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Abstract of the Thesis

Properties of Adiabatic Rapid Passage
Sequences

by

Benjamin Simon Gläßle

Master of Arts

in

Physics

Stony Brook University

2009

Adiabatic rapid passage (ARP) sequences can be used to exert op-

tical forces on neutral atoms, much larger than the radiative force.

These sequences consist of counter-propagating and synchronized

optical pulses whose frequency is swept through the resonance of

the transition.

The new results from the numerical studies discussed in chapter 3

shall be pointed out. The numerical integration of the optical Bloch

equations show a superior stability of the force, when alternate

sweep directions are used. This discovery was investigated in the

parameter space of ARP and under various perturbations.
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The experiment was setup for two optical beamlines, whose param-

eters can be controlled individually. This allows us to do velocity

capture range measurements or compare other variations of our

scheme.
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To those who boldy go where no one has gone before.
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Chapter 1

Introduction

The motional control of single, neutral atoms is difficult, because there is no

simple mechanical interaction which can be used to manipulate them. The

invention of the laser made it possible to address single, distinct transitions.

Different kinds of elements can be distinguished and addressed individually.

The momentum transfer between light and atoms allows us to manipulate

the motion of atoms. This can be used to cool atoms and trap them [1], or to

collimate neutral atom beams [2]. Cooling atoms down to near the motional

ground state of a trap allows us to access regimes which are heavily investigated

nowadays: Doppler-free spectroscopy up to the point where transitions can be

used as an atomic clock, and Bose Einstein condensation or cold fermions.

Traditional optical forces are dependent on the decay rate of the used tran-

sistion, which limits their magnitude. Much greater forces can be achieved

when absorption and stimulated emission are used. This has been demon-

strated for the bichromatic [3] and the adiabatic rapid passage (ARP) force

[4]. The latter one is the subject of this thesis. ARP requires multiple optical
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pulses, whose frequency is swept through resonance. This thesis shows nu-

merical results that predict the force to be more stable in case of alternating

sweep directions.

In this chapter I give a brief introduction into the interaction of light and

neutral atoms, traditional optical forces and the bichromatic force. Chapter

2 is about the theory of ARP. This is followed by the discussion of the nu-

merical studies in Ch. 3 and their findings. Chapters 4, 5 and 6 describe the

experiment, which was set up to test the discoveries of Ch. 3.

1.1 Two-level atoms

For the purpose of ARP the consideration of only two levels is necessary.

There are several ways to describe this system, which will be introduced in

the following sections.

1.1.1 Schrödinger Equation

The time-dependent Schrödinger-Equation describes the quantum state of neu-

tral atoms in any environment

i~
∂ψ(~r, t)

∂t
= H(t)ψ(~r, t) (1.1)

In the absence of external fields, especially radiation fields, the Hamiltonian

H(t) becomes time-independent H(t) = H0. H0 is diagonal yielding H0φk =

Ekφk. These φk form a complete set of eigenfunctions, therefore the total

2



(time-dependent) wave-function ψ(~r, t) can be expanded as

ψ(~r, t) =
∑

k

ck(t)φk(~r) exp(−iωkt) (1.2)

The presence of a radiation field can be treated as a perturbation: the

Hamiltonian becomes

H(t) = H0 + H̃(t) (1.3)

where the interaction between radiation field and atomic system is described

by the term H̃(t).

Upon inserting into Eq. (1.2) the Schrödinger Equation becomes

H(t)ψ(~r, t) =
[
H0 + H̃(t)

]∑
k

ck(t)φk(~r) exp(−iωkt)

= i~
(
∂

∂t

) ∑
k

ck(t)φk(~r) exp(−iωkt) (1.4)

After multiplying with φ∗
j(~r) from the right and removing all spatial compo-

nents by integrating over them, the generalized Schrödinger Equation becomes

i~
dcj(t)

dt
=

∑
k

ck(t)H̃jk(t) exp(iωjkt), (1.5)

where the transition j → k is described in terms of its resonance frequency

ωjk = (ωj − ωk) and the matrix element H̃jk(t) = 〈φj|H̃(t)|φk〉,

This problem can not be solved analytically. Near resonant monochromatic

laser light strongly couples two distinct levels. Provided that, during the time

of the experiment, there are no other levels the system can decay to, it is

possible to neglect all other levels. The remaining two levels are coupled by

3



the laser light with frequency ωl = ωa + δ, where ωa = ωjk is the resonance-

frequency of the transition and δ is the detuning of the laser frequency ωl from

resonance. The energetically lower state is called the ground state |g〉 and the

other one the excited state |e〉.

|g>

|e> h|δ|

hωl
hωa

Figure 1.1: Relevant energies in a two level system. The system with resonance
frequency ωa is driven by a laser field oscillating at ωl which is detuned by δ.
Taken out of [5].

The quantum state is described by |ψ(t)〉 = ce(t)|e〉+ cg(t)|g〉 or the vector

~ψ(t) = (ce(t), cg(t))
ᵀ. Any diagonal elements of H̃(t) are absorbed into H0,

leaving only the transition elements H̃ge = H̃∗
eg. The remaining, coupled

equations describe the well known Rabi problem [6, 7]

i~
dcg(t)

dt
= ce(t)H̃ge(t) exp(−iωat) (1.6a)

and

i~
dce(t)

dt
= cg(t)H̃eg(t) exp(iωat). (1.6b)
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1.1.2 Rabi-Oscillations

In a semi-classical approach [8] the interaction term can be written as

H̃(t) = −e~r · ~E(~r, t) (1.7)

where the electric dipole e~r of the atom couples to electric field ~E(~r, t) of the

radiation field. The electron’s relative position to the nucleus is described by

the vector ~r. This describes the system in surprisingly great detail.

Two approximations: The laser wavelength is of the order of several hun-

dreds of nano-meters, whereas the wave-function of the atom is almost com-

pletely contained within a few Bohr radii a0. The electric field the atomic sys-

tem experiences can therefore be treated as spatially constant ~E(~r, t) → ~E(t).

This is the so called electric dipole approximation. Upon defining

Ω =
−eE0

~
ê · 〈e|~r|g〉 (1.8)

as the resonant Rabi-frequency, the interaction can be described by the off-

diagonal elements of the Hamiltonian H̃eg(t) = H̃∗
ge(t) = ~Ω cos(ωlt).

These elements consist of two oscillatory counter-propagating components.

Considering the explicit phases in Eqs. 1.6 there are going to be two oscilla-

tory terms in each differential equation. One is going to be oscillating at the

frequency of the detuning δ. The other one is going to be highly oscillatory

at approximately twice the laser frequency. The rotating wave approximation

(RWA) neglects these highly oscillatory terms since none of the other compo-

nents change on the same timescale and its time-average is zero [9]. Studies
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on the dropped, highly oscillatory term show that it gives rise to a small shift

in the resonance frequency, the so called Bloch-Siegert shift [10], which can be

neglected for our purposes. Additionally to that, we perform a rotating frame

transformation, to dispose any remaining complex terms. Equivalent to the

whole procedure is to take the solutions

cg(t) = ag(t) (1.9a)

ce(t) = ae(t)e
iδt. (1.9b)

Thereby Eqs. (1.6) transform into another system of differential equations for

ag,e(t)

i ȧg(t) =
Ω

2

(
1 + e−i2ωlt

)
ae(t) (1.10a)

i ȧe(t) = −δae(t) +
Ω

2

(
1 + ei2ωlt

)
ag(t) (1.10b)

We can clearly identify two fast oscillating terms and drop them. For conve-

nience I will from here on write cg,e(t) again, but will be truly referring to the

transformed ag,e(t).

These transformed variables can be used to uncouple Eqs. (1.6). The

resulting 2nd order differential equations can be solved. Assuming that the

atom was initially in the ground state (cg(t = 0) = 1 and ce(t = 0) = 0) the

time dependent coefficients become

cg(t) =

(
cos

Ω′t

2
− i

δ

Ω′ sin
Ω′t

2

)
exp(iδ/2) (1.11a)
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Figure 1.2: Oscillation of the probability to be in the excited state for different
detunings. The full (dashed,dotted) line is for δ = 0 (Ω, 2Ω) detuning.

and

ce(t) = −i
Ω

Ω′ sin
Ω′t

2
exp(−iδ/2) (1.11b)

where Ω′ =
√

Ω2 + δ2 is the generalized Rabi-frequency, at which the two-level

system oscillates between ground and excited state.

The Hamiltonian for the “new” states cg,e(t) becomes

H =
~
2

 −2δ Ω∗

Ω 0

 (1.12)

Using a slightly different transformation than Eqs. (1.9) results in shifted

diagonal elements (−δ, δ) such that the trace becomes zero, without any effects

on the underlying physics.
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1.1.3 The Optical Bloch Equations

Two complex numbers cg(t) and ce(t) describe the time-dependence of our

atomic system. An alternate description of the atomic system was introduced

by [11] and a good discussion can also be found in [9, 10]. Instead of Eqs.

(1.6) we can use the density matrix

ρ = |ψ〉〈ψ| =

 |ce|2 cec
∗
g

cgc
∗
e |cg|2

 (1.13)

to describe our system. This matrix can be decomposed into a basis, consisting

of the identity matrix 1 and the three Pauli matrices σi. Using Einstein’s

summing convention it becomes

ρ =
1

2
(r01 + riσi) (1.14)

with r0 = |cg|2 + |ce|2 = 1, the probability to observe the atom in either one

of the states. The other coefficients are

r1 = cgc
∗
e + c∗gce (1.15a)

r2 = i
(
cec

∗
g − cgc

∗
e

)
(1.15b)

r3 = |ce|2 − |cg|2 (1.15c)

These three variables form the Bloch-vector ~R = (r1, r2, r3)
ᵀ, which is normal-

ized |~R| = |ce|2 + |cg|2 = 1. It always stays on the unit sphere, the so called

Bloch-sphere.
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Figure 1.3: Bloch-sphere representation of a two level system coupled by near
resonant light. The probability difference to be in either one of the states is
represented by the vertical component of the Bloch vector, where as the relative
phase of the two states is expressed in the azimuthal angle. The presence of
a light field creates a torque around which the Bloch vector precesses. Taken
out of [12].

The time-dependence of these new variables is described according to the

Heisenberg picture (for not specifically time-dependent operators). If we de-

compose our Hamiltonian into the Pauli matrices H = Ωiσi, we get the fol-

lowing solution

ṙi =< σ̇i >= Tr
[
i[σi,H] ρ

]
=

iΩj

2
Tr

[
[σi, σj] (r01 + rkσk)

]
= εijkΩjrk. (1.16)

The time dependence is described geometrically by the well known vector cross
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product

d~R

dt
= ~Ω × ~R, (1.17)

where the torque vector is defined by ~Ω(t) = (Re Ω(t), Im Ω(t),−δ(t))ᵀ. This

result can be confirmed by substituting Eq. (1.10) into the time-derivative of

Eqs. (1.15). The Rabi-frequency is generally complex, but the Bloch-sphere

can be rotated such that Im Ω(t) = 0. This representation provides great

insight into any kind of two level system, since its parameters correlate more

to real measures than the complex amplitudes cg,e(t). Furthermore it is a

completely real, 3D master vector equation, whose numerical integration does

not pose any major problems.

The Bloch-sphere picture is widely used, since it applies to any kind of two

level system. Transformations in quantum computing are often described by

it [13].

1.1.4 Dressed Atom Picture

Instead of treating the light as a perturbation to the atomic system, we can

include the modes of the radiation field into the Hamiltonian of our system

H = Ha + Hrad + Hint (1.18)

where Ha is the usual atomic Hamiltonian, Hrad = ~ωl

(
a†a+1/2

)
accounts for

the modes of the radiation field and Hint describes the interaction as discussed

in Sec. 1.1.2. The energy-structure of the complete Hamiltonian is shown in

Fig. 1.4. Note the almost degenerate levels 2, n−1 and 1, n. These mix due to

10
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Figure 1.4: Dressed extension of the the atomic Hamiltonian. Note that the
(2, n-1)- and the (1,n)-level are only degenerate if the light is on resonance.

the interaction term and the eigenstates |φ1,2〉 of the diagonalized Hamiltonian

become

|φ1〉 = cos θ|g〉 − sin θ|e〉 (1.19a)

|φ2〉 = sin θ|g〉 + cos θ|e〉. (1.19b)

These are the so called dressed states, where θ is the mixing angle defined

by cos 2θ = −δ
Ω′ . The corresponding Eigen-energies of this Hamiltonian are :

E1,2 = −δ ±
√
δ2 + Ω2. The energy-shift for small Ω � |δ| is

∆E1,2 ≈ ∓~Ω2

4δ
(1.20)

This is the so called light shift, shown in Fig. 1.5. In case of a spatially

dependent light field, such as a standing wave configuration, a potential arises,
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which is periodic over one wavelength. It is repulsive (attractive) at the nodes

for negative (positive) detuning δ. This can be used for optical lattices or

for state dependent force schemes, since each state experiences a different

potential.

Figure 1.5: The presence of a radiation field shifts the Eigen-energies of the
Hamiltonian. Figure taken out of [12].

1.2 Traditional Optical Forces

The controlled momentum transfer between atom and light allows one to exert

forces on atoms. Various schemes exist and can be used to control the motion

of atoms. The discussion follows [14].

12



1.2.1 Radiative Force

When monochromatic light close to or on resonance interacts with an atom

at rest, a photon is absorbed with a certain probability depending on the

strength of the transition and the intensity of the light, which is usually easily

saturated. When this happens the momentum of the photon ~k is transferred

to the atom, where ~k is the wavenumber of the incident laser light. Due to

vacuum fluctuation this excited state of the atom decays with a probability of

e−1 in the time τ = γ−1 back to its ground state and sends out a photon in

a random direction. The parameter τ is called the life time of the transition.

As soon as the atom is in the ground state again the process can repeat. The

momentum transfer of the atom by the spontaneously emitted photon averages

to zero, since every direction is as likely as the others. We therefore are able

to push the atoms in the propagation direction of our laser light. The force

experienced by an atom from this laser light is

~F = γp~~k, (1.21)

where γp = γρee is the scattering rate, consisting of decay rate γ and time

average population probability of the excited state

ρee =
s

2(1 + s)
=

s0/2

1 + s0 + (2δ/γ)2
(1.22)

which can be expressed in terms of a saturation parameter s = s0

1+(2δ/γ)2
. The

saturation parameter s0 = 2|Ω|2
γ2 = I

Isat
at resonance can be interpreted as

trade-off between the decay rate γ and the rate at which the system is driven.
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Isat = πhc
3λ3τ

is the saturation intensity, characteristic for the specific two-level

system with lifetime τ . A detuning δ from resonance decreases the effective

coupling dependent on the width of the transition which behaves like the decay

rate γ.

In the case of moving atoms we have to transfer to rest-frame of the atom.

Doing this yields, in case of atoms moving along the direction of the light, a

Doppler shifted frequency ω′ ≈ ω − ~k · ~v. The detuning has to be modified

δ → δ′ = δ − ~k · ~v:

~Frad =
s0γ/2

1 + s0 +
(
2
(
δ − ~k · ~v

)
/γ

)2 ~~k (1.23)

indicates the important aspects of the final result, maximal force is ~F = γ~~k
2

,

which is clearly limited by the lifetime of the excited state τ = 1/γ. Towards

high intensities nonlinear effects begin to matter and this formalism can no

longer be applied.

1.2.2 Optical Molasses

By purposefully red-detuning our light we shift the center of the force towards

atoms which are moving against the light direction. If we retro-reflect we

can add a negative force at maximum for atoms moving against the retro-

reflected beam. The maximum force from the two beams occur at equally

spaced velocities from the originally true resonance at v = 0. A force profile

for a certain set of parameters (δ = −γ and Ω = γ) is shown in Fig. 1.7.

Adding this setup in all 3 dimensions allows one to efficiently cool atoms to

14



Figure 1.6: Atoms are excited by a laser field. The momentum of the light is
transfered onto the atom. The excited state of the atom decays back into the
ground state and emits a photon in a random direction. The recoil momentum
kick averages to zero over many absorption processes. Figure out of [15].

low temperatures. The lowest temperature achievable is TD = ~γ
2kB

. Cooling to

lower temperature can be achieved by other schemes. Every scheme is limited

by the fact, that the atom always receives one final momentum kick. The

result is that the the lowest velocity is the recoil velocity vr = ~k/m.

1.3 Bichromatic Force

So far the biggest constraint on optical forces has been the fact that they

were dependent on the spontaneous decay rate γ. Suppose that an absorption

process from one beam is followed by a stimulated emission into a counter-

propagating beam; the net momentum transfer would be ∆p = 2~k into the
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Figure 1.7: Calculated force profile for optical molasses with detuning δ =
−γ and saturation parameter s = 2. The dashed line are the individual
components of each beam and the solid line is their sum.

direction of the first beam. Using monochromatic light to do this results in

a standing wave configuration, where the sequence could be started in either

order and will therefore average to zero. This limitation can be overcome by

the use of two or more frequencies. The bichromatic force is irreversible, strong

and has a large capture range compared to any of the traditional optical forces.

Figure 1.8: A two level system is driven into the excited state by absorption
from a pulse of the right propagating beam and driven back via stimulated
emission from a pulse propagating to the left. The effective momentum transfer
is 2~k. Taken out of [12].
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A simple picture which gives first insight into the bichromatic force is the

π-pulse model [16, 17]. Two co-propagating light fields of equal intensity have

oppositely detuned frequencies ω1,2 = ωa ± δ, resulting in a beat envelope of

the electric field

E(t) = E0 [cos(ω1t) + cos(ω2t)] = 2E0 cos(δt) cos(ωat). (1.24)

A single pulse is π/δ long. In case of a constant Rabi-frequency the system is

fully transfered to the excited state when Ωt = π. The left term is replaced

by the time-integral over the Rabi-frequency envelope which results in the

so-called π-pulse condition

Ω0 =
πδ

4
(1.25)

where Ω0 is the Rabi frequency of one of the initial beams. The right side can

be replaced by odd multiples, since any number of full and one half precessions

yield the final excited state. Assuming that a right propagating pulse excites

the system by absorption, a successive pulse from the left propagating beam

causes stimulated emission and transfers the system back to the ground state,

∆p = 2~k of momentum are transfered onto the atom. Multiple processes

yield a force Fbichro = 2~kδ
π

.

If spontaneous emission occurs, the atom will be in the ground state again

and the sign of the forces is reversed. The force for multiple processes averages

to zero. A non-vanishing force can be achieved if the second pulse arrives after

a quarter of the first pulse. The possibility that a decay occurs at the wrong

time is now 1/4, whereas the restoring decay happens with probability 3/4.

17



The two possibilities add up to the resulting force

FBichro =
(3

4
− 1

4

)2~kδ
π

=
~kδ
π
. (1.26)

The force becomes, for detunings much greater than the decay rate δ � γ,

considerably larger than the radiative force. Increasing δ to yield larger forces,

also requires higher Rabi frequencies to keep the π-pulse condition satisfied.

Therefore the force can not be made arbitrarily large. At high enough inten-

sities nonlinear effects are going to contribute and the previous assumptions

will no longer be valid.

The bichromatic processes can also be discussed in the dressed atom pic-

ture, then called the doubly dressed picture [18, 19]. Two frequencies results in

an infinite number of levels spaced by δ. Where next levels are coupled alter-

nately by the two detuned radiation fields, described by their Rabi-frequencies

Ω1,2. In case of a non-zero phase between the two modes, the spatial depen-

dence of the Rabi frequencies results in the variation of the dressed Eigen-

energies within one wavelength. Level crossings via Landau-Zener transitions

occur.

Both pictures neglect effects from detuning and neglect decay or treat it

in a simplified way. For a more quantitative prediction of the force under

realistic conditions numerical calculations can be done. These yield a force of

approximately 3/4 of the prediction of the π-pulse model.

The bichromatic force has so far been investigated for Sodium [16], Rubid-

ium [3, 20], Cesium [21] and Helium [2, 22, 23]. It has been shown that the

optical forces achievable are not limited by the lifetime of the transition. The
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capture range is greater than that of the radiative force. The results found

were in agreement with the numerical predictions. Today it is used in our lab

to collimate an intense atomic beam for neutral atom lithography [24]. This

allows us exposure times below one hour rather than several hours.
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Figure 1.9: The presence of two radiation fields which are oppositely detuned
by δ/2 from the atomic resonance, results in an infinite number of dressed
energies spaced by δ. Figure out of [15].
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1.4 Properties of Helium

This experiment uses metastable 23S1 Helium (He∗). The decay into the abso-

lute ground state 11S0 is doubly forbidden by the selection rules ∆L = ±1 and

∆S = 0. The lifetime of the 2S state is τ ≈ 8000 s, large enough that it can be

considered to be stable for the time the atoms are in the experiment. It was

measured recently in [25]. These metastables carry almost 20 eV of energy,

which makes them easy to detect and useful for lithography. Our two-level

system uses the transition 23S1 → 23P2, whose wavelength is λ = 1083 nm

with width γ = 1/τ = 2π × 1.62 MHz. These and other properties are sum-

marized in table 1.1. 4He has no hyper fine structure, due to the fact that the

nuclear spin is zero.

λ ~ωa τ γ/2π Isat vr

[nm] [eV] [ns] [MHz] [mW/cm2] [cm/s]

23S1 → 23P2 1083.331 1.14 98.04 1.62 0.17 9.8
23S1 → 11S0 62.6 19.82 8 × 1012 - - -

Table 1.1: Properties of the 2-level system and the forbidden transition to the
ground state. The information was taken out of [14].
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Figure 1.10: Simplified scheme of all energies of Helium relevant to our exper-
iment [5].
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Chapter 2

Theory of Adiabatic Rapid

Passage Sequences

The population inversion of a two-level system by adiabatic rapid passage

(ARP) has been known in nuclear magnetic resonance for a long time [26]. It

requires the torque vector ~Ω to be swept from one pole of the Bloch sphere to

the opposite one, slowly enough that the Bloch vector ~R is able to adiabatically

follow and fast enough such that relaxation can be neglected. In the case of

an optical two level system a light pulse is needed whose frequency is swept

through resonance [27, 28]. The length of the pulse has to be short compared

the life time of the transition. Pulse sequences of two counter-propagating

beams can drive the system coherently between ground and excited state and

exert forces larger than the radiative force Frad = ~kγ/2, since this scheme

does not depend on spontaneous decay. The theory presented here is mostly

taken out of [5].
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2.1 Adiabatic Rapid Passage

An adiabatic rapid passage can be performed by a chirped, optical light-pulse.

The optical frequency is swept through the resonance of the transition, while

the amplitude-envelope forms a symmetric pulse, reaching its maximum at

resonance.

An ARP process is most easily explained in the adiabatic frame, either

in the dressed atom or the Bloch sphere picture. The Hamiltonian in the

adiabatic frame, describing our system is

H =
~
2

 −δ(t) Ω(t)

Ω(t) δ(t)

 , (2.1)

where the detuning and the Rabi-frequency are constantly changing. This

Hamiltonian yields the eigenenergies E1,2 = ±~
2

√
δ2 + Ω2. The trajectory of

the atomic state can be followed in a 3D dressed picture (Fig. 2.1). The new

eigenstate, corresponding to this eigenenergy, transforms from the original

ground state |g〉 in case of positive detuning δ(t) > 0, through a mixed state

for Ω(t) 6= 0 and to the original excited state |e〉 for δ(t) < 0 [29, 30]. The

same is true if it starts in in the excited state on the upper energy sheet.

For a slow enough sweep of amplitude and frequency, the two level system

follows the adiabatic state, resulting in a population inversion. If spontaneous

emission is considered, it is obvious that a pulse has to be significantly shorter

than the lifetime of the two level system, or in other words the sweep-frequency

has to be considerably larger than the decay rate γ � ωm. Hence the name

Adiabatic Rapid Passage.
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Figure 2.1: Following the trajectory of the dressed energies. The corresponding
eigenstate is for Ω0 6= 0 a mixture of the original eigenstates. Taken out of
[30].

Another useful way of looking at it is the Bloch sphere picture described

in Sec. 1.1.3. The motion of the Bloch vector is described by Eq.(1.17). For a

constant torque the Bloch vector precesses around the torque. If the torque is

swept, the Bloch vector tries to stay on the same orbit, therefore keeping its

distance and following the torque, if the sweep is slow enough. Sweeping the

Bloch vector from the south to the north pole leads to a population inversion.

The proximity of the Bloch vector to the torque can be observed in Fig. 2.2.

The adiabaticity of the sweeping is quantified by the condition

∣∣~Ω(t)
∣∣ � dθ

dt
, (2.2)
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where θ(t) = arctan
(
δ(t)/Ω(t)

)
is the angle between the r3-axis and the torque

vector ~Ω(t). It is also the mixing angle of the adiabatic state in the dressed

picture. The condition reads that the angular frequency of the torque vector

must be small compared to the angular frequency of the Bloch vector at all

times.

ARP has contradicting requirements: Eq. (2.2) and the fact that we have

to sweep fast enough that spontaneous decay can be neglected. It is therefore

possible that a sweep is not perfectly adiabatic. As a result some fraction of

the population is going to remain in the ground state; their transitions were

non-adiabatic. The so called non-adiabatic transition probability Pnad has to

be small for efficient momentum transfer.
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Figure 2.2: The Bloch vector(black) follows the torque(red). If the transition
is adiabatic the population is inverted. This trajectory was calculated numer-
ically for the parameters Ω0 = 12.1ωm and δ0 = 16ωm. The parameters will
be explained in Sec. 2.2.
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2.2 Non-adiabatic Transition Probability

The non-adiabatic transition probability Pnad is clearly dependent on the Rabi-

frequency Ω(t) and detuning δ(t). To characterize this dependence a model

for a swept pulse is required. There are various common models in literature

used to study the adiabatic passage. The Rabi-frequency is described by a

rectangular, triangular, sinusoidal, Gaussian, Lorentzian or 1/ cosh pulse, and

the detuning by a linear, cosinusoidal or tanh function. A detailed comparison

of these can be found either in [31] or [5]. For the purposes of our calculations

sinusoidal pulses for the Rabi frequency are used because they are finite, and

cosinusoidal detuning because they are experimental reality

Ω(t) = Ω0 sinωmt (2.3a)

δ(t) = −δ0 cosωmt (2.3b)

where ωm is the modulation frequency and t ∈
[
0, π/ωm

]
. These assumptions

allow us to characterize Pnad in terms of the Rabi-frequency peak value Ω0 and

the detuning amplitude δ0.

Assuming that we are in the ground state at t = 0, we define Pnad as the

probability that we remain there after a single pulse, which can be written as

Pnad = ρgg =
1 − r3(π/ωm)

2
. (2.4)

The component r3 can be calculated by integrating the Eq. (1.17) from t = 0

to t = π/ωm. There is no analytic solution for arbitrarily chosen parameters

δ0 and Ω0. Special cases like δ0 = Ω0 [32] or δ0 = 0, which is just a π-pulse
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for the right Ω0, are solvable and have been studied. Arbitrary parameters

require numerical integration which is not limited to these special cases. The

initial Bloch vector is set to ~R = (0, 0,−1)ᵀ, δ0 and Ω0 are expressed in terms

of the sweep frequency ωm and the equations are evaluated until t = π/ωm.

Retrieving r3 and calculating Pnad is trivial. Technical details of the integration

are discussed in Ch. 3; a sample code can be found in the appendix.

Doing the numerical integration yields the maps shown in Fig. 2.3. The

analytic case of Ω0 = δ0 can be found on the diagonal and the solution is

confirmed. Note the periodicity at the left edge δ0 = 0 of the map: Pnad

is minimal for Ω0/ωm equal to odd multiples of π
2
, as the π-pulse condition

Eq. (1.25) predicts and maximal at multiples of π. This map is symmetric

for negative δ0 and Ω0. The part shown can be unfolded by mirroring it

subsequently on both axes.

Looking at the logarithmic map, the position of the minima can be followed

for δ0 6= 0. For small sweeping amplitudes δ0 and with the exception of the first

minima at Ω0 = π
2
ωm, the trajectory of all the other minima is bent towards

smaller Ω0 for increasing δ0, approximately following a circle around the origin.

This indicates that the π-pulse condition is still met for the generalized Rabi

frequency Ω′ =
∣∣~Ω∣∣. Large δ0 results in a different behavior; starting with the

first (Ω0 = π
2
ωm) minima at δ0 = 0, every other pairs up with the next higher

one, since the trajectories of their minima join.
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2.3 Periodicity

Upon looking at some point in the parameter space, preferably close but not

on some minima of Pnad, integrating Eq. 1.17 for many periods, we will see

that the trajectory of the Bloch-vector is contained within bands, as shown

in Fig. 2.4. This periodicity can also be observed if we are plotting only one

point after each period/sequence. These are found to lie on a circles, which

go through the pole as shown in Fig. 2.5. Interestingly, the circles switch side

depending on whether they are outside or inside the minima loop of Pnad.

Let us first consider a single pulse, that drives the Bloch-vector, from the

initial state ~R(t) = (0, 0,−1)ᵀ, close to the north-pole. A second pulse, re-

gardless from what direction it is coming, lets the evolution of the vector

continue and and the trajectory of ~R ends close to the south-pole. The fact

that ~R(2π/ωm) is close to the south pole does not mean that ~R(π/ωm) was

close to the north-pole, although the reverse is true. It has been shown by [30]

that the time-evolution t = 0 → 2π/ωm = Tm of the Bloch-vector under the

influence of the torque ~Ω can be written as a rotation

~R(Tm) = U(Tm)~R(0), (2.5)

where U(Tm) is dependent on the evolution of the torque ~Ω(t). Instead of

looking at it as a rotation of the Bloch-vector, it can be equivalently understood

as a rotation of the Bloch-sphere. This makes the evolution independent of

the current position of ~R(t). It is also possible to define U(t) for arbitrary

t, which is going to be used in the following chapter. For now, we are only
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interested in the position of ~R after each each complete cycle.

The rotation matrix U(Tm) is given by three parameters, two angles (θa, ϕa)

defining the rotation axis and one being the rotation angle α. Repetitive

rotations of the initial state, yield the points ~R(nTm), which all lay on a circle

whose center is the rotation axis and that does go through the south-pole.

Its radius r0 is the distance between the axis and the south-pole. Successive

~R(nTm)s are separated by the angle α. The proximity of ~R(Tm) to the south

pole does not indicate that the axis is close to it, thus the radius r0 is not

necessarily small. It shall also be mentioned that the points ~R
(
(n+1/2)Tm

)
are

located on a similar circle at the north pole. This agrees with the confinement

of the trajectories within bands.
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Figure 2.3: Map of the non-adiabatic transition probability Pnad.
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(c) Ω0 = 2.9ωm, δ0 = 3.7ωm
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(d) Ω0 = 4.5ωm, δ0 = 1.9 ωm

Figure 2.4: Plots of trajectories on the Bloch sphere for various parameters.
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Figure 2.5: This is the view looking up at the southpole. In similarity to
Poincare surfaces points after each cycle (consisting of two pulses) are plotted,
since the time evolution for one cycle can be interpreted as the rotation of the
Bloch sphere. Multiple rotations lead to the observed circles, whose center is
the axis the Bloch sphere is rotated around.
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2.4 Force from Periodic ARP Sequences

After showing that multiple ARP sequences exhibit periodic behavior on the

Bloch sphere, which is a requirement for a stable force, I now want to derive the

quantitative behavior of the force. The force onto the atom can be calculated

using the Ehrenfest theorem [14]

~F =< −~∇H >= Tr
[
~∇Hρ

]
=

~
2

(
r1~∇Ω1 + r2~∇Ω2

)
, (2.6)

where Ωi and ri are the corresponding components of torque and Bloch vector.

In case of two counter-propagating light fields whose wavenumber is k the

derivative yields

~F =
~~k
2

((
~Ω+ − ~Ω−

)
× ~R

)
3

(2.7)

where the force is given by the third component of this vector product. The

torques ~Ω+ and ~Ω− belong to the right and left propagating fields. In case of

temporal overlapping additional effects such as multi photon processes have

to be considered [33]. If the pulse are not temporally overlapped we can treat

them individually and write

~F = ±~~k
2

(
~Ω± × ~R

)
3

= ±~~k
2
ṙ3. (2.8)

Identifying ṙ3 yields an expected result: a momentum of ~k is exchanged if

the Bloch vector is driven from one pole to the other. The force of a single
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pulse expressed through discretization of ṙ3 is

F̄ = ±~k
2

ωm

π
∆r3 = ±~kωm

π

(
1 − Pnad

)
(2.9)

where π/ωm is the length of the pulse.

The phase of the Rabi frequency is dependent on the relative position of the

individual atom, since H̃eg = ~Ω exp
(
−i(kz − ωt)

)
. The position dependent,

relative phase between right and left- propagating pulse changes by a full

period 2π over half a wavelength. This is clearly smaller then the spread

of the atomic ensemble in our experiment. To account for that, the force is

averaged over every possible phase. The derivation, which can be found in

appendix B of [5], yields

F̄ = ±~kωm

π

(
1 −

√
Pnad

)
(2.10)

Figure 2.6: Pulse scheme that breaks the left/right symmetry. The force gains
directionality, the atom is now more likely to be pushed to the left. Figure
taken out of [12].
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So far spontaneous emission has been neglected. A similar approximation

as in the case of the bichromatic force (Sec. 1.3) can be made. If spontaneous

decay occurs during the time π/ωm of a exciting pulse, the force is reversed.

Multiple such processes average our force to zero. We are introducing a synco-

pation time 2π/ωm, after the counter-propagating pulse, with no field present.

This is shown in Fig. 2.6. The probability that a decay is restoring the right

direction becomes 3
4
. The effective ARP-force is

FARP =
~k
T

(1 −
√
Pnad) (2.11)

where T = 4π/ωm is the length of the complete pulse sequence. This however

does not take possible Doppler-detuning into account and treats spontaneous

decay naively.
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Chapter 3

Numerical Simulations

The numerical integration of the Optical Bloch Equations (1.17) yield the

trajectory of the Bloch-Vector for a given pulse sequence. This pulse sequence

is described by the time-dependent torque vector ~Ω(t). The extraction of the

the non-adiabatic transition probability is obvious; the force can be calculated

using Eq. (2.8). The control of the torque allows one to model imperfections

of the experiment as well as look at purely theoretical aspects of ARP.

Numerical simulations where done on two platforms: in Mathematica and

c++ using the gnu scientific library (gsl)1. A sample of both codes can be found

in the appendix. Both environments allow us to choose between a selection

of integration methods. Different methods yielded comparable performance;

no major differences were found. Subsequently an 8th order Runge-Kutta

algorithm was used. The parameters used during these calculations resemble

resemble our experimental situation.

1http://www.gnu.org/software/gsl
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3.1 Effects of Spontaneous Emission

For large momentum transfers the sequences have to be repeated many times.

On these time scales spontaneous emission can not be neglected and has to

be included. This can be done by a simple estimate like in Sec. 2.4, or be

directly included into the numerical integration. This has been done using

two different methods: by a modification of the Optical Bloch Equations or

by using a Monte-Carlo approach. The decay rate throughout all calculations

has been set to γ = ωm/100.

The optical Bloch equations are modified according to [14]. The decay

of r1, r2 and r3 can be described by the same rate, since we assume that

spontaneous emission is the only possible decay channel. If collision and other

decay channels are considered, additional parameters are required. Including

the decay rate γ into the differential equations for the elements of the density

matrix and deriving the time-dependence of the individual components leads

to the modified optical Bloch equations

~̇R = ~Ω × ~R− γ


r1/2

r2/2

r3 + 1

 . (3.1)

Note that with the additional term the Bloch-vector will no longer stay nor-
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malized, since

d

dt
~R2 = 2~R · ~̇R = −2γ ~R ·


r1/2

r2/2

r3 + 1

 = −2γ
(
r2
1/2 + r2

2/2 + r2
3 + r3

)
(3.2)

is only zero for the special case that the system is in the ground state ~R =

(0, 0,−1)ᵀ. The decay of R is correct; one occasion where it is expected to

happen is the case of a constant Rabi-frequency (and no detuning) in which the

Bloch oscillations are damped until the system is an superposition of ground

and excited state, with random phase (averaging out to zero). It does not,

however, result in a vanishing Bloch vector for an arbitrary pulse sequence

(for either up-down and up-up), as can be seen in Fig. 3.1. The decay of

the Bloch-vectors length |~R| is interrupted and reversed, because Eq. (3.2)

can also be positive. This is the case when r1, r2 ' 0 are comparably small

and r3 is negative and not equal to −1. Note that without syncopation time,

|~R| would vanish. The length of the Bloch vector decays until it equilibrates

and continuous to irregularly oscillate about an average length. This length

depends on the parameters δ0, Ω0, and can be correlated to Pnad.

The second method used was to run optical Bloch equations code without

the additional term. Decay was realized by restoring the ground-state with

the probability p = γ r3+1
2

dt after each step dt = Tc

1000
, using random number

generation2. This was done in c++, which allows one to access and manipulate

all variables at any time. Averaging over a large number of trajectories the

2Algorithm by R. M. Ziff
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Figure 3.1: a) Time dependence of ~R2 for a timescale comparable to the ex-
perimental interaction time. b) Comparison of the direct integration of Eq.
(3.1) (blue) and the average over 1000 Monte Carlo trajectories (purple).

previous method can be confirmed (Fig. 3.1). An approximate force map is

calculated by retrieving Pnad from the integration of Eq. (3.1) and using Eq.

(2.11) to calculate the force. This is shown in Fig. 3.2.

The modeling of the experiment includes spontaneous emission, since our

total interaction time Tint is approximately a few lifetimes of the excited state.

Depending on the point in the parameter space of ARP, meaning δ0 and Ω0,

even the relaxation time might be non-negligible and will yield additional

effects.

3.1.1 Force Distribution

Rather than averaging over all trajectories, the Monte-Carlo approach can

be used in a different way. Following many single trajectories, a distribution

of the accumulated momentum exchange can be retrieved, for any sweeping

scheme and parameters δ0 and Ω0. This corresponds to a force distribution.

This is shown in Fig. 3.3.
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Figure 3.2: A approximate force map. The force is expressed in momentum
kick ~k per cycle time T . This force map corresponds to the approximate force
maps shown in [5] except for a constant factor κ.

The deconvolution of the experiment becomes even more difficult since the

deflection is given by integrating over the varying interaction time and the

force distribution.

3.2 Velocity dependence

Moving atoms see Doppler-detuned frequencies. The velocity dependence is

included by shifting the detuning δ(t) of the counter-propagating pulses by

~k · ~v = kv in opposite directions, where k is the wavenumber of the light and

v the transverse velocity. Their product kv is either expressed in units of

the sweep frequency ωm or the decay rate γ. Force-profiles like Fig. 3.4 are

calculated showing the velocity dependence.
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Figure 3.3: Force distribution for a sample of 1000 trajectories at Ω0 = 2.4ωm,
δ0 = 1.8ωm and alternating sweep directions. The integration time was 240
cycles such that system experienced on average 6 decays. The mean force is
F̄ = 0.79 ~k/T and the width is 0.25 ~k/T.
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Figure 3.4: Force-profiles calculated by the integration of Eqs. (1.17 or 3.1)
showing the velocity dependence of the ARP force at Ω0 = 3.45ωm, δ0 =
4.25ωm and up-down sweeping. The blue line neglects spontaneous decay,
the purple one included spontaneous decay according to Eq. (3.1). A limited

integration time of 20 cycles was not sufficient for the equilibration of |~R|, such
that the strength of the force in this plot is still strongly influenced by the first
cycles. The approximate capture range for this set of parameters is 6ωm.

3.2.1 Capture range

Mapping the parameter space, force profiles for δ0 ∈ [ 0, 5ωm] and Ω0 ∈

[ 0, 5ωm] in steps of 0.1ωm where obtained. The calculation included spon-

taneous emission and was done using up-down pulse-sequences which will be

discussed in the next section. The integration time was 40 cycles. We define

the capture range as the full width at half maximum(FWHM) of the force.

Since the force profiles are complicated and may have their maximum at a

different velocity than zero, it is sometimes not possible to define a capture

range. In these cases, defined by the fact that the force at zero velocity was

not within the FWHM of the the maximum force, the capture range was set

to zero. The resulting capture range map and a force map out of the same
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calculations are shown in Fig. 3.5.
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(a) Force map
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Figure 3.5: ARP capture range (CR) in units of ωm. Note the areas where we
could not define a capture range and set it to zero. The shallow features are
effects of spontaneous decay and disappear as soon as it is neglected. Note
that a big CR does not necessarily mean that the force is big itself.

3.3 Sweep direction

Looking at Fig. 3.5 the reader might be confused by the shown force-map

whose structure does not corresponds to previously shown maps. This is ex-

plained in this section. Demonstrations of optical force via ARP have so far

been made in setups using retro-reflected beams. Inherent to this setup is that

every pulse is swept up. Using two individual beams to measure the veloc-

ity capture range adds the possibility to explore alternating sweep directions.

These have been modeled.

Choosing a parameter (Ω0 = 3.45ωm, δ0 = 4.25ωm) set which has a small

non-adiabatic transition probability, force profiles for up-down and up-up se-

quence were calculated and are shown in Fig. 3.6. This shows a rather large
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Figure 3.6: Force profiles for the parameters Ω0 = 3.45ωm and δ0 = 4.25ωm.
The integration time was 20 cycles and the decay rate γ = ωm/100. The small
oscillations in a) vanish for a longer integration time. The blue line is for
up-down and the purple line for up-up sweeps.

capture range for up-down, sequences compared to up-up sequences. Also

note the asymmetry of the up-up force profile. This feature occurs as soon

as spontaneous emission is included into the calculation. It is confirmed in

Monte-Carlo simulations such that numerical errors can be excluded. Future

work is intended.

The stability of up-down can again be explained by rotations of the Bloch-

sphere. The effect of pulse sequences can be described as a rotation of the

Bloch-sphere as discussed in Sec. 2.3. The same is also true for single pulses.

Assuming that Pnad is close to but not zero, one pulse will rotate the Bloch-

vector close to the north pole. Single up and down pulses do have the same

Pnad, the only difference between them is, that they are going up on opposite

sides since their detunings have alternate signs. More precisely their trajec-

tories are symmetric about the r1r3-plane, which means the only difference

between their end points is that they have opposite r1-values. Doing the same

transformation two or more times results in a greater distance to the desired
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pole, which results in instabilities in case of up-up sequences. Up-down se-

quences, on the other hand, do not cross over the north pole to get back down

again. They go back on a somewhat similar trajectory, which compensates for

the nonadiabatic behavior of the initial pulse.
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Figure 3.7: These new structures appear within a few cycles. Changes are
already visible after one complete sequence (two pulses) and the structure
manifests within 10 cycles. The pictures shown here are the result of integrat-
ing over 25 cycles. This calculation neglected spontaneous emission.

Expressing single up and down sweeps in terms of rotation matrices, and

combining them to a rotation matrix for a complete cycle yields the expected

results. The combined rotation matrix for up-up has the same rotation axes

as the matrix for a single up-pulse; the combined rotation matrix for up-down,

on the other hand, can have its rotation axis (depending on Ω0 and δ0) close to

the south pole. Everything mentioned is also valid for the opposite directions:

down-down, and down-up, whose behavior is equivalent. The resulting force

not only depends on Pnad, but it is individually dependent on the parameters

Ω0 and δ0. This results in a new structure of the force map, which was already

seen in Fig. 3.5 a). Theses features can be seen more clearly in Fig. 3.7, where
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spontaneous emission was neglected.

Spontaneous emission has several effects. In regions where Pnad is small

and the rotations would potentially yield a unstable up-up force over a long

integration time, the initial coherence of the force is restored early enough (due

to our pulse scheme with syncopation time) such that there is no difference

between up-down and up-up sequences. Less ideal situations, like simply a

point with bigger Pnad or a Doppler-detuned system, are more unstable and

results in significantly lower or practically zero forces. Additionally sponta-

neous emission suppresses small resonance-like oscillations in force profiles or

maps.

These tendencies have been confirmed in the Monte-Carlo distributions. A

negative Rabi-frequency can also be considered to change the sweep direction.

Whether or how this is experimentally accessible is questionable. Doing up-up

sweeps in combination with Rabi-frequency being positive-negative yields an

exact reversal of the initial sweep, resulting in the restoration of the ground

state. Up-down sequences in combination with Rabi positive-negative yields

alternate structures to only up-down in the force map.

An important question is whether the stability of up-down persists in ex-

periment where spontaneous emission cannot be neglected, the pulse is not

sinusoidal, the Rabi-frequency varies by about 10% over the whole interac-

tion time, and we do not know the optical phase. Numerically we tried to

model some of the effects individually and it seemed that although up-down

sequences are affected, they are much more stable towards these processes. Of

course there are a lot of other effects we did not account for, i. e. our two-

level system is not perfect, and there might be significant contribution through
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processes involving the 23P1 level, especially at large sweep amplitudes and/or

Doppler-detunings.

3.3.1 Non-constant peak Rabi frequency

In the experiment it is impossible to get a perfectly constant Rabi frequency

over the whole interaction region, since we are using an Gaussian elliptical

beam. The edges of the Gaussian profile are cut off by a vertical slit. We

approximate the Rabi frequency in the remaining part to be parabolic

Ω0(z) = Ω0(1 − az2) (3.3)

where z(t) = z0(t/Tint − 1/2) is linear over the total interaction time Tint and

the paramter a can be tuned such that there is a certain percentage at the

edges. Mostly 90% was used. The results show a greater stability of up-down

in contrast to up-up.

3.3.2 Random phases

The assumption that we can rotate the Bloch sphere in such a way, that the

Rabi-frequency is completely real (and positive), can clearly not be hold in

the experimental case, where the optical phase is somewhat uncontrollable.

For that reason the most extreme case of completely random phases for in-

dividual pulses was investigated. The force was mapped for different peak

Rabi-frequencies, detuning amplitudes and Doppler detunings.

The results, a sample is shown in Fig. 3.8, exhibited noise due to the

randomness and the finite integration time. Several main features like the
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superior stability of up-down in comparison to up-up and the asymmetry of

the up-up force-profiles are still present. In the experimental situation, the

phases might be correlated and that could lead to new characteristics. Random

phases also make up-up more stable since the successive pulse is no longer the

completely identical to the previous.
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Figure 3.8: The blue line shows the result for zero optical phase. In case of the
purple line the phase of each pulses was set randomly. The simulation included
spontaneous emission. The parameters were Ω0 = 3.4ωm and δ0 = 4.2ωm.
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Chapter 4

Vacuum System

Metastable Helium is produced by a reverse flow source [34], and travels down

the beam line in a stainless steel vacuum system. The beam gets shaped

and deflected in the interaction region, where the ARP light is brought into

the vacuum. Further down the system, the deflection can be detected by a

combination of multichannel plate (MCP) and phosphor screen (PS).

4.1 Beamline

Our lab has two metastable Helium beam lines: one is used for experiments

on Rydberg atoms, while the other one is shared between our experiment and

research on neutral atom lithography. The installation and stabilization of

these was done during previous work [35].

The main beam line consists of a vacuum system assembled mostly out

of 4” diameter stainless steel parts. We are using Conflat flanges which are

sealed by copper gaskets. Our pressure is limited by the fact there a few O-ring
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Figure 4.1: The first sixfold cross is used for the collimation of the lithography
experiment and can be ignored for our setup. The interaction takes place in
the second sixfold. The metastables are detected in the cube.

sealed flanges and that parts of the system are brought up to air regularly, for

lithography purposes or maintenance. The system is directly pumped by two

Pfeiffer Turbo pumps (TPH 330) which are backed by mechanical roughing

pumps. Backing pressure of source and beam line is constantly measured by

Convectron gauges. The absolute pressure can be measured by ion gauges

which are controlled by Veeco Instruments Model RG830 gauge controller.

Typical rest pressure is a few 10−7 Torr. The beam line can be separated into

source, interaction and detection region.
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Figure 4.2: Schematics of the reverse flow metastable Helium source. Taken
out of [12].

4.1.1 Metastable Helium source

Since the optical transition 11S0 → 23S1 is doubly forbidden and the energy

difference is vast, metastable helium has to be produced by other means. This

is done most efficiently by the use of a electric discharge. A reverse flow source,

based on a DC discharge, has been designed by Kawanka et al. [34], which

provides an intense beam of metastables. A modified version was built in

Utrecht and is operated in our lab since 1999. A diagram of the source is

shown in Fig. 4.2.

A 1 cm glass tube is mounted in the center of a 3 cm stainless steel jacket,

which is cooled by liquid N2. Helium flows between tube and jacket to the

front, where the glass tube is narrowed. Teflon spacers keep the glass tube

centered and force the helium against the outer wall of the jacket for further

cooling. A Welch pump then pumps most of the helium back through an
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opening in the front of the glass tube. Inside the glass tube is a tungsten

rod that is kept centered by spacers. Sufficient flow is guaranteed by holes

in the spacers. The rod is sharpened and its potential can be controlled by a

DC power supply. A DC discharge is going from the tip of the needle to the

nozzle plate. The electrons hit the Helium and generate a plasma. Amongst

other things metastable Helium is generate. Inside the plasma the metastables

decay quickly due to collisions. The only metastables that are not decaying

are at a outside the plasma in its afterglow, outside the nozzle of the metal

jacket, which is directly in front of tip. These are also more likely to proceed

through the source chamber and into the beamline [36].

The source chamber basically consists of a T. The metastable beam enters

the system on one side and travels through it. A skimmer plate on the oppo-

site side blocks large parts of the beam, thereby limiting the angular velocity

spread. At the lower end of the T the first Turbo pump is attached, which is

backed by a mechanical pump. This pumps the excess atoms out of the system

and also leads to differential pumping between the inner source and the source

chamber. The T has an additional small window on top of the point, where

the beam enters the source chamber, which enables us to monitor whether the

source is lit.

Observing the operation of the source is possible because the discharge is

also creating light, ions and electrons. Any charged particle can be deflected

by either using permanent magnets, which can be attached to the outside of

the vacuum system, or the use of deflection plates behind the skimmer plate,

which are set under voltage. The light can serve as a reference in time of

flight measurements using a chopper that is otherwise removed. This has been
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Figure 4.3: Velocity distribution of our metastable Helium beam. Figure taken
out of [15].

done to measure the longitudinal velocity distribution of the metastables [35].

The results were reproducible and the distribution is shown in Fig.4.3. The

distribution’s maximum is at 1000 m/s and it has a FWHM of 400 m/s.

The efficient production of a bright metastable Helium beam is dependent

on the specific setup of the source. The position of the tungsten needle, its

voltage and the flow of Helium are parameters which have to be adjusted

accordingly. Optimization of all parameters led to a usual metastable Helium

beam of about 1014 atoms/(s sr) [15].
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4.2 Interaction

The interaction between ARP light and atoms takes place in the second sixfold

cross. The flanges in the horizontal plane, perpendicular to the beam, have

windows which are AR coated for 1083 nm light. A vertical slit of width 250µm

cuts out a narrow part of the atomic beam with very low transverse velocity

spread. This beam travels through Helmholtz-coils. The ARP light is brought

onto the atoms along theiropen axes. The slit and the coils are mounted on a

feed through on the top flange of the sixfold cross which enables us to lower

them and see the detector when fully lit. The electrical connections for the

coils are also on the top flange. Attached on the bottom of the sixfold cross is

the second Turbo pump, which is backed by another mechanical pump. This

provides the vacuum for the whole beam chamber.

The coils were designed and build in for previous work on ARP [12], where

all the specifics can be found. A large enough ~B-field (≈ 7 Gauss splits the

degeneracy of the magnetic fine-structure and provides an axis. This makes it

possible to optically pump the atoms.

4.3 Detection

The detector is placed inside a cube with two view-ports. The cube can be

separated from the rest of the system, giving us easy access for maintenance.

This is done by a gate valve between the interaction region and the cube. The

cube can be pumped individually by sorption pumps. The detector is mounted

on a post which is attached on the top flange on another T on top of the cube.
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(a) Front view (b) Side view

Figure 4.4: a) The atoms pass the slit and go through the center of the coils
perpendicular to their major axis. b) The light travels perpendicular to the
plane and is brought on to the atoms in the center of the coils. Both figures
were taken out of [12].

This T is either used to mount our detector or can contain a cold trap for the

lithography experiment. The distance between the center of the coils and the

front of the detector is 32 cm.

The detector consist of a micro channel plate(MCP) and a phosphor screen

(PS). These are mounted between square stainless steel plates from Kimball

Physics Inc. The plates are aligned by non-conducting aluminium oxide rods.

Plastic spacers are used to separate the plates if necessary. Electrical con-

nections are spot-welded onto the two plates holding the MCP and the front

plate of the PS, and go to an electrical feed through. The front of the MCP

is kept at negative voltages of approximately 700 V, the back is grounded and

the front plate of the PS is at positive voltage of about 1200 V. The rods
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(a) Detector schematics (b) Fully illuminated detector

Figure 4.5: a) Neutral metastables hit the MCP and eject electrons, which
causes a cascade that can be made visible by fluorescence of a PS. Images are
taken by a CCD camera. b) This is the background of the fully illuminated
detector. It is showing burn-marks and scratches on the MCP of a detector.
The detector schematics were taken out of [15].
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are held by an aluminum piece that is connected to the post. A mirror is

mounted at an 45o angle behind the phosphor screen that reflects the image

of the phosphor screen through the view port out of the vacuum system and

onto a CCD camera, which allows us to take pictures. The setup is shown in

Fig. 4.5 a).

The MCP’s were ordered from Burle Electro-Optics. Their active diameter

is 0.96” and they consist of channels almost perpendicular to the surface. The

channels are ordered in a hexagonal structure. When atoms with E ≈ 20 eV

hit the MCP, they eject electrons out of the semi-conducting walls of the

channels, which are accelerated by a maximum voltage of 1000 kV across the

channel towards the next wall, where secondary electrons are ejected, etc. The

gain depends on the voltage across the MCP. This avalanche leaves the MCP

and is accelerated towards the phosphor screen.

Two different kinds of phosphor screens were used. The phosphor screens

from Lexel Imaging Systems consist of a glass plate coated with layers of

aluminum, indium tin oxide (ITO) and P43 phosphor. The aluminum diffuses

charge, the ITO assure a good adhesive and conductive to the phosphor. When

an electron cascade hits the phosphor, it causes fluorescence in the green,

which can be observed by the CCD camera. The second type of PS used, was

purchased from a private individual. It also consists of a glass plate, which is

coated with a thin layer of gold and P20 phosphor on top.

The limitations of this detector are that the combination of MCP, PS and

CCD camera lead to a highly non-linear behavior of the pixel intensity as a

function of the atomic flux, which makes quantitative measurements extremely

difficult. The MCP and PS can only be operated in vacuum below 10−5 Torr
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and require a completely dry storage space. They show signs of aging and are

burned if the atomic flux or the electron cascade is too large (Fig. 4.5 b)). The

main advantage of the detector is that it is real time and that taking pictures

is only a matter of seconds.
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Chapter 5

Generation of ARP Light

The generation of ARP-pulses is key to this experiment. A distributed Bragg

reflector (DBR) diode laser provides the 1083 nm light required for the 23S1 →

23P2 transition of metastable helium. This laser is locked by optical feedback,

using a saturated absorption spectroscopy (SAS) signal. Phase modulators

allow us to sweep and/or detune the frequency. Amplitude modulators give

control over the amplitude of the light. Both modulator types are based on

the electro-optic effect of lithium niobate (LiNbO3). The spectrum of the

modulated light is monitored with Fabry-Perot (FP) interferometers. Time-

dependent intensities are resolved with fast photodiodes. Fiber amplifiers

provide the required power.

5.1 Laser

In the experiment a Spectra Diode Labs SDL-6702-H1 DBR(distributed Bragg

reflector) laser is used. High performance power of about 20 mW, tune-ability
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via control of current and temperature and low cost are the diode’s major

advantages. The active region of the diode contains a grating which provides

further frequency stability.

The diode laser is in an 8-pin TO-3 casing, in which a thermistor and

thermoelectric cooler are included. The current is controlled by a Newport 505

current controller, which also allows us to modulate with low voltage signals

at frequencies up to 500 kHz. The temperature of the diode is controlled by an

Newport 325 temperature controller which keeps the (temperature dependent)

resistance of the diode stable.

We were usually running the laser at a resistance R = 9.79 MΩ in the

thermistor monitor and a current of I ≈ 137 mA. The current varies on day

to day basis, since our laboratory is connected to the buildings heating or

air conditioning. This system’s feedback is binary, which results in a 20 min

temperature cycle. The humidity is not controllable.

The light out of the diode hits a 70:30 polarization independent beam-

splitter. The 70% beam goes through a Faraday isolator and is coupled into

a fiber which sends it to the modulation stages. The other 30% gets retro-

reflected off a mirror on a PZT(piezo electric transducer). This extended

cavity of adjustable length provides direct optical feedback, sending 9% of the

light coming out of the diode back into the diode. The remaining 21% is sent

through an optical fiber to a Helium glass cell. This setup is shown 5.1.
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Figure 5.1: Extended cavity setup of our laser which provides stable frequency
locking by electronic feedback. Figure out of [5].

5.1.1 Laser-Locking by SAS

To lock the frequency of the diode to the atomic transition we use electronic

feedback. We have a He-cell in which an RF discharge provides metastables. A

glass plate splits the original beam into 3 parts. Two go parallel to each other

through the helium cell; these are called probe beams. The third, the pump

beam, is steered around the cell and goes through the cell in the opposite

direction, almost perfectly overlapping with one of the probe beams in the

center of the beam and completely avoiding the other. The probe beams

are weak and the pump beam is strong. When the light passes through the

cell resonant atoms will absorb light. Moving atoms see Doppler-detuned

light. The detuning they see is opposite if the light comes from the opposite

direction. Therefore only atoms at rest can be resonant to pump and probe
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beam (of the same frequency) at the same time. In this case the absorption of

the overlapped probe beam is going to be suppressed, since the pump beam

already saturates most of the atoms. We detect the intensity of the two probe

beams with individual photo-diodes. We subtract the NOT-overlapped beam

with the overlapped beam signal electronically, amplify this signal and send it

to the locking electronics. This yields a Doppler-free signal. The schematics

of the He-cell spectroscopy setup are shown in Fig. 5.2.

reference probe

Pump

mirror

glass plate

He

 discharge 

cell

50/50 

beamsplitter

photodiodes

21%

laser beam
DBR Diode

EC

PZT

subtraction

 

 

lock-in

ampli!er

10kHz

modulation

 Saturated Absorption SpectroscopyServo Loop

SAS

signal

error

signal

Figure 5.2: This setup enables us to lock the frequency of the laser to the
desired transition for several hours. The linewidth is far below the Doppler
width. Figure taken out of [5].
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This so called SAS (saturation absorption spectroscopy) signal [37] is cleaned

up by two successive, home-built, low pass filters. This signal is split and

monitored on an oscilloscope. The other part is sent to a lock-in amplifier

which provides an error signal. A proportional integrating differential con-

troller (PID) is used to generate the feedback signal that is sent back to the

Newport current controller.

Finally the laser frequency ωl is locked to the atomic transition frequency

ωa = ωl, and the line-width of our locked light is assumed to be 1.6 MHz,

limited by the signal to noise ratio of our error signal. Under good condition,

this setup is able to keep the frequency locked for several hours. This scheme

was first set up by [38].

5.2 Electro optic effect

The creation of ARP pulses in this experiment is done by electro-optic mod-

ulators. Phase-modulators allow us to sweep and/or detune the frequency.

Amplitude modulators shape the required pulses. We are using near infrared

(NIR), fiber-coupled, integrated-optics modulators from Photline, which are

based on lithium niobate (LiNbO3). Proton exchange is used to create the

waveguide between the electrodes. This is done by replacing Li+-ions with

protons when the crystal is exposed to an acid. The Au-Cr electrodes are

separated from the crystal by a dielectric buffer. The integrated optics are

sealed in a metal casing, which has SMA connectors for the RF signal. The

whole modulators are placed in plastic boxes to shield/isolate them from the

lab environment.
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X-Cut LiNbO  Crystal

E-field

electrodes waveguide

k

Figure 5.3: The polarized light travels along the Y-axis, the E-field of the RF
signal and light field are both in the z-directions. The input fiber is polarization
maintaining to assure the polarization of the input light. Figure taken out of
[5].
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The modulators make use of the linear electro-optic effect which changes

the polarization-dependent index of refraction n proportional to the applied

voltage Vrf . Varying the voltage results in a different phase ϕ (for light par-

allel the ordinary and extraordinary axis of the crystal). The interaction of

this anisotropic crystal and arbitrarily polarized light is complex and can be

generally described by a third rank tensor [39]. All our modulators are x-cut

and use fiber, which is polarization maintaining (Panda style) on the input

side. This results in extraordinary, linearly polarized light, whose electric field

is parallel to the applied RF-field and one of the principal axes of the crystal,

as illustrated in Fig. 5.3. Under these conditions only one element of the ten-

sor is sufficient to describe the phase-modulation ϕ(Vrf ). This configuration

makes use of the strongest component r33 = 32 pm/V of the tensor describing

LiNbO3, in order to achieve the maximal effect.

The overall time-dependent phase can be written as

ϕ(t) = κM(ωrf )Vrf (t) (5.1)

where M(ωrf ) is a dimensionless parameter that accounts for the frequency

dependence, since there are RF losses and the phase between driving RF and

the driven optical properties of the crystal are not constant. κ = π
λG
n3

er33ηL

describes the properties of the modulator: G is the gap between and L length

of the electrodes. It becomes apparent again, that the use of integrated op-

tics, where the gap width G is rather small compared to those in free space

electro optic modulators, is beneficial, since it is possible to achieve consider-

able phase-changes with comparably low RF signals. The parameter ne is the
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index of refraction for extraordinary light, r33 is the electro optic coefficient

of LiNbO3. The overlap between the electric fields of the light and RF signal

is described by η. For a detailed discussion of this factor I referred to the

PHOTLINE web-page1.

RF

(a)

(b)

RFDC

Y

Z

Y

Z

Figure 5.4: Basic schematics of the electro optic modulators. a) Shows the PM
consiting of only one waveguide. Applying a voltage on the electrodes changes
the index of refraction of the crystal. If this is time dependent the optical
phase of the light in the modulator is shifted. The AM, which is basically a
MZ interferometer, is shown in b). Figures taken out of [5].

5.2.1 Phase Modulation

The phase modulator NIR-MPX-LN03 from PHOTLINE consists of one single

waveguide enclosed by two electrodes, one grounded, the other one connected

1http://www.photline.com
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to the RF signal as shown in Fig. 5.4. Applying a RF signal results in a phase

ϕ(t), which is equivalent to frequency modulation, since the time derivative of

the phase yields a time-dependent detuning δ(t) from the laser frequency ωa

ω(t) = ωa +
∂φ(t)

∂t
= ωa + δ(t). (5.2)

If the phase is given according to Eq. (5.1) and a sinusoidal RF signal with

amplitude V0 and frequency ωm is applied, the detuning becomes

δ(t) = ωmβ(V0) cos(ωmt) = δ0(V0) cos(ωmt) (5.3)

with

β = κM(ωm)V0 (5.4)

This yields continuous modulation of the phase by the sinusoidal RF signal, as

assumed in Sec. 2.2. Note the dependence on the frequency, which requires us

to determine β(V0) experimentally. In order to do that, it is useful to look at

the Fourier components of our sinusoidally modulated light, which are given

by the Jacobi-Anger [40] expansion

E(t) = E0 cos [ωat− β sin(ωmt)] = E0

∞∑
k=−∞

Jk(β) cos [(ωa + kωm)t] . (5.5)

This results in a spectrum of sidebands which are equally spaced by ωm and

whose frequency components’ amplitudes are symmetric around the center

frequency ωa, since J−k = (−1)kJk. Another property of Bessel functions is
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the recurrence relation

Jn+1(β) + Jn−1(β) =
2n

β
Jn(β) (5.6)

which allows one the calculation of β out of three neighboring peaks. Fabry-

Perot measurements need to be done over the accessible range of voltages to

determine β(V0) at our operating frequency ωm. The calibration of the first

phase-modulator can be found in [5]. A second one was purchased this year

and compared to the first one. Its calibration curve is shown in Fig. 5.5. They

show slight differences, which was neglected. Depending on the RF-setup, the

differences can be corrected by splitting their RF-signal into parts of unequal

intensities.

A parameter commonly used to describe the performance of a phase-

modulator is

Vπ =
λG

n3
ereeηLM(ωm)

(5.7)

which is the voltage at which β = π. Extrapolating from Fig. 5.5 we obtain

the voltage of the signal generator Vπ,SG = 23 mV at which β = π. This leads

to the true value of Vπ = 3.7 V after amplification.

5.2.2 Amplitude Modulation

Amplitude modulation is achieved by electro-optic modulators (PHOTLINE

NIR-MP-LN03), that are Mach-Zehnder (MZ) type [37], integrated-optics in-

terferometers. The basic configuration of a amplitude-modulator is shown in

Fig. 5.4. The two paths pick up opposite phase shifts ±β, and their interfer-
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Figure 5.5: The intensity of each side peak in a Fabry Perot (FP) interferome-
ters spectrum is extracted for various RF amplitudes. These are given by the
amplitude of the signal generator VSG. According to Eq. (5.4) we expect β
to be approximately linear in VSG. Equation (5.6) enables us to calculate the
parameter β out of three successive peaks of the Fabry Perot spectrum. The
plotted values are an average over every accessible combination of three peaks
for the corresponding RF amplitude.

ence can be calculated as,

E =
E0

2

[
cos

(
ωlt+ β(t)

)
+ cos

(
ωlt− β(t)

)]
= E0 cos

(
ωlt

)
cos

(
β(t)

)
(5.8)

where β(t) is proportional to the applied voltage V (t). The output power

becomes

P (β) =
P0

2

[
1 + cos(2β)

]
, (5.9)

where P0 is the maximal power. This function is shown in Fig. 5.6 a) and

yields the desired envelope, Eq. (2.3a), for a triangle pulse. The AM has an
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extra electrode that facilitates the possibility to set an operating point, by

applying a DC voltage. The result is an offset phase β(t) = βdc + βrf (t). For

the purpose of pulse generation an extremal operating point (MIN or MAX)

is preferred, since pulses of maximum amplitude and a bias field as low as

possible are required. Due to superior stability a minimum is used. Note that

only a phase shift of π/2 per arm and therefore a voltage Vπ/2 is required to

switch from minimum to maximum transmission.

π/20 π 3π/2 2π
0

0.5

1.0

φ

P
   

 /
P 0

o
u

t

(a) Transmitted power dependent on
phase β

(b) Ideal in- and output of the AM for
ARP pulses

Figure 5.6: The sinusoidal transfer function of a Mach-Zehnder type interfer-
ometer is shown in a). A DC can be used as an offset in phase. Our ideal time
dependent in- and output of the MZ interferometer is shown in b). Figures
taken out of [5].

Upon applying a (almost) perfect triangle wave and using a 25% duty cycle,

the amplitude of the electric field is given by

E(t) = E0 exp(iωat)

 sin(ωmt) , for 0 ≤ t ≤ T/4

0 , for T/4 < t ≤ T
(5.10)

The electric field of our AM light can then be described by the usual Fourier
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series, yielding the intensity of the nth (side) peak of our spectrum

IFP,n =
( 4

4 − n2

)2

cos2
(nπ

4

)
. (5.11)

In opposition to the the purely phase modulated light, the amplitude mod-

ulated light has sidebands at all multiples of the repetition frequency ωc. Our

pulses are not perfectly sinusoidal. They show tails and a small damped os-

cillation after the trailing edge. This can be seen in Fig. 5.8 a). In contrast

to expectation the FP signal of these pulses looks surprisingly good and sym-

metric (Fig. 5.8 c)).

5.3 Light Analysis

After modulating, we have to assure the quality of our light. The amplitude

modulation and the delay of the optical pulses in the interaction is monitored

by fiber coupled fast photodiodes from Thorlabs. The spectrum is analyzed

by Fabry Perot (FP) interferometers [9, 37]. These were home built and are

described in more detail in [5]. Their most important aspect is the free spectral

range of 3 GHz, which allows us to resolve individual side peaks as well as cover

the required range of several modulation frequencies.

To explain certain properties of the expected spectrum, I will first calculate

their Fourier expansion. Generally we assume a electric field, that is both

phase- and amplitude-modulated

E(t) = A(t) cos
[
ωlt+ ϕ(t)

]
, (5.12)
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(a) Effects of a bias light field (b) Phase dependence between PM and
AM

Figure 5.7: The figures show calculated FP spectra. a) A bias light field
largely affects the carrier frequency. b) Adjusting the phase shifts the center
of spectrum. They are taken out of [5].

where A(t) and ϕ(t) are both periodic in Tc = 2π
ωc

, which allows us to write

E(t) as a Fourier series

E(t) =
∞∑

n=−∞

[
cnei(ωl+nωc)t + c∗ne−i(ωl+nωc)t

]
. (5.13)

with the coefficients given by

cn =
1

T

T∫
0

E(t) exp
(
−i(ωl + nωc)t

)
dt (5.14)

The complex formulation is the simplest, because it requires only one coeffi-

cient for the calculation of the intensity of our (side) peak, which is what is

measured by our Fabry Perot (FP) interferometers

IFP,n =
∣∣2cn∣∣2 (5.15)
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Two important aspects which are always monitored are shown in Fig. 5.7.

Depending on how well the operating point of the AM is set, a bias light field

might be present that makes periodic ARP processes impossible. The result

of bias light fields on the spectrum is shown in part a). The phase between

amplitude and detuning as shown in part b), can also be observed on the

spectrum , since it shifts the center of the spectrum. A “good” ARP pulse

is symmetric about the carrier frequency. Typical measurements of the fast-

photo diode and FP spectra are shown in Fig. 5.8. All of them were recorded

with a fast digital scope from LeCroy.

(a) Fast-photo diode signal (b) FP signal of phase modulated light

(c) FP signal of amplitude modulated
light

(d) FP signal of swept ARP pulses

Figure 5.8: a) and d) are constantly monitored. b) and c) are useful for
debugging purposes. Figures were taken out of [5].
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5.4 Light Setup

Light modulation and losses in other optical elements require us to have

additional amplification on our setup. Both electro-optic modulator types

have 3 dB insertion loss. Amplitude modulation results in additional losses of

≈ 87%. The maximal input of the phase (amplitude) modulator is 100 mW

(500 mW). Of the 20 mW out of the diode, only about 5 − 6 mW make it to

the modulation region. These can be either amplified immediately or after

the phase modulator by a 1 W fiber optical amplifier (Optocom Innovation),

which can be safely turned up to 200 − 300 mW. Amplitude modulation fol-

lows. We mostly use optical fibers to transport our beam. Theoretically all

the modulation could be done in a system consisting only of fibers. The major

losses occur at the fiber couplings or matings. Our fibers couplers are gener-

ally angle polished cut (FC/APC). Nethertheless, after all modulation stages,

approximately 0.5 − 1.5 mW of optical power remain. A general diagram of

the setup is shown in Fig. 5.9.

Two Ytterbium based, 5 W fiber amplifiers from Keopsys (KPS-BTQ-

YFA-NLS-1083-40-COL) are providing the intensities required for ARP. Their

specifics are discussed in more detail in [5]. Ytterbium doped fiber is pumped

by diodes, whose current can be controlled. There are three stages: a pre-amp,

which cannot be controlled, and two diode pump lasers for the main amplifica-

tion of which the second one is never used. The amplifiers show slight spectral

inhomogeneities, which can only be corrected by adjusting phase and offset

until our FP spectra are as symmetric as possible. Their output is shaped

in telescopes, which were originally setup up for the lithography experiment.
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Figure 5.9: A possible setup for a two beam ARP run. The order PM and
1 W FA can be switched. An additional PM leads to completely individual
modulation lines. This pictures was modified. Its original was taken out of
[5].
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Flip-mirrors pick off the beam and send it to our interaction region. Figure

5.10 shows a simplified scheme. Shaping the beam profile results in a Gaussian

elliptical beam profile, with very low divergence (long Rayleigh range).

Figure 5.10: Coming from the 5 W FA, the beams are shaped by in spherical
and cylindrical telescopes. They are overlapped in the interaction region,
deflecting atoms, which is detected by our MCP/PS detector. This pictures
was modified. Its original was taken out of [5].
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Chapter 6

Measurement of the Force

After describing the details of our experimental setup, I now want to turn to

the big picture: Which experimental values are taken during an ARP run and

how can we extract certain properties of the ARP force from this data?

6.1 Deflection

Since the force is measured through deflection, it is useful to define a coordinate

system: z is in the horizontal direction of the atomic beam. x is in the

horizontal direction of light propagation in which the atoms are pushed. y

is vertical in the lab frame.

Using the detector described in Sec. 4.3, we are able to measure the de-

flection ∆x of the atomic beam. This deflection results from the transverse

velocity change ∆vt due to the force during the the time tint the atom is in the

interaction region. Assuming that the interaction time is short compared to

the flight time (since the interaction region lint = 4.0 mm, is small compared
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Figure 6.1: Distribution of the squared, inverse velocity. The maximum at
vmax = 1060 m/s and the average at v̄ = 956 m/s are not the same as in the
distribution shown in Fig. 4.3. Figure taken out of [12].

to its distance to the detector lflight = 32 cm) the deflection becomes

∆x = vt · tflight =
FARP

mHe

· tint · tflight

=
FARP

mHe

lint

vl

lflight

vl

, (6.1)

where the force and the longitudinal velocity vl are distributions. The velocity

distribution mentioned in Sec. 4.1.1 leads to the distribution for v−2
l shown in

6.1. This all leads to a smeared out deflection ∆x.

The deflection pictures and backgrounds are taken. The pictures are sub-

tracted, peak and mean deflection are extracted. To simplify, we assume that
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the actual velocity change is small compared to the capture range of the force.

We furthermore neglect the initial transverse velocity spread out of the slit

for the atomic beam vt,0. Since our detector is non-linear, it is useful to only

look at maximum and/or average of the deflection and try to extract the max-

ima/mean of the force.

Figure 6.2: Undeflected atom-beam which is subtracted for analysis. Figure
taken out of [12].

6.2 Parameters

We are measuring the time averaged power of our laser light P̄ and need to

relate this to our peak Rabi frequency Ω0, since we have no detector capable

of measuring such high powers, at the time scale of nanoseconds. The Rabi-

frequency is related to the intensity by

I

Is
= 2

(
Ω

γ

)2

(6.2)
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where γ = 2π× 1.6 MHz, and saturation intensity Is = 0.167 mW/cm2, which

was calculated for the specific transition.

A cylindrical telescope is used to set a Gaussian beam with waists of wy =

2.1 mm and wz = 7.0 mm. The intensity is described by

I = I0 · exp
(
−2y2

w2
y

− 2z2

w2
z

)
(6.3)

The average power P̄ can therefore calculated by integrating over the spatial

dimensions x,y and and the time t

P̄ =
1

T

T∫
0

dt

∞∫
−∞

dy

∞∫
−∞

dz I0(t) exp
(
−2y2

wy

− 2z2

wz

)

=
π

2
wywz ·

1

T

T∫
0

dt I0(t)

= πwywz ·
Is
γ2

· 1

T

T∫
0

dtΩ(t)2 (6.4)

We are assuming a 25% duty cycle and take Ω(t) = Ω0f(t) with f(t) =

sin(ωmt) for the first 25% of our duty cycle and zero during the remaining

75%. Therefore the integral yields
Tc/4∫
0

dt sin2(ωmt) = 1/8. The final relation

between average power and peak Rabi-frequency becomes

P̄ =
π

8
wywzIs

(
Ω0

γ

)2

. (6.5)

During an ARP run, both 5 W fiber amplifiers are turned up and matched to

the maximum optical power we want to use. A half-wave plate and a successive
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polarizing beamsplitter cube (PBC), before each telescope, allow us the fast

adjustment of the power.

Controlling the detuning amplitude δ0 is easier. The function generator for

the phase-modulators is digital and can be stepped up. The peak voltage V0 is

recorded and can be correlated to the detuning amplitude, by the calibration

shown in Fig. 5.5.

6.3 Setup

All our RF-equipment that provides the necessary signals for the electro-optic

modulators is triggered off the signal generator of the phase-modulator. The

phase-modulators need a comparably high voltage, which is provided by an

RF-amplifier. We have multiple RF-pulse generators (HP8082A), which per-

mit the generation of the required pulse sequence. One of their controls adjusts

the phase (between amplitude- and phase-modulation). The right phase be-

tween amplitude modulation and phase modulation can be set by symmetrizing

the Fabry-Perot signals.

After shaping the required ARP pulses, we must now synchronize the pulse

sequence in the interaction region. For this purpose a fast-photo diode was

set up in front of the vacuum system, to relate the local pulse delay to the

pulse delay in the interaction region. This delay was also related to the mea-

surements of fiber coupled fast-photo-diodes, which are used to continuously

monitor the pulse shape and the delay. The delay itself can be adjusted by a

free space optical delay stage after one of the modulation beam lines.

Our usual repetition rate is ωc = 2π × 80 MHz and we are modulat-
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ing/sweeping our frequency with ωm = 2π× 160 MHz. According to Eq. (2.7)

the maximum ARP force of this settings becomes FARP,max = 16Frad,max.

6.3.1 Observation of ARP

The ARP experiment was inactive for a complete year. To start up again,

the old scheme, with a retro-reflected beam, was set up again and the mea-

surements were partially reproduced. A deflection image is shown in Fig.

6.3. Our maximum force corresponded to the previous experimental results

of about FARP ≈ 6Frad. A complete mapping was omitted to proceed more

quickly on to capture range measurements.

Figure 6.3: Deflection image taken with the CCD camera. The background
was subtracted.
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6.3.2 Capture range measurements

To measure the velocity dependence we transform our light into a frame, where

atoms moving transverse to the atom beam at velocity v would be on resonance

and atoms with no transverse velocity see Doppler-detuned light. This is done

by detuning the two counter-propagating beams by the same amount δkv = ~k·~v

and opposite signs ±δkv.

The first attempt on detuning was made using an acousto optic modula-

tor(AOM). It is set at the Bragg-angle to maximize the power of the deflected

beam. The deflected beam is being picked off and coupled into a fiber to

the phase-modulator. The undeflected beam is retro-reflected into the AOM,

which is now automatically set at the angle that maximizes the power of the

oppositely detuned beam. To take care of back-reflections into the laser or the

fiber-amplifier, the beam first goes through a polarizing beam-splitter cube

(PBC), into the AOM and through a quarter wave plate at 45o angle. The

polarization of retro-reflected beam is turned by 90o after passing the quar-

ter wave plate for the second time, and will therefore be reflected and not

transmitted by the PBC. This attempt failed because of power issues and the

uncontrollable behavior of the 1 W fiber amplifier.

Another scheme makes use of our electro optic phase modulators. These

can be used to detune a pulse if the slope of the applied voltage is constant

for the duration of the pulse. A first approximation would be a sine wave of

frequency ωm/2. Either a separate phase-modulator is used or the detuning

signal is added to the sweeping signal and both can be done in one modula-

tor. A RF-trombone matches the phase between both signals and assures that
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sweeps occur during the linear part of the detuning signal. Numerical sim-

ulations show, that this approximation yields comparable forces and capture

ranges. Problematic about this setup is, that the phase modulators maximum

RF-input power limits our capability to detune and sweep by large amounts

at the same time. One of our two phase modulators broke, probably due to

reflections of a broken fiber end, which caused the connection between input

fiber and crystal to explode.

6.3.3 Comparison of sweep directions

After the phase-modulator broke, we tried to do test whether the sweep di-

rection is experimentally relevant or not. Both, up and down pulses, have

the same Fabry-Perot signal, which is symmetric around the carrier frequency.

The spectrum of up(down)-pulses shifts to higher(lower) frequencies for a small

positive phase. Up and down pulses can therefore be distinguished by varying

the phase on the RF- pulse generators while observing the behavior of the

Fabry-Perot signal. After setting the correct sweep directions, the delay needs

to be adjusted again.

Both beam lines were aligned, such that the beams would overlap in the

interaction region. A small force was seen. Successive mapping for both up

and down pulses was not possible due to temperature problems when the AC

of the physics building broke.
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Chapter 7

Conclusion

In this thesis the importance of the sweep direction in adiabatic rapid passage

(ARP) sequences is discussed. Numerical studies by the integration of the

optical Bloch equations were performed, where the atomic state is described

by the Bloch vector. It was discovered that alternating the sweep direction

of successive pulses results in a much more stable behavior of the Bloch vec-

tor, in comparison to only using one sweep direction. This is important for

strong optical forces, since the atomic system needs to exchange its momentum

coherently with the radiation fields.

The numerical studies were first done under the ideal assumption that

spontaneous decay and other (experimental) perturbations can be neglected.

The differences between using only one sweep direction and using alternat-

ing sweep directions is explained, by describing the time evolution during one

pulse as a rotation of the Bloch sphere [30]. Using only one sweeping direction

results in accumulating an error whereas the use of alternate sweeping direc-

tions can counteract imperfect passages. Gradually spontaneous decay and
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other effects were included in the numerical simulations to test whether the

prediction is still holding up under normal conditions. The differences between

both schemes were still present. The introduction of randomness (spontaneous

decay) stabilizes the time evolution and therefore the force if only one sweeping

direction is used.

The experimental setup was extended to two modulation beamlines. The

individual control of each beamlines’ parameters enables one to compare one

and alternating sweeping directions or do velocity dependence measurements.

I hope that experimental data will become available. It will be interesting to

see whether it is possible to observe the effects of the sweep direction in the

laboratory.
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Appendix A

Code

A.1 Definition of the Optical Bloch Equations

obeARP.h

1 /∗
2 author benjamin g l a e s s l e
3 emai l b g laess l e@gmx . net
4 date 7/21/2009
5

6 descr d e f i n i t i o n o f the o p t i c a l b l o ch equa t ions and
t h e i r j a cob i ans f o r the numeric i n t e g r a t i o n by the GNU
S c i e n t i f i c Library (GSL)

7

8 f e a t u r e s spontaneous decay/ emiss ion on or o f f
9 ove r l app ing

10

11 ∗/
12

13 // d e f i n i t i o n o f the system of d i f f e r e n t i a l e qua t i ons (=the
o p t i c a l b l o ch equa t ions t h emse l f )

14 int obe (double t , const double y [ ] , double f [ ] , void ∗
params )

15 {
16 // doub le gamma=(( doub le ∗) params ) [ 0 ] ; // decay ra t e ∗ 2 ∗

p i
17 double wM=((double ∗) params ) [ 1 ] ; // modulation−f r equency

= 2 ∗ pu l s e f requency
18 double w0=((double ∗) params ) [ 2 ] ; // Rabi−ampl i tude
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19 // doub le w1=(( doub le ∗) params ) [ 7 ] ; // Rabi−ampl i tude
20 double d0=((double ∗) params ) [ 3 ] ; // detuning−ampl i tude
21 double kv=((double ∗) params ) [ 4 ] ; // doppler−detuning
22 double T=((double ∗) params ) [ 5 ] ; // c y c l e time
23 double tau=((double ∗) params ) [ 6 ] ; // de lay time in un i t s

o f T
24

25 double t2=t−tau∗T;
26

27 double torque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
28

29 i f ( t /T − f l o o r ( t /T) <= .25 ) {
30 torque [0]+=w0∗ s i n (wM∗ t ) ;
31 // torque [1]+=w1∗ s in (wM∗ t ) ;
32 torque [2]+=−d0∗ cos (wM∗ t )+kv ;
33 }
34

35 i f ( t2 /T − f l o o r ( t2 /T) <=.25) {
36 torque [0]+=w0∗ s i n (wM∗ t2 ) ;
37 // torque [1]+=w1∗ s in (wM∗ t2 ) ;
38 torque [2]+=ARPUPDOWN∗d0∗ cos (wM∗ t2 )−kv ;
39 }
40

41 f [ 0 ] = + torque [ 1 ] ∗ y [ 2 ] − torque [ 2 ] ∗ y [ 1 ] ;
42 f [ 1 ] = − torque [ 0 ] ∗ y [ 2 ] + torque [ 2 ] ∗ y [ 0 ] ;
43 f [ 2 ] = + torque [ 0 ] ∗ y [ 1 ] − torque [ 1 ] ∗ y [ 0 ] ;
44

45 return GSL SUCCESS ;
46 }
47

48

49 // d e f i n i t i o n o f the jacob ian matrix o f the system of d i f f .
e qua t i ons and the time d e r i v a t i v e s

50 int j a c (double t , const double y [ ] , double ∗dfdy , double
dfdt [ ] , void ∗params )

51 {
52 // doub le gamma=(( doub le ∗) params ) [ 0 ] ; // decay ra t e ∗ 2 ∗

p i
53 double wM=((double ∗) params ) [ 1 ] ; // modulation−f r equency
54 double w0=((double ∗) params ) [ 2 ] ; // Rabi−ampl i tude
55 // doub le w1=(( doub le ∗) params ) [ 7 ] ; // Rabi−ampl i tude
56 double d0=((double ∗) params ) [ 3 ] ; // detuning−ampl i tude
57 double kv=((double ∗) params ) [ 4 ] ; // doppler−detuning
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58 double T=((double ∗) params ) [ 5 ] ; // c y c l e time
59 double tau=((double ∗) params ) [ 6 ] ; // de lay time in un i t s

o f T
60

61 double t2=t−tau∗T;
62

63 double torque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
64 double dtorque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
65

66 i f ( t /T − f l o o r ( t /T) <= .25 ) {
67 torque [0]+=w0∗ s i n (wM∗ t ) ;
68 // torque [1]+=w1∗ s in (wM∗ t ) ;
69 torque [2]+=−d0∗ cos (wM∗ t )+kv ;
70 dtorque [0]+=w0∗wM∗ cos (wM∗ t ) ;
71 // dtorque [1]+=w1∗wM∗ cos (wM∗ t ) ;
72 dtorque [2]+=d0∗wM∗ s i n (wM∗ t ) ;
73 }
74

75 i f ( t2 /T − f l o o r ( t2 /T) <=.25) {
76 torque [0]+=w0∗ s i n (wM∗ t2 ) ;
77 // torque [1]+=w1∗ s in (wM∗ t2 ) ;
78 torque [2]+=ARPUPDOWN∗d0∗ cos (wM∗ t2 )−kv ;
79 dtorque [0]+=w0∗wM∗ cos (wM∗ t2 ) ;
80 // dtorque [1]+=w1∗wM∗ cos (wM∗ t2 ) ;
81 dtorque [2]+=−ARPUPDOWN∗d0∗wM∗ s i n (wM∗ t2 ) ;
82 }
83

84 g s l mat r i x v i ew dfdy mat = gs l ma t r i x v i ew a r r ay ( dfdy , 3 ,
3) ;

85 g s l mat r i x ∗ m = &dfdy mat . matrix ;
86

87 // jacob ian matrix
88 g s l ma t r i x s e t (m, 0 , 0 , 0 . 0 ) ;
89 g s l ma t r i x s e t (m, 0 , 1 , −torque [ 2 ] ) ;
90 g s l ma t r i x s e t (m, 0 , 2 , torque [ 1 ] ) ;
91

92 g s l ma t r i x s e t (m, 1 , 0 , torque [ 2 ] ) ;
93 g s l ma t r i x s e t (m, 1 , 1 , 0 . 0 ) ;
94 g s l ma t r i x s e t (m, 1 , 2 , −torque [ 0 ] ) ;
95

96 g s l ma t r i x s e t (m, 2 , 0 , −torque [ 1 ] ) ;
97 g s l ma t r i x s e t (m, 2 , 1 , torque [ 0 ] ) ;
98 g s l ma t r i x s e t (m, 2 , 2 , 0 . 0 ) ;
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99

100 // e x p l i c i t t ime d e r i v a t e s
101 dfdt [ 0 ] = dtorque [ 1 ] ∗ y [2]− dtorque [ 2 ] ∗ y [ 1 ] ;
102 dfdt [ 1 ] = dtorque [ 2 ] ∗ y [0]− dtorque [ 0 ] ∗ y [ 2 ] ;
103 dfdt [ 2 ] = dtorque [ 0 ] ∗ y [1]− dtorque [ 1 ] ∗ y [ 0 ] ;
104

105 return GSL SUCCESS ;
106 }
107

108

109 int obeSD (double t , const double y [ ] , double f [ ] , void ∗
params )

110 {
111 double gamma=((double ∗) params ) [ 0 ] ; // decay ra t e ∗ 2 ∗ p i
112 double wM=((double ∗) params ) [ 1 ] ; // modulation−f r equency

= 2 ∗ pu l s e f requency
113 double w0=((double ∗) params ) [ 2 ] ; // Rabi−ampl i tude
114 // doub le w1=(( doub le ∗) params ) [ 7 ] ; // Rabi−ampl i tude
115 double d0=((double ∗) params ) [ 3 ] ; // detuning−ampl i tude
116 double kv=((double ∗) params ) [ 4 ] ; // doppler−detuning
117 double T=((double ∗) params ) [ 5 ] ; // c y c l e time
118 double tau=((double ∗) params ) [ 6 ] ; // de lay time in un i t s

o f T
119

120 double t2=t−tau∗T;
121

122 double torque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
123

124 i f ( t /T − f l o o r ( t /T) <= .25 ) {
125 torque [0]+=w0∗ s i n (wM∗ t ) ;
126 // torque [1]+=w1∗ s in (wM∗ t ) ;
127 torque [2]+=−d0∗ cos (wM∗ t )+kv ;
128 }
129

130 i f ( t2 /T − f l o o r ( t2 /T) <=.25) {
131 torque [0]+=w0∗ s i n (wM∗ t2 ) ;
132 // torque [1]+=w1∗ s in (wM∗ t2 ) ;
133 torque [2]+=ARPUPDOWN∗d0∗ cos (wM∗ t2 )−kv ;
134 }
135

136 f [ 0 ] = −gamma/2∗y [ 0 ] + torque [ 1 ] ∗ y [ 2 ] − torque [ 2 ] ∗ y [ 1 ] ;
137 f [ 1 ] = −gamma/2∗y [ 1 ] − torque [ 0 ] ∗ y [ 2 ] + torque [ 2 ] ∗ y [ 0 ] ;
138 f [ 2 ] = −gamma∗(1+y [ 2 ] ) + torque [ 0 ] ∗ y [ 1 ] − torque [ 1 ] ∗ y [ 0 ] ;
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139

140 return GSL SUCCESS ;
141 }
142

143

144 // d e f i n i t i o n o f the jacob ian matrix o f the system of d i f f .
e qua t i ons and the time d e r i v a t i v e s

145 int jacSD (double t , const double y [ ] , double ∗dfdy , double
dfdt [ ] , void ∗params )

146 {
147 double gamma=((double ∗) params ) [ 0 ] ; // decay ra t e ∗ 2 ∗ p i
148 double wM=((double ∗) params ) [ 1 ] ; // modulation−f r equency
149 double w0=((double ∗) params ) [ 2 ] ; // Rabi−ampl i tude
150 // doub le w1=(( doub le ∗) params ) [ 7 ] ; // Rabi−ampl i tude
151 double d0=((double ∗) params ) [ 3 ] ; // detuning−ampl i tude
152 double kv=((double ∗) params ) [ 4 ] ; // doppler−detuning
153 double T=((double ∗) params ) [ 5 ] ; // c y c l e time
154 double tau=((double ∗) params ) [ 6 ] ; // de lay time in un i t s

o f T
155

156 double t2=t−tau∗T;
157

158 double torque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
159 double dtorque [ 3 ]= { 0 . 0 , 0 . 0 , 0 . 0 } ;
160

161 i f ( t /T − f l o o r ( t /T) <= .25 ) {
162 torque [0]+=w0∗ s i n (wM∗ t ) ;
163 // torque [1]+=w1∗ s in (wM∗ t ) ;
164 torque [2]+=−d0∗ cos (wM∗ t )+kv ;
165 dtorque [0]+=w0∗wM∗ cos (wM∗ t ) ;
166 // dtorque [1]+=w1∗wM∗ cos (wM∗ t ) ;
167 dtorque [2]+=d0∗wM∗ s i n (wM∗ t ) ;
168 }
169

170 i f ( t2 /T − f l o o r ( t2 /T) <=.25) {
171 torque [0]+=w0∗ s i n (wM∗ t2 ) ;
172 // torque [1]+=w1∗ s in (wM∗ t2 ) ;
173 torque [2]+=ARPUPDOWN∗d0∗ cos (wM∗ t2 )−kv ;
174 dtorque [0]+=w0∗wM∗ cos (wM∗ t2 ) ;
175 // dtorque [1]+=w1∗wM∗ cos (wM∗ t2 ) ;
176 dtorque [2]+=−ARPUPDOWN∗d0∗wM∗ s i n (wM∗ t2 ) ;
177 }
178
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179 g s l mat r i x v i ew dfdy mat = gs l ma t r i x v i ew a r r ay ( dfdy , 3 ,
3) ;

180 g s l mat r i x ∗ m = &dfdy mat . matrix ;
181

182 // jacob ian matrix
183 g s l ma t r i x s e t (m, 0 , 0 , −gamma/2) ;
184 g s l ma t r i x s e t (m, 0 , 1 , −torque [ 2 ] ) ;
185 g s l ma t r i x s e t (m, 0 , 2 , torque [ 1 ] ) ;
186

187 g s l ma t r i x s e t (m, 1 , 0 , torque [ 2 ] ) ;
188 g s l ma t r i x s e t (m, 1 , 1 , −gamma/2 ) ;
189 g s l ma t r i x s e t (m, 1 , 2 , −torque [ 0 ] ) ;
190

191 g s l ma t r i x s e t (m, 2 , 0 , −torque [ 1 ] ) ;
192 g s l ma t r i x s e t (m, 2 , 1 , torque [ 0 ] ) ;
193 g s l ma t r i x s e t (m, 2 , 2 , −gamma) ;
194

195 // e x p l i c i t t ime d e r i v a t e s
196 dfdt [ 0 ] = dtorque [ 1 ] ∗ y [2]− dtorque [ 2 ] ∗ y [ 1 ] ;
197 dfdt [ 1 ] = dtorque [ 2 ] ∗ y [0]− dtorque [ 0 ] ∗ y [ 2 ] ;
198 dfdt [ 2 ] = dtorque [ 0 ] ∗ y [1]− dtorque [ 1 ] ∗ y [ 0 ] ;
199

200 return GSL SUCCESS ;
201 }

A.2 Numerical Integration

obe arp map v0.5.cpp

1 /∗
2 author : benjamin g l a e s s l e
3 emai l : b g laess l e@gmx . net
4 a l t e r e d : 12/10/08
5 ve r s i on : 0 .5
6

7 descr . : Code used to map the f o r c e in ARP space ( g iven
by Omega0 & de l t a 0 ) ,

8 by s t r a i g h t f o rwa r d e va l ua t i on o f the o p t i c a l b l o ch
equa t ions ( obe ) .
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9 Uses co r r e c t parameters , not mu l t i p l e s o f some other
parameter .

10 S inu s s o i da l pu l s e s , Cosine ch i r p in g
11 Ouput in f i l e s in s u b f o l d e r
12

13 uncomplete : commenting
14

15 compi l ing : g++ on Ubuntu us ing ” c g s l ” s h e l l s c r i p t
16 b a s i c a l l y un i v e r s a l code >> shou ld work on other

systems as we l l
17 ∗/
18

19 //
20 // RUN PARAMETERS
21 //
22 #define ARP OP ”kvScans/ decayI I /ud” // ” output f o l d e r /

descr o f the data ”
23

24 #define ARP N 500 // Number o f pu l s e s
25 #define ARP INIT N 0 // number o f p r e ca l c . pu l s e s which

are done b e f o r i n g c a l c u l a t i n g the f o r c e
26

27 #define ARP STEPS 1000 // number o f f o rced in t e rmed ia t e
s t e p s per c y c l e

28

29 #define ARPUPDOWN 1 // ch i rp sequenz . 1 f o r up down/
−1 f o r up up

30

31 // parameters in mu l t i p l e s o f the modulation f requency . . .
32 #define ARP minRABI0 0 .1
33 #define ARP maxRABI0 5 .0
34 #define ARP dRABI0 0 .1
35

36 #define ARP minDET0 0 .0
37 #define ARP maxDET0 5 .0
38 #define ARP dDET0 0 .1
39

40 #define ARP maxKV 8.0
41 #define ARP dKV 0.05
42

43 #define ARP DELAY 0.25 // in un i t s o f one complete cyc l e ,
s tandard i s .25

44 #define ARP SD true // only symbo l i c
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45 //
46 // END: RUN PARAMETERS
47 //
48

49

50

51 #include ” standard ” // c on s i s t o f a c o l l e c t i o n o f
s tandard c++ l i b r a r i e s ( l i k e math , s td , iostream , e t c )

52 #include ”cMeasurement . h” // s imply c l a s s to take data ,
and ge t the mean , variance , error , rms , e t c

53

54 #include <g s l / g s l e r r n o . h> // g s l = Gnu S c i e n t f i c Library
55 #include <g s l / g s l ma t r i x . h>
56 #include <g s l / g s l o d e i v . h>
57

58 #include ”obeARP . h” // d e f i n i t i o n o f the o p t i c a l b l o ch
equat ions , wi th and wi thout spontaneous decay (SD)

59

60 int main (void )
61 {
62 // s t r i n g and s t r ing s t r eam fo r v a r i a b l e f i l e output by

ofs tream
63 s t r i n g sc ;
64 s t r i ng s t r eam ds ;
65 ofstream os ;
66

67 // na tura l cons tan t s
68 // cons t doub le hbar=1.05459E−34;
69 // cons t doub le c s o l =299792458.0;
70

71 // exper imenta l cons tan t s
72 // cons t doub le lambda=1083.0E−9; // wave length
73 const double gamma=2.0∗M PI∗1 .6E6 ; // decay ra t e ∗ 2 ∗ p i
74 // cons t doub le kay=2.0∗M PI/lambda ; // momentum
75 // cons t doub le omegaA=c s o l /kay ; // c i r c u l a r f requency
76

77 // exper imenta l v a r i a b l e s
78 double OmegaM=100.∗gamma; // modulation−f r equency
79 double Omega0=ARP minRABI0∗OmegaM; // Rabi−ampl i tude
80 double de l ta0=ARP minDET0∗OmegaM; // detuning−ampl i tude
81 double kv=0.0; // doppler−detuning
82 double tau=ARP DELAY; // de lay between the to

counterpropaga t ing pu l s e s in un i t s o f TC
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83 double Tc=4.0∗M PI/OmegaM; // c y c l e time = 2 modulation
per iod s

84

85 // array used f o r pass ing v a r i a b l e s to the i n t e g r a t i n g
rou t i n e s

86 double param [7]={gamma, OmegaM, Omega0 , de l ta0 , kv , Tc ,
ARP DELAY} ;

87

88 // d e f i n i t i o n o f the i n t e g r a t i o n method
89 const g s l o d e i v s t e p t y p e ∗ T = gs l od e i v s t e p r k 8pd ;
90 // cons t g s l o d e i v s t e p t y p e ∗ T = g s l o d e i v s t e p g e a r 1 ;
91 // cons t g s l o d e i v s t e p t y p e ∗ T = g s l o d e i v s t e p g e a r 2 ;
92 // cons t g s l o d e i v s t e p t y p e ∗ T = g s l o d e i v s t e p b s imp ;
93

94 g s l o d e i v s t e p ∗ s = g s l o d e i v s t e p a l l o c (T, 3) ; // (
method , dimension )

95 g s l o d e i v c o n t r o l ∗ c = g s l od e i v c on t r o l y n ew (1 e−8,
0 . 0 ) ; // ( a b s o l u t accuracy , r e l a t i v e accuracy )

96 g s l o d e i v e v o l v e ∗ e = g s l o d e i v e v o l v e a l l o c (3 ) ; // (
dimension )

97

98 // g s l o d e i v s y s t em sys= {obe , jac , 3 , &param } ;
99 g s l od e i v sy s t em sys= {obeSD , jacSD , 3 , &param } ;

100

101 int g s l s t a t u s ;
102

103 double t , ta , tb ; // running time v a r i a b l e
104 double dt= Tc/ARP STEPS; // fo rced in t e rmed ia t e s t e p s
105

106 // doub le t1 = ARP INIT N∗Tc ; // i n i t i a l i z a t i o n time
107 double t2 = (ARP INIT N + ARP N) ∗Tc ; // s imu la t i on time
108

109 double h = Tc∗1e−6; // minimal s t e p s i z e .
110 double y [ 3 ] ;
111 double r r ;
112

113 double f cu r r , fprev , ftemp ; // v a r i a b l e s f o r the f o r c e s
114 Measurement f ;
115

116 double sw ; // sw i t ch ing parameter
117 int mode=0; // r i g h t (0) / l e f t (1) propaga t ing / deadtime

(2)
118
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119 for ( Omega0=ARP minRABI0 ; Omega0<=ARP maxRABI0 ; Omega0+=
ARP dRABI0 ) {

120 param [2]=Omega0∗OmegaM;
121

122 for ( de l t a0=ARP minDET0 ; de l t a0 <=ARP maxDET0; de l t a0 +=
ARP dDET0 ) {

123 param [3]= de l ta0 ∗OmegaM;
124

125 ds . s t r ( ”” ) ; //
method

126 ds << ARP OP << ” N” << ARP N << ”wR” << Omega0 << ”
det ” << de l t a0 << ” . dat” ; // to s e t v a r i a b l e

127 sc = ds . s t r ( ) ; //
f i l enames

128

129 // open the f i l e ( don ’ t know i f i t o v e rwr i t e s
p r e v o i u s l y e x i s t i n g f i l e s wi th the same name)

130 os . open ( sc . data ( ) ) ;
131 i f (not os )
132 {
133 cout << ” f i l e could not be opened . check i f c r e a t i on

o f the va r i a b l e f i l ename r e s u l t e d in something
not va l i d . ” << endl ;

134 return −1;
135 }
136

137 for ( kv=−ARP maxKV; kv <=ARP maxKV; kv+= ARP dKV) {
138 param [ 4 ] = kv∗OmegaM;
139

140 // i n i t
141 t =0.0 ;
142 y [ 0 ] = 0 . 0 ;
143 y [ 1 ] = 0 . 0 ;
144 y [ 2 ] = −1.0; // problem −1 or −decay co r r e c t ?
145

146 f . Reset ( ) ;
147 f c u r r =5.0 ;
148 fp r ev =10.0 ;
149 ftemp =0.0;
150

151 mode=0;
152

153 // data t a k ing loop
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154 while ( t < t2 ) {
155 ta=t ;
156 // i n t e g r a t i o n s t ep ! ! !
157 g s l s t a t u s = g s l o d e i v e v o l v e app l y ( e , c , s ,
158 &sys ,
159 &t , t+dt ,
160 &h , y ) ;
161 i f ( g s l s t a t u s != GSL SUCCESS)
162 break ;
163

164 // u s e f u l l
165 r r = y [ 0 ] ∗ y [ 0 ] + y [ 1 ] ∗ y [ 1 ] + y [ 2 ] ∗ y [ 2 ] ;
166 sw=t /Tc − f l o o r ( t /Tc) ;
167 tb=t−tau∗Tc ;
168

169 // c a l c u l a t e and add the f o r c e from r i g h t
propaga t ing f i e l d

170 i f ( sw <= .25 )
171 ftemp +=Omega0∗OmegaM∗ s i n (OmegaM∗ t ) ∗y [ 1 ] ∗ ( t−ta ) ;
172

173 // c a l c u l a t e and add the f o r c e from l e f t
propaga t ing f i e l d

174 i f ( tb/Tc − f l o o r ( tb/Tc) <= .25 )
175 ftemp −=Omega0∗OmegaM∗ s i n (OmegaM∗ tb ) ∗y [ 1 ] ∗ ( t−ta )

;
176

177 // s o r t i t out
178 switch (mode) {
179 case 0 :
180 i f ( sw >=.50) {
181 mode++;
182 }
183 break ;
184 case 1 :
185 i f ( sw <.50) {
186 mode=0;
187 fp r ev=f c u r r ;
188 f c u r r=ftemp /2 . 0 ;
189 f . Input ( f c u r r ) ;
190 ftemp =0.0;
191 }
192 break ;
193 }
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194 }
195 // output the r e s u l t s i n t o the de f ined f i l e s
196 os << kv << ” ” << f . GetMean ( ) << ” ” << f .

GetVariance ( ) << endl ;
197 }
198

199 os . c l o s e ( ) ; // c l o s e the f i l e
200 }
201 }
202

203 g s l o d e i v e v o l v e f r e e ( e ) ; // f r e e memory
204 g s l o d e i v c o n t r o l f r e e ( c ) ;
205 g s l o d e i v s t e p f r e e ( s ) ;
206

207 return 0 ;
208 }
209

210

211 /∗
212 //
213 //
214 //
215 ∗/
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