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Abstract of the Thesis 

 

Surface Damage Detection of CFRP Laminates Using 

Inverse Analysis 
 

by  
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In  
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Carbon fiber reinforced polymer (CFRP) laminated structures are very effective 

for weight saving in aerospace structural components. However, the damage of the 

material, like fiber breakages, fiber-matrix debonding, delamination and surface damage, 

will significantly influence the material stiffness. Surface damage can be caused due to 

high velocity impacts and it will significantly weaken material compression strength. The 

aim of the present work is to develop a novel method with the aid of an intelligent post-

processing scheme so as to identify surface damage of CFRP. Due to the electrical 

properties of carbon fiber, a combination of electrical resistance change method (ERCM) 

and electrical potential change method (EPCM) is applied here as the basic approach to 

obtain necessary data. In the present verification and simulation analyses, a 2D CFRP 

laminates sample will first be introduced as the model to approve this procedure. 

Electrical potentials on discrete locations on the top of the sample are adopted as the 

input measurements. Though reasonable estimates are obtained with these measurements, 

additional improvements by adding an electrical resistance is applied in order to increase 

the accuracy. A detailed error sensitivity analysis is also carried out to confirm the 

robustness. Then the 3D situation is extended for further verification by applying almost 
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same procedure as 2D situation. The results suggest the current method can be an 

alternative approach to detect surface damage contained in CFRP laminates. Based on 

this analysis, proper electrode arrangement patterns are then proposed and experimented 

to see if accurate surface damage in real composites could be obtained. By comparison 

with the estimation accuracy of each pattern, “Square 0o” pattern is considered to be a 

suitable one and the best electrode interval space is also defined. Furthermore, the depth 

of surface damage is also concerned unknown. Inverse procedure and error sensitivity 

analysis are performed again to estimate the four unknown parameters. 
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1. Introduction 

Carbon fiber reinforced polymer (CFRP) laminate is being increasingly applied to 

the primary structure of aircraft, due to its high specific strength and stiffness. However, 

when the laminate is impacted by foreign objects, it is easy to be impaired, resulting in a 

reduction of the compression strength. If it is used as a structural component, it will 

become a problem to maintain the structural reliability. Aymerich et al. [1] characterized 

various damage types such as delamination between layers, matrix crack, and surface 

damage based on different impact situations. Schubel et al. [2] studied residual 

mechanical properties of a sandwich structure (core sandwiched in between face sheets) 

subjected to low velocity impact and found delamination in upper face sheets and 

indentation impressions in the contact area. Oka et al. [3] proposed a general damage 

predictive equation for any impact conditions and any material. 

Commonly, non-destructive evaluation (NDE) techniques such as ultrasonic 

inspection, vibration response, infrared thermal images, and eddy current test are used to 

detect damage defects. For example, Aymerich and Meili [4] performed an ultrasonic 

inspection to detect delamination and they also discussed the combination of normal and 

oblique incidence pulse-echo ultrasonic techniques. Mool et al. [5] took the eddy current 

test to detect delamination with special probes. However, these conventional monitoring 

methods are very costly and time-consuming, and it is difficult to perform real-time 

monitoring. Therefore, a simple structural health monitoring method is urgently required 

to maintain structural reliability and reduce huge periodic inspection costs. 

Since CFRP laminate consists of electroconductive carbon fibers and insulative 

resin, it is inhomogeneous material with strongly anisotropic electrical property. The 

electric potential technique can also be applied to CFRP laminate. However, electric 

current path may be complicated in the laminate due to the strong anisotropy. Electrical 

conductivities of CFRP can not be easily obtained because of the complex structure of the 

composite. Taking FE method as the artifice to measure the orthotropic electric 

conductance of CFRP laminates, Todoroki and Tanaka [6] obtained the detailed 

conductivities of CFRP for specific fiber volume values. 
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Flaw configurations in the laminate are different from those in metallic material. 

The electric potential technique must be developed to apply to CFRP laminate. Electric 

current also plays an important role when to measure electric resistance change between 

electrodes. The electrical potential change method (EPCM) and electrical resistance 

change method (ERCM) are both widely used for damage detection on CFRP research. 

Masahito et al. [7] used EPCM to detect the delamination location and size contained in 

the 2D CFRP model. Effect of spacing between electrodes was also studied using ERCM 

to monitor delamination for the same model [8]. Todoroki group also developed detailed 

research of damages in CFRP using this NDE technique, not only for delamination, but 

also for other damage types like matrix crack and so on [6-12]. The research group of 

Chung [13-14] used circumferential lead wires with silver paste as probes for the 

unidirectional CFRP laminated specimen to apply the electric current. ERCM was also 

applied to fatigue damage detection by many other researchers [15, 19-21]. 

The main goal of this study is to explore a detection method using EPCM and 

ERCM to offer robust surface damage identification. An efficient inverse method that 

post-processes the limited measured record is proposed. Recently, inverse analysis 

approaches are being increasingly implemented in mechanical problems. For example, 

Frederiksen [16] proposed an inverse approach for the identification of elastic properties 

of orthotropic plates. Moreover, various inverse analysis based techniques was applied to 

detect delamination type flaws. Liu and Chen [17] used an inverse technique to identify 

the presence, location and orientation of flaw in the core layer of sandwiched plates. 

Ishak et al. [18] showed an adaptive multi-layer perceptron (MLP) network for inverse 

identification of interfacial delaminations in carbon/epoxy laminated composite beams. 

When complex materials such as composites are inspected, it is essential to have 

an intelligent process to filter out critical information from available measurement. The 

proposed inverse method is designed to process those measurements that do not relate 

directly to the unknown parameters. Here the unknown damage parameters are the 

location and size of the surface damage while the indirect measurements were chosen as 

electrical potential and resistance values. The detailed description of the procedure is 

explained next. 
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2. Identification of damage in CFRP laminates 

Physical responses of some complicated systems sometimes cannot be directly 

obtained or measured. However, if they are dependent on some observable parameters, 

they can be estimated by using inverse analysis approach. Inverse analysis approach is 

used to connect such indirect measurements to the unknown parameters and since there 

are various inverse analysis methods, it is critical to establish a suitable model for given 

conditions. 

In the current work, the unknowns are location and size of surface damage 

contained in the sample. Measurement values used for analysis are the electrical 

potentials on some appropriate locations and also the electrical resistance values between 

some reference points. An error object function is then formulated to examine the 

accuracy of estimates. Though various error object functions can be applied in this 

procedure, a good error object function usually could lead to precise estimation while a 

bad one may result in very rough solutions. At last, an inverse procedure is carried out to 

find the unknown parameters that yield to the lowest error object value by downhill 

simplex method, which is a multi-dimensional minimization algorithm. The details of the 

downhill simplex method are described in section 2.4. 

2.1 Description of simulation process 

In order to verify the procedure, a 2D CFRP sample is created with its size shown 

in figure 1. The sample is a four-ply [0/90]s composite laminate with surface damage 

located on the bottom layer. To make things easier, the depth of the damage is assumed to 

be a constant and it is set be equal to half layer thickness. Thus, to define a certain surface 

damage, only two variables, the location s and the size d, are required. Here, the surface 

damage location is measured from the middle of the damage to the left edge of the 

sample. Electrodes made with copper are mounted on the top layer of the sample for 

measurement of electrical potentials. In computational simulation, electrodes will not 

introduce any error, however, when mounting the electrodes on the sample in real 

experiment, good contact between electrodes and the CFRP sample is very important 

since weak contact could bring large error. 
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Surface damage will influence the electrical potential distribution and also the 

electrical current flux in the sample compare to a sample without any damage applying an 

exactly same boundary condition. However, for a region on the sample which is far 

enough from the location of the surface damage, the influence is small. Taking this into 

account, electrodes should be distributed fully and evenly on the top of the sample. In 

figure 1, electrodes A and B are current electrodes while electrodes 1-7 are voltage 

electrodes. Electrical potential values V1-V7 corresponding to electrodes 1-7 are measured 

to be the reference measurements. 

The thickness of the sample is denoted as t = 1mm while the length is set as l (= 

250t). In each ply, the material is assumed to be transversely isotropic and the electrical 

conductivities of the copper and CFRP are listed in table 1. As a composite material, 

CFRP has different electrical properties for different fiber volume fractions. Here, the 

electrical conductivities of CFRP when the fiber volume fraction is 60% are used [6]. The 

conductivities for fiber direction, transverse direction and thickness direction are denoted 

as σ0, σ90 and σT. Before dealing with the inverse analysis procedure, the forward 

procedure should first be carried out to get the relationship between the surface damage 

and the reference values, V1-V7, respectively. For the whole procedure, the location and 

size of the surface damage are set in a domain. The location s ranges from 50mm to 

200mm, and the size d ranges from 4mm to 40mm. The real relation between the surface 

damage and the electrical potentials are complicated and generally not available. But 

estimated electrical potentials could be obtained if a number of finite element calculations 

are carried out from electrical potentials determined by discrete combinations of damage 

location and size. Thus, a sample without surface damage and sixteen models with 

damage location and size evenly distributed in the domain are first processed to retain the 

reference data. The electrodes A and B are endowed with 10V and 0V as the boundary 

condition during the course.  

After the forward procedure, an estimated relation between surface damage and 

reference electrical potentials will be obtained. Thus, when a set of input measurement 

values are given, the surface damage generates these measurement values is supposed to 

be attained by analyzing these “visible information”.  However, it should be noticed that, 
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it is possible to get several sets of location and size values by the same measurement 

values. It is understandable since two different combinations of location and size may 

cause similar measurement values, the seven electrical potential values here V1-V7, 

respectively. Also, when the size of the surface damage is very small, the estimation will 

be less accurate. That is because small damage size influences the electrical potential 

distribution less. 

2.2 Relationship between damage and electrical potential change 

Existence of surface damage can influence the electrical behavior of the laminate. 

From electrodes mounted on the top surface of the sample, reference measurements of 

electrical potentials can be directly obtained. For different surface damage situation, the 

measurement values differ a lot. There exists a relation between these values and the 

location and size variables. However, due to the complexity of the laminated structure, it 

is impossible to get this nature relation. Though precise nature relation between potential 

values and surface damage parameters are difficult and even impossible to be obtained, a 

forward solution is still necessary for upcoming inverse procedure. Here, finite element 

calculations are carried out to establish such damage-potential relation for various 

damage situations. In an iterative type of inverse analysis, the forward solutions are 

referenced during updating. But if calculations are performed for every estimate, the total 

number of calculations will be very large and it will be very time-consuming. Thus, a 

forward solution that relates the surface damage parameters to measured parameters is 

established prior to the error minimization process. As mentioned before, a domain where 

location and size values are restricted in is already set. Then sixteen sets of location and 

size values evenly distributed in the whole domain are picked out to be performed firstly. 

These damage parameters are chosen to generate the reference electrical potentials. To 

approximate the potential values at other combinations of s and d, the bi-cubic 

Lagrangian interpolation function is utilized. With this approach, the total number of 

required computations is kept at a reasonable level.  

The electrical potential value at αth electrode, Vα(s, d), is expressed as a 

continuous function of damage parameters as: 
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Here, si is ith sample point within the range of damage location, dj is jth sample point 

within the range of damage size, and Nij is the bi-cubic Lagrangian interpolation function. 

In this model, seven reference points are picked, so α should range from 1 to 7. Also, 

altogether sixteen damages are selected to generate the reference data, thus p and q 

should be endowed with 4. As mentioned before, in this study, the range of location 

values is 50 < s/t < 200, while for size values, it is 4 < d/t < 40. By this equation, the 

reference potential values with any damage parameters could be calculated. 

To show how potential values distribute in the s-d domain under equation (1), the 

potential at 3rd electrode located at x/t = 100 is expressed as a function of damage location 

and size in figure 3. Here, the potential is normalized by the reference potential Vref, 

which corresponds to the potential without damage.  

From figure 3, smooth surface of potential values is observed. Since only sixteen 

damages are considered to get the reference measurements, the detailed circumstance 

could not be accurately displayed. But on the contrary, if more reference models are 

simulated to obtain more reference data, it will certainly increase the work load. It is 

accept or reject between efficiency and accuracy. Thus, if good estimation could already 

be achieved under current reference data, there is no need to use more reference models. 

2.3 Error objective function 

To extract the unknown parameters, s and d here, the inverse analysis method 

requires the difference between the actual measurements of electrical potentials and the 

ones corresponding to estimated damage parameters to be minimized. If sest and dest are 

the estimated damage location and size, respectively, then the error object function for n 

electrical potential measurements can be formulated as: 
2
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Here, as shown in the model in figure 1, the number of potential measurement is selected 

as n = 7. The index “i” denotes one of the seven reference points, Vi
meas denoted the 

corresponding actual measurements of potentials and Vi
ref denotes the corresponding 

potential value in the no damage situation. The electrical potentials for estimated damage 

parameters are calculated using equation (1) and (2). 

By minimizing the error object function, the best estimation of damage parameters should 

be obtained. And this searching for best estimates procedure is performed by the downhill 

simplex method, which is discussed next. 

2.4 Downhill simplex method 

Downhill simplex method is one of the most popular multi-dimensional 

optimization methods when derivatives of objective function are either unavailable or 

discontinuous. It was first mentioned by Nelder and Mead in 1965 and it is also called 

Nelder-Mead method or amoeba method. Downhill simplex method is a numerical 

method for minimizing an error object function in a many-dimensional space. 

The method uses the concept of a simplex, which is a polytope of N+1verticals in 

N dimensions. In the present work, with two unknown parameters here, the shape of 

simplex is a triangle for the optimization process and a simplex is defined through three 

points or sets of estimates. The first point can be chosen arbitrarily within the domain. 

The other two points are chosen in such a manner that they enclose a non-degenerate area. 

Since some estimates might get trapped in valleys (i.e., local minima), it is necessary to 

choose many different sets of initial estimates. In the present analysis, the number of 

initial points chosen is 304(=16×19) within the domain. The three vertices forming the 

initial simplex are adjacent to each other and form a right-angled triangle.  

For the three points in any initial simplex, each point corresponds to an object 

error calculated by the error object function. The point with the largest error is considered 

to be the worst point and it will be replaced by some certain movement and then a new 

simplex is formed. After a series of moves of the points, the simplex will at last locate in 

a region and the points shrink to the estimation point which is considered to be a local 

minimum. The estimated point with the smallest object error among the local minima is 
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then confirmed as the best estimation. Details of the downhill simplex method are 

described in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9

3. Application to 2D damage model 

3.1 Identification with electrical potential measurements 

Initially, only electrical potential measurements V1-V7 were used to determine the 

unknown parameters. To verify the proposed approach, a prescribed surface damage was 

applied with parameters s/t = 75 and d/t = 30. With this specified surface damage, after 

the finite element calculation, simulated electrical potential measurements were provided 

to the inverse procedure. The corresponding normalized potentials V1-V7 in this case are 

shown in figure 4a. As shown in the figure, the electrical potentials change almost at the 

same rate for electrodes located on the right of the damage. This is because the electrical 

current flows from left to right along the sample, and the electrical current value is 

smaller compared to the no damage situation. Thus, the change rate of these potentials is 

the same as the change rate of the electrical current since the potentials have a linear 

relationship with the current. However, at the region where the damage is located, the 

relationship between the potential and the current is more complicated and the change 

rate is no longer the same. From the results, it is predicted that using the seven potentials 

as the measurement variables, the estimation of the damage location must be very 

accurate. 

With these results as input, the error object function in (3) was minimized with 

the downhill simplex method. The results are shown in figure 4b. There are 304 initial 

points chosen and the downhill simplex method was performed for each case. For every 

initial point, it will generate an initial simplex and after some movements, the simplex 

will at last shrinks to a point. Theoretically, all the 304 initial points will converge into 

the estimated point which should be close to the exact solution. However, sometimes it is 

possible to have more than one “valley” during the inverse analysis procedure and thus 

maybe the 304 initial points will at last converge into more than one point.  In this 

situation, the estimated point whose object error is the smallest will be selected as the 

“global minimum” and that point will be considered as the final estimated solution. In 

figure 4b, the estimated points show very fine convergence and they almost converge into 

the same point. The estimated damage location and size are s/t = 75.8 and d/t = 31.8. 
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Compared to the exact solution, the estimated damage parameters are very close to the 

real situation and this result is acceptable.  

Since in this experiment, only electrical potentials detected on seven voltage 

electrodes are used as the reference data, the method used to obtain these data is EPCM. 

Moreover, ERCM has also been proved to be very effective and here in order to further 

improve the accuracy of the estimation, a new variable was added as a measurement 

value. Due to the constant voltage difference between the two current electrodes A and B, 

the resistance between these two has an inversely proportional relation with the electrical 

current in the sample. Thus, the electrical resistance value between A and B is adopted as 

the new added measurement and the value could be calculated by transverse electrical 

current value in the sample. The details are described in the next section. 

3.2 Identification by adding electrical resistance measurement 

Though the estimated results are already very fine by taking the electrical 

potentials as the inputs, with the aim to see the impact of combining ERCM with EPCM, 

the electrical resistance was added to the original inputs. Note that electrical current is an 

equivalent expression of the resistance between electrodes A and B since the electrical 

potential difference between these two is constant. As predicted, damage size will 

influence the resistance value significantly so the damage size estimation is possible 

refined well. 

With the additional input, the error object function is then modified as: 
2 2

1

( , )1 ( , )( , )
est est meas est est measn

i i
meas ref meas ref

i i i

V s d V R s d Rs d
n V V R R

ϕ
=

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

∑                       (4) 

Here, Rref is the reference electrical resistance when the laminate contains no surface 

damage. And the forward solution, R(sest, dest), is constructed in a similar manner as the 

resistances from finite element calculations. The electrical resistances between A and B 

for various combinations of damage location and size are shown in figure 5.  

As predicted above, the electrical resistance values are observed to change 

quickly with the damage size. Moreover, when the size is small, the electrical resistance 
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value is almost uniform along the location coordinate. Thus, adding the resistance value 

is regarded as an effective way to improve the damage size estimation. 

To exam the accuracy, surface damage parameters with s/t = 75 and d/t = 30 were 

again tested. For this model, the resistance along the sample was computed as Rmeas/Rref = 

1.05. This additional information is supplied in the object function (4), and φ is 

minimized in the downhill simplex method. The local and global minima obtained are 

shown in figure 6.  

The best estimates corresponding to the global minimum were identified as s/t = 

77.2 and d/t = 30.4. Compared to measurements without resistance situation, certainly, 

the accuracy of the damage size estimation has been improved. However, the estimation 

of the damage location is not as accuracy as before. Meanwhile, estimates with both 

object functions are acceptable since they are both close enough to the exact solution. In 

industry, damage size may be considered more important compared to the location since 

it will influence the material stiffness directly. In this way, when high level of damage 

size estimation is required, ERCM maybe a better choice. 

The convergence behavior is also influenced by particular values of damage sizes 

and locations. For completeness, the inverse analysis was performed for different sets of 

damage parameters. To further verify the procedure using object equation (4), another 

model with damage parameters s/t = 140 and d/t = 12 was applied. Estimated global and 

local minima are shown in figure 7. 

Perfect convergence for the local minima is also observed here and the estimated 

global minimum is close enough to the exact damage parameters, thus the estimation is 

acceptable. The estimated location and size values are s/t = 135.3 and d/t = 11.7. 

Noted that actual experiment measurements always contain some errors, so in 

order for this method to be robust, it must be able to determine accurate estimates under 

various conditions. The estimation behavior when measurements contain errors is studied 

in the next section. 
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3.3 Error sensitivity analysis 

Estimates of an inverse analysis are influenced by errors contained in the 

measurements. To check how the estimation accuracy is affected when errors are 

introduced is an important part to ensure the assessment integrity. In real experiments, 

errors can be carried out due to contact between electrodes and composites laminates. 

Also, instrumental errors always exist when detecting the electrical potential or resistance 

values. Although averaged potentials and resistance can be simply applied as the 

reference solutions, if deviations arising from the averaging are small, this effect can be 

included as one factor in the error sensitivity analysis. The deviations are considered to 

be limited as instrumental errors are considered the error source. If contact problem is 

occurred, estimations could be far from the real situation. Thus, good contact must be 

assured when electrodes are mounted on the laminates. 

In the detailed error sensitivity analysis, simulated measurements were perturbed 

with additional small values randomly. Though not shown here, by applying the 

boundary conditions mentioned above, in the given damage location and size domain, the 

maximum difference between reference potentials with and without damage is about 

0.4V for all seven electrodes. The maximum bound of errors are set to be 5% of this 

value for potential measurements, which is 0.02V, respectively. The measurement values 

Vi
meas in error object function (4) is then substituted with  

mod 0.4 0.05meas
i iV V r= + × ×                                         (5) 

As for the same reason, since the maximum difference between reference resistance with 

and without damage is 0.08Ω in the domain, the electrical current value is modified as: 
mod 0.08 0.05measR R r= + × ×                                       (6) 

Here, r is a random number between -1 and 1. 

As predicted, by adding additional derivations to the measurement values, the 

estimated location and size values will get away from the exact values compared to the 

results when no errors are introduced. Since 5% is considered to be a reasonable range for 

errors, if estimates are still close enough to the exact solution, then this inverse analysis 

method is taken as “resistant” to errors. If not, the method will be considered error 

sensitive. 
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Random errors were added to these measurements and the downhill simplex 

method was performed for 50 different cases for case s/t = 75 and d/t = 30. The resulting 

global minima are shown in figure 8. The global minima are clustered in a small domain 

very close to the exact solution. This shows that highly accurate estimates are obtained 

even with the measurement errors. The same procedure was also performed for s/h = 140 

and d/t = 12 case. The resulting global minima are shown in figure 9. 
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4. Extension to 3D damage model 

In this initial study to test the proposed method, it was applied to 2D models. 

Based on the successful verification of the proposed damage identification method in 2D 

situation, the inverse analysis approach is then applied for 3D composite laminates. In 3D 

situation, surface damage is still represented by damage location and size. However, 

since the location is defined by two parameters here, a surface damage is represented 

with three variables now. Taking downhill simplex method as the inverse analysis 

approach again, the number of reference damage models with damages evenly distributed 

in the location-size domain extends to 64. Also, due to the extra unknown parameter, the 

accuracy of estimation is doubtful. The specific details of imposed damage and model are 

described next. 

4.1 Surface damage model 

To verify the inverse analysis procedure, a eight-ply [0/90/0/90]s composite 

laminate is constructed as shown in figure 10. The model is shaped as a hexahedron 

containing laminates with different fiber orientations and the cross section of the model is 

square. In the coordinate system shown in the figure, the fiber directions along the x 

coordinate are defined to be 0o. Meanwhile, the fiber directions of the layers 

perpendicular to that is defined as 90o, which is along the y coordinate. The electrical 

conductivities of the materials used in this model are the same as in 2D situation and the 

values are listed in table 1. In this model, due to interlaced fiber arrangement, the 

electrical current flux distribution will be more complex than the 2D situation. 

The thickness of the model is denoted as t = 1.6mm. The intersection shape for 

each layer is square and the side length of the model is denoted as l = 100mm. Electrodes 

made with copper are located at four corners on the top surface. The distance between the 

two neighboring electrodes is denoted as a = 0.8l. Surface damage is located from the 

bottom layer and it is also in square shape viewing from the top and the side length is 

denoted as d. As the same in 2D case, the damage depth is set to be constant and the 

depth is denoted as δ. Here, δ is constantly set to be two layers thickness, which is 0.4mm, 

respectively. The location of the surface damage is the coordinates of the center of the 
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surface damage in the proposed coordinate system, which is denoted as x and y. As 

shown in figure 10, the origins of the x and y coordinate axes are set at the center of the 

model while origin of z axis is at the bottom of the model.  

From the model described, only the information for the surface damage is 

observed to be unknown. Three parameters are required to describe a specific damage, 

which are damage location x, y and damage size d, respectively. If the damage depth δ is 

also considered as an unknown parameter rather than a constant value, the number of 

reference damage models will then be 256 and the inverse analysis procedure will be 

more complex. This is described later in section 6. 

As the same in 2D situation, when doing the simulation, the FE mesh is created to 

be uniform in the whole model. Element number is 16 along z-coordinate, which is the 

thickness direction. Along x and y coordinate directions, the element numbers are both set 

to be 100. As a result, altogether 160,000 elements are adopted in this model. 

Since the element is shaped as hexahedron, as a matter of convenience, the 

surface damage here is also supposed to be in hexahedron shape located in the bottom 

two layers. The goal of this inverse analysis approach is to find the location and size 

information of the surface damage, thus, detailed damage shape influence is not 

considered. 

4.2 Damage identification procedure 

In 2D situation, EPCM already is proved effective to search for the best estimates 

of damage location and size. And also, ERCM is conjectured to be better when to get 

accurate estimate of damage size. Thus, in 3D situation, ERCM is used as the artifice to 

estimate the unknown damage parameters. As shown in figure 10, four electrodes are 

mounted at the corners on the top surface of the laminates. The electrodes are denoted as 

A, B, C and D. In this way, altogether six resistance values could be utilized as the 

measurements, which can be later used to inversely estimate the unknown information. 

The six resistances are AB, AC, AD, BC, BD and CD. To obtain a specific resistance 

value between two electrodes, one electrode will be set to be 0V first and the other one 

will be charged with 1A electrical current, then the electrical potential value on that 
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electrode is equal to the resistance value between the electrode pair. This can be easily 

achieved both ways in experiment and computer simulation. 

Most part of the inverse analysis procedure is just the same as in the 2D situation. 

However, making use of downhill simplex method, the reference damage models now are 

more complex. In 2D situation, only two variables are supposed to be estimated. But now, 

the variable number becomes three. Thus, the simplex is a tetrahedron instead of a 

triangle. When creating the reference damages, now 64 reference models are used to get 

the reference measurements. A domain of damage location and size is also set here 

during the process. The x and y coordinates of reference damages are both range from -

30mm to 30mm and the size of damage d ranges from 0mm to 12mm. 

The locations of the reference surface damages are distributed at sixteen positions. 

At each position, four damage sizes are considered. Equations (1) and (2) are the 

expression of bi-cubic Lagrangian interpolation method and this method can also be used 

in 3D case to calculate the resistance values at any point in the proposed damage 

variables domain. The algorithm expression in 3D case is modified as: 

1 1 1

( , ,d) ( , , ) ( , , )
p q r

i j k ijk
i j k

R x y R x y d N x y dα α
= = =

≈ ∑∑∑                              (7) 

1, 1, 1,

( , , )
p q r

m n n
ijk

m m i n n j l l ki m j n j n

x x y y d dN x y d
x x y y d d= ≠ = ≠ = ≠

− − −
=

− − −∏ ∏ ∏                         (8) 

Here, α ranges from 1 to 6 and the values of p, q, r are endowed with 4. Nijk(x, y, d) is the 

shape function. 

With this interpolation function, by providing the measurement resistance values 

of reference damage models, the resistance values for any specific damage could be 

obtained. Thus, the forward procedure is achieved. 

For the backward procedure, since there is not too much difference from the 2D 

situation, the details are not repeated again. The error object function used in the 3D case 

is shown in equation (9). 
2

1
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R x y d Rx y d
n R

α α

α α

ϕ
=

⎛ ⎞−
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(9) 
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Here, n equals 6 since six resistances are used as measurements. Meanwhile, Rα
meas and 

Rα
ref express for the input resistances obtained from unknown damage model and no 

damage model. 

4.3 Verification study 

Downhill simplex method has already been proved efficient to get accurate 

estimates of damage location and size in 2D situation. However, in 3D case, three 

unknowns need to be estimated and surely it proposes a bigger challenge for the 

estimation accuracy. As to verify the inverse analysis procedure, a set of prescribed 

surface damages distributed at various positions are applied. The comparison of the exact 

and estimated damage parameters are listed in table 2. 

From the results shown in table 2, good match for estimates is observed for 

damages located near the diagonal or side of square ABCD shown in figure 11. It is 

acceptable because when damage is located near the diagonals or sides, at least one of the 

measurement resistances will be greatly influenced compared to other damage locations. 

However, if damage location is not in this way, the estimated results are observed not 

good enough. For the damage to be x = 21mm, y = -5mm and d = 10mm listed in table 2, 

the estimation error for damage size is 11.3% and this error is not as accurate as in 2D 

situation. In order to increase the estimation accuracy of the unknown parameters, two 

methods may be helpful. One method is to decrease the model size l and the other is to 

change the positions where voltage electrodes are located. That is because by changing 

electrodes locations, different resistance measurements are adopted. Thus, the locations 

of the electrodes are an important fact to influence the estimated results. The details of 

how to arrange the electrodes and set the electrode spacing are described in the next 

section. 
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5. Comparison of electrode arrangements 

In the previous section, inverse analysis procedure in 3D situation is verified for a 

specific model and electrode arrangement pattern. However, in a real large CFRP sample 

containing damages inside, usually a lot of electrodes need to be mounted to divide the 

composite into small regions first. Then in a specific region, detecting the surface damage 

could be accomplishable. In computer simulation, only the smallest cell is used for 

calculation and it is called the basic model. Hundreds of ways could be applied to arrange 

the electrodes besides the way mentioned above and how to choose the right one to 

mount the electrodes is an important subject. Besides, the electrodes spacing between two 

adjacent electrodes is also crucial. Of course it is easy to figure out that, with more 

electrodes to collect information, the estimation accuracy could be better. Generally 

speaking, the aim for an arrangement is to use fewer electrodes to get good estimation 

accuracy of damage parameters. 

5.1 Various arrangements 

In order to determine optimum electrode network to detect surface damage, 

various models are established and their damage detection performances are evaluated. In 

actual application, it is important to determine the smallest size of damage that can be 

diagnosed by the network of electrodes. Thus for a given spacing or density of electrodes, 

various analyses were carried out to determine the robustness of the damage detection. 

Second, the pattern of electrodes influences the accuracy of damage estimate. Here two 

most common arrangements, Square and Hexagonal arrays of electrodes as shown in 

figures 11 and 12 are considered.  

The laminate is modeled as a 8-layer cross-ply with [0/90/0/90]s arrangement. 

Since the direction of cross-ply orientation may affect the sensitivities of damage 

detection, two models are also considered for the Square Pattern. One is Square 0o pattern 

with the directions of electrodes parallel to either 0o or 90o fiber directions, and the other 

is Square 45o pattern with the fiber direction along the diagonal direction of electrodes. 

Thus, altogether, three patterns, Square 0o, Square 45o and Hexagonal, are 

proposed for comparison using the inverse analysis method. In computer calculation, for 
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each pattern, the basic models are used instead of taking the whole sample with large 

amount of electrodes. The electrodes mounted on basic models for different patterns are 

illustrated in figures 11 and 12. As noticed here, the model mentioned in section 4 is the 

Square 0o pattern. 

Downhill simplex method requires chosen resistance measurements as the input 

information. Depending upon the number of electrodes in a chosen cell, there are various 

combinations of resistances between electrode pairs. For example, in a four electrode 

square cell, there are six electrode pairs as shown in figure 11. In the hexagonal array 

with seven electrodes in a cell, twenty-one pairs are possible. When to choosing 

resistances as measurement inputs, part or all of these pairs could be adopted. When 

doing computational calculation for Hexagonal pattern, the prescribed damage location as 

shown in figure 12 and as a result, eight resistances were adopted as the measurements as 

shown in the figure.  That is because these eight resistances influence the measurements 

more than others. 

In this initial verification study, a damaged section is assumed to exist within each 

cell, and the resistance changes due to the damage are computed. Prior to estimating the 

damage parameters, a reference data set must be established by carrying out many 3D 

finite element calculations. Then from a given set of resistance changes and using the 

Downhill Simplex method, the best estimates for damage are obtained. 

5.2 Damage size estimates 

Although the post-processing procedure estimates the in-plane location of the 

damage, in reality, more critical information is the size of damage. For one reason, the 

damage size is closely related to the composite stiffness. On the other hand, the 

estimation accuracy trend of damage location is similar to damage size in most time. In 

the simulations, the damage shape is set be a square with the side length d as shown in 

figure 10. Initially, the damage depth δ is assumed to be a quarter of laminate thickness 

or equivalent to two plies thickness (δ/t = 0.25). The anisotropic electrical conductivities 

of laminate are chosen as σ0 = 5,500 S/m, σ90 = 204 S/m and σT = 20.7 S/m as listed in 

table 1. 
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As described before, the aim for an arrangement is to use fewer electrodes to get 

good estimation accuracy of damage parameters. Thus, a new variable ρ is brought out to 

measure the electrode numbers in unit area and ρ is called electrode density. When the 

estimation accuracy values for the three patterns are the same, the pattern with the 

smallest electrode density is considered to be the best since fewer electrodes are used for 

that pattern to obtain that estimation accuracy. The distance between two nearby 

electrodes is defined to be a, which is shown in figure 10 for all three patterns. Then for 

Square pattern, the electrode density can be expressed as ρ = 1/a2 and for Hexagonal 

pattern, as ρ ≅ 1.16/a2. 

In the basic model for a specific pattern, there are altogether five parameters, 

electrode density ρ (or a), model thickness t and the three damage parameters, x, y and d, 

respectively. For the damage size estimate, the estimation accuracy is related to electrode 

density of course, and it is also influenced by the surface damage size d. Meanwhile, the 

model thickness t is also possible to have an effect on the accuracy. Comparison of the 

three patterns for each variable is described next. 

5.2.1 Effects of electrode density 

In this initial analysis, the estimates are obtained for various spacing between 

electrodes while the damage size is kept d ≅ 10mm. For each electrode arrangement 

pattern, inverse procedure is performed for five different values of a while the other 

parameters are the same.  The model thickness is set to be 1.6mm as before and since the 

damage depth is a quarter of t, it is also constantly equal to 0.4mm. Needless to say, to 

avoid the effect of input damage location, all the to-be-detect damages are set to be 

relatively in the same position, that is, x/a and y/a are set to be constant. 

The estimation accuracy of size varies from different electrode density. It is 

predicable that the estimation error will be incremental while the electrode density 

decreases for each pattern. The comparisons of estimated and input damage information 

for the three patterns are shown in tables 3-5. As shown in the tables, the damages are set 

to be located at x = 0.2625a, y = -0.0625a. When model size is small, for each pattern, the 

damage size estimation will be accurate. Moreover, the relations between electrode 
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density and damage size estimation are then illustrated in a figure. Since electrode density 

is defined to be inversely proportional to a2, the parameter ρd2 will be dimensionless. 

Damage size is set to be around 10mm, so then the variation of the size estimation error 

with ρd2 will show the relation between estimation accuracy and electrode density. The 

variation for each pattern is shown in figure 13. 

Figure 13 shows that for each pattern, size estimation error decreases while 

electrode density gets bigger. Also, when ρ approaches to zero, the error will increase 

more quickly. From this figure, it should be noticed that, the damage size estimation does 

not differ too much for the three patterns. But generally speaking, among these three 

patterns, with the chosen resistances as reference measurements, Square 0o is observed to 

be the best. That is because for the same estimation error requirement, to detect the same 

size damage, the electrode density of Square 0o is the smallest. Also, between Square 0o 

and Square 45o patterns, the estimation difference is even smaller. Then the influence of 

cross-ply orientation is considered to be small.  

If 10% is considered to be an acceptable size estimation error, then Square 0o 

pattern needs ρd2 to be more than 0.18. In other words, electrodes spacing a should be no 

smaller than 80mm.  

5.2.2 Effects of damage size 

Estimation accuracy is certainly related to the damage size. A bigger damage will 

become easier to be precisely detected since the measurement resistances change bigger. 

Taking Square 0o for example, with ρ to be constant instead, the size estimation error 

should decrease when d gets bigger. In table 6, estimation errors are listed for five 

different damage size when a = 80mm.  Taking the dimensionless parameter ρd2 as the 

reference again, the change of estimation error is shown in figure 14 in broken red line. 

Figure 14 also shows the comparison with the same model while changing electrode 

density. Since a domain is prescribed for the damage size, when a is set to be 80mm, the 

biggest value of ρd2 that can be obtained is 0.0225. But for the curve by changing 

electrode density, ρd2 could range from 0 to 0.07. However, in the same part in the 
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domain of ρd2, it is observed that these two curves almost obey the same trend and for the 

same value of ρd2, the estimation error difference is small.  

Also, from the results shown in table 6, it is observed that when damage size is 

around 10mm, the estimation error for this case is around 10%. And for smaller damage 

sizes, estimation could not be considered to be good enough. To increase this estimation 

accuracy, more electrode pairs could be utilized besides the previous six measurements. 

This is discussed in section 6.3. 

5.2.3 Effects of model thickness 

Previously, damage size estimates are proved to be related to electrode density 

and input damage size itself. However, there is another model parameter to be examined. 

Whether the model thickness t is related to the estimated results or not is unclear since 

this can not be concluded by common sense. To check this, the Square 0o pattern model 

with electrode spacing a = 80mm, damage location x = 21mm, y = -5mm and damage 

size d = 10mm is tested by different model thickness values. The results are shown in 

table 7 and illustrated in figure 15. During the procedure, the damage depth was always 

set to be a quarter of the whole model thickness, that is, δ/t is constant. 

From the results, it is observed that the size estimation error does not change with 

the model thickness and the estimation error is always around 14%. From the regression 

curve, it is observed that when the ratio of damage depth to model thickness is constant, 

the size estimation will hardly change with variation of model thickness.  

5.3 Relationship between estimation error and resistance change 

To estimate a prescribed surface damage, using the downhill simplex method, 

reference damage models should be calculated and this is time-consuming. However, if 

estimation error could be obtained only by the resistance changes due to the prescribed 

damage, things could be much easier, because in this way, there is no need to calculate 

the reference models any more.  

For a specific arrangement with fixed model size, there exists a linear relation 

between estimation error of size and resistance changes from prescribed damage. Taking 
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the Square 0o pattern for example, with model size a = 80mm and model thickness t = 

1.6mm, many prescribed damages were estimated. For a specific damage, the six 

resistance measurements will change from the resistances without damage and the norm 

of resistance changes is shown in as: 
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The relation between estimation error and norm of resistance changes is shown in 

figure 16. From the figure, it is observed that it is a roughly linear relationship between 

them. Thus, if not exact estimated results should be obtained, to get a rough estimation 

error of damage size, only the resistance change information of that damage is necessary.  
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6. Estimated damage size and depth 

In the inverse analysis approach in 3D situation, previously, the damage depth is 

set to be constant and yet only three variables are to be estimated. However, in real 

situation, the damage depth also can be unknown. Adding damage depth δ as the forth 

unknown parameter, when using the downhill simplex method as the inverse analysis 

method, the reference damage models extend to 256. The computer calculation load is 

heavy and also the estimation accuracy is called in doubt. 

6.1 Model description 

Taking the Square 0o pattern as the basic model and setting the model parameters 

all the same as before as described in section 4, the inverse analysis approach was 

performed again. The electrode spacing used here is a = 80mm and model thickness is set 

to be t = 1.6mm. Damage location both range from -30mm to 30mm and damage size 

ranges from 0 to 12mm. Since in most time, the damage thickness will not exceed half of 

the model thickness, the maximum damage depth is set to be 0.375t. It should be noticed 

that the reason for arising the domain for each parameter is for the convenience to build 

the reference models. Of course, after setting the domain for all the unknown parameters, 

only damage in this domain could be estimated. 

When there is no damage exists in the laminate, the six resistances could be easily 

obtained and the measurements are used for reference values. If a specific input damage 

is located in the laminate, the resistance values will be influenced and the effect is based 

on the damage information. To see how the resistance changes vary with different 

damage size and depth, specific damage models with damage location to be x = 21mm 

and y = -5mm are calculated again. After damage location is set, the resistances for any 

damage size and depth could be obtained by the forward procedure. The normalized 

resistance AD for discrete damage size and depth in the d-δ domain are shown in figure 

17. It is observed when damage is very small, the resistance changes little and in this way, 

it will be harder to get accurate estimates. Resistance information is also shown in figure 

18 with the change of the damage size in 2D plot. From figure 18, it is observed that 

resistance change increases when damage size or depth increases. For a specific depth, it 
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is not a linear relation between normalized resistance and damage size. With damage size 

gets bigger, the resistance increases much more quickly. 

With the inverse analysis approach described before, estimated results with the 

same damage location are listed in table 8. Estimation accuracy of damage is expressed 

with damage size and depth. The error for estimated damage parameters is expressed as: 

2 2( ) ( )
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d d
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δ δ
δ

− −
+

=                              (11) 

Here, dest and dexa refer to estimated damage size and exact damage size. It is the same for 

damage depth. 

With the calculation results by equation (11), the relation between estimation 

errors and damage size and depth is shown in figure 19. The regression curves are 

obtained by given five input damages. From the analysis above, damages with depth 

0.5mm should have better estimates compare to depth to be 0.4mm situation. However, it 

is observed that the estimation for damage depth to be 0.4mm is the best and this is 

against the fact that larger damage will result in better estimation accuracy. This is 

because for δ = 0.4mm, the damage occupies two entire layers, but for δ = 0.5mm, the 

damage occupies two and a half layers. Since the fiber directions of two contiguous 

layers are different, it will be easier to estimate damage with depth to be multiple of one 

layer thickness.  

6.2. Error sensitivity analysis in 3D situation 

In 2D situation, error sensitivity analysis was made by adding extra error to 

measurements. In 3D situation, the detailed error sensitivity analysis is performed again. 

Instead of adding random errors, 5% errors of the maximum difference between damage 

and no damage models for every resistance were added to the measurements. Then the 

modified measurement resistances are then replaced in equation 9. Since similar 

procedure was already done in 2D situation, the details would not be described again. 

Many calculations were done for specific input damages. Measurements with 

errors were used to get the estimates and also the estimated results with no errors in 
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measurements are listed for comparison in table 9. As predicted, by adding additional 

derivations to the measurement values, the estimated values will get far away from the 

exact values compared to the results when no errors are introduced. For damage to be x = 

21mm, y = -5mm, d = 8mm and δ = 0.4mm, the estimation error for damage raises from 

12.3% to 42.5%. It surely makes the estimation too bad to be acceptable by adding 

measurements. For the other damages listed in the table, all the estimation errors increase 

largely. The size estimation errors for these four input damages are shown in figure 20. 

Figure 20 clearly show the large error increment after adding measurement noise. 

In 2D situation, estimation is considered to be “resistant” to errors. However, in 

3D situation, due to extra damage parameters compared to 2D situation, the estimation is 

sensitive to noise. 

6.3. Accuracy improvement by adding extra measurements 

In section 6.1, damage estimation with six measurement resistances were 

performed. However, in a large plane with many electrodes mounted on the surface, 

various resistances could be adopted as the measurements besides the previous described 

ones. It is understandable that with more resistances as the measurements, the damage 

estimation accuracy could be improved. This is because more information is available 

now in the whole procedure. 

To prove that, with the same parameters in section 6.1 for example, more 

resistance values are calculated. Extra resistances between electrode pairs are shown in 

figure 21 with the expression of broken lines and the measurements become 11 

resistances. By providing five more measurements, now the estimation accuracy becomes 

more precise and results for some input damages are listed in table 10. For damage to be 

x = 21mm, y = -5mm, d = 8mm and δ = 0.4mm, the estimation error for damage 

decreases from 12.3% to 3.5%. This can be considered to be a great improvement for 

estimation. For other cases, damage estimation all observed to be largely improved. Thus, 

adding more measurements could be regarded as an effective way to improve damage 

estimation.  
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Measurement noise was also added in this situation and the estimated results are 

shown in table 10 for comparison. Figure 20 also illustrates the size estimation error 

increment due to measurement noise in this situation. 
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7. Measurements from actual CFRP laminates 

Damage detection of CFRP laminates is proved to be successful by computer 

simulation. However, experiments for real CFRP sample should be made for the integrity 

of the analysis. Though damage detection for the whole inverse procedure was not shown 

by experiments on CFRP samples, additional tests were carried out on CFRP with Direct 

Write electrode. 

7.1 Specimen and measurements 

Additional tests were carried out on CFRP with direct write electrode deposited as 

shown in figure 22. First, to measure the effect of straining on their electrical resistance, 

the unidirectional fiber laminate (Graphtek, LLC) was placed in a tensile machine (TIRA 

test 260005). No load resistance between two middle electrodes was measured as Ro ≅ 

1.012Ω. The sample was loaded to ~80N or about the axial stress of 12MPa. The 

recorded changes in the resistance are shown in figure 23. Though there are considerable 

noise and scattering, the general resistence was appeared to be increasing with the load. 

The reference strain was also measured by a commercial gage attached on the laminate as 

shwon in figure 24. Based on the axial strain of up to about 100 microstrain and the 

regression cuver, the gage factor of CFRP is approximated as 20.4. However further 

study is needed to confirm this value. The approximated Young’s modulus of the 

composite was 138GPa, which is within the range of common unidirectional carbon fiber 

reinforced composites.  

In order to measure the resistance change due to damage, the back surface of 

specimen was grit blasted with alumina particles as shown in figure 24. Essentially this 

removed carbon fibers and epoxy matrix. An apporximated damage areas is 8mm wide 

and remaining thickness was about 0.3mm, representing about 40% thickness removal. 

The resistance between the electrodes was measured again as Rdamage ≅ 1.338Ω or R /Ro ≅ 

32.2%. 
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7.2 Finite element simulations  

To investigate the effect of damage further, a finite element model was set up to 

simulate the resistance change by the damage. Since the volume fraction of fibers and 

actual electrical conductivity of CFRP are the sample are not known, the following data 

by Todoroki et al [6] shown in table 11. Here σ0, σ90 and σT are the electrical cunductivies 

along the fiber direction, the in-plane perpendicular or 90o direction and the through-

thickness direction, respectively. Several FE calculations are performed to match with the 

measured resistivity between the two copper electrodes. The resistivity of copper is set as 

58.8×106 S/m. Note that the through-thickness conudctivty is very low since the laminate 

generally contains epoxy-rich regions at their interlayers. Afer several computations, we 

determined the best fit to be σ0 ≅ 5,200S/m, σ90 ≅ 140S/m and σT ≅ 14S/m for the CFRP 

laminate. This corresponds to the fiber volume fraction to be Vf ≅ 56% which is likely to 

be close to the actual value.  

The simulations are also carried out with these estimated properties for the 

laminate with damage as shown in figure 24. The computed resistences against electrical 

flow near the damage are shown in figure 25. Here the parameter essentially represents 

the product of resistance and electrical flow. Large resistances are seen immediately near 

the electrodes and also near the damaged surface. Due to the electrical flow through 

thinner section, the resistance between the electrodes increases.  The resistances between 

two electrodes are computed for various extents of damage depths. Here the damage 

depth or the remaining thickness of laminate is assumed to be uniform for the damage 

region (width 8mm) and the resulting resistances are obtained as shown in figure 26. 

Here the resistance increases with the damage depth. Based on the measured resistance 

(Rdamage ≅ 1.34Ω), the estimated damage is δ/t = 0.48 or remaining thickness of ~0.27mm. 

This value is close to the approximately measured remaininig thickness at the damage 

(shown in figure 24). 
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8. Discussion 

A novel approach based on an inverse analysis technique was proposed to identify 

surface damages in composite panels. The scheme was developed as an alternative 

approach to more costly flaw detection techniques. Electrical potentials and resistances 

were chosen as possible measurements. Applicability of a stochastic procedure, the 

downhill simplex method, was demonstrated as a potential tool in the identification of 

unknown damage parameters. In the verification analysis, both 2D and 3D situations 

were considered. In 2D situation, a four-ply laminate was used as the test model and 

simulated measurements were obtained for different values of damage size and location. 

In 3D situation, an eight-ply laminate was used as the test model and similar way was 

applied. With the chosen electrical resistance or potential measurements, the proposed 

procedure yields to accurate estimates. 

To clearly illustrate the steps of the inverse analysis procedure, the flowchart of 

2D situation is outlined in figure 27. First, in order to construct forward/reference 

solutions a priori, measurable parameters are constructed as approximate and continuous 

functions of unknown damage parameters using finite element calculations and 

interpolation functions. This approach reduces the computational cost during the search 

process. Secondly, the error objective function that expresses the accuracy of estimates is 

clearly established. Thirdly, the downhill simplex method is utilized to search values 

corresponding to the minimal objective function. The technique is very effective when 

gradients of objective function are not available. At last, the error sensitivity study 

confirms the robustness of the proposed method even with expected measurement errors.  

In 3D situation in the other hand, the procedure is just the same except using 

different measurements and different error objective function. Also, there are more 

unknown parameters which require more reference models. However, except for that, 

more work was done in 3D situation. When arranging electrodes on the sample, different 

ways were proposed and they may result in different estimation accuracy. Three different 

patterns were tested and compared to see the effect of arrangement patterns and fiber 

orientations. The relation between estimation accuracy and model size and thickness were 
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also tested by a lot of calculations. At last, inverse analysis procedure was performed 

again for the situation when damage depth was also unknown. 

There are some limitations for this whole inverse method. First, the proposed 

method does not assume other types of damage in the composite (e.g., delaminations 

between layers). If they are present, electrical resistance and potential measurements will 

be affected and the damage information will not be precisely estimated. Second, when 

comparing the three patterns, different measurements used for estimation could result in 

different estimated results. But for the Hexagonal pattern, only part of the measurements 

was chosen as measurements, thus it is possible that more accurate results can be 

obtained if more resistances are chosen as measurements. Third, when comparing the 

three patterns, due to calculation limitation, only five models were calculated for each 

pattern. This may not be sufficient to get the detailed relation. 
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Appendix A 

The downhill simplex method minimizes the objective function by taking a series 

of steps. This method uses the concept of a simplex, which is a polytope of N+1verticals 

in N dimensions. Here, downhill simplex method when N = 2 is presented as the example 

to show the detailed procedure, corresponding to 2D situation. The shape of the simplex 

chosen here is a triangle defined by a set of three points. 

Suppose p1, p2 and p3 are denoted as three points on s-d plane and the objective 

functions at these points are set to be φ(p1) < φ(p2) < φ(p3), where p1 = (s1, d1), p2 = (s2, d2) 

and p3 = (s3, d3), corresponding to three different surface damage parameters. The four 

types of steps are outlined below. Note that the aim of the moves is to move the simplex 

closer to the exact solution of the problem. 

Step 1: Reflection - This step moves the highest point with the value of objective 

function to be the largest among the three through the opposite face of the simplex to a 

supposedly lower point (where the value of the objective function is expected to be lower 

than at the highest point). Thereby the triangle flips by 180o. The reflected point pr is 

found as 

32r mp p p= −                                                                                                      (A.1) 

Here, pm = (p1 + p2)/2. Note that the highest point here is p3. Most of the steps in downhill 

simplex method are reflections. 

Step 2: Reflection and expansion - The second type of move is termed as 

reflection and expansion. This is performed when the value of objective function further 

drops along the line of reflection of the highest point. This step is designed to further 

accelerate the process of convergence. The corresponding point pe is 

3( )e r mp p p p= + −                                                                                              (A.2) 

Step 3: Contraction - This step is usually performed when reflection of the highest 

point does not cause further decrease in the value of the objective function. The idea here 
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is that the local minimum lies within the triangle. The point corresponding to contraction 

pc is 

3( ) / 2c mp p p= −                                                                                                 (A.3) 

Step 4: Multiple Contraction - This is performed when contraction does not cause 

a decrease in the objective function of the point under consideration. The lowest point 

here is p1. So, there are two new points to be evaluated here. Let them be denoted as p2
mc 

and  p3
mc . They are found as 

2
1 2( ) / 2mcp p p= +  and 3

1 3( ) / 2mcp p p= +                       .                               (A.4) 

Here, a total of 304=16×19 points are chosen along the range of damage location s and 

damage size d. The various types of steps are geometrically shown in figure 28. The 

complete flowchart of the downhill simplex method is shown in figure 29. The search 

process terminates when the step size reaches 

1
71 1

1

( ) ( ) 1 10
( )

n n

n

p p
p

φ φ
φ

+
−−

≤ ×                                                                                 (A.5) 

or when the number of iterations reaches 1000.  
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Table 1. Electrical conductivities of copper and carbon fiber reinforced polymer used in 
simulation. Here, the conductivities for CFRP correspond to the situation when volume 

fracture of carbon fiber is 60%. 
 
 
 
 
 

 Copper Carbon fiber reinforced polymer

σ0 σ90 σΤ 
Electrical conductivity (S/m) 5.88×107 5500 204 20.7 

 
 
 
 
 
 
Table 2. Comparison of input parameters and estimated parameters of surface damage for 

Square 0o pattern model with a = 80mm, t = 1.6mm, δ  = 0.4mm. 
 
 
 
 

Models x (mm) y (mm) d (mm) Error of size (%) 
Input 21.0 -5.0 10.0 1 
Estimated  19.34 -7.44 11.13 

11.3 

Input -15.0 15.0 8.0 2 
Estimated  -13.81 16.32 7.53 

-5.9 

Input 25.0 25.0 6.0 3 
Estimated  24.42 26.63 5.77 

-3.8 

Input 0.0 0.0 14.0 4 
Estimated  0.0 0.0 14.47 

3.4 
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Table 3. Comparison for input and estimated damage parameters by changing electrode 
density for Square 0o pattern. The input damages are all located relatively in the same 

position. Model thickness is set to be t = 1.6mm. 
 
 
 
 

Square 0o x (mm) y (mm) d (mm) Error of size (%) 
Input 10.5 -2.5 10 a = 40mm 
Estimated  10.81 -2.78 10.43 

4.3 

Input 16.8 -4.0 9.6 a = 64mm 
Estimated  15.23 -2.98 10.39 

8.2 

Input 21.0 -5.0 10 a = 80mm 
Estimated  19.34 -7.44 11.13 

11.3 

Input 25.2 -6.0 9.6 a = 96mm 
Estimated  21.12 -5.34 11.37 

18.4 

Input 31.5 -7.5 10.5 a = 120mm 
Estimated  27.23 -5.49 12.78 

21.7 

 
 
 
 
Table 4. Comparison for input and estimated damage parameters by changing electrode 
density for Square 45o pattern. The input damages are all located relatively in the same 

position. Model thickness is set to be t = 1.6mm. 
 
 
 

Square 45o x (mm) y (mm) d (mm) Error of size (%) 
Input 10.5 -2.5 10 a = 40mm 
Estimated  10.98 -2.75 10.63 

6.3 

Input 16.8 -4.0 9.6 a = 64mm 
Estimated  15.79 -2.14 10.73 

11.8 

Input 21.0 -5.0 10 a = 80mm 
Estimated  18.23 -7.34 11.32 

13.2 

Input 25.2 -6.0 9.6 a = 96mm 
Estimated  23.12 -4.98 11.21 

16.8 

Input 31.5 -7.5 10.5 a = 120mm 
Estimated  26.78 -4.98 12.75 

21.4 
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Table 5. Comparison for input and estimated damage parameters by changing electrode 
density for Hexagonal pattern. The input damages are all located relatively in the same 

position. Model thickness is set to be t = 1.6mm. 
 
 

Hexagonal x (mm) y (mm) d (mm) Error of size (%) 
Input 10.5 -2.5 10 a = 40mm 
Estimated  10.12 -2.64 10.83 

8.3 

Input 16.8 -4.0 9.6 a = 64mm 
Estimated  16.56 -3.45 10.91 

13.6 

Input 21.0 -5.0 10 a = 80mm 
Estimated  19.78 -6.12 11.87 

18.7 

Input 25.2 -6.0 9.6 a = 96mm 
Estimated  23.12 -5.68 11.72 

22.1 

Input 31.5 -7.5 10.5 a = 120mm 
Estimated  29.34 -5.76 13.17 

25.4 

 
 
 
 

Table 6. Comparison for input and estimated damage parameters by changing input 
damage size. The input damages are all located in the same position. Model thickness is 

set to be t = 1.6mm. 
 
 
 

Square 0o x (mm) y (mm) d (mm) Error of size (%) 
Input 21.0 -5.0 3 
Estimated  18.12 -8.56 3.67 

22.3 

Input 21.0 -5.0 5 
Estimated  17.26 -7.89 5.98 

19.6 

Input 21.0 -5.0 7 
Estimated  18.14 -7.67 8.21 

17.3 

Input 21.0 -5.0 9 
Estimated  18.34 -6.94 10.27 

14.1 

Input 21.0 -5.0 11 

a = 80mm 

Estimated  19.84 -6.74 11.93 
8.5 
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Table 7. Comparison for input and estimated damage parameters by changing model 
thickness. The input damages are all located in the same position. Electrode spacing is set 

to be a = 80mm. 
 
 
 
 
 
 
 

Square 0o x (mm) y (mm) d (mm) Error of size (%) 
Input 21.0 -5.0 10.0 t = 0.8mm 
Estimated  19.24 -6.98 11.57 

15.7 

Input 21.0 -5.0 10.0 t = 1.2mm 
Estimated  17.90 -6.45 11.43 

14.3 

Input 21.0 -5.0 10.0 t = 1.6mm 
Estimated  19.34 -7.44 11.13 

11.3 

Input 21.0 -5.0 10.0 t = 2.0mm 
Estimated  22.12 -4.56 11.67 

16.7 
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Table 8. Comparison for input and estimated damage parameters for Square 0o pattern 
model with different damage depth. (a = 80mm, t = 1.6mm) 

 
 

Square 0o x (mm) y (mm) d (mm) δ (mm) Error of damage 
estimation (%) 

Input 21.0 -5.0 4.0 0.3 a1 
Estimated  20.71 -4.21 2.65 0.59 

74.5 

Input 21.0 -5.0 6.0 0.3 a2 
Estimated  17.94 -6.13 3.95 0.54 

63.5 

Input 21.0 -5.0 8.0 0.3 a3 
Estimated  29.73 -4.18 11.07 0.24 

30.5 

Input 21.0 -5.0 10.0 0.3 a4 
Estimated  25.48 -3.83 11.37 0.26 

12.8 

Input 21.0 -5.0 12.0 0.3 a5 
Estimated  23.15 -5.03 12.66 0.27 

6.3 

Input 21.0 -5.0 4.0 0.4 b1 
Estimated  20.80 -4.73 3.90 0.42 

5.6 

Input 21.0 -5.0 6.0 0.4 b2 
Estimated  22.82 -4.43 6.64 0.34 

11.4 

Input 21.0 -5.0 8.0 0.4 b3 
Estimated  24.80 -4.93 8.56 0.34 

11.4 

Input 21.0 -5.0 10.0 0.4 b4 
Estimated  22.76 -4.79 10.47 0.37 

5.3 

Input 21.0 -5.0 12.0 0.4 b5 
Estimated  21.98 -5.00 12.25 0.38 

2.4 

Input 21.0 -5.0 4.0 0.5 c1 
Estimated 19.08 -6.19 4.80 0.35 

24.4 

Input 21.0 -5.0 6.0 0.5 c2 
Estimated  27.54 -4.25 5.86 0.61 

17.0 

Input 21.0 -5.0 8.0 0.5 c3 
Estimated  21.38 -5.30 10.42 0.32 

32.8 

Input 21.0 -5.0 10.0 0.5 c4 
Estimated  23.78 -4.71 9.22 0.58 

13.0 

Input 21.0 -5.0 12.0 0.5 c5 
Estimated  21.63 -5.00 11.12 0.56 

10.1 
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Table 9. Estimated results by six measurements with and without measurement noise. 

 
 
 
 
 

Square 0o x (mm) y (mm) d (mm) δ (mm) Error of damage 
estimation (%) 

Input 21.0 -5.0 8.0 0.4  
No artificial noise 24.80 -4.93 8.56 0.34 12.3 1 
With artificial noise 25.67 -3.56 9.75 0.18 42.5 
Input 12.0 18.0 6.0 0.3  
No artificial noise 13.21 16.89 4.98 0.19 28.2 2 
With artificial noise 15.34 14.56 3.12 0.16 47.3 
Input -15.0 -15.0 10.0 0.5  
No artificial noise -14.56 -15.67 9.23 0.46 7.5 3 
With artificial noise -13.12 -17.45 8.04 0.37 23.2 
Input -25.0 25.0 4.0 0.2  
No artificial noise -24.12 25.65 3.14 0.22 17.4 4 
With artificial noise -22.15 27.45 3.05 0.27 30.5 
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Table 10. Estimated results by adding extra five measurements. Measurements with noise 

are also considered for comparison. 
 
 
 
 

Square 0o x (mm) y (mm) d (mm) δ (mm) Error of damage 
estimation (%) 

Input 21.0 -5.0 8.0 0.4  
Eleven measurements 
without artificial noise 22.34 -4.92 8.23 0.38 3.5 1 
Eleven measurements 
with artificial noise 24.21 -4.12 8.45 0.35 9.4 

Input 12.0 18.0 6.0 0.3  
Eleven measurements 
without artificial noise 12.56 17.23 5.61 0.25 11.4 2 
Eleven measurements 
with artificial noise 13.12 16.89 5.32 0.19 26.7 

Input -15.0 -15.0 10.0 0.5  
Eleven measurements 
without artificial noise -14.91 -15.12 9.86 0.48 3.0 3 
Eleven measurements 
with artificial noise -14.12 -15.56 9.34 0.40 14.9 

Input -25.0 25.0 4.0 0.2  
Eleven measurements 
without artificial noise -24.89 25.23 3.95 0.17 8.5 4 
Eleven measurements 
with artificial noise -24.13 25.78 3.45 0.14 22.1 
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Table 11. Orthotropic electrical conductivities of different volume fractions of carbon 
fibers in CFRP. 

 
 
 
 
 
 
 
 
 
 
 

Vf σ0  (S/m) σ 90 (S/m) σ T (S/m) 

0.40 3,700 0.67 0.059 
0.47 4,600 5.2 1.01 
0.62 5,500 204 20.7 
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Figure 1. The four-ply [0/90]s CFRP laminated model used for 2D situation. Two 

electrodes (4mm×0.25mm) are mounted on the top surface with locations at x = 25mm 
and x = 225mm. The size of the model is detailed described. Seven voltage electrodes are 

mounted on the top surface to obtain the measurement potentials. Surface damage is 
located at the bottom layer with constant damage thickness. 

 
 
 

 
 
 
 

Figure 2. FE mesh of part of the model. The element size is 0.25mm×0.0625mm. The 
total element number of the model is around 16,000. 
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Figure 3. Normalized electrical potential values of 3rd electrode (x = 100mm) for 
different location and size sets in location-size domain calculated by bi-cubic Lagrangian 

interpolation function. 
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(b) 
 

 
 
 

Figure 4. (a) Normalized electrical potentials at seven locations by given boundary 
conditions for s/t = 75 and d/t = 30. (b) Local and global minima are shown in the domain 

of unknown parameters with electrical potential values as the inputs. Exact solution is 
also shown for reference. 
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Figure 5. Normalized electrical resistances for various damage locations and sizes. The 
electrical resistance values are observed to change quickly with the damage size. When 

damage size is small, the resistances are almost uniform along the location axis. 
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Figure 6. Comparison of estimated results with exact solution s/t = 75 and d/t = 30 taking 

electrical potentials and an extra resistance values as inputs. Local minima almost 
converge into one point shows good convergence of the result. Point with the smallest 

error object value is chosen to be the best estimate. 
 

s / t 
60 80 100 120 140 160 180 200

d 
/ t

 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

global minimum 
(best estimate ) 

local minima 

exact solution 
s/t = 75 and d/t = 30 



 50

 
 
 
 
 
 

 
 
 
 
Figure 7. Comparison of estimated results with exact solutions for surface damage s/t = 

140 and d/t = 12 taking electrical potentials and an extra resistance values as inputs. 
Local minima almost converge into one point shows good convergence of the result. 

Point with the smallest error object value is chosen to be the best estimate. 
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Figure 8. Global minima determined in the error sensitivity analysis are shown for s/t = 

75 and d/t= 30. Here 50 separate analyses (with different random errors added to 
measurements) are performed in each model. These global minima are identified with 

seven electrical potentials and one electrical resistance. 
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Figure 9. Global minima determined in the error sensitivity analysis are shown for 
damage s/t = 140 and d/t = 12. A total of 50 separate analyses (with different random 
errors added to measurements) are performed in each model. These global minima are 

identified with seven electrical potentials and one electrical resistance. 
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Figure 10. [0/90/0/90]s composite laminate model used in 3D situation. The side length 
of the model is l and the thickness of the model is t. Square shape damage is located from 

the bottom layer. The size and thickness of the damage are d and δ. Four electrodes are 
located at the corners on the top surface. 
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Figure 11. Square pattern takes the smallest cell as square. (a) Considering the effect of 
cross-ply orientation, for Square pattern, the directions of electrodes parallel to either 0o 
or 90o fiber directions is named as Square 0o. Fiber direction along the diagonal direction 

of electrodes is named as Square 45o. (b) Six resistances are possible to be used in the 
smallest cell for measurements. 
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Figure 12. Hexagonal pattern used triangular as the smallest cell. (a) Schematic of 
possible electrode pairs to measure resistances for hexagonal grids. (b) Twenty-one 

resistances are possible to be used in the smallest cell for measurements. Eight resistances 
were used in actual calculation as measurements. 
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Figure 13. Estimation errors for damage size when changing the electrode density. For 
each pattern, five damage models are estimated by changing the electrode spacing a 

while keeping other parameters the same. 
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Figure 14. Estimation errors for damage size when changing the size of input damage d. 
The estimates were calculated for Square 0o pattern. Estimation errors when changing the 

electrode density is also illustrated for comparison. 
 
 
 

0.00 .02 .04 .06 .08
0 

5 

10 

15 

20 

25 

30 

.01 .03 .05 .07

ρd2 

E
st

im
at

io
n 

E
rr

or
 o

f S
iz

e 
(%

) Change of d 
Change of ρ 



 58

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Estimation errors for damage size when changing the model thickness. 
Regression curve shows that the estimated results are hardly influenced by model 

thickness t as long as d/t is constant. 
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Figure 16. Relationship between size estimation error and norm of resistance change for 

Square 0o pattern. (a = 80mm, t = 1.6mm) 
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Figure 17. Resistance change of AD for various damage size and thickness sets in the 
size-depth domain. 
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Figure 18. Resistance change for various damage size and thickness sets in the size-
thickness domain. 
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Figure 19. Estimation error of damage for different sets of damage size and depth. 
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Figure 20. Estimation errors of damage for four cases with different input damages. Both 
situations with different measurements are listed for comparison and for each situation, 

error sensitivity is performed. 
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Figure 21. Resistances between electrode pairs used as measurements when doing the 
inverse analysis. Broken lines implicate the extra five resistances. 

 
 
 
 

 
 
 
Figure 22. A section of unidirectional fiber reinforced epoxy plate (t ~ 0.52mm) with DW 

electrodes. 
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Figure 23. Measured resistance change under tensile load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. CFRP laminate with artificially imposed damage with grit blasting on back 
side. 
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 damaged region 

 Cu electrode 

 

 
 

Figure 25. Finite element simulation showing the resistance to electrical flow in 
damaged laminate. 

 
 
 
 
 
 

 
 

Figure 26. Computed resistances with various damage size/depth. Experimentally 
measured value is shown for reference. 
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Measure electrical resistances Rα
meas under 

given boundary conditions. 

Construct object function as 
2
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Computer electrical resistances Rα (xi, yj ,dk) 
for various sets of x, y and d under given 

boundary conditions. 

Formulate approximate functions for resistances as 
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Set best estimates corresponding to 
global minimum xest = x*, yest = y* and dest = d*. 

Minimize objective function using downhill 
simplex method to search  
φglobal minimum (x*, y*, d*) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27. Outline of inverse analysis procedure to estimate unknown parameters. 
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Figure 28. Possible moves of downhill simplex method in the domain of unknown parameters. 
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Set n = 0. Arrange p1
n, p2

n and p3
n so that φ1≤ φ2 ≤ φ3. 
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Figure 29. Flow chart for the downhill simplex method. 


