

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

News Analysis for the Social Sciences

A DISSERTATION PRESENTED

BY

MIKHAIL BAUTIN

TO

THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

STONY BROOK UNIVERSITY

August 2009

Copyright by
Mikhail Bautin

2009

Stony Brook University

The Graduate School

Mikhail Bautin

We, the dissertation committee for the above candidate for
the Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Professor Steven Skiena, Advisor
Computer Science Department

Professor Amanda Stent, Chairperson of Defense
Computer Science Department

Professor I. V. Ramakrishnan
Computer Science Department

Professor Matthew Lebo
Department of Political Science

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

News Analysis for the Social Sciences

by
Mikhail Bautin

Doctor of Philosophy
in

Computer Science

Stony Brook University

2009

Advisor: Professor Steven Skiena

The Lydia system analyzes spatial, temporal, and linguistic statistics of named en-
tity occurrences in news text. As a result, it provides the user with a bird’s-eye view
of the media coverage for a specific entity. This system can be a valuable tool for
social sciences such as political science, history, and economics. Our time series
data on the evolution of associations of an entity with other entities and traits is
helpful in testing hypotheses in political science and history. Our maps showing the
spatial distribution of entity popularity, sentiment polarity, and subjectivity towards
that entity in the country are useful in reasoning about the level of success of a po-
litical campaign. Sentiment time series can be incorporated into studies of media
influence and used to study voter behavior in response to local or national media
coverage.

Processing large-volume historical news datasets is computationally intensive.
To avoid the bottleneck (which our legacy Lydia system had) of a single relational
database and to dramatically increase the scale of our news analysis, we have de-
signed a new data aggregation and processing architecture that encompasses com-
ponents such as text and derived statistics processing phases, an on-demand data re-
trieval server, a user interface web application, and experimental components aimed
at validation and improvement of individual analysis phases.

iii

This new Lydia architecture (code-named “Freedonia”) which is based on the
Hadoop open-source map-reduce framework, is fully scalable and capable of an-
alyzing statistics on over 74 million entities in more than 100 million U.S. daily
news articles in a few hours on a 18-node cluster. It provides a 10-20x perfor-
mance improvement over the old Lydia system even on datasets that the old system
can still scale up to. The new Lydia architecture contains scalable versions of du-
plicate article detection, entity sentiment time series calculation, cross-document
co-referential entity name identification, and statistic aggregation across groups of
co-referential entities and other types of groups.

The data is accessible to social scientists through a web interface, and advanced
users can access our data services programmatically through an appropriate API.
The new Lydia system was used to provide media coverage data of the 2008 pres-
idential election for the National Annenberg Election Survey, the largest academic
public opinion survey conducted during presidential elections.

With the help of the new Lydia system we study the differences in news cov-
erage of various cultural/ethnic/linguistic groups in the U.S. news. In particular,
we examine the frequency and sentiment volume time series of persons of various
ethnicities and explore the geographic biases of ethnic group coverage.

Finally, we include two studies aimed at the validation and improvement of
different aspects of our named entity-centered text analysis system. Firstly, we
generalize the Lydia sentiment analysis approach to languages other than English.
We utilize state-of-the-art machine translation technology and perform sentiment
analysis on the English translation of foreign language text. Our experiments indi-
cate that entity sentiment scores obtained by our method are significantly correlated
across nine languages of news sources and five languages of a parallel corpus and
can be used to perform meaningful cross-cultural comparisons.

Secondly, we consider the problem of finding the relevant named entities in a
text corpus in response to a free-text search query. We analyze the AOL search
query logs to assess the significance of this problem. Then, we describe and eval-
uate our implementation of a concordance-based entity search engine retrieving
entity results based on entity occurrence contexts in the corpus.

iv

Contents

List of Tables ix

List of Figures xii

Acknowledgments xvi

1 Introduction 1
1.1 Lydia System Overview . 2

1.1.1 Sentiment Analysis . 3
1.1.2 Entity Juxtapositions . 4

1.2 Thesis Overview . 5

2 News and Blog Analysis for the Social Sciences 7
2.1 Introduction . 7
2.2 Related Work . 9

2.2.1 Text Analysis Systems for the Social Sciences 10
2.2.2 Implementation Tools . 12

2.3 News Analysis in the Social Sciences 13
2.3.1 Applications in Political Science 13
2.3.2 Applications in Global Studies 15
2.3.3 Applications in History . 16
2.3.4 Applications in Sociology 16
2.3.5 Applications in Finance 16

2.4 Processing Flow . 17
2.5 Data Organization . 18

v

2.5.1 Artifact Dependencies . 18
2.6 Entity Statistics Collection . 22

2.6.1 Entity Time Series . 22
2.6.2 Juxtaposition Time Series 24

2.7 Full-text Article Search . 27
2.8 Web Frontend . 28

2.8.1 A Use Case: Political Scientist View 28
2.9 The National Annenberg Election Survey Dataset 31

2.9.1 Data Sources . 31
2.9.2 Custom Entity Markup . 32
2.9.3 Analysis Examples . 33

2.10 Conclusion . 35

3 A Scalable Architecture for Text Stream Analysis 36
3.1 Introduction . 36
3.2 Related Work . 38

3.2.1 Hadoop . 38
3.2.2 Pig . 39
3.2.3 Hive . 39
3.2.4 Sawzall . 40
3.2.5 BigTable . 40

3.3 Architecture . 41
3.4 Processing Flow . 41
3.5 Data Organization . 42

3.5.1 Duplicate Removal . 44
3.5.2 Processing Scheduling . 47
3.5.3 Date Range Directory Merging 51

3.6 Depository Server . 56
3.6.1 Depository Server Implementation Overview 58
3.6.2 Artifact Readers . 59
3.6.3 Time Series Filtering by Source and Time 60

3.7 Large Scale Entity Co-reference Resolution 60
3.7.1 Entity Hashing . 61

vi

3.7.2 Merging of Hashed Groups 63
3.7.3 Refining Entity Clusters Using Juxtapositions 64
3.7.4 Hand-annotated Co-referential Entities 64

3.8 Group Statistics Aggregation . 65
3.8.1 Aggregation of Single-keyed Entity Statistics 66
3.8.2 Aggregation of Pair-keyed Entity Statistics 66

3.9 Performance . 68
3.9.1 Comparison with the Old Lydia System 68
3.9.2 Scalability . 68
3.9.3 Alternative Entity Markup 70

3.10 Conclusion . 72

4 Differences in News Coverage of Cultural/Ethnic Groups 74
4.1 Introduction . 74
4.2 Previous Work . 76

4.2.1 Name Ethnicity Detection 76
4.2.2 Ethnic Biases in Newspaper Coverage 76
4.2.3 News Analysis Infrastructure 76

4.3 Entity Geographical Associations 77
4.3.1 Geographic Association 77
4.3.2 Results and Comparison with Ethnicity Data 80

4.4 Trends in Group Coverage . 80
4.4.1 News Volume . 81
4.4.2 News Sentiment . 84
4.4.3 Geographic Biases in News Coverage 86
4.4.4 Juxtaposition Relationships between CEL Groups 86

4.5 Conclusions . 89

5 International Sentiment Analysis for News and Blogs 90
5.1 Introduction . 90
5.2 Related Work . 93

5.2.1 Cross-language Sentiment Analysis 94
5.2.2 The Lydia Sentiment Analysis System 94

5.3 Methodology . 96

vii

5.4 News Stream Analysis . 97
5.4.1 News Entity Frequency Correlations 100
5.4.2 News Entity Polarity Correlations 100

5.5 Parallel Corpus Analysis . 102
5.6 Cross-Translation System Analysis 103
5.7 Cross-Cultural Observations . 105
5.8 Conclusions . 108

6 Concordance-Based Entity-Oriented Search 109
6.1 Introduction . 109
6.2 Related Work . 113

6.2.1 Semantic-Aware Document Retrieval 113
6.2.2 Semantic Web . 114
6.2.3 Relation Extraction . 115
6.2.4 Entity Search using Existing Search Engines 116

6.3 Entities in Web Queries . 117
6.3.1 Approach to Analyzing Web Queries 117
6.3.2 Frequencies of News Entities in Queries 119
6.3.3 Frequency of Wikipedia Entities in Queries 122

6.4 Concordance-Based Entity Search 123
6.4.1 Indexing . 124
6.4.2 Searching . 126
6.4.3 Time-Dependent Indexing and Search 128
6.4.4 Modeling User Interest in an Entity 129

6.5 Evaluation . 130
6.5.1 Comparison with Juxtaposition Lists 132
6.5.2 Query Prediction using Juxtapositions 137
6.5.3 Queried Entity Rank in Results 139

6.6 Conclusions and Future Work . 139

7 Conclusions 141
7.1 Future Work . 143

Bibliography 145

viii

List of Tables

2.1 Top juxtapositions for Barack Obama for four two-month periods
and the corresponding co-occurrence counts. 8

2.2 Numbers of sources represented in each month of the NAES dataset 32
2.3 Barack Obama’s top juxtapositions in the three sub-corpora of the

NAES corpus. 34
3.1 Amount of time taken to build a depository on a 10 GB dataset with

varying number of nodes. 69
3.2 Amount of time taken to build a depository on one month of U.S.

daily news data using normal Lydia entity markup and all WordNet
nouns. 71

4.1 Top geographic juxtapositions (with scores) for two important
world leaders. 78

4.2 Agreement between nationality and dominant geographic associa-
tion for heads of state/government. 80

4.3 Type of news coverage by ethnicity 84
4.4 Strength of juxtaposition relationships between CEL groups. Un-

derrepresented juxtapositions (less than 0.8) are underlined, and
overrepresented juxtapositions (greater than 1.2) are boldfaced. . . . 89

5.1 Mean and standard deviation of the overlap between original and
translated text (µuntrans , σuntrans) and of the ratio of translation sys-
tem output to input size (µout/in , σout/in). 97

5.2 Numbers of entities in intersections of each pair of languages (top)
and percentage numbers that indicate the ratio of the intersection
size to the smallest number of entities available for either of the
two languages being intersected (bottom). 98

ix

5.3 Pearson correlation of frequency, polarity and subjectivity scores
for entities extracted from the news corpus. All entities in the inter-
section are included in comparison. Counts are aggregated over
all days for every entity. Bold correlations are significant with
p < 0.05. 99

5.4 Pearson correlations of frequency, polarity and subjectivity for en-
tities extracted from the JRC-Acquis corpus. All entities in the in-
tersection are included in comparison. Bold correlations are signif-
icant with p < 0.05. 104

5.5 Normalized country polarity scores in all languages. Countries are
sorted by their mean score across all languages. Polarity scores are
normalized to bring mean polarity to 0 and variance to 1 across all
country entities in each language. The language spoken in the coun-
try is highlighted with bold. For every country the rank of its polar-
ity in its own language in the row (1=highest, 9=lowest) is given in
parentheses. Maximum polarity for each country is italicized. . . . 106

5.6 Normalization coefficients for all languages. 106
6.1 Results for certain example entity queries. 110
6.2 Most frequent partial entity-query matches that are indeed complete

matches. 118
6.3 Match frequencies for all 36,389,577 queries and 10,154,743

unique queries (after duplicate removal) compared against Lydia
entity list. Each entry represents the percentage of queries (includ-
ing duplicates in the “all queries” part) that are perfect or partial
matches with an entity name. 119

6.4 Match frequencies for queries compared against Wikipedia entity
list. 120

6.5 Matches of news entities with queries by category. 121
6.6 On the left—Lucene results for a “MUHAMMAD YUNUS” query in-

dexed in a time-dependent manner. On the right—the same results
aggregated so that score(entity) = maxi score(entity ,month i). . . 127

6.7 Distances between search results and juxtaposition lists by category. 134

x

6.8 Distance measure between search results and juxtapositions for dif-
ferent query types for 9919 entities used as queries. 135

6.9 Distance measure between juxtapositions and search results for
phrase queries depending on the slop value. 135

6.10 Frequencies of different combinations of types of matches of con-
secutive (within 10 minutes) queries by the same user with entities. . 136

6.11 Queried entity position depending on category. 138

xi

List of Figures

1.1 An example of Lydia NLP markup for one paragraph. 3
1.2 Sentiment time series for Hillary Clinton. 3
2.1 Sentiment subjectivity (top/blue) and polarity (bottom/red) score

for the World Trade Center. 8
2.2 High-level Lydia architecture diagram 17
2.3 Artifact dependencies in the entity statistics folder of the Lydia de-

pository. 19
2.4 The distribution of occurrences of Arnold Schwarzenegger between arti-

cle categories over time in an archival corpus of U.S. newspapers. The

sharp increase in the fraction of “business” articles and decrease in the

fraction of “entertainment” articles happen around the time he is elected

the Governor of California. 22
2.5 A multidimensional map data structure used for time series storage. 23
2.6 Juxtaposition time series for Barack Obama and John McCain . . . 24
2.7 The navigation bar of the Lydia web user interface. 28
2.8 Lydia Web frontend: browsing sentiment time series for Michael

Phelps. 29
2.9 A sentiment word timeline for Michael Phelps. 29
2.10 An entity relation network for Chrysler in June 2009. 30
2.11 Number of articles as a function of time for different types of con-

tent in our NAES 2008 text corpus. 31
2.12 A fragment of the custom entity list. 33
2.13 Custom entity markup example. 33
2.14 Weekly sentiment polarity time series for Barack Obama in the

three sub-corpora of the NAES corpus. 35

xii

3.1 Statistics of exact duplicate removal on a four-year U.S. daily news
dataset. 45

3.2 A near-duplicate detection experiment using similarity measure
(3.1) performed on 78421 U.S. news articles spanning a 10-day in-
terval. 46

3.3 Parallel depository build time as a function of the number of al-
lowed concurrent map-reduce jobs. 49

3.4 Prerequisite date range selection for map-reduce job input used to
bring an artifact up-to-date. 51

3.5 Date ranges merged by the binary merging strategy during daily
updates over a 16-day period. 53

3.6 The ratio of the merging overhead (a) and of the minimum set pack-
ing size (b) of Algorithm 1 to the logarithm of the number of days
depending on the maximum update date range length. 55

3.7 A class diagram of the Lydia depository server. 58
3.8 The amount of time taken to build a depository depending on the

number of nodes used. The input data size is 160 MB (left) and 1.2
GB (right), split between four daily updates. 69

3.9 Time taken by incremental updates to a U.S. daily newspaper de-
pository with a small number of days. 70

3.10 Time taken by incremental updates to a four-year U.S. daily news-
paper depository. 70

3.11 The fraction of WordNet noun references in the U.S. daily corpus
retained as a function of the number of most frequent nouns ig-
nored. Example words corresponding to various frequency ranks
are shown. 71

4.1 CEL groups by nationality cartograms. Enlarged countries reflect higher

concentrations of the given CEL group. 79
4.2 Newspaper references to CEL groups in U.S. daily newspapers . . . 82
4.3 Newspaper references to CEL groups in the New York Times 83
4.4 Sentiment of CEL groups . 85
4.5 Frequency maps for CEL groups within the United States 87
4.6 Sentiment Maps for CEL groups within the United States 88

xiii

5.1 An international sentiment map for Vladimir Putin 91
5.2 An international sentiment map for George W. Bush 92
5.3 Polarity score of London in Arabic, German, Italian and Spanish

over the May 1-10, 2007 period. 100
5.4 Polarity score of Baghdad in Arabic, French and German over the

May 1-10, 2007 period. 101
5.5 Polarity score of Israel in Chinese, German and Italian over the May

1-10, 2007 period. 101
5.6 Polarity score of Egypt in Arabic, Chinese and German over the

May 1-10, 2007 period. 101
5.7 Graph of significantly correlated entity frequencies in different lan-

guages in the news corpus. 102
5.8 Polarity score of Paris Hilton, May 1-10, 2007. 103
5.9 Polarity scores of America in the output of (1) IBM WebSphere

Translation Server (Spanish); (2) a newer translation system hosted
by IBM Research. 105

6.1 High-level design of our Lydia entity-oriented search system. 123
6.2 One paragraph example of Lydia pipeline output. 125
6.3 An excerpt from a concordance document generated for the entity

“George W. Bush”. 126
6.4 The correlation between predicted and actual entity frequency in

queries (left) depending on the exponential decay factor β for model
(right) when predicted by summing entity frequency in the news on
last w days. 130

6.5 The correlation between predicted and actual entity frequency in
queries depending on the exponential decay factor β for model
(6.3), w = ∞. The maximum correlation of 0.33 is achieved for
β = 0.062. 131

6.6 The correlation between predicted and actual entity frequency in
queries when predicted by summing entity frequency in the news
on last w days. The maximum correlation of 0.353 is achieved for
w = 28. 131

xiv

6.7 Distribution of top list distances for phrase queries for the person
category. 134

6.8 Distribution of top list distances for “phrase”, “bag of words” and
“combined” queries. 136

6.9 Predicting the user’s next query, i.e. the probability that an AOL
search query ranks among the top k entities associated with the pre-
vious query (unique pair frequencies). 137

xv

Acknowledgments

Firstly I would like to thank Steven Skiena, my advisor. Without his guidance,
understanding, and encouragement much of this work would never have been com-
pleted.

I thank Charles Ward and Dmytro Molkov for all the good times I have had
working closely with them on the core of our new system during the past year, and
all the interesting discussions we have had. I thank Akshay Patil for his tremendous
effort developing our new user interface and for a walking tour of Philadelphia.

I thank all other Applied Algorithms / News and Blog Analysis Lab students I
got to know over the years, including Levon Lloyd, Dimitris Papamichail, Andrew
Mehler, Mohammad Sajjad Hossain, Manjunath Srinivasaiah, Namrata Godbole,
Prachi Kaulgud, Jae Hong Kil, Alex Turner, Ashwin Subrahmanya, Anand Mal-
langada, Jai Balani, Sandesh Devaraju, Sushma Devendrappa, Lohit Vijayarenu,
Gayathri Ravichandran, Paavan Shanbhag, Jahangir Mohammed, Swapna Reddy,
Anurag Ambekar, Shrikant Shanbhag, Shashank Naik, and Sagar Pilania. I wish
John Rizzo, Karthik Balaji, Shrijeet Paliwaal, Girish Kathalagiri, and Wenbin
Zhang much success in carrying on with the project.

I thank the General Sentiment team for their effort in commercializing the
TextMap technology and the National Annenberg Election Survey team for their
valuable feedback on our system usability. I also thank Abe Ittycheriah and Salim
Roukos of IBM Research for their help with IBM WebSphere Translation Server.

Most importantly, I would like to thank my parents, relatives, and friends, whose
support and advice kept me going forward even during the most challenging times
of my studies.

The work in this thesis was supported with funding from The Research Foun-
dation of SUNY, Renaissance Fellowship, and National Science Foundation.

Chapter 1

Introduction

The Lydia system [17,19,47,56,61–63,66] analyzes spatial and temporal statistics
of named entity occurrences in news text. As a result, it provides the user with a
bird’s-eye view of the media coverage of a specific entity. This system can be a
valuable tool for social science research, in fields such as political science, history,
and economics. Our time series data on the evolution of associations of an entity
with other entities and traits is helpful in testing hypotheses in political science and
history. Our maps showing the spatial distribution of entity popularity, sentiment
polarity, and subjectivity towards that entity in the country are useful in reasoning
about the level of success of a political campaign. Sentiment time series can be
incorporated into studies of media influence and used to study voter behavior in
response to local or national media coverage.

I have worked on several projects related to news and text analysis starting from
Spring 2006, and have co-authored the following publications: [17] and the cor-
responding journal article [18], [19], and [92] 1. But my largest project to date
and the main topic of this thesis is the new scalable Lydia architecture codenamed
“Freedonia”, which is described in detail in Chapters 2 and 3.

Making Lydia viable as a source of high-quality scientific data to feed into social
science models requires substantial technical effort. Instead of trying to re-engineer
Lydia’s four-year-old code written by several generations of graduate students and
work around its performance bottlenecks, we decided to build a new scalable text

1Another publication that I co-authored at Stony Brook University, unrelated to the Lydia
project, is [16].

1

1.1. LYDIA SYSTEM OVERVIEW 2

processing engine utilizing modern distributed computation technologies such as
the Hadoop [11] implementation of the Map-Reduce [39] model. My role in this
process included the design and implementation of our new data aggregation and
processing architecture, providing a framework for interactions between various
components of the new system such as text and derived statistics processing phases.
I also developed an on-demand data retrieval server and performed experiments
aimed at improvement of individual analysis phases. Finally, I was responsible
for establishing and upholding code quality, design, implementation, and testing
standards for our new system.

The design of this distributed system is significantly more than a mere re-
implementation of the previous Lydia system. Our new system is a data mining
platform prepared to deal with a two-order of magnitude greater text volume and
offers an extensible data extraction framework that will make many new exciting
types of study possible. One such study is given in Chapter 4, which examines the
differences between the news coverage of various cultural/ethnic groups.

The new Lydia system was brought online and up-to-date with the news in
March 2009, and is now tracking about 1000 U.S. and foreign English-language
newspapers on a daily basis. This system is also being successfully used to an-
alyze the news coverage data of the 2008 presidential campaign for the National
Annenberg Election Survey, the largest academic election survey in the country.

1.1 Lydia System Overview

The Lydia system [17, 19, 47, 56, 61–63, 66] recognizes named entities in text and
extracts their temporal and spatial distributions. Text sources are spidered daily
by customized website scrapers that convert articles to a standard format and store
them in an archive. The articles are then run through a pipeline that performs part-
of-speech tagging, named entity identification and categorization, geographic nor-
malization, intradocument coreference resolution, extraction of entity descriptions
and relations between entities, and per-occurrence sentiment score calculation. An
example of Lydia NLP markup is given in Figure 1.1. The entities are then inserted
into a database, and cross-document coreference resolution, entity juxtaposition

1.1. LYDIA SYSTEM OVERVIEW 3

Hong Kong’s government ordered Wednesday that
all kindergartens and primary schools be closed
for two weeks amid a flu outbreak, shutting down
classes for more than a half million students.

−→

<p> <pn category = “CITY”> Hong/NT
Kong,/NT HKG/NT </pn> ’s/POS govern-
ment/NN ordered/VBN <embedded_date>
Wednesday/NNP </embedded_date> that/IN
all/DT kindergartens/NNS and/CC primary/JJ
schools/NNS be/VB closed/VBN for/IN
<pn category = “WEEK_PERIOD”> 2/CD
weeks/NNS </pn> amid/IN a/DT <pn category
= “DISEASE”> flu/NN </pn> outbreak/NN
,/, shutting/VBG down/IN classes/NNS for/IN
more/RBR than/IN a/DT half/NN <num type
= “CARDINAL”> 1000000/CD </num>
students/NNS ./. </p>

Figure 1.1: An example of Lydia NLP markup for one paragraph.

Figure 1.2: Sentiment time series for Hillary Clinton.

scoring, and per-entity sentiment score calculation take place. The resulting statis-
tics are presented visually at http://www.textmap.com to a general internet
audience.

In the following sections we give two examples of components of the Lydia
system that are applicable to the social sciences.

1.1.1 Sentiment Analysis

Sentiment analysis is the area of natural language processing that aims to deter-
mine positive and negative opinions expressed in text. The Lydia system is capable
of determining the sentiment orientation of individual references to entities in news
text and aggregating them into sentiment score time series. Quantifying opinion
as expressed in blogs and newspapers opens opportunities for studying media in-
fluence on voters, so sentiment analysis is particularly important to us in our col-
laboration with political scientists. The Lydia sentiment analysis system assigns

http://www.textmap.com

1.1. LYDIA SYSTEM OVERVIEW 4

scores indicative of positive or negative opinion to each distinct entity in a text
corpus [19, 47]. Positive and negative sentiment words are identified through nav-
igating WordNet [69] synonym and antonym links starting from specific seed sets
corresponding to such categories as general, business, crime, health, politics, sports
and media sentiment. Sentiment analysis can be extended beyond people to in-
clude events, terminology, and other inanimate objects (e.g. roadside bombs). Our
sentiment analysis methods prove surprisingly effective, even though they rely on
relatively crude natural language processing techniques. Sentiment analysis has
become a large area with a substantial literature [49, 75, 96, 97, 100].

Our results described in Chapter 5 and [19] show that the state-of-the-art in
machine translation is capable of capturing accurate notions of sentiment when ag-
gregated over many documents. We have set up spiders and translators for hundreds
of newspapers in Spanish, French, German, Italian, Chinese, Japanese, Korean, and
Arabic. Through comparative statistical analysis, we can accurately identify in-
ternational biases and trends. This study was done using the previous version of
Lydia [62]. Our new scalable Lydia architecture creates new possibilities for evalu-
ating this international sentiment analysis methodology.

1.1.2 Entity Juxtapositions

A lot of information about an entity can be discerned from the list of other entities
it is related to. The Lydia system provides a method for extracting pairs of entities
that occur close to each other in an overrepresented way in a text corpus. Suppose
na and nb are numbers of sentences containing entities a and b respectively, F is the
number of sentences containing both a and b, andN is the total number of sentences
in the corpus. Then, according to [62], the probability of the observed number of
occurrences under the assumption that these two entities are independent is not
more than

Pbound(na, nb, F,N) =

 e
FN
nanb

−1(
FN
nanb

) FN
nanb

nanb
N

(1.1)

We call − logPbound the juxtaposition score of entities a and b.

1.2. THESIS OVERVIEW 5

The top juxtapositions for an entity are often unmistakably related to the en-
tity itself. For example, the top juxtapositions for John McCain in the U.S. news
over the year of 2008 include Barack Obama, Republican, Mitt Romney, Sarah
Palin, GOP, and Bush. More interesting observations can be drawn from changes
in the set of juxtapositions of an entity. For example, the top juxtapositions for
Eliot Spitzer calculated over March 2008 indicate entities suggestive of the scandal
that led to his resignation, such as Joe Francis, Emperors Club VIP, and “Client
9”. At the same time, the juxtapositions calculated from all history available to us
list politicians and businessmen as Eliot Spitzer’s top juxtapositions. Thus, by ob-
serving changes in the set of top juxtapositions of an entity, we can detect events
happening to that entity and bring them to the user’s attention. Studying how the
relationship strength between a specific pair of entities develops over time can also
provide insight to political scientists interested in their interaction. Both of these
capabilities are implemented on a large scale in the new Lydia data extraction and
retrieval architecture.

1.2 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 covers our text
analysis system at a conceptual level and discusses its social science applications.
We survey previous systems that have been developed to aid social science research.
Then, we describe the features our system provides that might be of interest to social
scientists, such as entity popularity and sentiment time series, juxtapositions, and
full-text article search. We explain how these types of data are obtained from the
unstructured text. Finally, we provide a use case of our system’s user interface.

In Chapter 3 we go through the technical challenges we have encountered while
building our scalable text stream analysis infrastructure in more detail. We discuss
previous systems relevant to processing large amounts of text on a computer cluster.
We describe the data organization and workflow management framework we have
developed to simplify building and updating our statistical datasets derived from
unstructured text. We also go through the details of certain analysis phases built on
top of this framework, such as duplicate removal, entity co-reference resolution and
group statistic aggregation. Finally, we present performance evaluation results.

1.2. THESIS OVERVIEW 6

In Chapter 4 we provide a case study of applying our system to a social science
question: what are the differences between the news coverage of various cultural
and ethnic groups? We describe a new method for nationality detection for news
entities (people), and use it in conjunction with the name ethnicity classification
method from [5] to identify interesting temporal, geospatial, and association trends
in the news with respect to 13 distinct cultural/ethnic/linguistic (CEL) groups. In
particular, we examine issues of ethnic and geocentric sentiment/coverage bias in
newspapers.

In Chapter 5 we validate another essential component of our text analysis tool
for social scientists: the sentiment scoring subsystem. Our experiments indicate
that (a) entity sentiment scores obtained by our method are statistically significantly
correlated across nine languages of news sources and five languages of a parallel
corpus; (b) the quality of our sentiment analysis method is largely translator inde-
pendent; (c) after applying certain normalization techniques, our entity sentiment
scores can be used to perform meaningful cross-cultural comparisons.

Chapter 6 deals with a problem highly relevant to building a data mining system
centered around named entities: finding a named entity via a free-text query based
on an archive of unstructured text. Our entity search engine creates a concordance
document for each entity consisting of all the sentences in the corpus containing
that entity. We evaluate our system by comparing the results of each query to the
list of entities that have the highest juxtaposition scores with the queried entity. The
results show excellent performance, particularly over well-characterized classes of
entities such as people.

Chapter 7 presents concluding remarks and future directions for this research.

Chapter 2

News and Blog Analysis for the
Social Sciences

2.1 Introduction

The Lydia system [19, 47, 56, 62, 63, 66] analyzes spatial, temporal, and linguistic
statistics of named entity occurrences in text corpora. It provides the user with a
view of the media coverage of a specific entity. Once a text corpus has been pro-
cessed through our system, the user can examine data centered around any named
entity, either automatically recognized or user-defined.

Figure 2.1 is an example of the types of analyses Lydia makes possible. It shows
sentiment subjectivity and polarity score graphs for the entity World Trade Center
generated by our system from the New York Times 1981-2007 corpus. Subjectivity
reflects the volume of strongly positive or negative words associated with the entity
and polarity reflects the difference between positive and negative shares of those
words. It is clear from Figure 2.1 that after both the 1993 World Trade Center
bombings and the September 11th, 2001 attacks the news coverage of World Trade
Center became much more subjective with prevalently negative sentiment.

As another example, Table 2.1 shows the top entities juxtaposed with Barack
Obama over two four-month periods from May to December 2008. The entities

7

2.1. INTRODUCTION 8

Figure 2.1: Sentiment subjectivity (top/blue) and polarity (bottom/red) score for the
World Trade Center.

May, Jun 2008 Jul, Aug 2008 Sep, Oct 2008 Nov, Dec 2008
Rank Entity Name Count Entity Name Count Entity Name Count Entity Name Count

1 Hillary Clinton 313316 John McCain 358676 John McCain 563000 Democrat 201034
2 Democrat 346028 Democrat 330643 Democrat 342109 John McCain 178190
3 John McCain 238767 presidential 169928 Republican 176279 election 121648
4 presidential 150699 candidate 127159 presidential 173176 Republican 92358
5 Republican 105005 Republican 123940 candidate 120136 presidential 82209
6 candidate 98933 Hillary Clinton 103319 Sarah Palin 112729 White House 67026
7 senator 81783 Iraq 74484 voters 86988 senate 57876
8 primary 75139 voters 65255 debate 80073 Hillary Clinton 55913
9 voters 75124 Joe Biden 64957 Joe Biden 70325 voters 55145

10 superdelegate 50045 senator 64285 senator 51129 senator 32575

Table 2.1: Top juxtapositions for Barack Obama for four two-month periods and
the corresponding co-occurrence counts.

used for this experiment were taken from the list of phrases of interest to the Na-
tional Annenberg Election Survey. The counts in Table 2.1 are numbers of sen-
tences in which Barack Obama appeared with the respective entity from the ta-
ble. Entities having the highest juxtaposition frequencies with a given entity can
be thought of as those “most talked about with” that entity. From Table 2.1 we
notice that Hillary Clinton was the most associated entity with Barack Obama until
she left the presidential race in June 2008, after which John McCain became his
top juxtaposition. We also notice that vice-presidential candidates Joe Biden and
Sarah Palin appear in Barack Obama’s top juxtaposition list around the time they are
announced. The word “debate” ranks fifth in the period immediately preceding the
election. Finally, the White House ranks sixth on Barack Obama’s top juxtaposition
list in the post-election November-December 2008 period, and his top juxtaposition
becomes “Democrat” instead of John McCain once the presidential race is over.

Both of these types of studies (sentiment time series for a large historical corpus

2.2. RELATED WORK 9

and time-based juxtaposition analysis for a custom entity set) are examples of what
has only become possible with our new scalable Lydia architecture, compared to
the previous version of the Lydia system described in [62]. The performance im-
provement is approximately 20-fold. The new Lydia system can fully process our
four-year archive of over 100 million U.S. articles in less than six weeks on our
18-node Hadoop [11] cluster. The old Lydia ran on a single machine, but even if it
could scale linearly, it would take 2.5 years to process the same dataset, according
to the 250 articles per hour per machine performance estimate reported in [60].

The main contribution of this work is an innovative news analysis system de-
signed to provide social scientists with an in-depth picture of the news coverage of
a named entity or a group of entities. The new version of the Lydia system was
developed as the news analysis engine for the National Annenberg Election Sur-
vey, but it is applicable to a wider range of studies in political science, history, and
global studies.

The remainder of this chapter is organized as follows. Section 2.2 examines
related text analysis systems developed for social scientists, as well as tools used in
implementation of our system. Section 2.3 discusses the motivating social science
applications of our system. In Section 2.4 we describe the processing phases our
system takes to produce an archive of entity statistics from raw text. Section 2.5
describes the internal organization of our statistics archive. Section 2.6 covers the
algorithms and data structures we use to efficiently collect entity statistics. Section
2.7 describes our approach to searching article text including some non-standard
features such as searching by sentiment. In Section 2.8 we outline the features of
our system’s web frontend and give a use case. Section 2.9 describes the dataset we
analyzed for the National Annenberg Election Survey, and Section 2.10 concludes
the chapter.

2.2 Related Work

The related work can be separated into text analysis systems useful in social sci-
ences, such as Cornell’s Web Lab Collaboration Server [93], TABARI [85], and
LexisNexis Academic [59], tools useful in implementation of such systems, such
as Hadoop [11], and studies that have been already done using the data provided by

2.2. RELATED WORK 10

the new Lydia system.

2.2.1 Text Analysis Systems for the Social Sciences

This section examines existing systems for text analysis in the social sciences,
largely different than Lydia in their structure and capabilities.

2.2.1.1 Large-scale web data analysis for the social sciences

Weigel et al. [93] propose a platform called “Web Lab Collaboration Server” to
simplify large-scale web data analysis tasks for non-technical users. They try to
automate tasks such as extraction of structured datasets, cleaning and formatting
them. They expose a high-level interface to the user, which allows to construct
extraction and analysis workflow through an intuitive GUI. The user is given prim-
itives to construct an analysis workflow from: set operations, relational algebra,
shallow text analysis (word count, TF-IDF), and simple graph algorithms. A user-
created analysis task is converted to a logical algebra language expression, which is
then compiled into map-reduce Java code and executed on the cluster. The authors
use the Internet Archive data in their experiments.

The differences between Web Lab Collaboration Server and our scalable Ly-
dia architecture are as follows. Firstly, Web Lab Collaboration Server is designed
for analyzing somewhat structured data, such as social network graphs or online
bookstore user pages, while Lydia is centered around named-entity analysis in un-
structured text. Secondly, Web Lab Collaboration Server lets users create their
own analysis workflows, while the Lydia system provides a pre-existing workflow
producing a wide variety of statistics. And finally, Web Lab Collaboration Server
requires users to create and initiate analysis tasks, whereas Lydia does all its large-
scale analysis in the background and provides pre-computed entity statistics up-
dated every day.

2.2.1.2 Automated coding of news sources

A substantial amount of work has been done in the area of automated “coding”
of news sources, a task traditionally performed by undergraduate and graduate

2.2. RELATED WORK 11

students in political science departments. News text “coding” involves finding
and marking up events in news text involving pre-defined entities, such as coun-
tries or politicians. The best known systems of this kind, KEDS (Kansas Events
Data System) and its successor TABARI (Textual Analysis by Augmented Re-
placement Instructions) [85], developed at the University of Kansas, use a sparse
parsing approach to extract event data from news text. To parse a sentence, the
system marks up nouns and verb phrases in it and attempts to match them with a
dictionary. TABARI is driven by a list of manually created dictionaries contain-
ing proper nouns (actors), common nouns (agents)—such as “French”, verbs/verb
phrases, and pronouns. Their political event coding scheme follows that of the
World Event/Interaction Survey (WEIS) [65], which was later extended and super-
seded by the IDEA framework [23]. For example, the sentence “The United States
and Egypt approved of efforts by Israel and Jordan” would result in the following
TABARI output:

USA <APPROVED> ISR

USA <APPROVED> JOR

UAR <APPROVED> ISR

UAR <APPROVED> JOR

The TABARI and KEDS systems have been mostly used for international relations
research primarily focused on the Middle East.

The TABARI system has been released as open source but does not contain
any framework for data aggregation or parallel processing. The scale of data in
studies based on TABARI such as [45] is on the order of hundreds of thousands of
news reports, while our new Lydia architecture is capable of handling hundreds of
millions of articles.

2.2.1.3 News search for the academia

LexisNexis Academic [59] searches news, business, and legal content and is avail-
able to researchers and students at academic institutions. Its text sources include
newspapers, broadcast transcripts, blogs, SEC filings, company profiles, law re-
views, case law, and statutes. LexisNexis Academic provides flexible search capa-
bilities subdivided into two major search modes:

2.2. RELATED WORK 12

• Natural Language search. This provides traditional keyword search function-
ality, and is recommended for quick access to pertinent results on a given
topic, especially when the information need is broad or the user is not sure
what words to use to express the query.

• Terms and Connectors search. This provides Boolean search functionality
and is used when the precise combination of words and phrases to be included
or not included into the document of interest is known. It is possible to specify
complex nested Boolean queries and restrict word distances between term
occurrences.

These two types of search can be accessed using the “easy search” feature that
automatically identifies which search method to use based on the type of the input
phrase, or using the “power search” feature that allows for precise configuration
of the search. The possible configuration options include date restrictions, index
terms (document tags indicative of its topic, e.g. “Missile Defense Systems” or
“International Relations”), source restrictions (major world publications, weblogs,
etc.), and searching specific sections of the document (e.g. headline or body).

The flexibility of LexisNexis search options makes it popular within the social
science community. However, it offers no dedicated features for exploring a text
corpus’s coverage of a named entity and provides no time series or maps visualiza-
tion to quantify this coverage. This is where our Lydia system complements Lex-
isNexis in a social scientist’s arsenal of tools for looking at the media. The Lydia
system also provides article search functionality, although more limited than that of
LexisNexis, but with some unique features such as finding articles with positive or
negative sentiment towards a given entity (see Section 2.7).

2.2.2 Implementation Tools

We use the Hadoop [11] implementation of Google’s Map-Reduce [39] distributed
computation model to simplify distributing the various computation phases of Lydia
text processing across a cluster of computers. I presented a case study of Lydia as a
Hadoop application at the Hadoop Summit 2009 in Santa Clara, CA.

2.3. NEWS ANALYSIS IN THE SOCIAL SCIENCES 13

2.3 News Analysis in the Social Sciences

We consider several social science fields in which our system will clearly be useful.
It has also been shown in [101] that our system can be applied to finance.

2.3.1 Applications in Political Science

Political science is the field that stands to most obviously benefit from using our
news analysis system, as it is primarily concerned with current events involving en-
tities widely covered in the media. We have collaborated with political scientists
from Stony Brook University and University of Pennsylvania. The general direc-
tion of this collaboration is studying the influence of media coverage on electorate
opinion, and our system quantifies the media part of this connection. The subsec-
tions below outline some questions in political science where our data is likely to
be useful.

2.3.1.1 Media effects on elections

It is not well understood how media coverage over the course of primaries and
elections affects candidate popularity. According to [58] there are two good reasons
for this lack of understanding:

• The speed with which electoral fortunes change over the course of a cam-
paign.

• The lack of available data to measure these quickly changing events.

Public opinion surveys are now being collected often enough that we can study
public opinion change on a daily basis. The National Annenberg Election Survey
[81] started collecting individual-level survey data in early November 2007 and
continued with daily samples of voters all the way until the Election Day 2008.
We have worked in collaboration with them to provide the media coverage data for
their analysis, and the NAES researchers are currently using the new Lydia system
through its interactive web interface and exported databases.

The Lydia project offers the opportunity to closely examine the relationship
between campaign events, public opinion, and the media. Many previous studies of

2.3. NEWS ANALYSIS IN THE SOCIAL SCIENCES 14

media content such as [25, 26] have explored an extremely narrow range of news
sources. With our new Lydia infrastructure we are now able to analyze roughly 1000
online news sources with an archive spanning four years, starting from November
2004, comprising over 50 million different articles. The Lydia system is able to
navigate and slice the data over

• the spatial dimension (e.g. Iowa newspapers, New Hampshire newspapers or
the United States as a whole), and

• the temporal dimension (on a daily, weekly, monthly, quarterly, and other
scales).

Given those capabilities, the political scientists using our system in conjunction
with public opinion poll data will be able to answer more easily questions such as:

• Do Iowa voters respond to sentiment expressed locally or nationally?

• Does daily media sentiment around the Iraq war influence public opinion on
the matter?

• Did media coverage of the Iraq war change after the 2004 election when
Republican support for the war began to wane?

2.3.1.2 Media fairness

The perception of media fairness is subjective: the supporters of a particular can-
didate are likely to attribute the suffering popularity of that candidate to negative
media coverage but when things are going well, describe the media coverage of
the candidate as fair [70]. For example, during the 2008 presidential campaign
Sen. Obama’s supporters’ perceptions of media fairness declined as the controversy
broke about comments made by his former pastor, as did Sen. Clinton’s support-
ers’ views of media fairness after her comments about her landing under sniper fire
in Bosnia proved false. With our system’s ability to objectively measure a candi-
date’s sentiment in the news, it became possible to elucidate the influence of news
coverage on a candidate’s popularity and, through specific news story case studies,
quantify press fairness in a manner less biased by pollees’ preferences.

2.3. NEWS ANALYSIS IN THE SOCIAL SCIENCES 15

2.3.2 Applications in Global Studies

Scholars working in the field of global studies are concerned with how “global”
a certain entity is. They have traditionally based their measures of globality on
such attributes as population, capital/non-capital status, etc. Introducing an entity
globality measure based on news text in the Lydia system will create a useful tool
for global studies [84]. Defining traits of global entities include geographical range
and a state of connectedness to a wide variety of other entities [83]. A possible
globality measure could be based on:

• The importance of an entity on its own. A general approximation for this is
entity frequency in the news.

• The geographical reach of the entities the given entity is connected to ac-
cording to our juxtaposition score criterion [62]. Here we consider entities
that have associated geographic information, such as cities, countries, or peo-
ple for whom we can identify the country they belong to. This measure will
differentiate between entities connected to a wide range of other entities per-
taining to various countries or states, and entities local to a specific country
or state. For instance, according to this measure we expect New York, NY
to be a more global entity than San Antonio, TX, while Geneva, Switzerland
should prove more global than Phoenix, AZ.

• The geographical span of the news sources in which the entity is mentioned.
With our current data dominated by U.S. daily newspapers this will be mostly
useful to distinguish entities of nation-wide importance from those of only
local significance, but as we start to acquire larger archives of international
(and possibly multi-language) news, this measure will more closely reflect
entity globality as it is understood in the literature on the subject.

Entity globality measurement using the Lydia system is an ongoing collabora-
tion between our research group and the Center for Global and Local History at
Stony Brook University.

2.3. NEWS ANALYSIS IN THE SOCIAL SCIENCES 16

2.3.3 Applications in History

Global history is a recent field of historiography with a plethora of unsolved and
complex problems such as periodization and measurement of globality [82]. Ex-
tending the concepts of Section 2.3.2 to the time domain, the Lydia system is also
likely to be useful in tracking the history of how the globality of an entity changes
over time. This is highly relevant to the problem of periodization of global history,
especially of its most recent part for which there exist timed text datasets suitable
for analysis by our system. By applying our system to the New York Times archive
starting from 1851 which has recently been made available, we can extract inter-
esting and subtle trends of historical entity globality variations. Another interesting
question one could try to answer in a historical perspective using the Lydia system
is how the overall sentiment of the relationship between two countries changes over
time.

2.3.4 Applications in Sociology

Chapter 4 (also appearing as [92]) is a study of news coverage of cul-
tural/ethnic/linguistic (CEL) groups and their interactions using the data obtained
from the new Lydia system. It proposes a method for entity nationality detection
using juxtaposition data, performs geographic news analysis of cultural groups, ex-
amines time series trends in CEL group frequency and sentiment, and quantifies
interactions and sentiment between these groups.

2.3.5 Applications in Finance

Zhang and Skiena [101] study how company frequency and sentiment data obtained
from the new Lydia system reflects the company’s stock trading volumes and finan-
cial returns. They confirm that the news data is highly informative and propose a
news-based market-neutral trading strategy which gives consistently favorable low
volatility results over a four-year period.

2.4. PROCESSING FLOW 17

Figure 2.2: High-level Lydia architecture diagram

2.4 Processing Flow

Figure 2.2 shows a high-level layout of the new Lydia system. The basic processing
flow can be subdivided into the following parts:

• Input document collection – Source documents may come from Lydia news
or blog spiders, RSS feeds, or users who need to process a specific corpus of
documents.

• NLP pipeline – Documents are passed through the Lydia NLP pipeline
[60, 62], which marks up and classifies named entities, resolves pronouns,
normalizes geographical location names, and identifies sentiment polarity of
each entity occurrence. In the current configuration, the NLP pipeline runs as
a Hadoop [11] Streaming job, and its output gets stored in the HDFS (Hadoop
Distributed File System). This text corpus with named entity markup is the
main input for our new scalable text analysis architecture.

• Depository construction or update – Documents are processed through a se-
ries of jobs (most often map-reduce jobs) and the results are stored in a per-
sistent data structure that we call a depository. A Lydia depository includes:

– All input documents, with duplicates removed;

2.5. DATA ORGANIZATION 18

– Entity reference statistics;

– Entity juxtaposition statistics;

– A full-text index of articles;

– An index of entity names;

– Co-referential groups of entities;

– Entity classification by ethnicity and country association;

– Entity and juxtaposition statistics aggregated over co-reference sets and
ethnic groups.

• Database export – We still use a relational database to provide more flexi-
bility of data exploration, but we only export statistics for the most frequent
entities into the database.

2.5 Data Organization

The statistics and indexes extracted from a text corpus are placed in a persistent data
structure we call a depository, which is stored in a directory hierarchy in Hadoop
Distributed File System. A depository comprises a number of named homogeneous
datasets, such as entity references, juxtaposition statistics, or entity/article indexes.
We call these datasets, typically produced with one or more map-reduce jobs, arti-
facts. Each of the interconnected items shown within the “Lydia Depository” part
of Figure 2.2 corresponds to an artifact or a group of artifacts.

2.5.1 Artifact Dependencies

Only a few artifacts in the Lydia depository are built based directly on the marked-
up text that comes out of our NLP pipeline. Most artifacts are built using other
artifacts as inputs. Figure 2.3 shows some dependencies between artifacts contain-
ing article, entity, and juxtaposition statistics in the Lydia depository.

Most artifacts in the Lydia depository are constructed using map-reduce jobs.
Every block in Figure 2.3 corresponds to an artifact, and each of them, except the
source, has an associated type of map-reduce job used to build it. The input of a

2.5. DATA ORGANIZATION 19

Figure 2.3: Artifact dependencies in the entity statistics folder of the Lydia deposi-
tory.

map-reduce job that builds or updates an artifact is selected as described in Section
3.5.2.3.

The most important artifacts in the Lydia depository are listed below. We also
include the size of each artifact in the U.S. daily news depository. In depositories
built from other corpora the same artifacts can be appropriately larger or smaller.

• Entity reference and sentiment statistics.

– EXACT_DUP_ARTICLES (177 GB) stores a text corpus from which
the depository was built with exact duplicate articles removed. It is a
key-value artifact with key being a normalized article text hash code
and value being an article XML document including metadata about all
original sources and dates where this article appeared. All text is com-
pressed with gzip. Our approach to removing exact duplicate articles
is described in Section 3.5.1.

– CATEG_PER_SRC_ENTITY_TS (8.3 GB) is a key-value artifact map-
ping entity names to per-category per-source time series of their oc-
currence frequencies and sentiment scores. The data structure used for
storing these multi-level time series is discussed in Section 2.6.1. This
artifact can be used to retrieve time series of occurrence or sentiment for
a particular entity with a certain categorization, e.g. person, in a given
source or group of sources.

– PER_SRC_ENTITY_TS (8.2 GB) is a key-value artifact mapping

2.5. DATA ORGANIZATION 20

entity names to per-source frequency/sentiment time series. Un-
like CATEG_PER_SRC_ENTITY_TS, it does not distinguish en-
tities by category, e.g. it would not distinguish between “Jaguar”
as an animal and “Jaguar” as a car. It is calculated based on
CATEG_PER_SRC_ENTITY_TS by summing up its data across all cat-
egories for each entity.

– ENTITY_CATEGORY_REFS (1.9 GB) provides a different con-
densed view of the categorized per-source time series artifact
CATEG_PER_SRC_ENTITY_TS. It maps entity names to vectors of their
frequencies of appearances as various categories. For example, for the
entity “New York” it would contain the frequencies of this entity occur-
rences categorized as a city and as a state.

– TOP_ENTITIES (1 GB) contains entities in a descending order of their
frequency of occurrence in the whole text corpus. It is an example of
a “sequence artifact” which does not allow random access, but only re-
trieval of the top N items.

– DAILY_TOP_ENTITIES (10 MB) maps a date to a list of the top-
frequency entities for that date. It is calculated based on the artifact
containing per-source time series for each entity. By default no more
than 1000 top entities are stored for each day, which explains why this
artifact is much smaller than TOP_ENTITIES.

• Juxtaposition statistics.

– PER_SRC_JUXTA_TS (9.2 GB) is a key-value artifact that maps an
entity pair (E1, E2) to a per-source time series of the juxtaposition fre-
quency of this pair of entities. Due to the high number of entity juxta-
positions in text corpora, on large corpora we use a randomly-selected
subset of sentences to construct these time series. However, this method
of reducing the juxtaposition dataset volume sometimes results in a loss
of meaningful juxtapositions for low-frequency entities.

– JUXTA_COUNTS_TS (11.2 GB) is a key-value artifact that for each
pair of juxtaposed entities (E1, E2) contains per-source time series of

2.5. DATA ORGANIZATION 21

tuples (n1, n2, n12) where n1, n2, and n12 are the numbers of sentences
in which E1, E2, and both E1 and E2 occurred, respectively. It is com-
puted using both PER_SRC_JUXTA_TS and PER_SRC_ENTITY_TS

by performing a two-map-reduce job join operation as described in Sec-
tion 2.6.2. It is used to calculate juxtaposition significance statistics that
depend both on the joint occurrence frequency and individual entity oc-
currence frequencies, such as our juxtaposition score measure (Section
2.1).

– JUXTA_SENTIMENT_TS (13.7 GB) maps entity pairs to per-source
time series of sentiment scores of the entity pair juxtaposition. The
juxtaposition sentiment score is calculated based on the sentiment words
that occur in the same sentence with the pair of entities.

– ENTITY_JUXTA_LIST (5.5 GB) maps each entity to a list of top-
frequency juxtapositions for that entity and the associated juxtaposition
frequencies. It is widely used in our system, particularly in entity co-
reference resolution (Section 3.7) and entity geographical association
detection (Section 4.3).

• Article statistics.

– ARTICLE_STATS_TS (6 MB) is a key-value artifact that maps a text
source ID to a time series of the number of articles, number of sentences,
and number of entity occurrences. It is a summary statistic of news
volume in a given source or group of sources on a given time period,
which we use for various kinds of time series normalization.

– ARTICLE_CATEG_PER_SRC_ENTITY_TS (9 GB) is a key-value arti-
fact similar to CATEG_PER_SRC_ENTITY_TS, but uses article cate-
gories instead of entity categories. Its values are multi-level maps keyed
on article category (e.g. sports, business, entertainment), text source ID,
and date. It allows to trace transitions of an entity from one category to
another, as shown in Figure 2.4.

2.6. ENTITY STATISTICS COLLECTION 22

Figure 2.4: The distribution of occurrences of Arnold Schwarzenegger between article
categories over time in an archival corpus of U.S. newspapers. The sharp increase in the
fraction of “business” articles and decrease in the fraction of “entertainment” articles hap-
pen around the time he is elected the Governor of California.

– ARTICLE_CATEGORY_REFS (1 GB) is similar to ENTITY_CATE-
GORY_REFS, but contains vectors of entity frequencies in various ar-
ticle categories (e.g. business, sports) instead of entity categories (e.g.
person, place).

In the following subsections we examine how some of these artifacts are com-
puted.

2.6 Entity Statistics Collection

Entity statistics collection happens after the EXACT_DUP_ARTICLES artifact
is built. The technical details of our approach to duplicate article removal are
described in Section 3.5.1.

2.6.1 Entity Time Series

Once duplicate articles have been removed, various artifacts are constructed con-
taining frequency and sentiment time series objects of various types for each entity:

• Per-source entity time series broken up by entity category. The reason the
entity category dimension exists is that our NLP pipeline assigns each entity
occurrence a category based on the context, and different occurrences of the
same entity can have different categories (e.g. car or animal for “Jaguar”).
Dimensions: entity category, source ID, date.

2.6. ENTITY STATISTICS COLLECTION 23

Figure 2.5: A multidimensional map data structure used for time series storage.

• Per-source entity time series broken up by article category (news, sports, busi-
ness, etc.) in which the entity appeared instead of entity category. Dimen-
sions: article category, source ID, date.

• Per-source entity time series. Dimensions: source ID, date.

All of these objects are represented as sorted multidimensional maps. Their in-
memory and serialization format is an array of the form {N , k1, n1, k1,1, v1,1, . . . ,
k1,N , v1,N , k2, . . . , k3, . . . , kN , nN , kN,1, vN,1, . . .kN,nN , vN,nN} (example given for
a two-dimensional map). Essentially, it is a pre-ordering depth-first enumeration of
a tree such as that shown in Figure 2.5 corresponding to the multidimensional map.
Each value vi1,...,im stored in a leaf of such an m-dimensional map is a fixed-length
vector containing this entity’s frequency and positive/negative sentiment counts.

Using these data structures, entity reference statistics collection is implemented
straightforwardly as a map-reduce job:

1. The map phase takes a marked-up article as input. For each entity in the
article, it outputs the entity name as a key and a trivial time series object
reflecting the references to the entity with the given category, in the given
source, and on the given set of dates as a value.

2. The reduce phase of this map-reduce job is AdditiveReducer: it
uses the addition operation defined on time series objects through the
WritableAdditive interface to aggregate all individual article-derived
time series objects for the same entity into one time series object. The same
reducer is used in many map-reduce jobs in our system.

The “additive reduction” used in the entity reference statistic collection job is
a common practice in our system. Most time series and other value classes stored

2.6. ENTITY STATISTICS COLLECTION 24

Figure 2.6: Juxtaposition time series for Barack Obama and John McCain

in the Lydia depository implement the WritableAdditive interface that allows
objects to be added together. Apart from the additive reducer, the additivity property
is used in the retrieval part of our system, where data can be aggregated on the fly
from multiple map-reduce outputs corresponding to different time periods.

2.6.2 Juxtaposition Time Series

Just as we collect entity frequency and sentiment time series for every entity, we
collect co-occurrence (juxtaposition) time series for every pair of entities. Measur-
ing the strength of association between two entities in the news as a function of time
can provide useful insights about their interaction. For example, Figure 2.6 shows
juxtaposition frequency time series for Barack Obama and John McCain during the
2008 Presidential campaign. By entity or juxtaposition frequency in this section we
mean the number of sentences the entity or pair of entities appears in. It is clear that
the spikes in the entity co-occurrence frequency are explained by real underlying
events involving the two entities.

Juxtaposition time series for each pair of entities are stored in the multidimen-
sional map data structure described in the previous section. The map-reduce job
that generates the juxtaposition time series dataset is as follows:

• The map phase takes an article as input, cycles through its list of sentences,
and generates a trivial time series object analogous to that described in the
previous section for each pair of entities that appear in the sentence. Only
the set of entity names appearing in a sentence is taken into account, not the
number of times an entity name is repeated in the sentence.

2.6. ENTITY STATISTICS COLLECTION 25

• The reduce phase is an additive reducer that adds up all time series objects
originating in all articles for a given pair of entities.

The juxtaposition dataset is one of the most space-consuming datasets in a Lydia
depository. To reduce its size and still retain the most significant juxtapositions
for every entity, we provide an option to examine only a random sample of input
sentences in the mapper of the above map-reduce job. The sampling ratio n is a
configurable parameter: every sentence is examined with probability 1/n and adds
a maximum of n to the juxtaposition frequencies of all pairs of entities found in it.

The number of sentences in the corpus in which two entities co-occur is the
most significant characteristic of the strength of relationship between two entities
that we derive from text. However, other meaningful measures of entity relation-
ship strength may be based on individual frequencies of entities as well, so as to
compensate for the fact that a very frequent entity would co-occur a lot with other
entities purely by chance. In particular, the expression (2.1) introduced in [62] is
an upper bound on the probability that two entities occur together in at least F out
of the total N sentences under the assumption of their independence, while these
entities occur in na and nb sentences respectively:

Pbound(na, nb, F,N) =

 e
FN
nanb

−1(
FN
nanb

) FN
nanb

nanb
N

(2.1)

We call − logPbound the juxtaposition score of this pair of entities. To be able
to calculate juxtaposition score time series for every pair of co-occurring enti-
ties, we must combine the entity frequency time series dataset and the entity pair
co-occurrence time series dataset to generate a per-source time series object of
(na, nb, nab) tuples for every entity pair (a, b). na and nb are frequencies of en-
tities a and b respectively, and nab is the pair frequency in a particular source and
on a particular date.

It is nontrivial to combine individual entity and entity pair frequencies using
map-reduce, because high-throughput random access to results of previous map-
reduce jobs is not available in the Hadoop framework. For example, we could
not write a map-reduce job over a dataset keyed on entity pairs (a, b) and fetch

2.6. ENTITY STATISTICS COLLECTION 26

individual time series for entities a and b when processing a tuple. To work around
this limitation we use two map-reduce jobs.

1. The first map-reduce job is structured as follows:

• The map phase takes both single entity frequency and entity pair fre-
quency time series datasets and generates entity pairs as intermediate
keys and frequency time series as intermediate values. For a single en-
tity E’s frequency time series a pair (E, null) is generated as a key.

• Intermediate keys are grouped by the first entity in the input to the re-
ducer. The setOutputValueGroupingComparator Hadoop
job configuration function is used to achieve this. Each invocation of
the reduce function receives all values generated by the mapper for all
keys of the form (E, . . .) for some entity E which is fixed within a re-
ducer invocation. The single-entity time series object for E correspond-
ing to the key (E, null) appears first in this order. The reducer stores
this single-entity frequency time series object TSE and loops through
time series objects TSE,E′ corresponding to various pairs (E,E ′) using
the value iterator provided to it by the map-reduce framework. For each
pair it emits two types of tuples:

– Key: (E,E ′), value: a combination of TSE and TSE,E′ that stores
a vector of (nE, 0, nE,E′) at every leaf node of a multidimensional
map such as that shown in Figure 2.5.

– Key: (E ′, E), value: a multidimensional map that has (0, nE, 0) at
every leaf node.

2. The second map-reduce job is just an identity mapper and an additive reducer.
Its output keys are entity pairs (E,E ′), and its output values are multidimen-
sional maps from source IDs and dates to tuples of the form (nE, nE′ , nE,E′),
where nE , nE′ , and nE,E′ are frequencies of E, E ′, and the pair (E,E ′) in a
given source and on a given date.

This allows us to calculate the time series of any juxtaposition strength statistic
depending both on pair frequency of two entities and their individual frequencies,

2.7. FULL-TEXT ARTICLE SEARCH 27

such as that given by (2.1). The number N in (2.1) could be obtained from a rela-
tively small dataset of numbers of sentences in every source and every day, which
is also part of the Lydia depository.

2.7 Full-text Article Search

In addition to entity occurrence and co-occurrence statistics, it is useful to have a
full-text search feature. We provide full-text search by using the Lucene [8] open-
source search engine and the Katta [3] library that helps to do Lucene search in a
distributed way. Through careful use of multiple fields in our article index and by
converting the user’s search form input into a query utilizing these fields, we are
able to handle the following restrictions added to the query:

• Entity or article sentiment polarity. We can query articles by their overall
sentiment orientation and by the their sentiment towards a given entity. For
example, we can request all articles that speak “very positively” about George
Bush. One of the results returned for this query in May 2009 was an article
titled “Bush jovial and friendly at Calgary eatery prior to today’s speech”,
which has a distinctively positive sentiment.

This feature is implemented by maintaining a special-purpose entity_-
category field in the index. For every entity appearing in the article this
field contains the entity name followed by its sentiment polarity value in this
article broadly quantized as “very positive”, “positive”, “neutral”, “negative”,
or “very negative”. Also, the sum of all entity sentiment polarities in the
article quantized in the same way is stored in the article_sentiment
field that permits to search for articles having the given sentiment orientation
as a whole, irrespective of any particular entity.

• Time period of article appearance. We also provide a way to search for arti-
cles that appear in a particular time period. This is done by adding a date
field to every article and using Lucene’s RangeQuery to search for articles
in a given date range.

2.8. WEB FRONTEND 28

Figure 2.7: The navigation bar of the Lydia web user interface.

• Entity categories appearing in the article. The Lydia NLP pipeline marks up
entity categories such as person, place, city, and over 100 other categories,
assigning a category to each entity occurrence. In our full-text article index
we have an entity_category field that contains all entity categories that
appear in the given article. By searching this field, we are able to handle
article set restrictions such as “mentions a religion” placed by the user.

2.8 Web Frontend

The web frontend of the Lydia system provides a way for the user to access and visu-
alize the statistical data stored in Lydia depositories. The frontend web application
connects to a number of depository servers that are specified in its configuration,
converts user input into depository server API requests, and displays the results of
those requests to the user as graphs and tables. This provides the user with time
series data of frequency, sentiment score, and relation strength to other entities for
any entity or set of entities. The user can also select the source or set of sources
he or she is interested in. The yielded data is available for download as a spread-
sheet (.csv) as well as in graphical renderings of time series and spatial analysis
(“heatmaps”) of entity popularity and sentiment for any given period of time. This
user interface is available at http://www.textmap.com/access.

2.8.1 A Use Case: Political Scientist View

The typical use case for the web frontend of our system, arrived at in collaboration
with political scientists from Stony Brook University and the University of Penn-
sylvania, is as follows. After logging into the system the user can choose

• The data type to access. The major data types available through the naviga-
tion bar shown in Figure 2.7 are entity frequency time series, entity sentiment

http://www.textmap.com/access

2.8. WEB FRONTEND 29

Figure 2.8: Lydia Web frontend: browsing sentiment time series for Michael
Phelps.

Figure 2.9: A sentiment word timeline for Michael Phelps.

time series, top juxtaposition lists, most popular entities, heatmaps, and entity
relation networks.

• An entity. Even if the precise entity name entered is not present in the depos-
itory, a suggestion list is provided using the depository server’s capability to
search entity names.

• A corpus or a source set within a corpus to use. The user can define his or
her own source sets on country, state, and individual source granularity, and
save them for later use.

• A time period (start and end date).

• Data aggregation time scale (daily, weekly, monthly) and the aggregation
period length (e.g. 7 to get a weekly time scale instead of daily).

Once these parameters have been identified, the user can do the following, de-
pending on the data access tab chosen:

S< nti rnentGr"Jlhs

(492) Q wonf\18 (701) Q medals/NN (99) Q medals/NN (124) Q record/NN (137) Q marijuana/NN (-3401) Q champ/NN (154) Q wonf\18 (599)

Q record/NN (2454) Q wonf\18 (95) Q medals/NN (315) Q record/NN (161) Q marijuana/NN (-1259) Q superstar/NN (16) Q freellJ (912)

record/NN (3801) Q wonf\18 (411) Q wonf\18 (52) Q securellJ (356) Q marijuana/NN (-3826) Q record/NN (63) Q medals/NN (323)

/NN (1360) Q donat ion/NN (312) Q wonf\18 (62) Q record/NN (161) Q regrettab lellJ (-787) Q record/NN (129) Q medals/NN (114)

;1) Q record/NN (325) Q olymp ianllJ (21)Q medals/NN (187) Q rightllJ (103) Q worriedf\18 (-1198) Q record/NN (99)

Q record/NN (1122)

da ls/NN (12794)

Q medals/NN (20) Q record/NN (107)

Q defend ingf\18 (115)

1

2009

Q medals/NN (70) Q power/NN (242)

Q marijuana/NN (-1075)

2.8. WEB FRONTEND 30

Figure 2.10: An entity relation network for Chrysler in June 2009.

• Browse time series graphs and download these time series as .csv files:

– Entity reference frequency;

– Number of articles referencing the entity;

– Number of sentences referencing the entity;

– Sentiment counts (positive and negative), scores, and ranks. For exam-
ple, Figure 2.8 shows a positive and negative sentiment raw count graph
for Michael Phelps.

– A timeline of sentiment words contributing the most to an entity’s sen-
timent score (Figure 2.9). This is useful for understanding the reasons
of significant entity sentiment score changes. This feature is not yet
available in the production version of the user interface.

• View the top juxtapositions for an entity, and juxtaposition time series for a
given pair of entities.

• Browse the entity relation network based on entity juxtapositions, such as that
shown in Figure 2.10.

2.9. THE NATIONAL ANNENBERG ELECTION SURVEY DATASET 31

Figure 2.11: Number of articles as a function of time for different types of content
in our NAES 2008 text corpus.

2.9 The National Annenberg Election Survey
Dataset

We have performed analysis of 16 months of news, political blog, and TV show
transcript sources for the National Annenberg Election Survey (NAES), spanning
the period from October 2007 to January 2009. This depository was constructed in
a somewhat different manner than all our other Lydia system depositories, reflecting
the specific needs of the NAES. We used a custom entity list that the NAES team
provided us with, because certain words and expressions they cared about (e.g.
“inexperienced” or “maverick”) were not considered entities by the legacy Lydia
Perl NLP pipeline. Our custom phrase annotation phase is described in Section
2.9.2.

2.9.1 Data Sources

We used documents from three classes of text: the 1000-2000 daily U.S. online
newspapers we crawl on a daily basis, 45 political blogs, and transcripts of 13
political TV shows. Figure 2.11 shows monthly numbers of articles from each
of these sources on a log scale. Each transcript of a single TV show is represented
as one “article” in the system. Table 2.2 shows how many distinct sources those
articles came from each month.

2.9. THE NATIONAL ANNENBERG ELECTION SURVEY DATASET 32

Month Dailies Political blogs TV transcripts
10/07 1601 33 12
11/07 1702 32 12
12/07 1849 32 12
01/08 1778 34 12
02/08 1759 33 12
03/08 1764 33 12
04/08 1764 34 11
05/08 1712 33 10
06/08 1719 32 10
07/08 1713 33 10
08/08 1779 33 10
09/08 1683 32 8
10/08 1746 32 9
11/08 922 33 9
12/08 910 33 3
01/09 907 33 0

Table 2.2: Numbers of sources represented in each month of the NAES dataset

2.9.2 Custom Entity Markup

Because the National Annenberg Election Survey team requested statistics on cer-
tain phrases that would not be normally considered entities by our NLP pipeline,
we had to implement a custom entity markup phase that would recognize entities
from a pre-defined list. We were given a list of 626 phrases, which we manually
grouped into synonymous phrase groups, one per line, and assigned categories to
where appropriate (Figure 2.12).

To mark up these phrases as entities in the text, we replaced the entity markup
added by our NLP pipeline with a simple dynamic programming algorithm to se-
lect a set of non-overlapping phrases in the text matching the abovementioned pre-
defined phrase dictionary. As the objective function in this dynamic programming
algorithm we used the sum of squares of marked-up phrase lengths. This is prefer-
able to using the sum of lengths, because when a phrase and the separate words it
comprises are all included in the the custom entity dictionary, preference will be
given to marking up the full phrase, as (a + b)2 > a2 + b2. An example of a news

2.9. THE NATIONAL ANNENBERG ELECTION SURVEY DATASET 33

9-11|September 11

PERSON:50 Cent

ORGANIZATION:AARP

abortion

absentee ballot|absentee ballots

absentee vote|absentee votes|absentee voting

accountability

PERSON:Al Sharpton|Reverend Sharpton

ORGANIZATION:ACORN

Figure 2.12: A fragment of the custom entity list.

<p> CHARLESTON,/NT WV/NT -/: Polls/NNS are/VBP open/JJ in/IN West/NNP
Virginia/NNP ,/, and/CC <pn category="UNKNOWN">election/NN</pn> officials/NNS
said/VBD things/NNS are/VBP off/IN to/TO a/DT smooth/JJ start/NN ./.</p> <p> <pn
category="PERSON">Hillary/NNP Rodham/NNP Clinton/NNP</pn> is/VBZ expected/VBN
to/TO beat/VB rival/JJ <pn category="PERSON">Barack/NNP Obama/NNP</pn> by/IN
double/JJ digits/NNS ,/, and/CC score/VB another/DT victory/NN in/IN next/JJ week/NN
’s/POS Kentucky/NNP <pn category="UNKNOWN">primary/JJ</pn> ./.</p>

Figure 2.13: Custom entity markup example.

text paragraph with these custom entities marked up is provided in Figure 2.13.

2.9.3 Analysis Examples

One example of analyzing the NAES dataset was already given in Table 2.1, show-
ing the top juxtapositions for Barack Obama in four two-month time periods. Table
2.3 offers another view of the same experiment, this time subdivided by three types
of sources in our NAES dataset. Unlike in Table 2.1, we did not use co-reference
resolution here, which allows us to catch the difference in usage of name variants
such as “Hillary Clinton” vs. “Hillary Rodham Clinton”. Some differences between
topics of political TV shows and other parts of the NAES corpus can be seen from
Table 2.3:

• The word “voters” is by far the highest on the TV shows list, indicating that
there is more discussion of various groups of voters, including those partici-
pating in primaries and caucuses, happening in TV shows than in other types

2.9. THE NATIONAL ANNENBERG ELECTION SURVEY DATASET 34

Daily News Political Blogs TV Transcripts

1 John McCain 939482 John McCain 9792 Senator 5708
2 Democratic 795907 McCain 6411 John McCain 3961
3 presidential 643408 Hillary Clinton 5753 Hillary Clinton 3842
4 Hillary Rodham Clinton 641815 Democratic 5600 voters 1392
5 Democrat 492442 Hillary 4895 Democratic 1354
6 Hillary Clinton 407742 candidate 3874 Hillary 1237
7 Republican 382197 election 3833 race 1002
8 candidate 333097 voters 3539 McCain 898
9 voters 305741 presidential 3191 Democrats 851

10 Democrats 237960 Democrat 3095 candidate 837
11 race 219677 Democrats 2779 Iraq 761
12 primary 213984 race 2292 presidential 712
13 election 203098 black 2242 debate 636
14 Senator 164169 change 2077 election 630
15 black 155659 Iraq 2063 Iowa 597
16 senator 142834 Senate 1862 change 581
17 White House 141805 Joe Biden 1623 John Edwards 576
18 McCain 139309 Senator 1615 Democrat 555
19 debate 123747 white 1507 Jeremiah Wright 543
20 John Edwards 103155 John Edwards 1158 Pennsylvania 491

Table 2.3: Barack Obama’s top juxtapositions in the three sub-corpora of the NAES
corpus.

of media.

• TV shows use the word “race” more frequently, and as it turns out looking
at the TV transcripts, mostly in the “presidential race” meaning. This is an
example of different language usage in different types of media.

• TV shows talk more about controversial issues, as the presence of Jeremiah
Wright on the top juxtaposition list indicates.

As another example of analyzing this corpus with the Lydia system, Figure
2.14 shows sentiment polarity time series for Barack Obama taken from the three

2.10. CONCLUSION 35

Figure 2.14: Weekly sentiment polarity time series for Barack Obama in the three
sub-corpora of the NAES corpus.

different parts of the corpus. The pairwise correlations between these time series
are 0.42, 0.49, and 0.37, suggesting that while they are clearly driven by a common
trend, there is a difference in how these three different text sources cover events.

2.10 Conclusion

We have described a new version of the Lydia text analysis system that was designed
to facilitate efficient data extraction from unstructured text, to satisfy the needs of
social scientists. Our system allows a social scientist to obtain statistics about media
coverage of a named entity, sentiment of this coverage, entity juxtapositions, and
their changes over time. It allows to slice the news statistics by source or group of
sources, time period, and time scale. These capabilities are not readily available in
previous text analysis systems, which makes our system a valuable addition to a so-
cial scientist’s toolbox. The new Lydia system was used to provide media coverage
data of the 2008 Presidential Election to the National Annenberg Election Survey.
As of this writing, the NAES publications on the 2008 U.S. presidential election
that use data provided by the Lydia system are still in preparation.

Chapter 3

A Scalable Architecture for Text
Stream Analysis

3.1 Introduction

An increasing number of commercial and scientific applications are being devel-
oped that must deal with large volumes of text. This includes web-scale and spe-
cialized search engines, news and blog aggregation and summarization systems,
sentiment analysis systems, question answering systems, and Semantic Web [21,87]
entity relation modeling applications. Most of these systems are required to main-
tain up-to-date versions of their indexes and other pre-computed datasets while the
set of documents they have to track is constantly expanding. For certain applica-
tions, rebuilding their backend datasets from scratch once every week or month is
acceptable, but many applications have to bring their datasets up-to-date on a daily
or even hourly basis. For these applications it is necessary to have a scalable and
low-overhead method to incrementally update their persistent data structures on ar-
rival of additional documents without disruption of service.

At the same time, the technology for parallel processing of large datasets is
rapidly evolving, which changes the way text-processing applications are built.
Google’s Map-Reduce [39] simplified computation model for large clusters has
been implemented in the Hadoop [11] open-source project, and higher-level anal-
ysis frameworks based on it such as Pig [72], Hive [43], and Cascading [36] have

36

3.1. INTRODUCTION 37

emerged. A more detailed review of some of these related systems is available in
Section 3.2. Open source search libraries such as Lucene [8] and higher-level dis-
tributed search servers and frameworks such as Katta [3], Nutch [9], and Solr [10]
have appeared. However, standardized and unified approaches to map-reduce work-
flow management and handling incremental updates to large datasets derived from
natural language text are yet to be developed.

In this chapter, we describe our experience of building a workflow management
and text stream processing framework for a new scalable version of the Lydia news
and blog analysis system [17, 19, 47, 56, 61–63, 66]. The Lydia system performs
named entity recognition and pre-computes the statistics necessary to see a picture
of news coverage centered around any given entity, including popularity and senti-
ment time series, juxtapositions between entities, and spatial distributions of news
coverage.

Built on top of the Hadoop [11] map-reduce framework, the Lydia system main-
tains an archive of entity statistics which we call a depository containing datasets
we call artifacts produced by one or more map-reduce jobs. This depository is read
by a depository server that exposes a named entity-oriented random access API to
its clients, which include our web frontend, specialized tools, and ad-hoc data anal-
ysis scripts. The Lydia system is capable of building a depository from scratch as
well as updating it incrementally with new data arriving on a daily basis without
disruption of service. This software architecture, described in Section 3.3, allowed
us to successfully overcome the scalability bottlenecks of the old version of Lydia
based on a single MySQL database, and to provide access to a multi-terabyte entity
statistics dataset.

On top of our workflow framework we have two particular technical contribu-
tions:

• A large-scale cross-document co-referential entity resolution algorithm – De-
scribed in Section 3.7, this algorithm replaces the centralized co-reference
resolution algorithm of the old Lydia system described in [63]. To identify
co-referential names among entity names extracted by the legacy natural lan-
guage processing pipeline described in [62] from a text corpus, we apply
several hashing methods. Then, entity names collected into the same groups
according to some of these hashes are considered connected with an edge.

3.2. RELATED WORK 38

In this graph, we identify connected components using the union-find algo-
rithm [37], and then refine these sets using our entity juxtaposition informa-
tion.

• A method for aggregating entity statistics across arbitrarily defined entity
groups – Described in 3.8, this allows us to pre-compute and incrementally
maintain all our entity statistics for entity co-reference sets. Another type of
entity group is entity name classification by ethnicity presented in [5], which
allows us to examine differences between entity statistics by ethnicity, as done
in Chapter 4. Our entity statistics aggregation method works equally well for
small groups such as alternative names for the same person or large groups
such as all people of a certain ethnicity.

In Section 3.9 we evaluate the performance and scalability of our system as
a function of the amount of data to be processed and the number of nodes in the
Hadoop cluster. We also test the system by marking up all WordNet nouns instead
of named entities. Section 3.10 presents future directions for Lydia infrastructure
development.

3.2 Related Work

3.2.1 Hadoop

Apache Hadoop [11,94] is an open-source implementation of Google’s map-reduce
[39] computation model and a distributed file system modeled after the Google File
System [46]. It is implemented in Java and runs on Linux and Windows clusters.
The Hadoop framework manages many traditionally time-consuming and error-
prone components of distributed computation systems, such as inter-process com-
munication and failure handling, at the expense of a restricted computation model.
Our text analysis architecture uses Hadoop both as a distributed storage system and
a distributed computing platform.

3.2. RELATED WORK 39

3.2.2 Pig

Yahoo’s Pig [72] is a data processing environment that implements a query language
called Pig Latin combining declarative constructs inspired by SQL and procedu-
ral statements. Some Pig Latin primitives include FOREACH, FILTER, GROUP,
COGROUP, and JOIN. Pig is independent of the underlying execution platform,
but currently only runs on top of Hadoop. Pig compiles the user’s program into a
sequence of map-reduce jobs that are run on a Hadoop cluster. It simplifies data
analysis tasks compared to programming directly to the map-reduce framework.
An innovative feature of Pig is its debugging environment, capable of producing
a sandbox dataset for verifying and refining user’s programs without incurring the
overhead of time-consuming large-scale processing.

Both Pig and our new Lydia architecture are implemented on top of the Hadoop
map-reduce platform, but their purposes are orthogonal. Pig is a general-purpose
data exploration system designed primarily for batch querying. The Lydia system,
on the other hand, builds a specialized statistical dataset from a text corpus, updates
it with new data, and provides fast on-demand retrieval of these statistics. We can
use Pig to compute certain elements of our statistical datasets in the future.

3.2.3 Hive

Facebook’s Hive [43] is a data warehousing infrastructure built on top of Hadoop for
analysis of large datasets stored in Hadoop files. It has a query language based on
SQL which translates into sequences of map-reduce jobs. Therefore, the minimum
possible query response time in Hive is on the order of minutes. Hive provides a
way to define a data schema that can be used to organize data stored in a variety of
formats (Thrift [88], Hadoop’s RecordIO, tab-separated, or user data format). The
schema metadata and the way data is partitioned between Hadoop files is stored in
a specialized metastore.

The difference between Hive and our scalable Lydia architecture is that Hive is a
general-purpose data extraction system with its own SQL-derived language. Lydia,
on the other hand, is focused on text analysis, and provides some features Hive
lacks, such as a flexible map-reduce dataset update logic and on-demand retrieval of
data from a historical statistics archive that allows for interactive data exploration.

3.2. RELATED WORK 40

3.2.4 Sawzall

Google’s Sawzall [79] is a specialized parallel data analysis language implemented
on top of Google’s map-reduce framework. The best application of Sawzall is an-
alyzing large but homogeneous datasets in such a way that the volume of extracted
statistics is orders of magnitude smaller than the input data. A Sawzall program
is written to handle only one record, and emits values to a number of aggregators
(tables) that it defines. Aggregators can be sums, lists of all values, or more compli-
cated structures allowing to compute top values by some weight function, quantiles,
most popular values, or an unbiased random sample of emitted values. In addition,
aggregators can be indexed, allowing the creation of multidimensional aggregators.
Although Sawzall is a batch processing system, the original thinking behind it was
a streaming processing approach where a Sawzall program would keep up with the
data flow and aggregators would be maintained in an on-line server. That concept
was not implemented in Sawzall [79] because the availability of map-reduce made
it unnecessary.

Although Sawzall is a much more powerful and general-purpose statistics col-
lection framework than our new Lydia architecture, it lacks some features the Lydia
architecture provides, such as a higher-order chaining and dependency management
framework, or an on-line server for maintaining and presenting aggregate statistics
with updates happening in the background.

3.2.5 BigTable

BigTable [32] is Google’s column-oriented distributed database with a simplified
non-relational data model and row-only locking. For every row it allows one to
store a number of column families pre-defined by the schema, each of which can
contain any number of columns. Internally, an ordered immutable sorted map file
format called SSTable is used to store the data. Each table at any moment is split
between a number of tablets corresponding to the table’s row ranges, which are
served by a number of tablet servers. Writes to a table initially get stored in a
commit log and an in-memory sorted table called memtable, but eventually a variety
of compactions are performed to move data from commit log to SSTables and to
consolidate multiple small SSTables into bigger ones.

3.3. ARCHITECTURE 41

BigTable powers the backend of a variety of Google’s applications, and has
inspired multiple open-source column-oriented database implementations including
HBase [7], Hypertable [102], and Cassandra [42]. We considered using HBase to
store our per-entity statistics but at the time of making this architectural decision
the performance overhead introduced by the necessity of insertion of map-reduce
job results into HBase was unacceptable, so we switched to using plain Hadoop
MapFiles (analogous to SSTable) as our storage primitives. As of this writing, many
performance issues in HBase have been addressed and we may consider using it as
a backend storage engine for the Lydia system in the future.

3.3 Architecture

The previous version of the Lydia system described in [62] was capable of process-
ing roughly 250 articles per hour on a single computer [60]. Around 2.5% of that
time was spent during the NLP (natural language processing) phase and 97.5% was
spent on post-processing and database-intensive operations. Thus in redesigning the
Lydia system we focused on removing the bottleneck of a single relational database
and implementing the post-processing and statistics collection functionality on top
of the Hadoop [11] map-reduce [39] framework.

3.4 Processing Flow

The processing flow in our new Lydia system contains the following steps:

• Input document collection – Source documents come from Lydia news and
blog spiders, RSS feeds, or as custom corpora provided by users.

• NLP pipeline – Documents are passed through a specialized version of our
legacy Lydia NLP pipeline [60, 62], which runs as a Hadoop Streaming job.
It marks up and classifies named entities, resolves intra-document corefer-
ences, normalizes geographical location names, and assigns sentiment scores
to entity references. The resulting text corpus with marked-up named entities
is the input for our scalable text analysis system.

3.5. DATA ORGANIZATION 42

• Depository construction or update – Documents are processed through a se-
ries of map-reduce jobs and the results are stored in a directory structure in
HDFS (Hadoop Distributed File System) that we call a depository, which
includes:

– All input documents with exact duplicates removed. Our duplicate re-
moval methods are described in Section 3.5.1.

– Entity reference statistics: per-source frequency and sentiment time se-
ries by entity and article category.

– Entity juxtaposition statistics: time series of co-occurrence frequency
for every pair of entities.

– A full-text index of articles. We use Katta [3] and Lucene [8] to do
distributed full-text search.

– An index of entity names. We use Lucene [8] to search for entity names.

– Groups of co-referential entity names. See Section 3.7 for a discussion
of our cross-document co-reference resolution algorithm.

– Entity classification by ethnicity and country association.

– Entity and juxtaposition statistics aggregated over co-reference sets and
ethnic groups. See Section 3.8 for a description of our group statistics
aggregation method.

• Database export – We still utilize a relational database to provide more flex-
ibility of data exploration. However, we only export a subset of the Lydia
depository into the database, which includes statistics for a number (currently
around a million) of the most frequent entities and co-reference sets.

3.5 Data Organization

Our initial experience with time series and statistics extraction from news text using
Hadoop made clear that a framework was necessary to build, store, and retrieve
these statistics and other pieces of data derived from text, and manage dependencies.
We call the logical units of data containing a specific type of statistic derived from

3.5. DATA ORGANIZATION 43

text artifacts and the directory hierarchy in the distributed file system comprising
multiple such artifacts for a specific corpus a depository.

More precisely, an artifact in our framework is a homogeneous dataset of a well-
defined key-value structure that is stored in a specific directory hierarchy in HDFS.
There are the following types of artifacts:

• Map-reduce artifacts. These artifacts are produced and updated with
Hadoop map-reduce jobs. We have three distinct types of map-reduce ar-
tifacts:

– Readable key-value artifacts. Examples include frequency and senti-
ment time series for each entity, co-occurrence time series for each en-
tity pair, or a list of top-frequency entities for each day. These artifacts
are stored in HDFS as groups of Hadoop’s MapFiles. A MapFile is
a combination of a data part (a sorted key-value file) and an index part (a
subset of keys providing an index into the data part), similar to Google’s
SSTable [32].

– Lucene [8] indexes. Examples include full-text article index and entity
name index. These artifacts are used for storing entity name and full-
text article indexes. They are still produced using map-reduce jobs, but
each output part is a Lucene index instead of a key-value file. These
artifacts are used for article search which is discussed in Section 2.7.

– Intermediate artifacts. These artifacts, also having a key-value struc-
ture, are used as intermediate results in some computations that require
more than one map-reduce job. Therefore, they are not always stored as
random-access MapFiles, but rather as plain sorted key-value files.

• Folders. A folder is a special type of artifact that can contain other arti-
facts. This gives the Lydia depository a hierarchical structure. Every artifact
has a corresponding fully-qualified name of the form “folder_name1.folder_-
name2.· · · .artifact_name”. Examples of Lydia depository folders are:

– exact_dup_stats – statistics for entity names obtained from a set
of articles with exact duplicates removed;

3.5. DATA ORGANIZATION 44

– synset_stats – statistics for co-reference sets;

– group_stats – statistics for ethnic and national groups.

• Bloom filter artifacts. These artifacts store bit arrays corresponding to
Bloom filters [22] for various entity name sets. An example is the Bloom
filter accepting the most frequent 1,000,000 entity names. We use Bloom fil-
ters to restrict the number of entities handled by various parts of our system,
such as the entities and co-reference sets exported to a MySQL database for
convenient data exploration. A great convenience of using Bloom filters with
Map-Reduce is that they are small enough so they can be loaded into memory
by each mapper, making complicated multi-input joins unnecessary.

Since we need to process large historical text corpora quickly, as well as to keep
up-to-date with new documents arriving every day for some corpora such as U.S.
dailies, our framework contains means to accommodate these two different modes
of processing. All Lydia artifacts, except folders, are time-based. The artifact’s di-
rectory contains subdirectories corresponding to one or more date ranges for which
the data has been generated.

3.5.1 Duplicate Removal

News streams contain duplicate and near-duplicate news articles. This is partially
explained by our news spiders erroneously downloading the same article more than
once on different days, or by the same article existing under different URLs within a
news website. Even if the spiders can be made perfect, we still must deal with issues
of news syndication (Reuters, Associated Press) and our historical news archives,
so duplicate removal is an essential step we must take prior to any analytical pro-
cessing.

3.5.1.1 Exact duplicate removal

In Figure 2.3 we can see that the very first job that runs on the text
with named entity markup removes exact duplicate articles and produces the
EXACT_DUP_ARTICLES artifact. This map-reduce job works as follows:

3.5. DATA ORGANIZATION 45

Figure 3.1: Statistics of exact duplicate removal on a four-year U.S. daily news
dataset.

• The mapper takes an article and produces the MD5 hash of the article’s nor-
malized text (lowercased, punctuation removed, whitespace reduced to single
spaces) as a key and the full text of the article as a value.

• The reducer takes articles grouped by the MD5 hash of their normalized con-
tents. For every group of articles with the same hash it produces an article
that contains the text of the first article in the group and aggregated source,
date, and URL metadata for all occurrences of this duplicated article.

During later phases, when time series are constructed, the occurrence metadata
included into every article in the output of the exact duplicate removal job is used to
count every repeated article towards all sources in which it appeared. This allows us
to reconstruct per-source entity occurrence time series appropriately even in cases
the same article happens to occur in multiple sources and/or on multiple dates. This
is important for correct visualization of entity frequency and sentiment time series
and heatmaps.

To make this exact duplicate removal algorithm function in the sce-
nario of daily updates to our document collection, we add an artifact
EXISTING_ARTICLE_HASHES containing MD5 hash codes of all articles to
date. This artifact is less than 1% of the size of the article dataset. We use
EXISTING_ARTICLE_HASHES as an additional input to the above map-reduce

3.5. DATA ORGANIZATION 46

Figure 3.2: A near-duplicate detection experiment using similarity measure (3.1)
performed on 78421 U.S. news articles spanning a 10-day interval.

job and thus filter out articles that have appeared in the past.
Figure 3.1 gives some statistics of exact duplicate removal from our four-year

U.S. news archive. From the large number of days on which some articles are
repeated it is evident that the exact duplicate removal phase managed to compensate
for some imperfections of our news spiders. From Figure 3.1 we see that most
articles are not repeated, but some articles are repeated across long periods of time.
These articles most likely represent stubs or static pages on the news website. The
earliest date of appearance is used for these articles in entity time series calculation.

3.5.1.2 Near-duplicate removal

Near-duplicate articles may be present in the news as a result of multiple news
outlets using the same syndicated articles but fitting them differently to their publi-
cation area. To check for near-duplicate articles in our U.S. daily news corpus, we
conjectured that these articles differ in a small fraction of sentences.

We computed a sentence-level similarity between pairs of articles A1 and A2 as
follows:

|{s ∈ A1 ∩ A2 | len(s) ≥ l0}|
max(|{s ∈ A1| len(s) ≥ l0}|, |{s ∈ A2 | len(s) ≥ l0}|)

(3.1)

It essentially measures the fraction of sentences of length at least l0 that are shared

3.5. DATA ORGANIZATION 47

between two articles. The sentence length restriction is used to eliminate very fre-
quent short sentences. If one article is significantly longer than the other, the simi-
larity is discounted by the increased denominator.

However, less than 6% of all pairs of articles on our test set of 78421 articles
spanning 10 days had a similarity of 0.5 or more according to the measure (3.1)
with l0 equal to 20 characters. Exact duplicates were removed from the test set
before conducting the near-duplicate experiment. The distribution of similarities
between all article pairs is shown in Figure 3.2. Because there were so few pairs
of articles with significant overlaps on the sentence level, we decided not to pursue
near-duplicate article removal in the current version of the Lydia system.

3.5.2 Processing Scheduling

The artifacts in a Lydia depository and the dependencies between them form a di-
rected acyclic graph (DAG) that imposes constraints on the order in which the ar-
tifacts can be built or updated. Our system has a scheduler that determines the
order in which map-reduce jobs used to build or update a depository are run. The
scheduler uses the following data to schedule and configure the map-reduce jobs:

• The set of target artifacts to build or update. This can be specified e.g. as an
artifact name wildcard on the command line.

• Date ranges existing for each artifact.

• Per-artifact settings specified during depository creation:

– Input artifacts. These are the artifacts whose data is used as input to
build or update the given artifact.

– “Side input” artifacts. These artifacts are used as additional inputs but
do not influence the artifact build order. An example of a side input is
the EXISTING_ARTICLE_HASHES artifact used in section 3.5.1.1.

– Whether the artifact needs “final aggregation”, which is typically done
via an additional map-reduce job with an identity mapper and an addi-
tive reducer.

– Date range merging strategy.

3.5. DATA ORGANIZATION 48

We use two algorithms for scheduling the map-reduce jobs that update a depos-
itory: sequential and parallel. The sequential version is easier to understand, while
the parallel version provides improved performance when running on an underuti-
lized Hadoop cluster.

3.5.2.1 Sequential depository build

For a given set of target artifacts to build or update T we identify all of their prereq-
uisites recursively. Let us call this union of T and all their prerequisites D. From
this extended set of artifacts of interest, we select the artifacts that are out-of-date.
The operation of identifying whether an artifact is out-of-date is polymorphic, i.e.
how it is done depends on the artifact type. The default implementation is to check
if the date range set of the artifact contains the union of date range sets of its input
artifacts. In that case, the input artifacts contain no new data and the artifact in
question is up-to-date. Otherwise, the artifact is marked as out-of-date.

Once all out-of-date artifacts are identified, all artifacts in D that have at least
one out-of-date prerequisite are marked. These are the artifacts to be built. Finally,
these artifacts are arranged in the order of a topological sort of the artifact DAG.
This is the order in which artifacts are built or updated.

3.5.2.2 Parallel depository build

A single map-reduce job does not utilize a cluster evenly. There are inevitably some
map and reduce tasks that run longer than others, and the job does not complete until
all tasks complete. To improve cluster utilization and shorten depository build time
we use an algorithm that schedules more than one map-reduce job at a time. There
is a configuration parameter specifying the number m of map-reduce jobs that can
be run at the same time by a single depository build process.

The first step of a parallel depository build is to determine the set of artifacts to
be built. We do this precisely as described in Section 3.5.2.1. The resulting artifact
list gives us the initial contents of the list L of artifacts left to be built. Then, the
scheduler goes through the following steps in a loop until the list L is empty:

1. All the artifacts in the list L that have not been submitted for building are
examined, and as long as there are fewer than m artifacts being built, all

3.5. DATA ORGANIZATION 49

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

D
ep

os
ito

ry
 b

ui
ld

 ti
m

e,
 m

in
ut

es

allowed concurrent map-reduce jobs

Depository build time, min

Figure 3.3: Parallel depository build time as a function of the number of allowed
concurrent map-reduce jobs.

those that have all of their dependencies successfully built are submitted for
building.

2. The next build report is requested from the pool of artifacts currently being
built. If no new artifact build operations have completed by this point, the
request blocks until the next report is available.

3. The artifact build report is stored in a map under the key of the artifact ID so
that the success of the artifact build can be easily checked in step 1. Also, the
artifact is removed from the list L.

Once the list L has been cleared, an attempt has been made to build all artifacts
whose prerequisites could be successfully built. There can be artifact build failures,
but we implement no retry logic beyond that inherently present in the map-reduce
framework, because map-reduce job failures usually indicate software or configu-
ration problems that require manual intervention. In more than two months running
the Lydia depository build process every day, we have not met with any serious
failures during the build process.

We have experimented varying the numberm of allowed concurrent map-reduce
jobs in this algorithm from one to seven on a one-week subset of 486,249 U.S. news-
paper articles. Figure 3.3 shows how the total build time of the entire depository

3.5. DATA ORGANIZATION 50

DAG changes as a function of m. With our depository graph structure the optimal
value of m is three, as further increases of m do not improve performance but intro-
duce additional contention overhead. We analyzed our depository build logs with
m = 3 and found that the number of concurrently built artifacts averaged over time
was 2.26, and 59% of the time three artifacts were being built concurrently.

3.5.2.3 Job input selection

The Lydia depository framework automatically assigns input for each map-reduce
job it runs. The input of a map-reduce job that builds or updates an artifact is
selected from the available date ranges for its input artifacts to satisfy the following
conditions:

• The input date ranges taken from a single input artifact should not overlap.

• The input ranges date should not overlap with date ranges already present for
the artifact being built.

We satisfy these conditions by selecting a minimum cover of the difference
∪iAi \ ∪iBi with the date range set {Ai}, where {Ai} and {Bi} are the date range
sets of artifacts A and B respectively, and A is an input artifact for B. Note that in
case of valid functioning of daily depository updates this set cover always consists
of non-overlapping date ranges and its union is precisely ∪iAi \ ∪iBi. Therefore, it
represents a set packing of the ∪iAi \ ∪iBi with date ranges of {Ai}. However, we
compute these set packings using standard set cover algorithms for intervals. We
will therefore use the terms “set cover” and “set packing” interchangeably in the
remainder of this section and in the following section.

This rule is applied to compute the date ranges to use from each input artifact
A of the artifact B. All of these date range directories combined across all inputs
A of B compose the input of the map-reduce job that builds or updates the artifact
B. For example, Figure 3.4 shows a selection of two date ranges of artifact A that
are chosen by our framework as input to the appropriate map-reduce job to bring
artifact B up-to-date. Note that we could also use three non-overlapping date ranges
of the same length that give us the same union, but the smallest possible number of
input date ranges is chosen.

3.5. DATA ORGANIZATION 51

Figure 3.4: Prerequisite date range selection for map-reduce job input used to bring
an artifact up-to-date.

We also have a notion of a “side input” of an artifact defined as follows: if
A is a side input of B, then the entire set cover of date ranges of the artifact A
is included into the input of each map-reduce job that builds B, ignoring the rule
above. This feature is used in our incremental exact duplicate removal method
described in Section 3.5.1.1.

3.5.3 Date Range Directory Merging

When depository updates are run every day over a period of time, the artifact data
becomes scattered across many single-day and multiple-day date ranges. Most up-
dates are single-day, but multiple-day updates happen when processing gets skipped
for one or more days, e.g. due to power outage. This slows down data retrieval,
because the requested key has to be looked for in multiple date range-named direc-
tories. To keep the number of date ranges necessary to read an artifact small, we
merge a subset of date ranges for an artifact after it has been updated. The merging
operation is usually an AdditiveReducer run on a subset of date range directo-
ries, producing a directory named as a smallest encompassing range of the merged
set. We have multiple strategies for identifying the set of date ranges to merge.

To formalize our date range merging problem, suppose we have a set A =

{[a1, b1], . . . , [an, bn]} of intervals, such that ai < bi and bi ≤ ai+1, corresponding
to the date ranges of data successively added to an artifact (e.g. if bi = ai+1, [ai, bi]

is a single-day date range). A merging strategy is then a function f mapping a set of
date-range intervals {[a′1, b′1], . . . , [a′m, b′m]} existing in the artifact at a certain point

3.5. DATA ORGANIZATION 52

to its subset {[a′i1 , b
′
i1

], . . . , [a′il , b
′
il
]} that has to be merged. The merging strategy

is successively applied to the sequence of daily updates A, producing intermediate
sets of date ranges after each number j of updates: B1 = {[a1, b1]} and Bj =

Bj−1 ∪ {[aj, bj]} ∪
(⋃

[a′,b′]∈f(Bj−1∪{[aj ,bj]})[a
′, b′]

)
\ f(Bj−1 ∪ {[aj, bj]}) for j > 1.

We are interested in the trade-off between two performance measures of a date
range merging strategy:

• Merging overhead. For a single update, e.g. the j’th (j > 1), this overhead is
defined as µj =

∑
[a′,b′]∈f(Bj−1∪{[aj ,bj]})(b

′−a′). It represents the time spent to
merge date ranges f(Bj−1 ∪ {[aj, bj]}) chosen by the merging strategy under
the assumption that the merging operation is linear in the total amount of input
data and the same amount of data arrives every day. We also consider the
amortized per-day merging overhead calculated as

∑n
j=1 µj/

∑n
j=1(bj − aj).

• Random access overhead. This is calculated as the number of date ranges
in the minimum set cover of the intermediate set of date ranges Bj after j
updates and merging operations. We are interested in how this depends on
the total number of days in all updates [a1, b1], . . . , [aj, bj].

3.5.3.1 Total merging strategy

All date ranges are merged into one range after each artifact update, i.e. f(A) =

A. This is suitable for relatively small and frequently accessed artifacts such as
those containing total frequencies for all entities and mappings from entities to co-
reference sets and vice versa. This strategy has a merging overhead proportional to
the total amount of data at every update, which is quite wasteful. However, it has
the lowest possible random access overhead, because all data is available through
only one date range after every update.

3.5.3.2 Binary merging strategy

This strategy aims to maintain an O(log n) number of date ranges in the minimum
set cover of an artifact’s set of date ranges after n days of updates to keep the random
access overhead manageable. Suppose an update happens every day, starting from
day one, generating another single-day date range. If every day i is represented by

3.5. DATA ORGANIZATION 53

Figure 3.5: Date ranges merged by the binary merging strategy during daily updates
over a 16-day period.

a unit-length interval [i− 1, i], we can merge date ranges of the form

[2k+1j, 2k+1j + 2k] (3.2)

where k ≥ 1 and j ≥ 0, as shown in Figure 3.5.
For example, on the day 13 in Figure 3.5 the minimum cover of the date range

set for the artifact will contain ranges [0, 8], [8, 12], and [12, 13] as a result of this
merging strategy. As another example, suppose daily updates start happening on
May 1, 2009. On May 2, we merge data from May 1 and May 2, producing a
single-range set cover. On May 3, we don’t merge anything, and have a two range
set cover (May 1-2 and May 3). On May 4 we merge the ranges for May 1-2, May
3, and May 4, and again obtain a single-range set cover. On May 5 we don’t merge
anything and have a two-range set cover, May 1-4 and May 5. On May 6, we merge
May 5 and May 6 data and obtain a two-range set cover (May 1-4 and May 5-6),
and so on.

Suppose that the time complexity of a merging operation for a group of date
ranges of total length of n days is O(n). Assuming that an update happens every
day, it is clear from Figure 3.5 that the total time complexity of all merge operations
happening in n = 2K days is O(2K−1(K − 1)) + O(2K) = O(2K−1(K + 1)) =

O(n log n). This gives an amortized daily merging overhead of O(log n). This is
confirmed by our simulations for numbers of days n different than a power of two.

To prove the O(log n) random access overhead bound, suppose we want to re-
trieve data from the artifact on the m’th day of daily updates, m < n. For the
retrieval result to be complete, we must use set of non-overlapping date ranges
that cover the full range of days 1 to m. If the binary representation of m is
m = 2i1 + · · · + 2is , 0 ≤ i1 < · · · < is < k, the artifact will have a date range set
packing containing ranges of lengths 2i1 , . . . , 2is at that time. Therefore, no more
than O(logm) date ranges will have to be opened to perform the retrieval.

3.5. DATA ORGANIZATION 54

Input: A set S = {[a1, b1], . . . , [an, bn]} of date ranges satisfying the
containment property.

Output: A subset M ⊂ S of date ranges to merge such that adding the
encompassing date range of M to S does not violate the
containment property.

b← maxi bi1

a← the minimum ai such that bi = b2

M ← {[a, b]}3

while ∃ i ∈ {1, . . . , n} such that bi = a do4

a′ ← the minimum ai such that bi = a5

if a− a′ ≤ b− a then6

M ←M ∪ {[a′, a]}7

a← a′8

else9

break10

end11

end12

if M contains only one date range then13

M ← ∅14

end15

return M16

Algorithm 1: The binary date range merging algorithm.

This scheme only deals with the case when all added date ranges are one day
in length. But our binary merging algorithm must be able to handle multiple-day
updates, for example, when the system misses a day of processing due to a power
outage and produces a two-day update when it is brought up. The generalized
version of the merging algorithm presented below relies on and maintains the prop-
erty of “containment”: every two date ranges of the same artifact either have a
zero-length intersection, or one of them is contained in the other. The special-case
merging algorithm described by (3.2) and Figure 3.5 obviously maintains this prop-
erty. This property is important for reading the artifact because it guarantees that in
the minimum packing set of date ranges every pair of date ranges will also have a

3.5. DATA ORGANIZATION 55

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

M
er

gi
ng

 o
ve

rh
ea

d
/ l

og
(N

 d
ay

s)

(a) Maximum # of days per an update m

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30

S
et

 c
ov

er
 s

iz
e

/ l
og

(N
 d

ay
s)

(b) Maximum # of days per an update m

Average
Min

Max

Figure 3.6: The ratio of the merging overhead (a) and of the minimum set packing
size (b) of Algorithm 1 to the logarithm of the number of days depending on the
maximum update date range length.

zero-length intersection.
The general-case Algorithm 1 takes a set of date ranges and produces its subset

that should be merged. It is easy to see that if a single-day date range is generated
every day, Algorithm 1 merges exactly the date ranges described by (3.2) and shown
in Figure 3.5.

To see why Algorithm 1 does not break the containment property of the artifact’s
date range set S, suppose it outputs M = {[ai1 , bi1], . . . , [aim , bim]}, where bi1 =

ai2 , . . . , bim−1 = aim . The only way the set S ′ = S ∪ [ai1 , bim] can violate the
containment property is when there is a date range [al, bl] /∈ S ′ such that al < ai1
and ai1 < bl < bim . If bl /∈ {ai2 , . . . , aim}, then bl ∈ (aij , bij) for some j and S
itself violates the containment property. If, on the other hand, bl = aj = bj−1 for
some j ∈ {2, . . . ,m}, then al should have been selected as a′ instead of aj−1 at
line 1. Therefore, the new set S ′ of date ranges does not violate the containment
property.

We conducted simulations to calculate the per-day merging overhead and the
average random access overhead of Algorithm 1 with the number of days per update
distributed uniformly from 1 to m, where m = 1, . . . , 31, as a function of the total
number of days n in all updates. Figure 3.6 (a) shows that the per-day merging
overhead of Algorithm 1 is O(m log n). However, in our real use cases m does
not exceed 4, so the per-day merging overhead of Algorithm 1 for our purposes
is effectively O(log n) even in case of a variable number of days per update. The

3.6. DEPOSITORY SERVER 56

performance of Algorithm 1 in terms of the random access overhead (minimum set
cover size) is even better: Figure 3.6 (b) shows that for any number of days per
update the number of date ranges in the minimum set cover stays O(log n).

3.6 Depository Server

To provide the web frontend (see Section 2.8) and research scripts access to the
collected statistics, our system includes a depository server. The depository server
provides access to one or more Lydia depositories via a Thrift [88] API. Currently
the depository server for a given depository or group of depositories runs on a sin-
gle machine. This is acceptable given our current workload, because we can serve
different depositories on different machines, and the data structures necessary to
access the largest of our depositories (U.S. daily newspapers) still fit into one ma-
chine’s memory.

The API exposed by the depository server allows access to various artifacts
present in the underlying depository. Here is a representative sample of API func-
tions provided by the depository server. The IdFilter type is used to specify
source ID sets to return statistics for, and whether the results should be aggregated
across source IDs.

• list<ArtifactDesc> getArtifacts() – returns a list of structures
describing every artifact handled by this depository server, for all available
depositories.

• list<DepositoryDesc> getDepositories() – returns a list of
structures describing every depository handled by this depository server.

• list<SourceDesc> getSources(string depository_name)

– returns a list of structures describing all document sources in the given
depository.

• list<EntitySearchResult> searchEntities(string

full_artifact_name, string query) – searches the given entity
index artifact and returns a list of entity name results along with their fre-
quencies.

3.6. DEPOSITORY SERVER 57

• list<ArticleSearchResult> searchArticles(string

full_artifact_name, string query, IdFilter source_-

filter, i32 start_index, i32 num_results) – uses Katta
[3] to search the given article index artifact and returns the given number
of results starting from the given starting position.

• map<i32, IntTimeSeries>

getPerSourceEntityTimeSeries(string

full_artifact_name, string entity_name, TimeFilter

time_filter, IdFilter source_filter, i32

counter_id_mask) – retrieves frequency and/or sentiment time series
for the given entity from the given time series artifact with the specified fil-
tering by source and time (see Section 3.6.3). The bit mask of types of time
series to retrieve (e.g. frequency, positive and negative sentiment counts) is
specified by counter_id_mask.

• JuxtaResult getPerSourceEntityPairJuxtaTimeSeries(

string full_artifact_name, string entity1_name,

string entity2_name, TimeFilter

time_filter, IdFilter source_filter) – retrieves juxtaposi-
tion time series for the given pair of entities from the given artifact of the
appropriate type with the specified filtering by source and time.

• list<JuxtaResult> getPerSourceJuxtaTimeSeries(

string full_artifact_name, string entity_name, i32

top_count, bool include_score, bool sort_by_score,

TimeFilter time_filter, IdFilter source_filter) – re-
trieves the top juxtapositions for the given entity, optionally including juxta-
position score (2.1), in the order of either decreasing frequency or decreasing
juxtaposition score. Each result entry contains a juxtaposed entity name and
a juxtaposition time series filtered by source and time according to time_-
filter and source_filter.

The depository server API includes two types of functions: those that return
information about the contents of the server as a whole (getArtifacts(),

3.6. DEPOSITORY SERVER 58

getDepositories(), getSources()) and those that query specific arti-
facts. The majority of the depository server API functions are of the latter
type. They accept a “full artifact name” as their first argument, which is an ar-
tifact name with all enclosing folders prepended by the depository name, such
as dailies#exact_dup_stats.PER_SRC_ENTITY_TS. Other arguments of artifact-
querying API functions usually include an entity name, a pair of entity names,
or a search query, a specification of the source set to retrieve the data from
(source_filter), and a specification of a date range to retrieve time series data
for and the granularity of its aggregation (time_filter).

3.6.1 Depository Server Implementation Overview

The primary components of the depository server are shown in Figure 3.7. The
multi-depository handler dispatches API requests to the correct single-depository
handler based on the depository name included in the full artifact name provided.
Each single-depository handler has an artifact reader instance associated with each
readable artifact of the corresponding depository.

Figure 3.7: A class diagram of the Lydia depository server.

3.6. DEPOSITORY SERVER 59

3.6.2 Artifact Readers

The artifact reader base class is responsible for maintaining the reader finite state
machine (“not opened”, “opening”, “working”, “updating”, and “closing”) and pro-
viding general caching functionality. The specific artifact reader subclasses are re-
sponsible for handling the following types of artifacts mentioned in Section 3.5:

• Readable key-value artifacts. These artifacts are handled
by MapFileArtifactReader. This type of reader maintains a set of
opened Hadoop MapFiles for a set packing of date ranges of the artifact.
Inside of every date range directory there is a group of MapFiles named
part-0 to part-(n − 1), each corresponding to the output of one reduce
task of the map-reduce job that produced the date range directory. For all date
ranges in the covering set, or in the subset of the covering set that is sufficient
to answer the current request, the reader uses the same hash function by which
keys were originally split between reduce tasks to identify the part contain-
ing the given key. Then the appropriate part-i MapFile is queried with
the given key (such as entity name), yielding a list of values, at most one per
date range. For most artifacts AdditiveMapFileArtifactReader’s
functionality is then invoked which sums up those retrieved values using the
polymorphic addition operation introduced in Section 2.6.1, and returns a sin-
gle value. In other cases, e.g. for the EXACT_DUP_ARTICLES artifact, the
first valid value from the list is chosen and returned, because the result list is
not expected to contain more than one value.

• Entity name Lucene indexes. These artifacts are han-
dled by EntityIndexArtifactReader. Entity indexes are relatively
small (only 4 GB for our 74-million entity U.S. daily news dataset). There-
fore, we download an entity index from HDFS to the local file system every
time it is updated and access it using the standard Lucene [8] API.

• Full-text article Lucene indexes. This type of artifacts is handled by
ArticleIndexArtifactReader. An artifact of this type corresponds

3.7. LARGE SCALE ENTITY CO-REFERENCE RESOLUTION 60

to a full-text Lucene index of all articles present in the depository with the ad-
ditional metadata to facilitate advanced search capabilities described in Sec-
tion 2.7. The reader class handles queries by forwarding them to servers of
the Katta [3] distributed Lucene infrastructure library running on our cluster.

3.6.3 Time Series Filtering by Source and Time

The Lydia depository server is capable of returning time series aggregated on a
variety of time scales and document source granularities. The depository server
API includes two frequently used structures to specify these parameters:

• Time filter. This structure contains:

– Time scale: daily, monthly, or yearly.

– Time period specified by its first and last time point (day, month, or year,
depending on time scale).

– Aggregation period length in the units of the given time scale. For ex-
ample, to obtain weekly time series, a daily filter with a period length
of 7 is used.

• Source filter. This structure contains:

– A boolean flag indicating whether to return statistics for all document
sources.

– A set of document source IDs of interest. Used if the above “all sources”
flag is false.

– A boolean flag indicating whether to aggregate the returned data across
all sources included. If this is false, detailed data is returned for each
source.

3.7 Large Scale Entity Co-reference Resolution

An important component of the Lydia system is a named entity co-reference reso-
lution engine. An entity may be referred to using many different names in a text

3.7. LARGE SCALE ENTITY CO-REFERENCE RESOLUTION 61

corpus. For example, George W. Bush may be variously referred to as “George W.
Bush”, “George Bush”, “Bush”, or even “Dubya.” While NLP techniques can be
used to perform co-reference resolution within the scope of a news article, associat-
ing an entity with its synonymous names is a difficult problem. This is particularly
true for text corpora in which the number of entities makes pairwise similarity com-
parison infeasible.

As part of the new Lydia analysis architecture, we have created a co-reference
resolution engine capable of computing likely co-referential entities in an unsuper-
vised way. The previous version of the Lydia system used a co-referential entity
identification algorithm based on morphological and contextual similarity and clus-
tering [63]. This algorithm, however, was designed to run on a single machine and
was not immediately parallelizable. To handle over 74 million entity names in our
U.S. daily news corpus, we implemented co-reference resolution as a sequence of
map-reduce jobs on top of the Lydia depository framework. This engine also al-
lows the seamless introduction of known co-referential entities hand-annotated by
a human user.

The new Lydia co-reference resolution engine works in three main steps.

• Entities are hashed into groups using logic dependent on their type, as deter-
mined by earlier phases of the Lydia system.

• Groups of entities with compatible hash types are then merged.

• The resulting larger groups of entities are refined into smaller groups, and
finalized.

We will discuss each of these phases in turn.

3.7.1 Entity Hashing

The primary work done in the co-reference resolution system consists of a series
of entity type-dependent hashes. That is, if an entity is a person, there are a very
different set of morphological traits which imply co-reference than if the entity
is an organization. Each hash type attempts to reduce the entity to a core form
which should be common across a set of possibly co-referential entities. While

3.7. LARGE SCALE ENTITY CO-REFERENCE RESOLUTION 62

in principle extensible to a variety of other types, there are four primary types of
hashes implemented in the Lydia co-reference resolution system.

3.7.1.1 Default morphological hashing

All entities are hashed by removing case, whitespace, and punctuation. This hash is
simply designed to catch variants of an entity where we cannot apply more specific
type-based knowledge to aid us. In general, all other hashes perform these simple
reductions in addition to their more specific hashing logic.

3.7.1.2 Person hashing

This type of hashing is performed for entities which the Lydia system has classified
as a person. The hash optionally performs a variety of simplifications to the name,
such as removing suffixes (e.g., III, Jr., Sr.), removing middle names, and a variety
of steps to eliminate likely entity markup failures (e.g., trailing punctuation and
possessives). Thus, the resulting hash for the set of entities “George Bush,” “George
W. Bush,” and “George H.W. Bush” should be “georgebush.”

The hash also reduces nicknames (based on a predefined list) to their base form
(e.g., “Ted” becomes “Edward”). There are a significant number of cases in which
nicknames may be ambiguous. For example, the name “Alex” may refer to “Alexan-
dra” or “Alexander.” In these cases, all possible hashes are emitted. In a similar
vein, the system may also optionally generate abbreviated forms of the name for
inclusion in the list of hashed elements (these will be later removed if they do not
appear in the corpus). For example, “George Bush” might be abbreviated “G. Bush”
or simply “Bush.”

We note that both of these manipulations can result in an entity being present
in many different hash buckets. However, as discussed later, we will later merge
buckets and perform a contextual refinement of groupings, eliminating groupings
of person entities which are only morphologically similar. Thus, while it is possible
for an entity to be determined to be associated with multiple distinct entities, these
entities will eventually be merged together and then refined into smaller groups.
Of course, like most behaviors in the co-reference resolution engine, abbreviation
generation and nickname resolution are optional.

3.7. LARGE SCALE ENTITY CO-REFERENCE RESOLUTION 63

3.7.1.3 Company hashing

This type of hashing is performing for entities which the system has classified as
companies. The hash primarily removes suffixes associated with companies. That
is, “Wal-mart”, “Wal-Mart Incorporated”, and “Wal-Mart Inc.” will all be hashed
to “walmart”.

3.7.1.4 Metaphone hashing

Metaphone [77] is a “sound-alike” hash system which generates a hash based on
the pronunciation of a word. Hence, two words will have the same metaphone
hash if they “sound alike.” We directly use the Double-Metaphone implementation
provided by the Apache Commons library, and apply the hash only to entities clas-
sified as people. The reason for this is simply that two arbitrary entities with similar
pronunciations are not likely to be similar, while person entities undergo a sepa-
rate later stage of refinement wherein erroneous relationships will be purged. The
benefit of this stage, however, is that names such as “Rachmaninoff” and “Rach-
maninov” will be placed together in a metaphone hash, while this similarity will be
entirely missed by other types of hashes.

3.7.2 Merging of Hashed Groups

The results of the various hashing stages described above is a set of entity group-
ings. We can now combine these groupings into larger groups, where appropriate,
by application of a disjoint-forest merge algorithm. This algorithm is implemented
as a serial program in C++, for reasons both of efficiency and the theoretical diffi-
culty of implementing such an algorithm as a Map-Reduce job.

In our current implementation, the default morphological hash is combined with
the company hash, while the metaphone hash is combined with the person hash.
The result of these merges is two sets of entity groupings, one consisting of person
entities and the other all remaining entities. For non-person entities, the processing
is now effectively complete. However, we perform further refinement on the large
groupings of similar names.

3.7. LARGE SCALE ENTITY CO-REFERENCE RESOLUTION 64

3.7.3 Refining Entity Clusters Using Juxtapositions

We now have the problem of examining a large set of names and determining which
are likely coreferential entities, and which are not. Such a group may include en-
tities which are largely similar, such as “George Bush” and “George W. Bush,”
and entities which can be largely dissimilar, such as “Edward M. Kennedy” and
“Theodore R. Kennedy” (here, for example, linked because of the shared nickname
“Ted”).

To refine these relatively large groups of potentially co-referential entities into
smaller likely co-referential sets, we examine the juxtapositions associated with
these entities. In order to compare the similarity between two juxtaposition lists, we
essentially treat the set of juxtapositions for each entity as a unit vector, and apply
some measure of vector similarity, such as cosine distance. However, a number of
different measures can be used to determine the similarity between two vectors, and
in practice we use a simple, if ad-hoc, metric which places significant weight on the
overall size of the set of mutually juxtaposed entities.

With these similarity measures computed, we perform an iterative clustering of
entities, examining each pair of entities in order of similarity. Each entity in this
pair is associated with some cluster of entities (initially only itself), and we decide
whether to merge these clusters based on the (1) overall similarity between all pairs
of entities in the two clusters, and (2) the morphological compatibility of elements
within the two clusters. By (2) we mean that we require significantly more similar
juxtaposition lists to merge entities such as “George W. Bush” and “George H. W.
Bush” than to merge “George Bush” and “George W. Bush.” The overall similarity
required for these merges to occur is a user-defined parameter, tunable to provide
more or less aggressive (and hence less or more accurate) clustering behavior.

3.7.4 Hand-annotated Co-referential Entities

As no unsupervised entity co-reference system will ever be completely accurate,
the system must be able to easily incorporate hand-annotated co-referential entities.
The system described above allows for such annotations by allowing the user to
specify groups of entities which should appear as co-referential in the output. The
system does this by forcibly merging the sets containing these entities during the

3.8. GROUP STATISTICS AGGREGATION 65

hash group merging phase (and additionally, overriding the type of the entity, if
it was misclassified). Furthermore, during the refinement phase, pairs of entities
which were hand-annotated as co-referential are treated as having perfect similarity
for the purpose of clustering. Thus, the resulting clustering will necessarily have
all hand-annotated co-referential entities, but also other entities determined by the
system to be co-referential. For example, if the user specifies that “Al Gore” and
“Gore” should be co-referential, the system may still determine that “Albert Gore”
should also be in this cluster.

3.8 Group Statistics Aggregation

The ability to efficiently aggregate statistics over a large number of potentially large
groups of entities is an important capability for the Lydia system. The most com-
mon usage of this is that statistics for co-referential entities (e.g. George Bush,
George W. Bush, Bush) should be aggregated to allow for combined analysis. Ad-
ditionally, this ability enables large scale analyzes of groups, such as the distinctions
in news coverage based on Cultural/Ethnic/Linguistic groups discussed in Chapter 4
and [92].

However, implementing efficient group aggregation in a Map-Reduce system is
somewhat non-intuitive, due to the inability to perform random access queries to
determine group membership. That is, although it is trivial to implement group ag-
gregation given that each mapper has access to the complete random-access group
membership information for every entity, this assumption is not scalable. The size
of our U.S. dailies dataset alone makes it infeasible to store such a table locally
to each mapper, while distributed solutions such as memcached proved relatively
slow (as well as a drain on clusterwide memory resources). Thus, we must aggre-
gate statistics across groups without relying on the ability to make any membership
queries directly, but only as part of the key-value inputs to a Map-Reduce job.

We will first discuss the case in which we wish to aggregate key-value pairs of
the form ENTITY_NAME : STATISTIC (we make no assumptions as to the content of
the statistic, but that it can be meaningfully aggregated in a commutative and asso-
ciative way). We will then discuss the more interesting situation that occurs when
we wish to aggregate statistics keyed to pairs of entities, such as with juxtaposition

3.8. GROUP STATISTICS AGGREGATION 66

time series.

3.8.1 Aggregation of Single-keyed Entity Statistics

Group aggregation of an artifact keyed by a single entity can be performed as two
Map-Reduce jobs, the second simply being an additive reduction. To begin, there
are two types of input key-values given as input to the job: (1) groups, with an
entity name as the key and a list of groups the entity belongs to as the value, and (2)
statistics, with the entity name as the key and a commutatively additive statistic as
the value. Note that if the groups are given as group to entity mappings (rather than
entity to group) we can easily invert the mapping in a single job. The map phase of
the job behaves as follows:

• ENTITY : Group1, . . . ,Groupn→
ENTITY : (null , Group1, . . . ,Groupn)

• ENTITY : STATISTIC→
ENTITY : (STATISTIC, null)

Then, the value set of each key sent to the reduce phase will consist of a set of
groups and a set of statistics. For each, the reducer will sum the set of statistics,
and for each group emit GROUPNAME : SUMMEDSTATISTIC. A final additive
reduction will then merge the emitted statistics for each group, resulting in a fully
aggregated artifact.

3.8.2 Aggregation of Pair-keyed Entity Statistics

Aggregation across groups in which the statistic corresponds to a pair of entities is
considerably more involved than the single entity case. First, let us consider what
we mean by aggregation in this situation. Suppose that we have two entities, E1

and E2, such that E1 belongs to groups G1 and G2, while E2 belongs to groups
G2 and G3. Correct aggregation of a statistic over the pair E1 and E2 will attribute
the statistic to all group pairs (G1, G2), (G1, G3), (G2, G2), and (G2, G3) (and, of
course, their symmetrical counterparts). Another consideration of the system is
whether entities which do not appear in any group can appear as one or both entries

3.8. GROUP STATISTICS AGGREGATION 67

in the pairs of the resulting output. Finally, one technical consideration is whether
the input includes both orderings for pairs, and whether we wish the final output to
include data for both orderings. As we shall see, both of these considerations can
be easily dealt with.

In order to perform this aggregation, we use three Map-Reduce jobs, one of
which is an additive reduction. The first job proceeds as follows:

Map phase #1:

• ENTITY : Group1, . . . ,Groupn→
(ENTITY, null) : (null , null , Group1, . . . ,Groupn)

• (ENTITY1, ENTITY2) : STATISTIC→
IF ENTITY1 ≤ ENTITY2

(ENTITY1, ENTITY2) : (STATISTIC, null , null)
(ENTITY1, null) : (null , ENTITY2, null)

IF ENTITY1 > ENTITY2

(ENTITY2, ENTITY1) : (STATISTIC, null , null)
(ENTITY2, null) : (null , ENTITY1, null)
(ENTITY1, null) : (null , MARKER, ENTITY1)
(ENTITY2, null) : (null , MARKER, ENTITY2)

Reduce phase #1:

• (ENTITY1, ENTITY2) : (STATISTIC, null , null)→
(ENTITY1, ENTITY2) : (STATISTIC, null , null)

• (ENTITY1, null) : (null , ENTITYLIST, GROUPLIST)→
FOR EACH ENTITY2 IN ENTITYLIST

(ENTITY1, ENTITY2) : (null , null , GROUPLIST)
(ENTITY2, ENTITY1) : (null , null , GROUPLIST)

In essence, this first job works to merge the individual group data from each
entity with the set of pairs that each entity has a paired statistic with. This phase
also generates stand-in groups for entities which do not appear in any groups, so
that their pairwise data can be preserved later, if desired. The output of this job
is then additively reduced, resulting in each keyed pair containing a data structure

3.9. PERFORMANCE 68

with all relevant information about the set of groups each entity is in, as well as the
statistic. The final map-reduce job simply emits statistics based on pairs of groups
listed for each pair of entities, based on the policy regarding single-entity groups
and desired pair-wise orderings, and then additively reduces to obtain the desired
result.

3.9 Performance

3.9.1 Comparison with the Old Lydia System

The new Lydia architecture is significantly more scalable than the old database-
driven version of the Lydia system [62]. For example, in our experiment processing
one day of U.S. daily news data using the old Lydia system took 9 hours 12 min-
utes on one machine. Processing the same corpus from scratch with the new Lydia
system on an 18-node cluster takes 1 hour 55 minutes, representing a speedup of
4.75, or an efficiency of 26% (where 100% would correspond to linear scalability).
However, scaled up up to a four-day corpus, the old system met with significant
bottlenecks in the DBMS and took 7 days and 33 minutes to complete the process-
ing, while the new system took only 7 hours and 38 minutes on our 18-node cluster
to perform NLP processing and build a depository. This already demonstrates a
speedup of over 22, and the advantage of our new system over the old one is even
greater on larger corpora. Note that the functionality of the new Lydia architec-
ture does not completely replicate the architecture, but offers additional features
not present in the original system.

3.9.2 Scalability

Figure 3.8 (left) shows the total amount of time taken by the Lydia depository build
process for a 160 MB compressed input data set split between four days to simulate
daily updates to the depository. For such a small amount of data it is unsurprising
to see that with more than 8 nodes the communication overhead starts to outweigh
the benefit of additional computation power. A similar pattern holds for a slightly
larger 1.2 GB corpus in Figure 3.8 (right). This shows that it is important to select

3.9. PERFORMANCE 69

Figure 3.8: The amount of time taken to build a depository depending on the num-
ber of nodes used. The input data size is 160 MB (left) and 1.2 GB (right), split
between four daily updates.

Number of nodes Time taken, min
8 849
17 489

Table 3.1: Amount of time taken to build a depository on a 10 GB dataset with
varying number of nodes.

the optimal number of nodes for map-reduce workloads that run on small datasets
such as daily updates to a Lydia depository.

For large corpora, however, an increase in cluster size translates clearly into
a performance increase. As Table 3.1 shows, for a corpus approximately 10 GB
in compressed size there was a speedup of 1.73 going from 8 to 17 nodes, cor-
responding to an efficiency of 81.6%. This confirms our explanation of the non-
monotonicity of the running time as a function of number of nodes on small cor-
pora.

Depository update times heavily depend on the existing depository size be-
cause of the artifacts that require full merging on every update, such as the
CATEGORY_REFS artifact containing entity names with associated categories and
frequencies. Figure 3.9 shows incremental update times on a small depository as it
grows from two to nine days of U.S. daily news data. Figure 3.10 shows the sum of

3.9. PERFORMANCE 70

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 3 4 5 6 7 8 9

U
pd

at
e

tim
e,

 m
in

Number of days of data already in the depository

Figure 3.9: Time taken by incremental updates to a U.S. daily newspaper depository
with a small number of days.

Figure 3.10: Time taken by incremental updates to a four-year U.S. daily newspaper
depository.

all artifact build times obtained through analysis of our June 2009 production de-
pository update logs of the four-year U.S. daily newspapers depository. The spikes
in Figure 3.10 can be explained by manual changes caused by system maintenance.
Even though these update times are still manageable with our current data scale
and computational resources, it is clear there is an opportunity for improvement
of the update times for large depositories, perhaps by adopting a column-oriented
database such as HBase [7] as backend storage.

3.9.3 Alternative Entity Markup

As a test for our architecture we have built a depository on one month of U.S.
daily news (May 2009) in a mode where all nouns and noun phrases appearing in
WordNet are marked up as entities and the original entity markup from the legacy

3.9. PERFORMANCE 71

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

ce
nt

ag
e

of
 r

ef
er

en
ce

s
re

ta
in

ed

Entity frequency cut-off rank

a

co
m

m
un

ity

en
ou

gh

co
st

Sta
r

pla
yin

g

ab
us

e

pic
k

pr
ior

sc
en

e

Ray

Pen
ns

ylv
an

ia

fe
m

ale

ra
isi

ng

ele
ctr

ici
ty

Afg
ha

n

vo
lum

e

ec
on

om
ist

glo
ba

l w
ar

m
ing

bo
yfr

ien
d

sh
ow

ca
se

co
llis

ion

M
os

s

br
ac

ke
t

fo
re

ign
 p

oli
cy

La
ur

el

Bro
ok

co
un

cil
 m

em
be

r

ro
ya

lty

so
cia

lis
m

ov
er

tu
rn

m
ot

to

m
ilit

ar
y p

er
so

nn
el

du
el
pr

et
ria

l

ge
l
ple

as
ing

Pro
te

sta
nt

fo
rfe

it

Aqu
ina

s

pu
n
lav

a
Air

Bag

co
nc

ep
tio

n

W
em

ble
y

cr
az

e

% of references retained

Figure 3.11: The fraction of WordNet noun references in the U.S. daily corpus
retained as a function of the number of most frequent nouns ignored. Example
words corresponding to various frequency ranks are shown.

Lydia markup All WordNet nouns
Time to build, min 282 387
Number of entities 5639436 105340
Example top entities U.S., flu, Barack Obama, Web, Canada can, May, people, year, time
Top entity frequency 155814 1108203
Depository size 38.8 GB 22.8 GB

Table 3.2: Amount of time taken to build a depository on one month of U.S. daily
news data using normal Lydia entity markup and all WordNet nouns.

Lydia NLP pipeline is discarded. As Table 3.2 shows, this increased processing time
by 37% and reduced the number of resulting entities down to a number comparable
to the fixed size of the WordNet dictionary. We explain the performance decrease
by the extremely high frequency of some of the common nouns, while most of the

3.10. CONCLUSION 72

entities marked up by the NLP pipeline are very infrequent. This is confirmed by
the “top entity frequency” line of Table 3.2.

Looking at the top entities in each depository in Table 3.2 we see that the named
entities marked up by the Lydia NLP pipeline are much more explanatory of the
events, e.g. flu is on the list due to the swine flu epidemic. The top WordNet nouns,
however, include May, which is the month when the news articles were collected.
The WordNet nouns are a valuable addition to the Lydia entity markup, but the most
frequent of them are of little interest. The top 11 of them are even included into a
standard list of English stop-words. To identify the best number of top-frequency
nouns to ignore, we have plotted the fraction of all WordNet noun references in
the news remaining after ignoring all nouns higher than a certain frequency rank
(Figure 3.11). Using this graph and the example words, we decided to discard the
1000 most frequent nouns and retain 32% of noun references. Our system allows
marking up custom phrase lists such as this while keeping the Lydia NLP pipeline
entity markup intact.

This experiment demonstrates that we can switch to alternative notions of what
to consider an entity with a relatively low overhead in terms of performance and
disk space.

3.10 Conclusion

The new scalable version of our Lydia text analysis system is implemented on top
of the Hadoop map-reduce library. The Lydia system takes a text corpus and builds
a statistical dataset we call a depository, containing statistics of entity occurrences,
juxtapositions, entity and article search indexes. We have implemented a custom
workflow management framework on top of Hadoop that allows us to automatically
track dependencies between various statistical datasets (artifacts) derived from text
contained in a Lydia depository, and unify batch processing of a new corpus with
an incremental update of a corpus that has already been processed. Our system
also supports scalable cross-document co-reference resolution and entity statistics
aggregation across co-reference sets and other entity groups. The results of text
processing and entity statistics extraction are available for random access by the
web frontend and ad-hoc analysis scripts through our depository server.

3.10. CONCLUSION 73

The directions for future improvement of our text analysis architecture include:

• Using a column-oriented database such as HBase to store entity statistics.
This will allow to eliminate the scalability bottleneck our depository server
currently represents.

• Addition of a functionality permitting the user to define custom entities after
the depository has been built.

• Further optimization of multiple-map-reduce job workflow scheduling.

Chapter 4

Differences in News Coverage of
Cultural/Ethnic Groups 1

4.1 Introduction

Interactions between distinct ethnic/cultural groups comprise one of the dominant
social forces shaping our world. Accurately quantifying the nature of these inter-
actions provides essential data for social science research, in fields as diverse as
history, political science, and international relations.

In this chapter, we report on a serious effort to use computational analysis of
long-scale text streams (newspapers) to measure differences in the reference fre-
quency and sentiment associated with distinct ethnic/cultural groups. Our method-
ology is as follows. Using two distinct and orthogonal classification methods
(ethnic name analysis and co-reference association), we identify likely ethnicities
and nationalities for each person mentioned in the news. By aggregating refer-
ence/sentiment counts across all members of a cultural/ethnic group, we obtain
strong-enough signals to detect and measure interesting trends.

In particular, we report on the following contributions:

• Methods for Nationality Detection – We develop a method to associate pri-
mary nationalities for distinct named entities (people) based on a statistical

1 This chapter is drawn from “Identifying Differences in News Coverage Between Cul-
tural/Ethnic Groups” [92].

74

4.1. INTRODUCTION 75

analysis of geographic co-locations. Here we validate how this nationality de-
tection methodology and the name ethnicity detection methodology described
in [5] can work together to measure ethnic divisions in regional and national
contexts.

• Geographic News Analysis of Cultural Groups – We demonstrate that our
methods coupling ethnicity/nationality detection with large-scale news anal-
ysis produce striking and insightful distributions of ethnicity and nationality.
In particular, we produce a series of cartograms (skewed data maps) reporting
the ethnic distribution of 13 cultural/ethnic (CEL) groups across the world.
We present accurate frequency distribution and sentiment maps [66] for CEL
groups within the United States, and demonstrate that they accurately reflect
survey data collected by the U.S. Census in 2000.

• Time-Series Trends in CEL Group Frequency and Sentiment – Through anal-
ysis of two extensive news corpora, we detect interesting trends and peri-
odicities in news coverage. Our “dailies” corpus covers roughly 500 U.S.
newspapers on a daily basis over the past four years, while our analysis of
The New York Times spans 27 years, from 1981 to 2008. Interesting trends
of where different CEL groups appear within sections of the newspaper (e.g.
business, sports, entrainment) are revealed. Our sentiment analysis measures
the half-life of major events such as 9/11 in public discourse, as well as the
ebbs and flows of smaller events.

• Inter-Group Interactions and Sentiment – Our methods generalize to measure
the frequency and sentiment co-locations spanning CEL groups, with natural
geographic and political associations being revealed through the news data.
We can quantify the tenor of interactions between different groups and how
they change over time.

Of course, our methods can be applied to text streams such as blogs as well, but
we limit our attention here to news data, because of its applicability over greater
time spans and the better precision of geographic location information we have for
news sources. We anticipate that our data/analysis will be of intense interest to
social scientists.

4.2. PREVIOUS WORK 76

This chapter is organized as follows. We begin with a quick review of related
studies of ethnic bias in news coverage, and the Lydia text analysis system used
to perform named entity recognition and sentiment analysis. We then present our
method for nationality detection with evaluation results. Finally, we report on our
observed temporal, geospatial, and association trends for all CEL groups.

4.2 Previous Work

4.2.1 Name Ethnicity Detection

We use a method for ethnicity detection based on surname / given name frequencies
and k-mer analysis, which is presented in [5]. This method is implemented as a
custom processing phase in the new Lydia architecture described in Chapter 3.

4.2.2 Ethnic Biases in Newspaper Coverage

Media bias is of considerable interest within the social sciences. Representative
studies include [91], who examined the Los Angeles Times coverage of 1241 homi-
cides over a 5-year period, and found that neither the ethnicity of perpetrator nor
the victim was associated with the nature of news coverage. However, in related
work reviewing the same news coverage, [89] found that the ethnicity of the victim
did affect the volume of news coverage. Dixon, et al. found that Whites were over-
represented in news coverage of crime, both as perpetrators and as victims [41].
In a study of U.S. newspapers, Johnson [54] found that the coverage of Mexico is
influenced by the ethnic makeup of the newspaper’s circulation region.

4.2.3 News Analysis Infrastructure

The Lydia text analysis system [62] performs named entity recognition and analysis
over text corpora. Named entity analysis over large news corpora is extremely
useful for applications in a variety of areas, ranging from market research to social
science. Particularly interesting is our sentiment analysis [19, 48], measuring the
degree to which entities are regarded positively or negatively. In the course of our
research, we have collected nearly a terabyte of raw news text spanning more than

4.3. ENTITY GEOGRAPHICAL ASSOCIATIONS 77

a thousand U.S. and International newspapers over the course of more than four
years.

Large scale studies of newspaper data pose challenging implementation prob-
lems for any data mining system. Performing analysis of our one-terabyte news-
paper corpus requires a system which is fast and scalable. With the newly imple-
mented Map-Reduce-based framework for statistical analysis, discussed in Chapter
3, the Lydia system is now capable of generating interesting statistics for over 74

million named entities spanning this corpus using an 18-node cluster in 7 days.
Among the results of the this process are reference time series, sentiment analysis,
and juxtaposition relationships.

For the purposes of this chapter, the Lydia system has been extended to effi-
ciently compute statistics over large groups of entities such as ethnic groups and
co-reference sets [63]. This extension is discussed in detail in Section 3.8. Like
the remainder of the new system, this aggregation is done using Map-Reduce. As
a result, we are able to aggregate hundreds of gigabytes of statistics in 10 hours on
the same 18-node cluster.

4.3 Entity Geographical Associations

Beyond the groups formed by our ethnicity classification, another interesting type
of culturally defined entity group can be composed from those entities which are
closely associated with some particular country. That is, we would like to auto-
matically classify news entities into groups by national identity. In this section we
discuss both how we do this, and the results obtained using our method.

4.3.1 Geographic Association

A juxtaposition relationship occurs between a pair of entities which co-appear in
sentences within news articles. The strength of a juxtaposition relationship can be
assessed simply by the frequency of appearance (juxtaposition count), or by a nor-
malized juxtaposition score based on the relative frequency of both entities. Given
two entities in an N sentence corpus which appear in N1 and N2 sentences and
co-appear in F sentences, the juxtaposition score for these two entities is calculated

4.3. ENTITY GEOGRAPHICAL ASSOCIATIONS 78

Vladimir Putin Nicolas Sarkozy
Russia 652,743 France 322,273
Russian 335,563 French 265,513
Moscow, RUS 234,006 Paris, FRA 126,910
U.S. 100,705 China 51,744
Iran 98,324 Russia 53,238
Ukraine 83,574 Iran 47,706
Georgia 70,550 Afghanistan 44,505

Table 4.1: Top geographic juxtapositions (with scores) for two important world
leaders.

as:

− log

 e

FN
N1N2

−1(
FN
N1N2

) FN
N1N2

N1N2
N

In order to associate an entity with a country, we consider the list and strength of
juxtaposition relationships associated with the entity, as reported in [62].

For convenience, the set of interesting geographic juxtapositions we use for this
task are the set of countries, national adjectives (e.g., Russian), and international
cities already recognized by the geographical normalization engine in the Lydia
entity recognition pipeline. Table 4.1 shows two world leaders and their highest
ranking geographical juxtapositions by juxtaposition score. Because the sources in
our corpus are predominantly U.S. daily newspapers (with some additional major
Canadian and British sources), we expect a large skew towards associations with
places within the United States. To compensate for this, we first compute the jux-
taposition rate to each country’s set of geographic juxtapositions and use this for
normalization. Thus, out of the set of all geographic juxtapositions for a given en-
tity, the nationality with the most statistically improbable set of juxtapositions will
be assigned.

4.3. ENTITY GEOGRAPHICAL ASSOCIATIONS 79

Unmodified World Map Africans

British East Asian

East European French

German Hispanic

Indian Italian

Japanese Jewish

Muslim Nordic

Figure 4.1: CEL groups by nationality cartograms. Enlarged countries reflect higher con-
centrations of the given CEL group.

4.4. TRENDS IN GROUP COVERAGE 80

Heads of State Heads of Gov.
Total 177 192
Correct 116 112
Incorrect (Total) 36 32

(US) 5 2
(Same Region) 16 10

No data 25 48
Precision 0.76 0.78
Recall 0.66 0.58

Table 4.2: Agreement between nationality and dominant geographic association for
heads of state/government.

4.3.2 Results and Comparison with Ethnicity Data

Even following normalization, the dominant country of association for 80% of all
entities is the United States, which should be expected in the analysis of U.S. news-
papers. As validation that the remaining entities are associated correctly, we per-
form two assessments. First, we determine the country association of the Head of
State and the Head of Government for 192 countries. Table 4.2 gives the results of
this classification, establishing a high precision and recall.

As a second method of validating the utility of our geographically-associated
entities, we analyze their ethnicities using the name-based classifier described in
[5]. Figure 4.1 shows cartograms for various CEL groups where the cartogram den-
sity of each country is determined by the percentage of associated entities classified
as within the ethnic group.

4.4 Trends in Group Coverage

With entity statistics now aggregated by ethnic group, we can examine trends in
news volume and sentiment across various ethnic groups. This section provides
charts detailing four primary methods of examining CEL group news coverage:

4.4. TRENDS IN GROUP COVERAGE 81

• Reference volume time series – the fraction of sentences which contained a
person entity which belonged to this ethnic group.

• Sentiment score time series – the aggregate sentiment score for all entities of
the ethnic group. Sentiment score is a measure of how positively or nega-
tively entities are being discussed, and is based on predefined dictionaries of
positive and negative sentiment words. The score for a given entity is simply
calculated as:

(pos_sent_words− neg_sent_words)
(pos_sent_words+ neg_sent_words)

• Geographic distribution – the distribution of news volume of a CEL group by
geographic region.

• Juxtaposition relationships – the aggregate juxtaposition score between two
CEL groups, as computed by the formula given in the section on Geographic
Associations.

We will discuss each of these in turn.

4.4.1 News Volume

Figures 4.2 and 4.3 show aggregate news volume for all CEL groups across four
years of U.S. daily newspaper coverage and the New York Times (NYT) coverage
from 1981–2008, respectively. Interesting features include:

• Coverage of Muslim entities spikes dramatically during the first Gulf War and
after September 11th.

• Coverage of Italian entities is significantly larger in the NYT than the national
average, consistent with New York State’s large Italian population.

• Coverage of Hispanics in the New York Times rose by only a third from 1980

to 2007, while over the same time period the country’s Hispanic population
roughly doubled as a share of the U.S. population. The Hispanic share of
U.S. daily news coverage actually fell during the past four years by 14%.

4.4. TRENDS IN GROUP COVERAGE 82

Figure 4.2: Newspaper references to CEL groups in U.S. daily newspapers

en
(])

'-' c
f!!
(])

'§!
z
0
(f)
a:
w
n..

~
'0
c
0

U
co
u:

en
(])

'-' c
(])

Q;
'§!
Z
o
(f)
a:
w
n..
~
.8
'0
c
o

~
u:

0.8

0.6

0.4

0.2

of Africans --+-
of British ---x--

of EastAsian ---*._
of EastEuropean ·u ..

of French -----.
of Germanic
of Hispanic -- -.-- -

of IndianSubContinent -"
of Italian -~-

of Japanese -----v-
of Jewish ---.. --
of Muslim ---~-

of Nordic J<~K
x-x**x'X_x~-x-x,x-x-x-x-x-x*****.:x-x-x***¥x"><**-x>-x-x-x*-x'X_x_x***~.x x

o ~~~~~~~~~~~iI~~~~~~~ii~~~~~~~~~~~~·~~·~~~iJ·
Jul/2004 Jan/2005 Jul/2005 Jan/2006 Jul/2006 Jan/2007 Jul/2007 Jan/2008 Jul/2008 Jan/2009

0.06

0.04

0.02

o

~-

• .-

Jul/2004 Jan/2005 Jul/2005 Jan/2006 Jul/2006 Jan/2007 Jul/2007 Jan/2008 Jul/2008 Jan/200!

4.4. TRENDS IN GROUP COVERAGE 83

Figure 4.3: Newspaper references to CEL groups in the New York Times

rJ)
Q)
()

<=
~
Q)

'§
z
0
UJ
cc
W
0...

~
0
<=
0

B co u:

rJ)
Q)
()

<=
Q)

Qi
'§
z o
UJ
cc
W
0...

(ij

B
o
<= o

~ u:

0.8

0.6

0.4

0.2

o
1979

0.1

0.08

0.06

0.04

0.02

o
1979

1982

1982

1985 1988 1991

1985 1988 1991

1994

.I
/..

..
./ \.

/

1994

1997

1997

of Africans --+-
of British ---x---

of EastAsian ... ?I(.• -

of EastEuropean £1 ..

of French - -
of Germanic

of Indian SubContinent .. -•.. -
of Hispanic -,,

of Italian .-~.
of Japanese ----",..

of Jewish
of Muslim ... +.
of Nordic •

2000 2003 2006 2009

of Africans
of EastAsian

of EastEuropean
of French

of Germanic
01 Indian SubContinent

of Hispanic
01 Italian

of Japanese
#01 Muslim
of Nordic

--+--
---x---
_ .. ?I(.-

...... -El ...

.......
_
-- .. A, .. --

----.&---

----",..-

---T---

2000 2003 2006 2009

4.4. TRENDS IN GROUP COVERAGE 84

CEL group Afri. Brit. E. As. E. Eur. Fren. Germ. Hisp. Ital. Ind. Jap. Jew. Mus. Nor.
News 17.4 18.5 17.3 16.5 16.4 17.3 20.6 19.3 17.1 14.7 18.9 17.7 16.8

Business 36.8 19.0 28.4 28.7 23.0 18.4 19.1 20.9 28.5 36.7 20.6 48.3 17.6

Entertainment 19.3 28.3 29.0 25.9 31.5 34.9 21.3 27.7 23.7 24.5 34.1 16.0 31.0

Sports 16.3 23.4 14.7 20.2 19.4 18.8 30.1 20.2 18.7 14.0 13.2 8.5 23.4

Other 10.1 10.9 10.6 8.6 9.7 10.7 8.9 11.8 11.9 10.1 13.2 9.4 11.1

Table 4.3: Type of news coverage by ethnicity

One interesting trend immediately visible from the dailies data is the cyclic
nature of coverage of Hispanic entities. The volume of coverage of Hispanics cy-
cles between approximately 4% and 6% of total coverage of entities classified as
people, peaking around July and falling to its lowest ebb around December. The
reason becomes clear when we break down news volume by news article type and
aggregate by month. The seasonal trend in Hispanic news volume results from the
disproportionate number of baseball players who are Hispanic.

Table 4.3 presents a breakdown by article type for each CEL group. Several eth-
nicities (e.g. Muslims, Jews, and East Asians) are dramatically underrepresented in
sports, with Muslims and Africans underrepresented in entertainment. Many groups
show significantly different representation between articles classified as news and
business.

4.4.2 News Sentiment

Sentiment analysis broadly measures the tone of text pertaining to news entities.
The Lydia sentiment analysis system is described in [48]. Figure 4.4 shows time
series of sentiment scores for each CEL group as computed by the system. Several
interesting trends emerge:

• The majority of ethnic groups do not greatly differ from the baseline senti-
ment of the British CEL group. Over the 27 year dataset of the NYT, the
variance from this baseline tends to narrow – perhaps reflecting improving
sensitivities.

• The sentiment of Muslim entities is by far the lowest of any CEL group,
with Muslim sentiment being particularly low during the Gulf War, after the
World Trade Center Bombing, and for two full years following the September

4.4. TRENDS IN GROUP COVERAGE 85

(a) New York Times, 1981–2008. (b) US dailies, 2004-2008.

Figure 4.4: Sentiment of CEL groups

4.4. TRENDS IN GROUP COVERAGE 86

11th attacks in 2001. Of all CEL groups, only the coverage of the Muslim
CEL group is more negative than positive, a trend which shows no sign of
reversing.

• Hispanic and African sentiment scores are also significantly lower than the
baseline. This gap seems to narrow for the African group, though this is
substantially due in 2008 to the favorable coverage for Barack Obama. The
gap remains relatively constant for Hispanics.

4.4.3 Geographic Biases in News Coverage

Figure 4.6 illustrate the U.S. geographic biases in news volume and sentiment (re-
spectively) for all CEL groups. In general, the size of the local CEL group popula-
tion heavily influences the news volume of entities from that group. The frequency
maps in Figure 4.6 correlate extremely well with maps of ethnic ancestry generated
by the U.S. Census [29], particularly with respect to Hispanics. To summarize:

• Large Hispanic populations throughout the Southwest and Florida generate
large volumes of local news coverage, which is disproportionally of negative
sentiment.

• French populations emerge along the border with Quebec and historically
French Louisiana.

• Scandinavian populations throughout Minnesota, Wisconsin, the Dakotas,
Montana, and Utah are all reflected.

4.4.4 Juxtaposition Relationships between CEL Groups

Table 4.4 reports the normalized strength of association between pairs of CEL
groups derived from news analysis. Under the assumption of independence, the
number of collocations between two groups should be proportional to the product of
the group sizes. These values have been normalized so 1.0 corresponds to statistical
independence. We note that most groups exhibit strong inter-group coherence, with
the notable exception of the British CEL group, which presumably reflects both the

4.4. TRENDS IN GROUP COVERAGE 87

Greater European Greater African Asian African

British East Asian East European French

German Hispanic Indian Italian

Japanese Jewish Muslim Nordic

Figure 4.5: Frequency maps for CEL groups within the United States

4.4. TRENDS IN GROUP COVERAGE 88

Greater European Greater African Asian African

British East Asian East European French

German Hispanic Indian Italian

Japanese Jewish Muslim Nordic

Figure 4.6: Sentiment Maps for CEL groups within the United States

4.5. CONCLUSIONS 89

CEL group Afri. Brit. E. As. E. Eur. Fren. Germ. Hisp. Ind. Ital. Jap. Jew. Mus. Nor.
African 3.01 0.75 0.75 0.84 0.74 0.71 1.08 1.2 0.79 0.89 0.73 1.6 0.7
British 0.75 0.64 0.88 0.8 0.93 0.96 0.87 0.87 0.9 0.89 0.98 0.64 1.07

East Asian 0.75 0.88 3.48 0.71 0.8 0.75 0.86 1.13 0.82 1.26 0.83 0.63 0.9
East Euro. 0.84 0.8 0.71 1.83 1.1 0.99 0.79 0.81 0.8 0.85 0.89 0.67 1.16

French 0.74 0.93 0.8 1.1 1.48 1.15 1 0.96 1.19 0.79 0.94 0.67 1.18
German 0.71 0.96 0.75 0.99 1.15 1.88 1.01 0.86 0.93 0.73 1.17 0.69 1.26
Hispanic 1.08 0.87 0.86 0.79 1 1.01 2.5 0.87 1.28 1.1 0.76 0.71 1.09

Indian 1.2 0.87 1.13 0.81 0.96 0.86 0.87 2.18 0.77 0.99 0.91 1.46 1.05
Italian 0.79 0.9 0.82 0.8 1.19 0.93 1.28 0.77 1.16 0.84 0.95 0.57 0.97

Japanese 0.89 0.89 1.26 0.85 0.79 0.73 1.1 0.99 0.84 3.15 0.77 0.85 1.1
Jewish 0.73 0.98 0.83 0.89 0.94 1.17 0.76 0.91 0.95 0.77 0.85 0.68 1.07
Muslim 1.6 0.64 0.63 0.67 0.67 0.69 0.71 1.46 0.57 0.85 0.68 2.98 0.58
Nordic 0.7 1.07 0.9 1.16 1.18 1.26 1.09 1.05 0.97 1.1 1.07 0.58 2.47

Table 4.4: Strength of juxtaposition relationships between CEL groups. Underrep-
resented juxtapositions (less than 0.8) are underlined, and overrepresented juxtapo-
sitions (greater than 1.2) are boldfaced.

geographically widespread use of English names and the relatively high frequency
of other CEL groups in the United States. The Muslim CEL group shows strikingly
low rates of interactions with all but the African and Indian communities.

4.5 Conclusions

We have demonstrated that subtle spatial, temporal, and associative trends can be
distinguished between cultural/ethnic groups on the basis of aggregate news analy-
sis. We believe our results illustrate the power of our analytic techniques for serious
research in several of the social sciences.

We are now working to expand our analysis to a variety of other text corpora
and group phenomena (such as influence of gender). Of particular interest is the
blogosphere (which should prove even more representative of local sentiment if the
postings can be accurately geocoded) and longer-term news archives starting from
the 1850’s (providing insight into historical trends and cultural forces). Further
work in computational methods will revolve around improvements to our ethnic-
ity/nationality classifiers and other group identification techniques (e.g. [67]).

Chapter 5

International Sentiment Analysis for
News and Blogs1

5.1 Introduction

There is considerable and rapidly-growing interest in using sentiment analysis
methods to mine opinions from news and blogs [57, 74, 75, 95, 99, 100]. Appli-
cations include product reviews, market research, public relations, and financial
modeling.

Almost all existing sentiment analysis systems are designed to work in a single
language, usually English. But effectively mining international sentiment requires
text analysis in a variety of local languages. Although in principle sentiment anal-
ysis systems specific to each language can be built, such approaches are inherently
labor intensive and complicated by the lack of linguistic resources comparable to
WordNet for many languages.

An attractive alternative to this approach uses existing translation programs and
simply translates source documents to English before passing them to a sentiment
analysis system. The primary difficulty here concerns the loss of nuance incurred
during the translation process. Even state-of-the-art language translation programs
fail to translate substantial amounts of text, make serious errors on what they do

1 This chapter is drawn from our paper “International Sentiment Analysis for News and Blogs”
[19].

90

5.1. INTRODUCTION 91

Figure 5.1: An international sentiment map for Vladimir Putin

translate, and reduce well-formed texts to sentence fragments.
Still, we believe that translated texts are sufficient to accurately capture senti-

ment, particularly in sentiment analysis systems (such as ours) which aggregate sen-
timent from multiple documents. In particular, we have generalized the Lydia senti-
ment analysis system to monitor international opinion on a country-by-country ba-
sis by aggregating daily news data from roughly 200 international English-language
papers and over 400 sources partitioned among eight other languages. Maps illus-
trating the results of our analysis are shown in Figures 5.1 and 5.2. From these
maps we see that (at the time of our research in Spring 2007) George Bush was
mentioned the most positively in newspapers from Australia, France and Germany,
and negatively in most other sources. Vladimir Putin, on the other hand, had posi-
tive sentiment in most countries, except Canada and Bolivia.

Such maps are interesting to study and quite provocative, but beg the question of
how meaningful the results are. Here we provide a rigorous and careful analysis of
the extent to which sentiment survives the brutal process of automatic translation.

5.1. INTRODUCTION 92

Figure 5.2: An international sentiment map for George W. Bush

Our assessment is complicated by the lack of a “gold standard” for interna-
tional news sentiment. Instead, we rely on measuring the consistency of sentiment
scores for given entities across different language sources. Previous work [47] has
demonstrated that the Lydia sentiment analysis system accurately captures notions
of sentiment in English. The degree to which these judgments correlate with opin-
ions originating from related foreign-language sources will either validate or reject
our translation approach to sentiment analysis.

In this chapter we provide:

• Cross-language analysis across news streams – We demonstrate that statis-
tically significant entity sentiment analysis can be performed using as little
as ten days of newspapers for each of the eight foreign languages we studied
(Arabic, Chinese, French, German, Italian, Japanese, Korean, and Spanish).

• Cross-language analysis across parallel corpora – Some of difference in ob-
served entity sentiment across news sources reflect the effects of differing
content and opinion instead of interpretation error. To isolate the effects of
news source variance, we performed translation analysis on a parallel corpus

5.2. RELATED WORK 93

of European Union law. As expected, these show greater entity frequency
conservation than variable sources. One does not expect impassioned sen-
timent to be revealed in legal codes, yet these results also show meaningful
sentiment consistency.

• Analysis of translation system-specific artifacts – The quality of our senti-
ment analysis will depend on the quality of the language translation software,
but how strongly? We compare the sentiment results on the same source text
corpus across two distinct Spanish translation systems. Aggregated entity fre-
quency, sentiment polarity, and sentiment subjectivity were highly correlated
across both translation systems, with results statistically significant beyond
p < 0.001. We conclude that the success of our methods is largely (but not
completely) translation system independent.

• Normalizing for cross-cultural language effects – Translation sys-
tem/language effects complicate the problem of comparing entity sentiment
across distinct language sources. Certain languages (e.g. Chinese and Ko-
rean) appear to produce substantially higher sentiment scores than others (e.g.
Italian). We present techniques to correct for such bias, and present an inter-
esting cross-cultural comparison of country sentiment by language.

This chapter is organized as follows. We review previous work on foreign lan-
guage sentiment analysis in Section 5.2, where we also provide an overview of the
Lydia sentiment analysis system. The experimental methodology underlying our
work is presented in Section 5.3. Sections 5.4-5.6 present our analysis on the con-
sistency of sentiment over corpora designed to isolate the effects of news variance,
language variance, and translation system variance respectively. Issues associated
with comparing sentiment across languages are presented in Section 5.7. Our con-
clusions follow in Section 5.8.

5.2 Related Work

There has been a wide research effort in analyzing sentiment in languages other
than English by applying bilingual resources and machine translation techniques

5.2. RELATED WORK 94

to employ the sentiment analysis approaches existing for English. We survey that
literature below. Subsequently, we describe the approach to sentiment analysis im-
plemented by the Lydia system which we are using for our experiments.

5.2.1 Cross-language Sentiment Analysis

The approach taken in [51] uses machine translation technology to develop a high-
precision sentiment analysis system for Japanese at a low cost. Sentiment unit
polarity extraction precision of 89% is reported.

Mihalcea et al. [68] discuss methods to automatically generate a subjectivity
lexicon and subjectivity-annotated corpora for a new language (they focus on Ro-
manian) from similar resources available for English. They achieve a 67.85 F-
measure for classifying sentiment orientation of sentences using the subjectivity
resources built for Romanian.

Yao et al. [98] propose a method of determining sentiment orientation of Chi-
nese words using a bilingual lexicon and achieve precision and recall of 92%.

Benamara et al. [20] argue that adverbs in combination with adjectives are more
helpful for sentiment score assignment to individual sentiment units than adjec-
tives alone. Their best algorithm achieves a 0.47 Pearson correlation with human-
assigned scores compared to 0.34 without using adverbs.

The Oasys 2.0 opinion analysis system [31] allows the user to identify the in-
tensity of opinion on any topic on a continuous scale, and view how that intensity
is changed over countries, news sources, and time. It is based on aggregation of
individual positive and negative references identified using approaches described
in [20, 30] which have been evaluated on the individual sentiment unit level. Our
work, in contrast, focuses on the evaluation of the final entity sentiment score rather
than individual entity reference polarity.

5.2.2 The Lydia Sentiment Analysis System

Our international sentiment analysis work is based on the first version of the Lydia
text analysis system [47,56,62,63,66], because it was done before the new scalable
Lydia architecture described in Chapters 2 and 3 was developed. The Lydia system
recognizes named entities in text and extracts their temporal and spatial distribution.

5.2. RELATED WORK 95

Text sources are spidered daily by customized website scrapers that convert articles
to a standard format and store them in an archive. Then, on a daily basis, the arti-
cles are run through a pipeline that performs part-of-speech tagging, named entity
identification and categorization, geographic normalization, intradocument coref-
erence resolution, extraction of entity descriptions and relations between entities,
and per-occurrence sentiment score calculation. The entities are then inserted into
a database, and cross-document coreference resolution, entity juxtaposition score
and per-entity sentiment score calculation take place.

Sentiment score calculation in Lydia is described in [47]. As a preliminary
step, the sentiment lexicon is constructed. Starting from sets of seed positive and
negative adjectives, their polarity is propagated through WordNet [69] synonym
and antonym links, and every adjective is assigned a polarity score. Then, the top
fraction of adjectives from both extremes of this curve are placed into positive and
negative parts of the sentiment lexicon respectively.

The next step is entity sentiment calculation in a specific corpus. Using the
existing sentiment lexicon, positive and negative word occurrences are marked
up in the corpus. For every entity and every day i, the number of positive
and negative sentiment words co-occurring with that entity in the same sentence
(pos_sentiment_refs i and neg_sentiment_refs i) are calculated. For every entity,
its polarity score on a given day i is then calculated as

entity_polarity i =
pos_sentiment_refs i
total_sentiment_refs i

(5.1)

and its subjectivity score as

entity_subjectivity i =
total_sentiment_refs i

total_occurrences i
. (5.2)

The polarity score reflects whether the sentiment associated with the entity is pos-
itive or negative, and the subjectivity score—how much sentiment of any polarity
the entity receives. These are the two measures of entity sentiment that we use in
our analysis.

5.3. METHODOLOGY 96

5.3 Methodology

We spider online newspapers in nine languages: Arabic, Chinese, English, French,
German, Italian, Japanese, Korean, and Spanish. In our experiments we used 7 to
39 newspaper sources for each language, with the fewest sources for Chinese and
Italian, and 21,000 articles per language on average. We translate foreign text to
English using IBM WebSphere Translation Server (WTS) [52, 53]. For Spanish
and Arabic, we also used a newer experimental translation system hosted as a web
service by IBM Research.

We noticed that for many words that WTS is unable to translate to English
it leaves them in the output text in the original language. We conjectured that a
higher quality translation system would leave a lower fraction of text untranslated,
and compared source text with translation system output using a maximum overlap
dynamic programming algorithm at the word level. Higher values of this overlap
indicate larger numbers of words that did not get translated. This is particularly im-
portant to us because we need entity names to be translated correctly to English to
be able to match them across language boundaries. Table 5.1 shows these overlap
values for different languages, along with the ratio of translation system output to
input size, averaged across all articles. Japanese, Korean, Arabic and Chinese un-
derstandably show lowest overlap values, since the scripts used in these languages
do not allow for a direct inclusion of untranslated text into the English output. But
for the European languages the situation is different: up to 40% of the input text
is left untranslated. Note the difference in the overlap value between two Spanish
translation systems: the translation server hosted by IBM Research and WebSphere
Translation Server. In Section 5.6 we further explore the differences between these
two translation systems in application to sentiment analysis.

The same entity may be referenced differently in different languages. To par-
tially account for that, we remove language-specific stopwords such as “la” and “le”
for French and “la”/“el” for Spanish, to produce the entity’s canonical name. We
use these canonical names to match entities across languages in our experiments.

5.4. NEWS STREAM ANALYSIS 97

Language µuntrans σuntrans µout/in σout/in

Japanese 0.001 0.008 1.149 0.133
Korean 0.002 0.024 0.959 0.135
Arabic (research) 0.005 0.043 0.774 0.302
Chinese 0.008 0.070 1.459 0.197
Spanish (research) 0.091 0.082 0.989 0.083
German 0.099 0.119 0.964 0.137
Italian 0.167 0.153 0.992 0.051
French 0.316 0.228 0.950 0.108
Spanish (WTS) 0.399 0.252 0.966 0.148

Table 5.1: Mean and standard deviation of the overlap between original and trans-
lated text (µuntrans , σuntrans) and of the ratio of translation system output to input
size (µout/in , σout/in).

5.4 News Stream Analysis

We computed daily entity sentiment scores over ten days from May 1 to May 10,
2007 for entities extracted from a subset of news text translated from Arabic, Chi-
nese, French, German, Italian, Japanese, Korean and Spanish to English, as well
as from a number of major U.S. newspapers. This specific time period was chosen
because it has the most consistent spidered news volume over a contiguous pe-
riod of time in our dataset. Only 19 entities proved common to all nine databases,
out of which 14 were countries (France, America, China, Japan, Italy, Canada, Iran,
Turkey, India, Australia, Sudan, Pakistan, Vietnam, Singapore), and four were cities
(Washington DC, London, Moscow, Tokyo).

Table 5.2 shows the cardinality of intersection of entity sets extracted from each
pair of languages. From this table we can observe that the Korean entities are
mostly related to the Chinese and Japanese. Of the three Asian languages, the
Japanese entities are the most connected to the European languages, which also
form a strong cluster by themselves according to this distance measure.

5.4. NEWS STREAM ANALYSIS 98

Arabic Chinese English French German Italian Japanese Korean Spanish
Arabic 7601 679 1403 1080 1053 552 193 195 1114

Chinese 679 31783 1124 941 1064 439 199 808 947
English 1403 1124 24452 2282 1989 735 221 281 2086
French 1080 941 2282 10911 1749 748 194 252 1818
German 1053 1064 1989 1749 17882 704 201 303 1638
Italian 552 439 735 748 704 2662 138 132 816

Japanese 193 199 221 194 201 138 800 98 196
Korean 195 808 281 252 303 132 98 2870 244
Spanish 1114 947 2086 1818 1638 816 196 244 12843

Arabic Chinese English French German Italian Japanese Korean Spanish
Arabic 100% 9% 18% 14% 14% 21% 24% 7% 15%

Chinese 9% 100% 5% 9% 6% 16% 25% 28% 7%
English 18% 5% 100% 21% 11% 28% 28% 10% 16%
French 14% 9% 21% 100% 16% 28% 24% 9% 17%
German 14% 6% 11% 16% 100% 26% 25% 11% 13%
Italian 21% 16% 28% 28% 26% 100% 17% 5% 31%

Japanese 24% 25% 28% 24% 25% 17% 100% 12% 24%
Korean 7% 28% 10% 9% 11% 5% 12% 100% 9%
Spanish 15% 7% 16% 17% 13% 31% 24% 9% 100%

Table 5.2: Numbers of entities in intersections of each pair of languages (top) and
percentage numbers that indicate the ratio of the intersection size to the smallest
number of entities available for either of the two languages being intersected (bot-
tom).

5.4. NEWS STREAM ANALYSIS 99

Frequency correlations
Arabic Chinese English French German Italian Japanese Korean Spanish

Ar 1.00 (2199) 0.37 (141) 0.36 (500) 0.28 (397) 0.33 (390) 0.25 (190) 0.19 (78) 0.73 (51) 0.17 (210)
Ch 1.00 (1051) 0.24 (176) 0.08 (141) 0.32 (147) 0.10 (94) 0.74 (59) 0.18 (52) 0.04 (95)
En 1.00 (12613) 0.30 (1006) 0.33 (763) 0.36 (252) 0.41 (83) 0.27 (62) 0.31 (301)
Fr 1.00 (3769) 0.38 (650) 0.45 (249) 0.06 (74) 0.10 (57) 0.21 (264)
Ge 1.00 (4291) 0.33 (242) 0.11 (74) 0.17 (58) 0.14 (223)
It 1.00 (768) 0.09 (56) 0.11 (34) 0.27 (135)
Ja 1.00 (241) 0.40 (35) 0.25 (58)
Ko 1.00 (416) 0.20 (38)
Sp 1.00 (980)

Polarity correlations
Arabic Chinese English French German Italian Japanese Korean Spanish

Ar 1.00 (2199) 0.56 (141) 0.49 (500) 0.45 (397) 0.48 (390) 0.57 (190) 0.36 (78) 0.26 (51) 0.61 (210)
Ch 1.00 (1051) 0.24 (176) 0.51 (141) 0.42 (147) 0.41 (94) 0.08 (59) 0.44 (52) 0.49 (95)
En 1.00 (12613) 0.53 (1006) 0.53 (763) 0.58 (252) 0.46 (83) 0.35 (62) 0.49 (301)
Fr 1.00 (3769) 0.53 (650) 0.45 (249) 0.51 (74) 0.63 (57) 0.40 (264)
Ge 1.00 (4291) 0.37 (242) 0.26 (74) 0.33 (58) 0.26 (223)
It 1.00 (768) 0.58 (56) 0.48 (34) 0.35 (135)
Ja 1.00 (241) 0.35 (35) 0.46 (58)
Ko 1.00 (416) 0.40 (38)
Sp 1.00 (980)

Subjectivity correlations
Arabic Chinese English French German Italian Japanese Korean Spanish

Ar 1.00 (2199) -0.05 (141) 0.03 (500) 0.16 (397) 0.12 (390) 0.23 (190) 0.09 (78) 0.00 (51) 0.39 (210)
Ch 1.00 (1051) 0.17 (176) 0.22 (141) 0.27 (147) 0.10 (94) -0.03 (59) 0.20 (52) -0.04 (95)
En 1.00 (12613) 0.13 (1006) 0.23 (763) 0.23 (252) 0.13 (83) 0.27 (62) 0.07 (301)
Fr 1.00 (3769) 0.22 (650) 0.18 (249) 0.21 (74) -0.13 (57) 0.16 (264)
Ge 1.00 (4291) 0.21 (242) 0.28 (74) 0.35 (58) -0.00 (223)
It 1.00 (768) 0.21 (56) -0.02 (34) 0.37 (135)
Ja 1.00 (241) 0.63 (35) 0.25 (58)
Ko 1.00 (416) 0.08 (38)
Sp 1.00 (980)

Table 5.3: Pearson correlation of frequency, polarity and subjectivity scores for en-
tities extracted from the news corpus. All entities in the intersection are included in
comparison. Counts are aggregated over all days for every entity. Bold correlations
are significant with p < 0.05.

5.4. NEWS STREAM ANALYSIS 100

Figure 5.3: Polarity score of London in Arabic, German, Italian and Spanish over
the May 1-10, 2007 period.

5.4.1 News Entity Frequency Correlations

The top part of Table 5.3 shows entity frequency correlation for every pair of lan-
guages. Every sample in this correlation is an aggregated frequency for a given
entity in a given language over all ten days of the time period considered. The
correlations significant with p < 0.05 according to a two-sided Student’s t-test are
highlighted with bold. We found no statistically significant entity frequency cor-
relations when the frequency of each entity for each day was treated as a single
sample. Note that daily correlation analysis is complicated by inconsistent notions
of what a “day” is across different time zones and spidering patterns. Table 5.3
shows that English reaches a significant correlation with all other languages in the
experiment, emphasizing its central role in our multi-language analysis approach.
Figure 5.7 depicts these frequency correlation relations in a graphical form, mak-
ing the clustering of European languages and Arabic versus Chinese, Japanese and
Korean evident.

5.4.2 News Entity Polarity Correlations

Table 5.3 (middle) shows that entity polarity scores aggregated over the entire time
period of experiments are significantly correlated for most pairs of languages—
much more so than frequencies (top) or subjectivities (bottom) are. This allows
us to conjecture the presence of a common underlying factor influencing entity
sentiment in all languages—such as the “real” positivity or negativity of an entity.

5.4. NEWS STREAM ANALYSIS 101

Figure 5.4: Polarity score of Baghdad in Arabic, French and German over the May
1-10, 2007 period.

Figure 5.5: Polarity score of Israel in Chinese, German and Italian over the May
1-10, 2007 period.

Figure 5.6: Polarity score of Egypt in Arabic, Chinese and German over the May
1-10, 2007 period.

5.5. PARALLEL CORPUS ANALYSIS 102

Arabic

Chinese

English

French

GermanItalian

Korean

Spanish

Japanese

Figure 5.7: Graph of significantly correlated entity frequencies in different lan-
guages in the news corpus.

To look for the underlying reasons of the interdependencies between entity po-
larity scores in different languages, we analyzed the correlations between polarity
scores of the same entity in different languages over our ten-day experiment time
period. Figure 5.3 shows the sentiment score of London in four languages. An
explanation of the consistent drop on May 10 could be the arrest of four people
in the United Kingdom in connection with the July 7, 2005 London bombings [2].
In Figure 5.4 the polarity score drop starting May 6 is explained by the car bomb
exploding in Baghdad on that day [2]. The spike on May 3 in the polarity score
of Egypt in Figure 5.6 coincides with the launch of the International Compact for
Iraq at Sharm El-Sheikh, Egypt [55]. The drop in the polarity score of Israel on
May 3-6 can be attributed to the protests against Prime Minister Ehud Olmert and
his government over their handling of the 2006 Lebanon War [2]. These examples
indicate that in cases of significant correlation between sentiment scores in different
languages there are often real-world explanations of changes in these scores.

5.5 Parallel Corpus Analysis

We also analyzed entity sentiment scores in the European Commission Joint Re-
search Centre’s Acquis multilingual parallel corpus [80]. This corpus contains the

5.6. CROSS-TRANSLATION SYSTEM ANALYSIS 103

total body of European Union (EU) law applicable in the EU Member States. The
JRC-Acquis corpus does not contain timestamp information for documents, making
temporal analysis impossible. However, we can still analyze correlations of entity
frequencies and sentiment scores between different languages. We performed our
experiments with five languages out of the 22 in which the JRC-Acquis corpus is
available: English, French, German, Italian and Spanish. The documents in lan-
guages other than English were first translated to English using IBM WebSphere
Translation Server, and the resulting translated documents were processed through
our Lydia pipeline, giving a subjectivity and polarity score for each entity as a re-
sult.

Table 5.4 shows entity frequency, polarity score and subjectivity score correla-
tions in the JRC-Acquis corpus for pairs of languages, analogous to Table 5.3 for
the news corpus. We observe greater frequency and subjectivity correlation between
languages in the JRC-Acquis corpus than in the news corpus. This is consistent with
expectations because unlike the news corpus, the same text is used in all languages
in the JRC corpus. Even though one should not expect strong sentiment expression
in law documents, polarity scores also show substantial consistency.

5.6 Cross-Translation System Analysis

Since two different translation systems were available to us for the Spanish lan-
guage, it was natural to compare sentiment scores of entities in the output of these

1 2 3 4 5 6 7 8 9 10
Day

0.0

0.2

0.4

0.6

0.8

1.0

P
o
la

ri
ty

 S
c
o
re

Paris Hilton

English
French
German

Figure 5.8: Polarity score of Paris Hilton, May 1-10, 2007.

5.6. CROSS-TRANSLATION SYSTEM ANALYSIS 104

Frequency correlations
English French German Italian Spanish

English 1.00 (619) 0.21 (144) 0.20 (186) 0.64 (196) 0.59 (181)
French 1.00 (342) 0.06 (135) 0.67 (153) 0.78 (152)
German 1.00 (1460) 0.13 (172) 0.17 (166)
Italian 1.00 (484) 0.83 (192)

Spanish 1.00 (527)

Polarity correlations
English French German Italian Spanish

English 1.00 (619) 0.21 (144) 0.09 (186) 0.45 (196) 0.25 (181)
French 1.00 (342) 0.09 (135) 0.42 (153) 0.30 (152)
German 1.00 (1460) 0.20 (172) 0.11 (166)
Italian 1.00 (484) 0.43 (192)

Spanish 1.00 (527)

Subjectivity correlations
English French German Italian Spanish

English 1.00 (619) 0.24 (144) 0.62 (186) 0.43 (196) 0.28 (181)
French 1.00 (342) 0.40 (135) 0.64 (153) 0.52 (152)
German 1.00 (1460) 0.66 (172) 0.75 (166)
Italian 1.00 (484) 0.60 (192)

Spanish 1.00 (527)

Table 5.4: Pearson correlations of frequency, polarity and subjectivity for entities
extracted from the JRC-Acquis corpus. All entities in the intersection are included
in comparison. Bold correlations are significant with p < 0.05.

5.7. CROSS-CULTURAL OBSERVATIONS 105

Figure 5.9: Polarity scores of America in the output of (1) IBM WebSphere Trans-
lation Server (Spanish); (2) a newer translation system hosted by IBM Research.

two translation systems. We found that when we aggregated sentiment scores over
the entire ten-day period for every entity, the resulting correlations of entity polarity,
subjectivity and frequency were 0.52, 0.46 and 0.47 respectively, all with p < 0.001

significance. When entity scores on individual days were treated separately, how-
ever, these correlations went down to 0.19 for polarity, 0.45 for subjectivity and
0.42 for frequency. This indicates that there is a high variance in the amount of pos-
itive and negative references but little difference in the overall volume of subjective
references between the outputs of the two translation systems.

Looking at polarity as a function of time in the output of the two translation
systems, we see that the two scores can be fairly consistent (Figure 5.9). Still, the
ten-day aggregated scores were more concordant.

5.7 Cross-Cultural Observations

To explore the suitability of our scores for cross-cultural comparisons, we calcu-
lated polarity scores of all countries appearing in at least 7 out of our 9 language-
specific databases, in every language. To quantify how comparable entity scores
are between languages, we calculated the variance of each entity’s polarity score
across languages. With polarity scores calculated as in (5.1), the variance was at
most 0.068 and the sum of variances across all languages was 0.525.

One source of the differences in polarity scores between languages follows from
different probabilities of positive and negative sentiment word appearance in the

5.7. CROSS-CULTURAL OBSERVATIONS 106

Arabic Chinese English French German Italian Japanese Korean Spanish Mean StdDev
Cameroon 0.295 0.528 0.219 0.155 (7) 0.161 0.158 N/A N/A 0.566 0.297 0.178
Lebanon 0.404 (1) 0.327 0.311 0.208 0.251 N/A 0.375 N/A 0.258 0.305 0.070
Pakistan 0.393 0.254 0.456 (2) 0.321 0.313 0.326 0.583 0.311 0.286 0.360 0.103

Philippines 0.462 0.388 0.378 (6) 0.428 0.440 N/A 0.191 0.443 N/A 0.390 0.093
Iraq 0.346 (7) 0.535 0.372 0.275 0.354 N/A 0.414 0.498 0.396 0.399 0.084

Cuba 0.422 0.692 0.299 0.414 0.447 0.545 0.125 N/A 0.402 (6) 0.418 0.166
USA 0.404 0.561 0.545 (2) 0.456 0.436 0.520 N/A N/A 0.305 0.461 0.090

Sudan 0.500 (4) 0.509 0.444 0.438 0.437 0.659 0.358 0.574 N/A 0.490 0.093
Venezuela 0.241 1.000 0.468 0.350 0.569 0.155 0.732 N/A 0.477 (4) 0.499 0.272

Mexico 0.561 0.859 0.385 0.423 0.387 N/A N/A 0.469 0.533 (3) 0.517 0.166
Canada 0.531 0.522 0.498 (6) 0.508 0.705 0.420 0.450 0.478 0.573 0.521 0.083
China 0.556 0.420 (9) 0.433 0.473 0.470 0.622 0.612 0.540 0.663 0.532 0.088

Germany 0.483 0.421 0.480 0.598 0.639 (2) 0.680 0.561 N/A 0.434 0.537 0.097
Egypt 0.519 (5) 0.823 0.540 0.361 0.576 0.419 0.355 0.846 0.463 0.545 0.181

Australia 0.493 0.528 0.541 (3) 0.560 0.508 0.738 0.506 0.533 0.519 0.547 0.074
America 0.405 0.651 0.568 (4) 0.502 0.566 0.605 0.666 0.480 0.550 0.555 0.083

India 0.571 0.626 0.487 (8) 0.547 0.396 0.499 0.719 0.623 0.555 0.558 0.093
Chile 0.576 0.405 0.586 0.559 0.563 0.750 N/A N/A 0.502 (6) 0.563 0.104

Argentina 0.461 0.430 0.472 0.654 0.624 0.738 N/A N/A 0.562 (4) 0.563 0.115
Spain 0.583 0.629 0.466 0.468 0.533 0.720 N/A N/A 0.613 (3) 0.573 0.092
Japan 0.689 0.531 0.542 0.602 0.397 0.668 0.589 (5) 0.534 0.648 0.578 0.090
Italy 0.554 0.605 0.465 0.557 0.536 0.615 (2) 1.000 0.454 0.417 0.578 0.172

Austria 0.515 N/A 0.489 0.507 0.568 (4) 0.575 0.672 N/A 0.851 0.597 0.128
Saudi Arabia 0.611 (3) N/A 0.458 0.564 0.446 0.556 0.891 N/A 0.669 0.599 0.151

France 0.561 0.688 0.611 0.566 (8) 0.570 0.673 0.611 0.569 0.602 0.606 0.047
Brazil 0.557 0.848 0.494 0.516 N/A 0.518 0.911 N/A 0.529 (4) 0.625 0.176

Switzerland 0.628 0.455 0.527 0.697 0.607 (5) 0.559 1.000 N/A 0.676 0.644 0.164
Jordan 0.678 (4) 0.931 0.569 0.414 0.739 0.592 0.432 N/A 0.843 0.650 0.185

Belgium 0.652 0.754 0.643 0.621 (6) 0.583 0.659 N/A N/A 0.754 0.666 0.065

Table 5.5: Normalized country polarity scores in all languages. Countries are
sorted by their mean score across all languages. Polarity scores are normalized
to bring mean polarity to 0 and variance to 1 across all country entities in each
language. The language spoken in the country is highlighted with bold. For every
country the rank of its polarity in its own language in the row (1=highest, 9=lowest)
is given in parentheses. Maximum polarity for each country is italicized.

Arabic Chinese English French German Italian Japanese Korean Spanish
pos_per_ref 0.987 0.039 0.894 0.669 0.440 0.438 0.629 1.333 0.509
neg_per_ref 0.622 0.025 0.830 0.438 0.350 0.458 0.598 0.717 0.448

pos_coef 0.906 22.719 1.000 1.337 2.033 2.042 1.422 0.671 1.758
neg_coef 1.334 33.443 1.000 1.893 2.369 1.813 1.389 1.157 1.853

neg_coef /pos_coef 1.473 1.472 1.000 1.416 1.165 0.888 0.977 1.726 1.054

Table 5.6: Normalization coefficients for all languages.

5.7. CROSS-CULTURAL OBSERVATIONS 107

same sentence with an entity. To account for this bias, we calculated the average
numbers of positive and negative sentiment words per entity occurrence:

pos_per_ref =

∑Nentities

i=1 pos_sentiment_refs i∑Nentities

i=1 total_occurrences i

neg_per_ref =

∑Nentities

i=1 neg_sentiment_refs i∑Nentities

i=1 total_occurrences i

Table 5.6 gives values of these statistics for all languages. The
neg_coef /pos_coef line shows that Korean is the most biased language towards
positive sentiment, and Italian is the most biased towards negative, although not
much more than English is. We discount each positive or negative sentiment word
occurrence in ith language versus English:

pos_coef i =
pos_per_ref English

pos_per_ref i

neg_coef i =
neg_per_ref English

neg_per_ref i

We then calculate the normalized polarity as

pos_sentiment_refs i
pos_sentiment_refs i + neg_coef

pos_coef × neg_sentiment_refs i

This technique reduces the sum of cross-language polarity score variances for coun-
tries by 6% to 0.494. The normalized polarity scores are given in Table 5.5.

From the standard deviation column of Table 5.5 we can see that the lowest
polarity variance corresponds to developed countries (France, Belgium, Australia,
Canada, USA) or countries with recent conflicts (Lebanon, Iraq), and the highest
variance corresponds to developing countries such as Jordan, Egypt, Venezuela and
Brazil.

We also hypothesized that for every country its own language would rank it
among the highest. To test this, we included the rank (1=highest, 9=lowest) of
country’s polarity in its own language among all languages in Table 5.5. There is
little evidence in favor of this hypothesis, perhaps because ten days is too short a
time period to capture a long-time country sentiment in the news.

5.8. CONCLUSIONS 108

5.8 Conclusions

Using our Lydia text analysis system, we analyzed entity sentiment in newspapers
in nine languages, and in five languages of a parallel corpus. Our experiments
showed that our method of calculating entity sentiment scores is consistent with
respect to varying languages and news sources. We also compared scores across
two different translation systems for Spanish and concluded that the success of our
methods is largely translation system independent. Finally, we proposed a senti-
ment score normalization technique for cross-language polarity comparison, allow-
ing for meaningful cross-cultural comparisons.

Chapter 6

Concordance-Based Entity-Oriented
Search1

6.1 Introduction

We consider the challenge of building a search engine that retrieves appropriate
entities (e.g. people, places, things) in response to user queries over a web-scale
text corpus containing these entities. This contrasts with a typical search engine
which returns documents or webpages in response to user queries. Concrete appli-
cations of entity search are detailed below, but we begin with some motivational
examples of our search engine in action. Table 6.1 shows the top five results re-
turned by our system for six queries. Three of these queries are entities themselves
(“NEW YORK YANKEES”, “GOOGLE” and “TENNIS”) and the top result returned
for them is the query itself. The other results returned for entity queries are con-
nected with the queried entity in various ways: famous tournaments and players for
tennis; its CEO name, headquarters location and rival search engine companies for
Google; and the names of the manager, players and a rival team for the New York
Yankees. The other three queries (“POLITICAL CORRUPTION”, “POLARIZING FIG-
URE”, and ”BRITISH PRIME MINISTER”) are not entities but concepts indirectly
referring to entities. The results for the “POLITICAL CORRUPTION” query are

1 This chapter is drawn from our paper “Concordance-Based Entity-Oriented Search” [18], an
expanded version of the conference paper [17].

109

6.1. INTRODUCTION 110

TENNIS NEW YORK YANKEES GOOGLE

1 Tennis New York Yankees Google
2 Roger Federer Joe Torre Yahoo
3 Andre Agassi Alex Rodriguez Eric Schmidt
4 U.S. Open Derek Jeter Mountain View
5 Andy Roddick Boston Red Sox Microsoft

POLITICAL POLARIZING FIGURE BRITISH PRIME

CORRUPTION MINISTER

1 Jack Abramoff Hillary Rodham Clinton Tony Blair
2 George Ryan Katherine Harris Winston Churchill
3 Tom DeLay David Geffen Margaret Thatcher
4 Pete Domenici Donald H. Rumsfeld British
5 King Gyanendra Dick Cheney Gordon Brown

Table 6.1: Results for certain example entity queries.

three politicians investigated for corruption, one involved in a violation of ethic
rules, and the controversial King of Nepal. The “POLARIZING FIGURE” returns
the names of four politicians inspiring strong but differing opinions. The “BRITISH

PRIME MINISTER” query returns three former and the current Prime Minister of the
United Kingdom. We encourage the reader to experiment with our search engine at
http://www.textmap.com.

Compelling applications of entity-targeted search over unstructured text in-
clude:

• Navigational Search. Augmenting document results from a conventional
Web search engine with entity results is particularly relevant for navigational
queries [27]. The related entity results may help satisfy the user’s informa-
tion need, as per question answering systems. Otherwise they can provide
meaningful navigational alternatives to user’s document-oriented query.

Indeed, we present experimental results demonstrating that our methods can
predict roughly 5-10% of a user’s subsequent entity queries. This is a large

http://www.textmap.com

6.1. INTRODUCTION 111

enough fraction of user queries to justify displaying navigational shortcuts to
speed search.

• Encyclopedia Search. When the text corpus is (or is comparable) to a collec-
tion of encyclopedia entries, the performance of article retrieval can be im-
proved by taking into account all mentions of an entity across articles, rather
than just in the entry corresponding to that entity.

We are confident that our techniques could be used to improve the perfor-
mance of the Wikipedia search engine. For example, a search on Wikipedia
for “Microsoft chairman” returns as the top result a stub article for Helmut
Panke, who is a member of the Board of Directors of Microsoft and a former
chairman of BMW AG. It lists Bill Gates as the 26th most relevant article
for this query. Our system, in contrast, correctly returns Bill Gates at the
top position. Analysis of entity references within curated text sources (e.g.
encyclopedias and news sources) can also be applied to general web search.

• Product Search. Applied to a corpus of product reviews, our approach should
be able to give relevant product suggestions. Aggregating all mentions of spe-
cific products in reviews, blogs and webpages results in a higher recall than
existing product search engines, many of which currently just search prod-
uct names, or limited collections of product descriptions. In the terminology
of [27], this can improve handling of transactional web queries.

The contributions of our work are as follows:

• Analysis of entity occurrences in Web query logs. The best way to understand
how search queries should be pre-processed and answered is to analyze past
query data [40]. By analyzing the 36 million queries of the AOL dataset [13],
we found that 20-40% of web search queries consist solely of single entities,
while 70-87.5% queries contain entities as part of the query. These findings
demonstrate that a very high percentage of all web searches recognizably
target entities or have entities associated with them.

• A first-in-literature implementation of an entity search engine. We approach
the entity retrieval problem by utilizing all occurrences of each specific en-
tity throughout a text corpus. For every entity, we automatically compose a

6.1. INTRODUCTION 112

concordance—a document capturing the context of all the occurrences of the
entity in the corpus. Then we index and search these documents using an
open source information retrieval package (Lucene) with a scoring scheme
customized to reflect the specificity of automatically generated documents.
Although our prototype search engine has been developed over a modestly-
sized 18 GB corpus of news, we see no fundamental difficulties in scaling
this to web-scale search.

• Empirical evaluation of our search engine. Identifying a gold standard to
evaluate the performance of our “first-in-literature” entity search engine is a
non-trivial task. We do so by comparing the top entities returned when the
query is itself a single entity to the entities having the top statistical juxtapo-
sition score [62] with the queried entity. Juxtaposition score is a measure of
how much more frequently two entities co-occur than they would by chance.
Our search engine provides a much greater flexibility in entity retrieval by
allowing free-text queries than is possible using juxtaposition scores.

• Time-dependent entity/document search. The most relevant entities associ-
ated with a query evolve during time. Jennifer Aniston is currently less
relevant to Brad Pitt than Angelina Jolie, even though her total number of
co-locations at the time of our experiment exceeded those of her rival. To
account for new articles added every day to the corpus, and to weigh recent
hits higher, we support generation of multiple separate concordances for the
same entity over disjoint time periods (e.g. months) and aggregate the hits
for all such periods into a single result. Through analysis of the AOL query
dataset, we determine the optimal discounting of entity references over time
to identify the most relevant entities at time of search.

The rest of this document is organized as follows. Section 6.2 reviews previous
work on entity-aware search. Section 6.3 provides motivation for the use of entities
in search engines by analyzing occurrences of news and Wikipedia based entities in
a web query log. Section 6.4 describes the design of our news entity search system.
Section 6.5 provides an empirical evaluation of the retrieval performance of our
system. Section 6.6 concludes the report and outlines the directions of our future
work.

6.2. RELATED WORK 113

6.2 Related Work

Our entity-search engine is built on top of our Lydia news analysis system
[47, 56, 62, 63, 66]. The Lydia system automatically builds an entity database from
online U.S. newspapers. Customized website scrapers download articles on a daily
basis, convert them to a standard format and store them in an archive. Then the
articles are run through a pipeline that performs part-of-speech tagging, named
entity identification and categorization, geographic normalization, intradocument
coreference resolution, and cross-document entity coreference resolution via clus-
tering. The techniques used for entity identification are part-of-speech tagging,
hand-crafted rules based on part-of-speech tag, capitalization and punctuation, and
gazetteers.

The above-mentioned papers discuss design and implementation of the Lydia
entity recognition system. In this work we use the Lydia system output comprising
text with marked-up entities and the entity database to provide search targeting the
extracted entities.

The current research relevant to entity-aware search can be subdivided into three
main directions:

• Augmenting traditional document retrieval systems with the knowledge of
entities [28, 35].

• Semantic Web research aiming to create a Web of interrelated entities and
thus greatly simplify entity search and improve document search [21, 87];

• Extraction of relations between entities from unstructured text or web pages
and searching these relations [14, 33, 34, 73].

6.2.1 Semantic-Aware Document Retrieval

Chu-Carroll, et al. [35] describe how the XML fragment query language can be
applied to semantic search. The availability of a technology to augment unstruc-
tured text with additional markup including named entities, their categories and
relations between them is assumed. The following operations are allowed to be
used in queries: conceptualization (specification of a category that should appear

6.2. RELATED WORK 114

in a block), restriction (specification of tag(s) inside which a term must appear),
and entity relation to look for. Question answering is handled by converting ques-
tions into XML fragment queries. This paper outlines a high-precision approach
to semantic-aware information retrieval for applications where loss in recall is less
important, such as intelligence investigations.

Carpenter [28] describes an attempt to use named entity recognition to improve
search results. They compare a baseline Lucene tf.idf-based approach and the one
that uses LingPipe named entity recognition to match phrases in the query. Their
named entity recognizer was based on a Bayesian generative model tagging words
as beginning, continuation or not being in a named entity, with a small history
window. They report term extraction to be on the state-of-the-art level. The system
was evaluated in the Ad Hoc task of the Genomics track of TREC 2004 on a ten-
year subset of MEDLINE citations, but the precision and recall of the phrase-based
system were always lower than the baseline. Possible explanations are the shortness
of the MEDLINE citations that prevents phrase fragments from appearing as part
of a different phrase, and phrase queries boosting scores of wrong documents.

6.2.2 Semantic Web

In [21] Berners-Lee, Hendler and Lassila first introduce the concept of the Semantic
Web. Three major components of the Semantic Web are XML (eXtensible Markup
Language), RDF (Resource Definition Framework), and ontologies. RDF encodes
dependencies between resources in the form of “subject, object, verb”-like triples,
where each of elements is a Universal Resource Identifier (URI).

The most typical kind of ontology is said to have a taxonomy and a set of infer-
ence rules. A taxonomy supplies a hierarchy of classes, subclasses and properties
that subclasses can inherit. Inference rules describe how to derive new associations
from existing associations between entities. Semantic Web agents are programs
that collect Semantic Web content from diverse sources, process the information
and exchange the results with other programs. Even agents that were not expressly
designed to work together should be able to exchange data augmented with seman-
tics. The idea of agents exchanging “proofs” of their results for verification of their
inference and security, and the idea of directories of services provided by agents

6.2. RELATED WORK 115

are also described. Applications to embedded systems and home automation are
mentioned.

Shadbolt, Berners-Lee and Hall follow up on the topic of [21] in [87]. This
paper on the Semantic Web discussing the expectations of [21] and the current situ-
ation around the Semantic Web. Technologies that already exist are RDF and OWL
(Web Ontology Language) and they have reached the status of W3C recommenda-
tions but need wider adoption. Work has begun on an inference rule interchange
format (RIF, http://www.w3.org/2005/rules/). The authors state that
these technologies need uptake by a small, but dedicated group to be consequently
widely adopted, as happened to the Web with the community of physicists. Re-
garding ontologies, the authors do not view them as static structures, but rather as
dynamic and developing representations of knowledge. They compare ontologies
to “folksonomies”—collaborative tagging schemes found today on social network-
ing websites such as Flickr. The technical challenges arising with the Semantic
Web discussed include effectively querying huge numbers of decentralized repos-
itories and building a Semantic Web browser visualizing the huge connected RDF
graph. The authors conclude by pointing out that new local-scale architectures such
as Web protocols or peer-to-peer networks can lead to global-scale societal and
technical changes.

6.2.3 Relation Extraction

Banko, Cafarella, Soderland, Broadhead, and Etzioni in [14] present a concept of
“Open Information Extraction”, meaning the extraction of relational tuples from
unstructured text without prior specification of relation types. They introduce a
fully implemented scalable domain-independent OIE system TextRunner that ex-
tracts relation tuples from Web text. TextRunner does not use “heavy” linguistic
technologies such as parsers or named entity recognizers, due to performance de-
mand of processing high volumes of Web text. Instead, a parser is used to train a
Naive Bayes classifier which is then used on a full volume of Web text to accept or
reject relations. After extracting relations, TextRunner assesses the probability of
each assertion. Finally, an inverted index is built on the extracted relations, allow-
ing for searching both arguments and predicate fields. The authors report a 33%

http://www.w3.org/2005/rules/

6.2. RELATED WORK 116

error reduction compared to their previous closed information extraction system
KnowItAll.

Paşca, Lin, Bigham, Lifchits and Jain [73] describe a new iterative approach for
large-scale extraction of facts from the Web. Their system is capable of extracting
one million facts from 100 million Web documents, starting from ten seed facts, and
using no additional knowledge or lexicons. At every iteration, patterns are extracted
from the current set of seed facts using word similarities calculated previously based
on vector-space context similarities. These patterns are scored, ranked and used to
extract candidate facts that are also scored and selectively added to the seed set for
the next iteration. The system is evaluated using “Person-BornIn-Year” relations.
Precision of around 90% and recall of 70-90% are reported.

Cheng and Chang in [33, 34] present MetaQuerier, a system for finding and
querying data sources on the “deep web”. They consider a range of entity domains
such as phone numbers, book cover images, PDF or PPT files, names, dates, email
addresses. Motivating examples they provide include finding the phone number of
Amazon.com customer service and the list of professors working in the database
area in all Computer Science departments. They attempt to provide a way to an-
swer queries such as above directly instead of having the user formulate the query in
terms of web page containing the information of interest. The data inputs consist of
crawled web pages and “deep web” pages obtained by querying specific database-
driven websites, e.g. real estate and book databases. Entity extraction happens us-
ing domain-specific entity models describing how to identify instances of an entity
class in webpages. The query engine implemented using the Lemur toolkit [71] per-
forms pattern matching and tuple scoring for online query processing. The system
is evaluated on the domain of emails of professors across universities with resulting
precision of 85% and recall of 90%.

6.2.4 Entity Search using Existing Search Engines

It should be noted that some conventional web search results might be considered
entity results. For example, Wikipedia pages may be thought of as the de facto en-
tity pages, and frequently come up as the top search result of a Google search for the

6.3. ENTITIES IN WEB QUERIES 117

corresponding entity. Another example could be Google’s question answering sys-
tem that precisely answers a certain class of factual queries in the first line of search
results. In other applications, such as product search, it is logical to compose a doc-
ument for every entity (product), perhaps consisting of product specification and
all customer reviews, and use a document search engine to index and search these
documents. We also use a similar approach, but we propose a universal scheme for
building documents corresponding to every entity.

6.3 Entities in Web Queries

To gain insight into the performance of search engines, it is essential to analyze past
query logs [40]. For example, to motivate entity-oriented search we should examine
the frequency with which web queries target recognizable entities.

Search queries contain highly proprietary information, and therefore search en-
gine companies do not often make it available to researchers. Fortunately a com-
prehensive web query dataset became available to us in August 2006 when AOL
unintentionally released 36 million search queries by 500,000 users collected from
March to May 2006. Although this release represented a serious violation of user
privacy [13], the dataset has been widely used in the research literature [4, 15, 76].
This dataset was very useful to us for collecting cumulative statistics on web
queries. When analyzing it, we did not use the user ID field or manually exam-
ine individual low-frequency queries, thus maintaining and respecting user privacy.

6.3.1 Approach to Analyzing Web Queries

We chose to identify entities by matching search queries to existing lists of known
entities. Another possible approach might try to recognize named entities in query
text using a statistical named entity recognizer such as LingPipe [1], but this would
be much less accurate due to the lack of capitalization and contextual information
in web query data. For comparative purposes, we also used approximately three
million entities identified from entry titles in Wikipedia.

We were interested both in perfect matches, where the entire query is an entity
from our database, and partial matches, where an entity is contained in the query as

6.3. ENTITIES IN WEB QUERIES 118

Query Frequency
my space 28516
map quest 27842
ask jeeves 18988
my space.com 14148
craigs list 5717
www google.com 5050
bed bath and beyond 4228
disney channel 4154
www yahoo.com 3637
e bay 3540

Table 6.2: Most frequent partial entity-query matches that are indeed complete
matches.

a contiguous range of tokens (a “sub-query”). Many of the partial matches became
perfect matches if relaxed criteria for matching entities with queries were used,
because of typos and word separation alternatives (see Table 6.2). Therefore, we
considered the following levels of strictness of matching queries with entities:

• Exact comparison. The exact case-insensitive appearance of entity in the
query is required.

• Alias resolving comparison. For every entity in the database and every
query we construct a list of aliases. By alias we mean the original string with
different tokenization, punctuation, prefixes and/or suffixes:

– URL normalization. The “http://”, “www.” prefixes and “.com”, “.net”
etc. suffixes are removed. Spaces are replaced with dots. E.g. the alias
list for “www yahoo com” is “www.yahoo.com”, “wwwyahoocom”,
“yahoo.com”, “www yahoo com”, “yahoo”.

– “&” is replaced with “and”;

– “Inc.”, “Co.”, “Corp.” suffixes are removed;

– plural nouns are reduced to singular, etc.

6.3. ENTITIES IN WEB QUERIES 119

If at least one alias of an entity matches with at least one alias of a query,
the query is considered an entity query. The same criteria is used for a “sub-
query” (a contiguous range of tokens in the query) to locate partial matches.

• Alias resolving with phonetic hashing. To further explore possible entity
appearances in search queries and to deal with misspellings, we add a Double
Metaphone [78] hash of every entity, query and sub-query to its respective
alias list.

All Queries
Matches No aliases Aliases Metaphone
perfect 17.91% 26.50% 38.82%
partial 55.14% 53.59% 48.41%
total 73.05% 80.09% 87.23%

Unique Queries
perfect 2.07% 5.33% 18.57%
partial 68.85% 69.72% 65.23%
total 70.92% 75.05% 83.80%

Table 6.3: Match frequencies for all 36,389,577 queries and 10,154,743 unique
queries (after duplicate removal) compared against Lydia entity list. Each entry
represents the percentage of queries (including duplicates in the “all queries” part)
that are perfect or partial matches with an entity name.

6.3.2 Frequencies of News Entities in Queries

Table 6.3 presents the percentage of perfect and partial matches of AOL queries
to Lydia entities under three levels of matching strictness discussed above. As the
“no aliases” column in the “all queries” part of Table 6.3 indicates, almost 18% of
queries exactly match one of the entities in our database. Interestingly, these queries
constitute only 2% of all unique queries. On average, every query that is a perfect
entity match, is repeated 17.91%×36,389,577

2.07%×10,154,743
≈ 31 times, whereas an arbitrary query is

6.3. ENTITIES IN WEB QUERIES 120

repeated only 36,389,577
10,154,743

≈ 3.6 times. Entities extracted from the news are inherently
popular and likely to be searched for.

Moving to the “aliases” column in the “all queries” part of Table 6.3, we see a
26.5%−17.9%

17.9%
≈ 48% gain in the number of perfect matches, indicating that there are

many mistyped variations of how entity names are formatted in search queries. This
shows that a set of hand-crafted rules could significantly improve entity recognition
rate by a search engine. The addition of metaphone hashing of queries increases
the number of perfect entity matches by 38.8%−26.5%

26.5%
≈ 46.5%. Clearly, spelling

correction is an important problem in both entity-oriented and document-oriented
search engine design.

When we look at how the number of partial matches changes between columns
in Table 6.3, we see two trends. First, partial matches decrease from left to right as
they become perfect after alias expansion. Second, we see an increase from 68.85%
to 69.72% in “unique queries” because more non-matches became partial matches
than partial matches became perfect matches.

To summarize, from Table 6.3 we see that 73%-87% queries contain part that
is recognizable as an entity, and 18%-39% queries are completely recognizable as
entity names.

All Queries
Matches No aliases Aliases Metaphone
perfect 19.86% 29.90% 41.75%
partial 49.85% 50.21% 45.75%
total 69.71% 80.11% 87.50%

Unique Queries
perfect 2.69% 6.05% 19.47%
partial 65.95% 68.42% 64.25%
total 68.64% 74.47% 83.72%

Table 6.4: Match frequencies for queries compared against Wikipedia entity list.

6.3. ENTITIES IN WEB QUERIES 121

Perfect Matches
No aliases Aliases Metaphone

unknown 3741787 unknown 3538105 unknown 4347665

person 842244 website 1851898 title 4192761

website 641492 title 1672178 website 1949374

organization 268081 person 944648 person 1798689

name 237937 company 301037 company 274560

company 114401 name 193818 place 188644

disease 68631 organization 169132 name 169435

place 66809 place 102282 organization 151581

last name 59450 TV series 98717 TV series 116031

university 46352 disease 71247 movie 87783

Partial Matches
No aliases Aliases Metaphone

unknown 13139962 unknown 8849382 unknown 6579174

person 2644690 title 4941389 title 5615035

organization 743740 person 1832229 person 2795352

name 652718 website 667839 place 291081

last name 515811 name 366955 website 278234

place 312335 organization 345457 city 254026

other 300025 last name 307232 company 173091

location 228221 place 274457 name 161915

first name 209389 company 213399 movie 139118

county 108325 city 210430 organization 137198

Table 6.5: Matches of news entities with queries by category.

6.3. ENTITIES IN WEB QUERIES 122

6.3.2.1 Frequency of Entities in Queries by Category

The Lydia system’s entity database defines category information (place, person,
city, country etc.) for each entity. We use the taxonomy of categories described
in [86]. This category information has been obtained using a naïve Bayes classifier
trained on a 2-to-3 word context of entity occurrences in news, so it is not always
accurate. However, counting frequencies of search query categories provides some
useful insight.

Table 6.5 shows category distribution corresponding to cells of Table 6.3. Only
top ten categories are shown for each experiment. Unknown represents the 30-60%
of entities the naïve Bayes classifier was unable to assign categories to. Moving
from the “no aliases” to “aliases” column in the top part of Table 6.5 much more
websites and titles get recognized, proving the usefulness of our URL matching
method. When in the same part of Table 6.5 we go from the “aliases” to “meta-
phone” column, the number of title matches increases much more significantly than
the number of website matches does, indicating that misspellings are more likely to
occur in titles than in website URLs.

The website category has 600,000–2,000,000 completely matching queries and
below 300,000 partial matches. The change from 667,839 to 278,234 partial
matches for websites going from “aliases” to “metaphone” can be explained by
many of these partial matches becoming perfect matches when using metaphone.
This shows that when the user is looking for a particular website using parts of its
domain name, he or she is unlikely to include additional information in the query,
which greatly simplifies the handling of website queries.

6.3.3 Frequency of Wikipedia Entities in Queries

Table 6.4 shows the same experiments as Table 6.3, but done using entity lists ob-
tained from Wikipedia, under the assumption that each Wikipedia page represents
a named entity. At the time of this writing, there are about three million pages on
Wikipedia. There is surprisingly little difference between the results obtained us-
ing the Lydia and the Wikipedia lists. The biggest difference between Table 6.3
and Table 6.4 (5.29%) is between the number of incomplete matches with no alias

6.4. CONCORDANCE-BASED ENTITY SEARCH 123

One of multiple parallel jobs

Search Server

One of multiple parallel jobs

Distributed File System

Files produced by news spiders

. . .Part of input files Part of input files

Tagged XML files in the DFS

Lydia pipeline
 (NLP phases only)

Final XML files

Web

Entity Search

Entity TableMerged Entity Index

Duplicate-free sentences
containing at least one entity

Duplicate Sentence Removal
Input Format: Articles in XML

Map Output: (MD5 Hash, Sentence)*
Reduce Output: (MD5 Hash, Sentence)

Lydia pipeline
 (NLP phases only)

Final XML files

Lucene Index Writer

Entity Document Construction
Map Output: (Entity, Sentence)*

Reduce Output: (Entity, All Sentences)

R Lucene indexes for entities
(R = # reduce tasks)

Figure 6.1: High-level design of our Lydia entity-oriented search system.

expansion, counting duplicate queries. No other differences exceed 3.4%. This in-
dicates that entity analysis in search queries can in fact be done using freely avail-
able sources such as Wikipedia, even when a complex text mining system such as
Lydia is not available. The prospects of a more reliable version of Wikipedia [12]
make this approach even more attractive. This also confirms the viability of Lydia’s
named entity recognition scheme.

6.4 Concordance-Based Entity Search

For the design of our entity search engine, we cannot assume availability of a pre-
existing text document corresponding to every entity, because such an assumption
would restrict our technique to manually prepared entity collections such as that of
products in e-commerce websites or encyclopedia articles. Instead, we perform re-
trieval of entities based on all occurrences of each particular entity throughout a text

6.4. CONCORDANCE-BASED ENTITY SEARCH 124

corpus. For every entity we generate a “concordance”—a text document contain-
ing all unique sentences from the text corpus in which that entity occurs. Then we
search these documents with an open-source search engine (Lucene). This approach
allows us to leverage the existing development in document-oriented information
retrieval.

Figure 6.1 shows the high-level architecture of our system. During the indexing
phase, an entity index is constructed. This index is used by the search server to
handle online queries. The indexing procedure is described in detail in the next
section.

6.4.1 Indexing

During the indexing phase, an entity index is constructed, which is later used by the
search server to handle online queries. The indexing procedure starts with process-
ing news articles with the Lydia pipeline. The next step separates input documents
into sentences so that concordances can be built. During that step we also elim-
inate duplicate sentences to deal with duplicate and near-duplicate articles in the
input. After that, the system constructs concordances for each entity and indexes
these concordances with Lucene. Each operation is done in a scalable distributed
way.

6.4.1.1 Processing News Articles with the Lydia Pipeline

We process news articles through the Lydia pipeline performing named entity
recognition and coreference set identification, and obtain output in XML format
with entities marked up with <pn> tags and a category assigned to each entity oc-
currence. An example of pipeline output is given in Figure 6.2. For bulk processing
of large amount of news, we run multiple instances of the Lydia pipeline using the
Condor job scheduling system [90].

6.4.1.2 Dealing with Near-Duplicate Articles

The web contains a substantial fraction of duplicate and near-duplicate documents
[50]. We deal with the duplicate and near-duplicate article problem by eliminating

6.4. CONCORDANCE-BASED ENTITY SEARCH 125

<p> <pn category = "COMPANY"> Eli/NNP Lilly/NNP

</pn> encouraged/VBD primary/JJ care/NN

physicians/NNS to/TO use/VB <pn category = "DRUG">

Zyprexa/NNP </pn> ,/, a/DT powerful/JJ drug/NN

for/IN <pn category = "DISEASE"> schizophrenia/NN

</pn> and/CC <pn category = "DISEASE"> bipolar/JJ

disorder/NN </pn> ,/, in/IN patients/NNS who/WP

did/VBD not/RB have/VB either/DT condition/NN ,/,

according/VBG to/TO internal/JJ <pn category =

"COMPANY"> Eli/NT Lilly/NNP </pn> marketing/NN

materials/NNS ./. </p>

Figure 6.2: One paragraph example of Lydia pipeline output.

duplicate sentences. If two articles are near-duplicates, there is a high chance they
will contain many exact duplicate sentences. We consider two sentences equivalent
for the purpose of duplicate removal if after replacing every sequence of whitespace
characters with one space and lowercasing all letters they have the same MD5 hash
codes.

To obtain the set of unique sentences (as well as for other tasks) we use the
Hadoop open-source implementation [11] of Google’s MapReduce distributed com-
putation model [39]. The map function takes an XML news article as input and
produces (MD5 hash, sentence) tuples as output for every sentence in the input
article that contains at least one entity marked up with a <pn> tag. The reduce
function takes (MD5 hash, list of sentences) as input and outputs (MD5 hash, first
sentence). The output of this MapReduce job is a collection of files containing all
unique sentences of the input corpus.

6.4.1.3 Collecting Context of Every Entity

To produce a searchable document for each entity, we collect all the sentences con-
taining that entity and concatenate them together. This is again done by means of a

6.4. CONCORDANCE-BASED ENTITY SEARCH 126

Earlier this week George W. Bush defended the missile defense plan for Eastern

Europe .

70 names were on the list , including national figures like George W. Bush

.

Another State Department official confirmed her status as the most senior

Arab-American in the George W. Bush administration .

They say they want a candidate who does not have the strident approach to

the war that Mr. George W. Bush does .

I would n’t approve of him again unless George W. Bush stopped the war in

Iraq .

And , for that opportunity , the Democrats can thank George W. Bush .

34 percent of Mr. George W. Bush ’s 2004 voters are now critical of George

W. Bush handling of the war .

Now , more than 2 years later , the majority of those voters say they are

satisfied with the George W. Bush presidency .

Figure 6.3: An excerpt from a concordance document generated for the entity
“George W. Bush”.

MapReduce job that takes a collection of unique sentences as input. The map func-
tion produces a set of (entityi, sentence) tuples for every sentence, where entityi
goes over all distinct entities occurring in the sentence. The reduce function takes
(entity, list of sentences) as input and adds a document with two fields (entity, con-
catenation of sentences) to a Lucene index as output.

To estimate the increase in the relative index size compared to conventional doc-
ument indexing, we calculated

∑
s ne(s)len(s)/

∑
s len(s), where s is a sentence

and ne is the number of entities in it. This statistic accounts for the fact that sentence
s gets included in ne(s) concordance documents, and equals to 2.6 in our corpus.

6.4.2 Searching

Suppose document di is a concatenation of all unique sentences from the input
corpus that contain the entity ei. As the result of steps described in Section 6.4.1,

6.4. CONCORDANCE-BASED ENTITY SEARCH 127

Entity Score Month
Muhammad Yunus 1.000 200610
Muhammad Yunus 0.649 200612 Entity Score
Grameen Bank 0.548 200610 Muhammad Yunus 1.000
Bangladesh 0.509 200610 Grameen Bank 0.548
Muhammad Yunus 0.428 200611 Bangladesh 0.509
Nobel Peace Prize 0.363 200612 Nobel Peace Prize 0.363
Grameen Bank 0.336 200612 Nobel 0.324
Nobel Peace Prize 0.336 200610 Dhaka 0.313
Nobel 0.324 200610 Bangladeshi 0.313
Dhaka 0.313 200610
Bangladeshi 0.313 200610

Table 6.6: On the left—Lucene results for a “MUHAMMAD YUNUS” query indexed
in a time-dependent manner. On the right—the same results aggregated so that
score(entity) = maxi score(entity ,month i).

we get a Lucene [8] index of documents with fields (ei, di).
Lucene’s scoring scheme must be modified to meaningfully search these au-

tomatically generated documents. The scoring formula used in Lucene, assuming
that we are searching a single field, giving equal weights to all query terms, and
omitting factors irrelevant to document ranking, is the following:

score(q, d) = coord(q , d)lengthNorm(d)×
∑
t∈q

tf (t, d)idf (t)2

In the default implementation of Lucene scoring [6] lengthNorm(d) =
1√

numTerms(d)
, where numTerms(d) is the number of terms in the document d. With

this type of document length normalization, the top results almost always turn out
to be very short documents, where the few matching terms gain an enormously high
weight. To compensate we set lengthNorm(d) ≡ 1 regardless of the document d.

6.4. CONCORDANCE-BASED ENTITY SEARCH 128

6.4.3 Time-Dependent Indexing and Search

News search appears different from other document search because the news is a
continuous flow of text, and the reader’s interest is often focused on the recently
added documents. This has implications on the design of news article and entity
retrieval systems [38]. In particular, the impact of recent text on search results
should be higher than that of older text. Similar phenomena hold (to a lesser extent)
in general web document search.

Web search engines have limits on indexed document size (200 KB - 1.1 MB,
[24]). Similarly, in Lucene the maximum number of terms that can be indexed in a
single field is limited by the amount of main memory. But for a large enough input
corpus our automatically generated documents can grow up to an indefinitely large
size.

To address the time dependency problem and the document size restriction prob-
lem, we create multiple Lucene documents for each entity, with each document
containing the context of all occurrences of the entity in a particular time period (in
our case, month). Every concordance document in this case has three fields: (entity,
concordance, month), and can be uniquely identified by the (entity, month) pair. We
can view the Lucene results for our time-dependent index as a list of (entity, month)
pairs with associated scores. An example of such results is shown in Table 6.6.

There are multiple ways of assigning scores to an entity e based on multiple
scores assigned to (e,month i) pairs:

• Exponential decay: This expresses exponentially decreasing user interest in
past news.

score(e) =
k∑
i=0

exp(−α(k − i))score(e,monthi) (6.1)

where k is the index of the current month, assuming that 0 corresponds to the
earliest month for which news are included in the index.

• Maximum value:

score(e) = max
i=0,...,k

score(e,month i) (6.2)

6.4. CONCORDANCE-BASED ENTITY SEARCH 129

The advantage of this method is speed of computation: if n top-scoring enti-
ties are requested, the scan of an (entity, month) hit list returned by Lucene
can be stopped once n unique entities have been seen. The disadvantage of
this method is that entities that were once very popular score higher than
entities that have had steady popularity without high peaks. We currently
use this method for our demo at http://www.textmap.com due to its
speed. The right part of Table 6.6 shows the entity scores calculated using
this method.

6.4.4 Modeling User Interest in an Entity

We hypothesize that the number of web queries containing an entity expresses user
interest in that entity as a function of time. We use the daily scale instead of monthly
for these experiments because only three months of web query data are available to
us. We try to predict daily entity frequency in queries using its frequency in the
news using the following models:

• Exponential decay with window w (including w =∞):

hβ,w(e, i) =
d∑

i=max(0,d−w+1)

exp(−β(d− i))n(e, i) (6.3)

where e is an entity, d is the index of the current day and n(e, i) is the fre-
quency of the entity e in the news on day i.

• Historical mean:

haverage(e, i) =
1

d+ 1

d∑
i=0

n(e, i) (6.4)

• A convex combination of both:

hλ,β,w(e, i) = (1− λ)hβ,w(e, i) + λhaverage (6.5)

Then, we optimize model parameters to maximize the Pearson correlation be-
tween h(e, i) and the actual frequency q(e, i) of entity e in web queries on day i. In
our experiments correlation is averaged across 152 entities chosen as the intersec-
tion of 1000 most frequent entities in the news and in web queries. A correlation

http://www.textmap.com

6.5. EVALUATION 130

of 0.275 is reached by (6.4). A higher correlation of 0.349 is reached by (6.5) when
β = 0.01 and λ = 0, showing that (6.3) is a better model than (6.4). We use the ex-
ponential decay factor α = βoptimal × 30.4 (average days per month) in our scoring
function (6.1).

The dependency of the correlation given by h0,w(e, i) on the window size w is
shown in Figure 6.4. The optimal w = 28 suggests the usual span of user interest
in an entity after it is mentioned in the news. However, this model would not be
suitable for search result scoring, because it discards old references to an entity
which could undoubtedly be of interest to the user. Therefore, we use w = ∞ in
the implementation of the exponential decay model described in Section 6.4.3.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
la

tio
n

Exponential decay factor

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80 90

C
or

re
la

tio
n

Window size, days

Figure 6.4: The correlation between predicted and actual entity frequency in queries
(left) depending on the exponential decay factor β for model (right) when predicted
by summing entity frequency in the news on last w days.

6.5 Evaluation

We have designed and implemented a search engine returning entities related to
the user’s query instead of regular web documents. Evaluating an entity search
engine is a non-trivial problem. TREC (Text REtrieval Conference) provides a de
facto standard to document retrieval and question answering systems evaluation.
The closest benchmark to entity search that TREC provides is the Expert search
task in the Enterprise track, which may be viewed as a very specific instance of the
problem we consider. However, the general problem of returning entities relevant
to the user’s query that we address here is different from all of the mentioned TREC
tasks.

6.5. EVALUATION 131

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
or

re
la

tio
n

Exponential decay factor

Figure 6.5: The correlation between predicted and actual entity frequency in queries
depending on the exponential decay factor β for model (6.3), w = ∞. The maxi-
mum correlation of 0.33 is achieved for β = 0.062.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80 90

C
or

re
la

tio
n

Window size, days

Figure 6.6: The correlation between predicted and actual entity frequency in queries
when predicted by summing entity frequency in the news on last w days. The
maximum correlation of 0.353 is achieved for w = 28.

Our Lydia text analysis system already contains a way to measure how strongly
two entities are related to each other (juxtaposition score), expressed as an upper
bound of the probability of them occurring in the same sentence under the assump-
tion of their independence [62]. This measure is similar to collocation significance
measures in natural language processing [64], but instead of word occurrences next
to each other we consider entity occurrences within the same sentence. Juxtaposi-
tion scores are calculated based on the entire news corpus. It would be natural for
our search engine, when given a query that is a known entity itself, to return results
close to the list of entities having top juxtaposition scores with the queried entity.
The significant improvement of our search engine over the juxtaposition technique,
however, is its ability to answer free text queries.

6.5. EVALUATION 132

Another quite simple benchmark that we considered is based on the observation
that when an entity is given to our search engine as a query, ideally it should appear
as the top result. Therefore, calculating statistics of the rank of the queried entity in
the results is a way to check basic correctness of our search engine performance. It
is covered in Section 6.5.3.

6.5.1 Comparison with Juxtaposition Lists

A method to identify entities that occur near a particular entity in an overrepresented
way (i.e. more frequently than it would happen randomly) is described in [62].
Suppose, na and nb are numbers of sentences in the entire news corpus that contain
entities a and b respectively, F is the number of sentences containing them both,
and N is the total number of sentences in the corpus. Then, according to [62], the
probability of the observed number of occurrences under the assumption that these
two entities are independent is not more than

Pbound(na, nb, F,N) =

 e
FN
nanb

−1(
FN
nanb

) FN
nanb

nanb
N

(6.6)

We call − log of (6.6) the juxtaposition score of the entities a and b, meaning
that the higher the juxtaposition score, the more dependency exists between the two
entities. If for a given entity a we retrieve a list of k − 1 entities b1, . . . , bk−1 from
our corpus that have highest juxtaposition scores with entity a, we will get a list
of k − 1 “most associated” with a entities in the sense of juxtaposition scores. It
is natural to add the entity a itself onto the top of this list as being ultimately the
most associated with itself. The resulting (a, b1, . . . , bk−1) list is what we compare
against the results of our search engine given the query a.

For comparison of top k lists we use the Kmin distance measure described in
[44]. According to [44], theKmin distance measure can be calculated as follows for
two top k lists τ1 and τ2:

Kmin(τ1, τ2) = K(0)(τ1, τ2) =
∑

{i,j}⊆Dτ1∪Dτ2

K̄
(0)
i,j (τ1, τ2)

6.5. EVALUATION 133

where Dτ1 and Dτ2 are the sets of elements of τ1 and τ2 respectively, and
K̄

(0)
i,j (τ1, τ2) is defined as 0 if the elements i and j appear in the same order both

in τ1 and τ2 and 1 if they appear in different order. An element that does not appear
in one of the lists is considered appearing at the bottom of that list. If the elements
i and j appear in one top k list but do not appear in the other top k list,

K̄
(0)
i,j (τ1, τ2) = 0 (6.7)

(the reason for the notation K(0)).
To make these scores calculated for different list sizes comparable, we divide

them by
(
k
2

)
where k is the size of the top lists. This corresponds to the value of

the Kmin distance measure between two top lists that contain the same k elements
in the reverse order. This distance measure, however, is even higher when two
lists are completely disjoint. Specifically, if Dτ1 = {a1, a2, . . . , ak} and Dτ2 =

{b1, b2, . . . , bk}, with Dτ1 ∩ Dτ2 = ∅, then K̄(0)
ai,aj(τ1, τ2) = K̄

(0)
bi,bj

(τ1, τ2) = 0 for

all 1 ≤ i < j ≤ k according to (6.7), and K̄
(0)
ai,bj

(τ1, τ2) = 1, because each of
the elements ai and bj , appearing in only one of the lists τ1 and τ2, is considered
appearing at the bottom of the other list, and therefore the pair of elements (ai, bj)

appears in the two top k lists in different order for all 1 ≤ i ≤ k, 1 ≤ j ≤ k.
Consequently,

Kmin(τ1, τ2) = k2. (6.8)

6.5.1.1 Results by Entity Category

To determine how entity category effects search results, we have experimented with
the top 10,000 entities in each category. The distance measures between juxtapo-
sition lists and search results are given in Table 6.7. The search results turn out to
be the closest to the juxtaposition-based results for the “person” category, probably
because Lydia provides more precise identification and categorization of “person”
entities.

Figure 6.7 shows the distribution of top list distances between juxtaposition re-
sults and phrase query results for the person category. The small size of the spike at
(k−1)2/

(
k
2

)
= 1.8 indicates that the portion of queries with disjoint (except for the

top result) lists based on juxtapositions and entity index was rather insignificant.

6.5. EVALUATION 134

Category Mean Std Dev
person 0.57 0.32
all 0.83 0.54
institute 0.86 0.44
address 0.88 0.47
political 0.89 0.54
company 0.92 0.45
university 0.95 0.43
place 0.96 0.51
unknown 1.06 0.57
last name 1.47 0.46

Table 6.7: Distances between search results and juxtaposition lists by category.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2

N
um

be
r o

f q
ue

rie
s

Top 10 list distance measure

Query type "sloppy phrase", category "person"

Number of queries

Figure 6.7: Distribution of top list distances for phrase queries for the person cate-
gory.

6.5.1.2 Results by Query Type

There are many possible ways to interpret an unstructured search query entered by
the user. We evaluate the following approaches in order to minimize the distance
measure between search results and juxtaposed entities for an entity query:

• “Bag of words” query. In this case, the terms in the query are allowed to
occur anywhere in the target document independently of each other, and a
bonus score proportional to the number of appearing terms is given to each
document.

6.5. EVALUATION 135

Phrase Bag of words Combination
Distance mean 0.831 1.154 1.148
Distance std dev 0.544 0.564 0.564

Table 6.8: Distance measure between search results and juxtapositions for different
query types for 9919 entities used as queries.

Slop value Mean Variance
0 0.825 0.542
1 0.828 0.543
2 0.830 0.544

of terms 0.831 0.544
3 0.832 0.544

Table 6.9: Distance measure between juxtapositions and search results for phrase
queries depending on the slop value.

• “Phrase” query with different slop values. The terms are required to ap-
pear in the document next to each other, but the order might differ from that
specified by the user. The maximum edit distance where units correspond to
movements of words should not exceed the slop value.

• Combination of both “bag of words” and phrase queries. We give the phrase
query a significantly higher weight(“boost” in Lucene terminology), so that
when too few results are found for the phrase query, the results of the bag of
words query are mixed in.

Table 6.8 shows the result of comparison of top-10 lists returned for about
10,000 most popular entities with top juxtaposition lists for the same entities. Of
the three query types we used, the phrase query matches juxtapositions the best. In
phrase queries in the Table 6.8, and in the experiments in Section 6.5.1.1, the slop
value equal to the number of terms in the query is used.

Table 6.9 shows the dependency of the distance measure for phrase queries on
the slop value. The smallest distance measure is achieved when the slop value is

6.5. EVALUATION 136

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.5 1 1.5 2

N
um

be
r o

f q
ue

rie
s

Top 10 list distance measure

Query type "sloppy phrase", category "all"

Number of queries

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.5 1 1.5 2

N
um

be
r o

f q
ue

rie
s

Top 10 list distance measure

Query type "bag of words", category "all"

Number of queries

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 0.5 1 1.5 2

N
um

be
r o

f q
ue

rie
s

Top 10 list distance measure

Query type "combined", category "all"

Number of queries

Figure 6.8: Distribution of top list distances for “phrase”, “bag of words” and “com-
bined” queries.

Second(→) Perfect, Perfect, Partial, Partial, None
First(↓) the same different the same different

Perfect 2185059 360191 242165 411329 283483
Partial 164635 435530 11631065 1233368 644294
None N/A 431160 N/A 934830 4402650

Table 6.10: Frequencies of different combinations of types of matches of consecu-
tive (within 10 minutes) queries by the same user with entities.

zero. However, all distance measure differences in the Table 6.9 are within about
1%, so we use the slop value equal to the number of terms in the query for our
following experiments, as the most flexible choice.

Figure 6.8 shows the distribution of distance measures for three mentioned types
of queries. The spike at 1.8 corresponds to the case when two lists only have the
top element in common, and Kmin(τ1, τ2) = (k − 1)2, because in this case K̄(0)

i,j =

1 if and only if i and j are non-top elements from different lists. This can be
explained by the fact that we artificially add the queried entity at the top of the the
juxtaposition result list for that entity, and thus it has a higher chance to match with
the top Lucene result.

6.5.1.3 Statistical Significance

It is interesting to note that the correlation between the two types of lists of relevant
entities that we are comparing to each other is largely explained by the same entity

6.5. EVALUATION 137

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 5 10 15 20 25 30 35 40 45 50

D
is

tri
bu

tio
n

Fu
nc

tio
n

Rank

person
all

place
city

last_name
university
company

government

Figure 6.9: Predicting the user’s next query, i.e. the probability that an AOL search
query ranks among the top k entities associated with the previous query (unique
pair frequencies).

frequency and juxtaposition frequency data being used for both algorithms. For
instance, if two result lists were independent, the probability of the top k lists drawn
from N documents being completely disjoint would be(

N−k
k

)(
N
k

) ≈ (N − k
N

)k
≈ exp

(
−k

2

N

)
≈ 0.9999 (6.9)

with k = 10 and N = 106. Disjoint lists correspond to the distance measure of
≈ 2.222, but in any of our experiments at most 9500 queries out of 10000 have
this distance measure. Therefore, the p-value of our observations is not more than∑9500

k=0

(
10000
k

)
0.9999k0.000110000−k < 10−100. This extremely low p-value can be

explained by the fact that in our case the two top-k lists are not really independent
at all, but are based on the same input data.

6.5.2 Query Prediction using Juxtapositions

Modern search engines suggest refined search queries to users, by (1) identifying
likely spelling errors, and (2) analyzing query frequencies in search logs by collab-
orative filtering. To augment these techniques, we propose using our entity search
engine to suggest entities related to the previous search query as navigational links.

6.5. EVALUATION 138

Category Query found Rank mean Rank std dev
person 9995 0.02 0.22
all 9919 0.19 0.73
unknown 9664 0.46 1.20
place 9424 0.46 1.28
address 9790 0.68 1.30
institute 9658 0.75 1.49
political 9300 0.83 1.63
company 9557 0.89 1.61
university 9461 1.27 1.81
last name 7052 2.33 2.57

Table 6.11: Queried entity position depending on category.

The critical question is how often we can predict the user’s next query from their
current search.

In an attempt to answer this question, we examined successive queries by dis-
tinct users in the AOL query data set. (The IDs of all users remained anonymous
through this process). We considered the 360,191 cases where users transitioned
from one perfect entity query to a different perfect entity query. We were interested
in the extent to which our search engine would report the latter entity in response to
the first.

For efficiency of experimentation, we used the second entity’s rank in the first
entity’s juxtaposition list as a proxy for the predictions of our search engine. Fig-
ure 6.9 presents our results for distinct pairs of perfect entity search queries as a
function of rank position. It shows that our predictions are most accurate for people
queries, predicting the next query over 8% of the time for rank=50. The decision
procedure to refine the ranked list has not been optimized, and we anticipate sub-
stantially lower ranks will suffice for this level of predictability in practice.

These results are quite encouraging. They demonstrate that our methods can
predict roughly 5-10% of subsequent user entity queries; enough to justify display-
ing our navigational shortcuts to aid their search.

6.6. CONCLUSIONS AND FUTURE WORK 139

6.5.3 Queried Entity Rank in Results

A basic way to evaluate entity retrieval performance is to measure how many times,
when an existing entity is used as a query, it is returned as the top result. General-
izing this, we measure the rank of an entity in the search results for that entity used
as a query, and expect it to be close to the top position.

Table 6.11 shows the number of queries for which the queried entity was found
in the result list, the mean and the standard deviation of the zero-based rank of the
queried entity in the result list for different categories. It uses the “phrase” query
interpretation which turns out to be the best according to our criteria (see section
6.5.1.2). For most categories, in 95% of cases the queried entity was present in the
result list and on average appeared within the top two positions of the result. The
high number (almost 30%) of entities in the “last name” category not found in the
result lists for those entities can be explained by the result lists being dominated by
person names consisting of a first and a last name.

6.6 Conclusions and Future Work

It is becoming recognized that the next generation of search engines will need to
be aware of entities in addition to searching unstructured text. We analyzed web
query logs and found that up to 87% of web queries contain part that is recogniz-
able as a news or Wikipedia entity. We then designed and implemented a proto-
type entity search engine that automatically composes a concordance capturing the
context of all occurrences of each entity and leverages an off-shelf document re-
trieval technology (Lucene) to search these documents. The prototype is available
at http://www.textmap.com.

Directions for future work include:

• Alternative evaluation techniques, possibly converting TREC list questions
to queries to our search engine and finding the percentage of correct answers
in the top list.

• Customizing our approach for product review search.

http://www.textmap.com

6.6. CONCLUSIONS AND FUTURE WORK 140

• Detection of target entity categories from the query and filtering results ac-
cordingly.

• Integration of entity search results into conventional web search engines.

Chapter 7

Conclusions

This thesis was inspired by the potential of the Lydia news analysis system to pro-
vide useful data to social science researchers. We have come a very long way to
realizing this potential. In particular, we have met the following challenges in our
approach to this problem:

• Scalability. To keep up with the ever-increasing daily volume of text streams
available online and the variety of corpora, the Lydia system had to be made
to run on a computer cluster and unrestricted by a single relational database
bottleneck as the previous system had been. We achieved this by re-designing
the data aggregation part of the system on top of the Hadoop map-reduce
framework. A particularly difficult part of this was reconciling the batch
processing model of the map-reduce paradigm with the necessity of regular
updates to our entity statistics datasets.

• Ease and flexibility of access. Once extracted from the text and stored in
the Lydia depository, the entity statistics data is easily accessible through our
depository server. It provides a variety of access granularity options allow-
ing to capture both temporal and spatial distributions of all entity statistics
supported. We provide a web frontend for interactive exploration and visu-
alization of entity statistics and data download, as well as an API for custom
experimental code.

141

7. CONCLUSIONS 142

• Modularity and extensibility. We introduced an intermediate data manage-
ment and scheduling layer between Hadoop and our backend data aggrega-
tion/processing phases that operates on the abstraction of artifacts. An arti-
fact in the Lydia framework is a dataset stored in parts identified by a time
period (such as date range), having a certain key/value or index structure, and
computed and updated in a certain way. All of entity statistics and indexes in
the core Lydia depository were implemented in terms of this artifact abstrac-
tion. Experimental backend aggregation datasets can be created by setting up
an additional depository and using some artifacts from the core depository as
inputs.

We have presented performance evaluation results of our system and discussed
optimization of certain parameters such as the number of simultaneously built ar-
tifacts so as to minimize the total text corpus processing time. These results show
a significant increase in performance and scalability compared to the previous ver-
sion of the Lydia system. With the current rapid growth of applications built on top
of Hadoop, such evaluations are becoming of significant interest to the developer
community.

A useful feature of the new Lydia architecture is its statistics aggregation sub-
system allowing to collect temporal, spatial, and juxtaposition statistics for groups
of entities given the same statistics for individual entity names and the entity to
group mapping. The system supports entity groupings by their co-reference set,
autodetected ethnicity, and the most-associated nationality inferred from the juxta-
position data. Using the ethnicity classifier of [5] we have performed geographic
news analysis of cultural groups, detected interesting time-series trends in cul-
tural/ethnic/linguistic groups frequency and sentiment, and examined inter-group
interactions.

As another study, indirectly related to building an entity analysis system for the
social sciences, we have considered the problem of finding entities the most rele-
vant to the given full-text query. We have assessed the importance of this problem
by analyzing the AOL query logs and found out that a significant fraction of real
web queries represent or contain named entities that are present in our real-world
corpora. Then we proceeded to building an entity search engine that works by

7.1. FUTURE WORK 143

constructing a “concordance” document corresponding to each entity. These con-
cordance documents contain all context of the given entity in the text corpus. We
implemented entity search by indexing and searching these concordance documents
with the open-source Lucene information retrieval library. The results proved to be
quite consistent with our notion of juxtapositions, justifying the use of our entity
search engine as a part of the new Lydia text analysis system.

The large-scale sentiment scoring subsystem is one of the most important parts
of our system for social science applications. We have validated the Lydia senti-
ment scoring methodology using text from international newspapers and parallel
corpora translated to English with state-of-the-art machine translation technology.
As significant correlations were observed between entity sentiment scores coming
from various language sources and using different translators, we concluded that
our sentiment scoring approach is largely independent of the source language and
the translator used.

7.1 Future Work

There are many areas where the new Lydia system can still be extended and im-
proved:

• Using the newly introduced sentiment word histogram artifact that allows to
obtain time series of every sentiment word used in conjunction with a given
entity (see Figure 2.9), the scores assigned to sentiment words can be refined
to make polarity better reflect certain real-world time series, such as politician
approval / poll ratings.

• We are still working on refining our entity globality scoring algorithm and
obtaining meaningful entity globality time series.

• We anticipate that the depository server will eventually become a bottleneck
in our system as we increase the volume of data we process. Its amount of
memory limits the total number of parts randomly accessible artifacts can be
split into. Using a column-oriented database such as HBase [7] or Hypertable
[102] for the depository server should help solve this problem.

7.1. FUTURE WORK 144

• The web frontend still offers room for improvement. Inline help could be
added to explain various non-obvious fields on data retrieval pages. Spelling
correction could be included to handle mistyped entity names. The source
group specification interface could be made more intuitive.

• More collaboration with social scientists. In one of our current projects we
are using our dataset and analysis tools to develop a methodology for identi-
fying and explaining cumulative advantage effects in news data. This would
allow to study the influence of an entity’s past popularity on its future refer-
ences in the news.

• We could make it possible for the users to upload and process custom docu-
ment corpora to build their own depositories.

Bibliography

[1] Alias-i Inc. LingPipe. http://www.alias-i.com/lingpipe.

[2] Wikipedia. May 2007. http://en.wikipedia.org/wiki/May_

2007.

[3] 101tec. Hypertable. http://hypertable.org/.

[4] E. Adar. User 4XXXXX9: anonymizing query logs. In E. Amitay, C. G.
Murray, and J. Teevan, editors, Query Log Analysis: Social And Techno-
logical Challenges. A workshop at the 16th International World Wide Web
Conference (WWW 2007), May 2007.

[5] A. Ambekar, C. Ward, J. Mohammed, S. Reddy, and S. Skiena. Name-
Ethnicity Classification from Open Sources. In Proc. of the ACM SIG-KDD,
2009.

[6] Apache Software Foundation. Apache Lucene—Scoring. http://

lucene.apache.org/java/docs/scoring.html.

[7] Apache Software Foundation. HBase. http://hadoop.apache.org/
hbase/.

[8] Apache Software Foundation. Lucene. http://lucene.apache.

org/.

[9] Apache Software Foundation. Nutch. http://lucene.apache.org/
nutch.

145

http://www.alias-i.com/lingpipe
http://en.wikipedia.org/wiki/May_2007
http://en.wikipedia.org/wiki/May_2007
http://hypertable.org/
http://lucene.apache.org/java/docs/scoring.html
http://lucene.apache.org/java/docs/scoring.html
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hbase/
http://lucene.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/nutch
http://lucene.apache.org/nutch

BIBLIOGRAPHY 146

[10] Apache Software Foundation. Solr. http://lucene.apache.org/

solr.

[11] Apache Software Foundation. The Hadoop Project. http://lucene.

apache.org/hadoop.

[12] J. Appel. More “reliable” Wikipedia soon to launch. eSchool News,
http://www.eschoolnews.com/news/showstoryts.cfm?

Articleid=6877, 2007.

[13] M. Arrington. AOL Proudly Releases Massive Amounts of Private Data.
http://www.techcrunch.com/2006/08/06, 2006.

[14] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni.
Open information extraction from the web. In Proc. of the International
Joint Conference on Artificial Intelligence, pages 2670–2676, 2007.

[15] M. Barouni-Ebrahimi and A. A. Ghorbani. On query completion in web
search engines based on query stream mining. In WI ’07: Proc. of the
IEEE/WIC/ACM International Conference on Web Intelligence, pages 317–
320, Washington, DC, USA, 2007. IEEE Computer Society.

[16] M. Bautin, A. Dwarakinath, and T. Chiueh. Graphics engine resource man-
agement. In Proc. of the 15th Annual Multimedia Computing and Networking
Conference (MMCN 2008), San Jose, California, USA, January 2008.

[17] M. Bautin and S. Skiena. Concordance-based entity-oriented search. In Proc.
of the IEEE/WIC/ACM International Conference on Web Intelligence, pages
586–592, 2007.

[18] M. Bautin and S. Skiena. Concordance-based entity-oriented search. Web
Intelligence and Agent Systems: An International Journal, 7(4), 2009.

[19] M. Bautin, L. Vijayarenu, and S. Skiena. International Sentiment Analysis
for News and Blogs. In Proc. of the International Conference on Weblogs
and Social Media, Seattle, WA, 2008.

http://lucene.apache.org/solr
http://lucene.apache.org/solr
http://lucene.apache.org/hadoop
http://lucene.apache.org/hadoop
http://www.eschoolnews.com/news/showstoryts.cfm?Articleid=6877
http://www.eschoolnews.com/news/showstoryts.cfm?Articleid=6877
http://www.techcrunch.com/2006/08/06

BIBLIOGRAPHY 147

[20] F. Benamara, C. Cesarano, A. Picariello, D. Reforgiato, and V. Subrahma-
nian. Sentiment analysis: Adjectives and adverbs are better than adjectives
alone. In Proc. of the ICWSM’07, pages 203–206, March 2007.

[21] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

[22] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[23] D. Bond, J. Bond, C. Oh, J. C. Jenkins, and C. L. Taylor. Integrated Data
for Events Analysis (IDEA): An Event Typology for Automated Events Data
Development. Journal of Peace Research, 40:733–745, Nov 2003.

[24] S. Bondar. Search Engine Indexing Limits: Where Do the
Bots Stop? http://www.sitepoint.com/article/

indexing-limits-where-bots-stop, 2006.

[25] J. Box-Steffensmeier, D. Darmofal, and C. Farrell. The endogenous rela-
tionship of campaign expenditures, expected vote, and media coverage. In
American Political Science Association annual meeting, 2005.

[26] H. Brandenburg. Revisiting the “Liberal Media Bias”: A Quantitative Study
into Candidate Treatment by the Broadcast Media During the 2004 Presi-
dential Election Campaign. In Proc. of the Annual Meeting of the American
Political Science Association, Philadelphia, Sep 2006.

[27] A. Broder. A taxonomy of web search. ACM Special Interest Group on
Information Retrieval (SIGIR) Forum, 36(2):3–10, 2002.

[28] B. Carpenter. Phrasal queries with LingPipe and Lucene. In Proc. of the 13th
Meeting of the Text Retrieval Conference (TREC), Gaithersburg, Maryland,
2004.

[29] U. S. Census. Maps of American Ancestries.
http://en.wikipedia.org/wiki/Maps_of_American_ancestries, 2000.

http://www.sitepoint.com/article/indexing-limits-where-bots-stop
http://www.sitepoint.com/article/indexing-limits-where-bots-stop

BIBLIOGRAPHY 148

[30] C. Cesarano, B. Dorr, A. Picariello, D. Reforgiato, A. Sagoff, and V. Sub-
rahmanian. Oasys: An opinion analysis system. In Proc. of the AAAI Spring
Symposium on Computational Approaches to Analyzing Weblogs, 2004.

[31] C. Cesarano, A. Picariello, D. Reforgiato, and V. Subrahmanian. The
OASYS 2.0 Opinion Analysis System. In ICWSM’07, pages 313–314, March
2007.

[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage sys-
tem for structured data. In OSDI ’06: Proc. of the 7th symposium on Op-
erating Systems Design and Implementation, citeulike-article-id = 3765219,
pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[33] T. Cheng and K. C.-C. Chang. Entity search engine: towards agile best-
effort information integration over the web. In Proc. of the Third Biennial
Conference on Innovative Data Systems Research, pages 108–113, Jan 2007.

[34] T. Cheng, X. Yan, and K. C.-C. Chang. Supporting entity search: a large-
scale prototype search engine. In SIGMOD ’07: Proc. of the 2007 ACM
SIGMOD International Conference on Management of Data, pages 1144–
1146, New York, NY, USA, 2007. ACM.

[35] J. Chu-Carroll, J. Prager, K. Czuba, D. Ferrucci, and P. Duboue. Semantic
search via XML fragments: a high-precision approach to IR. In Proc. of
the 29th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 445–452, New York, NY, USA,
2006. ACM Press.

[36] Concurrent Inc. Cascading. http://www.cascading.org.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

[38] G. M. D. Corso, A. Gullí, and F. Romani. Ranking a stream of news. In
Proc. of the 14th International Conference on World Wide Web, pages 97–
106, New York, NY, USA, 2005. ACM Press.

http://www.cascading.org

BIBLIOGRAPHY 149

[39] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. of the OSDI’04: Sixth Symposium on Operating System
Design and Implementation, pages 137–150.

[40] P. V. Dijck. Better search engine design: beyond algorithms.
http://www.onlamp.com/pub/a/onlamp/2003/08/21/

better_search_engine.html, Aug. 2003.

[41] T. L. Dixon, C. L. Azocar, and M. Casas. The portrayal of race and crime
on television network news. Journal of Broadcasting & Electronic Media,
47(4), 2003.

[42] Facebook Inc. Cassandra: A Structured Storage System on a P2P Network.
http://code.google.com/p/the-cassandra-project/.

[43] Facebook Inc., Apache Software Foundation. Hive. http://wiki.

apache.org/hadoop/Hive.

[44] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proc. of
the ACM-SIAM Symposium on Discrete Algorithms, 2003.

[45] D. J. Gerner, R. Abu-Jabr, P. A. Schrodt, and O. Yilmaz. Conflict and Medi-
ation Event Observations (CAMEO): A New Event Data Framework for the
Analysis of Foreign Policy Interactions.

[46] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. SIGOPS
Oper. Syst. Rev., 37(5):29–43, 2003.

[47] N. Godbole, M. Srinivasaiah, and S. Skiena. Large-Scale Sentiment Analysis
for News and Blogs. In Proc. of the International Conference on Weblogs
and Social Media, Mar. 2007.

[48] N. Godbole, M. Srinivasaiah, and S. Skiena. Large-Scale Sentiment Analysis
for News and Blogs. In Proc. of the International Conference on Weblogs
and Social Media, pages 219–222, Mar. 2007.

[49] V. Hatzivassiloglou and K. R. McKeown. Predicting the semantic orientation
of adjectives. In Proc. of the 8th Conference of the European Chapter of the

http://www.onlamp.com/pub/a/onlamp/2003/08/21/better_search_engine.html
http://www.onlamp.com/pub/a/onlamp/2003/08/21/better_search_engine.html
http://code.google.com/p/the-cassandra-project/
http://wiki.apache.org/hadoop/Hive
http://wiki.apache.org/hadoop/Hive

BIBLIOGRAPHY 150

Association for Computational Linguistics, pages 174–181, Morristown, NJ,
USA, 1997. Association for Computational Linguistics.

[50] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin. Query-free news search.
In Proc. of the 12th International Conference on World Wide Web, New York,
NY, USA, May 2003. ACM Press.

[51] K. Hiroshi, N. Tetsuya, and W. Hideo. Deeper sentiment analysis using ma-
chine translation technology. In COLING ’04: Proc. of the 20th International
Conference on Computational Linguistics, page 494, Morristown, NJ, USA,
2004. Association for Computational Linguistics.

[52] IBM Corporation. WebSphere Translation Server for Multiplat-
forms. http://www-306.ibm.com/software/pervasive/ws_

translation_server.

[53] IBM Corporation. Guidelines for Writing Content that Will Be Machine-
Translated, Sept. 2001.

[54] M. A. Johnson. Predicting News Flow from Mexico. Journalism & mass
communication quarterly, 74:315, 1997.

[55] T. Kato. International Compact with Iraq. http://www.imf.org/

external/np/speeches/2007/050307.htm.

[56] J. H. Kil, L. Lloyd, and S. Skiena. Question Answering with Lydia. In Proc.
of the Fourteenth Text Retrieval Conference (TREC), 2005.

[57] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In Proc. of
the 20th International Conference on Computational Linguistics, page 1367,
Morristown, NJ, USA, 2004. Association for Computational Linguistics.

[58] M. Lebo. Personal communication, 2008.

[59] LexisNexis. LexisNexis Academic. http://www.lexisnexis.com/
us/lnacademic.

[60] L. Lloyd. Lydia: A System for the Large Scale Analysis of Natural Language
Text. PhD thesis, Stony Brook University, 2006.

http://www-306.ibm.com/software/pervasive/ws_translation_server
http://www-306.ibm.com/software/pervasive/ws_translation_server
http://www.imf.org/external/np/speeches/2007/050307.htm
http://www.imf.org/external/np/speeches/2007/050307.htm
http://www.lexisnexis.com/us/lnacademic
http://www.lexisnexis.com/us/lnacademic

BIBLIOGRAPHY 151

[61] L. Lloyd, P. Kaulgud, and S. Skiena. Newspapers vs. Blogs: Who Gets the
Scoop? In Proc. of the Computational Approaches to Analyzing Weblogs
(AAAI-CAAW 2006), Stanford University, 2006.

[62] L. Lloyd, D. Kechagias, and S. Skiena. Lydia: A system for large-scale news
analysis. In SPIRE, pages 161–166, 2005.

[63] L. Lloyd, A. Mehler, and S. Skiena. Identifying co-referential names across
large corpora. In Proc. of the 17th Annual Symposium on Combinatorial
Pattern Matching (CPM 2006), volume LNCS 4009, pages 12–23, July 2006.

[64] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, May 1999.

[65] C. McClelland. World Event/Interaction Survey (WEIS) Project, 1966-1978.

[66] A. Mehler, Y. Bao, X. Li, Y. Wang, and S. Skiena. Spatial Analysis of News
Sources. In IEEE Trans. Vis. Comput. Graph., volume 12, pages 765–772,
2006.

[67] A. Mehler and S. Skiena. Expanding network communities from representa-
tive examples. ACM Trans. Knowledge Discovery from Data (TKDD), 2009.

[68] R. Mihalcea, C. Banea, and J. Wiebe. Learning multilingual subjective lan-
guage via cross-lingual projections. In Proc. of the 45th Annual Meeting of
the ACL, pages 976–983, June 2007.

[69] G. A. Miller. WordNet: a lexical database for English. Commun. ACM,
38(11):39–41, 1995.

[70] D. Mutz. Media Fairness? It’s in the Eye of the Beholder,
National Annenberg Election Survey Data Show. http:

//www.annenbergpublicpolicycenter.org/Downloads/

Releases/NAES%202008/pressfairnessmay12008.pdf, May
2008.

[71] P. Ogilvie and J. P. Callan. Experiments using the Lemur toolkit. In Text
Retrieval Conference, 2001.

http://www.annenbergpublicpolicycenter.org/Downloads/Releases/NAES%202008/pressfairnessmay12008.pdf
http://www.annenbergpublicpolicycenter.org/Downloads/Releases/NAES%202008/pressfairnessmay12008.pdf
http://www.annenbergpublicpolicycenter.org/Downloads/Releases/NAES%202008/pressfairnessmay12008.pdf

BIBLIOGRAPHY 152

[72] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
a not-so-foreign language for data processing. In SIGMOD ’08: Proc. of
the 2008 ACM SIGMOD International Conference on Management of data,
pages 1099–1110, New York, NY, USA, 2008. ACM.

[73] M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. Names and similarities
on the web: fact extraction in the fast lane. In ACL ’06: Proc. of the 21st
International Conference on Computational Linguistics and the 44th annual
meeting of the ACL, pages 809–816, Morristown, NJ, USA, 2006. Associa-
tion for Computational Linguistics.

[74] B. Pang and L. Lee. A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proc. of the ACL,
pages 271–278, 2004.

[75] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? sentiment classifica-
tion using machine learning techniques. In Proc. of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2002.

[76] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In InfoS-
cale ’06: Proc. of the 1st International Conference on Scalable information
systems, page 1, New York, NY, USA, 2006. ACM.

[77] L. Philips. Hanging on the metaphone. Computer Language, 7, 1990.

[78] L. Phillips. The Double Metaphone Search Algorithm. C/C++ Users Jour-
nal, June 2000.

[79] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Sci. Program., 13(4):277–298, October 2005.

[80] S. Ralf, B. Pouliquen, A. Widiger, C. Ignat, T. Erjavec, D. Tufis, and
D. Varga. The JRC-Acquis: A multilingual aligned parallel corpus with
20+ languages. In Proc. of the 5th International Conference on Language
Resources and Evaluation (LREC’2006), Genoa, Italy, May 2006.

BIBLIOGRAPHY 153

[81] D. Romer, K. Kenski, K. Winneg, C. Adasiewicz, and K. H. Jamieson. Cap-
turing Campaign Dynamics 2000 & 2004: The National Annenberg Election
Survey. University of Pennsylvania Press, Philadelphia, 2006.

[82] W. Schäfer. Global history. In Encyclopedia of Globalization, ed. by Roland
Robertson and Jan Aart Scholte et al., volume 2, pages 516–521, New York
and London.

[83] W. Schäfer. Lean globality studies. Globality Studies Journal, 7, May 2007.

[84] W. Schäfer. Personal communication, 2008.

[85] P. A. Schrodt. Automated Coding of International Event Data using Sparse
Parsing Techniques. Presented at the meeting of International Studies Asso-
ciation, Chicago, February, 2001.

[86] S. Sekine, K. Sudo, and C. Nobata. Extended named entity hierarchy. In
Proc. of the Third International Conference on Language Resources and
Evaluation, 2002.

[87] N. Shadbolt, B. T. Lee, and W. Hall. The semantic web revisited. Intelligent
Systems, IEEE [see also IEEE Intelligent Systems and Their Applications],
21(3):96–101, 2006.

[88] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-
language services implementation. http://developers.facebook.
com/thrift/thrift-20070401.pdf, 2007.

[89] S. B. Sorenson, J. G. Manz, and R. A. Berk. News media coverage
and the epidemiology of homicide. American Journal of Public Health,
88(10):1510–1514, 1998.

[90] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – A Distributed
Job Scheduler. MIT Press, October 2001.

[91] C. A. Taylor and S. B. Sorenson. The nature of newspaper coverage of homi-
cide. Inj Prev, 8(2):121–127, 2002.

http://developers.facebook.com/thrift/thrift-20070401.pdf
http://developers.facebook.com/thrift/thrift-20070401.pdf

BIBLIOGRAPHY 154

[92] C. Ward, M. Bautin, and S. Skiena. Identifying Differences in News Cover-
age Between Cultural/Ethnic Groups. Submitted to ACM Journal on Com-
puting and Cultural Heritage (JOCCH), 2009.

[93] F. Weigel, B. Panda, M. Riedewald, J. Gehrke, and M. Calimlim. Large-
scale collaborative analysis and extraction of web data. Proc. VLDB Endow.,
1(2):1476–1479, 2008.

[94] T. White. Hadoop: The Definitive Guide. O’Reilly, 2009.

[95] J. Wiebe. Learning subjective adjectives from corpora. In AAAI/IAAI, pages
735–740, 2000.

[96] J. Wiebe and E. Riloff. Creating subjective and objective sentence classi-
fiers from unannotated texts. In Proc. of the International Conference on
Intelligent Text Processing and Computational Linguistics, volume 3406 of
Lecture Notes in Computer Science, pages 475–486, Mexico City, MX, 2005.
Springer-Verlag.

[97] T. Wilson, D. Pierce, and J. Wiebe. Identifying opinionated sentences.
In Proc. of the Meeting of Human Language Technologies-North Ameri-
can Chapter of the ACL (HLT-NAACL-2003) Companion Volume (software
demonstration), 2005.

[98] J. Yao, G. Wu, J. Liu, and Y. Zheng. Using bilingual lexicon to judge senti-
ment orientation of chinese words. In Proc. of the Sixth IEEE International
Conference on Computer and Information Technology. IEEE Computer So-
ciety, 2006.

[99] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer: Ex-
tracting sentiments about a given topic using natural language processing
techniques. In ICDM ’03, page 427, Washington, DC, USA, 2003. IEEE
Computer Society.

[100] J. Yi and W. Niblack. Sentiment mining in webfountain. In ICDE ’05: Proc.
of the 21st International Conference on Data Engineering (ICDE’05), pages
1073–1083, Washington, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 155

[101] W. Zhang and S. Skiena. Trading Strategies To Exploit News Sentiment.
Submitted to the International Conference on Data Mining (ICDM), 2009.

[102] Zvents Inc. Hypertable. http://hypertable.org/.

http://hypertable.org/

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Lydia System Overview
	Sentiment Analysis
	Entity Juxtapositions

	Thesis Overview

	News and Blog Analysis for the Social Sciences
	Introduction
	Related Work
	Text Analysis Systems for the Social Sciences
	Implementation Tools

	News Analysis in the Social Sciences
	Applications in Political Science
	Applications in Global Studies
	Applications in History
	Applications in Sociology
	Applications in Finance

	Processing Flow
	Data Organization
	Artifact Dependencies

	Entity Statistics Collection
	Entity Time Series
	Juxtaposition Time Series

	Full-text Article Search
	Web Frontend
	A Use Case: Political Scientist View

	The National Annenberg Election Survey Dataset
	Data Sources
	Custom Entity Markup
	Analysis Examples

	Conclusion

	A Scalable Architecture for Text Stream Analysis
	Introduction
	Related Work
	Hadoop
	Pig
	Hive
	Sawzall
	BigTable

	Architecture
	Processing Flow
	Data Organization
	Duplicate Removal
	Processing Scheduling
	Date Range Directory Merging

	Depository Server
	Depository Server Implementation Overview
	Artifact Readers
	Time Series Filtering by Source and Time

	Large Scale Entity Co-reference Resolution
	Entity Hashing
	Merging of Hashed Groups
	Refining Entity Clusters Using Juxtapositions
	Hand-annotated Co-referential Entities

	Group Statistics Aggregation
	Aggregation of Single-keyed Entity Statistics
	Aggregation of Pair-keyed Entity Statistics

	Performance
	Comparison with the Old Lydia System
	Scalability
	Alternative Entity Markup

	Conclusion

	Differences in News Coverage of Cultural/Ethnic Groups This chapter is drawn from ``Identifying Differences in News Coverage Between Cultural/Ethnic Groups'' GroupsPaperJOCCH.
	Introduction
	Previous Work
	Name Ethnicity Detection
	Ethnic Biases in Newspaper Coverage
	News Analysis Infrastructure

	Entity Geographical Associations
	Geographic Association
	Results and Comparison with Ethnicity Data

	Trends in Group Coverage
	News Volume
	News Sentiment
	Geographic Biases in News Coverage
	Juxtaposition Relationships between CEL Groups

	Conclusions

	International Sentiment Analysis for News and Blogs This chapter is drawn from our paper ``International Sentiment Analysis for News and Blogs'' IntSenti.
	Introduction
	Related Work
	Cross-language Sentiment Analysis
	The Lydia Sentiment Analysis System

	Methodology
	News Stream Analysis
	News Entity Frequency Correlations
	News Entity Polarity Correlations

	Parallel Corpus Analysis
	Cross-Translation System Analysis
	Cross-Cultural Observations
	Conclusions

	Concordance-Based Entity-Oriented Search This chapter is drawn from our paper ``Concordance-Based Entity-Oriented Search'' BautinEntitySearchWIAS, an expanded version of the conference paper BautinEntitySearch.
	Introduction
	Related Work
	Semantic-Aware Document Retrieval
	Semantic Web
	Relation Extraction
	Entity Search using Existing Search Engines

	Entities in Web Queries
	Approach to Analyzing Web Queries
	Frequencies of News Entities in Queries
	Frequency of Wikipedia Entities in Queries

	Concordance-Based Entity Search
	Indexing
	Searching
	Time-Dependent Indexing and Search
	Modeling User Interest in an Entity

	Evaluation
	Comparison with Juxtaposition Lists
	Query Prediction using Juxtapositions
	Queried Entity Rank in Results

	Conclusions and Future Work

	Conclusions
	Future Work

	Bibliography

