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Abstract of the Dissertation

Shock Waves in a 2D Riemann Problem Having
Pure Rarefaction Data

by

Xiaomei Ji

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

It is perhaps surprising for a shock wave to exist in the solution of a rarefaction

Riemann problem for the compressible Euler equations in two space dimensions. We

present numerical evidence and generalized characteristic analysis to establish the

existence of a shock wave in such a 2D Riemann problem, defined by the interaction

of four rarefaction waves. We consider both the customary configuration of waves at

right angles and also an oblique configuration for the rarefaction waves. Two distinct

mechanisms for the formation of a shock wave are discovered as the angle between

the waves is varied.
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Chapter 1

Introduction

1.1 Historical review

In 1860, B. Riemann [8, 27] put forward and studied the initial-value problem

with the simplest discontinuous initial data for isentropic Euler equations in gas

dynamics:

∂ρ
∂t

+ ∂(ρu)
∂x

= 0,

∂(ρu)
∂t

+ ∂(ρu2+p)
∂x

= 0,

(ρ, u) =











(ρ1, u1), x > 0,

(ρ2, u2). x < 0,

. (1.1.1)

where ρ, p and u are the density, pressure and velocity, respectively, p = Aργ, where

A > 0 is constant and γ > 1 is the adiabatic index. The initial data are given by two

arbitrary constant states. It is natural to construct self-similar solutions, on the basis

of the fact that both the equations and the initial data are self-similar. Riemann’s

solutions uncover the elementary waves of isentropic flow: shock waves and rarefaction
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waves. This result was extended to adiabatic flow by Courant and Friedrichs in the

1940s, and a new kind of elementary waves, slip lines, was identified. The initial

data of a general Riemann problem is constant along radial directions from an origin

and it is piecewise constant as a function of angle. In 1957, P. Lax [19] published the

theory of small solutions to the Riemann problem for 1D strictly hyperbolic system of

conservation laws. Lax’s theorem not only proves the existence of solutions, but also

describes the structure of the solution. Moreover, Lax expounded many fundamental

concepts: genuine nonlinearity, entropy condition, shock waves, etc. After these

developments, 1D Riemann problems for hyperbolic system of conservation laws have

given rise to many interesting results.

In 1965, J. Glimm [12] contributed a well-known existence theory. Consider the

quasilinear system of equations, where v, f are vector-valued functions.

v(x, t)t + f(v(x, t))x = 0, −∞ < x < +∞, t ≥ 0. (1.1.2)

Let the distance between the initial data v(·, 0) and a constant ṽ be defined either

d0 = ‖v(·, 0))− ṽ‖∞(1 + Var(v(·, 0))), (1.1.3)

or

d1 = ‖v(·, 0)) − ṽ‖∞Var(v(·, 0)), (1.1.4)

where Var(u) denotes the total variation of the function of u. That v is a weak

solution with initial data v(x, 0) means that v is a bounded measurable function and
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that
∫ +∞

0

∫ +∞

−∞

(φtv + φxf(v))dxdt +

∫ +∞

−∞

φ(x, 0)v(x, 0)dx = 0. (1.1.5)

for all smooth function φ which are identically zero outside some bounded set.

Theorem 1.1 Let the equations (1.1.2) be hyperbolic, strictly nonlinear and

smooth in a neighborhood of ṽ. There is a K < ∞ and a δ > 0 with the following

property. If the initial data v(x, 0) are given so that d1 ≤ δ, then there is a weak

solution v(x, t) of (1.1.2) defined for all x and all t ≥ 0 with initial data v(x, 0) such

that

‖v − ṽ‖∞ ≤ K‖v(·, 0) − ṽ‖∞, (1.1.6)

Var(v(·, t)) ≤ KVar(v(·, 0)), t ≥ 0, (1.1.7)

∫

∞

∞

|v(x, t1) − v(x, t2)| dx ≤ K|t1 − t2|Var(v(·, 0)). (1.1.8)

If there is a coordinate system w1, ...wN defined in a neighborhood of ṽ which consists

of Riemann invariants (for example N = 2), and if the initial data v(x, 0) are given

so that d0 ≤ δ,then there is a weak v(x, t) of (1.1.2) defined for all x and all t ≥ 0

with initial data v(x, 0) such that (1.1.6) and (1.1.7) hold.

The proof of Theorem 1.1 implements Glimm scheme (depends upon a random

choice) and solutions of Riemann problem through Theorem 4.1. It solves the exis-

tence of solutions under small initial data in 1D system of conservation laws. It is

one of the most important contributions in conservation laws.

In 1990, Zhang and Zheng [31] analyzed 2D Riemann problems for compressible

Euler equations. They structured boundaries of the interaction of four planar waves

coming from infinity with various cases. Each boundary is composed of characteris-
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tics, shocks and sonic curves. Based on the analysis of 1D interaction of waves and

of 2D Riemann problems of scalar conservation laws and reflection of shocks, they

established a set of conjectures for the wave patterns in the domains of interaction.

In 1959, Gelfand [11] stated “the Riemann problem plays a special role in the

theory of quasilinear hyperbolic systems. As we will show, the Riemann problem are

important in the study of existence, uniqueness and asymptotic behavior of solutions

as t → ∞ for the corresponding Cauchy problem. Besides, the study of the Riemann

problem has its own sake.” It is widely recognized that the Riemann problem plays

a key role of as a building block for theory, numerical simulations and applications in

the entire conservation laws fields.

1.2 Related work on shock reflections

Shock reflection in gas dynamics has long been an open problem. When a plane

shock hits a wedge, it experiences a reflection-diffraction process, and then a self-

similar reflected shock moves outward as the original shock moves forward in time.

The complexity of reflection-diffraction configurations was first reported by Ernst

Mach [26] in 1878, and experimental, computational, and asymptotic analysis has

shown that various patterns of shock reflection-diffraction configurations may occur,

including regular reflection and Mach reflection. Two-dimensional Riemann problems

have been proposed for the compressible Euler equations as a general approach to

the shock reflection problem [31]. Numerical simulations for this type of data have

been performed by Chang, Chen and Yang [2], Schulz-Rinne, Collins and Glaz [28],

Lax and Liu [20],[25], Kurganov and Tadmor [18], Li, Zhang and Yang [22], among
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others. General patterns of shock reflections have been revealed, some cases of which

are accessible to analytical treatment. See for instance, the global theory for regular

reflection-diffraction for potential flow, established in Chen-Feldman [3],[4],[5] and

Bae-Chen-Feldman [1]. For the local stability of the Mach reflection configuration,

see Chen [6],[7].

We consider the special case with initial data of piecewise constant solutions

joined by four forward rarefaction waves, see Chapter 2. For this case, the solution was

conjectured to be continuous, see [2],[28], [20], [22]. This thesis based on [14], in which

a transonic shock is discovered through refined numerical simulations and generalized

characteristic analysis, and the mathematical mechanism of shock formation for four

rarefactions cases is clarified. This transonic shock was omitted in the conjecture [31]

and all of the aforementioned numerical simulations in which the total number of

genuinely different configurations for adiabatic gas in 2D Riemann problem is 19. To

our best knowledge, shock formation in a rarefaction wave-only 2D Riemann problem,

had not been previously observed. Gui-Qiang Chen comments [14] in the referee

report as follows: “This is breakthrough paper and answers at least numerically one

of the major issues in transonic flow: what is the nature of the M = 1 line in shock

reflection. It turns out the line can contain shocks formed by rarefactions. This is a

surprise to me. It will set the tone for further computation and analysis”.

1.3 Numerical method

Front tracking is a numerical method which is based on the Riemann solution

and Glimm’s method. It combines with some effective CFD method, i.e. MUSCL
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[10], and provides high resolution for capturing interfaces and discontinuities (shock

front) among possibly different component materials. As used here, with no use of

tracking, it is a pure CFD method based on MUSCL.

From the point of view of physically motivated wave interactions, arbitrary angles

between waves may be considered and special solutions (stationary wave interactions)

in general will occur at angles other than 90o, see [16]. From the point of view of

defining a Riemann solution for a finite difference mesh, we might consider a variety of

meshes with different angles between the cell edges. In accordance with both points

of view, we consider the oblique four-wave Riemann problem. We perform refined

numerical experiments, using the FronTier code developed at the AMS department,

SUNY Stony Brook and obtain resolved numerical solutions. This code uses a five

point vectorized split MUSCL scheme [10] as a shock capturing algorithm. It is

second order accurate for smooth solutions and first order accurate near shock waves.

We solved the full compressible Euler equations in the original x, y, t coordinates,

not in self-similar coordinates, so the numerics are actually very well documented

in the literature [10] and [13]. Generalized characteristic analysis in [22] has been

developed into a tool for analysis of simulation data in [14] and as presented here.

All computations were performed on the Galaxy computer and seawulf computer at

Stony Brook and the Stony Brook-Brookhaven New York Blue computer.

1.4 The summary of the thesis work

Our main result is the existence of a shock wave, established numerically by

several different criteria, for a 2D Riemann problem with four rarefaction waves in
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both the 90 degrees case and the oblique case. The possibility of shock formation

indicates the deep sophistication of this seemingly easy problem.

We formulate plausible structures for the solution via the method of generalized

characteristic analysis (i. e., the analysis of characteristics, shocks, and sonic curves

or the law of causality). In Chapter 2, we study characteristics in the numerical

solutions. The existence of shock waves is established by multiple criteria. Specifically,

we consider

1. plots of density and pressure on a curve through the shocks;

2. nontangential termination of characteristics at the shock front;

3. convergence of characteristics of the same family at the local shock front;

4. pattern recognition software for automated shock wave detection.

5. stability of above criteria under mesh refinement.

We summarize numerical results for several cases. In Chapter 3, we study the 90o

case and analyze numerical results for shock formation using generalized characteris-

tics analysis. In Chapter 4, we consider the oblique case and prove numerically the

convergence of the simulation in the case of a very weak shock. We present related

evidence for shock formation in the case of two backward and two forward rarefac-

tion waves. In Chapter 5, we discuss the physical mechanism that leads to the shock

formation in the present problem and summarize results testing the stability of the

numerical solutions.
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Chapter 2

The Problem Formulation and Its Characteristic

Curves

In this chapter, we formulate the problem under study and discuss an algorithm

for the construction of characteristics in the numerical solutions and summarize fun-

damental numerical results.

2.1 Oblique four-wave Riemann problem

We consider the Euler equations

ρt + ∇ · (ρU) = 0 ,

(ρU)t + ∇ · (ρU ⊗ U) + ∇p = 0 ,

(ρE)t + ∇ · ((ρE + p)U) = 0

(2.1.1)

for the variables (ρ, U, E), where ρ is the density, U = (u, v) is the velocity, p is the

pressure, E = 1
2
|U |2 + e is the specific total energy, and e is the specific internal
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energy. We consider a polytropic gas with pressure p defined by the equation

e =
p

(γ − 1)ρ
.

For more details, see the books by Li et. al. [22] or Zheng [32].

We solve the full compressible flow equations (2.1.1) in the original x,y,t coordi-

nates. Our numerical studies are based on (2.1.1), using the MUSCL algorithm [10]

as implemented in the FronTier code. This code uses a five point vectorized split

MUSCL scheme [10] as a shock capturing algorithm. It is the second order accurate

for smooth solutions and the first order accurate near shock waves.

Both the MUSCL algorithm and FronTier code have been extensively verified

for shock capturing simulations, for example in [10] and [13]. Shock jump conditions

for (2.1.1) can be found in standard textbooks, for example, in [8].

The numerical verification of these jump conditions is addressed in chapter 4.

Because the equation (2.1.1) and the initial data are both self-similar, the solution is

also, and we introduce the self-similar coordinate system (ξ, η) = (x−x0

t
, y−y0

t
) centered

at the point (x0, y0). In these coordinates, the system (2.1.1) takes the form

−ξρξ − ηρη + (ρu)ξ + (ρv)η = 0 ,

−ξ(ρu)ξ − η(ρu)η + (ρu2 + p)ξ + (ρuv)η = 0 ,

−ξ(ρv)ξ − η(ρv)η + (ρv2 + p)η + (ρuv)ξ = 0 ,

−ξ(ρE)ξ − η(ρE)η + (ρu(E + p
ρ
))ξ + (ρv(E + p

ρ
))η = 0 .

(2.1.2)

Let η = η(ξ) be a smooth discontinuity with limit states (ρ1, u1, v1, p1) and

(ρ0, u0, v0, p0) on both sides. The Rankine-Hugoniot relation for (2.1.2) is derived
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in [22, page 218-219]. By definition, Riemann initial data is constant along radial

directions from an origin (x0, y0) and piecewise constant as a function of angle. The

initial data for (2.1.1) become boundary data at infinity for (2.1.2).

We use the self-similar formulation (2.1.2) for the analysis of numerical solutions

of (2.1.1). We specialize to a four-rarefaction wave Riemann problem.

As a special case we consider first the case of four rectangularly oriented waves,

representing boundary conditions at infinity for the self-similar Euler equations (2.1.2)

satisfying conditions of four forward rarefaction waves, denoted configuration A in

[22, page 237]. We next consider the case of four constant states joined by forward

rarefaction waves that form angles different from 90o as in Fig. 2.1.1. Such a problem

is called an oblique four-wave Riemann problem, in contrast to the rectangular four-

wave Riemann problem discussed in [31]. Our initial data is located as indicated in

Figure 2.1.1 in the initial plane.

(ρ, u, v, p) = (ρi, ui, vi, pi), i = 1, 2, 3, 4. (2.1.3)

2.2 Four forward rarefactions and compatibility condition

Let Rij denote the forward rarefaction wave, which is a 1D rarefaction wave,

connecting contiguously constant states (ρi, ui, vi, pi) and (ρj, uj, vj , pj). R12 is parallel

to the positive y-axis, and R41 is parallel to the positive x-axis as before, but the

angle between R23 and the negative x-axis is allowed to be a variable θ in (0, π/4).
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x

y

0θ

θ

(ρ1, u1, v1, p1)

(ρ2, u2, v2, p2)

(ρ3, u3, v3, p3) (ρ4, u4, v4, p4)

Figure 2.1.1: The initial data for an oblique four-wave Riemann problem

To simplify the analysis, we impose symmetry about the line x = y. We choose the

angle between R34 and the negative y-axis be the same θ, so that the angle between

R23 and R34 is equal to π
2
− 2θ. Let w represent the velocity component that is

perpendicular to the line of discontinuity, and w′ represent the velocity component

parallel to it. At an interface (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}, a forward planar

rarefaction wave Rij is described by the formula in [20]

wi − wj =
2γ

1

2

γ − 1

(

(

pi

ρi

)
1

2

−

(

pj

ρj

)
1

2

)

, w′

i = w′

j ,
pi

pj
=

(

ρi

ρj

)γ

. (2.2.1)

For each Rij, the compatibility conditions derived from (2.2.1), using the normal and

tangential components of ui, vj, i, j = 1, 2, 3, 4 along Rij , are

(ρ
(γ−1)/2
3 −ρ

(γ−1)/2
4 ) cos θ−(ρ

(γ−1)/2
2 −ρ

(γ−1)/2
3 ) sin θ+(ρ

(γ−1)/2
1 −ρ

(γ−1)/2
2 ) = 0 ; (2.2.2)
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(ρ
(γ−1)/2
2 −ρ

(γ−1)/2
3 ) cos θ−(ρ

(γ−1)/2
3 −ρ

(γ−1)/2
4 ) sin θ−(ρ

(γ−1)/2
1 −ρ

(γ−1)/2
4 ) = 0 . (2.2.3)

We limit ourselves to the initially symmetric case ρ2 = ρ4 and u1 = v1. It is

proved in [22, page 239] that the solution is symmetric with respect to the line x = y.

Then the two compatibility conditions merge to yield

ρ
(γ−1)/2
2 (cos θ + sin θ + 1) = ρ

(γ−1)/2
1 + ρ

(γ−1)/2
3 (sin θ + cos θ) . (2.2.4)

For any fixed ρ1, p1, u1, v1, ρ3, and θ, we find ρ2 from the compatibility condition (2.2.4)

and other initial values from (2.2.1) and symmetry. We consider a fixed polytropic

index γ = 1.4. The computational domain is a square [0, 1] × [0, 1]. We perform

numerical experiments with varying Riemann initial data.

2.3 Characteristics and its algorithm

We draw both families of (pseudo) characteristic curves corresponding to λ± in

[22],

dη

dξ
= λ±(ξ, η) ≡

(u − ξ)(v − η) ± c[(u − ξ)2 + (v − η)2 − c2]1/2

(u − ξ)2 − c2
, (2.3.1)

where c is the sonic speed, ξ = x−x0

T0

, η = y−y0

T0

, T0 is fixed, and x0 = y0 = 0.5 is

the center of the computational domain. By the definition in [22], the pseudo-Mach
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number is

M =
[(u − ξ)2 + (v − η)2]1/2

c
. (2.3.2)

The M = 1 contour, as understood here, indicates both sonic points and shock

points, where M jumps from a value less than 1 to a value greater than 1. The sonic

curve is thus a subset of the M = 1 contour line. We notice λ+ = λ− on the sonic

curve.

We discuss the algorithm for characteristics. The characteristic curves starting

at the top boundary of the rectangular domain belong to the family λ+, while the

characteristic curves from the right boundary of the rectangular domain belong to

λ−.

To draw the λ± characteristics, we assume the numerical solution of the Euler

equations is defined on a rectangular grid. We extend this solution to the entire

computational domain ξ, η plane for a discrete time t = T0, using linear interpolation.

Thus λ± become globally defined functions. Starting at the the right boundary,

we solve for λ− to obtain the pseudo characteristic curves, using the Runge-Kutta

scheme. The solution for λ− terminated on the M = 1 contour line is continued up

to the sonic curve. For the reflected characteristics λ±(ξ, η) at the sonic curve, we

repeat the above processes. Since these characteristics are reflections of the previously

constructed family, we use bilinear interpolation to obtain initial states at the point on

the M = 1 contour where an incoming characteristic has terminated. For instance, for

the reflected characteristics λ+(ξ, η), we first use bilinear interpolation and to obtain

the corresponding states of the known sonic point in the local grid. Then we use the

Euler method and obtain the reflected point of the characteristics, such that both of

13



the point and sonic point are in the same grid cell. We solved all singularities in the

characteristics equations (2.3.1) numerically.

2.4 Numerical shock criteria

Since the main point of this paper is to establish the existence of a shock wave,

we list here criteria that we use for this purpose.

The most sensitive of our measures for existence of a shock wave is the fact that

a shock will appear when the two families of λ± characteristics are not parallel at the

M = 1 contour line. The existence of a point on the M = 1 contour line with λ+ not

parallel to λ− contradicts (2.3.1) if the point on the M = 1 contour is a sonic point,

i.e. a point at which the solution is continuous. Several different types of plots are

used in this confirmation. We thus plot λ−−λ+ vs. the angle around M = 1 contour,

where the shock is identified as the locus of points on the contour with λ− − λ+ > 0.

The end points of the shock are identified relative to figures showing characteristics.

A second test for existence of a shock is to show convergence of nearby charac-

teristics of a common family, so that they meet on the M = 1 contour. As a third

test, we plot ρ vs. distance along a streamline. By definition in [22], pseudo-stream

curves satisfy dη
dξ

= λ0 = v−η
u−ξ

. The solution to (2.1.1) is called a compression wave if

(1, u, v) · (ρt, ρx, ρy) > 0; otherwise it is called expansion wave. We notice the fact

(u − ξ, v − η) · (∂ξ, ∂η) = t(1, u, v) · (∂t, ∂x, ∂y) = t
d

dt
, (2.4.1)

where d
dt

is evaluated along the trajectories of gas particles in (t, x, y)-space. All
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pseudo-stream curves point to the center of subsonic domain. Moreover, we have

dρ(ξ, η)

dt
=

∂ρ

∂ξ
·
∂ξ

∂t
+

∂ρ

∂η
·
∂η

∂t

=
∂ρ

∂ξ
·

(

∂ξ

∂x

dx

dt
−

x

t2

)

+
∂ρ

∂η
·

(

∂η

∂y

dy

dt
−

y

t2

)

=
∂ρ

∂ξ
· (

u

t
−

ξ

t
) +

∂ρ

∂η
· (

v

t
−

η

t
)

=
1

t
(u − ξ, v − η) · (ρξ, ρη)

=
1

t

dρ(ξ, η)

ds
,

where in the last term, dρ(ξ,η)
ds

is the directional derivative of the density ρ along the

pseudo-stream curve. According to (2.4.1), a positive value for this derivative indi-

cates a compression or a shock, and a jump indicates a shock. We also plot pressure

along a ray passing through the M = 1 contour. A sharp jump in pressure is a sign

of a possible shock. Finally, we use the wave detection filter, or automated shock

detection capability in the FronTier code to locate shock waves in [30]. This software

examines numerical discontinuities in the solutions and determines whether they cor-

respond to a particular type of traveling wave. Such discontinuities are organized

into curves, which then correspond to the location of a shock wave. The shock jump

conditions are included in the Rankine-Hugoniot relation. These jump conditions are

verified to confirm that the shock waves detected by the wave filter indeed satisfy the

required conditions. Numerical solutions show stability of the above shock criteria

under mesh refinement.
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2.5 Two shock formation mechanisms

Our major point is the consistency of these tests, each reaching the same conclu-

sion: shocks exist in the interior non-constant domain in the 2D rarefaction Riemann

problems studied here. We find two distinct mechanisms for shock formation. For

the 90o case, the interaction of two rarefaction waves, of the same family and parallel

at infinity leads to a pressure drop larger than that due to either taken singly. Thus

the interaction seems to ‘over rarefy’, leading to low pressure states incompatible

with pressures given at infinity due to the same rarefactions considered individually.

A shock wave results from the joining of these high and lower pressure regions. It

is the interaction of rarefaction R41, R23, R34 and R12, including the interaction of

characteristics from constant states adjacent to them, which produce this result. A

second mechanism arises in the case of a (sufficiently) large oblique angle between

the rarefaction waves. In this case, the rarefactions R41 and R12 are followed by a

reflected simple wave, coming off the sonic curve, reflected from the sonic curve. The

sonic curve has extended ears to facilitate this reflection. The reflected wave becomes

a compression and breaks into a shock at the M = 1 contour, at points that would

otherwise be sonic, but actually lie on a shock front. The solution is jointly deter-

mined by the subsonic domain and the supersonic domain. The numerical results

indicate that this reflected simple wave along the sonic curve is a compressive wave

and forms a shock eventually.
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Table 2.1: Table of simulation cases studied in this thesis
Three cases 90o weakly oblique rarefaction oblique rarefaction
initial conditions ρ1 = 1.0, p1 = 0.444, u1 = v1 = 0.0, ρ3 = 0.15
θ values θ = 0o 6o ≤ θ ≤ 8o θ > 8o

Shock case Weak shock Weak shock Shock
Mesh Size ∆x = ∆y 1

3200
, 1

1600
1

5600
, 1

3200
, 1

1600
, 1

800
1

800

2.6 Summary of numerical simulations

We introduce our further refined numerical results this section. When the four-

waves form angles close to or equal to 90o, our calculations show shocks in the so-

lutions. We use the method of generalized characteristic analysis to indicate the

plausible structure of the solution for both θ = 0 and θ > 0, confirming theoretical

conjectures regarding the mechanisms for shock formation. We fix the computational

time T0 = 0.375 and let the initial values be p1, ρ1, u1 = v1 = 0, ρ3 and determine

all initial values with different θ. We list the cases to be considered in Table 1. We

denote by Ci(ui, vi, ci), i = 1, 2, 3, 4, the sonic circles of constant states i, i = 1, 2, 3, 4,

where ui, vi, i = 1, 2, 3, 4, are initial velocities and ci =
(

γpi

ρi

)
1

2

, i = 1, 2, 3, 4, are

initial sound speeds.

A. Weak shock case for θ = 0 ( 90o case)

The 90o case is shown in Fig. 2.6.1 with results consistent with on both coarse

and refined grids. The λ−-characteristic lying at the upper boundary of R41 coming

from infinity penetrates the rarefaction wave R12(CQ), and continues through the

constant state 2 (QR) and the rarefaction wave R23(RF ), reaching the constant state

3, and meets the sonic circle C3(u3, v3, c3) tangentially at A. See the strict proof in

[22, page 238]. The bottom boundary of R23 (FT ) hits the M = 1 contour at T . The
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Figure 2.6.1: Case A: Some pseudo-characteristic curves (light) and Mach number
contours (bold) marked with M = 1.0 and M = 0.8 at θ = 0.

top boundary of R23(RV ) hits the M = 1 contour at X and a weak shock appears

on the larger arc AE (toward the first quadrant), where A, E are symmetric points

relative to reflection about the axis ξ = η.

The smaller arc AE (toward the third quadrant) is an arc of the sonic circle

C3. Numerical evidence supports weak shocks on both sides of the sonic circle. The

shocks and the numerical evidence for them are stronger on the side nearer the origin.

We will discuss these points in detail later.

B. Weak shock case: numerical solutions with θ ∈ [6o, 8o]

We use generalized characteristics analysis and refined numerical evidence, ob-
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taining weak shock cases for θ ∈ [6o, 8o]. The cases θ = 6.5o and θ = 8o will be

discussed in detail. See Fig. 2.6.2 and Fig. 4.1.7 for the cases θ = 6.5o and θ = 8o.

In Fig. 2.6.2, both the upper boundaries FS of R41 and GS of R23 are parallel,

tangential to the sonic curve at S. SA is tangential to the sonic circle C3 at A, which

is a reflection of the λ+-characteristic curve GS. SK, which is the reflection of the

λ−-characteristic curve FS, terminates on a shock. The weak shock appears on the

arc AT
⋃

BR
⋃

UE, where A, E are symmetric points regarding the axis ξ = η, and

the smaller arc AE is the arc of sonic circle C3.
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Figure 2.6.2: Case B: Some pseudo-characteristic curves (light) with θ = 6.5o and
Mach number contours (bold) marked with M = 1.0 and M = 0.8.

C. Strong shock case: numerical solutions with θ > 8o
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We increase the value of θ, and we observe a shock wave which is sharply defined

and with little numerical oscillation. The shock wave lies in the interior, non-constant

domain between R23 and R34 and constant states adjacent to them whose structure

is similar to case B. See Fig. 2.6.3. Furthermore, we find that the strength of the

shock wave becomes stronger as we increase θ or decrease ρ3 while keeping the other

parameters constant. The numerical oscillations between R23 and R34 attenuate, or

even vanish as the strength of the shock wave intensifies. In summary, numerical

solutions show the existence of shock waves in the interaction of four rarefaction

waves and constant states.
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Figure 2.6.3: Case C: Some pseudo-characteristic curves (bold) with θ = 22.5o and
Mach number contours (light) with the sonic curve labeled M = 1.0.
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Chapter 3

Shock Formation in the 90
o Case

A constructive analysis of some of the major ideas of this paper is found in [15],

where we study the Riemann problem for the Hamilton-Jacobi equations as a simpler

problem, developing a number of ideas needed here. These equations can be regarded

as a generalization of Burgers’ equation to high dimensions. The analysis there fol-

lows a constructive point of view, and thus emphasizes ideas such as generalized

characteristics, the propagation of the Riemann solution inward from data located at

infinity, and a sonic curve as discussed in the present paper.We discuss in this section

the shock formation in the 90o case. We analyze the mechanism for shock formation

caused by the interaction of rarefaction waves R12, R23, R34 and R41, including the

interaction of R41 and characteristics from constant state 3, 4, 5 adjacent to them. We

use numerical methods and generalized characteristic analysis.
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Figure 3.1.1: The characteristics λ+ = dη
dξ

along SP and λ− = dη
dξ

along WP meet at
P . Note that λ+ 6= λ− at the common point P .

3.1 A numerical study of the 90o case

In Fig. 2.6.1, the characteristic WP along bottom boundary of R41 meets the

characteristics SP from constant state 3 at P . The intersection point P is located

on the M = 1 contour. If P were a sonic point, then we would have λ+(P ) = λ−(P ).

However, we show numerically in Fig. 3.1.1 and Fig. 3.1.2 that P cannot be a

sonic point because the characteristics are not parallel at P . The numerical results

in Fig. 3.1.1, show that at the common point P of the two characteristic curves,

λ+(P ) < 0.4, λ−(P ) > 0.5, λ+(P ) 6= λ−(P ), indicating that P is not sonic. Thus

the termination of the λ+ characteristic and the beginning of the λ− characteristic
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Figure 3.1.2: Enlarged view from Fig. 2.6.1 in the 90o case shows the non parallel
termination of characteristics on the M = 1.0 contour (outer curved arc) and shock
existence at the point P . Lower curved arc is the M = 0.8 contour.

must lie on a shock curve. We have two characteristics N ′P0 and L′P0 meet at P0 on

ξ = η, but they are not parallel. Similarly, G′P2 and I ′P2 meet at P2 nontangentially,

H ′P1 and K ′P1 meet at P1 nontangentially. P0, P1, P2 are located on a shock front.

An enlarged view of the non tangential, non parallel termination of the characteristic

curves at the shock front is shown in Fig. 3.1.2. We plot pressure vs. the distance

R = (x2 + y2)
1

2 along the straight line OP in Fig. 3.1.3, where O is the center of

subsonic domain in [0, 1] × [0, 1]. The downward jump in the pressure is a shock

front, and P is shown in Fig. 2.6.1. The curve indicates values at individual mesh

points mean the shock. The crosses marked along this plot indicate pressure values
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Figure 3.1.3: Pressure vs. distance along OP for the 90o case. The downward jump
at the point P is a shock front. The crosses mark cell center locations near the shock
front.

at individual mesh points along the curve, in a neighborhood of the shock. They

serve to show that the shock front jump is about one mesh block wide, as is typical

for a numerically captured shock. In Fig. 3.1.4, we represent shock strength by the

difference in characteristics λ−(X) − λ+(X) vs. the angle plotted along the M = 1

contour to show shock existence. The angle between the ray from O and the positive

x-axis is denoted by φ.
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Figure 3.1.4: λ− − λ+ vs. the angle φ along the M = 1 contour in the 90o case. This
plot shows the shock existence, and the endpoints E and A of the shock wave shown
in Fig. 2.6.1

3.2 Generalized characteristic analysis in the 90o case

Let us recall [31]. We use the method of generalized characteristic analysis to

indicate the plausible structure of the solution in the 90o case. As in [31], we transform

the problem (2.1.1) and (2.1.3) into a boundary value problem. The values imposed

at infinity are given by (2.1.1) for the self-similar system (2.1.2).

lim
ξ2+η2→∞

(ρ, u, v, p)(ξ, η) = (ρi, ui, vi, pi) , i = 1, 2, 3, 4, (3.2.1)

25



in which the limiting direction is consistent with the data sector in (2.1.3). Thus we

first construct the solution in the far field (in a neighborhood of the infinity), which

is comprised of four forward planar rarefaction waves R12, R23, R34 and R41, besides

the constant states (ρi, ui, vi, pi), i = 1, 2, 3, 4. We extend the four forward rarefaction

waves inward from the far field till they interact, denoted by regions in Fig. 2.6.1.

We find the boundary of the interaction domain, which consists of CQRFSAEBWC

in Fig. 2.6.1, where the arc AE is an arc of sonic circle C3 and K is the intersection

point of the bottom boundaries of R23 and R41.

Then we solve the first Goursat problem with characteristic segments CQ and

CW , employing the result in [21, 24], and obtain a continuous (pseudo-supersonic)

solution inside the domain enclosed by the characteristic segments CQ, QD, DW and

WC. Secondly, we solve the Goursat problem with characteristic segments QR and

QD. The solutions are still continuous in the domain QRLD. We continue solve the

third Gousat problem with support DL and DN . In [23], they are straight support.

Then we get the continuous solutions in the domain DLV N . The wave R41 penetrates

R12 and then R23 to emerge as a simple wave RFKL by [23], which is adjacent to the

constant state 2 and constant state 5 and located in the supersonic domain without

shock wave.

We prove rigorously that two subcases possibly happen: either P3 is greater than

P5 or P5 is greater than P3 in [24], where P3 and P5 are pressures in constant state 3

and 5. This inverted pressure profile P3 > P5 is surprising, because one would expect

that pressure would be expansive in the interaction of four forward rarefaction waves.

However, the inverted pressure profile is the direct result of the interaction of two
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waves R41 and R12. Why is the pressure drop in the interaction region larger than the

combined drop across each of the individual waves? Intuitively or based on physics,

it is not easy to see whether the pressure would go up along a characteristic curve to

end on a sonic point, or go down to zero to end on a vacuum. In [24], it has been

proven rigorously that the pressure in the interaction region approaches zero along

any characteristics, which form a hyperbolic domain determined completely by the

data on the characteristic boundaries. Once the participating rarefaction waves are

relatively large, the binary interaction will produce vacuum, which has been proved

rigorously in [24]. The pressure whose initial states satisfies P1 > P2 = P4 > P3

and continues to drop in the simple wave interaction zone RFKL, which is proved

in [22], to result in an even lower pressure value at K, where K is shown in Figs.

2.6.1 and 3.1.2. From the numerical results, we note that the sonic boundary AP is

a free boundary, as the hyperbolic domain of determinacy of the Goursat problem

AFT does not include AP , see Fig. 3.1.2. Thus the elliptic region influences the

solution there. Numerical results show that a global minimum for the pressure in

the whole space [0, 1] × [0, 1] occurs in the domain KPT . The high pressure in the

subsonic domain, adjacent to the low pressure in the neighboring domain KPT and

FAT , forces the shock wave to occur.

Fig. 3.2.1 and Fig. 3.2.2 show the variation of density ρ along the pseudo-stream

curve I, and the shock wave caused by compression waves with high pressure in the

subsonic domain pushing the expansion wave in the supersonic domain. In Fig. 3.2.2,

s denotes the distance along pseudo-stream curve.
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M = 0.8 and pseudo-stream curve I (bold) which cuts through a shock wave in a
neighborhood of the M = 1 contour. Arrows indicate the direction of particles motion
along the stream line.
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Chapter 4

Shock Formation in the Oblique Rarefaction Case

We discover the shock formation in the four forward rarefactions in oblique four-

wave Riemann problem.

4.1 Numerical results

In oblique wave interaction case at θ = 6.5o, two reflected characteristic curves

QP, Q′P in Fig. 4.1.1, meet at P |X=0.42 on the 45o diagonal line. The intersection

point P is located on the M = 1 contour. If P were a sonic point, then we would

have λ+(P ) = λ−(P ). However, we show numerically in Fig. 4.1.1 that P cannot be

a sonic point because the characteristics are not parallel at P . At the common point

P of the two plots, λ+(P ) < −1, λ−(P ) > −1, λ+(P ) 6= λ−(P ), indicating that P is

not sonic. Thus the termination of the λ+ characteristics and the beginning of the

λ− characteristics must be on shock. The plots for two computations, showing level

of mesh refinement, are indistinguishable. In Fig. 4.1.2, we show shock strength by

the difference λ−(X)− λ+(X) in the direction of characteristics vs. the angle around
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the M = 1 contour. See Fig. 2.6.2 for locations of the points A, T, B, R, U, E. The

plot demonstrates shock existence. The angle between the ray from O (the center of

subsonic domain) and the positive x-axis is denoted by φ. We show further details of

the non tangential termination of the characteristic curves at the shock front in Fig.

4.1.3. The characteristic curves terminate non tangentially and are not parallel to

each other. We find numerically that the reflected simple wave is a compressive wave

and forms a weak shock. See Fig. 4.1.4, where the characteristic distance denotes the

‘shock distance’. The separation distance, i.e. the normal separation between two

neighboring characteristics is plotted vs. the length along the reflected characteristics.

The computed result with mesh refinement demonstrate that The plot also shows the

occurrence of the shock.

We plot pressure p vs. the distance from the origin R= (x2 + y2)
1

2 along the 45o

diagonal line in Fig. 4.1.5 and as well as Fig. 4.1.6. Under refinement of the mesh,

the oscillations are getting weaker and the shock becomes sharper. The circles and

crosses are located at mesh block centers, for cells within the shock profile. The trend

of convergence of shocks in each plot in Fig. 4.1.5 is clear and sufficient: the shock

wave here is very weak but its strength is not decreasing as mesh is refined; the shock

will be stable even with extremely fine meshes.

We use the wave filter embedded in the FronTier code. The wave filter is an au-

tomated pattern recognition algorithm which locates shock waves, rarefaction waves

and contact discontinuities in numerical solutions of the Euler equations for com-

pressible fluids on the basis of detecting a local jump in the solution which satisfies

the Rankine-Hugoniot relations. The shock wave as determined by this wave filter
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Figure 4.1.1: Plot of λ+ = dη
dξ

along QP and λ− = dη
dξ

along PQ′ show the shock

existence at P , since λ+(P ) 6= λ−(P ). The plots for two computations, showing one
level of mesh refinement, are indistinguishable.

program is shown in Fig. 4.1.7 by the curve AB. Note that the labeled Mach number

contours M = 0.98 and M = 1.02 in Fig. 4.1.7 and M = 0.96 and M = 1.02 in Fig.

4.1.8 coincide on the curve AB respectively, indicating that they are shock fronts.

These curves match the pseudo-Mach number contours well.
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Figure 4.1.2: The difference λ−(X) − λ+(X) vs. angle along the M = 1 contour at
θ = 6.5o. This plot shows existence of shocks on both sides of the M = 1 contour,
i.e. the state facing the origin and facing infinity in the fourth quadrant.

4.2 Generalized characteristic analysis for shock formation

in oblique rarefaction case

We use the method of generalized characteristic analysis to indicate the plausi-

ble structure of the solution to our problem for θ > 8o based on numerical results in

Section 4.1. We retain the notation from [31]. We discuss causal relationships and

decompose the boundary value problem into three sub-problems based on the fea-

tures of the characteristics. The analysis consists of the following steps. The first is

a classical rarefaction Goursat problem which has been solved analytically in [21, 24].
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Figure 4.1.3: Enlarged view with details in Fig. 2.6.2 near the point P on the shock
front. Bold curves are λ± characteristics; light curves are Mach number contours.
Note that the characteristics terminate non tangentially on the shock.

The second is a degenerate Goursat problem, whose solution is proved to be a sim-

ple wave in [23]. The last is a pseudo-transonic boundary value problem with free

boundaries consisting of interior sonic curves and shocks. The mathematical proof

for the structure of this last sub-problem is open. The problem involves collisions of

rarefaction waves with sonic curves which produce compressive waves upon reflection,

which may then form shocks. We outline the boundary of the domain of interaction

for the initial four rarefaction waves in both cases above.

Step 4.2.1. The constant states and simple waves in the far field.

As in [31], we transform problem (2.1.1) and (2.1.3) into a boundary value prob-
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Figure 4.1.4: Plot of separation between neighboring characteristics vs. distance
along characteristics with θ = 6.5o in case B. This plot shows shock formation.

lem for the self-similar system (2.1.2) with values imposed at infinity

lim
ξ2+η2→∞

(ρ, u, v, p)(ξ, η) = (ρi, ui, vi, pi) , i = 1, 2, 3, 4, (4.2.1)

in which the limiting direction is consistent with the data sector in (2.1.3). We

first construct the solution in the far field (neighborhood of the infinity), which is

comprised of four forward planar rarefaction waves R12, R23, R34 and R41, besides

the constant states (ρi, ui, vi, pi), i = 1, 2, 3, 4. We extend the four forward rarefaction

waves inward from the far field till they interact, denoted by regions as in Fig. 4.2.1.

We find the boundary of the interaction domain, as in [31], which consists of the
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Figure 4.1.5: Left: pressure vs. distance along a 45o diagonal line at 6o. Right:
pressure vs. distance along a 45o diagonal line at θ = 6.5o. The x and o indicate
cell center solution values moving through the shock, for the region of rapid solution
transition.

characteristic segments PQ, QR, ST , TU , U ′T ′, T ′S ′, R′Q′, Q′P and arcs of sonic

circles RS, UU ′, S ′R′. See Fig.4.2.1.

Step 4.2.2 Simple wave solutions after interaction of planar rarefaction

waves.

The two rarefaction waves R12 and R41 start to interact at P . We use the

result in [21, 24] to solve the Goursat problem with the boundary values supported on

the characteristic curves PQ and PQ′, and obtain a continuous (pseudo-supersonic)

solution inside the domain enclosed by the characteristic segments PQ, QP ′, P ′Q′

and Q′P . Then we proceed to solve the Goursat problem with the boundary data

supported on QR and QP ′. Since the state (ρ2, u2, v2, p2) is constant, we use the

result in [23, Theorem 7]: Adjacent to a constant state is a simple wave in which

(ρ, u, v, p) are constant along a family of wave characteristics which are thus straight.
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Figure 4.1.6: Pressure vs. distance along a 45o diagonal line. Left: θ = 7o. Right:
θ = 22.5o

This fact indicates that the solution is a simple wave, denoted by R25, in the angular

domain between QR and QP ′.

We note that the simple wave R25 just covers the region of the curvilinear quadri-

lateral QRWP ′ from the theory of characteristics, where RW is the λ+-characteristic

curve from the point R and can be regarded as the reflection of the λ−-characteristic

curve at that point. Also note that the point R on the sonic curve C2 is degenerate.

It has the following interesting properties: It is of Tricomi type from the side of R25,

but of Keldysh-type from the side of the constant state (ρ2, u2, v2, p2). A point on a

sonic curve is said to have a Tricomi type if the characteristics are non-tangential to

the sonic curve. It is called Keldysh type if the characteristics are tangential to the

sonic curve.

We continue to solve the Goursat problem with the support of two straight

characteristic curves P ′W and P ′W ′. Obviously, the solution is a constant state

(ρ5, u5, v5, p5) with boundary P ′WXW ′. The point X must be outside the sonic
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Figure 4.1.7: Comparison of wave filter shock location A, B and pseudo-Mach number
contour plots at θ = 8o with 800 × 800 mesh.

circle of the state (ρ5, u5, v5, p5).

Step 4.2.3 Plausible solution structure in intersecting supersonic re-

gions with the transonic boundary.

After the above three Goursat problems, we reach the boundary RWXW ′R′.

Now we consider a the problem of the pseudo transonic flow with the boundary

RSTUU ′T ′S ′R′W ′XWR. It is reasonable to assume a priori that the family of the

λ−-characteristic curves of the simple wave R25 extend to the sonic curve RV and

reflect off it as a family of λ+-characteristic curves. Here the extension of R25 is not

a simple wave because the solution must vary along both λ− and λ+ characteristics.

38



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

+0.96

+1.02

A

+1.0

Figure 4.1.8: Comparison of wave filter shock location A, B and pseudo-Mach number
contour plots at θ = 22.5o with 800 × 800 mesh.

The solution is jointly determined by the subsonic domain and the supersonic domain.

These reflected λ+-characteristic curves reach a curved boundary WV , which forms

another degenerate Goursat problem with the support of a straight λ+-characteristic

line WXand a curved λ−-characteristic line WV . This degenerate Goursat problem

has a simple wave solution whose data are on the left boundary QP ′ since adjacent

to the WX side is the constant state (ρ5, u5, v5, p5). The numerical results indicate

that this reflected simple wave is a compressive wave and forms a shock with starting

point V . See Fig. 4.2.2, where characteristic distance denotes the ‘shock distance’,

i.e. the length of the reflected characteristics, and separation distance is the normal
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Figure 4.2.1: Generalized characteristic analysis for the case of four forward rarefactions

in a 2D Riemann problem. Courtesy of J. Li and T. Zhang in [14].

separation between two neighboring characteristics. This plot shows the occurrence

of the shock. The shock borders the constant domain (ρ5, u5, v5, p5). By symmetry,

this structure is repeated across the symmetric axis with starting point V ′ of another

shock in the primed variables W ′V ′X. The location of the sonic curve RV and the

characteristics in the domain RV W are tangled together without a causal order and

determined by the pseudo-transonic flow. Thus our interpretation of the reflection of

the λ−-characteristic curves on the sonic curve RV is for illustration purposes only

in the schematic Fig. 4.2.1.
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Figure 4.2.2: Plot of separation distance between neighboring characteristics starting
on the sonic curve vs. distance along characteristics with θ = 22.5o.

We analyze the numerical results in Fig. 4.2.3 and Fig. 4.2.4, which show

the variation of density ρ along pseudo-stream curves I and II, presenting regions

corresponding to expansion and compression waves. The arrows on the stream curves

indicate the direction of particle motion. In Fig. 4.2.4, the distance s denotes the

distance along pseudo-stream curves I and II. The structure of the solution for the

reflected characteristic curves R23 and R34 on the opposite side of the x = y symmetry

arc in Fig. 4.2.1 is clarified, where the family of λ+-characteristic curves coming from

R23 collide with a Tricomi type pseudo sonic curve SZ and are reflected to form a

weak shock wave ZU , which resembles the 90o case. A similar pattern appears on
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Figure 4.2.3: Density contours (light), two Mach contours (light) with M = 1,
M = 0.92 and two pseudo-stream curves I, II (bold) which cut through the weak
shock waves and shock waves in the neighborhood of the M = 1 contour shown at
θ = 22.5o. The arrows on the stream curves indicate the direction of particle motion.

the other side. Characteristic curves from R45 reflect at the sonic curve S ′Z ′ to form

another weak shock wave Z ′U ′. The two weak shock waves from the reflection of R23

and R34 end at U and U ′ respectively, which match numerical results in Fig. 2.6.2

and Fig. 2.6.3.
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4.3 Shock formation for two backward and two forward rar-

efaction waves

For the case of two backward and two forward rarefaction waves, there are two

symmetric transonic shocks in the solution as shown in [2, 20, 22, 28] and see Fig.

4.3.1. The mechanism of shock formation is the same as was discussed for the case of

four forward rarefaction waves in Fig. 4.2.1 because the part of Fig. 4.3.1 upper-right

to ξ + η = u2 + v2 has the same structure as that of the corresponding part in Fig.

4.2.1.
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Chapter 5

Conclusions

We discussed numerical simulations showing two distinct mechanisms for shock

formation and supporting theoretical conjectures based on generalized characteristic

analysis regarding mathematical mechanism in the 90o case and the oblique rarefac-

tion case. We also discovered that the same mathematical mechanism as in the oblique

rarefaction case occurs for the shock formation for two forward and two backward rar-

efaction waves.

For the 90o case, the interaction of two rarefaction waves of the same family

and parallel at infinity leads to a pressure drop larger than that due to enter taken

singly. Thus the interaction seems to ‘over rarefy’, leading to low pressure states

incompatible with pressures given at infinity due to the same rarefactions considered

individually. A shock wave results from the joining of these high and lower pressure

regions. It is the interaction of rarefaction R41 and R23 and R34 and R12, including

the interaction of R41 and characteristics from constant state 3 below R23, which

produce this result. The shock formation for the oblique case has a possible physical

mechanism similar to one found in stationary flow, which is illustrated schematically
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in [14], see in Fig. 24, p. 741 there, associated with the numerical result in Fig. 2.6.3.

Basically, a rarefaction reflection reflects at a sonic boundary; the reflected wave is a

compression, which may in time break and become a shock. For the steady transonic

small disturbance equation, shock reflection on a sonic curve is illustrated in Cole

and Cook [9], see the shock formation over an airfoil in p. 314, Fig. 5.4.13. The

structure of shock formation from the reflection of rarefaction waves on a sonic curve

was suggested by Guderly [17], for the two-dimensional steady irrotation isentropic

flow, they put forward a concept of shock formation from reflection of characteristics

on a sonic curve. When a supersonic bubble appears on the top of an airfoil in an

ambient subsonic domain, a family of characteristics are generated in the bubble from

the surface of the airfoil, and they hit the rear portion of the sonic curve, and are

reflected downstream to form a compressive wave which then forms a shock wave

within the bubble. The subsonic region plays the role of a permeable obstacle which

declines streamlines towards the airfoil and causes compressive waves. This is similar

to the effect of a concave wall in the classical problem of supersonic flow over a smooth

rigid wall. We point out the bump on the wall of the flow channel causes the shock

formation naturally in Cole and Cook [9], where it has an important application in

the study of a flow over an airplane wing. Furthermore, this formation of shocks

seems to be the fundamental mechanism for the Guderly reflection pattern in Hunter

and Tesdall [29].

For waves interacting with a sufficiently large oblique angle in the third quadrant,

the sonic curve has an exaggerated non convex shape (rabbit ears). The curve extends

into the rarefaction waves and interacts with them. The rarefactions are reflected
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as compression waves along these rabbit ears, in the sense that along this part of

the sonic curve, there are impinging λ+ and λ− characteristics. The characteristics

coming from infinity are part of the rarefaction wave, while the reflected ones, as

stated, are compressions. On the side facing the first quadrant, these compressions

have sufficient travel distance to break and form a shock wave, centered at the 45o

line, where it crosses the M = 1 contour. On the side facing the third quadrant,

due to the angle between the waves at infinity, there is a very weak shock on this

side of the M = 1 contour, which can be analogously interpreted in Fig. 11 in [8,

page 390], as stationary flow in nozzles and jets. Very likely these characteristics

would have an envelope if they were not intercepted by a shock front. To prevent the

envelope singularity, an “intercepting” shock is therefore necessary. The reason for

the reflected wave to be a compression is illustrated by similarity to a related problem

in aerodynamics, as discussed in the literature, and explained in [9] and [17].

The Riemann problem is typically unstable in that it is a locus of bifurcation

for the Riemann data. Even in 1D, the isolated jump discontinuity holds only at

time zero and (for gas dynamics) the solution at all positive times has three traveling

waves.

However, it is stable in the sense of preservation of structure upon variation

of initial (Riemann) conditions. In this sense, our analysis deals with representative

variation of the initial conditions, but does not explore the complete seven dimensional

space of nearby initial conditions numerically. This numerical stability analysis was

conducted for the full Euler equations (2.1.1) rather than for the self-similar equations

(2.1.2). No non-self-similar solutions were observed in the variations of the initial

47



data. We have studied systematically a variation of the angle between two of the

four initial rarefaction waves. As this angle is modified sufficiently, we find a jump

to a new solution branch, with a distinct mechanism (in a detailed sense) for the

shock formation. Stability refers to a small variation of these waves in their strength

or their angle. It is also stable under (a small) variation of the strength of the four

waves. We expect that a large variation of the strength may cause a change in the

details of the shock formation mechanism.

Although it is conceptually possible to allow an arbitrary number of waves, at

arbitrary angles in the 2D Riemann problem formulation, the case of four waves is

the case most commonly considered.
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