2

(
1

αnαn−1 · · ·αn0

+
1

αnαn−1 · · ·αn0−1

+ · · · + 1

αn

)
. (4.22)

Let β−1 := 1, and βj := α0α1 · · ·αj , for every j ≥ 0. Using our contradiction

assumption and then multiplying both sides of the above inequality by 2πβn,

we see

n∑

j=n0−1

βj log
1

αj+1
≤ 2πβn0−1 Im ζn0−1 + 2πD2 (βn0−1 + βn0

+ · · ·+ βn−1)

≤ 2π Im ζn0−1 + 2πD2.
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Since n was an arbitrary integer, this contradicts α being a non-Brjuno number.

Now assume (∗∗) holds. Let n1 < m2 ≤ n2 < m3 ≤ n3 < · · · be an

increasing sequence of positive integers with the following properties

• For every integer j with mi ≤ j ≤ ni, we have Im ζj <
D1

αj

• For every integer j with ni < j < mi+1, we have Im ζj ≥ D1

αj
.

Estimate (4.22) holds for j = ni + 1, ni + 2, · · · , mi+1 − 1, where Lemma 4.23

can be used, and implies that for every i ≥ 2:

mi+1−1∑

j=ni

βj log
1

αj+1
≤ 2πβni

Im ζni
+ 2πD2

(
βni

+ βni+1 + · · ·+ βmi+1−2

)
.

Hence,

∞∑

j=m2

βj log
1

αj+1
=

∑

j; mi≤j<ni

βj log
1

αj+1
+

∑

j; ni≤j<mi+1

βj log
1

αj+1

≤
∑

j; mi≤j<ni

βj log
1

αj+1
+ 2π

∞∑

i=2

βni
Im ζni

+ 2πD2

∑

j; ni≤j<mi+1−1

βj .

In the first and the second sums we have used 1
2π

log 1
αj+1

< Im ζj < D1

αj
.

Therefore, the whole sum is less than

2πD1

∑

j; mi≤j<ni

βj−1 + 2πD1

∞∑

i=2

βni−1 + 2πD2

∞∑

j=n2

βj

which contradicts α being a non-Brjuno number.

4.2.3 Going up the renormalization tower

Recall the sectors C−i
n ∪ (C♯

n)−i, for i = 1, 2, . . . , kn, introduced in definition

of the renormalization (for fn), where S0
n = C−kn

n ∪ (C♯
n)−kn. If kn < k′ + 1,
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by our assumption (4.17) on k′, we can consider further pre-images for i =

kn + 1, · · · , k′ + 1 as

C−i
n := Φ−1

n (Φn(C−kn

n ) − (i− kn)),

(C♯
n)−i := Φ−1

n (Φn((C♯
n)−kn) − (i− kn)).

Let Dn denote the sector C−k′−1
n ∪ (C♯

n)−k′−1, and observe that fk′+1
n : Dn →

fkn
n (S0

n).

For every integer n ≥ 0, define the set P♮
n as:

P♮
n :=

k′⋃

j=0

f j
n(Dn).

We define a map Φ♮
n : P♮

n → C, using the dynamics of fn, as follows. For

z ∈ P♮
n, there is an integer j with 0 ≤ j ≤ k′ + 1, such that f j

n(z) ∈ Pn. Now,

let

Φ♮
n(z) := Φn(f j

n(z)) − j.

As Φn satisfies the Abel functional equation, one can see that Φ♮
n matches on

the boundary of above sectors and gives a well defined holomorphic map on

P♮
n. The map Φ♮

n is not univalent, however, it still satisfies the Abel Functional

equation on P♮
n. It has critical points at the critical point of fn and its pre-

images within P♮
n. The k′ + 1 critical points of Φ♮

n are mapped to 0, 1, . . . , k′.

The map Φ♮
n is a natural extension of Φn to a multi-valued holomorphic

map on P♮
n ∪ Pn. However, the two maps

Φ♮
n :

k′⋃

j=0

f j
n(Dn) → C, and Φn :

1/αn+k′−k−1⋃

j=k′+1

f j
n(Dn) → C

provide a well-defined holomorphic map on every k′ + 1 consecutive sectors of

the form f j
n(Dn). We denote this map by Φ♮

n ∐ Φn. More precisely, for every l
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with 0 ≤ l < 1
αn

− k,

Φ♮
n ∐ Φn :

k′⋃

j=0

f l+j
n (Dn) → C

is defined as

Φ♮
n ∐ Φn =





Φ♮
n(z), if z ∈ f i

n(Dn) and i < k′ + 1;

Φn(z), if z ∈ f i
n(Dn) and i ≥ k′ + 1.

Consider the Sequence (4.18) and assume that Im ζn ≤ 1
2π

log 1
αn+1

holds for

some positive integer n. Let An denote the topological disk Bδ1(B(γn(1), r∗)∪
γn[0, 1] with γn and r∗ were introduced in Lemma 4.20. We will define domains

Vn, Vn−1, . . . , V1 and holomorphic maps gn+1, gn, . . . , g1 satisfying the following

diagram

An
gn+1−−−→ Vn

gn−−−→ Vn−1
gn−1−−−→ · · ·V1

g1−−−→ V0 := B(Ω0
0, 1) (4.23)

where,

Vm = Ω0
m \ Im,j(m), for some j(m) with 0 ≤ j(m) < 1

αm
− k,

gn+1 : An → Vn, g1 : V1 → Ω0
0,

gm : Vm → Vm−1, for every m with 1 ≤ m ≤ n,

gm(zm) = zm−1 for every m = 1, 2, . . . , n.

(4.24)

The idea is to use an inductive process to define pairs gi + 1, Vi, starting with

i = n and ending with i = 0.

Base step i = n

We have ζn ∈ An and satisfies (4.20). As diam(An) ≤ 1 − δ1, and δ2 < δ1,

there exists an integer j, with 0 ≤ j ≤ 1, such that

Re(An − j) ⊂ (0,
1

αn

− k).
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We define gn+1 : An → C as

gn+1(ζ) := f j+σ(n)
n (Φ−1

n (ζ − j)).

By Lemma 4.20, Exp(An−j) is contained in Dom fn+1. So Lemma 4.5 implies

that f
j+σ(n)
n is defined at every point in Φ−1

n (An − j), that is, the above map

is well defined. Using the same lemma, as j + σ(n) ≤ 1 + kn + k′ by (4.19), we

conclude that gn(An) is contained in Ω0
n.

Because An − j is contained in int Φn(Pn), it does not intersect the vertical

line {ξ ∈ C : Re ξ = 0}. Therefore, Φ−1
n (An − j) does not intersect the curve

In,0. One can see from this that, gn+1(An) = f
j+σ(n)
n (Φ−1

n (An − j)) does not

intersect the curve In,j′, where j′ is j + σ(n) module ⌊ 1
αn
⌋ − k. We define Vn

as Ω0
n \ In,j′.

Finally, by equivariance property of Φn,

gn+1(ζn) = f j+σ(n)
n (Φ−1

n (ζn − j)) = fσ(n)
n (wn) = zn.

Induction step

Assume (gi+1, Vi) is defined and we want to define (gi, Vi−1). Since every closed

loop in Vi is contractible in C∗, there exists an inverse branch of Exp, denoted

by ηi, defined on Vi with ηi(zi) = ζi−1. Now consider the following two cases,

case i Re(ηi(Vi)) ⊂ (1/2,∞),

case ii Re(ηi(Vi)) ∩ (−∞, 1/2] 6= ∅.

Case i

Since ζn ∈ ηi(Vi) satisfies (4.20) and diamBδ2(ηi(Vi)) ≤ k′ + 1/2 by (4.16),

there exists an integer j, 0 ≤ j ≤ k′ + 1, with

Bδ2(ηi(Vi)) − j ⊂ {ξ ∈ C : 1
4
≤ Re ξ ≤ 1

αi−1
− k − 1

2
}. (4.25)
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We define g̃i : Bδ2(ηi(Vi)) → C as

g̃i(ζ) := f
j+σ(i−1)
i−1 (Φ−1

i−1(ζ − j)), (4.26)

and let

gi(z) := g̃i ◦ η(z).

By Lemma 4.21, Exp(Bδ2(ηi(Vi))) is contained in Dom fi. Thus, Lemma 4.5

and condition (4.17) implies that f
j+σ(i−1)
i−1 is defined on Φ−1

i−1(Bδ2(ηi(Vi)) − j),

that is, the above map is well defined.

By equivariance property of Φi−1 (Theorem 4.3), we have

gi(zi) = f
j+σ(i−1)
i−1 (Φ−1

i−1(ηi(zi−1) − j)) = f
σ(i−1)
i−1 (wi−1) = zi−1.

One also concludes from (4.25) that Bδ2(ηi(Vi)) − j does not intersect the

vertical line {ξ ∈ C : Re ξ = 0}. Therefore,

g̃i(Bδ2(η(Vi)) − j) = f
j+σ(i−1)
i−1 (Φ−1

i−1(Bδ2(ηi(Vi)) − j))

does not intersect the curve Ii−1,j′, where j′ is j + σ(i− 1) module ⌊ 1
αi−1

⌋ − k.

Hence, by defining Vi−1 := Ω0
i−1 \ Ii−1,j′, we have

g̃i(Bδ2(ηi(Vi)) − j) ⊂ Vi−1, (4.27)

which will be used later.

Case ii

Because diam(ηi(Vi)) ≤ k′ and ηi(Vi) contains ζi−1 which satisfies (4.20), we

must have ζi−1 ∈ B(j, δ2) for some j in {1, 2, . . . , k′}.
We claim that

Bδ2(ηi(Vi)) ∩ {0,−1,−2, . . . ,−k′} = ∅. (4.28)
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As Exp(Z) = −4/27, it is equivalent to see that ηi(−4/27) /∈ {0,−1, . . . ,−k′}.
But by inclusion in the Lemma (4.21), for every integer n, we have

Exp(B(n, δ2)) ⊂ intVi.

This implies that ηi(−4/27) ∈ {1, 2, · · · , k′}.
The set Bδ2(ηi(Vi)) has diameter strictly less than k′ +1, so it can intersect

at most k′+1 vertical strips of width 1. More precisely, Bδ2(ηi(Vi)) is contained

in the k′ + 1 consecutive sets in the list

Φ♮
i−1(Di−1),Φ

♮
i−1(fi−1(Di−1)), . . . ,Φ

♮
i−1(f

k′−1
i−1 (Di−1)),

Φi−1(f
k′

i−1(Di−1)), . . . ,Φi−1(f
2k′+1
i−1 (Di−1)).

Thus, by the above argument about Φ♮
i−1 ∐Φi−1, and that every closed loop in

Bδ2(ηi(Vi)) is contractible in the complement of the critical values of Φ♮
i−1∐Φi−1,

there exists an inverse branch of this map, denoted by g̃i, defined on Bδ2(ηi(Vi)).

We let

gi(z) := g̃i(ηi(z)) : Vi → Ω0
i−1.

In this case σ(i− 1) = 0, Φi−1(wi−1) = ζi−1, and wi−1 = zi−1. So gi(zi) = zi−1.

Like previous case, one can see that g̃i(Bδ2(ηi(Vi))) does not intersect the

curve Ii−1,j for j = sup{Re(Bδ2(ηi(Vi)))} + 1. We can define Vi−1 := Ω0
i−1 and

obtain gi : Vi → Vi−1. Indeed, we have

g̃i(Bδ2(ηi(Vi))) ⊂ Vi−1. (4.29)

This finishes definition of the domains and maps satisfying (4.24).

Each domain Vn, Vn−1 . . . , V0, is a hyperbolic Riemann surface. Let ρi de-

note the Poincaré metric on Vi, that is, ρi(z)|dz| is the complete metric of
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constant negative curvature on Vi. Similarly, ρn+1 denotes the Poincare metric

on An. The following two lemmas are natural consequence of our construction

of the chain (4.23).

Lemma 4.24. Each map gi : (Vi, ρi) → (Vi−1, ρi−1), for i = n, n− 1, . . . , 1, is

uniformly contracting. More precisely, for every z ∈ Vi, we have

ρi−1(gi(z)) · |g′i(z)| ≤ δ3 · ρi(z),

for δ3 = 2k′+1
2k′+1+δ2

.

Proof. Let ρ̃i(z)|dz| and ρ̂i(z)|dz| denote the Poincaré metric on the domains

ηi(Vi) and Bδ2(ηi(Vi)), respectively. By definition of gi and properties (4.27)

and (4.29) we can decompose the map gi : (Vi, ρi) → (Vi−1, ρi−1) as follows:

(Vi, ρi)
ηi

// (ηi(Vi), ρ̃i)
�

� inc.
// (Bδ2(ηi(Vi)), ρ̂i)

g̃i
// (Vi−1, ρi−1).

By Schwartz-Pick lemma the first map, and the last map are non-expanding,

i.e.,

ρ̃i(ηi(ζ)) |η′i(ζ)| ≤ ρi(ζ), and ρi−1(g̃i(ζ)) |g̃i
′(ζ)| ≤ ρ̂i(ζ).

To show that the inclusion map is uniformly contracting in the respective

metrics, fix an arbitrary point ζ0 in ηi(Vi), and define

H(ζ) := ζ + (ζ − ζ0)
δ2

(ζ − ζ0 + 2k′ + 1)
: ηi(Vi) → C.

Since diam ηi(Vi) ≤ k′, we have |Re(ζ− ζ0))| ≤ k′ for every ζ ∈ ηi(Vi) and also

H(ζ0) = ζ0. This implies that | ζ−ζ0
ζ−ζ0+2k′+1

| < 1. Thus,

|H(ζ) − ζ | = δ2|
ζ − ζ0

ζ − ζ0 + 2k′ + 1
| < δ2,

which implies that H(ζ) is a holomorphic map from ηi(Vi) into Bδ2(ηi(Vi)). By

Schwartz-Pick lemma, H is non-expanding. In particular at ζ0, we obtain

ρ̃i(ζ0)|H ′(ζ0)| = ρ̃i(ζ0)(1 +
δ2

2k′ + 1
) ≤ ρ̂i(ζ0).
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That is, ρ̂i(ζ0) ≤ δ3 · ρ̃i(ζ0) for δ3 = 2k′+1
2k′+1+δ2

< 1. Putting all this together gives

the inequality in the lemma.

Lemma 4.25. There exists a positive constant δ4 such that for every i =

1, 2, . . . , n+ 1, the following holds

• The map gi : Vi → Vi−1 is univalent or has only one simple critical point

.

• The map gi : Vi → Vi−1 is univalent on the hyperbolic ball

Bρi
(zi, δ4) := {z ∈ Vi | dρi

(z, zi) < δ4}.

Proof. Each map gi is composition of at most four maps; ηi, a translation by

an integer j, Φ−1
i−1, and f

j+σ(i−1)
i−1 . The first three maps are univalent. The map

f
j+σ(i−1)
i−1 is univalent or has at most one simple critical in Φ−1

i−1(ηi(Vi)− j). To

see this, first note that the critical points of f
j+σ(i−1)
i−1 are

{cpfi−1
, f−1

i−1(cpfi−1
), · · · f−j−σ(i−1)

i−1 (cpfi−1
)}.

All of them are non-degenerate and, by our technical assumption, j+σ(i−1) ≤
2k′ + 1. If Φ−1

i−1(ηi(Vi) − j) contains more than one point in the above list, by

equivariance property of Φi−1, there must be a pair of points ξ, ξ+m (for some

integer m) in ηi(Vi) − j. As this set is a lift of a simply connected domain in

C∗ under Exp, that is not possible.

The maps gi introduced in case ii are univalent, therefore, to see the second

part, we only need to consider maps introduced in case i in the above inductive

process. First we claim that there exists a real constant δ > 0, such that the

ball

{z ∈ Vi−1 : dρi−1
(z, zi−1) < δ}
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is simply connected and does not contain critical value of gi (if there is any

critical value).

Assuming the claim for a moment, one can take δ4 := δ. Because, by

the previous lemma, image of Bρi
(zi, δ4) is contained in the above ball. As

Bρi−1
(zi−1, δ) is simply connected and does not contain any critical value, one

can find a univalent inverse branch for gi on this ball. Therefore, gi is univalent

on the ball Bρi
(zi, δ4).

To prove the claim, note that by definition (4.26) of g̃i−1, and condition

0 ≤ j ≤ k′ + 1, a possible critical value of gi−1 can only be one of

−4/27, fi−1(−4/27), . . . , fk′

i−1(−4/27).

First we show that if cvgi−1
belongs to Φ−1

i−1(B(l, δ2)) for some l ∈ {1, 2, . . . , k′},
then zi−1 does not belong to this set. To see this, we consider case I and case

II in the definition of quadruples (4.18) separately.

If case I holds, then we have σ(i − 1) = 0, zi−1 = wi−1, and ζi−1 =

Φi−1(zi−1). If Re ζi−1 ≥ k′ + 1/2, then zi−1 does not belong to any of the balls

Φ−1
i−1(B(l, δ2)) for l ∈ {1, 2, . . . , k′}. If ζi−1 ∈ B(l, δ2) for some l ∈ {1, 2 . . . , k′},

then by (4.26) there is no critical value of gi−1 in any of Φ−1
i−1(B(l, δ2)).

If case II holds, then, by definition of the quadruples, zi−1 does not belong

to any of Φi−1(B(l, δ2)) for l = 1, 2, . . . , k′.

Finally, we need to show that each set Φ−1
i−1(B(l, δ2)), for l = 1, 2 . . . , k′,

contains a hyperbolic ball of radius δ independent of l and i. Fix such an l,

and observe that

mod
(
Φi−1(Pi−1) \ {B(l, δ2) ∪ {l − it | t ∈ [0, 2]}

)
≥ c

for some constant c > 0. By Koebe distortion theorem for Φ−1
i−1, we conclude
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that
Euclidean diameter (Φ−1

i−1(B(l, δ2)))

Euclidean distance between Φ−1
i−1(l) and ∂Vi−1

≥ c′

As ρi−1 is proportional to one over distance to the boundary in Vi−1, the

set Φ−1
i−1(B(l, δ2)) contains a round hyperbolic ball of radius uniformly bounded

below. It is clear that each of these balls is simply connected.

Let Gn denote the map

Gn := g1 ◦ g2 · · · ◦ gn+1 : An → Ω0
0.

Recall that γn is the line segment obtained in Lemma 4.20, and γn(0) = ζn.

So, Gn(γn(0)) = z0. The following lemma guarantees that Gn safely transfers

the ball from level n + 1 to the dynamic plane of f0.

Lemma 4.26. There exists a positive constant D3 such that for every Gn in-

troduced above, there is a positive constant rn with the following properties,

(1) Gn(B(γn(1), r∗)) ∩ Ωn+1
0 = ∅,

(2) B(Gn(γn(1)), rn) ⊂ Gn(B(γn(1), r∗)), and |Gn(γn(1)) − z0| ≤ D3 · rn,

(3) rn ≤ D3(δ3)
n.

Proof.

Part (1): By Lemma 4.20, for every z ∈ B(γn(1), r∗) we have

Exp(z) /∈ Ω0
n+1, and fn+1(Exp(z)) /∈ Ω0

n+1.

We claim that this implies

gn+1(z) /∈ Ω1
n, and fn(gn+1(z)) /∈ Ω1

n,

where

Ω1
n =

⌊1/αn⌋(kn+1+1/αn+1−k−1)+1⋃

i=0

f i
n(ψn+1(S

0
n+1)).
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That is because if gn+1(z) ∈ Ω1
n, then by definition of renormalization and

definition of Ω1
n, there is a ∈ Pn ∩ Ω1

n, and b ∈ Pn ∩ Ω1
n, such that f i1

n (a) =

gn+1(z), f
i2
n (gn+1(z)) = b, Exp(Φn(a)) = z, and Exp(Φn(b)) = fn+1(z) for non-

negative integers i1 and i2. One can see from this that Exp(Φn(a)) = z ∈ Ω0
n+1

and Exp(Φn(b) = fn+1(z) ∈ Ω0
n+1 which contradicts our assumption.

The same argument implies the following statement for every i = n, n −
1, . . . , 1,

If w /∈ Ωn−i+1
i , and fi(w) /∈ Ωn−i+1

i

then gi(w) /∈ Ωn−i+2
i−1 , and fi−1(gi(w)) /∈ Ωn−i+2

i−1

where Ωk
l is defined accordingly. One infers from these, with an induction

argument, that Gn+1(z) /∈ Ω0
n+1.

Part (2): It follows from part (4) of Lemma 4.20 that B (γn(1), r∗)∪γn[0, 1]

has hyperbolic diameter (with respect to ρn+1 in An) uniformly bounded by

some constant C (independent of n). Let l be the smallest non-negative integer

with

C · (δ3)l ≤ δ4/2.

We decompose the map Gn+1 into two maps

G1
n+1 := gn−l+1 ◦ gn−l+2 ◦ · · · ◦ gn+1 and G2

n+1 := g1 ◦ gn−l+2 ◦ · · · ◦ gn−l.

By Lemma 4.24 and our choice of l, we have

G1
n+1(B(γn(1), r∗) ∪ γn[0, 1]) ⊆ Bρn−l

(zn−l, δ4/2).

Since each map gi is uniformly contracting and univalent on Bρi
(zi, δ4), by

Lemmas 4.24 and 4.25, G2
n+1 is univalent on Bρn−l

(zn−l, δ4). Moreover, by

Koebe distortion theorem, it has bounded distortion on G1
n+1(B(γn(1), r∗) ∪

γn[0, 1]).
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We claim that G1
n+1 belongs to a compact class. That is because it is

composition of l maps (uniformly bounded independent of n) gi, for i = n +

1, · · · , n− l + 1, where each of them is composition of three maps as

gi = f
σ(i)+j
i ◦ g̃i ◦ (ηi − j).

The map ηi is univalent on Vi and, by Koebe distortion theorem, has uniformly

bounded distortion on sets of bounded hyperbolic diameter. The map g̃i ex-

tends over the larger set Bδ(ηi(Vi)) (see Equations (4.27) and (4.29)), so it also

has uniformly bounded distortion. Finally, f
σ(i)+j
i is a finite iterate of a map

in a compact class.

Putting all these together, one infers that Euclidean diameter of the domain

G1
n+1(B(γn(1), r∗)) is proportional to the Euclidean distance between two points

G1
n+1(γn(1)) and z0 = Gn+1(γn(0)). Similarly, G1

n+1(Br∗) contains a round ball

of Euclidean radius proportional to its diameter. By previous argument about

G2
n+1, this finishes part (2) of the lemma.

Part (3): First observe that Gn+1(B(γn(1), r∗)) is contained in the compact

subset Ω0
0 of V0 where the Euclidean and the hyperbolic metrics are propor-

tional. The uniform contraction in Lemma 4.24 with respect to the hyperbolic

metric implies the statement in this part.

4.2.4 Proof of main results

Corollary 4.27. There exists a positive integer N such that for every non-

Brjuno number α ∈ IrrN the post-critical set of Pα has area zero.

Proof. If PC(Pα) = PC(f0) has positive area, by Lebesgue density point theo-

rem, for almost every point z in this set we must have

lim
r→0

area(B(z, r) ∩ PC(f0))

areaB(z, r)
= 1.
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Let z0 be an arbitrary point different from zero in PC(f0). By Proposi-

tion 4.8, z0 is contained in the intersection of Ωn
0 , for n = 0, 1, · · · . Thus, we

can define the sequence of Quadruples (4.18). Lemma 4.22 provides us with

an strictly increasing sequence of integers ni for which we have

Im ζni
≤ 1

2π
log

1

αni+1
.

With Lemma 4.20 at levels ni, we obtain curves γni
and balls B(γni

(1), r∗)

enjoying the properties in that lemma. One introduces the sequence Gni+1

which, by Lemma 4.26, provides us with a sequence of balls B(γni
(1), rni

)

satisfying

B(γni
(1), rni

) ∩ Ω0
ni+1 = ∅, |Gni+1(γni

(1)) − z0| ≤ D3 · rni
, and rni

→ 0.

With si := rni
+D3 · rni

we have

area (B(z0, si)) ∩ PC(f0))

area (B(z0, si))
≤ π(si)

2 − π(rni
)2

π(si)2

≤ (D3)
2 + 2D3

(D3)2 + 2D3 + 1

< 1.

which contradicts z0 being a Lebesgue density point of PC(f0).

Corollary 4.28. There exists a positive integer N such that, if α ∈ IrrN is a

non-Brjuno number, then Lebesgue almost every point in the Julia set of Pα is

non-recurrent.

In particular, there is no finite absolutely continuous (with respect to the

Lebesgue measure) invariant measure supported on the Julia set.

Proof. By Propositions 4.8 and 4.2 almost every point in the complement of

Ωn
0 is non- recurrent. As area Ωn

0 shrinks to zero, we conclude the first part

in the lemma. The second part follows from the first part and the Poincaré

recurrence theorem.
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Corollary 4.29. There exists a positive integer N such that for every non-

Brjuno number α ∈ IrrN the post-critical set of Pα is connected.

Proof. We claim that PC(Pα) =
⋂∞

n=0 Ω0
n. As each set Ω0

n is connected and

intersection of a nest of connected sets is connected, the corollary follows from

this claim.

To prove the claim, let z 6= 0 be an arbitrary point in the above inter-

section. We can build the sequence of Quadruples (4.18) corresponding to z.

By Lemma 4.22, there is an infinite sequence of positive integers ni satisfying

Im ζni
≤ 1

2π
log 1

αni+1
. It follows from proof of Lemma 4.20 that there exists

a point ζ ′ni
in the lift ηni

(Φ−1
ni

(⌊ 1
2αni

⌋)) such that, |Re(ζni
− ζ ′ni

)| ≤ 1/2, and

|ζni
− ζ ′ni

| is uniformly bounded. One transfers these two point to the dynamic

plane of f0 by Gni+1 and concludes from Lemma 4.24 that |Gni+1(ζ
′
ni

) − z|
goes to zero as ni tends to infinity. The point Φ−1

ni+1(⌊ 1
2αni+1

)⌋) belongs to the

orbit of critical value of fni+1, therefore by definition of renormalization, see

Lemma 4.5, Gni+1(ζ
′
ni+1) belongs to the orbit of the critical value of f0. Thus,

Gni+1(ζ
′
ni+1) ∈ PC(f0) and converges to z. This finishes proof of the claim.

A corollary of above proof is the following:

Corollary 4.30. There are positive constants M , N , and µ < 1 such that for

every α ∈ IrrN and every z ∈ Ωn+1
0 we have

‖ P qn

α (z) − z ‖≤Mµn.

In particular this holds on the post-critical set.
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