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Abstract of the Dissertation

Program Transformation Techniques for Automatic Runtime
Detection of Software Exploits

by

Wei Xu

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

The size and complexity of modern software poses a great challenge in the context of

securing them against cyber attacks. This factor has motivated research in the development

of automated techniques and tools for software vulnerability and exploit detection. These

researches fall into two basic categories: one targeted at software developers, while an-

other at end-users and system administrators. Because software vulnerabilities continue to

increase despite the efforts taken by developers, in this dissertation, we focus on the lat-

ter approach to prevent software vulnerabilities from being exploited in successful attacks.

Our research significantly expands the classes of attacks that can be addressed using this

approach.

In the first part of our research, we develop a technique that provides comprehensive

protection against buffer overflows and other attacks that are based on the lack of memory

safety in the C programming language. Unlike previous techniques that were targeted at

thwarting the steps involved in typical memory error exploits, our approach gets to the root

cause of these attacks, namely, memory errors, and prevents them.
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In the second part of our research, we significantly extend the scope of our work to

address a new generation of attacks that have emerged in the past several years. This

class of attacks, which include SQL injection, command injection, cross-site scripting,

path traversal and format string attacks, arise due to input validation errors in applications.

As a result of these errors, attackers can cause a vulnerable program to execute operations

that can compromise its security. Our technique provides the first systematic solution to

this class of attacks by tracking the origin of data within programs, and applying policies

that can accurately distinguish between benign uses of untrusted data from attacks.

Together, our techniques are applicable to vulnerabilities that account for over 75% of

advisories from US-CERT, and about two-thirds of the vulnerabilities reported by CVE,

the industry-standard vulnerability dictionary and the main source of US NIST’s National

Vulnerability Database (NVD).
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Chapter 1

Introduction

1.1 Software Vulnerabilities

Today computer software is pervasive in business and everyday life. Over time, soft-

ware has become increasingly complex. Flaws in software have widespread impact and

financial loss in damage. A study by NIST in 2002 estimates that faulty software costs the

US economy about $60 billion dollars annually [66].

A software security vulnerability is a defect within a software system that can cause

the software to violate its stated security policy, and can be exploited by an attacker to

gain unauthorized access to resources. In the past several years, software vulnerabilities

have been the biggest culprit behind cyber attacks. The massively disruptive Internet inci-

dents such as Code Red, Blaster and SQL Slammer are well-known examples of software

vulnerability exploitations [6, 9, 8].

Figure 1.1 shows the distribution of commercial, off-the-shelf (COTS) software vul-

nerabilities in CVE [1], the industry standard vulnerability and exposure name database,

in 2003–2004. From this figure, there are two large classes of vulnerabilities that account

for about two-thirds of the all these CVE vulnerabilities: memory error vulnerabilities and

injection vulnerabilities (including vulnerabilities for format string attacks, SQL injections,

1
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Figure 1.1: Breakdown of CVE COTS software vulnerabilities in 2003-2004.

uint *p, *q;
void vulnerable(uint *buf)
{

uint tinyBuf[10];
p = tinyBuf, q = buf;
while (*q) {

// Bug: No bounds check on p

*p++ = *q++;
}

}

void malicious(void)
{

void *hugeBuf[64];
int i;
for (i = 0; i < 64; i++) {

hugeBuf[i] = &shellCode;
}
vulnerable((uint *)hugeBuf);

}

Figure 1.2: Example of stack buffer overflow vulnerability and exploit.

command injections, cross-site scripting and directory traversal). The remaining vulnera-

bilities are classified as configuration errors, other denial of services or logic errors.

1.1.1 Memory Error Vulnerabilities

The single largest class of vulnerabilities in Figure 1.1 are due to buffer overflows or

other memory errors. Memory error vulnerabilities have also dominated the US-CERT

vulnerability notes database [5], with more than 80% US-CERT vulnerabilities in 2004–

2005 caused by memory errors [19].
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Figure 1.3: SquirrelMail Command Injection [76].

A memory error occurs when the access to an object via a pointer or array expression

is beyond the intended lifetime or boundary of the object. Memory errors can be broadly

classified into temporal errors (such as dangling pointer dereferences and double-free) and

spatial errors (such as array bounds errors and out-of-bounds pointer dereferences) [13].

Memory error exploits are very versatile, leading to data corruption, arbitrary code execu-

tion, resource exhaustion, and so on. Figure 1.2 shows an example of stack buffer over-

flow vulnerability and an exploit that takes advantage of this vulnerability by calling the

vulnerable function with a larger-than-expected, malicious argument in order to over-

write the return address on stack with a shell code address.

1.1.2 Injection Vulnerabilities

Injection vulnerabilities, which include SQL injections, command injections, cross-

site scripting, path traversal, format string vulnerabilities, and so on, have been rapidly

increased in Web applications in recent years. They account for more than one-third of

CVE vulnerabilities in 2003-2004 as shown in Figure 1.1. In 2006-2007, injection vul-

nerabilities has increased to more than 50% of CVE vulnerabilities as reported by [76].
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These vulnerabilities also constantly rank at the top of the ten most serious web application

vulnerabilities published by OWASP [67].

Figure 1.3 uses shell command injection as an example to show the general context

of injection attacks [76]. On the left of the figure shows a PHP program code snippet in

SquirrelMail that is vulnerable to shell command injections. An attack that exploits this

command injection vulnerability is displayed on the right, with the attacker provided input

values in italics.

In general, the attack target of an injection attack is a program that takes requests from

untrusted sources and responds accordingly. For each request, the target application de-

termines the operations to perform and the parameters to those operations. The operations

are usually security-sensitive and are performed on back-end resources such as database

servers, files and command interpreters. To prevent an untrusted user from controlling

security-sensitive operations, the target application should validate all untrusted inputs.

Due to software bugs, however, such input validations might be incomplete, or even miss-

ing from some program paths. An attacker can exploit such input validation vulnerabilities

to inject malicious operations or parameters through the input requests. In the above exam-

ple, for instance, the attacker is able to inject a malicious shell command “rm -rf *” into

the vulnerable program.

We would like to point out that memory error vulnerabilities could be seen as injection

vulnerabilities as well. However, we make this distinction because we can have a more

comprehensive and precise defense against exploits of memory error vulnerabilities by

ensuring runtime memory safety.
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1.2 Preventive Approaches in Software Development

Software developers and vendors have been spending a lot of time and effort, with the

aid of commercial and research tools and techniques, to identify and fix these vulnerabil-

ities. A notable example is the Microsoft effort to boost its software security and actively

fight against software vulnerabilities [7, 2].

Extensive testing has been established as one of the standard practices to find software

bugs and vulnerabilities in the life cycle of software development. Many security-targeted

testing techniques such as penetration testing [12] and fuzz testing [58] have been devel-

oped and widely used. However, it is generally infeasible to construct test cases and inputs

that could exercise every possible code execution path, which leaves significant room for

vulnerabilities to escape from the testing phases.

A large body of research has relied on static analysis techniques to discover potential

software vulnerabilities, including buffer overflows and memory errors [86, 72, 52, 89, 39,

34], user/kernel pointer bugs [48], format string vulnerabilities [78] and SQL injections and

other vulnerabilities in web applications [53, 46, 88]. Static code analysis could, in theory,

cover every possible code path in a program and thereby find all potential vulnerabilities

statically. In practice, however, one of the main problems of static analysis techniques is the

lack of accuracy. This inaccuracy comes from the approximations used in static analyses

to abstract inputs, memory aliases, loops, dynamic function dispatches and other aspects

of runtime behaviors that cannot precisely be predicted statically. Due to the inaccuracies,

static analysis techniques can suffer from a high rate of false positives. They are also

incomplete and suffer from false negatives.

In spite of these efforts from developers to get rid of vulnerabilities, new vulnerabilities

continue to surface in recently released software as well as in older software. The total

number of software vulnerabilities continues to escalate from one year to the next. As

shown in Figure 1.4, thousands of newly discovered vulnerabilities are reported in CVE
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Figure 1.4: Number of CVE vulnerabilities by year in 2000-2008
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Figure 1.5: Number of Microsoft critical vulnerability advisories by year in 2004-2008

every year. The annual number of CVE vulnerabilities has increased to more than 400%

in 2008 compared to 2000. Similarly, a significant number of critical vulnerabilities in

Microsoft products [2] continue to be revealed every year as shown in Figure 1.5.
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1.3 Our Approach

We recognize that it is very hard for developers to eliminate software vulnerabilities,

especially from legacy software. We seek to cope with and remedy these issues differently.

Our goal is to develop techniques that be can used by the software operators to achieve a

much greater accuracy in detection of common exploits. For this purpose, testing and static

analysis techniques are not appropriate.

In light of this, we focus our efforts on providing tools and techniques to automati-

cally detect and prevent exploitation of vulnerabilities at runtime. We look for techniques

that can effectively stop exploits of the most common software vulnerabilities, but do not

require significant effort of programmers or manual source code modifications.

In this dissertation, we present new source code transformation based techniques that

can enable the automated runtime detection and defense of memory errors and injection

vulnerabilities, the two largest classes of software vulnerabilities shown in Figure 1.1. Our

source-code transformation techniques have been applied to C programs. Even though

these techniques are equally applicable for C++ programs as well, they are not implemented

for C++ in our work.

We focus our techniques on C/C++ programs because most of today’s important server

applications (such as the Apache Web server, the Postfix email server and the OpenSSH

server), the interpreters of many of the most popular scripting languages (such as Bash and

PHP), and a large number of useful utility programs (such as tar and gzip) are still written

in the C/C++ language. Techniques developed for C/C++ programs can be directly applied

to these applications and thus bring the protection and benefits offered by the techniques

to a large fraction of presently important applications. Moreover, vulnerabilities such as

memory errors affect C/C++ programs the most because of the weak type system and the

ability to use pointers unrestrictedly in C/C++. Consequently, techniques that detect mem-

ory errors and exploits are primarily concerned with C/C++ programs.
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1.3.1 Runtime Defenses Against Memory Error Vulnerabilities

Attackers can exploit memory error vulnerabilities in a variety of ways to execute ar-

bitrary code, steal sensitive information, alter application logic, corrupt important data, or

cause denial of service. The exploitations are usually carried out by taking advantage of

the memory error vulnerabilities to overwrite important program control or non-control

data structures. The common targets of such overwrites include stack return addresses,

function pointers, heap management metadata, security-critical non-control data [25], and

so on.

A large number of runtime memory error defense techniques have been developed,

which can be categorized into exploit prevention techniques and memory error detection

techniques.

Exploit prevention techniques defeat memory error attacks by disrupting specific steps

required in a successful attack. Often, these techniques prevent the corrupted memory from

being used to the attacker’s advantage. For instances, StackGuard [30] prevents the use of

function return addresses corrupted by buffer overflows. PointGuard [29] uses encryption

to prevent dereferences of corrupted function and data pointers. Address space randomiza-

tion techniques such as [18, 19, 90] rely on hiding secrets, such as randomized memory

addresses, from the attackers. Techniques such as DieHard [17] and boundless buffers [71]

mask and tolerate memory errors by approximating infinite-sized heap or buffers.

Many exploit prevention techniques are only effective against specific types of memory

error attacks. More general exploit prevention approaches, such as address space random-

ization and the infinite-sized heap or buffers techniques, can only provide a probabilistic

protection against memory error exploits. As a side effect of these approaches, the be-

haviors of protected programs can become unpredictable in presence of memory errors.

Furthermore, recent researches [77] show that the address space randomization techniques
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could be defeated by obtaining the secrets through brute-force attacks or information leak-

age attacks.

Memory error detection techniques can catch memory errors at the time when these

errors occur without waiting till the time when the exploits use the corrupted data or point-

ers. Such techniques have the advantage of not only stopping the exploits, but also identify

the exact vulnerabilities to be fixed. However, existing memory error detection techniques

suffer from one or more following drawbacks:

• Incomplete coverage of memory error detection;

• Incompatibility with existing C programs due to changed pointer representations;

• Need for significant source code modifications;

• Reliance on garbage collection or other non-standard C memory management;

• Excessive performance overheads.

In this dissertation, we develop source code transformation based techniques to detect

all spatial and temporal memory errors at the memory allocation block level in C programs.

Compared to the previous approaches, our techniques preserve pointer representations and

standard C memory management, provide backwards compatibility with existing C pro-

grams, and require no hardware modifications and almost no source code modification. In

addition, our techniques promise reasonable performance overheads. All of these make our

technique suitable for providing the protection against memory error exploits for numerous

widely used applications that are written in C.

1.3.2 Runtime Defenses Against Injection Vulnerabilities

A number of runtime approaches that have been proposed to address specific types

of injection attacks. Among them, FormatGuard [28] detects format-string attacks on
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the printf family functions. SQLrand [21] detect SQL injection attacks through SQL

instruction-set randomization, while AMNESIA [42] relies on lexical analysis of SQL

queries. Although these techniques can be effective against their targeted attacks, they

usually cannot be extended to detect other types of injection vulnerability exploits.

Fine-grained dynamic taint analysis has recently been proposed in [83, 24, 64] and

used to detect control flow attacks. Approaches such as [65, 70, 81] have also explored the

dynamic tainting based techniques to detect SQL injection attacks. However, the above ap-

proaches are all limited to specific types of injection attacks as well. Furthermore, the taint

tracking in these approaches is either inaccurate [81], or very expensive [64], or requires

significant hardware [83, 24] or source code modifications [65, 70].

We identify that the root cause of injection vulnerability exploits is due to untrusted

input data being used unsafely in security operations. Based on this key observation, in

this dissertation, we develop a unified, dynamic analysis based framework called taint-

enhanced policy enforcement to detect all the attacks that exploit injection vulnerabilities.

In this framework, the propagation of untrusted (tainted) input data is tracked at runtime and

the unsafe use of such untrusted data in arguments to security operations is prevented by

security policies expressed over both the argument values and their taint information. We

also develop the first automated source-code transformation for C programs that enables an

efficient fine-grained (byte-level) dynamic taint tracking in transformed programs to serve

as the basis of this framework.

1.4 Research Contributions

In this dissertation research, we have made the following contributions:

• We have developed the first backwards-compatible, comprehensive memory error

detection approach for C programs which possesses all the following properties:
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– It provides a complete coverage of both spatial and temporal memory errors at

the block level.

– It separates metadata from pointers themselves and preserves the layout of C

data structures for backwards-compatibility with existing C programs.

– It supports type casts and pointer arithmetic that are pervasive in C programs,

without the need of source code modifications.

– It does not rely on garbage collection and retains the explicit memory manage-

ment model in C.

Furthermore, our source-to-source transformation has also significantly reduced the

performance overheads over previous complete memory error detection approaches.

• We have developed the taint-enhanced policy enforcement framework, which is one

of the first unified approaches that apply fine-grained dynamic taint analysis to de-

tect a broad range of attacks that exploit injection vulnerabilities induced by input

validation errors. In our framework, security policies are augmented with byte-level

taint information of the data to reason about their trustworthiness. By enforcing such

policies on security-sensitive operations, we can detect injection attacks such as SQL

injection, shell command injection, cross-site scripting, path traversal, format string

attacks, and so on.

• We have developed the first efficient, automated, source code based dynamic taint

tracking technique for C programs. Our technique is built upon a source-code trans-

formation and provides the byte-level taint tracking at runtime. It serves as the basis

of our taint-enhanced policy enforcement framework. Moreover, we have shown

that by transforming the PHP interpreter engine, which is written in C, we can also

achieve fine-grained taint tracking in PHP web applications.
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1.5 Dissertation Organization

This dissertation is structured as follows. In Chapter 2 – Chapter 5 we present the trans-

formation techniques for ensuring memory safety in C programs, which can prevent attacks

that exploit memory errors. In Chapter 6 – Chapter 9, we then describe the transformation

techniques for achieving taint-enhanced policy enforcement, which can be used to detect

a wide range of attacks that exploit injection vulnerabilities due to input validation errors.

We provide the experimental results in Chapter 10 and Chapter 11. Finally, we conclude

this dissertation and outline the future research work in Chapter 12.
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Memory Safety Enforcement
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Chapter 2

Memory Safety Problem Statement

2.1 Memory Access Errors

The C programming language is commonly used for systems programming because of

its speed and the precise control it provides over memory allocation. Unfortunately, this

control is more than most programmers can fully manage, as evidenced by the profligate

frequency of bugs such as memory leaks, dangling pointers, and buffer overruns in com-

mercial C programs. Such memory errors are one of the most common reasons for software

failures. Moreover, these errors are hard to track down, and hence contribute significantly

to the effort needed for testing and debugging C programs. Even worse, memory errors are

the culprit behind most of today’s security vulnerabilities in software.

Intuitively, a memory error occurs in C/C++ programs when the access to an object via

a pointer or array expression is beyond the intended lifetime or boundary of the object. We

call the object being accessed through the dereference of a pointer (or array) as the referent

of the pointer (or array).

Initially proposed by SafeC [13], memory errors can be broadly classified into temporal

errors and spatial errors, as described below:

14
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1: p = (char *)malloc(32);
2: q = p;
3: free(p);
4: *q; // Error: Dangling pointer dereference
5: r = (int *)malloc(8); // Reuse the above freed memory
6: *q; // Error: Access to reallocated memory
7: free(q); // Error: Double free
8: q = &r;
9: free(q); // Error: Invalid free

Figure 2.1: Examples of temporal memory errors.

1: p = (char *)malloc(32);
2: q = p - 1;
3: *q; // Error: Buffer underflow
4: q = p + 40;
5: *q; // Error: Buffer overflow
6: q = p + 30;
7: r = (int *)q;
8: *r; // Error: Buffer overflow

Figure 2.2: Examples of spatial memory errors.

• Temporal memory error, which occurs when dereferencing a pointer whose refer-

ent has outlived its intended lifetime (e.g. the referent has been freed previously).

Figure 2.1 shows several examples of temporal memory errors, including dangling

pointer dereference, access to reallocated memory, invalid free and double-free. Of

particular significance are temporal errors involving a pointer whose referent has

been freed and subsequently reallocated to a different, unrelated object. In this case,

a dereference of this pointer can read or modify the unrelated object. Moreover,

the modification could go undetected until the other object is accessed, which may

happen much later in the program’s lifetime. This means that the symptom of the er-

ror will be spatially and temporally removed from the underlying erroneous pointer

operation, making debugging very difficult.

• Spatial memory error, which occurs when dereferencing a pointer whose referent

has gone beyond its intended spatial boundaries. Common spatial errors include
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array bounds errors and dereferences of out-of-bounds pointers obtained by pointer

arithmetic or type casts. Figure 2.2 shows examples of buffer underflow and overflow

spatial memory errors.

The dereferences of uninitialized or NULL pointers are special and can be classified as

either temporal memory errors or spatial memory errors.

Attackers can exploit memory error vulnerabilities to execute arbitrary code, steal sensi-

tive information, alter application logic, corrupt important data, or cause denial of service.

The common exploitation techniques include stack return address overwriting, function

pointer overwriting, heap management metadata overwriting, security-critical non-control

data overwriting, and so on.

The distinction between spatial and temporal memory errors is important because much

of earlier work [51, 80] has addressed spatial errors, but only provided limited support for

the detection of temporal errors. Approaches such as CCured [62] and Cyclone [47] avoid

temporal errors by ignoring free operations. They rely on a garbage collector (specifically,

the Boehm-Demers-Weiser conservative garbage collector [20]) to free unused memory. In

addition, local variables accessed via pointers are moved from the stack to the heap to

ensure that they are not deallocated on function returns. This garbage collection based

technique has helped these approaches avoid the overheads of temporal error checking.

However, even though garbage collection has been enjoying its prime time in type-safe

languages such as Java, it has not yet found wide acceptance in the type-unsafe C/C++

world. Prior approaches that handle temporal errors, such as [49, 73, 13, 44], have suffered

high performance penalties, typically ranging from a few hundred percent to a thousand

percent. Even among these approaches, it is common to handle just the first class of tem-

poral errors mentioned above, but not the second class (i.e., dangling pointer to reallocated

memory). Techniques such as [49, 73] fall in this category.
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2.2 Approach Overview

As discussed in Section 1.3.1, there exist a large number of runtime defense techniques

against memory error exploits. However, history has shown that memory corruption attacks

are very versatile — as defenses are developed, attackers develop alternative attacking tech-

niques. This is evidenced by the proliferation of memory error exploitation techniques and

reported memory error vulnerabilities.

In recognizing this, we focus our research on detecting all memory errors, both spatial

and temporal errors, which prevent the root cause of memory error attacks. The ultimate

goal of memory error detection, which is also the objective of our work, is to develop an

approach which possesses the following essential properties:

• P1: The ability to detect all memory errors, including spatial and all kinds of tem-

poral errors.

• P2: Backward-compatibility between protected C programs and existing, unpro-

tected libraries.

• P3: The ability to handle all C programs without modification. Because of the sheer

size of existing C programs, even if only about 5% of the code needs to be rewritten,

it will have prohibitively high cost.

• P4: Preservation of the explicit memory management model in C. As we discussed

in Section 2.1, an ideal approach should not rely on garbage collection to ensure

temporal memory safety in C programs.

• P5: Acceptable performance overhead.

To detect spatial and temporal errors at runtime, extra information (henceforth called
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metadata) has to be maintained with each pointer or allocated object. Some previous ap-

proaches have used fat pointers, which store metadata together with the pointer. Unfor-

tunately, this changes the underlying pointer representation, thereby changing layouts of

C-struct’s. This creates a number of compatibility problems:

• Breaks many programs. Systems programs often make assumptions regarding the

size of pointers and the layouts of structures. For instance, they may assume that the

size of integers and pointers will be the same. Another typical assumption is that,

in a union consisting of an integer and pointer, a value stored as a pointer may be

read as an integer. These assumptions are no longer valid when normal pointers are

replaced by fat pointers, and hence such programs need to be modified before they

will work correctly with the transformation.

• Compatibility with libraries. Since fat pointers change structure layouts, compatibil-

ity with precompiled libraries is lost. (Such libraries will access fields in structures

using offsets based on untransformed layout of structs, and hence will access incor-

rect fields or maybe the metadata stored within the fat pointers.)

Even though the memory error detection problem has been studied extensively for many

years, it still remains as an open problem to develop a practical approach for detecting tem-

poral as well as spatial memory errors. This is because existing memory error detection

techniques fail to meet one or more of the desired properties. More specifically, some tech-

niques can only detect a subset of memory errors. For instances, Purify [44] uses red zones

to detect out-of-bound pointer references, but it cannot detect erroneous dereferences of

an out-of-bound pointer that passes the red zones surrounding its referent and points to a

valid adjacent memory block. Libsafe [15] and LibsafePlus [14] detects buffer overflow

errors only in standard C library functions by providing a checked version of these func-

tions. There are techniques aiming at a more comprehensive detection of memory errors.

Among them, CCured [62] and Cyclone [47] rely on garbage collection and also requires



CHAPTER 2. MEMORY SAFETY PROBLEM STATEMENT 19

significant source code modifications. SafeC [13] and Patil & Fischer’s work [69] do not

handle type casts that are pervasive in C programs. SafeC, CCured and Cyclone change

the pointer representations as well. Jones and Kelly’s bounds-checking C [49] and the ex-

tended work CRED [73] maintain the bounds metadata for each allocated object in a splay

tree. These approaches have achieved a good backwards-compatibility. But they suffer

from excessive performance overheads. More recently, baggy bounds checking [11] fol-

lows up Jones and Kelly’s work to also look up the bounds information from bounds tables

using the memory address value stored in each pointer. It significantly reduces the run-

time performance overheads by constraining the memory allocation size and alignment to

compact bounds metadata and speed up the metadata lookup. All these three approaches

are limited in temporal memory error detection and cannot detect reallocation temporal er-

rors, either. SoftBound [61] is another recent bound checking only approach. It associates

bounds metadata with each pointer, rather than with each allocated object, and uses a global

data structure (a hashtable or contiguous array) to store metadata of in-memory pointers in

order to support arbitrary pointer type casts. SAFECode [33, 32] relies on Pool Allocation

in its spatial and temporal memory error detection. Its temporal memory safety protec-

tion technique could exhaust the virtual memory space, or risk the incomplete detection of

reallocation temporal memory errors.

In contrast, we develop source-to-source transformations to detect all temporal and

spatial memory errors in C programs. Our technique detects memory access errors at the

level of memory blocks, which correspond to the least units of memory allocation, such as

a global or local variable, or memory returned by a single invocation of malloc. It flags

memory errors only at a point where a pointer is dereferenced. Other operations, e.g., the

assignment of a pointer from an arbitrary expression, will not cause errors.

Due to the afore-mentioned problems with fat pointers, we use an alternative approach

that separates metadata from the pointers, thereby preserving the layout of structures. In ad-

dition, our technique can also handle important unique features in C, such as arbitrary type
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casts, unions, and pointer arithmetic, without modifications to the program source code.

Another key feature of our approach is that all spatial and temporal errors are promptly

detected, without changing the memory allocation model and using garbage collection.

In short, our approach satisfies the properties of P1, P2 and P4. It also satisfies the

property P3 with very few exceptions (e.g. replacing certain user-defined memory al-

location functions with malloc) due to the limitations of our implementation. For the

performance property P5, our approach has reduced the overheads by at least a factor of

two compared to previous approaches (e.g. [13, 68, 49]) that are aimed at detecting spatial

as well as temporal memory errors. We would also like to note that it is still acceptable

for an approach that can detect all memory errors to have a relatively high overheads. The

reason is that what is exploitable has always remained unknown and the best approach is

to protect all vulnerabilities, especially when they relate to type and memory errors, which

have historically led to many unanticipated effects.

We describe our common transformation framework for detecting memory errors in

Chapter 3, and present two applications and extensions of this transformation framework

in Chapter 4 (using shadow metadata structures) and Chapter 5 (using shadow metadata

memory). The implementation and experimental evaluation of our approach are described

in Chapter 10.

2.3 Related Work

Much research effort has been put into the development of techniques for detecting

memory access errors in C programs. We discuss works that are most closely related to

ours.

Approaches that rely on garbage collection Cyclone [47] is a variant of C that is de-

signed with the express goal of reducing source code changes needed to convert C programs
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to Cyclone. However, it still makes significant changes to C-language syntax and seman-

tics, e.g., C-style unions are replaced by ML-style unions. In addition, to support separate

compilation, type declarations that provide detailed information about pointer types be-

come necessary, and these declarations cannot be automatically generated. As a result,

large C-programs require non-trivial effort to port to Cyclone. In contrast, our approach

requires almost no changes to existing C-programs.

CCured [62] uses type-inferencing to differentiate pointers into (definitely) safe and

(potentially) unsafe pointers at compile-time, and insert run-time checks to ensure validity

of accesses through unsafe pointers. Unsafe pointers are further subdivided into those using

pointer arithmetic (sequential pointers) and those using casts (dynamic pointers). The rep-

resentation of safe pointers is unchanged, but a fat-pointer representation is used for unsafe

pointers. This can cause some compatibility problems, as described in Section 2.2. In their

more recent work [27], they have separated metadata associated with sequential pointers

to gain increased compatibility, especially with external libraries that often take pointers

to arrays or character buffers. However, dynamic pointers continue to use fat pointer rep-

resentation. To further reduce compatibility problems and to improve performance, they

have added runtime type information, which can result in fewer pointers being classified

as dynamic. However, the maintenance of RTTI is governed by programmer annotations,

unlike our approach where it is automatic. In addition, their notion of subtyping is more

restrictive than ours, so some programs that require the use of dynamic pointers can still

continue to work with our notion of RTTI.

The most important difference between our approach and that of Cyclone or CCured

is their reliance on garbage collection. While this change may be acceptable for some

programs, garbage collection has not yet be widely accepted in the C/C++ community.

Approaches targeting compatibility with the C-runtime model Safe-C inserts runtime
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checks to detect all memory errors. However, the approach introduces compatibility prob-

lems due to the use of fat pointers. These compatibility problems were addressed by Patil

and Fischer [69, 68], but their performance overheads are still much higher than ours —

by as much as a factor of 2 to 4 times over our approach. Moreover, neither of these ap-

proaches support downcasts, thereby significantly restricting the set of programs to which

they can successfully be applied.

SoftBound [61] is similar to our spatial memory error detection approach in that it

also associates bounds metadata with each pointer and separates the metadata from the

pointer itself. SoftBound stores metadata for in-memory pointers in a global hash table or

contiguous array, which enables it to support arbitrary pointer type casts. SoftBound can

also support pointer bounds narrowing for sub-object bounds error detection, though this

may cause backwards-compatibility issues with existing C programs. SoftBound provides

a complete coverage for spatial memory errors, but lacks of the ability to detect temporal

memory errors. Its runtime overheads for spatial memory error detection is comparable to

our approach.

Jones and Kelly [49] use a splay tree to store runtime information about every allo-

cated memory block. Pointer arithmetic and dereferences are checked using this splay

tree data structure to ensure the pointer validity. Their work has a very good backwards-

compatibility and is applicable to a broad class of C programs, including programs that

cast pointers to integers and vice-versa. Unfortunately, the approach incurs heavy perfor-

mance penalties (more than 10 times slowdown for pointer-intensive code). Moreover, it

does not detect dangling pointers to reallocated memory. CRED [73] extends Jones and

Kelly’s work to introduce a better handling of out-of-bounds pointers and thus improve the

compatibility with existing C programs. When checking for the same set of memory errors,

the performance of CRED is similar to that of Jones and Kelly’s.

Baggy bounds checking [11] also takes the referent object based approach as pioneered
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by Jones and Kelly. Similarly, baggy bounds checking maintains bounds metadata infor-

mation for each allocated object and looks up the metadata from bounds tables with the

source pointer value in pointer arithmetic expressions. To significantly reduce the runtime

overheads, this approach constrains the memory allocation size and alignment in order to

compact the bounds metadata representation and speed up the metadata lookups and up-

dates. Baggy bounds checking cannot detect reallocation temporal memory errors.

SAFECode [33, 32] relies on Pool Allocation in its spatial and temporal memory error

detection and uses whole-program analysis to perform automatic pool allocation. Its spa-

tial memory error detection technique improves over Jones and Kelly’s work by providing

a separate splay tree for each pool. It also optimizes the out-of-bounds pointer handling in

CRED through the use of hardware memory protection for detecting out-of-bounds pointer

dereferences. Its temporal memory error detection technique allocates a new virtual page

for each memory allocation, and uses the pool information to alleviate the virtual memory

exhaustion problem. However, this technique interacts poorly with long-lived objects and

memory reachable from these objects, which could lead to virtual memory address exhaus-

tion in practice. In contrast, our approach uses a unique capability for each new allocation.

As we will describe in details in Section 3.3, the uniqueness of capability is determined by

both the capability slot address and the capability index value. Because we use 32-bit index

values to reuse capability slots and each capability slot is only 4-byte long (compared to

4KB per allocation in SAFECode), the virtual memory exhaustion problem is practically a

non-issue in our approach.

Debugging-targeted approaches These approaches typically operate by inserting

checks into a program either at the source or binary level, with the goal of detecting cer-

tain subclasses of memory errors. These include Kendall’s bcc [51], Purify [44], Steffen’s

rtcc [80], Loginov, et.al.’s work on runtime type checking [54], and Haugh and Bishop’s

STOBO tool [45]. Also in this category is the CodeCenter interpretive debugger [50]. Since
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these techniques are focused on debugging, performance is typically not a serious consid-

eration. For instance, Purify and CodeCenter often have overheads in excess of 1000%.

In contrast, our interest is in techniques that can be enabled in production code, so it is

important to keep the overheads reasonably low. Another distinction is that our approach is

focused on detecting all memory errors, while the above approaches generally target detec-

tion of a subset of errors that are commonly encountered. For instance, bcc and rtcc focus

mainly on spatial errors. Similarly, Purify does not detect certain spatial errors (specifi-

cally, when pointer arithmetic causes a pointer to overshoot past the end of one object into

the middle of the next object), or dangling pointers to reallocated memory. On the other

hand, some of these approaches do provide better compatibility with external libraries, e.g.,

Purify can perform memory error checks within libraries that are provided in binary format.

Other approaches There are a number of exploit prevention techniques that utilize code

transformation to protect return addresses of activation record [30, 15, 26, 35]. More

recently, works have emerged that use address space layout randomization to achieve

broad protection against attacks that exploit memory errors [18, 29]. Approaches like

DieHard [17] and boundless buffers [71] approximate infinite-sized heap or buffers to

mask and tolerate many out-of-bounds memory errors. While these techniques are good

in achieving their intended goal, namely, protecting against certain memory error attacks,

and doing so with low overheads, they do not provide a comprehensive and deterministic

protection against memory errors and their exploits.

There have been many approaches which rely on static source code analysis to detect

potential security-related memory errors prior to execution [34, 39, 89, 52, 86, 72, 38], but

these are not as powerful as runtime detection techniques and hence not used widely.

Several techniques that combine static analysis with dynamic checking have also

emerged. Yong and Horwitz [93] presented an approach to detect invalid memory writes

by combining static analysis and a run-time technique similar to Purify [44]. By reducing
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the size of checked memory regions, they achieved both good run-time performance and

improved error detections. Their performance overheads are generally lower than ours.

However, this result is achieved by omitting error checks for read operations, which are

typically much larger in number than write operations. Moreover, because of its reliance

on Purify-like techniques, it cannot detect all memory errors. WIT (white integrity test-

ing [10]) uses points-to analysis to compute the set of objects that can be written by each

instruction. It then instruments the program to enforce the write object set at runtime. WIT

has a very low runtime overheads. However, it does not detect invalid memory reads. DFI

(data flow integrity [23]) computes reaching definitions using static analysis and instru-

ments the program to enforce that the definition reaching each read at runtime is in the

set of reaching definition identifiers computed statically. Both WIT and DFI subject to the

precision of the static points-to analysis.

Lhee and Chapin [84] developed a technique called type-assisted dynamic buffer over-

flow detection, in which the compiler is extended to provide information about the sizes of

buffers and library calls are intercepted. Their technique detects many errors with fairly low

overhead, but focuses only on array-based spatial errors that occur within a pre-specified set

of library calls. Dynamically sized automatic arrays (i.e., those allocated by the alloca

function) are not supported by their approach, either. Avijit, Gupta, and Gupta [14] in-

vented a very similar approach called TIED/LibsafePlus which operates on binary (rather

than source) code.



Chapter 3

Transformation Framework for Memory

Safety

3.1 Acceptable Memory Access

Our approach provides memory safety to C programs at the granularity of memory

blocks. A memory block corresponds to the least unit of memory allocation, such as a

global or local variable, or memory returned by a single invocation of dynamic memory

allocation function such as malloc.

All the memory accesses through program variables without involving pointer deref-

erences or array indexing are guaranteed to be safe because these memory accesses are

checked, by the compiler, against the statically declared types and scopes of the variables.

A memory access involving pointer dereferences or array indexing, however, could be un-

safe. Because array indexing is a special case of pointer dereferences, we define the rules

for acceptable pointer-induced memory access below. Any pointer dereferences that violate

these rules are memory errors and not acceptable.

• Each pointer is bound to exactly one memory block, which is the referent block of

26
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Notation Comments
τ A type
x A variable
n An integer variable
p, q A pointer variable
s A structure or structure pointer variable
s.d Field d of structure s
e A pointer expression
R(p) The referent of pointer p. We can access it through ∗p.
Rb(p) The memory block where the pointer referent R(p)

belongs to.
b A memory block, which can be either a variable x or

a pointer referent block Rb(p).
r Return value of a function.

Figure 3.1: Notations for types, variables and memory blocks.

the pointer. Uninitialized pointers are bound to a special, always invalid memory

block. Only pointer creations and assignments can change the binding of a pointer to

its referent block. Pointer arithmetic and type casts do not change this binding. Note

that pointer assignments also include the assignments between C structs that contains

pointer fields.

• A memory access via a pointer should respect the boundary of the pointer referent

block. Any pointer dereferences that cross the pointer referent block boundary are

disallowed. Note that it is acceptable for a pointer to have an out-of-bounds value, as

long as the pointer is not dereferenced with such a value.

• A memory block deallocation removes the block and invalidates all the bindings to

this block. Any further access to the deallocated block by dereferencing a pointer is

disallowed, even after the memory bytes have been reallocated to another object.
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Expression As L-value
[simple pointer] p Yes

[field pointer] s.d Yes
[address-of] &x No

[field address-of] &s.d No
[pointer arithmetic] p+ n No
[pointer type cast] (τ)x No

[pointer dereference] ∗p Yes
[struct pointer dereference] s->d Yes

Figure 3.2: Basic pointer expressions in C.

[heap allocation] p = malloc(n)
[heap deallocation] free(p)

[pointer assignment] e1 = e2

Figure 3.3: Basic pointer statements in C.

3.2 Metadata Representation

Figure 3.1 shows the notations that we use to represent types, variables and pointer

referents in this chapter. In particular, we use p to denote a pointer variable and s.d to

denote a field pointer d in a structure s. We define the memory bytes being accessed via

∗p as the referent of p, denoted as R(p). We also define the memory block to which R(p)

belongs as the referent block of the pointer, denoted as Rb(p). Note that Rb(p) can be the

same as R(p), but more likely Rb(p) is a superset of R(p). For example, when p points to

an element in an array, R(p) is just that element, while Rb(p) is the entire array.

Figure 3.2 lists the basic pointer expressions in the C language, which include simple

pointer variable, field pointer, address-of, pointer arithmetic, pointer type casts and pointer

dereferences. Figure 3.2 also shows which pointer expressions can be used a l-value in an

assignment. Figure 3.3 lists the basic statements involving pointers in C, which include

allocation, deallocation and pointer assignments. In a pointer assignment e1 = e2, e1 has to

be an expression that can be used as a l-value. For example, ∗p is allowed to be e1, while
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Notation Comments
B(b) Base address of block b.
N(b) Allocation size of block b.
C(b) Temporal allocation capability of b.
W (x) Base address of metadata for pointer in variable x.
W (s, d) Base address of metadata for field pointer d in structure variable s.
L(x) Compile-time type size of variable x.
L(s, d) Compile-time type size of field d in structure variable s.
M(p) Metadata attributes 〈Mb,MC′ ,MW 〉 for pointer p.

Note that W (p) = &M(p).
Mb(p) Address of referent block metadata attributes 〈MB

b ,M
N
b ,M

C
b 〉.

MB
b (p) Base address of Rb(p). Same as B(Rb(p)).

MN
b (p) Allocation size of Rb(p). Same as N(Rb(p)).

MC
b (p) Temporal allocation capability of Rb(p). Same as C(Rb(p)),

which is updated upon allocation and deallocation of Rb(p).
MC′(p) Cached temporal capability value of Rb(p).

Updated upon pointer assignment to p.
MW (p) Base address of metadata for pointer in R(p), i.e., W (R(p)).
MW (p, d) Base address of metadata for field pointer d in R(p), i.e., W (R(p), d).
GH Guard routine to detect erroneous heap memory deallocations.
GT Guard routine to detect temporal memory errors in pointer dereferences.
GS Guard routine to detect spatial memory errors in pointer dereferences.
G(e) Guard code to detect memory errors of pointer dereferences in e.

Figure 3.4: Memory safety metadata and helper routines.

&x is not. Note that we use a three-address code form to simplify our transformation and

description. We would also like to point out that we do not list the array subscript derefer-

ence form p[n] in Figure 3.2 because it is only a syntactic sugar and can be represented as

∗p1 where p1 has the value of p+ n.

We define the metadata and helper routines for ensuring memory safety in Figure 3.4.

For each memory block and its content, we define the following metadata attributes:

• B(b): The base address of memory block b. When b is a variable x, we can use &x

as the value for B(x).

• N(b): The allocation size of memory block b.
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• C(b): The allocated temporal capability of memory block b. An allocated temporal

capability is an address in a capability store which stores a capability index value.

Section 3.3 provides more details on capability and its index value.

• W (p), W (s, d): W (p) is the base address of metadata for pointer variable p, while

W (s, d) is the base address of metadata for field pointer d in structure variable s.

• L(x), L(s, d): L(x) is the compile-time type size of variable x, while L(s, d) is

the compile-time type size of field d in structure variable s. We can use sizeof to

represent L. For instance, L(x) is sizeof(x). Note that L(x) has the same size as

N(x) when x does not involve any pointer dereferences.

For each pointer p, we maintain a metadata tuple M = 〈Mb,MC′ ,MW 〉 as defined

below:

• Mb(p): The address of metadata attributes for the referent block Rb(p), which in-

clude:

– MB
b (p): The base address of the referent block Rb(p), which always has the

same value as B(Rb(p)).

– MN
b (p): The allocation size in bytes of the referent block Rb(p), which always

has the same value as N(Rb(p)).

– MC
b (p): The temporal allocation capability of the referent block Rb(p), which

always has the same value as C(Rb(p)). C(Rb(p)) is set upon the allocation of

the referent block and invalidated upon the deallocation of the referent block.

• MC′(p): The cached temporal capability index value of the referent block Rb(p).

Initially it is a copy of the value ∗C(Rb(p)). But this value is only propagated along

with pointer assignments, and not invalidated when the referent block is deallocated.
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• MW (p),MW (p, d): MW (p) and MW (p, d) are the base address of metadata for em-

bedded pointer or field pointer in R(p).

Note that the metadata attributes MB
b (p), MN

b (p) and MC
b (p) are the properties of the

referent block Rb(p), that is, all the pointers that point to the same memory block share

the same values of these metadata attributes at any time. MW (p, d) is the properties of the

referent R(p), that is, all the pointers that point to the same memory bytes share the same

base address of embedded pointer metadata in R(p). MC′(p) is the property of the pointer

p itself, and each pointer is allowed to have a different value. We can refer to all these

metadata attributes for p collectively as M(p) = 〈〈MB
b ,M

N
b ,M

C
b 〉,MC′ ,MW 〉.

A key requirement for maintaining the pointer metadata attributes is not to use fat

pointers. These metadata attributes need to be separated from the pointers themselves for

backwards-compatibility with the sheer size of legacy C programs.

3.3 Detecting Temporal and Spatial Memory Errors

Pointer dereferences need to be checked for memory errors. We useMB
b (p) andMN

b (p)

to detect spatial memory errors, and MC
b (p) and MC′(p) to detect temporal memory errors.

MW (p) and MW (p, d) are used to locate the metadata for an embedded pointer (e.g. ∗p) or

a field pointer (e.g. p->d).

A spatial memory error is reported when dereferencing a pointer p if any portion

of the memory range to be dereferenced, [p, p + L(∗p)), falls outside of the boundary

[MB
b (p),MB

b (p) +MN
b (p)).

To detect temporal memory errors, we first associate a unique capability with each

memory block b. A capability is created from a capability store when b is allocated (on

stack or heap), and stored asC(b). When a pointer p to b is created, the allocation capability

metadata attribute MC
b (p) is initialized to C(b). When a memory block is deallocated, due

to free or function returns, its allocation capability is revoked and marked as invalid. Thus,
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to detect temporal memory errors, we simply need to check whether MC
b (p) still points to

a valid capability.

The above approach has the benefit that each capability requires just one bit of storage,

but suffers from the drawback that this storage cannot be reused. As a result, a program

performing a large number of memory allocations and deallocations will eventually run

out of memory. To support reuse of capabilities, the above technique is modified as fol-

lows. Each capability is given a non-zero integer index value. (A value of zero denotes an

invalid capability.) This value is also stored in a second metadata attribute MC′(p). The

dereference of pointer p is temporally safe if and only if MC
b (p) points to a valid capability

and ∗MC
b (p) has the same value as MC′(p). Now, a capability slot in a capability store

can be reused as long as the capability value is changed before each reuse. With a 32-bit

capability index, this approach allows capabilities to be reused 232 − 1 times before they

become unusable. Alternatively, we may allow the index to wrap around (skipping over

zero), treating the probability of temporal errors being missed due to such wrap-around as

negligible.

We can detect the reallocation temporal memory errors in which the deallocated mem-

ory bytes are reused for a different object by the time a dangling pointer is dereferenced

to attempt to access the previous object. This is because even though MC
b (p) may point to

a valid capability due to the reallocation, it will have a different index value than MC′(p),

and thereby fail the temporal validity check.

3.4 Temporal Capability Management

We rely on the uniqueness of allocation capabilities for temporal error detection. An

allocation capability should never be assigned or reassigned to different memory blocks,

except when the memory blocks have the exactly same lifetime scope. To avoid interpreting

values from random memory locations as capabilities, the capabilities have to be allocated
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from a dedicated memory pool and separated from the memory block data themselves.

Because global variables are allocated when a program starts and have a lifetime

throughout the entire program execution, they are always temporally valid. We can share a

single always-valid allocation capability (denoted as >) for all global variables.

The capabilities for heap and stack memory blocks need to be managed separately.

Each heap memory block has a unique allocation capability, which is allocated from a heap

capability pool when a memory block is newly allocated from the heap. When a heap

memory block is freed, its allocation capability is marked as invalid and returned back to

the heap capability pool.

All the stack variables of a function have the same lifetime scope. More specifically,

they are temporally valid during the invocation of the function and become invalid once the

function returns. Knowing about this fact, we can assign a single capability for all the stack

variables in the same function. This capability, called stack frame allocation capability,

is allocated from a stack capability pool on a function entry, and is marked as invalid and

returned back to the stack capability pool upon the function returns.

3.5 Transformation of Pointer Statements

Figure 3.5 defines the metadata attributes values of pointer expressions and the asso-

ciated guard code to detect memory errors in the transformation. Figure 3.6 shows the

transformation of basic pointer statements in C. The goal of the transformation is two-

fold: to maintain metadata for pointer operations as well as to check both temporal and

spatial memory errors for pointer dereferences. It is worth noting that depending on the

implementation of M(p), some of metadata attribute updates shown in the transformation

rules might become no-op and can then be optimized away during the transformation. For

example, if we maintain the referent block metadata attributes separately, instead of keep-

ing of a copy of these attributes in M(p) of each pointer bound to the block, we can then
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Expression Metadata Guard
e M(e) = 〈〈MB

b ,M
N
b ,M

C
b 〉,MC′ ,MW 〉 G(e)

p M(p) ∅
s.d ∗W (s, d) ∅
&x 〈〈B(x), L(x), C(x)〉, ∗C(x),W (x)〉 ∅
&s.d 〈〈B(s), L(s), C(s)〉, ∗C(s),W (s, d)〉 ∅
p+ n MW (p+ n) ∅
(τ)p M(p) ∅
(τ)n ⊥ ∅
∗p ∗MW (p) GT (p,MC

b (p),MC′(p));
GS(p, L(∗p),MB

b (p),MN
b (p));

s->d ∗MW (s, d) GT (&s->d,MC
b (s),MC′(s));

GS(&s->d, L(s->d),
MB

b (s),MN
b (s));

Figure 3.5: Memory safety metadata and guard of pointer expressions.

Statement Transformation
p = malloc(n) 〈r,MC

b (r),MW (r)〉 = malloc′(n);
MB

b (p) = r;
MN

b (p) = n;
MC

b (p) = MC
b (r);

MC′(p) = ∗MC
b (r);

MW (p) = MW (r);
p = r

free(p) GH(p,MC
b (p),MC′(p));

∗MC
b (p) = ⊥;

free(p)
e1 = e2 G(e2);

G(e1);
M(e1) = M(e2)
e1 = e2

Figure 3.6: Transformation of pointer statements.

only update the address to the referent block metadata (i.e., Mb(p)) in lieu of updating

〈MB
b (p),MN

b (p),MC
b (p)〉 in the pointer assignment transformation rules.

Next we describe in the transformation of each kind of pointer operations in details.

In the description of each pointer operation, we substitute e1 = e2 with the corresponding
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representative expression forms from Figure 3.5.

3.5.1 Pointer creation

A new pointer value can be created through the heap allocation statement malloc or

the address-of (&) expression.

For a pointer p created through heap allocation, we first instrument malloc to create a

new allocation capability for the allocated memory block. We also modify malloc to allo-

cate additional storage to hold metadata pertaining to the embedded pointers stored within

the allocated memory block. All the embedded pointer metadata attributes are initialized

with values to indicate that none of the embedded pointers has a valid referent. The call to

malloc is extended to return not only the base address r of the allocated memory block,

but also the new allocation capability MC
b (r) and the base address of allocated embedded

pointer metadata MW (r). The metadata of p, M(p), is then initialized properly with the

argument and return values of malloc.

Note that malloc may be used to allocate storage for an array rather than a single ob-

ject. The size argument of malloc is used to determine whether the allocation is for a sin-

gle object or array. In the latter case, M(p) refers to an array rather than a single metadata

structure. Code must be generated to initialize all of the elements of M(p). The embedded

pointer metadata within each of the allocated array elements needs to be initialized as well.

When a memory block is being deallocated via free(p), we first need to check whether

it is a legitimate deallocation of a valid heap memory block. The checking is performed

by the guard routine GH . After that, we simply revoke its allocation capability MC
b (p) and

mark it as invalid, denoted as ⊥.

When a pointer p is created using the & operator on a variable x, i.e., p = &x, we

assign the metadata properties of x to M(p). In particular, MB
b (p) and MN

b (p) are assigned

with the base address of x, B(x) and the allocation size of x decided by its compile-time
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type, L(x), respectively. B(x) and L(x) can be derived from the compile-time symbol

table information about x. MC
b (p) and MC′(p) are assigned with the allocation capability

of x and its index value (C(x) and ∗C(x)), respectively. If x is a global variable, C(x)

is the always-valid capability shared by all global variables. If x is a local variable, C(x)

is the stack frame capability for the current function. When x has embedded pointers, the

base address of the embedded pointer metadata, W (x), is assigned to MW (p). Note that

W (x) and MW (p) are properties of the referent x. This assignment has the desired effect

of sharing the embedded pointer metadata located at W (x), rather than copying them. This

is not an optimization, but is a necessary step to ensure that the transformation handles

aliasing effects correctly.

The transformation is similar when the pointer p is created by taking the address of a

structure field s.d. We need to replace W (x) with the version that supports fields: W (s, d),

and assign B(s), N(s) and C(s) to the memory block attributes in M(p).

3.5.2 Pointer assignment

Transformation for assignments of one pointer value to another is very simple: When

p1 is assigned to p through p = p1, an assignment M(p) = M(p1) is introduced in the

transformed program to propagate the metadata from p1 to p. If a field pointer s.d is as-

signed to p, we then assign the metadata values of the field pointer, ∗W (s, d), to M(p), the

metadata of p.

The transformation for pointer arithmetic is slightly different. For p = p1 + n, we first

copy all metadata attribute values fromM(p1) toM(p). In addition, we also updateMW (p)

with the value of MW (p1 +n). This is necessary because MW (p) is the base address of the

metadata for the embedded pointer ∗p. When p gets a new value p1 +n, ∗p is also changed

to ∗(p1 + n), which corresponds to a different pointer from the original ∗p and thereby

needs to associate with a new metadata address MW (p1 + n). Just like invalid pointers
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are permitted in C programs as long as they are not dereferenced, MW (p) is permitted to

contain invalid addresses as well, but is checked before accesses.

There are two cases of pointer assignments with type casts. If a pointer p1 is cast to a

pointer of different type and assigned to p, i.e. p = (τ)p1, the transformation is then the

same as the normal pointer assignment statement, that is, an assignment M(p) = M(p1)

is introduced in the transformed program. The transformation for p = (τ)n, in which an

integer variable n is cast to a pointer type and assigned to p, is quite different. In this case,

n is not a pointer and has no associated pointer metadata. As a result, we mark M(p), the

metadata of p, as invalid (denoted as ⊥). Any future dereferences of p will fail the guard

routines GT and GS that detect memory errors and thus be caught.

3.5.3 Pointer dereference

When a pointer p is dereferenced, the transformation inserts runtime checksGT andGS

before the pointer dereference to prevent temporal and spatial memory errors.

The guard routineGT detects temporal memory errors. It takes the allocation capability

MC
b (p) and the cached capability MC′(p) as the input arguments and checks whether the

allocation capability still agrees with the cached capability. If the referent block Rb(p) is

not deallocated and still valid, the allocation capability and the cached capability should

have the same value. If the memory of the referent block is deallocated or reallocated for a

different memory block, MC
b (p) will have a different value than MC′(p). In this case, GT

reports a temporal memory error for the dereference of p.

The guard routine GS detects spatial memory errors. It needs four arguments: the

pointer value, the number of bytes to access, the base address and size of the referent block.

GS enforces that the memory to be accessed should completely fall inside of the lower and

upper bounds of the referent block. For dereferences in the form of ∗p, we simply use

p, L(∗p), MB
b (p) and MN

b (p) as the required arguments to GS . For a structure pointer
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dereference that accesses a field in the form of s->d, we use the field expressions &s->d

and L(s->d) as the arguments of the pointer value and the number of bytes to access toGS .

This is important because it allows the program to access the beginning bytes of a structure

referent even if the remaining of the structure is beyond the referent block boundary. Such

cases could occur as a result of type casts between different types of structure pointers.

3.6 Transformation of Functions

For stack variables in a function, our transformation introduces the management of the

stack frame allocation capability for them as described in Section 3.4.

Functions can take pointers as input arguments. Their return values may also contain

pointers. Our transformation transforms such functions to pass the metadata of pointer

arguments into the function and return the metadata of pointers in the return value back to

the caller.

There are two possible ways to pass the additional metadata into and out of a function:

modifying the function interface, or using a global argument buffer.

We can modify the interface of a function to introduce additional arguments to pass

the metadata pertaining to the original function arguments. If a function returns a pointer

or a structure with field pointers, we need to modify the return type to be a structure that

contains both the original return value and its associated metadata.

Note that the introduction of additional arguments affects the compatibility with exter-

nal functions. Unlike fat pointers, however, this incompatibility can be easily fixed in most

cases. In particular, if an external function takes objects containing pointer values but does

not modify them (or return pointers), then calls to this function are left untransformed. If

the function modifies pointer values or returns them, then wrapper functions will need to

be created. Or alternatively we can just assume these pointers are always valid. The only

drawback is that memory errors caused by these pointers will not be detected.
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When using a global argument buffer to pass around the metadata of the original func-

tion arguments and return value, we may get a better compatibility with external libraries.

But wrapper functions may still be needed for external, untransformed functions in order

to achieve more accurate memory error detection. We have studied both argument passing

methods in our research.



Chapter 4

Memory Safety with Shadow Metadata

Structures

In this chapter, we describe our transformation for memory error detection that main-

tains all the pointer metadata in shadow structures. We have also presented a version of this

transformation in [92].

4.1 Metadata Representation and Allocation

In this transformation, we maintain all the pointer and referent block metadata attributes

for a pointer in a metadata structure. More precisely, for each pointer variable p in the

original program, we introduce a metadata structure variable p info. For array variables,

a shadow array is introduced to hold metadata pertaining to the element pointers of the

array. Each pointer metadata variable contains the following metadata fields:

• base: The base address of the referent block of p.

• size: The allocation size in bytes of the referent block.

• blk cap: The allocation capability address of the referent block.

40
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Original Transformed

struct Stu {
int id;
char *name;
int age;

} Stu;

struct Stu s;

struct ptrinfo_t {
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct ptrinfo_t *link;

};
struct Stu_info_t {
struct ptrinfo_t name;

};
struct Stu s;
struct Stu_info_t s_info;

struct Stu *p;

struct Stu_ptrinfo_t {
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct Stu_info_t *link;

};
struct Stu *p;
struct Stu_ptrinfo_t p_info;

Figure 4.1: Defining basic shadow metadata structures for variables.

• saved cap: The cached capability index value of the referent block.

• link: The metadata address of the embedded pointers stored within the referent *p.

A distinctive feature of this transformation is that the type of link is defined to match

the metadata type for the pointer referent type. Note that the field link is implemented to

support MW (p), or in other words, it is used to retrieve the metadata address of embedded

pointers such as *p. For a simple scalar pointer, the type of link is defined as a pointer to

the generic pointer metadata type ptrinfo t. For a pointer that points to a structure type

s, we first define a shadow structure s info t for the program structure s. For each field

pointer d within s, there is a corresponding field d defined in s info t to store the meta-

data for the pointer s.d. A variable of type s will also be accompanied with a metadata

variable of type s info t. The link field of the structure pointer metadata type is then
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defined as a pointer to s info t. Figure 4.1 shows the transformation examples of intro-

ducing metadata variables for pointer and structure variables. Such definitions of the link

field provide us an easy way to access metadata of embedded pointers and field pointers in

the pointer referent. For instance, to get the access to the metadata of p->name, we can

simply use p info.link->name. However, this does complicate the support for arbitrary

type casts in C programs. We discuss these issues in Section 4.4.

To protect pointers dynamically allocated on the heap, we instrument malloc to allo-

cate additional storage to hold metadata pertaining to pointers that are to be stored within

the allocated block. The type of the recipient pointer p for the return value of malloc

indicates which fields within the allocated block will contain pointers.

Note that malloc may be used to allocate storage for an array rather than a single

object. The size argument of malloc is used to determine whether the allocation is for

a single object or array. In the latter case, p info refers to an array rather than a single

struct. Code must be generated to initialize all of the elements of p info. In addition, the

metadata pertaining to embedded pointers within each of the array elements needs to be

initialized as well.

We would like to point out that unlike the previous fat pointer approaches, our transfor-

mation allocates metadata separately from their corresponding memory blocks and pointers

and does not modify the internal pointer representation. This allows the transformed pro-

grams to achieve a much better backwards-compatibility with existing C libraries.

All the pointer metadata, no matter whether it is allocated globally, on stack, or on heap,

are initialized in a way to ensure that any dereference or deallocation of the corresponding

pointer before its first assignment will raise spatial and temporal memory errors that are

caught by our error checking routines GH , GT and GS .



CHAPTER 4. MEMORY SAFETY WITH SHADOW METADATA STRUCTURES 43

4.2 Capability Store Management

As described in Section 3.3, we use capabilities for temporal memory error detection.

In this transformation, we use a global capability store (GCS) to manage capabilities.

A capability identifies the lifetime scope of a memory block. It is created when a block is

allocated (on stack or heap), and stored in GCS.

When a pointer to a memory block b is created and assigned to a variable p, a pointer

to b’s capability is stored in p info.blk cap, and its capability index value is copied to

p info.saved cap. When the memory block is freed, the associated capability (in the

GCS) is marked invalid. A capability is valid if and only if it points to a valid capability

slot in the GCS and its index value is valid. It is necessary to have dedicated memory pools

for capabilities and separate them from the program data objects. This can ensure that

program data objects will never be incorrectly interpreted as capabilities to compromise

the temporal memory error detection.

Similar to the Safe-C approach [13], we define a global capability FOREVER that is

stored in GCS for all global variables because they are always temporally valid. We also

define a special capability NEVER that is used for uninitialized memory blocks. For heap

and stack allocated objects, their capabilities are held in the heap and stack capability stores

(HCS and SCS) respectively. The GCS consists of all the above components.

HCS is an expandable array. Each slot in the array may store a valid capability, or it

may be unused. Unused slots in the HCS are organized into a linked list called the free

list. This means that a used HCS slot contains a capability index, whereas an unused slot

contains a pointer to next available slot in the HCS free list. To distinguish between the

two types of information, we ensure that the least significant bit (LSB) of valid capability

indices is always one, whereas the LSB of pointers in the HCS free list is always zero.

(This is because the pointers are aligned on a 32-bit boundary.)

When a memory block is allocated on the heap, a capability for this block is allocated
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from the head of the HCS free list. When a memory block is freed, its capability is inserted

at the beginning of the HCS free list. Since valid capability index values are different from

pointers in the free list, the insertion of a capability into the free list immediately causes it

to become invalid.

The SCS is allocated separately from HCS since capabilities on the SCS are allocated

in a LIFO manner. Note that all of the local variables for a function are allocated and freed

together. Hence, we can use a single capability for all of the local variables (as opposed to

one per variable). This stack frame allocation capability, STACK FRAME CAP, is pushed on

the SCS on a function entry, and popped off on exit.

We use the second least significant bit of a capability index value to distinguish heap

and stack capabilities. This means that there are at most 230 possible capability index values

given a 32-bit long capability index.

4.3 Applying Transformation Rules

The metadata attributes and helper functions in Chapter 3 can be defined with the

shadow metadata structures as shown in Figure 4.2. We assume that no pointer type casts

are involved in these transformations. We will handle pointer type casts in Section 4.4. The

definitions of the memory error checking functions, CHECK FREE, CHECK TEMPORAL and

CHECK SPATIAL, are given in Figure 4.3. Most of these definitions are straight-forward

and self-explanatory. We would like to make a note about INVALID PTRINFO ADDR. It is

the address of a special pointer metadata structure which corresponds to any non-pointer

referent. This metadata structure is read-only and initialized with metadata values that

indicate the referent is both temporally and spatially invalid.

With all the definitions of metadata attributes and helper functions, we can then apply

the transformation rules in Figure 3.6 to transform C programs with the shadow metadata

structures and generate an instrumented version of the original program that is capable of
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Metadata Condition Transformation
B(x) &x
B(∗p) p info.base
N(x) sizeof(x)
N(∗p) p info.size
L(x) sizeof(x)
L(∗p) sizeof(*p)
L(s, d) sizeof(s.d)
C(x) x is a global variable FOREVER
C(x) x is a local variable of STACK FRAME CAP

the current function
C(∗p) p info.blk cap
W (x) x is an integer INVALID PTRINFO ADDR
W (x) x is a pointer &x info
W (s, d) d is an integer INVALID PTRINFO ADDR
W (s, d) d is a pointer &s info.d
W (∗p) p info.link
W (p, d) p info.link->d
M(p) p info
MB

b (p) p info.base
MN

b (p) p info.size
MC

b (p) p info.blk cap
MC′(p) p info.saved cap
MW (p) p info.link
MW (p, d) &p info.link->d
MW (p+ n) *p has the same static p info.link + n

and runtime type
GH CHECK FREE
GT CHECK TEMPORAL
GS CHECK SPATIAL

Figure 4.2: Representing memory safety metadata with basic shadow metadata structures.

detect all temporal and spatial memory errors at the memory block level. Figure 4.4 gives

the transformation examples of pointer creation, dereference and assignment statements

using the basic shadow metadata structures.

To support pointer arguments in functions, we introduce an additional argument for

each pointer argument of a function to pass around the metadata information.. The defi-

nitions of the metadata arguments follow the same transformation rules for regular stack
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void CHECK_FREE(const void *p,
const capability *allocatedCap,
capability savedCap)

{
CHECK_TEMPORAL(p, allocatedCap, savedCap);
if (!IS_HEAP_CAPABILITY(allocatedCap)) {

Abort("invalid free at %p\n", p);
}

}

void CHECK_TEMPORAL(const void *p,
const capability *allocatedCap,
capablity savedCap)

{
if (!IS_VALID_CAPABILITY(allocatedCap) ||

*allocatedCap != savedCap) {
Abort("temporal memory error at %p\n", p);

}
}

void CHECK_SPATIAL(const void *p, u32_t accessSize,
const void *blkBase, u32_t blkSize)

{
if (p < blkBase ||

p + accessSize > blkBase + blkSize) {
Abort("spatial memory error at %p\n", p);

}
}

Figure 4.3: Definitions of memory error checking routines.

variables. In other words, we also create a shadow memory structure for each pointer or

structure type in the arguments.

4.4 Handling Type Casts and Unions

The C language allows programs to perform arbitrary casts. However, most casts in

typical C programs involve types that have some sort of subtype–supertype relationship

[79]. Such casts can be classified into upcasts (cast from subtype to supertype) and down-

casts (casting from a supertype into a subtype). As in object-oriented languages, upcasts

are always safe. But downcasts are not always safe. and need to be checked at runtime by
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Original Transformed

q = &p;

q_info.base = &p;
q_info.size = sizeof(p);
q_info.blk_cap = STACK_FRAME_CAP;
q_info.saved_cap = *STACK_FRAME_CAP;
q_info.link = &p_info;
q = &p;

q = p + 4;

q_info = p_info;
q_info.link = p_info.link + 4;
q = p + 4;

q = *p;

CHECK_TEMPORAL(p, p_info.blk_cap,
p_info.saved_cap);

CHECK_SPATIAL(p, sizeof(*p),
p_info.base, p_info.size);

q_info = *p_info.link;
q = *p;

q = p->d;

CHECK_TEMPORAL(&p->d, p_info.blk_cap,
p_info.saved_cap);

CHECK_SPATIAL(&p->d, sizeof(p->d),
p_info.base, p_info.size);

q_info = p_info.link->d;
q = p->d;

Figure 4.4: Transforming pointer statements with basic shadow metadata structures

maintaining runtime type information (RTTI) with each object. A downcast is safe if the

runtime type of the pointer referent is a subtype of its static type.

4.4.1 Notion of Subtyping

When a type τ1 is laid out in memory exactly as a prefix of another type τ2, type τ2 is

called a physical subtype of type τ1. Physical subtyping has been studied for understanding
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type casts in C programs [79], but it is unnecessarily restrictive for our purposes. To max-

imize the set of programs that can be handled by our approach, we define a weaker notion

of subtyping in this section that is sufficient to ensure the soundness of our memory safety

enforcement approach.

Consider a program fragment as given below:

typedef struct T {

char *f;

} T;

typedef struct T0 {

u32_t a;

T *b, *c;

} T0;

typedef struct T1 {

u16_t a0, a1;

u32_t a2;

T *b, *c;

} T1;

typedef struct T2 {

u32_t w0, w1;

T *x, *y, *z;

} T2;

typedef struct T_info_t {

struct ptrinfo_t f;

} T_info_t;

typedef struct T0_info_t {

T_ptrinfo_t b, c;

} T0_info_t;

typedef struct T1_info_t {

T_ptrinfo_t b, c;

} T1_info_t;

typedef struct T2_info_t {

T_ptrinfo_t x, y, z;

} T2_info_t;
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1: T0 *p0;

2: T1 *p1;

3: T2 *p2 = malloc(...);

4: ... // code that initializes p2

5: p = (void *)p2; // upcast

6: ...

7: p0 = (T0 *)p; // unsafe downcast

8: ... // code that dereferences p0

9: q = p0->b;

10:

10: p1 = (T1 *)p; // safe downcast

11: ... // code that dereferences p1

12: q = p1->b;

Let’s consider the downcast p0 = (T0 *)p at line 7. Note that if T0 contains no

pointers, then this use is always acceptable. Any spatial or temporal error in accessing

a non-pointer field of the form p0->a will be detected using the metadata in p0 info,

which would have been copied from p2 info via p info. On the other hand, if T0 con-

tains a pointer, say, in a field named b as shown in the code fragment, then we need to

make sure that correct metadata information is available for checking the dereference of

q, which is assigned from p0->b. Suppose that we blindly access p0 info.link->b.

Since p0 info.link was copied from p2 info.link, this access will be equivalent to

p2 info.link->x, where x is at the same offset in T2 info as is b in T0 info. Similarly,

the p0->b accesses the same location as p2->w1 where b and w1 are at the same offset

with respect to the base of T0 and T2 respectively. Thus, the access p0 info.link->b

will yield correct results if p2->w1 is a pointer and p2 info.link->x corresponds to the

metadata associated with this pointer. Unfortunately, in the case of T0 and T2, this is not

true and the downcast at line 7 is unsafe. It is true for T1 and T2, however, because for T1,

b corresponds to x in both T2 and T2 info. Consequently, p1 info.link->b can yield
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correct results from p2 info.link->x and the downcast at line 10 is also safe.

Note that the types of pointers p1->b and p2->x need not be the same: if a dereference

of q->f (which is equivalent to *(p1->b->f)) is incorrect, it will be detected when the

runtime type of q info.link->f (which is equivalent to p1 info.link->b.link->f)

is examined.

Based on the above discussion, we define the following notion of subtyping. Suppose

that τ1 contains pointer fields at offsets p1, ..., pn, where pi’s are in sorted order. Similarly,

let q1, ..., qm denote all of the offsets of pointers fields within τ2. Now, τ2 is a subtype of τ1

iff n ≤ m and qi = pi for 1 ≤ i ≤ n. In the previous example, T 2 is a subtype of T 1, but

not a subtype of T 0.

4.4.2 Extending Transformation with RTTI

The following changes are made to the basic transformation to support casting between

subtypes and supertypes:

• Declarations: The type and pointer metadata variable declarations are modified to

incorporate an additional metadata field called tid that identifies the actual type of

data stored in the referent.

• Casts: Note that the metadata variables for all pointers have the same structure:

they have the same layout and the same interpretation of the fields of this structure.

Thus casts between any two pointer types are allowable, as long as the runtime type

associated with the pointer is checked prior to the use of the link field of its metadata

variable.

• Dereferencing: For p->d, the transformation is the same as before if p->d is a non-

pointer. But if it is a pointer, then the metadata structure associated with p->d will

be invalid if the runtime type check fails, i.e., p info.tid is not a subtype of the
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Bool CHECK_RTTI(int runtimeTID, int staticTID)
{

return IS_SUBTYPE(runtimeTID, staticTID);
}

void *LINK_PTR_ARITH(void *p, u32_t accessSize,
void *link, int n,
int runtimeTID, int staticTID)

{
int n2, elemSize, infoSize;
if (link == INVALID_PTRINFO_ADDR) {

return INVALID_PTRINFO_ADDR;
}
elemSize = TYPEINFO[runtimeTID].elemSize;
infoSize = TYPEINFO[runtimeTID].infoSize;
if (staticTID == runtimeTID ||

accessSize == elemSize) {
return link + n * infoSize;

}
else if ((n * accessSize) % elemSize == 0) {

n2 = (n * accessSize / elemSize) * infoSize;
return link + n2;

}
return INVALID_PTRINFO_ADDR;

}

Figure 4.5: Definitions of RTTI helper routines CHECK RTTI and LINK PTR ARITH.

compile-time type of *p. We define the runtime type check routine CHECK RTTI in

Figure 4.5.

• Assignments: For assignments between pointers, the tid field must also be copied

on pointer assignments. When pointers are created using malloc or & operator, the

tid field needs to be populated. For malloc, the type of the pointer is used for this

purpose. For the & operator, the statically declared type of the object (whose address

is being taken) is used.

Pointer arithmetic operations need some care. Consider a pointer arithmetic statement such

as q = p + n. Let elemSize and infoSize be the element sizes of runtime type and
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Original Transformed

struct Stu {
int id;
char *name;
int age;

} Stu;

struct Stu s;

struct ptrinfo_t {
int tid;
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct ptrinfo_t *link;

};
struct Stu_info_t {
struct ptrinfo_t name;

};
struct Stu s;
struct Stu_info_t s_info;

struct Stu *p;

struct Stu_ptrinfo_t {
int tid;
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct Stu_info_t *link;

};
struct Stu *p;
struct Stu_ptrinfo_t p_info;

Figure 4.6: Defining RTTI-enhanced shadow metadata structures for variables.

metadata type of the object pointed by p respectively. (We maintain these sizes informa-

tion in transformed programs.) Then the link field of p info is also incremented, using

q info.link = (void*)p info.link + n’,

where

n’ = (n * sizeof(*p) / elemSize) * infoSize.

This statement increments link to point to the pointer metadata variable for the new value

of *q. Note that this transformation supports programs that advance structure pointers by

first casting them into char* or void*, then adding carefully calculated offsets to them

and casting them back to pointers of desired types. To ensure that this will result in a cor-

rect link field value, we must ensure that the product of n * sizeof(*p) be a multiple of
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Original Transformed

char *p;
q = &p;

q info.tid = TID char ptr;
q_info.base = &p;
q_info.size = sizeof(p);
q_info.blk_cap = STACK_FRAME_CAP;
q_info.saved_cap = *STACK_FRAME_CAP;
q_info.link = &p_info;
q = &p;

T **p;
q = p + 4;

q_info = p_info;
q info.link = LINK PTR ARITH(p, sizeof(*p),

p info.link, 4,
p info.tid,
TID T ptr);

q = p + 4;

T **p;
q = *p;

CHECK_TEMPORAL(p, p_info.blk_cap,
p_info.saved_cap);

CHECK_SPATIAL(p, sizeof(*p),
p_info.base, p_info.size);

q info = CHECK RTTI(p info.tid, TID T ptr) ?
*p info.link : *INVALID PTRINFO ADDR;

q = *p;

T **p;
q = p->d;

CHECK_TEMPORAL(&p->d, p_info.blk_cap,
p_info.saved_cap);

CHECK_SPATIAL(&p->d, sizeof(p->d),
p_info.base, p_info.size);

q info = CHECK RTTI(p info.tid, TID T ptr) ?
p info.link->d : *INVALID PTRINFO ADDR;

q = p->d;

Figure 4.7: Transforming pointer statements with RTTI-enhanced shadow metadata struc-
tures.

elemSize. If this condition is not satisfied, the link field is marked invalid and hence can-

not be used. The above link field pointer arithmetic algorithm is implemented in the helper

function LINK PTR ARITH shown in Figure 4.5. It is worth mentioning that our transfor-

mation still allows dereferencing of q, but causes problems if pointers contained within *q

are accessed. Thus, it will be possible to write a program that takes a pointer to an array of

structures, casts it into a char*, and sequentially accesses the entire array as a sequence of
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characters. However, problems do arise if pointer arithmetic is used to advance through an

array that is embedded within a structure when the array elements contain pointers that are

dereferenced.

Figure 4.6 shows the examples of defining RTTI-enhanced metadata variables, and Fig-

ure 4.7 shows the pointer statement transformation examples with RTTI-enhanced meta-

data. All the RTTI-related changes are highlighted in bold.

Our approach performs subtyping checks at the time of pointer dereferencing, rather

than at the time of casting. This is important to support programs which perform a cast, but

do not use the resulting pointer in incorrect ways.

Even though we can perform the subtyping check as defined in Section 4.4.1 by com-

paring offsets of pointer fields in the two source types at runtime, this would be inefficient.

As an optimization, we precompute the subtype relationship at compile-time and use a

simple array lookup at runtime to perform the check. In particular, an integer identifier i

is associated with each type τi. Then a two-dimensional bit-array isSubType is defined,

where isSubType[i][j] is 1 iff τi is a subtype of τj . To minimize the size of this ar-

ray, we consider only those types that are involved in pointer casts. Specifically, a simple

program analysis is performed to obtain the list of all types that were involved in a cast. A

type id is allocated only for such types. In our benchmark programs, the size of this array

was small — always less than 150 in each dimension.

4.4.3 Supporting Unions

Unions in C represent implicit type casts when a union member is stored as one type

and accessed as another. Thus, the basic machinery we have developed above will work for

dealing with unions. Figure 4.8 shows an example of how a union definition is transformed.

Note that the metadata type for the union does not have tags. This is not a problem,

since the tid is always the first field of all the structs within u info, and can hence be
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Original Transformed

union U {
char *p1;
struct stu *p2;

} u;

struct ptrinfo_t {
int tid;
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct ptrinfo_t *link;

};
struct Stu_ptrinfo_t {

int tid;
void *base;
u32_t size;
capability *blk_cap;
capability saved_cap;
struct Stu_info_t *link;

};
union U_info_t {
struct ptrinfo_t p1;
struct Stu_ptrinfo_t p2;

};
union U u;
union U_info_t u_info;

Figure 4.8: Defining RTTI-enhanced shadow metadata structures for unions.

accessed to determine the type of the pointer currently stored in the union u. To ensure

that this approach will work correctly, it is necessary to create and maintain the tid field

even when the union holds a non-pointer. For instance, if an integer field p3 is added to

the above union, then a field p3 info will be added to u info. When an integer is stored

into the union using the field p3, then p3 info.tid will be set to indicate that the current

content of the union is an integer.

It is important to note that since we do not convert unions into “tagged unions,” as is

the case in [68] or Cyclone [47], programs that expect to store into p1 and access this later

using the field name p2 will work as expected. However, any attempt to dereference this

pointer will be checked using the runtime type information, so invalid memory accesses

will be caught.
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4.5 Optimizations

4.5.1 Local Optimizations

The most significant optimization we have performed is to separate metadata into two

data structures: a blkheader t that holds the metadata information relating to a mem-

ory block, and a ptrinfo t that holds metadata information relating to a specific pointer.

A blkheader t variable is introduced for each memory block (variables and heap allo-

cated blocks). We also introduce a metadata attribute hdr to ptrinfo t and move the

three block metadata attributes into the blkheader t variable. We then define Mb(p)

as p info.hdr and apply the transformation rules in Chapter 3 accordingly. Figure 4.9

illustrates this separation, with new changes highlighted in bold.

This separation yields significant savings when there are multiple pointers to the same

block, since the blkheader t fields of the block can be shared by all pointers to that

block. Moreover, the split reduces the number of fields involved in metadata maintenance

operations, and hence improves performance.

Pointer dereferences tend to repeat frequently, and for each such dereference, our trans-

formation generates pointer validity checks. However, gcc 3, which was used in our ex-

periments, did not recognize and eliminate such checks when they involve fields in a struc-

ture. For the same reason, gcc optimizations could not recognize and eliminate metadata

updates even when the results of these updates are not used again. In order to exploit the

common subexpression and dead variable elimination optimizations of gcc, we therefore

convert metadata structures into individual variables whenever it is safe to do so. (In par-

ticular, we break the metadata structure associated with a local pointer variable when the

address of the variable is not taken.) This optimization eliminates several redundant checks

and updates at an intra-procedural level. It is quite possible that with the recent significant

advances in gcc 4 development, such optimizations could be taken care of by the compiler

itself and needs not to be performed as part of the transformation.
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Original Transformed

struct Stu {
int id;
char *name;
int age;

};

struct Stu s;

struct blkheader t {
void *base;
u32 t size;
capability *blk cap;

};
struct ptrinfo_t {
int tid;
struct blkheader t *hdr;
capability saved_cap;
struct ptrinfo_t *link;

};
struct Stu_info_t {
struct ptrinfo_t name;

};
struct Stu s;
struct Stu_info_t s_info;
struct blkheader t s hdr;

struct Stu *p;

struct Stu_ptrinfo_t {
int tid;
struct blkheader t *hdr;
capability saved_cap;
struct stu_info_t *link;

};
struct Stu *p;
struct Stu_ptrinfo_t p_info;

Figure 4.9: Defining split shadow metadata structures for variables.

Another optimization we have implemented is to eliminate unnecessary operations on

the stack capability store (SCS). This elimination is performed in the case of functions

which never compute the address of a local variable, and hence have no risk of a local

pointer escaping. This optimization primarily benefits function call-intensive programs

where the frequently called functions do not contain reference operations that generate a

pointer to a local variable.

The effect of these optimizations are discussed in Section 10.2.2. On the average, these

optimizations improve performance by about a factor of two.
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Types: τ ::= int | τ ref STATIC | RTTI
Expressions: e ::= x | n | e1 op e2 | (τ)e | e1 ⊕ e2 | ∗e
Statements: c ::= skip | c1; c2 | e1 := e2

Figure 4.10: Syntax of a simplified C language with STATIC and RTTI pointers.

Expressions:
Γ(x) = τ

Γ ` x : τ Γ ` n : int
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 op e2 : int

Γ ` e : τ ′ τ ′ ≤ τ
Γ ` (τ)e : τ Γ ` (τ ref STATIC)0 : τ ref STATIC

Γ ` e1 : τ ref STATIC Γ ` e2 : int
Γ ` e1 ⊕ e2 : τ ref STATIC

Γ ` e1 : RTTI Γ ` e2 : int
Γ ` e1 ⊕ e2 : RTTI

Γ ` e : τ ref STATIC

Γ ` ∗e : τ
Γ ` e : RTTI

Γ ` ∗e : RTTI

Statements:
Γ ` skip

Γ ` c1 Γ ` c2
Γ ` c1; c2

Γ ` e : τ ref STATIC Γ ` e′ : τ
Γ ` e := e′

Γ ` e : RTTI Γ ` e′ : RTTI
Γ ` e := e′

Convertibility:
τ ≤ τ τ ≤ int int ≤ RTTI

Figure 4.11: Type inference rules for identifying STATIC and RTTI pointers.

4.5.2 Possible Global Optimizations

There are a number of global optimizations which could be done to eliminate checks

and metadata, reducing the overhead of our approach from its current level. Even though

these optimizations might be effective, we have not implemented them in our research,

partly because these global optimizations usually require global program analysis and non-

trivial code changes for program annotations, which could sometimes break existing C

programs.

The first global optimization is to identify pointers whose type can be statically deter-

mined, and replace RTTI with constant type information for these pointers. This can be

done using a fairly simple flow-insensitive type inference approach similar to the method
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used to determine so-called safe pointers in CCured [62]. Figure 4.10 shows the syntax

of a simplified C language similar to what is defined in [62], but with STATIC and RTTI

pointer types. Figure 4.11 shows the type inference rules adapted from those of CCured to

identify STATIC and RTTI pointers in C programs. In these rules, RTTI behaves the same

as DYNAMIC in CCured. However, the STATIC pointers is the union of both SAFE and

SEQ pointers in CCured. This is because safe and sequential pointers are never involved

in (non-trivial) casts, and hence their static type will be the same as runtime type, thereby

making RTTI information redundant. The results presented in [62] showed that for typical

C programs, roughly 90% of pointers could be statically shown to be safe pointers, and

similar results are likely for our approach.

A second optimization is to identify pointer operations which can be statically deter-

mined to be temporally safe, and remove the temporal checks for these operations. Criteria

for statically determining the temporal safety of a pointer access depend on the storage

region(s) the pointer refers to. For heap pointers, there must be no path along which the

referent could be freed between the previous check and the current dereference location.

For stack pointers, there must be no chance that the pointer could have escaped from a

previous function call. Static data pointers are inherently temporally safe.

A third optimization is to identify pointer operations which are statically spatially safe,

and eliminate bounds checks for these pointers. The spatial safety of a pointer access is

determined by examining all paths between the access and all recent checks/allocations.

If the value of the current pointer expression is the same as the previous ones, then the

access is spatially safe. If the value is increasing (e.g., the result of an increment operation

such as p++), then the access is lower-bound safe but not upper-bound safe. Similarly,

some accesses might be determined to be upper-bound safe but not lower-bound safe. This

information can be used to eliminate or simplify checks inserted by the transformation.

Once checks have been eliminated, unnecessary maintenance code can be eliminated.

Updates to metadata which can never reach a check can be detected using standard data
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flow techniques and eliminated. Metadata variables/fields which are never used can then

be detected and eliminated. For pointers which exhibit partial safety (e.g., lower bound

safety), the metadata can be simplified.



Chapter 5

Memory Safety with Shadow Metadata

Memory

The shadow metadata structure based transformation as described in Chapter 4 fully

satisfies properties (1) and (4) listed in Section 2.2, which detects all block-level tempo-

ral and spaital memory errors while preserving the explicit memory management model

in C. It also requires almost no source modifications before applying transformation and

has achieved a significantly improved backward-compatibility compared to previous ap-

proaches that are aimed at detecting both temporal and spatial memory errors. How-

ever, the shadow metadata structure approach still has some shortcoming with regard to

full backward-compatibility with existing C programs. In particular, the shadow metadata

structure based transformation has the following limitations:

• It does not support arbitrary type casts, such as casts of a pointer to a structure of one

type into a pointer to structure of an unrelated type (i.e. these two structures do not

form a subtype–supertype relationship).

• It does not support arbitrary pointer arithmetic.

• It does not support customized memory allocation functions that are not similar to
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malloc because it needs to know the type of allocated memory at each allocation

site, in order to allocate appropriate memory space for metadata of embedded point-

ers accordingly.

In this chapter, we present a shadow metadata memory based approach that can over-

come the above limitations.

The key difference between the shadow metadata structure approach and the shadow

metadata memory approach lies in the way in which the metadata for embedded pointers

in a memory block are allocated and accessed.

The shadow structure approach creates a shadow metadata structure for each memory

block data type that can host pointers. For each field pointer in the memory block data type,

a ptrinfo t-like metadata field is created within the shadow structure. The accesses to

the embedded pointer metadata are done via a syntactical field access path starting from the

link field that points to the shadow structure, for example, p info.link->d. As a result,

although all the pointer metadata variables share the same memory layout as ptrinfo t,

the actual metadata type is different for pointers of different types due to the different typing

of the link field.

In contrast, the shadow memory approach uses generic metadata structure types for all

metadata. For any memory block that can contain pointers, it simply allocates an array of

such generic metadata structures, one for each word in the memory block that might host a

pointer. The access to the metadata of an embedded pointer p is achieved by computing the

address of the embedded pointer metadata from the pointer value and the memory block

metadata attributes.

5.1 Metadata Representation and Management

In this approach, we maintain the metadata in two generic data types: blkheader t

for metadata attributes of a memory block, and ptrinfo t for metadata attributes of a
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typedef struct ptrinfo_t ptrinfo_t;

typedef struct blkheader_t {
void *base;
u32_t size;
capability *blk_cap;
ptrinfo_t *linkbase;

} blkheader_t;

struct ptrinfo_t {
blkheader_t *hdr;
capability saved_cap;

};

Figure 5.1: Generic metadata structure types for shadow metadata memory
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Figure 5.2: Shadow metadata memory layout.

particular pointer. The separation of block metadata fields and pointer metadata fields is

similar to what we have presented in the optimization section for the shadow metadata

structure approach. However, we use one generic ptrinfo t metadata type for pointers,

instead of creating a myriad of such similar types.

A block metadata object is allocated and associated with each memory block allocated
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Original Transformed
struct Stu {

int id;
char *name;
int age;

};
struct Stu s;

ptrinfo_t s_info[3];
blkheader_t s_hdr;
struct Stu s;

struct Stu *p;
ptrinfo_t p_info;
blkheader_t p_hdr;
struct Stu *p;

Figure 5.3: Defining shadow metadata memory for variables.

by the program, while a pointer metadata object is allocated and associated with each four-

byte long allocated memory (in a 32-bite architecture), regardless of whether or not the

memory actually stores a pointer.

Figure 5.1 shows the type definitions of block metadata and pointer metadata types in

C. Each block metadata object (of the type blkheader t) stores the following attributes:

• base: The base address of the memory block.

• size: The allocated size in bytes of the memory block.

• blk cap: The allocation capability of the memory block.

• linkbase: The base address of pointer metadata objects allocated for the memory

words in the memory block.

Each pointer metadata object (of the type ptrinfo t) stores the following values:

• hdr: The address of the block metadata object associated with the referent block.

• saved cap: The cached capability index value of the referent block.

Figure 5.3 illustrates how additional definitions are introduced in the transformed pro-

gram to hold metadata for each variable defined in the original program. The relationship
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between the metadata variables and their corresponding program variables is illustrated in

Figure 5.2.

Similar to the shadow structure approach, the shadow metadata memory is also sepa-

rated from the associated memory blocks and pointers to avoid modifying the underlying

pointer representation.

Block metadata objects are allocated from three dedicated pools that are accessible by

the instrumentation code. The three pools are used to allocate block metadata objects for

global variables, stack variables, and heap variables, respectively. The management of

these pools mimics the management of their corresponding memory regions for efficient

allocation and utilization of the pool resources. For example, the pool for stack variables is

also organized as a stack and operates in a LIFO manner; while the pool for heap variables

is an expandable array, where unused slots are organized into a linked free list. We can still

use separated capability stores, though they can be combined with these block metadata

pools.

Pointer metadata objects are allocated in the same data store as their corresponding

program variables and have the same lifetime and scope as their program variables as well.

For examples, a stack variable has its pointer metadata objects on stack, while a heap block

has its pointer metadata objects on heap.

5.2 Handling Arbitrary Type Casts and Pointer Arith-

metic

We allocate only one block metadata object for each memory block in a program re-

gardless of the size of the memory block. However, pointer metadata are usually defined as

arrays. The number of pointer metadata objects for each memory block is determined by

the size of the memory block. For every four bytes in the memory block, we need a pointer
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ptrinfo_t *GET_LINK(void *p, blkheader_t *hdr)
{

int off = p - hdr->base;
ASSERT(off >= 0);
/* Pointer should be aligned at 32-bit boundary. */
if (off % 4 != 0) {

Abort("unaligned pointer value %p\n", p);
}
return hdr->linkbase + (off >> 2);

}

Figure 5.4: Definition of helper function GET LINK.

metadata object.

Given a pointer metadata object, we can use the hdr field to locate the referent block

metadata object. Given a block metadata object and an offset within the memory block, we

can use pointer arithmetic on linkbase to locate the pointer metadata object associated

with the pointer stored at that offset. This is because pointer metadata are maintained for

every four-byte word (a possible pointer) in a memory block. We define a helper function

GET LINK as shown in Figure 5.4 to compute the address of an embedded pointer metadata

given the pointer value and its referent block metadata. As a result, the link metadata field

used in the shadow structure approach can be replaced by GET LINK and thus is no longer

needed. We also no longer need to maintain the runtime type information metadata.

This technique helps us to support non-malloc like customized memory allocation

functions and also overcome the arbitrary type casts and pointer arithmetic limitations of

the shadow structure approach. The reason is that we are assured that the pointer metadata

for any possible pointer is always allocated and we know how to locate such a pointer meta-

data no matter what the declared type of the memory block is. However, it could increase

the cost to retrieve an embedded pointer metadata because of the added computations.
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Metadata Condition Transformation
B(x) &x
B(∗p) p info.hdr->base
N(x) sizeof(x)
N(∗p) p info.hdr->size
L(x) sizeof(x)
L(∗p) sizeof(*p)
L(s, d) sizeof(s.d)
C(x) x is a global variable FOREVER
C(x) x is a local variable of STACK FRAME CAP

the current function
C(∗p) p info.hdr->blk cap
W (x) x is an integer INVALID PTRINFO ADDR
W (x) x is a structure x hdr.linkbase
W (s, d) GET LINK(&s.d, &s hdr)
W (∗p) GET LINK(p, p info.hdr)
W (p, d) GET LINK(&p->d, p info.hdr)
Mb(p) p info.hdr
MB

b (p) p info.hdr->base
MN

b (p) p info.hdr->size
MC

b (p) p info.hdr->blk cap
MC′(p) p info.saved cap
MW (p) GET LINK(p, p info.hdr)
MW (p, d) GET LINK(&p->d, p info.hdr)
MW (p+ n) GET LINK(p+n, p info.hdr)
GH CHECK FREE
GT CHECK TEMPORAL
GS CHECK SPATIAL

Figure 5.5: Representing metadata with shadow metadata memory objects.

5.3 Applying Transformation Rules

The metadata attributes and helper routines in Chapter 3 are defined with the shadow

metadata memory objects in Figure 5.5. We still use CHECK FREE, CHECK TEMPORAL and

CHECK SPATIAL defined in Figure 4.3 as the memory error checking routines.

Most of these definitions are similar to the ones defined for the shadow metadata struc-

ture based transformation, except that the block metadata attributes need to be read through
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Original Transformed

struct Stu s;

ptrinfo_t s_info[3];
blkheader_t s_hdr;
struct Stu s;

s_hdr.base = &s;
s_hdr.size = sizeof(s);
s_hdr.blk_cap = STACK_FRAME_CAP;
s_hdr.linkbase = s_info;

Figure 5.6: Initializing block header in shadow metadata memory.

p info.hdr. The definition of W (x) and MW (p) and their variations are changed sig-

nificantly because we use the GET LINK helper function to replace the type-based link

field.

With the above definitions of metadata attributes and helper functions, we can then

apply the transformation rules in Figure 3.6 to transform C programs using the shadow

metadata memory based technique. Note that we only need to update the metadata fields

hdr and saved cap as defined in ptrinfo t for pointer assignments. We should skip the

updates to block metadata attributes because the properties of the memory block itself are

not changed as a result of these operations.

Block metadata are only updated at the memory block creation time, which include the

allocation of global variables when a program starts up, the allocation of stack variables

when entering a function, and the allocation of heap variables through dynamic memory

management functions such as malloc. After that, block metadata attributes remain sta-

tionary until the memory block is deallocated. During the initialization of block metadata,

the values of base and size are initialized from the location and size information per-

taining to the memory block itself; the value of blk cap is a freshly created capability

for stack and heap variables, or a special FOREVER capability for global variables; and the

value of linkbase is initialized to the base address of the pointer metadata variable for

this memory block. This metadata initialization is based on the mapping between program
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Original Transformed

p = &s;
p_info.hdr = &s_hdr;
p_info.saved_cap = *s_hdr.blk_cap;
p = &s;

q = p + 4;
q_info = p_info;
q = p + 4;

p = s.d;
p_info = *GET_LINK(&s.d, &s_hdr);
p = s.d;

q = *p;

CHECK_TEMPORAL(p, p_info.hdr->blk_cap,
p_info.saved_cap);

CHECK_SPATIAL(p, sizeof(*p),
p_info.hdr->base,
p_info.hdr->size);

q_info = *GET_LINK(p, p_info.hdr);
q = *p;

Figure 5.7: Transformation of pointer assignments and dereferences using shadow meta-
data memory.

variables and their pointer metadata variables maintained during the transformation.

Figure 5.6 shows an example of updating block metadata for a stack variable. Figure 5.7

shows the transformation for several pointer assignment and dereference statements.

When the pointer assignments take place through an assignment from a structure to

another, a memcpy operation is introduced to copy the values of all the pointer metadata

pertaining to the source structure to the pointer metadata for the destination structure.

There are no additional treatments required for pointer assignments involving type casts

because pointer metadata are now maintained for every memory word that can be used as a

pointer and the pointer metadata for a given memory block can be located through its block

metadata.
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5.4 Transformation of Functions

5.4.1 Supporting Pointer Arguments of Functions

In this transformation, we choose to use a global argument buffer, defined as the type

of metaarg pipe t, to pass pointer metadata of arguments across functions and keep the

function prototypes intact. This is useful especially for supporting transformed functions

that are called back from untransformed code (e.g. a comparison function provided to the

library function qsort). Besides, this is also helpful for supporting separate transformation

and compilation.

The steps during a life-cycle of a function invocation are described below:

• When calling a function, the pointer metadata of the function input arguments are

copied to the input metadata argument pipe.

• When entering a function, the pointer metadata of its arguments are copied from the

input metadata argument pipe to its stack temporary variables.

• When exiting from a function, the pointer metadata of its return value are copied to

the output metadata argument pipe.

• When returning from a function at the call site, the pointer metadata of the function

return value are copied from the output metadata argument pipe to the destination

variables.

Only the pointer metadata of the arguments of the most recent called function need to

be kept in the current input and output metadata argument pipes.

5.4.2 Interfacing with Untransformed Functions

To achieve the backwards compatibility with existing C programs, our transformation

has to accommodate scenarios where transformed functions interface with untransformed
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variables or functions.

We assume that we know which variables and functions are external and untransformed.

This can be done by annotations or by scanning all source files of an application once before

the actual transformation.

Because we do not change the function prototypes and the pointer representations, we

do not need to write complex wrapper functions for each external, untransformed function

which translate the function prototype and pointer representation between transformed and

untransformed formats.

However, we still need to handle metadata for memory blocks that are affected by ex-

ternal functions, because external functions may return new memory blocks, or modify

existing memory blocks. Below we discuss some possible approaches that attempt to re-

cover as much as possible metadata when handling various cases of external functions that

manipulate pointers.

• Case 1: An external function returns a pointer to heap memory blocks allocated in

the untransformed libraries.

We can modify the malloc/free family functions (e.g. through LD PRELOAD

or user-defined static linked functions) so that the untransformed libraries can also

use the modified malloc/free functions. In this way, heap memory blocks al-

located in the untransformed code can also be tracked. Their associated metadata

values are added into a global lookup table, which can then be consulted by the in-

strumented code.

• Case 2: An external function returns a pointer to stack memory blocks allocated in

the untransformed libraries.

In this case, there are no metadata available for these memory blocks or the resultant

pointer. We can either assume such pointers are always valid and permit dereferences
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of them or flag such dereferences as errors, depending on how conservative we want

to be.

• Case 3: An external function returns a pointer to unmodified memory blocks that are

allocated in the transformed code.

We can remember all the memory blocks that have been passed into an external

function. When the function returns, we check at the call site whether the resultant

pointer points to memory blocks referred by arguments.

• Case 4: An external function modifies memory blocks allocated in the transformed

code and returns a pointer to such memory blocks.

Similar to Case 3. In addition, certain pointer metadata values might be invalidated

and become invalid during the checking.

5.5 Optimizations

In this section, we discuss several plausible optimizations to the shadow metadata mem-

ory based transformation.

The first obvious venue for optimizations is the maintenance of pointer metadata for

non-pointer variables. In our basic transformation, we maintain the pointer metadata for

all the variables that are large enough to hold pointer values. However, this approach may

be too conservative and cause unnecessary performance overheads. We can take advantage

of static analysis techniques to identify the non-pointer variables that may actually hold

pointers and only maintain pointer metadata for pointer variables and these non-pointer

variables.

Another alternative approach to the above problem is that we only actively maintain

pointer metadata for pointers, but not for non-pointers. When a pointer is cast to an integer,

its metadata will be saved in a global lookup table indexed by the address range of the
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pointer referent in a way similar to the Jones & Kelly’s approach. When an integer is cast

to a pointer, the global table will be queried and if there are metadata associated with the

integer value, the metadata will be retrieved and used to update the pointer metadata of the

assigned pointer. When a memory block is released, its entry in the global lookup table

needs not be removed immediately because its block metadata is already invalidated and

this invalidation will be seen when the table entry is accessed. A periodically cleanup of

the lookup table is sufficient.

The second optimization is that we can eliminate a block metadata object if the corre-

sponding memory block is not referenced through pointers, i.e., the address of the memory

block is not assigned to any pointers. In addition, we can further reduce the number of at-

tributes in pointer metadata for trade-offs between the number of capability slot reuses and

the execution time and memory space overheads in common cases. For example, we may

use only four bits for saved cap, and store these four bits as the lowest bits in hdr be-

cause each block metadata object has 16 bytes and the pointer hdr is aligned at the 16-byte

boundary.

We can also reduce the performance overheads by removing the redundant pointer

metadata updates and checks through intra-procedural static analyses. For example, it is

easy to see that there is no need to update pointer metadata if the updated pointer still points

to the same referent, e.g. p = p + 1.
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Chapter 6

Injection Vulnerability Problem

Statement

6.1 Injection Attacks and Input Validation Errors

While memory error vulnerabilities in C/C++ applications still remain as a significant

threat, the vulnerabilities reported in Web applications have been rapidly increased recently.

The majority of these Web vulnerabilities can be classified as injection vulnerabilities,

including SQL injection, command injection, cross-site scripting, path traversal, and so on.

They have become one of the largest classes of CVE vulnerabilities [76] in recent years.

As described in Section 1.1.2, the attack target of an injection attack is a program that

takes requests from untrusted sources and carries out the requests with operations that are

often security-sensitive. Due to software bugs, the input validations on the untrusted inputs

might be incomplete or even missing from some program paths. By exploiting these input

validation vulnerabilities, an attacker can then “inject” malicious operation parameters or

even operations themselves. In the example shown in Figure 1.3, the attack target is Squir-

relMail, a Web email application written in PHP. When a user requests to encrypt an email
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with PGP, SquirrelMail constructs a gpg shell command with the user-provided recipient

value (passed to SquirrelMail through the sendto HTTP GET variable) as the argument.

SquirrelMail then invokes the popen function to execute this shell command. A legitimate

recipient value should not contain any shell command meta-characters. However, due to an

input validation bug in SquirrelMail, an attacker could provide an illegal recipient value to

inject any arbitrary shell command that will be executed by popen on the Web server.

6.2 Approach Overview

Previous runtime approaches have been limited to address only specific types of injec-

tion attacks [28, 21, 42, 70, 65]. In our research, we identify that the root cause of injection

vulnerability exploits is due to untrusted (i.e. tainted) input data being used unsafely in

security operations. Based on this key observation, we have developed a dynamic taint

analysis based approach to detect the attacks that exploit injection vulnerabilities.

Information flow analysis (a.k.a. taint analysis) has played a central role in computer

security for over three decades [16, 37, 31, 85, 74]. The recent works of [83, 24, 64]

pioneered the idea of detecting memory corruption induced control flow attacks on con-

temporary software through fine-grained dynamic taint analysis.

Our approach, called taint-enhanced policy enforcement [91], is also built on the basic

idea of using fine-grained taint analysis for attack detection, but expand its scope signifi-

cantly by showing that the technique can be applied to detect a much wider range of attacks

prevalent today, including all the injection attacks. Our approach consists of two essential

steps: fine-grained taint tracking and policy enforcement.

The first step is to track the source (or taintedness) of each byte of data that is ma-

nipulated by a program during its execution. We develop an automated source-to-source

transformation to instrument C programs for enabling efficient fine-grained byte-level run-

time taint tracking. Taint originates at input functions, e.g., a read or recv function used
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by a server to read network inputs. Input operations that return untrusted inputs are speci-

fied using marking specifications described in Chapter 9.

The second step is to enforce taint-enhanced security policies that are associated with

security operations. These policies are taint-enhanced in that they make use of the runtime

taint information to check “unsafe” content in security operation parameters. There are

typically a small number of such security operations, e.g., system calls such as open and

execve, library functions such as vfprintf, functions to access external modules such

as an SQL database, and so on.

The combination of these two steps turns out to be powerful for injection attack detec-

tion, and offers the following advantages over previous techniques:

• Practicality. The techniques of [83] and [24] rely on hardware-level support for

taint-tracking, and hence cannot be applied to today’s systems. TaintCheck [64] ad-

dresses this drawback, and is applicable to arbitrary COTS binaries. However, due

to difficulties associated with static analysis (or transformation) of binaries, their im-

plementation uses techniques based on a form of runtime instruction emulation [63],

which causes a significant slowdown, e.g., Apache server response time increases by

a factor of 10 while fetching 10KB pages. In contrast, our technique is much faster,

increasing the response time by a factor of 1.1.

• Broad applicability. Our technique is directly applicable to programs written in C,

and several other scripting languages (e.g., PHP, Bash) whose interpreters are im-

plemented in C. Security-critical servers are most frequently implemented in C. In

addition, PHP and similar scripting languages are common choices for implementing

web applications, and more generally, server-side scripts.

• Ability to detect a wide range of common attacks, including all types of injection

attacks. By combining expressive security policies with fine-grained taint informa-

tion, our technique can address a broader range of attacks than previous techniques.
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Figure 1.1 shows the distribution of the CVE vulnerabilities reported on COTS soft-

ware in 2003 and 2004. Our technique is applicable for detecting exploitations of

about two-thirds of these vulnerabilities, including buffer overflows, format-string

attacks, SQL injection, cross-site scripting, command and shell-code injection, and

directory traversal. In contrast, previous approaches typically handled smaller attack

classes, e.g., [30, 36, 18, 64, 83, 24] handle buffer overflows, [28] handles format

string attacks, and [70, 65] handle SQL injection attacks.

We have successfully applied our technique to several medium to large programs,

such as the PHP interpreter (300KLOC+) and glibc, the GNU standard C library (about

1MLOC). By leveraging the low-level nature of the C language, our implementation works

correctly even in the face of memory errors, type casts, aliasing, and so on. At the same

time, by exploiting the high-level nature of C (as compared to binary code), we have devel-

oped optimizations that significantly reduce the runtime overheads of fine-grained dynamic

taint-tracking.

We establish the need for taint-enhanced policy enforcement with motivating attack

examples in Chapter 7. We describe our source-code transformation for fine-grained taint

tracking in Chapter 8. Taint-enhanced policy specifications and refinements are provided

in Chapter 9. We present The implementation and experimental evaluation of our approach

in Chapter 11.

6.3 Related Work

Fine-Grained Taint Analysis. The key distinctions between our work and previous fine-

grained taint analysis techniques of [64, 83, 24] were already discussed in the introduction,

so we limit our discussion to the more technical points here. As mentioned earlier, [83, 24]

rely on hardware support for taint-tracking. [64] is closer to our technique than these two

techniques. It has an advantage over ours in that it can operate on arbitrary COTS binaries,
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whereas we require access to the C source code. This avoids problems such as hand-written

assembly code. Their main drawback is performance: on the application Apache that they

provide performance numbers on, their overheads are more than 100 times higher than ours.

This is because (a) they rely on Valgrind, which in itself introduces more than 40 times

overheads as compared to our technique, and (b) they are constrained by having to work

on binary code, and without the benefit of static analyses and optimizations that have gone

into our work. (Here, we are not only referring to our own analyses and optimizations, but

also many of the optimizations implemented in the GCC compiler that we used to compile

the transformed programs.)

There are several other technical differences between our work and that of [64]. For

instance, they track 32-bits of taint information for each byte of data, whereas we use 2

bits. Another important difference is our support for implicit flows, which are not handled

in [64].

The more recent approach from Prateek et al [75] employs a combination of static anal-

ysis techniques to optimize the performance of binary instrumentation based fine-grained

taint tracking. In contrast, our approach is based on source-code transformation and is able

to take advantage of high-level information available in source code and the optimizations

implemented in C compilers. Their approach has significantly reduced the performance

overheads compared to TaintCheck and reported performance numbers comparable to ours.

Dynamic Taint Based Techniques for Detecting Attacks on Web Applications. In-

dependently and in parallel to our work, [65] and [70] have proposed the idea of using

fine-grained taint analysis to detect injection attacks on web applications. The implemen-

tations of [65] and [70] are very similar, using hand-transformation of the PHP interpreter

to track taint data. However, [70] provides a more detailed formulation and discussion of

the problem, so we focus on this work here. They explain that these injection attacks are

the result of ad hoc serialization of complex data such as SQL queries or shell commands,
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and develop a detection technique called context-sensitive string evaluation (CSSE), which

involves checking the use of tainted data in strings. Our work improves over theirs in sev-

eral ways. First, by working at the level of the C language, we are able to handle many

more applications: most server programs that are written in C, as well as programs written

in interpreted languages such as PHP, bash and so on. Second, our formulation of the prob-

lem as taint-enhanced policy enforcement is more general, and can be applied to stealthy

attacks such as those discussed in Chapter 7 that do not involve serialization problems; and

to attacks involving arbitrary types of data rather than being limited to strings. Third, our

approach relies on a simple transformation that is shown in Chapter 8, and implemented us-

ing 3.6KLOC of code, while their approach relies on manual transformation of a large piece

of software that has over 300KLOC. Other technical contributions of our work include (a)

the development of a simple policy language for concise specification of taint-enhanced po-

lices, and (b) support for implicit flows that allow us to provide some support for character

encodings and translations.

Su et al [81] describe a technique for detecting SQL injection attacks using syntax anal-

ysis. Their main focus is on providing a precise and formal characterization of SQL injec-

tion attacks. However, their implementation of taint tracking is not very reliable. In partic-

ular, they suggest a technique that avoids runtime operations for taint-tracking by “brack-

eting” each input string with two special symbols that surround untrusted input strings.

Assuming that these brackets would be propagated together with input strings, checking

for the presence of taint would reduce to checking for the presence of these special sym-

bols. However, this assumption does not hold for programs that extract parts of their input

and use them, e.g., a web application may remove non-alphanumeric characters from an

input string and use them, and this process would likely discard the bracketing characters.

In other cases, a web application may parse a user input into multiple fields, and use each

field independently, once again causing the special symbols to be lost.

Sekar has recently proposed taint inference as a black box technique to detect injection
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attacks on Web applications [76]. This approach still uses taint-annotated security poli-

cies for attack detection. However, the taint information does not come from the runtime

tracking of taint propagation during program execution. Instead, the taint information is

inferred by comparing the argument values of security operations with the logged inputs.

Taint inference has the nice property of being neutral to the application implementation

details, though taint tracking, whenever possible, can always provide more accurate taint

information and improve the attack detection accuracy.

Manual Approaches for Correcting Input Validation Errors. Taint analysis targets

vulnerabilities that arise due to missing or incorrect input validation code. One can manu-

ally review the code, and try to add all the necessary input validation checks. However, the

notion of validity is determined by the manner in which the input is used. Thus, one has

to trace forward in the program to identify all possible uses of an input in security sensi-

tive operations, which is a very time-consuming and error-prone task. If we try to perform

the validation check at the point of use, we face the problem that the notion of validity

depends on the data source. For instance, it is perfectly reasonable for an SQL query to

contain semicolons if these originated within the program text, but not so if it came from

external input. Thus, we have to trace back from security-sensitive operations to identify

how its arguments were constructed, once again having to manually examine large number

of program paths. This leads to situations where validation checks are left out on some

paths, and possibly duplicated on others. Moreover, the validation checks themselves are

notoriously hard for programmers to code correctly, and have frequently been the source of

vulnerabilities.

Information Flow. Information flow analysis has been researched for a long time [16,

37, 31, 56, 85, 59, 74]. Early research was focused on multi-level security, where fine-

grained analysis was not deemed necessary [16]. More recent work has been focused on
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tracking information flow at variable level, and many interesting research results have been

produced. While these techniques are promising for protecting privacy and integrity of

sensitive data, as discussed in Chapter 7, the variable-level granularity is insufficient for

detecting most attacks discussed in this chapter.

Static Analysis. Static taint analysis techniques have been proposed by many for finding

security vulnerabilities, including input validation errors in web applications [53, 46, 88],

user/kernel pointer bugs [48], format string bugs [78], and bugs in placement of authoriza-

tion hooks [94]. The main advantage of static analysis (as compared to runtime techniques)

is that all potential vulnerabilities can be found statically, while its drawback is a relative

lack of accuracy. In particular, these techniques typically detect dependencies rather than

vulnerabilities. For instance, [53] will produce a warning whenever untrusted data is used

in any manner in an SQL query. This may not be very useful if such a dependency is an

integral part of application logic. To solve this problem, the concept of endorsement can

be used to indicate “safe” dependencies. Typically, this is done by first performing appro-

priate validation checks on a piece of untrusted data, and then endorsing it to indicate that

it is safe to use (i.e., no longer “tainted”). However, programmers are still responsible for

determining what is “safe” — as discussed before, there is no easy way for them to do this.

An important difference between our work and static analysis is one of intended audi-

ence. Static analysis based tools are typically intended for use by developers, since they

need detailed knowledge about program logic to determine where to introduce endorse-

ments, and what validation checks need to be made before endorsement. In contrast, the

audience for our tool is a system administrator or an outside security engineer that lacks

detailed knowledge of application code.

Other Techniques. SQLrand [21] defeats SQL injection by randomizing the textual rep-

resentation of SQL commands. A drawback of this approach, as compared to the technique
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presented in this chapter, is that it requires manual changes to the program so that the

program uses the modified representation for SQL commands generated by itself. Our

approach was inspired by the effect achieved by SQLrand, namely, that of distinguishing

commands generated by the application from those provided by untrusted users.

AMNESIA[42] is another interesting approach for detecting SQL injection attacks. It

uses a static analysis of Java programs to compute a finite-state machine model that captures

the lexical structure of SQL queries issued by a program. SQL injection attacks cause SQL

queries issued by the program to deviate from this model, and hence detected. A key

benefit of this approach is that by using static analysis, it can avoid runtime taint-tracking,

and is hence much more efficient than our approach. Although this approach has been

demonstrated to work well for SQL injections, the conservative nature of its static analysis

and its inability to distinguish different sources of inputs can lead to a higher rate of false

positives when applied to other types of attacks.

There are several recent interesting work on detecting cross-site scripting (XSS) attacks.

Both DSI [60] and Noncespaces [41] requires the cooperations between the web server and

the browser in XSS attack detection. In DSI, the server demarcates the inline untrust con-

tent in a web page with special, randomized markup primitives. The browser is responsible

for tracking the processing of the untrusted content and prevent them from compromising

the document structure integrity. In Noncespaces, the web application partitions content

on a web page into different trust classes represented as random XML namespace pre-

fixes and also specifies the policies for each trust class, which are enforced in the browser.

BluePrint [55] works on a different assumption. It does not put any trust on the browser.

Instead, the web application takes control of parsing web pages. It carefully transports and

reproduces a blueprint of an untrusted web content that is free of XSS attacks. These ap-

proaches represent the most recent advances on XSS attack detection. However, they do

not provide a general protection against other types of injection attacks.

Perl has a taint mode [87] that tracks taint information at a coarse granularity – that of
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variables. In Perl, one has to explicitly untaint data before using it in a security sensitive

context. This is usually done after performing appropriate validations. In our approach,

due to the flexibility provided by our policy language, we have not faced a need for such

explicit untainting. Nevertheless, if a user explicitly wants to trust some input, a primitive

can be easily added to support this.



Chapter 7

Motivation for Taint-Enhanced Policies

In this chapter, we present motivating attack examples. We conclude by pointing out the

integral role played by taint analysis as well as security policies in detecting these attacks.

7.1 SQL and Command Injection

Figure 1.3 shows an example of common injection attacks, which involve untrusted

inputs being used as to construct commands executed by command interpreters (e.g., bash)

or the argument to execve system call.

SQL injection is a common vulnerability in web applications. These server-side appli-

cations communicate with a web browser client to collect data, which is subsequently used

to construct an SQL query that is sent to a back-end database. Consider the statement (writ-

ten in PHP) for constructing an SQL query used to look up the price of an item specified

by the variable name.

$cmd = "SELECT price FROM products WHERE name = ’" . $name . "’"

If the value of name is assigned from an HTML form field that is provided by an untrusted

user, then an SQL injection is possible. In particular, an attacker can provide the following

value for name:
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xyz’; UPDATE products SET price = 0 WHERE name = ’OneCaratDiamondRing

With this value for name, cmd will take the value:

SELECT ... WHERE name =

’ xyz’; UPDATE products SET price = 0 WHERE name = ’OneCaratDiamondRing ’

Note that semicolons are used to separate SQL commands. Thus, the query constructed

by the program will first retrieve the price of some item called xyz, and then set the price

of another item called OneCaratDiamondRing to zero. This attack enables the attacker

to purchase this item later for no cost.

Our taint-enhanced policy enforcement approach can detect both SQL and command

injections. In this SQL injection example, fine-grained taint analysis will mark every char-

acter in the query that is within the box as tainted. Now, a policy that precludes tainted

control-characters (such as semicolons and quotes) or commands (such as UPDATE) in the

SQL query will defeat the above attack. A more refined policy is described in Section 9.3.

7.2 Cross-Site Scripting (XSS)

Consider an example of a bank that provides a “ATM locator” web page that customers

can use to find the nearest ATM machine, based on their ZIP code. Typically, the web page

contains a form that submits a query to the web site, which looks as follows:

http://www.xyzbank.com/findATM?zip=90100

If the ZIP code is invalid, the web site typically returns an error message such as:

<HTML> ZIP code not found: 90100 </HTML>

Note in the above output from the web server, the user-supplied string 90100 is repro-

duced. This can be used by an attacker to construct an XSS attack as follows. To do this,

the attacker may send an HTML email to an unsuspecting user, which contains text such

as:
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To claim your reward, please click <a href="http://www.xyzbank.com/

findATM?zip=<script%20src=’http://www.attacker.com/malicious_script.js’>

</script>">here</a>

When the user clicks on this link, the request goes to the bank, which returns the following

page:

<HTML> ZIP code not found: <script

src=’http://www.attacker.com/malicious_script.js’></script> </HTML>

The victim’s browser, on receiving this page, will download and run Javascript code from

the attacker’s web site. Since the above page was sent from http://www.xyzbank.com,

this script will have access to sensitive information stored on the victim computer that

pertains to the bank, such as cookies. Thus, the above attack will allow cookie information

to be stolen. Since cookies are often used to store authentication data, stealing them can

allow attackers to perform financial transactions using victim’s identity.

Fine-grained taint analysis will mark every character in the zip code value as tainted.

Now the above cross-site scripting attack can be prevented by disallowing tainted script

tags in the web application output.

7.3 Format String Attacks

The printf family of functions (which provide formatted printing in C) take a format

string as a parameter, followed by zero or more parameters. A common misuse of these

functions occurs when untrusted data is provided as the format string, as in the statement

“printf(s).” If s contains an alphanumeric string, then this will not cause a problem, but

if an attacker inserts format directives in s, then she can control the behavior of printf.

In the worst case, an attacker can use the “%n” format directive, which can be used to

overwrite a return address with attacker-provided data, and execute injected binary code.
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When fine-grained taint analysis is used, the format directives (such as “%n”) will be

marked as tainted. The above attack can be then prevented by a taint-enhanced policy that

disallows tainted format directives in the format string argument to the printf family of

functions.

7.4 Memory Error Exploits

There are many different types of memory error exploits, such as stack-smashing, heap-

overflows and integer overflows. All of them share the same basic characteristics: they

exploit bounds-checking errors to overwrite security-critical data, almost always a code

pointer or a data pointer, with attacker-provided data. When fine-grained taint analysis is

used, it will mark the overwritten pointer as tainted. Now, this attack can be stopped by a

policy that prohibits dereferencing of tainted pointers.

7.5 Attacks that “Hijack” Access Privileges

In this section, we consider attacks that attempt to evade detection by staying within

the bounds of normal accesses made by an application. These attacks are also referred to

as the confused deputy attacks [43].

Consider a web browser vulnerability that allows an attack (embedded within a web

page) to upload an arbitrary file f owned by the browser user without the user’s consent.

Since the browser itself needs to access many of the user’s files (e.g., cookies), a policy that

prohibits access to f may prevent normal browser operations. Instead, we need a policy

that can infer whether the access is being made during the normal course of an operation

of the browser, or due to an attack. One way to do this is to take the taint information

associated with the file name. If this file is accessed during normal browser operation, the

file name would have originated within its program text or from the user. However, if the
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file name originated from a remote web site (i.e., an untrusted source), then it is likely to be

an attack. Similar examples include attacks on (a) P2P applications to upload (i.e., steal)

user files, and (b) FTP servers to download sensitive files such as the password file that are

normally accessed by the server.

A variant of the above scenario occurs in the context of directory traversal attacks,

where an attacker attempts to access files outside of an authorized directory, e.g., the docu-

ment root in the case of a web server. Typically, this is done by including “..” characters

in file names to ascend above the document root. In case the victim application already

incorporates checks for “..” characters, attacker may attempt to evade this check by re-

placing “.” with its hexadecimal or Unicode representation, or by using various escape

sequences. A taint-enhanced policy can be used to selectively enforce a more restrictive

policy on file access when the file name is tainted, e.g., accesses outside of the document

root directory may be disallowed. Such a policy would not interfere with the web server’s

ability to access other files, e.g., its access log or error log.

The key point about all attacks discussed in this section is that conventional access con-

trol policies cannot detect them. This is because the attacks do not stray beyond the set

of resources that are normally accessed by a victim program. However, taint analysis pro-

vides a clue to infer the intended use of an access. By incorporating this inferred intent in

granting access requests, taint-enhanced policies can provide better discrimination between

attacks and legitimate uses of the privileges granted to a victim application.

7.6 Discussion

The examples discussed above bring out the following important points:

• Importance of fine-grained taint information. If we used coarser granularity for taint-

tracking, e.g., by marking a program variable as tainted or untainted, we would not

be able to detect most of the attacks described above. For instance, in the case of
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SQL injection example, the variable cmd containing the SQL query will always be

marked as tainted, as it derives part of its value from an untrusted variable name.

As a result, we cannot distinguish between legitimate uses of the web application,

when name contains an alphanumeric string, from an attack, when name contains

characters such as the semicolon and SQL commands. A similar analysis can be

made in the case of stack-smashing and format-string attacks, cross-site scripting,

directory traversal, and so on.

• Need for taint-enhanced policies. It is not possible to prevent these attacks by enforc-

ing conventional access control policies. For instance, in the SQL injection example,

one cannot use a policy that uniformly prevents the use of semicolons and SQL com-

mands in cmd: such a policy would preclude any use of the database, and cause the

web application to fail. Similarly, in the memory error example, one cannot have a

working program if all control transfers through pointers are prevented. Finally, the

examples in Section 7.5 were specifically chosen to illustrate the need for combining

taint information into policies.

Another point to be made in this regard is that attacks are not characterized simply

by the presence or absence of tainted information in arguments to security-critical

operations. Instead, it is necessary to develop policies that govern the manner in

which tainted data is used in these arguments.



Chapter 8

Transformation for Taint Tracking

8.1 Runtime Representation of Taint

Our technique tracks taint information at the level of bytes in memory. This is necessary

to ensure accurate taint-tracking for type-unsafe languages such as C, since the approach

can correctly deal with situations such as out-of-bounds array writes that overwrite adjacent

data. A one-bit taint-tag is used for each byte of memory, with a ‘0’ representing the

absence of taint, and a ‘1’ representing the presence of taint. A bit-array tagmap stores

taint information. The taint bit associated with a byte at address a is given by tagmap[a].

8.2 Transformation for Fine-Grained Taint Tracking

The source-code transformation described in this section is designed to track explicit

information flows that take place through assignments and arithmetic and bit-operations.

Flows that take place through conditionals are addressed in Section 8.3. It is unusual in

C programs to have boolean-valued variables that are assigned the results of relational or

logical operations. Hence we have not considered taint propagation through such operators

in this dissertation. At a high-level, explicit flows are simple to understand:
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E T (E) Comment
c 0 Constants are untainted
v tag(&v, sizeof(v)) tag(a, n) refers to n bits

starting at tagmap[a]
&E 0 An address is always untainted
∗E tag(E, sizeof(∗E))
(cast)E T (E) Type casts don’t change taint.
op(E) T (E) for arithmetic/bit op

0 otherwise
E1 op E2 T (E1) || T (E2) for arithmetic/bit op

0 otherwise

Figure 8.1: Definition of taint for expressions

S Trans(S)
v = E v = E;

tag(&v, sizeof(v)) = T (E);
S1;S2 Trans(S1);Trans(S2)
if (E) S1 else S2 if (E) Trans(S1) else Trans(S2)
while (E) S while (E) Trans(S)
return E return (E, T (E))
f(a) { S } f(a, ta) { tag(&a, sizeof(a)) = ta;Trans(S)}
v = f(E) (v, tag(&v, sizeof(v))) = f(E, T (E))
v = (∗f)(E) (v, tag(&v, sizeof(v))) = (∗f)(E, T (E))

Figure 8.2: Transformation of statements for taint tracking

• The result of an arithmetic/bit expression is tainted if any of the variables in the

expression is tainted;

• A variable x is tainted by an assignment x = e whenever e is tainted.

Specifically, Table 8.1 shows how to compute the taint value T (E) for an expression E.

Table 8.2 defines how a statement S is transformed, and uses the definition of T (E). When

describing the transformation rules, we use a simpler form of C (e.g. expressions have

no side effects). In our implementation, we use the CIL [57] toolkit as the C front end to

provide the simpler C form that we need.
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The transformation rules are self-explanatory for most part, so we explain only the

function-call related transformations. Consider a statement v = f(E), where f takes a

single argument. We introduce an additional argument ta in the definition of f so that the

taint tag associated with its (single) parameter could be passed in. ta is explicitly assigned

as the taint value of a at the beginning of f ’s body. (These two steps are necessary since the

C language uses call-by-value semantics. If call-by-reference were to be used, then neither

step would be needed.) In a similar way, the taint associated with the return value has to

be explicitly passed back to the caller. We represent this in the transformation by returning

a pair of values as the return value. (In our implementation, we do not actually introduce

additional parameters or return values; instead, we use a second stack to communicate

the taint values between the caller and the callee.) It is straight-forward to extend the

transformation rules to handle multi-argument functions.

We conclude this section with a clarification on our notion of soundness of taint in-

formation. Consider any variable x at any point during any execution of a transformed

program, and let a denote the location of this variable. If the value stored at a is obtained

from any tainted input through assignments and arithmetic/bit operations, then tagmap[a]

should be set. Note that by referring to the location of x rather than its name, we require

that taint information be accurately tracked in the presence of memory errors. To support

this notion of soundness, we needed to protect the tagmap from corruption, as described

in Section 8.5.

8.3 Support for Implicit Information Flow

Implicit information flow occurs when the values of certain variables are related by

virtue of program logic, even though there are no assignments between them. A classic

example is given by the code snippet [74]:

x=x%2; y=0; if (x==1) y=1;
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Even though there is no assignments involving x and y, their values are always the same.

The need for tracking such implicit flows has long been recognized. [40] formalized im-

plicit flows using a notion of noninterference. Several recent research efforts [56, 85, 59]

have developed techniques based on this concept.

Noninterference is a very powerful property, and can capture even the least bit of cor-

relation between sensitive data and other data. For instance, in the code:

if (x > 10000) error = true;

if (!error) { y = "/bin/ls"; execve(y); }

there is an implicit flow from x to error, and then to y. Hence, a policy that forbids tainted

data to be used as an execve argument would be violated by this code. This example

illustrates why non-interference may be too conservative (and hence lead to false positives)

in our application. In the context of the kinds of attacks we are addressing, attackers usually

need more control over the value of y than the minimal relationship that exists in the code

above. Thus, it is more appropriate to track explicit flows. Nevertheless, there can be cases

where substantial information flow takes place without assignments, e.g., in the following

if-then-else, there is a direct flow of information from x to y on both branches, but our

formulation of explicit information flow would only detect the flow in the else statement.

if (x == 0) y = 0; else y = x;

The goal of our approach is to support those implicit flows where the value of one variable

determines the value of another variable. By using this criteria, we seek a balance be-

tween tracking necessary data value propagation and minimizing false positives. Currently,

our implementation supports two forms of implicit flows that appear to be common in C

programs.

• Translation tables. Decoding is sometimes implemented using a table look up, e.g.,

y = translation tab[x];
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where translation tab is an array and x is a byte of input. In this case, the

value of x determines the value of y although there is no direct assignment from x

to y. To handle this case, we modify the basic transformation so that the result of an

array access is marked as tainted whenever the subscript is tainted. This successfully

handles the use of translation tables in the PHP interpreter.

• Decoding using if-then-else/switch. Sometimes, decoding is implemented using a

statement of the form:

if (x == ’+’) y = ’ ’;

(Such code is often used for URL-decoding.) Clearly, the value of y can be deter-

mined by the value of x. More generally, switch statements could be used to trans-

late between multiple characters. Our transformation handles them in the same way

as a series of if-then-else statements. Specifically, consider an if-then-else statement

of the form:

if (x == E) { ... y = E′; ... }

If E and E ′ are constant-valued, then we add a tag update tag(y) = tag(x) immedi-

ately before the assignment to y.

While our current technique seems to identify some of the common cases where implicit

flows are significant, it is by no means comprehensive. Development of a more systematic

approach that can provide some assurances about the kinds of implicit flows captured, while

ensuring a low false positive rate, is a topic of future research.

8.4 Optimizations

The basic transformation described above is effective, but introduces high overheads,

sometimes causing a slowdown by a factor of 5 or more. To improve performance, we have
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developed several interesting runtime and compile-time optimizations that have reduced

overheads significantly. More details about the performance can be found in Section 11.2.4.

8.4.1 Runtime Optimizations

In this section, we describe optimizations to the runtime data structures.

Use of 2-bit taint values. In the implementation, accessing of taint-bits requires several

bit-masking, bit-shifting and unmasking operations, which degrade performance signifi-

cantly. We observed that if 2-bit taint tags are used, the taint value for an integer will be

contained within a single byte (assuming 32-bit architecture), thereby eliminating these

bit-level operations. Since integer assignments occur very frequently, this optimization is

quite effective.

This approach does increase the memory requirement for tagmap by a factor of two,

but on the other hand, it opens up the possibility of tracking richer taint information. For

instance, it becomes possible to associate different taint tags with different input sources

and track them independently. Alternatively, it may be possible to use the two bits to

capture “degree of taintedness.”

Allocation of tagmap. Initially, we used a global variable to implement tagmap. But

the initialization of this huge array (1GB) that took place at the program start incurred

significant overheads. Note that tag initialization is warranted only for static data that is

initialized at program start. Other data (e.g., stack and heap data) should be initialized (us-

ing assignments) before use in a correctly implemented program. When these assignments

are transformed, the associated taint data will also be initialized, and hence there is no need

to initialize such taint data in the first place. So, we allocated tagmap dynamically, and ini-

tialized only the locations corresponding to static data. By using mmap for this allocation,
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and by performing the allocation at a fixed address that is unused in Linux (our implemen-

tation platform), we ensured that runtime accesses to tagmap elements will be no more

expensive than that of a statically allocated array (whose base address is also determined at

compile-time).

The above approach reduced the startup overheads, but the mere use of address space

seemed to tie up OS resources such as page table entries, and significantly increased time

for fork operations. For programs such as shells that fork frequently, this overhead be-

comes unacceptable. So we devised an incremental allocation technique that can be likened

to user-level page-fault handling. Initially, tagmap points to 1GB of address space that is

unmapped. When any access to tagmap[i] is made, it results in a UNIX signal due to a

memory fault. In the transformed program, we introduce code that intercepts this signal.

This code queries the operating system to determine the faulting address. If it falls within

the range of tagmap, a chunk of memory (say, 16KB) that spans the faulting address is

allocated using mmap. If the faulting address is outside the range of tagmap, the signal is

forwarded to the default signal handler.

8.4.2 Compile-time Optimizations

Use of local taint tag variables. In most C programs, operations on local variables occur

much more frequently than global variables. Modern compilers are good at optimizing

local variable operations, but due to possible aliasing, most such optimizations cannot be

safely applied to global arrays. Unfortunately, the basic transformation introduces one

operation on a global array for each operation on a local variable, and this has the effect

of more than doubling the runtime of transformed programs. To address this problem we

modified our transformation so that it uses local variables to hold taint information for

local variables, so that the code added by the transformer can be optimized as easily as the

original code.
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Note, however, that the use of local tag variables would be unsound if aliasing of a local

variable is possible. For example, consider the following code snippet:

int x; int *y = &x;

x = u; *y = v;

If u is untainted and v is tainted, then the value stored in x should be tainted at the end of

the above code snippet. However, if we introduced a local variable, say, tag x, to store the

taint value of x, then we cannot make sure that it will get updated by the assignment to *y.

To ensure that taint information is tracked accurately, our transformation uses local

taint tag variables only in those cases where no aliasing is possible, i.e., the optimization

is limited to simple variables (not arrays) whose address is never taken. However, this

alone is not enough, as aliasing may still be possible due to memory errors. For instance,

a simple variable x may get updated due to an out-of-bounds access on an adjacent array,

say, z. To eliminate this possibility, we split the runtime stack into two stacks. The main

stack stores only simple variables whose addresses are never taken. This stack is also used

for call-return. All other local variables are stored in the second stack, also called shadow

stack.

The last possibility for aliasing arises due to pointer-forging. In programs with possible

memory errors, a pointer to a local variable may be created. However, with the above

transformation, any access to the main stack using a pointer indicates a memory error.

We show how to implement an efficient mechanism to prevent access to some sections of

memory in the transformed program. Using this technique, we prevent all accesses to the

main stack except using local variable names, thus ensuring that taint information can be

accurately tracked for the variables on the main stack using local taint tag variables.

Intra-procedural dependency analysis is performed to determine whether a local vari-

able can ever become tainted, and to remove taint updates if it cannot. Note that a local

variable can become tainted only if it is involved in an assignment with a global variable,
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a procedure parameter, or another local variable that can become tainted. Due to aliasing

issues, this optimization is applied only to variables on the main stack.

8.5 Protecting Memory Regions

To ensure accurate taint-tracking, it is necessary to preclude access to certain regions

of memory. Specifically, we need to ensure that the tagmap array itself cannot be written

by the program. Otherwise, tagmap may be corrupted due to programming errors, or even

worse, a carefully crafted attack may be able to evade detection by modifying the tagmap

to hide the propagation of tainted data. A second region that needs to be protected is the

main stack. Third, it would be desirable to protect memory that should not directly be

accessed by a program, e.g., the GOT. (Global Offset Table is used for dynamic linking,

but there should not be any reference to the GOT in the C code. If the GOT is protected in

this manner, that would rule out attacks based on corrupting a function pointer in the GOT.)

The basic idea is as follows. Consider an assignment to a memory location a. Our

transformation ensures that an access to tagmap[a] will be made before a is accessed.

Thus, in order to protect a range of memory locations l—h, it is enough if we ensure

that tagmap[l] through tagmap[h] will be unmapped. This is easy to do, given our

incremental approach to allocation of tagmap. Now, any access to addresses l through h

will result in a memory fault when the corresponding tagmap location is accessed.

Note that l and h cannot be arbitrary: they should fall on a 16K boundary, if the page

size is 4KB and if 2 bit tainting is used. This is because mmap allocates memory blocks

whose sizes are a multiple of a page size. This alignment requirement is not a problem

for tagmap, since we can align it on a 16K boundary. For the main stack, a potential

issue arises because the bottom of the stack holds environment variables and command-

line arguments that are arrays. To deal with this problem, we first introduce a gap in the

stack in main so that its top is aligned on a 16K boundary. The region of main stack above
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this point is protected using the above mechanism. This means that it is safe to use local

tag variables in any function except main.



Chapter 9

Input Marking and Policy Specification

9.1 Marking Trusted and Untrusted Inputs

Marking involve associating taint information with all the data coming from external

sources. If all code, including libraries, is transformed, then marking needs to be specified

for system calls that return inputs, for environment variables and command-line arguments.

(If some libraries are not transformed, then marking specifications may be needed for un-

transformed library functions that perform inputs.) Note that we can treat command-line

arguments and environment variables as arguments to main. Thus, marking specifications

can, in every case, be associated with a function call.

Input marking are specified using a simple policy language. Each policy rule is of the

form pattern −→ action, where pattern is of the form function | condition. When

the specified function returns, and (the optional) condition holds, action will be executed.

The event corresponding to a function will take an additional argument that captures the

return value from the function. Both the condition and the action can use external functions

(written in C or C++). Moreover, the action can include arithmetic and logical operations,

as well as if-then-else. Consider the following example:
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read(fd, buf, size, rv)|(rv > 0) →

if (isNetworkEndpoint(fd)) taint_buffer(buf, rv);

else untaint_buffer(buf, rv);

This rule states that when the read function returns, the buf argument will be tainted,

based on whether the read was from a network or not, as determined by the external

function isNetworkEndpoint. The actual tainting is done using two support functions

taint buffer and untaint buffer.

Note that every input action needs to have an associated marking rule. To reduce the

burden of writing many rules, we provide default rules for all system calls that untaint the

data returned by each system call. Specific rules that override these default rules, such as

the rule given above, can then be supplied by a user.

9.2 Specifying Taint-Enhanced Policies

Security policies are also written in the afore-mentioned policy language, but these rules

are somewhat different from the marking rules. For a policy rule involving a function f ,

its condition component is examined immediately before any invocation of f . To simplify

the policy specification, abstract events can be defined to represent a set of functions that

share the same security policy. (Abstract events can be thought of as macros.)

The definition of condition is also extended to support regular-expression based pat-

tern matching, using the keyword matches. We use taint-annotated regular expressions

defined as follows. A tainted regular expression is obtained for a normal regular expres-

sion by attaching a superscript t, T or u. A string s will match a taint-annotated regular

expression rt provided that s matches r, and at least one of the characters in s is tainted.

Similarly, s will match rT provided all characters in s are tainted. Finally, s will match ru

provided none of the characters in s are tainted.
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Attack Type Policy Comment

Control-flow
hijack

jmp(addr) |
addr matches (any+)t → term()

Tainted values cannot be
used as a target of control
transfer

Format string
Format ="%[ˆ%]"
vfprintf(fmt) |

fmt matches any∗ (Format)Tany∗ → reject()

Format directives (e.g.%n)
should not be tainted

Directory
traversal

DirTraversalModifier = ".."
file function(path) =

open(path, ) || unlink(path) || ...
file function(path) |

path matches
any ∗ (DirTraversalModifier)Tany∗
&& escapeRootDir(path)→ reject()

If path contains tainted di-
rectory traversal strings (e.g.
“..”), then the real path of
path should not go outside
the top level directories that
are allowed to be accessed
by the program, e.g. Doc-
umentRoot and cgi-bin for
httpd

Cross-site
scripting

ScriptTag = "<script" | ...
html print function(str) |

str matches
(StrIdNum|Delim) ∗ (ScriptTag)Tany∗
→ reject()

No tainted script tags (e.g.
script) should be output to
HTML.

SQL
injection

SqlMetachar = "’" | ";" | "/*" | ...
sql query function(query) |

query matches
(StrIdNum|Delim) ∗ SqlMetachar)Tany∗
→ reject()

SQL query string should not
contain tainted SQL meta-
chars

Shell
command
injection

ShellMetachar = ";" | "&&" | ...
shell command function(cmd) |

cmd matches
(StrIdNum|Delim) ∗ (ShellMetachar)Tany∗
→ reject()

cmd argument of system
or popen should not contain
tainted shell meta-chars

Figure 9.1: Illustrative security policies

The predefined pattern any matches any single character. Parentheses and other stan-

dard regular expression operators are used in the usual way. Moreover, taint-annotated reg-

ular expressions can be named, and the name can be reused subsequently, e.g., StrIdNum

used in many sample policy rules is defined as:

StrIdNum = String | Id | Num

where String, Id and Num denote named regular expressions that correspond respectively

to strings, identifiers and numbers. Also, Delim denotes delimiters.
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Table 9.1 shows the examples of a few simple policies to detect various attacks. The

action component of these policies make use of two support functions: term() terminates

the program execution, while reject() denies the request and returns with an error.

For the control-flow hijack policy, we use a special keyword jmp as a function name, as

we need some special way to capture low-level control-flow transfers that are not exposed

as a function call in the C language. The policy states that if any of the bytes in the target

address are tainted, then the program should be terminated.

For format string attacks, we only define a policy for vfprintf, because vfprintf is

the common function used internally to implement all other printf family of functions.

All format directives in a format string begin with a “%”, and are followed by a character

other than “%”. (The sequence “%%” will simply print a “%”, and hence can be permitted in

the format string.)

Example policies to detect four other attacks, namely, directory traversal, cross-site

scripting, SQL injection and shell command injection are also shown in Table 9.1. The

comments associated with the policies provide an intuitive description of the policy. These

policies were able to detect all of the attacks considered in our evaluation.

9.3 Refining Taint-Enhanced Policies

The main contribution of our approach is to show the feasibility and practicality of using

fine-grained taint information in developing policy-based attack detection. The availability

of fine-grained taint information makes our policies significantly more precise than tra-

ditional access-control policies. Moreover, our approach empowers system administrators

and security professionals to update and refine these policies to improve protection, without

having to wait for the patches of a newly discovered attack avenue.

Having said the above, we note that policy development effort is an important concern

with any policy enforcement technique. In particular, there is a trade-off between policy



CHAPTER 9. INPUT MARKING AND POLICY SPECIFICATION 105

precision and the level of effort required. If one is willing to tolerate false positives, policies

that produce very few false negatives can be developed with modest effort. Alternatively,

if false negatives can be tolerated, then false positives can be kept to a minimum with little

effort. To contain both false positives and false negatives, more effort needs to be spent on

policy development, taking application-specific or installation-specific characteristics.

These remarks about policy-based techniques are generally applicable to our approach

as well. Although the example policies shown in Table 9.1 were able to stop the attacks

in our experiments, many of them need further improvement before they can stand up to

skilled attackers that are knowledgeable about the policies being enforced. We outline the

ways to improve these policies. We do not discuss the refinement of the control-flow hijack

policy because it is already accurate enough to capture all attacks that use corruption of

code pointers as the basis to alter the control-flow of programs.

9.3.1 Lexical Confinement Policies

The policy shown in Table 9.1 does not address attacks that inject only SQL keywords

(e.g., the UNION operation) to alter the meaning of a query. This can be addressed by

lexical confinement taint-enhanced policies. The idea is to perform a lexical analysis on

the SQL query to break it up into tokens. SQL injection attacks are characterized by the fact

that multiple tokens appear in the place of one, e.g., multiple keywords and meta-characters

were provided by the attacker in the place of a simple string value in the attack examples

discussed earlier. Thus, systematic protection from SQL injections can be obtained using a

lexical confinement policy that prevents tainted strings from spanning multiple tokens. A

similar approach is suggested in [70], although the conditions are not defined as precisely.

Command injection attacks are similar to SQL injection attacks in many ways, and

hence a lexical confinement policy is a good choice for them as well. Though we should

note that there are some differences between SQL and command injection, e.g., shell syntax
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is much more complex than SQL syntax. Moreover, we may want to restrict the command

names so that they are not tainted.

Lexical confinement policies requires a lexical tokenization task that is (almost invari-

ably) implemented using regular expression based specifications. Thus, these policies are

amenable to expression using our policy language. One could argue that a regular expres-

sion to recognize tokens would be complex, and hence a policy may end up using a simpler

approximation to tokenization. This discussion shows that the usual trade-off in policy

based attack detection between accuracy and policy complexity continues in the case of

taint-enhanced policies as well. Nevertheless, it should be noted that for a given policy de-

velopment effort, taint-enhanced policies will be significantly more accurate than policies

that do not incorporate any knowledge about taint.

9.3.2 Syntactic Confinement Policies

Su and Wassermann proposed syntactic confinement to characterize and detect SQL in-

jections based on a syntactic analysis of SQL queries [81, 82]. The syntactic confinement

approach also uses taint information to identify untrusted inputs for its policy enforcement.

It constructs and examines the parse tree of each generated SQL query. The syntactic con-

finement policies require that the tainted input be syntactically isolated within the generated

SQL query. In other words, a tainted input cannot straddle different syntactic subtrees.

Both syntactic confinement and lexical confinement policies can detect injection attacks

that alter the syntactical structure of a command using the tainted data. However, syntactic

confinement is more general than lexical confinement. It can allow benign queries or com-

mands in which multiple consecutive arguments of a command come from user-provided

inputs, while still prevent command names and command separators from being tainted. In

most applications, such policies can stop SQL and command injection attacks while per-

mitting more flexible uses of user input data in constructing the parameters of back-end
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operations (e.g. SQL queries and shell commands) [76].

The work of Su et al in [81] focused on providing a precise characterization of SQL in-

jection attacks. Their methods require a full parser of each supported language (e.g. SQL,

shell commands, HTML). Recently, Sekar [76] proposed a rough-parser based syntax-

aware taint-enhanced policy framework. It is accomplished by defining a simple and

generic AST structure as the intermediate representation. A rough-parser of each sup-

ported language can then be used to identify only the structure of syntactic elements most

relevant to attack detection, such as command names, command parameters and separa-

tors. The rough-parser does not need to understand every detail of the language grammar

and differences between language variations across different platforms and products. For

example, an HTML parser does not need to distinguish between many HTML tags. This

approach still retains most benefits of syntactic confinement policies, while significantly

reducing the efforts required to develop such policies and their enforcement techniques.

The cross-site scripting policy in Table 9.1 does not address variations of the ba-

sic attack, e.g., attackers can evade this policy by injecting the malicious script code

in “onmouseover=malicious()” or “<img src="javascript:malicious()">”,

which is not a block enclosed by the script tag. To detect these XSS variations, one

can develop a syntactic confinement policy that understands the different HTML tag pat-

terns in which a malicious script can be injected into dynamic HTML pages and prevent

the use of such tainted patterns in HTML outputs.

9.3.3 Other Policy Refinements

The format string attack policy shown in Table 9.1 tends to err on the side of producing

false positives, by disallowing all use of tainted format directives. However, it is conceiv-

able that some applications may be prepared to receive a subset of format directives in

untrusted inputs, and handle them correctly. In such cases, this application knowledge can
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be used by a system administrator to use a less restrictive policy, e.g., allowing the use of

format directives other than %n. This should be done with care, or else it is possible to

write policies that prevent the use of %n, but allow the use of variants such as %5n that

have essentially the same effect. Alternatively, the policy may be relaxed to permit specific

exceptions to the general rule that there be no format directives, e.g., the rule:

vfprintf(fmt) |

fmt matches any∗ (Format)Tany∗ &&

(!(fmt matches "[ˆ%]*%s[ˆ%]*"))→ reject()

allows the use of a single %s format directive from untrusted sources, in addition to permit-

ting format strings that contain untainted format directives.

The directory traversal policy also tends to err on the side of false positives, since it

precludes all accesses outside the authorized top level directories (e.g. DocumentRoot and

cgi-bin) of a web server if components of the file name being accessed are coming from

untrusted sources. In devising this policy, we relied on application-specific knowledge,

namely, the fact that web servers do not allow clients to access files outside the top level

directories specified in the server configuration file. Another point to be noted about this

policy is that variants of directory traversal attack that do not escape these top level direc-

tories, but simply attempt to fool per-directory access controls, are not addressed by our

policy.
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Experimental Evaluation
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Chapter 10

Experiments: Memory Safety

Enforcement

10.1 Implementation

We have implemented the shadow metadata structure based transformation as described

in Chapter 4. In this section, we present its experimental results in Section 10.2. We leave

the implementation and evaluation of the shadow metadata memory based transformation

for our future work, though we expect it would have similar effectiveness and performance

results.

Our approach is implemented as a syntax-directed source-source transformation tool

to instrument C programs. It uses CIL [57] as the front end and Objective Caml as the

implementation language. C is a very complex language to deal with for program analysis

and transformation. Our transformation work was considerably simplified by the interme-

diate language provided by CIL which consists of a clean subset of C constructs that can

be easily manipulated and then emitted as C source code.

To evaluate the performance of our implementation, we applied our transformation on
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a number of test programs from Olden [22], SPECINT [4, 3] benchmarks and UNIX utility

programs. We used the Olden benchmarks included in the CCured package because the

original benchmarks do not run on Linux. Our implementation is able to process many

moderate-sized programs — five of our test programs are over 10K lines of code.

Some of our benchmarks made use of user-defined memory allocation functions that are

functionally different from malloc. We have modified these programs to replace the calls

to these functions with standard memory allocation functions such as malloc and calloc.

No other source code modifications were required by our source code transformer.

10.2 Evaluation

10.2.1 Effectiveness

In our experiments, our implementation successfully detected several memory error

bugs which have been reported in previous research [62] in the SPECINT benchmarks:

compress contains an array out-of-boundary error, and go contains several array out-

of-boundary errors. In addition, our implementation detected an unreported array out-of-

boundary bug in the UNIX utility program patch. We have also written a number of test

programs that contains both temporal and spatial memory errors. Our implementation was

able to detect all the memory errors in these test programs at runtime. All of these provide

evidences to show that our implementation indeed works to identify memory access errors.

10.2.2 Performance

We compared the performance of original programs and transformed programs. Both

of them were compiled using gcc version 3.2.2 with -O2 optimization, and executed on

an Intel Xeon 3.06GHz workstation with 3GB RAM running Red Hat Linux 9. All the

execution times were measured using the total of system time and user time reported by
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Execution time Peak heap usage Executable size
Program Lines of Orig. Trans. Orig. Trans. Orig. Trans.

code (sec.) Ratio (MB) Ratio (KB) Ratio
Olden
bh 2080 1.37 2.82 0.17 4.76 81.7 1.97
bisort 684 0.66 1.76 1.57 5.51 30.6 1.43
em3d 561 2.77 1.79 6.53 3.13 44.7 1.14
health 709 1.08 2.72 2.33 5.45 50.9 1.21
mst 592 2.43 1.76 71.34 3.36 47.8 1.10
perimeter 395 1.49 3.37 2.74 4.72 29.6 1.04
power 763 1.81 1.22 0.42 3.12 43.8 1.54
treeadd 370 0.26 3.23 25.17 5.34 34.2 0.94
tsp 565 1.23 2.28 9.44 3.36 33.8 1.41
AVG 2.33 4.31 1.31
SPECINT
099.go 29262 19.29 2.60 0.00 1.00 437.8 2.51
129.compress 1939 2.69 1.85 0.00 1.00 103.6 1.17
164.gzip 8620 1.21 1.46 6.61 1.08 166.5 1.34
175.vpr 17897 0.93 3.53 0.91 1.86 408.2 3.23
181.mcf 2413 0.20 2.85 96.59 3.01 129.5 1.10
AVG 2.46 1.59 1.87
Utilities
bc-1.06 14264 2.59 2.69 0.09 2.67 191.1 2.82
gzip-1.2.4 8163 1.59 1.54 0.00 1.00 168.4 1.78
patch-2.5.4 11533 0.52 1.12 10.20 1.40 234.3 2.91
tar-1.12 24339 1.01 1.14 0.04 1.25 467.1 1.98
AVG 1.62 1.58 2.37

Figure 10.1: Transformation performance for Olden/SPECINT benchmarks and UNIX util-
ities. A ratio 1.22 means that the transformed program was 22% slower/larger than the
original.

time. Figure 10.1 shows the overall performance of our transformation.

Execution overhead The third and fourth columns of Figure 10.1 are the comparison

of execution time of original and transformed programs. For the Olden benchmarks, the

transformed programs have a slowdown of 1.22 to 3.37, with an average of 2.33; for the

SPECINT benchmarks, the slowdown ranges from 1.46 to 3.53, with an average of 2.46;

for the UNIX utility programs, the range of slowdown is between 1.12 and 2.69, and the
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Transformed (ratio in execution time)
Program Spatial Spatial Spatial

& Temporal & Temporal
& RTTI

Olden
bh 1.88 2.60 2.82
bisort 1.45 1.61 1.76
em3d 1.36 1.83 1.79
health 1.97 2.47 2.72
mst 1.32 1.59 1.76
perimeter 1.82 2.11 3.37
power 1.17 1.20 1.22
treeadd 1.81 2.73 3.23
tsp 1.81 1.88 2.28
AVG 1.62 2.00 2.33
SPECINT
099.go 2.44 2.56 2.60
129.compress 1.37 1.65 1.85
164.gzip 1.15 1.33 1.46
175.vpr 2.05 2.88 3.53
181.mcf 2.50 2.85 2.85
AVG 1.90 2.25 2.46
Utilities
bc-1.06 1.96 2.49 2.69
gzip-1.2.4 1.46 1.47 1.54
patch-2.5.4 1.06 1.06 1.12
tar-1.12 1.05 1.19 1.14
AVG 1.38 1.55 1.62
AVG 1.65 1.97 2.21

Figure 10.2: Performance overheads of checking different memory errors

average is 1.62.

Memory overhead The fifth and sixth columns of Figure 10.1 present the peak heap

memory usage of both original and transformed programs. The main source of overhead in

transformed programs is the space for storing info structures for the pointers that would be

stored in each malloc’d block. Since there are four fields in the info structure associated

with a pointer, the increase in memory usage can be 5 times in the worst case. Many Olden
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benchmarks use malloc primarily to allocate structures that contain mostly pointers. Thus,

the memory overhead in these programs is close to this worst case possibility. For some

programs, the increase exceeds a factor of 5 since there are other sources for memory

overhead that also need to be considered. These include a fixed-length blkheader for

each heap memory allocation, and the memory used for HCS and SCS.

Most of the SPECINT benchmarks and the UNIX utilities we have tested do not store

many pointers in heap, hence they do not increase heap memory usage significantly.

Analysis of performance We first studied the performance overheads due to different

kinds of checks inserted by our transformation: (a) checks for detecting spatial memory

errors, (b) checks for detecting temporal memory errors, and (c) checks for verifying up-

casts and downcasts using run-time type information. Columns 2-4 of Figure 10.2 show

the normalized execution time for (a), (a)+(b), and (a)+(b)+(c) as compared to the origi-

nal execution time of each program. The average execution time overheads for the three

combinations are 65%, 96% and 121% for all the test programs.

We then studied the effectiveness of the optimizations. Previous research efforts on

detecting both spatial and temporal errors have reported much higher runtime overheads

than what is shown in Figure 10.1. Typical slowdowns are by about a factor of 4. In order

to understand the source of performance improvement in our approach, we measured the

execution time of our approach with each of the optimizations discussed in Section 4.5.

The second column in Figure 10.3 shows the slowdown when we combined the header

and info metadata together. Note that the slowdown has now increased to about a factor

of 4, which is consistent with the results reported by previous researchers. Column 3 of this

table demonstrates that significant improvement in performance is obtained as a result of

splitting the metadata into header and info variables. By eliminating unnecessary SCS

operations, further significant decrease in overheads is obtained, as shown in the fourth

column of the table. Finally, by converting the info structures into individual variables,
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we enable gcc to aggressively perform other optimizations. This factor leads to a further

modest decrease in overhead. Together, these optimizations reduce the runtime overhead

by about a factor of two.

The effectiveness of each optimization varies depending on the characteristics of the

test programs. Programs that make a large number of function calls (e.g. perimeter) can

benefit more from unnecessary SCS operation eliminations than programs that make fewer

function calls (e.g. health). Programs that have a higher ratio of the number of pointer

assignments over the number of pointer dereferences (e.g. compress) can have more

performance improvement due to the separation of header and info.

Performance comparison with related approaches Since the primary goal of our work

is to detect both spatial and temporal errors, we limit our detailed comparison in this section

to previous techniques that are capable of detecting both types of errors. It should be

noted, however, that the comparison results should be interpreted carefully, since the set of

benchmarks used in the related works are different from those used by us.

Patil and Fischer’s shadow processing [68] is similar to our basic transformation, but

has no support for downcasts. The approach checks all the temporal and spatial memory

errors. Its overheads for a subset of the SPECINT benchmark programs is on an average

of 538%, which is much higher than our result of 121%. The closely related approach

Safe-C [13] also reports overheads over 300%.

The bounds-checking work of Jones and Kelly [49] provides better compatibility than

our approach with untransformed external libraries. In particular, they do not require wrap-

per functions to be developed for such libraries, even if they return dynamically allocated

data structures. On the downside, their approach incurs higher overheads, and moreover,

does not detect dangling pointers to reallocated memory. They report a slowdown by a

factor of 5 to 6 for most programs. Their work was initially distributed as an extension

to gcc 2.7, and further work has continued on this approach, yielding gcc patches for
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Transformed (ratio in execution time)
Program H/I merged H/I sep. H/I sep. H/I sep.

SCS elim. SCS elim.
Info split

Olden
bh 5.24 4.18 3.92 2.82
bisort 2.61 2.17 1.76 1.76
em3d 1.92 1.83 1.81 1.79
health 3.07 2.79 2.72 2.72
mst 2.28 2.06 1.77 1.76
perimeter 7.89 6.15 3.51 3.37
power 1.71 1.66 1.22 1.22
treeadd 4.92 4.12 3.96 3.23
tsp 4.44 3.06 2.28 2.28
AVG 3.79 3.11 2.55 2.33
SPECINT
099.go 3.46 3.06 2.65 2.60
129.compress 5.32 3.82 2.11 1.85
164.gzip 3.03 2.38 1.54 1.46
175.vpr 4.49 3.99 3.67 3.53
181.mcf 5.60 3.90 2.90 2.85
AVG 4.38 3.43 2.57 2.46
Utilities
bc-1.06 9.60 3.74 3.51 2.69
gzip-1.2.4 2.44 2.06 1.92 1.54
patch-2.5.4 1.27 1.13 1.12 1.12
tar-1.12 1.28 1.23 1.12 1.14
AVG 3.65 2.04 1.92 1.62
AVG 3.92 2.96 2.42 2.21

Figure 10.3: Effectiveness of optimizations

subsequent versions of gcc. Most recent performance data for this method can be found in

Ruwase and Lam [73], where they present an improvement to the original technique which

has better compatibility with existing C programs. They report performance overheads that

are virtually identical to that of the bounds-checking extension to gcc version 3.3.1. Their

overheads for the common test programs such as gzip are about twice as much compared

to our approach. In terms of worst case performance, they report slowdowns by a factor of

more than 10, whereas the worst case slowdown reported for our work in Figure 10.1 is by
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a factor less than 4.

Yong and Horwitz [93] describe an approach which is similar to Purify [44] but is

enhanced using global static analysis. They report an average overhead of 37% on the

Olden benchmark. This is better than our result of 133%, but this improvement is obtained

in their approach by checking pointer errors to write operations alone. Read operations,

which far outnumber writes in typical programs, are not checked.



Chapter 11

Experiments: Taint-Enhanced Policy

Enforcement

11.1 Implementation

We have implemented the program transformation technique described in Chapter 8.

The transformer consists of about 3,600 lines of Objective Caml code and uses the CIL [57]

toolkit as the front end to manipulate C constructs. Our implementation currently handles

glibc (containing around 1 million LOC) and several other medium to large applications.

The complexity and size of glibc demonstrated that our implementation can handle “real-

world” code. We summarize some of the key issues involved in our implementation.

11.1.1 Coping with Untransformed Libraries

Ideally, all the libraries used by an application will be transformed using our technique

so as to enable accurate taint tracking. In practice, however, source code may not be avail-

able for some libraries, or in rare cases, some functions in a library may be implemented in
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an assembly language. One option with such libraries is to do nothing at all. Our implemen-

tation is designed to work in these cases, but clearly, the ability to track information flow

via untransformed functions is lost. To overcome this problem, our implementation offers

two features. First, it produces warnings when a certain function could not be transformed.

This ensures that inaccuracies will not be introduced into taint tracking without explicit

knowledge of the user. When the user sees this warning, she may decide that the function

in question performs largely “read” operations, or will never handle tainted data, and hence

the warning can safely be ignored. If not, then our implementation supports summarization

functions that specify how taint information is propagated by a function. For instance, we

use the following summarization function for the memcpy. Summarization functions can

use support functions to copy taint information. A summarization function for f would be

invoked in the transformed code when f returns.

memcpy(dest, src, n) →

copy_buffer_tagmap(dest, src, n);

So far, we had to write summarization functions for two glibc functions that are writ-

ten in assembly and copy data, namely, memcpy and memset. In addition, gcc replaces

calls to some functions such as strcpy and strdup with its own code, necessitating an

additional 13 summarization functions.

11.1.2 Injecting Marking and Checking Code

In our current implementation, the marking specifications, security policies, and sum-

marization code associated with a function f are all injected into the transformed program

by simply inlining (or explicitly calling) the relevant code before or after the call to f . In

the future, we anticipate these code to be decoupled from the transformation, and be able

to operate on binaries using techniques such as library interposition. This would enable
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CVE# Program Lang. Attack type Attack description
CAN-2003-0201 samba C Stack smashing Buffer overflow in

call trans2open function
CVE-2000-0573 wu-ftpd C Format string via SITE EXEC command
CAN-2005-1365 pico server C Directory

traversal
Command execution via
URL with multiple leading
“/” characters and “..”

CAN-2003-0486 phpBB 2.0.5 PHP SQL injection via topic id parameter
CAN-2005-0258 phpBB 2.0.5 PHP Directory

traversal
Delete arbitrary file via “..”
sequences in avatarselect
parameter

CAN-2002-1341 SquirrelMail
1.2.10

PHP Cross site
scripting

Insert script via the mailbox
parameter in read body.php

CAN-2003-0990 SquirrelMail
1.4.0

PHP Command
injection

via meta-char in“To:” field

CAN-2005-1921 PHP XML-RPC PHP Command
injection

Eval injection

CVE-1999-0045 nph-test-cgi BASH Shell meta-char
expansion

using ’*’ in
$QUERY STRING

Figure 11.1: Attacks used in effectiveness evaluation

a site administrator to alter, refine or customize her notions of “trustworthy input” and

“dangerous arguments” without having access to the source code.

11.2 Evaluation

The main goal of our experiments was to evaluate attack detection (Section 11.2.1), and

runtime performance (Section 11.2.4). False positives and false negatives are discussed in

Sections 11.2.2 and 11.2.3.

11.2.1 Attack Detection

Table 11.1 shows the attacks used in our experiments. These attacks were chosen to

cover the range of attack categories we have discussed, and to span multiple programming
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languages. Wherever possible, we selected attacks on widely-used applications, since it is

likely that obvious security vulnerabilities in such applications would have been fixed, and

hence we are more likely to detect more complex attacks.

In terms of marking, all inputs read from network (using read, recv and recvfrom)

were marked as tainted. Since the PHP interpreter is configured as a module for Apache,

the same technique works for PHP applications as well. Network data is tainted when it is

read by Apache, and this information propagates through the PHP interpreter, and in effect,

through the PHP application as well. The policies used in our attack examples were already

discussed in Section 9.2.

To test our technique, we first downloaded the software packages shown in Table 11.1.

We downloaded the exploit code for the attacks, and verified that they worked as expected.

Then we used transformed C programs and interpreters with policy checking enabled, and

verified that each one of the attacks were prevented by these policies without raising false

alarms.

Network Servers in C.

• wu-ftpd versions 2.6.0 and lower have a format string vulnerability in SITE EXEC

command that allows arbitrary code execution. The attack is stopped by the policy

that the format directive %n in a format string should not be tainted.

• samba versions 2.2.8 and lower have a stack-smashing vulnerability in processing a

type of request called “transaction 2 open.” No policy is required to stop this attack

— the stack-smashing step ends up corrupting some data on the shadow stack rather

than the main stack, so the attack fails.

If we had used an attack that uses a heap overflow to overwrite a GOT entry (which

is common with heap overflows), this too would be detected without the need for

any policies due to the technique described in Section 8.5 for preventing the GOT



CHAPTER 11. EXPERIMENTS: TAINT-ENHANCED POLICY ENFORCEMENT 122

from being directly accessed by the C code. The reasoning is that before the injected

code gets control, the GOT entry has to be clobbered by the existing code in the

program. The instrumentation in the clobbering code will cause a segmentation fault

because of the protection of the GOT, and hence the attack will be prevented. Note

that the GOT is normally used by the PLT (Procedure Linkage Table) code that is in

the assembly code automatically added by the compiler, and is not in the C source

code, so a normal GOT access will not be instrumented with checks on taint tags,

and hence will not lead to a memory fault.

If the attack corrupted some other function pointer, then the “jmp” policy would

detect the use of tainted data in jump target and stop the attack.

• Pico HTTP Server (pServ) versions 3.2 and lower have a directory traversal

vulnerability. The web server does include checks for the presence of “..” in the

file name, but allows them as long as their use does not go outside the cgi-bin

directory. To determine this, pServ scans the file name left-to-right, decrementing

the count for each occurrence of “..”, and incrementing it for each occurrence of “/”

character. If the counter goes to zero, then access is disallowed. Unfortunately, a file

name such as /cgi-bin////../../bin/sh satisfies this check, but has the effect

of going outside the /cgi-bin directory. This attack is stopped by the directory

traversal policy shown in Section 9.2.

Web Applications in PHP.

• phpBB2 SQL injection vulnerability in (version 2.0.5 of) phpBB, a popular electronic

bulletin board application, allows an attacker to steal the MD5 password hash of

another user. The vulnerable code is:

$sql="SELECT p.post_id FROM ... WHERE ... AND p.topic_id =

$topic_id AND ..."
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Normally, the user-supplied value for the variable topic id should be a number, and

in that case, the above query works as expected. Suppose that the attacker provides

the following value:

-1 UNION SELECT ord(substring(user_password,5,1)) FROM phpbb_users

WHERE userid=3/*

This converts the SQL query into a union of two SELECT statements, and comments

out (using “/*”) the remaining part of the original query. The first SELECT returns

an empty set since topic id is set to -1. As a result, the query result equals the

value of the SELECT statement injected by the attacker, which returns the 5th byte in

the MD5 hash of the bulletin board user with the userid of 3. By repeating this attack

with different values for the second parameter of substring, the attacker can obtain

the entire MD5 password hash of another user. The SQL injection policy described

in Section 9.2 stops this attack.

• SquirrelMail cross-site scripting is present in version 1.2.10 of SquirrelMail,

a popular web-based email client, e.g., read body.php directly outputs values of

user-controlled variables such as mailbox while generating HTML pages. The at-

tack is stopped by the cross-site scripting policy in Section 9.2.

• SquirrelMail command injection: SquirrelMail (Version 1.4.0) constructs

a command for encrypting email using the following statement in the function

gpg encrypt in the GPG plugin 1.1.

$command .= " -r $send_to_list 2>&1";

The variable send to list should contain the recipient name in the “To” field,

which is extracted using the parseAddress function of Rfc822Header object in
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SquirrelMail. However, due to a bug in this function, some malformed entries in

the “To” field are returned without checking for proper email format. In particular, by

entering “〈recipient〉; 〈cmd〉;” into this field, the attacker can execute any arbitrary

command 〈cmd〉 with the privilege of the web server. By applying a policy that

prohibits tainted shell meta-characters in the first argument to the popen function,

this attack is stopped by our technique.

• phpBB directory traversal: A vulnerability exists in phpBB, which, when the gallery

avatar feature is enabled, allows remote attackers to delete arbitrary files using di-

rectory traversal. This vulnerability can be exploited by a two-step attack. In the

first step, the attacker saves the file name, which contains “..” characters, into the

SQL database. In the second step, the file name is retrieved from the database and

used in a command. To detect this attack, it is necessary to record taint information

for data stored in the database, which is quite involved. We took a shortcut, and

marked all data retrieved from the database as tainted. (Alternatively, we could have

marked only those fields updated by the user as tainted.) This enabled the attack to

be detected using the directory traversal policy.

• phpxmlrpc/expat command injection: phpxmlrpc is a package written in PHP

to support the implementation of PHP clients and servers that communicate us-

ing the XML-RPC protocol. It uses the expat XML parser for processing XML.

phpxmlrpc versions 1.0 and earlier have a remote command injection vulnerability.

Our command injection policy stops exploitations of this vulnerability.

Bash CGI Application. nph-test-cgi is a CGI script that was included by

default with Apache web server versions 1.0.5 and earlier. It prints out the val-

ues of the environment variables available to a CGI script. It uses the code

echo QUERY_STRING=$QUERY_STRING to print the value of the query string sent to it. If
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Server Programs Workload Orig. Response Time Overhead
Apache-2.0.40 Webstone 30 clients downloading 0.036 sec/page 6%

5KB pages over 100Mbps network
wu-ftpd-2.6.0 Download a 12MB file 10 times. 11.5 sec 3%
postfix-1.1.12 Send one thousand 3KB emails 0.03 sec/mail 7%

Figure 11.2: Performance overheads of servers. For Apache server, performance is mea-
sured in terms of latency and throughput degradation. For other programs, it is measured
in terms of overhead in client response time.

Program Workload Over- Over- Over- Over-
head(A) head(B) head(C) head(D)

bc-1.06 Find factorial of 600. 212% 68% 61% 61%
enscript-1.6.4 Convert a 5.5MB text file into PS. 660% 529% 63% 58%

bison-1.35 Parse a Bison file for C++ syntax. 134% 92% 79% 78%
gzip-1.3.3 Compress a 12 MB file. 228% 161% 110% 106%

Figure 11.3: Performance overheads of CPU-intensive programs. Performance is measured
in terms of CPU time. Overheads in different columns correspond to: (A) No optimizations,
(B) Use of local tag variable, (C) B + Use of 2-bit taint value, (D) C + Use of dependency
analysis.

the query string contains a “*” then bash will apply file name expansion to it, thus enabling

an attacker to list any directory on the web server. This attack was stopped by a policy that

restricted the use of tainted meta-characters in the argument to shell glob filename,

which is the function used by bash for file name expansion. In terms of marking, the CGI

interface defines the exact set of environment variables through which inputs are provided

to a CGI application, and all these are marked as tainted.

11.2.2 False Positives

The policies described so far have been designed with the goal of avoiding false posi-

tives. We experimentally verified that false positives did not occur in our experiments in-

volving the wu-ftpd server, the Apache web server, and the two PHP applications, phpBB

and SquirrelMail. For wu-ftpd and Apache, we enabled the control flow hijack policy,
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format string policy, directory traversal policy, and shell command injection policy. For the

PHP applications, we additionally enabled the SQL injection policy and cross-site scripting

policy for the PHP interpreter.

To evaluate the false positives for Apache, we used the transformed server as our lab’s

regular web server that accepted real-world HTTP requests from Internet for several hours.

For the wu-ftpd server, we ran all the supported commands from a ftp client. To test

phpBB and SquirrelMail, we went through all the menu items of these two Web appli-

cations, performed normal operations that a regular user might do, such as registering a

user, posting a message, searching a message, managing address book, moving messages

between different mail folders, and so on. No false positives were observed in these exper-

iments.

11.2.3 False Negatives

False negatives can arise due to (a) overly permissive policies, (b) implicit information

flows, and (c) use of untransformed libraries without adequate summarization functions.

We discuss the implicit flows in Section 8.3 and policy refinement in in Section 9.3.

As for external libraries, the best approach is to transform them, so that the need for sum-

marization can be eliminated. If this cannot be done, then our transformation will identify

all the external functions that are used by an application, so that errors of omission can

be avoided. However, if a summarization function is incorrect, then it can lead to false

negatives, false positives, or both.

11.2.4 Performance

Table 11.2 and 11.3 show the performance overheads, when the original and

transformed programs were compiled using gcc 3.2.2 with -O2, and ran on a

1.7GHz/512MB/Red Hat Linux 9.0 PC.
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For server programs, the overhead of our approach is low. This is because they are I/O

intensive, whereas our transformation adds overheads only to code that performs significant

amount of data copying within the program, and/or other CPU-intensive operations. For

CPU-intensive C programs, the overhead is between 61% to 106%, with an average of 76%.

Effect of Optimizations. The optimizations discussed in Section 8.4 have been very

effective. We comment further in the context of CPU-intensive benchmarks.

• Use of local taint variables reduced the overheads by 42% to 144%. This is due to

the reasons mentioned earlier: compilers such as gcc are very good in optimizing

operations on local variables, but do a poor job on global arrays. Thus, by replacing

global tagmap accesses with local tag variable accesses, significant performance

improvement can be obtained.

Most programs access local variables much more frequently than global variables.

For instance, we found out (by instrumenting the code) that 99% of accesses made

by bc are to local variables. A figure of 90% is not at all uncommon. As a result, the

introduction of local tag variables leads to dramatic performance improvement for

such programs. For programs that access global variables frequently, such as gzip

that has 41% of its accesses going to global variables, the performance improvements

are less striking.

• tagmap optimizations are particularly effective for programs that operate mainly on

integer data. This is because of the use of 2-bit taint tags, which avoids the need

for bit-masking and shifts to access taint information. As a result we see significant

overhead reduction in the range of 7% to 466%.

• Intra-procedural analysis and optimization further reduces the overhead by up to 5%.

The gains are modest because gcc optimizations have already eliminated most local

tag variables after the previous step.
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When combined, these optimizations reduce the overhead by a factor of 2 to 5.

Explanation of the final performance numbers. Given that our transformation intro-

duces a taint-tag assignment for each original assignment in the program, and that tagmap

accesses are generally more complex (involving multiple bit-masking operations) and are

less likely to be optimized, one might expect that overheads should be 100% or higher.

There are two reasons why the overheads are low. For server applications, they are mainly

I/O-bound. Moreover, they spend a significant fraction of time within the OS, and our

transformation does not add overheads to the system time. Finally, since our optimizations

are particularly effective in eliminating taint-tracking for local variables, the performance

overheads are likely to be low for programs that mainly access local variables. We in-

strumented the applications shown in the tables above, and found that often, over 90% of

accesses are to local variables. For instance, bc has 99% of its accesses to local variables.

gzip is an exception, with 41%of its accesses going to global variables, and hence it has a

higher performance overhead.
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Conclusions

12.1 Dissertation Summary

Software vulnerabilities are a wide spread problem and have been the biggest culprit be-

hind today’s cyber attacks. It has been shown from the history that security vulnerabilities

are hard to eliminate from software systems. In this dissertation, we present source-code

transformation based techniques to automatically detect at runtime the exploits of the two

most important classes of software vulnerabilities: memory error vulnerabilities and injec-

tion vulnerabilities due to input validation errors.

The presented source-code transformation for addressing attacks that exploit memory

error vulnerabilities features a complete coverage of spatial and temporal memory errors

at the memory block level. It works as a comprehensive approach that can stop all the

attacks that exploit these memory errors. Our technique offers backwards compatibility

with existing C programs. It changes neither the layout of data structures in C programs,

nor the explicit memory management model in C. In addition, it supports type casts and

pointer arithmetic that are pervasive in C programs.

The presented taint-enhanced policy enforcement framework is based on an efficient

fine-grained dynamic taint tracking, which is enabled by instrumenting C programs with an

129



CHAPTER 12. CONCLUSIONS 130

automated source-to-source transformation. This framework offers the automated detection

of injection attacks that exploit input validation errors, such as format string attacks, SQL

injection, command injection, cross-site scripting, and path traversal.

We believe that the injection vulnerabilities arise due to the fact that security checks are

interspersed throughout the program, and it is often difficult to check if the correct set of

checks are being performed on every program path, especially in complex programs where

the control flows through many, many functions. By decoupling policies from application

logic, our approach can provide a higher degree of assurance on the correctness of poli-

cies. Moreover, the flexibility of our approach allows site administrators and third parties

to quickly develop policies to prevent new classes of attacks, without having to wait for

patches.

We have established the effectiveness and performance of these approaches through

experimental evaluations on real-world applications.

12.2 Future Research Directions

12.2.1 Extending Memory Safety Enforcement

Performance optimization is one of the most important future research areas for ex-

tending our existing memory error detection approaches. There are two possible direc-

tions for performance optimization. First, we can explore techniques to dramatically re-

duce the metadata size and thus speed up the metadata lookup and update operations. To

achieve this, we may need to constrain the memory allocation sizes, the locations and prop-

erties of spatial and temporal metadata, while still retaining the memory error coverage

and backwards-compatibility. Secondly, we can explore static analysis techniques, such

as those developed in CCured, to eliminate or minimize unnecessary spatial and temporal

metadata maintenance for statically known safe pointers.
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We would also like to investigate techniques that can improve the memory error detec-

tion coverage when interfacing with uninstrumented libraries. These techniques need to

recover as much as possible the metadata information of pointers passed between instru-

mented functions and unmodified library functions.

12.2.2 Extending Taint-Enhanced Policy Enforcement

Policy development is a key research area for taint-enhanced policy enforcement. To be

able to more effectively detect injection attacks, we need taint-enhanced policies that can

more accurately characterize the intended usage of the untrusted input data. We can enrich

the policy specification language and develop more application-tailored policies.

It is also important to improve the fine-grained dynamic taint tracking techniques. We

currently only support taint tracking within a single program. However, the untrusted inputs

might be propagated across multiple components from different applications before the use

in a security-sensitive operation, where the taint-enhanced policy enforcement takes place.

In such cases, we need to have the ability to propagate and track the taint information across

different components.

Implicit flows and quantitative taint tracking is another interesting problem, in which

the target is not fully tainted by the source. Instead, we should define the taint quantity

of the taint propagation (i.e. to what extent the target is tainted by the source). The taint-

enhanced policies should also take into account the amount of tainting.

12.2.3 Supporting Multi-Threaded Programs

To extend the presented transformations to support multi-threaded programs, we need

to solve two essential problems: synchronizing access to the metadata of global program

variables and synchronizing access to the shared global metadata.

To synchronize access to the metadata of a global program variable, we may be able
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to leverage the existing program locking that protects the access to the global program

variable to guard the access to its metadata as well.

To synchronize access to the shared global metadata (e.g. tagmap, temporal capability

store), we need to introduce our own locks. Care needs to be taken to avoid common

concurrency issues such as deadlocks and race conditions.

We can use thread-local storage to avoid synchronizing the access to the global buffers

for passing the metadata of function arguments.
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