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Abstract of the Dissertation

Network Flow Modeling via Lattice-Boltzmann Based Channel

Conductance. Prediction of Relative Permeability in Primary

Drainage.

by

Yelena Sholokhova

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

We developed a set of models that allows accurate predictions of transport

fluid flow properties of a suite of four samples of Fontainebleau sandstone rang-

ing from 7.5% to 22% porosity, based on three-dimensional image analysis of

its pore structure. We introduce three single-phase network flow models: one

model is based upon Lattice-Boltzmann (LB) computations of each pore-to-

pore connection; the second is based upon a power law fit to the relationship

between computed conductance and throat shape factor; the third one uses

conductances computed via standard pore body channel pore body series

resistance (SR) with the conductance of each individual element (pore body,

channel) based upon geometric shape factor measurements. The LB compu-

tations, based upon actual channel geometry derived from X-ray computed

tomographic imagery, reveal that the variation in conductance for channels

having similar shape factor is much larger than is adequately captured by the
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geometric models. Bulk absolute permeabilities for Fontainebleau sandstone

images are computed using the SR-based network model and the two LB-based

models. Both LB-based network models produce bulk absolute permeability

values that fit published data more accurately than the SR-based model. We

then simulate the two-phase primary drainage flow properties on those network

models incorporating actual geometry of throats for computing entry pressure

arc meniscus radii and consequently throat entry pressures. We find that the

description of throat geometries is particularly crucial in accurately predict-

ing relative permeability curves that are in good agreement with experimental

curves.
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Chapter 1

Introduction

Although the length-scale of an oil field is measured in kilometers, the ulti-

mate success of an oil and gas recovery scheme is the net result of countless

displacement events at a scale measured in microns [79]. Microscopic pore

space structure of a porous medium controls the fluid transport of the reser-

voir rocks. Unfortunately there is no elegant mean-field theory, such as the

multiple-continua model, to study the micro-structure of a porous material.

As a consequence, the reliable microscopic rock models have to be evolved into

an important tool for linking pore scale structure and bulk fluid properties at

the scale of rock core samples by providing parametric relationships (such as

capillary pressure - saturation or relative permeability - saturation) that are

required in continuum-scale descriptions of multiphase flow. Such petrophys-

ical parameters as relative permeability and capillary pressure are among the

most important parameters used for reservoir management. They are used

for reservoir characterization, reservoir engineering calculations, variables in

numerical reservoir simulation models, determination of injectivities, produc-

tivities, water and oil coning behavior, and prediction of ultimate recoveries

for various fluid injection schemes. Relative permeability investigations are

also invaluable for predicting, identifying, and evaluating formation damage
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that may result from a number of fluid or rock-fluid interactions [29]. Also for

a successful hydrocarbon recovery or environmental remediation process the

distribution of fluids in the pores must be fully understood and the appropri-

ate mechanism for the fluid displacement constructed. All above mentioned

applications require a wise development of the microscopic model which imple-

ments a level of abstraction of a medium, retaining only crucial features of the

network, often in simplified form, while rejecting other parameters which play

insignificant roles and can be neglected. Such parameter filtering is necessary

since the models require storage and processing of huge amounts of data to

characterize a tiny piece or rock [79]. For a example, Fontainebleau core sam-

ples analyzed in this study is of size 550 × 550 × 511 voxel consist of around

155 million voxels. Considering that spatial resolution is 5.7µm/voxel these

core samples are only 3.1mm on a side. Fontainebleau sandstone is rather a

homogeneous type of rock having a constant grain size distribution over a wide

range of porosities and therefore its Representative Element Volume (REV) in

terms of porosity and permeability is small, approximately 1.3 mm cube side.

For other rock types REV can be much larger and therefore would require

more space and time to store and process them respectively.

Fig. 1 gives an insight into a microscopic world with comparison to the

reservoir scale. In principle, any type of process that can be described at

the pore scale can be incorporated in a network model to compute effective

properties at a larger scale [8]. Such incorporation will be the major objective

and core idea in this work:

1. Introducing two single phase pore network models based upon the LB

conductance computations: one model is based upon LB computations

for each pore-to-pore connection; the second is based upon a power law

fit to the relationship between computed conductance and throat shape

factor.
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Figure 1: Characteristic volume scales in earth sciences. (Patzek, 2001)
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2. Extending network models to two phase pore network models based on

primary drainage throat geometry calculations [45].

3. Understanding Fontainebleau sandstone flow properties using single

phase and two phase network models.

Network flow models [22, 23, 24, 9, 31, 32, 10, 14, 5, 36, 62, 17, 28, 7, 65, 66,

88, 37, 92, 49] and, more recently, Lattice Boltzmann models [76, 64, 20, 38]

are the dominant numerical tools for simulating flow at the pore-scale level.

Initially used for single phase computation, they are being utilized for increas-

ingly complex flow simulations - multiphase, multicomponent, and reactive.

In the progression to increasingly complex simulation, it is vital to contin-

ually assess the fundamentals of these numerical algorithms. In particular,

network flow models capture a simplified description of a pore network, rely-

ing on computations based upon geometric assumptions to compute dynamic

network parameters. A key advance in two-phase network flow modeling was

enabled by the development of the ability to analytically compute entrance

pressures for a tube of constant cross-sectional shape that is either triangu-

lar [62, 54] or regular polygonal [50]. Recently, this analytic ability has been

extended to polygonal cross sections of arbitrary convex shape [45]. These

advances have allowed modeling a degree of irregularity in channel cross sec-

tional shape that was not available in earlier models which required circular

or square cross sectional shape. Of particular benefit from this is the con-

trolled modeling of film flow [62, 65]. There are various network flow models

developed in the recent years. All of them share a common idea of simplify-

ing the rigorous nature of pore structure and/or its hydrodynamic behavior

so that these models retain its predictable properties at a specified degree of

accuracy. Here we list all commonly used network flow models simplified at

certain stages of its construction.
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1.1 The Source of Pore Network

Usually network models represent the void space of a rock by a lattice of pores

connected by throats. Until recently three different approaches were used to

construct a network. In the first, the geometrical parameters of the lattice are

tuned according to laboratory test data recorded from an experiment. In the

second approach, rock formation processes (grain deposition, cementation and

secondary geophysical and geochemical processes) are simulated to reproduce

the 3D geometry of natural rock. In this approach, a grain size distribu-

tion obtained from thin section analysis is initially put into the reconstruction

scheme, which then explicitly determines the random topology of a model by

simulating dynamic geological processes. The second method is shown to pro-

duce very good prediction for relative permeability, unfortunately it is limited

to sedimentary rocks. In our research group, we adopt a relatively new third

approach for construction of three dimensional network flow model. It is un-

deniable that knowledge of rock geometry is limited by experimental tools.

Prior to the development of high energy X-ray computed micro-tomography

(CMT) in the late 1980’s and its rapid improvement in the 1990’s, experimen-

tal measurement of the distribution of any geometrical measure of pore space

in rock was limited either to two dimensional thin sections, or to 3D views

produced by thin sections stacks obtained laboriously through micro-polishing

[47]. It is now possible to represent the complex geometry and topology of the

pore space more accurately. Usage of X-ray computed tomography (XCT) to

produce 3D image sets of rock samples, coupled with analysis software such

as the 3DMA-Rock package [44], allows relatively rapid characterization of

rock samples at the pore level, and the opportunity to incorporate greater

geometric detail into network flow model descriptions. Geometrical analysis

of XCMT images provides information on geometrical properties (and rela-

tionships between them) that are used as input to network flow models. This
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geometric input is either in the form of the actual imaged network or in terms

of geometrically equivalent (in a stochastic sense) networks.

1.2 Geometrical Characterization of the Pore

Network

The extraction of the pore network in this study was performed us-

ing the software package 3DMA (see Stony Brook University Techni-

cal Report, SUNYSB-AMS-99-20 and the 3DMA-Rock home page at

http://www.ams.sunysb.edu/∼lindquis/3dma/3dma rock/3dma rock.html).

The complete characterization of these algorithms is addressed in [45, 77, 89].

The main algorithmic procedures used to extract pore network information

were:

1. Image segmentation by indicator kriging [61] to partition the image into

void and grain phases (see Fig. 3). Other methods for segmenting gray-

scale images are reviewed by Pal and Pal [63]. Methods reviewed include

thresholding, iterative pixel classification based on relaxation, Markov

random field or neural network based methods, edge detection, and a

method based on fuzzy set theory [61]. More recently, several threshold-

ing methods have been evaluated by Trier and Jain [86].

2. Construction of the medial axis [39] and extraction of its percolating

backbone to provide a search path through the pore network. Medial

axis is built using a skeletonization algorithm which is based on thinning

method [39, 43]. Other skeletonization algorithms are based on analysis

using maximal inscribed spheres [79] and on a catalog of shape primitives

for 2D and 3D objects [35, 34].

3. Determination of throat locations (cross sections of locally minimum
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area) in channels connecting pore bodies [46, 78, 71]; and identification

of a pore body/throat network, where every pore body is cross-indexed

with its connecting throats and adjoining pores [71].

1.3 Lattice-Boltzmann vs. Finite Difference

Method

Recently, multiphase flow in porous media became a widespread topic in hy-

drologic research, motivated by contamination problems in soils. There are

two types of multiphase network models which are conceptually different from

each other: quasi-static displacement models and dynamic displacement mod-

els. We will study quasi-static models which go through a sequence of states:

increasing/decreasing (drainage/imbibition) capillary pressures and the final,

equilibrium positions of all interfaces in which dynamic aspects of pressure

propagation are neglected. Dynamic models impose a specified inflow rate for

one of the fluids and calculate the subsequent transient pressure response and

associated interface positions [14].

From the point of view of computational tools for quantification of the re-

lationship between micro-scale structure and fluid flow there are three types of

tools: Lattice Boltzmann, network flow and smoothed-particle hydrodynamics

(SPH) models which were initially developed for astrophysical and cosmolog-

ical uses such as simulations of galaxy formation, star formation and stellar

collisions but recently are being increasingly used to model fluid motion as

well [59].

To bypass the problems associated with pore network extraction, fluid flow

can be simulated directly on three dimensional segmented images of the rock

space. One can either use a Lattice-Boltzmann method or finite difference
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method. Lattice Boltzmann computation (e.g. [51, 64, 83, 90]) is exception-

ally computationally demanding as it involves direct numerical simulation on

a fully digitized representation of a porous medium [70]. The increment in the

complexity between single-phase and two- or multi-phase flow is tremendous

and formulation of no-slip or fixed-pressure boundary conditions may not be

simple. However the Lattice-Boltzmann method is rather universal with re-

spect to the range of phenomena suitable for numerical simulations. Another

group of numerical simulations relies on a finite-difference approach [51, 52].

Making the assumption that the flow is steady and slow, one can eliminate the

time derivative and the convective term in the flow equations. Both the finite-

difference and the Lattice-Boltzmann methods lead to numerical solutions to

the Stokes equations. Apparently there is no obvious winner between two ap-

proaches. Some finite-difference and Lattice-Boltzmann numerical schemes are

very similar [27]. Despite all simplifying assumptions, pore network models

remain a leading tool for understanding the physics of fluid flow and its rela-

tionship with pore morphology. Since the pioneering work of Fatt [22, 23, 24],

who introduced the idea of network models, multiphase quasi-static models

have been extensively studied by Celia [60, 14, 73], ∅ren [62], Blunt [87, 88, 7],

Patzek [65, 79, 2, 66, 80] and others. Their models include only essential char-

acteristics of a real rock core and in one way or another are reshaped for easier

analysis purposes therefore do not necessarily reflect the pore space geometry

of a particular rock. The major computational advantage of the pore network

approach is the simplified treatment of the flow equations. The flow in the

entire network is presented as a sum of flows in individual channels, called

pore throats. In the pore bodies, which are the junctions of multiple throats,

the mass balance equations yield an analog of the Kirchhoff’s circuit law.

A third relatively new group of simulations of fluid transport is based
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on smoothed-particle hydrodynamics. Particle methods such as smoothed-

particle hydrodynamics are very robust and versatile for pore-scale flow and

transport simulations, and it is relatively easy to add complex physical, chem-

ical and biological processes into particle codes. For instance, a combination

of standard SPH equations with pairwise fluid-fluid and fluid-solid particle-

particle interactions allowed surface tension and three-phase contact dynam-

ics to be realistically simulated [84]. The SPH method is used not only in

multiphase flow modeling but also in reactive transport modeling as a part of

a multi-scale numerical and experimental study of mixing-induced reactions

and mineral precipitation. However, the computational efficiency of particle

methods is low relative to continuum methods. Two-dimensional models are

still predominant in SPH methods. Multi-scale particle methods and hybrid

(particle-particle and particle-continuum) methods may be needed to improve

computational efficiency and make effective use of emerging computational

capabilities.

1.4 Single-Phase Pore Network Conductance

Pore throats play a role of a dam which regulates a fluid flow and is of utmost

importance in pore structure responsible for such hydrologic properties of rock

as conductance/permeability. It is important to note that our characterization

is a pore body/throat network and not a pore body/channel network. Each

throat is constructed as a surface of contact between two pore bodies. These

surfaces are triangulated, not necessarily planar, polygons. The surfaces oc-

cupy no volume; all the volume of the pore network is in the pore bodies.

A fundamental quantity required for any network flow model is the conduc-

tance governing the flow between any two connected pore neighbors in the
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network. For rectangular and elliptical cross-sections, the effective conduc-

tance governing incompressible, low-Reynolds number, Navier-Stokes, single

phase flow can be computed analytically [65]. For a regular polygon or irreg-

ular triangle cross section shape, numerical computations are required [62] to

compute conductances. These computations show that a monotonic relation

exists between the dimensionless conductance and a dimensionless shape fac-

tor [54] that characterizes each of these shapes. This monotonic relation can

be pre-computed and, in the case of numerically computed relations, fit to an

accurate analytic form which is then used in the network flow model. These

shape factor-conductance relationships perfectly capture the spirit of network

flow models - namely to extract critical, relatively simple, experimentally ac-

cessible measures of the pore network geometry that can be used to develop

accurate network flow models.

Oren [62] and Patzek [65] have described network flow models based upon

these shape factor-conductance relationships. These models are standard, in

that pore to pore conductance is computed via a pore body-channel-pore body

series resistance (SR), with the conductance of each individual element (pore

body, channel) based upon measurements of shape factor. The cross sectional

shapes of the network elements (pore bodies, channels) are determined by fit-

ting to shape factor data taken from simulated or real media. While triangular

shapes have been a desired feature of these models, due to limitations on the

range of shape factors available for triangles, cross sections in these models are

augmented with rectangular and elliptical cross sections to model the broader

range of shape factors observed in real porous media. In §3, in the context of

single phase flow, we review these shape factor-conductance relationships and

the network flow models based upon these relationships.

The conductance estimates based upon shape factor work surprisingly well

in spite of the introduction of potential “peculiarities” in the geometry of the
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pores. In the triangular cross-section models, the conductance computation

for each pore-channel-pore connection assumes constant cross sections of tri-

angular shape separately for each of the two types of elements (pore, channel)

forming the connection. Thus pores and channels are effectively modeled as

triangular prisms. While this is conceptually acceptable for channels, it is dif-

ficult to reconcile the geometry of a pore which has the same triangular prism

shape in every direction to which it connects to a neighboring pore.

For modeling flow through real media, use of X-ray computed tomogra-

phy (XCT) to produce 3D image sets of rock samples, coupled with analysis

software such as the 3DMA-Rock package [44], allows relatively rapid charac-

terization of rock samples at the pore level, and the opportunity to incorporate

greater geometric detail into network flow model descriptions. In §2, we sum-

marize the XCT analysis of four Fontainebleau data sets, ranging from 7.5%

to 22% porosity, used in this study.

Of particular interest to us is the detailed geometry of the connection

between any two neighboring pores and the effect of approximating this geom-

etry when computing effective pore-to-pore conductance. We compare three

methods of computing pore-to-pore conductance. The first (§3.1) is a series

resistance model utilizing conductances estimated from shape factors (G) and

triangular/rectangular/elliptical geometries. We refer to this method as SRG.

In the second method (§3.3), we utilize a Lattice-Boltzmann (LB) model to

compute an accurate approximation to Navier-Stokes flow through each iso-

lated pore-to-pore connection in the Fontainebleau data sets and determine

a connection-specific conductance. We refer to this method as LBC. This

method, which involves running an LB computation separately on each chan-

nel is CPU intensive. We therefore consider a third method where pore-to-pore

conductances are computed using an analytic expression obtained from the fit

between LBC computed conductances and throat shape factors, G. We refer
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to this third method of computing pore-to-pore conductances as LBG.

In §3.4 we compare the results for computing the effective (i.e. bulk) abso-

lute permeability for the four sandstone networks using network flow models

based upon the three methods for estimating pore-to-pore conductance. The

first network flow model (NF-SRG), which closely follows the work of Oren [62]

and Patzek [65], utilizes the SRG method for estimating pore-to-pore conduc-

tance. We also investigate the sensitivity of the NF-SRG model to the weight-

ing of the elements in the series resistance of each pore-to-pore connection.

The second model (NF-LBC) directly uses the LBC computed conductances.

This model eliminates the need for both series resistance and cross-sectional

geometry approximation in the computation of the pore-to-pore conductances.

The third model (NF-LBG) uses the LBG method for computing pore-to-pore

conductance. Use of NF-LBG eliminates the need for series resistance approx-

imation. All models are validated against published measurements [12].

1.5 Multiphase Fluid Flow

The study of multiphase flow in porous media is of major interest in oil re-

covery and contaminant remediation in aquifiers [70]. Relative permeability

and capillary pressure are mesoscopic transport properties that describe the

simultaneous flow of immiscible (incapable of being mixed) fluids in porous

media [13]. The relative hydrodynamic conductance of each fluid at a given

saturation is the relative permeability, while the pressure difference between

the phases is the capillary pressure. These two functions determine the macro-

scopic fluid flow behavior in reservoirs [13]. To predict the behavior of these

two functions we need to take into account the following factors: pore space

geometry, viscous forces, surface tension and contact angle. Note that the dis-

placement of two fluids is particularly dependent on the pore space geometry
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which emphasizes the need of pore space characterization. In §4 we overview

basic concepts of immiscible fluid displacement and introduce two types of

models: MS-P and VRONI. Initially a sample is fully saturated with a wet-

ting fluid. Non-wetting fluid is allowed to access a network through one side

(INLET) either in x-, y- or z- direction and exit an opposite side (OUTLET)

while other four sides are sealed. All pores on the INLET boundary of the

pack are filled with non-wetting fluid at the beginning of a drainage and the

rest of pores and throats are filled one at a time during the process. A throat

is considered available if it does not contain injected fluid but is connected

to a pore body that does. At each stage the available throat with the small-

est entry capillary pressure Pentry is filled together with all empty (filled with

wetting fluid) pores connected to it. MS-P and VRONI models use different

throat entry pressures. In the MS-P model threshold or entry capillary pres-

sures are calculated with the Mayer and Stowe [55] and Princen [67, 68, 69]

method. The VRONI model utilizes computed entry radii re for throats which

are represented by simple connected polygonal shapes obtained by the 3DMA-

rock software package and analyzed via the computational geometry theory of

medial axis [45].

Validation of the predictive capability of network flow models requires com-

parison with experimental measurements on fluid flow patterns at micro- and

macro-scales [70]. To test and validate our network model for the case of

two-phase simulations of water wet conditions, we considered four samples

with different petrophysical properties to perform pore-level calculations. We

used experimental gas/oil drainage relative permeability curves for a sandstone

reservoir for comparison with numerical calculations. Experimental samples

were from fairly clean (low clay) homogeneous well-sorted sandstone plugs from

a shallow marine depositional environment obtained by Sorbie et al. [56] and
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are similar to Fontainebleau sandstone characteristics. The calculated per-

meability and capillary pressure is in good agreement with the corresponding

laboratory measurements. Our simulations show that in two-phase pore-scale

models the accurate calculations of throat entry radii and throat wetting areas

are responsible for pore network predictive capabilities.

1.6 Contribution

Most models of the pore space of a porous solid are based on some form of bun-

dles of capillary tubes with constant cross-sections [14]. While use of tubes al-

lows simple analytical formulas to be derived for single-phase and multi-phase

fluid flow properties such as hydraulic conductance, relative permeability, such

models miss a fundamentally important geometrical characteristic of porous

solids, namely pore-to-pore complexity of a channel shape that is responsi-

ble for an accurate prediction of the channel conductance in computing bulk

absolute permeability or threshold pore entry pressure in primary drainage.

Therefore we concentrated on the description of a pore-to-pore connection in

our pore network models and introduce three pore network models that better

reflect rigorous pore space microstructure. We tested their predictive abili-

ties by comparing each model against published data. The single-phase pore

network models we developed are:

1. NF-SRG model utilizing conductances estimated from shape factors (G);

2. NF-LBC model utilizing computation of conductances by simulating an

accurate Navier-Stokes flow through each isolated pore-to-pore connec-

tion;

3. NF-LBG model where pore-to-pore conductances are computed using an

analytic expression obtained from the fit between LBC and G;
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We then developed a primary drainage pore network model in which thresh-

old pore entry pressures are computed using actual throat geometries. While

pore-scale network models are more involved and detailed than other possible

approaches [14], we believe that our models offer significant understanding of

fundamental fluid behavior in porous media and, more important, they offer

possibilities for improvements in predictive capabilities for difficult multi-phase

flow problems currently facing us.
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Chapter 2

Fontainebleau sandstone data

Fontainebleau sandstone has advantages and disadvantages as a study rock.

From one point of view, it is used as the ideal experimental system to test and

validate pore-level numerical studies. Its composition is 100% quartz which

is well sorted and the grain size is around 250 µm. The variation of porosity

is enormous and goes from 2% to 30% without noticeable grain size modifica-

tion. Such rather unusual sandstone properties allow us to study the effects

of porosity and micro-structure independently of every other parameter [12].

From the negative point of view, Fontainebleau sandstone is a highly homoge-

neous sandstone which does not contain clay and only displays intergranular

porosity [3]. In addition, since it is completely water wet it is impossible to

investigate the effect of porosity on distribution of irreducible wetting-phase

saturation [33] and conduct contact angle analysis. In the section §2.1 we

overview typical properties of Fontainebleau microstructure and in §2.2, §2.3,

§2.4, §2.5 we investigate the morphology of four samples used in the study.
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2.1 General properties of Fontainebleau sand-

stone

The transport properties of rock depend critically on the geometry of pore

space and therefore it is required to have full analysis of pore structure for

quantitative understanding of permeability and its relationship to pore mor-

phology. Fontainebleau sandstone is essentially formed of quartz grains that

have undergone long-term erosion and good grain size sorting before being de-

posited, during the Stampian, in dunes bordering the shore (Oligocene, Paris

Basin). Following a geological evolution, still not fully understood, these sands

underwent cementation (more or less intensive) by silica, which crystallized

around the grains in the form of quartz in crystalline continuity with them.

Fontainebleau sandstone thus displays exceptional chemical (fully water-wet)

and crystallographic simplicity [11]. Because of simplicity of grain phase the

associated intergranular space is also simple (Fig. 2, 3). For comparison, Fig. 4

by Bourbie et al. displays other rock materials, in which that pore space can be

very complex. In addition to this intrinsic complexity of commonly found pore

spaces is the problem of the three-dimensionality of pore spaces as opposed to

the two-dimensionality of means of observation and analysis [11].

2.2 Quantitative Analysis of Pore Space Ge-

ometry

Here we present quantitative micro-structural characterization of the pore ge-

ometry for four samples. The network models constructed in this study are

based upon an analysis of Fontainebleau sandstone samples with porosities of

7.5, 13, 18 and 22%. The XCT images, digitized at 5.7 µm voxel size, were
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Figure 2: Single slices from the XCT image of the 7.5%, 13%, 18% and 22%
Fontainebleau sandstone sample analyzed by 3DMA-Rock.
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Figure 3: The same slices after segmentation of the image via the indicator
kriging algorithm in 3DMA-Rock.
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Figure 4: Ground Pyrex (left, top), Vuggy dolomite (right, top), Nummulite
Limestone (left, bottom), Altered Feldspath (right, bottom). (Bourbie et al.,
1987)
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taken of cores 5 mm in diameter at the X2B beam line at the National Syn-

chrotron Light Source at Brookhaven National Laboratory. From each image,

a 550 × 550 × 511 voxel (28.63 mm3) rectangular subvolume was analyzed by

3DMA-rock software. The main algorithmic procedures are described in §1.2.

The full analysis can be found in [43, 75, 3, 81, 82, 46, 47, 42].

2.3 Coordination Number and Channel

Length

Coordination number is one of essential parameters of pore space since the

connectedness of pore throats control the flow properties. Coordination num-

ber is attributed to a pore and tells how many pores are connected to it. The

4 distributions determined from each core sample where then averaged, and

are presented in Fig. 5 on the left. The range 3≤ C ≤ 9 consistently displays

an exponential distribution, 10−C/λC , both for the individual subcores, and for

the 4-subcore averages [47]. It is important to note that since the distribu-

tions are exponential, the characteristic coordination number λC is the actual

descriptor of the distribution and not the average coordination number C .

The average lies between 3 and 4, rising approximately 11% over the porosity

range examined and therefore this fact can lead to a wrong conclusion that

samples connectivity remains the same over porosity range. From Fig. 8 we

see a linear increase of the form λC(φ) ∼ 0.073(6)φ in the value of the charac-

teristic coordination number λC with porosity φ over the range. However there

is the observed trend for the coordination number to decrease with decreasing

porosity and increasing cementation, the void space in Fontainebleau sand-

stone remains a continuous network to very low porosity. Why this happens

can be explained from the thorough further investigation. The topology of rock

is not seen from two-dimensional slices depicted in Figs. 2, 3 and proves that
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only three-dimensional analysis can shed light on true pore micro-structure.

Even though a two-dimensional image can mislead someone it still carries a

lot of information. Analyzing a large porosity sample (Fig. 2, 3) one can see

that grains are weakly cemented having small contact areas while a low poros-

ity sample is tightly composed having longer pore/throat channels but not

necessarily narrower.

As noted before from examing segmented images (Figs. 2, 3) that low

porosity samples have longer pore/throat channels. This fact can be quantified

by constructing the pore channel length distribution and observing the strong

exponential decay character of the distribution as the porosity increases. The

increase of pore channel length with decreasing porosity is an indication of

the previously denoted fact of existence of conductivity at low porosity, longer

channel lengths between fewer pores have to be maintained [43]. The results

of the fits for the 4-subcore averaged distributions are summarized in Fig. 5

[47].

2.4 Pore and Throat Size Distributions

Both pore and throat measurements contribute to the understanding of fluid

flow properties: large pores account for most of rock porosity and it is

well known that porosity is directly related to the rock permeability while

throats/pore channels control the fluid displacement.

The measured distribution of throat areas is exponentially distributed

10
− A

λA , where λA is the characteristic throat area and A is the throat cross

sectional area (Fig. 6). There is indication of an increase in the characteristic

area λA with porosity. The distribution of nodal pore volumes appears to be

log-normal (Fig. 7). The values of ln(V) slightly decrease with porosity. In

summary, the relatively minor changes in the characteristic throat area and
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Figure 5: Measured distributions of coordination number (left) and pore chan-
nel lengths (right) for cores taken from Fontainebleau sandstone of 7.5%, 13%,
18% and 22% bulk porosity. (Lindquist et al., 1999)
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Figure 6: Measured distributions of throat cross sectional areas (left) and
effective throat radius (right) (assuming circular areas) for cores taken from
Fontainebleau sandstone of 7.5%, 13%, 18% and 22% bulk porosity. (Lindquist
et al., 1999)
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Figure 7: Measured distributions of nodal pore volumes (left) and effective pore
radius (assuming circular areas) (right) for cores taken from Fontainebleau
sandstone of 7.5%, 13%, 18% and 22% bulk porosity. (Lindquist et al., 1999)
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average logarithm of nodal pore volume reveal a universality of expansion of

channels and nodal pores over dimensional ranges [47]. Figure 8 displays de-

pendence of characteristic distribution parameters on measured porosity, over

the range 7.5%, 13%, 18% and 22% for Fontainebleau sandstone. Note that

measurements for 15% porosity sandstone block are a bit off the trends. This

may be related to the fact that it comes from a slightly anomalous section of

the core of 18% porosity.

2.5 Tortuosity

The hydraulic tortuosity factor Υ is introduced in most of permeability models

(example: Carman-Kozeny or Mean Hydraulic Diameter Model). The tortu-

osity of a porous medium is a fundamental property of the streamlines, or

flux, in the conducting capillaries [21] and describes a network complexity in

porous media. It is defined as Υ = Le/L where L is a sample length in the

direction of macroscopic flow and Le is an average effective path length and

Le > L. It is observed in Figs. 9, 10 that the tortuosity in the low porosity

sample is abnormally high and variation is large compared to the rest of the

samples which means that the fluid has to follow more complicated paths to

get through the porous medium.

Tortuosity depends on various rock parameters: the shape, size, and type

of the grains, pores, and pore channels; mode of packing of the grains; grain

size distribution; the orientation; and nonuniformity of the grains [74]. We

see a positive correlation between the channel length and tortuosity: there is

a characteristic channel length decay with tortuosity decrease over the range

of porosities. We also observe that variation in tortuosity values over the

range of porosities is correlated with the variation of effective radii of pores:

wider distribution of pore effective radii replicates with wider distribution of
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Figure 8: Dependence of characteristic distribution parameters on measured
porosity for cores taken from Fontainebleau sandstone of 7.5%, 13%, 18% and
22% bulk porosity. (Lindquist et al., 1999)
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tortuosity values (Figs. 7, 9).
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Figure 10: Tortuosity versus porosity relationship for cores taken from
Fontainebleau sandstone of 7.5%, 13%, 18% and 22% bulk porosity (top).
Geomview plot of the shortest medial axis paths for 7.5% porosity sample
(bottom).
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Chapter 3

Single-phase pore networks

It is now possible to represent the complex geometry and topology of the pore

space more accurately. Knowledge of rock geometry is limited by experimen-

tal tools. Now by the means of CMT, together with image analysis packages

such as 3DMA-Rock, CMT images can be analyzed and accurate description

of geometry and topology can be recovered to make accurate 3D predictions.

Although the 3DMA-Rock software enables construction of an accurate 3D

pore network, simplification of pore geometry takes place when we build a

topologically equivalent network model, since use of simplifying geometrical

features allows analytical formulas to be applied for macroscopic properties.

So, the first challenge of pore scale modeling is to determine the details in the

description of pore space necessary to make accurate predictions. The second

challenge is to find an idealized representation which will keep all essential

features and be easy enough for analytical analysis. Mason and Morrow [54]

introduced a new characteristic of a pore, named a shape factor and related

it to the triangular shape which would represent the pore shape, replicating

the significant features of it. Angular corners retain wetting fluid and allow

two or more fluids to flow simultaneously through the same pore [62] at a

given time. Smooth pores have high shape factors and will be represented
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with circular cross sections, whereas more irregular pore shapes will be repre-

sented by triangular cross sections [7]. The assumption is that the triangular

shape reproduces correctly the roughness of pore, and correctly balances the

amount of wetting fluid and non-wetting one. Thus the triangularity of pores

is essentially important for building reliable multi-phase models investigated

in Chapter §4. Here we describe and compare various single-phase models

based not only on idealized shapes of channels, SRG, (§3.1) but also on actual

geometries, LBC, (§3.3) provided by 3DMA-rock software. We utilize a sec-

ond model by introducing a third model, LBG, based on analytic expression

obtained from fit and described in details in §3.3. We then analyze its predic-

tive properties by comparing the results of all three models with experimental

curve of Bourbie et al..

3.1 Hydraulic conductance based upon series

resistance: the NF-SRG models

The volumetric flow rate of an incompressible fluid flowing with constant vis-

cosity in a duct is described through the solution to the elliptic Poisson equa-

tion

∇2−→ν =
1

µ
(∇p − ρ

−→
f ) (1)

with boundary condition ν(x1, x2) = 0 on Γs, the duct wall, where −→ν is the

fluid velocity,
−→
f is the body force per unit mass (i.e. the gravity), µ is the

fluid viscosity, and ρ is its density. Choosing the x3-axis as parallel to the axis

of the duct, pressure gradient ∇p generates a flow in the x3 direction, and

the gravity can be neglected. The solution to Poisson equation, the velocity

distribution function, relates the volumetric flow rate to the gradient pressure.

Q = 〈ν〉A = −g(∇p) (2)
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Darcy’s law is another view on Poisson equation. The single phase flow rate

between neighboring pore bodies i and j in a network flow model is described

by Darcy’s law,

Qij =
gij

lij
(pi − pj), (3)

where Qij is the volumetric flow rate [L3/T], gij is the effective fluid con-

ductance [L5T/M], lij is the distance between the pore centers, and pi is the

pressure (at the CoM) of pore i. A standard computation for the effective fluid

conductance, gij, is the harmonic mean of the conductances of the connecting

channel and the two pore bodies

lij
gij

=
lc
gc

+
1

2

[

li
gi

+
lj
gj

]

, (4)

where the subscript c stands for channel. The lengths lα, α = i, j, c, associated

with pore bodies, i and j, and the connecting channel, c, satisfy

lij = lc +
1

2
(li + lj). (5)

The lengths lα, α = i, j, c and the corresponding conductances gα must be

modeled.

When information on the network is extracted from real rock (e.g. by

analysis of XCT images), network models implementing the SR formulation

employ different strategies for determining the effective length lc, i.e. for deter-

mining “where a pore ends and the connecting throat channel begins”. From

this perspective, the choice of lc is thus an adjustable parameter in (5). The

two other lengths li and lj adjust accordingly to compensate for total pore-to-

pore length restriction. We believe that the sensitivity of network flow models

to the strategy for determining the pore/channel element weighting in the SR

formulation has not been fully addressed in the literature. As one aspect of

this work, we study the sensitivity of SR formulations to such strategies by

employing the following single parameter formulation.
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We begin by noting that the pore/throat description of pore space adopted

by 3DMA-Rock is unambiguous in the sense that the definition of a throat, as

the cross section of minimum area connecting two neighboring pores, is well

defined (as opposed to any definition of the location where the pore space

transitions from pore body to connecting channel). We therefore adopt the

following approach to computing effective channel conductances in the imple-

mentation of our NF-SRG model,

lij
gij

=
wlij
gt

+ (1 − w)

[

lit
gi

+
ltj
gj

]

. (6)

Here gt is the conductance of the throat surface; lit is the distance from the

CoM (center of mass) of pore body i to the throat tij connecting the two pore

bodies; ltj is defined analogously; and lij = lit + ltj . The channel conductance

is effective over the length w lij. The conductance of pore body i is therefore

effective over length (1 − w)lit; similarly for the conductance of pore body j.

The parameter w provides uniform control over the fraction of the pore-to-

pore length ascribed to the channel. The end point value, w = 1, assumes

the pore-to-pore conductance is completely controlled by the throat; w = 0

assumes the two pore bodies control the conductance.

The conductances in (4) or (6) are typically modeled on geometric sim-

plifications of the cross sectional shape of pore bodies and throats. For el-

lipses, regular polygons and arbitrary triangles, the dimensionless conductance

g̃ ≡ gµ/A2 is monotonically related [66] to the dimensionless shape factor

G ≡ A/P 2 [54]. Here µ is the viscosity of the fluid being transported; A and

P are respectively the area and perimeter of the cross section. For arbitrary

triangles the relationship between g̃ and G is numerically determined and is

shown [62] to be reasonably approximated by the linear relationship,

g̃T = 0.6 G, 0 ≤ G ≤ GT,max =
√

3/36, (7)

where GT,max is the shape factor for an equilateral triangle. The analogous

34



relationship for rectangles and ellipses is known analytically [65, 66]. Polyno-

mial fits to these analytic relationships are quoted in [66]. For rectangles, the

fit is

g̃ = g̃max

(

0.6109G̃ + 0.0630G̃2 + 0.3214G̃3
)

,

g̃max = 0.5623/16, G̃ ≡ 16G, 0 ≤ G ≤ GR,max = 1/16,
(8)

and for ellipses,

g̃ = g̃max

(

0.8077G̃ + 0.0556G̃2 + 0.1366G̃3
)

,

g̃max = 1/8π, G̃ ≡ 4πG, 0 ≤ G ≤ GE,max = 1/4π.
(9)

In (8) and (9), G̃ ≡ G/Gmax is the normalized shape factor; GR,max and GE,max

are, respectively, the shape factors for squares and circles. In both cases, the

fits suggest a linear relationship with a correction that is predominantly cubic.

Consequently, the relationships for rectangles and ellipses can be approximated

by the linear relationships

g̃S = 0.5623 G, (10)

g̃C = 0.5 G, (11)

respectively, which, in fact, represent end point linear fits to (8) and (9). These

g̃(G) relationships are plotted in Fig. 11.

Use of the linear relationship (7) underestimates the relationship for arbi-

trary triangles by as much as 19%. Use of (10) and (11) tend to overestimate

conductance compared to that for arbitrary rectangles and ellipses by as much

as 33% and 13%, respectively. However, we shall see that these differences are

not sufficient to explain differences between the NR-SRG computations and

pore-to-pore conductances estimated for the sandstone samples.

When rock data is available (e.g. from XCT images) the shape factors

for pore bodies and channels must be determined. The shape factor for a

pore body can be determined, for example, as an average over (a sample
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Figure 11: Dimensionless conductance versus shape factor relationships for
several geometries.

of) measured cross sections [62, 65] from that pore. As such measures are

computationally expensive and direction dependent, in this paper we estimate

the shape factor for a pore body by

G =
V dmax

S2
, (12)

where V , S and dmax are, respectively, the volume, surface area and maximum

principle diameter for the pore body. Equation (12) is exact for cylinders of

constant cross section and length dmax. Inherent in the use of (12) for network

flow models is that all pore bodies drain along their long axis, which is, of

course, an approximation. We estimate the shape factor for a channel directly

from its identified throat.

Computation of the conductance for the network element (pore body or

throat) is then achieved by assuming that the cross sectional shape is best
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Table 1: Number of throats and pore bodies in each NF-SRG model and per-
cent of each element (pore, throat) of each shape type as identified according
to measured shape factor. tri ≡ triangle; rect ≡ rectangle.

porosity throats % throats modeled as: pore % pores modeled as:
(%) tri rect circle bodies tri rect circle
7.5 4,777 47.9 51.8 0.3 3,443 94.3 4.7 1.0
13 10,568 48.2 51.4 0.4 5,741 97.6 2.0 0.4
18 12,787 52.3 47.5 0.2 6,355 97.3 2.0 0.7
22 21,175 51.8 48.0 0.2 10,052 96.2 3.0 0.8

described as either trianglular, rectangular or elliptical [62, 65], specifically:

g̃ =



























0.6 G, 0 ≤ G ≤ GT,max,

0.5623 G, GT,max < G ≤ GR,max,

0.5 G, GR,max < G ≤ GE,max,

0.5 GE,max, GE,max < G.

(13)

In general, all three shapes are needed since each shape has a maximum shape

factor. Note that the last case in (13) deals with the possbility that measured

shape factors in the data exceed the maximum possible for an ellipse. For the

Fontainebleau data set, this occurred in fewer than 0.09% of the cases.

Table 1 summarizes the number of throats and pore bodies determined in

each Fontainebleau network model and the percent of each element of each

shape type as assigned by measured shape factor under this model.

3.2 Lattice-Boltzmann method and simula-

tion of fluid flow through a channel

3DMA-Rock has the capability of simulating single phase flow via the Lat-

tice Boltzmann-Bhatagnar-Gross-Krook (LBGK) and multiple-relaxation-time

(MRT) models. To calculate throat permeabilities, LBGK compressible model

with curved boundary conditions [57, 58] and a relaxation parameter of
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a) b)

Figure 12: a) A medial axis path showing the computed surface (top). The
channel throat surface (bottom). b) A digitized pore space within a distance
of 6 voxels on each side. Inlet, outlet and throat barrier are shaded dark gray.
Surface voxels are not included. M. Prodanovic et al.

λ = 0.75 was used. Throat permeabilities were computed using the single

phase, 3D Lattice Boltzmann model [26, 83]

fi(~x + ~ei△t, t + △t) − fi(~x, t) =
1

τ
[f eq

i (ρ(~x, t), ~u(~x, ρ, t)) − fi(~x, t)] − 3
wi

c2
△t~ei ∗ ∇p

(14)

The equilibrium distribution function is as follows

f eq
i (ρ, ~u) = ρwi[1 +

3

c2
~ei ∗ ~u +

9

c4
(~ei ∗ ~u)2 − 3

2c2
~u ∗ ~u]. (15)

To implement an external pressure gradient ∇p, [90] introduced a body

force, the second term on the RHS of 15, whereas the first term is the single

relaxation time scale collision term. This collision term tends to redistribute
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fi’s closer to the equilibrium, while the second external body force term makes

fi’s increase in the direction of the force (and decrease in directions opposite

to ∇p).

It is important to remember here that our division of the pore space is

into pores separated by triangulated throat surfaces and is not a division into

pores separated by channels. We know of no geometrical measure to decide

where a pore ends and a connecting channel begins in real rock void space. As

a part of LB simulation, there is an important aspect of defining a channel:

identifying and reconstructing the throat itself. 3DMA-Rock has such throat

algorithms which perform searches along medial axis for the minimal cross

sectional surface [46, 91]. Fig. 12 shows the (digitized) medial axis going

through the triangulated throat surface, and the channel grain surface. The

grain surface is represented by means of the marching cubes algorithm [6, 85].

A channel pore space of 6 voxels on each side of a throat barrier was computed

using a 6-connected grassfire algorithm (see Fig. 12). It is found optimal to

choose a 6 voxel distance on each side based on the idea that LB simulation

is a good approximation to the Navier-Stokes equation.

The 3D, 19 velocity model D3Q19 was used. The values for the weights wi

are 1
3

for the (0,0,0) direction, 1
18

for the (1,0,0) (and similar) directions, and

1
36

for the (1,1,0) (and similar) directions (see Fig. 13).

The single-particle distribution function fi(~x + ~ei△t) at each lattice site ~x

is equal to the expected number of identical particles at that site and time t

moving along vector ~ei. Thus, nineteen valves, fi(~x), i = 0 → 18 represent

the particle distribution functions at site ~x. A time increment △t of 1.92*10−9

s was determined from the relation c = △x/△t where △x=4.93 µm is the

digitized inter-node length and c = cs

√
3 is the lattice speed, related to the

sound speed for water by cs = 1482 m/s. During each time increment, particles

move along one of the specified directions ~ei to the nearest site and collide there
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Figure 13: The errows indicate the magnitude and directions of the allowed
velocities ei at a lattice site with a cubic lattice structure in the 3DQ19 model.

with other particles. The collision outcome is the particle distribution function

at the new site derived from the Boltzmann equation. Particle state i is defined

by a particle velocity −→u , which equals the distance traveled divided by △t, so

that the model has three different magnitudes of velocity: zero when a particle

is at rest, 1
2
c for a particle moving to the closest site, and

√
3

2
c for a particle

moving to the longest site.

During a collision step, each distribution function is updated toward an

equilibrium distribution f eq
i at the rate of 1

τ
, where τ is the relaxation parame-

ter and is chosen to produce the kinematic fluid viscosity ν = (2τ−1)
6

c2△t. The

kinematic viscosity of water at room temperature and atmospheric pressure is

10−6m2/s, requiring a value of τ=0.500237. To achieve convergence compu-

tation must be performed with τ in the range [0.525, 1.2], giving an effective

kinematic viscosity of water in the range of [1 × 10−4,3 × 10−3].
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Figure 14: The local directions of velocity vectors determined via smooth fits
to the medial axis.

We are interested in permeabilities at steady state flow conditions, which

are achieved when the relative velocities at each node satisfies the condition

with ǫ = 10−6

‖~u(x, t + △t) −−→u (x, t)‖2

‖−→u (x, t)‖2
< ǫ. (16)

Curved boundary scheme of [57, 58] is used for no-slip boundary condi-

tion, which provided improved convergence to steady state flow conditions

comparing to standard bounce-back boundary conditions.

For inlet/outlet boundary conditions we require ∂−→u /∂n̂ = 0, where n̂

denotes the unit vector in the direction of pressure gradient. Implementation

of this boundary condition is then obtained by copying values of appropriate fi

across the boundary. Since the inlet/outlet surface is not planar, see Fig. 12,

it is not always possible to find an appropriate neighbor to copy values from,

and those nodes are left at temporary equilibrium values. The one interesting

implementation detail of the LB computation in a channel is related to the

imposition of the pressure gradient. The pressure gradient was modeled in

a standard way via an imposed body force. Since pore channels curve, the

direction of the body force also curved to follow the channel shape. The local

direction was determined via smooth fits to the medial axis of the channel.
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a) b)

Figure 15: (a) A sealed 130×130×128 core sample with hexagonal close pack-
ing of spheres with diameter of 32 voxels. (b) Hagen-Poiselle flow simulation
through the tube.

Boundary conditions should be applied with caution since in practice it is

shown that permeability not only depends on the structure of the medium but

it also can be strongly effected by boundary conditions imposed on a local flow

equations.

The Lattice-Boltzmann method was validated on Hagen-Poiselle flow sim-

ulations(flow down cylinders of constant cross-sectional area) see Figure 15.

The parabolic radial velocity profiles obtained were in good agreement with

analytic values.

3.3 Hydraulic conductance based on Lattice-

Boltzmann conductance: the NF-LBC

and NF-LBG models

As an alternative to SR approaches, we utilize LB computations to provide an

estimate of the effective conductance for each channel. Since the LB method

can compute flow through the complex shape of each channel, ideally it should

provide an accurate estimation of single fluid conductance for each channel in
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isolation. By ”in isolation” we do not mean performing a LB computation for

the fully interconnected network, but rather we mean performing a - highly

parallelizable - series of local, separate LB computations, one per channel. In

Prodanovic et al. [71], we introduced such computations for each throat region

(channel), as identified by 3DMA-Rock analysis of an XCT image of a Berea

core. Here, we apply this method to the four Fontainebleau images and utilize

the conductances directly in a network flow model.

As there are thousands of throat regions in each image, the LB computation

has to be robust, automated and inexpensive. Intuitively, the channel should

be defined from the CoM of one pore body through to the CoM of a connected

neighbor. However, the potential increase in complexity of the geometry of the

channel as one moves away from the throat and enters a pore body, especially

if the body has coordination number greater than two, leads to robustness

issues in the LB computation in implementing boundary conditions (input,

output and side). To minimize potential geometrical complexity and to reduce

CPU time, the computations in Prodanovic et al.[71] captured the digitized

channel shape enclosing the pathway to an effective distance of 37 µm on each

side of the throat surface. We use the same restriction in our computations,

thus computing the conductance for the channel over a distance of 74 µm

(or a shorter distance if the CoM to CoM pore-to-pore distance is shorter).

In addition to enhancing robustness and speed of the LB computations, this

restriction recognizes that the conductance of the channel for single phase,

incompressible flow, is dominated by the throat region.

For each separate sandstone, Fig. 16 summarizes the LB computations

of the dimensionless conductance computed for each pore-to-pore connection

as a function of the shape factor of the throat in that channel. Also shown

on each plot is the dimensionless conductance computed by the shape factor

model (13). Consistent with this model, the LB conductances reveal a trend of
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Figure 16: First to third quartile ranges of dimensionless conductances for
individual pore-to-pore connections as computed by the LB method, binned
by value of the shape factor for the throat in the channel. Bin sizes are
adjusted so that each bin contains data on 100 connections. Median (second
quartile) values are indicated by open circles. The dashed line is the prediction
based upon the shape factor models (7), (10) and (11). Only data in the
range 0.03 ≤ G ≤ 0.06 is shown; a minor amount of data exists in the range
[0.06, 0.08].
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Table 2: Best fit parameter values to the form g̃ = g̃1G
p for the data in Fig. 18.

porosity g̃1 p
7.5 65.5 2.45
13 7,240 4.04
18 7,990 4.15
22 27,400 4.47

increasing g̃ with shape factor. The variances in the LB conductances are large,

but the trend of the median values shows a greater rise than that predicted by

(13). Typically the shape factor model (13) overestimates fluid conductance

for small shape factors and underestimates fluid conductance for large shape

factors.

Least-square fits of the form

g̃ = g̃1G
p (17)

to the median values of the LB-computed conductance versus shape factor are

shown in Fig. 18. Values of the parameters determined from the fits are given

in Table 2.

Except for the 7.5% data set in which the variability of the data precludes

a decent fit to the form (17), the fits indicate that the power law with p ∼
4.2 would provide a reasonable analytic form for generating representative

dimensionless conductances for the channels in Fontainebleau sandstone. The

lack of fit for the 7.5% porosity data may be explainable by the observation [12]

that, as soon as porosity is small enough, the average pore entry radius gets

smaller and pore entry radii are not well sorted, producing greater microscopic

heterogeneity.

Fig. 17 compares the g̃(G) fits to the data in Fig. 18 with the relationships

predicted by the triangle, rectangle and ellipsoidal geometry models. These

geometric models do not capture the more rapid rise of observed conductance

as the shape factor increases. In our view, this reflects the observation [45]
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Figure 17: Comparison of fits to dimensionless conductivity versus throat
shape factor based upon LB computations for pore-to-pore connections in
Fontainebleau sandstones with the analogous relationships for triangle, rect-
angle and ellipsoidal geometries.
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Figure 18: Least-squares fit (solid curve) of the form g̃ ∼ Gp to the median
values (open circles) of the data in Fig. 16. Only data in the range 0.03 ≤
G ≤ 0.06 is shown; a minor amount of data exists in the range [0.06, 0.08].
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these geometrical models do not adequately match cross sectional shapes in

Fontainebleau sandstones.

For each rock sample, a network flow model (NF-LBC) was created in

which the conductance computed for each channel by the LB method was used

directly in (3). In approximately 3% of the computations, the LB computation

for a channel returned a negative conductance, indicating that net flow opposed

the direction of the pressure gradient. This 3% of the data was not, of course,

included in Fig. 16.

Examination of cases in which this occurred showed circulation currents

resulting from geometrical complexity of the channel in relation to imposed

input/output boundaries. In such cases, a dimensionless conductance for the

channel was selected from Fig. 16. Rather than using the analytic form (17),

a random conductance value was chosen from the statistical distribution of

conductances computed for the bin appropriate to the shape factor measured

for the throat.

A second network flow model (NF-LBG) was created in which only the

analytic form (17), with the porosity-appropriate fitting parameters taken from

Table 2, was used to compute the pore-to-pore conductance, with the shape

factor, G, determined from the throat connecting the two pores.

3.4 Bulk permeability prediction

The NF-SRG, NF-LBC, and NF-LBG models described in §3.1 and §3.3 were

used to compute bulk permeabilities (in the x−, y−, and z−directions) for

each of the four sandstone networks. The computation for the pore-to-pore

conductances has been discussed; the other details of the single phase, incom-

pressible flow models are standard:
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• constant pore pressures are imposed at inlet/outlet sides, no-flow condi-

tions exist at the remaining four sides of each cube;

• conservation of volumetric flow through each pore body leads to a system

of linear equations yielding interior pore pressures; Volume conservation

of fluid flow implies that volumetric in-flow rate equals out-flow rate in

every pore;

∑

qAK =
∑ gAK

lAK

(PA − PK) = 0, (18)

where we sum over all pores K connected to pore A.

Regrouping the RHS of 3.4 gives

PA(
gA1

lA1
+

gA2

lA2
+ ... +

gAK

lAK
) − (P1

gA1

lA1
+ P2

gA2

lA2
+ ... + PK

gAK

lAK
) = 0,

(19)

Applying the conservation law to each pore yields a system of equa-

tions with the number of unknown pressures equal to number of interior

pores. The RHS of the below system of equations is formed by imposing

pressures on the inlet and outlet boundaries. Coefficient matrix of this

system is symmetric;















(g1I

l1I
+ ... + g1J

l1J
) 0 ... −g1J

l1J
0

−g2I

l2I
(g2I

l2I
+ ... + g2J

l2J
) 0 ... −g2J

l2J

...
...

. . .
...

...

−gNI

lNI
... −gNJ

lNJ
0 gNI

lNI
+ ... + gNJ

lN J
)





























P1

P2

...

PN















=
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













0
g2K

l2K
P inlet

K

...
gNT

lNT

P outlet
T















.

(Note, here, pore 2 is connected to the inlet pore K and pore N is con-

nected to the outlet pore T)

• the pressure system is solved by a preconditioned conjugate gradient

method;

• the total flow rate, Q, at the outlet is obtained and Darcy’s law,

Q =
KA

µ

(pin − pout)

L
, (20)

is applied to compute an absolute permeability K for the core having

outlet cross sectional area A and brine viscosity µ = 1.06 cp.

Darcy’s law was introduced originally as an empirical relationship based

on experiments on steady state flow in a vertical homogeneous sand filter and

20

Table 3 presents the computed permeabilities; for the NF-SRG model per-

meabilities for three values of w are presented. The x−, y− and z− per-

meabilities are quite similar, with the relative difference between directional

permeabilities decreasing with porosity.

We note that the CPU time needed to perform the necessary LB computa-

tions for conductances in each channel and then execute the resultant NF-LBC

model is still cheaper (both in memory and CPU time) than employing LB

computation alone to compute the bulk permeability on any of the digitized

Fontainebleau samples. The LB computations for conductance of each individ-

ual channel have the additional advantage that they are perfectly parallizable;

different processors handling the computations for different channels.
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Figure 19: Dependence on the series conductance weight factor (w) of the
(direction averaged) absolute permeability computed for each of the four
Fontainebleau image samples by the NF-SRG model of §3.1. The solid lines
represents the absolute permeability predicted for each porosity value as de-
termined by the analytic best fit to the experimental data of Bourbie and
Zinszner (BZ) [12].
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Table 3: Comparison between calculations of directional bulk absolute per-
meability: Kw - NF-SRG model; KLBC - NF-LBC model; KLBG - NF-LBG
model.

porosity direction Kw (mD), w = KLBC KLBG

(%) 1.0 0.7 0.0 (mD) (mD)
7.5 x 40.12 54.53 1573 43.5 55.18

y 49.76 68.89 2623 62.1 71.73
z 29.23 40.79 1879 43.0 42.58

13 x 619 841 23582 686 775
y 541 741 21916 664 687
z 596 811 21922 692 753

18 x 2976 3872 46463 2236 2494
y 2808 3667 48368 2158 2355
z 2750 3604 46912 2220 2394

22 x 3505 4544 5411 4060 3761
y 3668 4721 5330 3830 3994
z 3737 4828 5520 3871 3982

In Fig. 19 we explore the dependence on choice of w for the SR computa-

tion of absolute permeability in the four Fontainebleau network models. The

absolute permeability is displayed as the average of bulk permeabilities com-

puted for flows in the x−, y− and z−directions. As we do not have permeabil-

ity measurements available from our core samples (which were imaged dry),

these network flow computations are compared against the Kozeny-Carman

type analytic fits,

KBZ =







2.75 · 10−5 φ7.33 for φ < 9,

0.303 φ3.05 for φ ≥ 9,
(21)

obtained from the rather extensive experimental permeability-porosity data

measured in the classic work by Bourbie and Zinszner [12]. As w is varied,

the computed value of permeability varies typically by an order of magnitude.

Depending on porosity, the choice of w producing best fit between the network

model and the data of Bourbie and Zinszner varies from w ∼ 0.5 at 7.5%

porosity to w ≥ 0.9 at 22% porosity. This rising dependence of w with porosity
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makes qualitative sense, the effect of throats on permeability becomes more

important as porosity rises.

Note that, for all values of w, the bulk permeability computed for the

18% porosity Fontainebleau NF-SRG model disagrees with the Bourbie and

Zinszner experimental value (of 2040 mD). This discrepancy is interesting, as

the 18% NF-LBC model (see below) is in good agreement with the Bourbie-

Zinszner value. This would indicate that there are conditions in which the

geometry of the channel cannot be adequately captured by the series resis-

tance type models. Similar limitations of computations from geometrical-based

models relative to LB simulations have been reported recently [25].

The results in Fig. 19 imply that use of the model (6) for network com-

putations based upon SR computation for general rock models would require

either an average choice for the weight factor (e.g. w = 0.7), or adoption of a

schedule for modifying w with porosity based upon parameter fitting studies.

Our main point here is that these strategies are either explicitly or implicitly

ad hoc and produce results that are sensitive (note the logarithmic nature of

the y-axis in Fig. 19) to the chosen strategy. The reliance of NF-SRG type

models on the dimensionless shape factor, which captures only a simplified

description of the pore geometry, results in ”tuned” NF models that work best

over a limited range of porosity. See [15] for a similar conclusion.

Fig. 20 compares results from the NF-SRG, NF-LBC, and NF-LBG com-

putations with the Bourbie-Zinszner analytic model. The dependence of the

NF-SRG model on the parameter w is summarized by elucidating the entire

range of permeability values generated as w is varied. The NF-LBC computa-

tions follow the Bourbie-Zinszner analytic model very well. Table 4 quantifies

the relative error between the network flow model results and the Bourbie-

Zinszner analytic fit. Only results from three values of w are included in

Table 4. Except for the lowest permeability, the relative error in the NF-LBC
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Figure 20: Comparison of the direction averaged, bulk absolute permeability
computed for each of the four Fontainebleau image samples by the NF-SRG,
NF-LBC, and NF-LBG models of §3.1 and §3.3. BZ: Analytic fit to Bourbie-
Zinszner data.

Table 4: Comparison between calculations of average bulk absolute perme-
ability: Kw - NF-SRG model (§3.1); KLBC - NF-LBC model (§3.3); KLBG

- NF-LBG model (§3.3); KBZ - analytic fit to experimental data of Bourbie
and Zinszner [12]; eα - relative agreement between numerical computation and
experimental data, eα ≡ (|Kα − KBZ |/KBZ) where α = w, LBC, LBG.

porosity KBZ Kw (mD), w = KLBC KLBG ew, w = eLBC eLBG

(%) (mD) 1.0 0.7 0.0 (mD) (mD) 1.0 0.7 0.0
7.5 71.4 39.7 54.7 2030 49.5 56.5 0.44 0.23 27.4 0.31 0.21
13 756 585 798 22500 681 739 0.22 0.055 19.7 0.10 0.02
18 2410 2840 3714 47200 2205 2414 0.18 0.54 18.5 0.085 0.0016
22 3760 3640 4700 54200 3920 3910 0.032 0.25 13.4 0.042 0.04

models is 10% or lower.

Our sensitivity study indicates that network flow models utilizing series

resistance computations for pore-to-pore conductance are capable of “tuning”

bulk absolute permeability values over at least one order-of-magnitude. Our

results show that a ”tuned” model will produce sharp bulk values only over a

limited range of porosity.
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By comparing with Lattice Boltzmann computations, our results indicate

that network flow models employing channel conductances based upon shape

factor do not capture a sufficiently rapid increase of conductance with in-

creasing shape factor. We have extracted a power law model appropriate for

Fontainebleau sandstones which, more accurately, captures this trend.

The NF-LBC hybrid network flow - Lattice Boltzmann model that we have

introduced encorporates advantages of both methods. The Lattice Boltzmann

simulations are run locally, and in a highly parallelizable fashion, to provide

pore-to-pore conductances for input into a network flow model. This hybrid

model eliminates the need for series resistance conductance computations, and

utilizes the superior ability of the Lattice Boltzmann simulations to capture

individual channel geometry.

The modified NF-LBG model, which requires only estimates for throat

shape factors and the two parameters appearing in (17), should enable more

accurate computations in “artificial” medium models, i.e. those not based

upon a specific 3D realization.
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Chapter 4

Multi-phase pore networks

Multiphase flow through rocks is far less understood than single-phase flow.

The last decade has seen increased interest in the usage of pore-scale networks

for studies of a wide range of phenomena. The most common use is to predict

relative permeability and capillary pressure as a function of water saturation.

A precise knowledge of the relative permeability coefficients of porous media

is of critical interest to environmental science and techniques. It forms an

unavoidable step in modeling chemical or radioactive-type transfers enabling

a safety coefficients to be defined in relation to confinement structures [18].

Through this understanding, many questions can be addressed: Can a change

of injected brine salinity increase oil recovery and by how much? Can relative

permeability be changed by introducing water-based gels [65]? How can we

limit oil-trapping?

Using Fontainebleau sandstone samples varying from 7.5% to 22% porosity,

and pore networks there of provided by 3DMA-Rock, our goals in this chapter

are:

1. calculate capillary pressure/saturation and relative permeability curves

under primary drainage;
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2. understand the relative importance of the geometrical parameters of

Fontainebleau sandstone with different porosities in determining flow

behavior;

3. determine the accuracy of the computations by comparison with exper-

imental results;

4.1 Displacement mechanisms and two-phase

flow properties

For two-phase flow description we need to define some terminology. For a

given substrate, each pair of fluid phases in contact with each orther and the

substrate, have relative surface wetting ability which can be quantified in terms

of a contact angle θ (Fig. 21). The fluid having angle in the range 0◦ < θ < 90◦

is called the wetting fluid, the other is referred to as non-wetting. In Fig. 21,

σSA and σSB are the surface tensions between the solid and fluids A and B

respectively, while σAB is the interfacial tension between the two liquids. In

equilibrium, all three surface tensions are related by the Young equation:

σAB cos θ = σSA − σSB. (22)

When the three phase contact line is not in the equilibrium, the displace-

ment of one liquid by the other is observed. When the meniscus movement

displaces the non-wetting fluid, the flow is said to be imbibition and θ is

referred to as the advancing angle (Fig. 21(b, right)). When the meniscus

movement displaces the wetting fluid, the flow is referred to as drainage and

θ is referred to as the receding angle (Fig. 21 (b, left)). A system may

go through repeated cycles of imbibition and drainage (e.g. soils under pe-

riodic precipitation events). We are interested in primary drainage, when a
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Figure 21: (a) Equilibrium at a line contact forms a fixed contact angle θ. The
depicted angle of contact is between two boundaries: fluid B/solid and fluid
A/fluid B. Here liquid B is the wetting, liquid A is the non-wetting.

non-wetting, non-aqueous phase liquids (NAPL) migrates into a completely

water-filled core. For drainage experimental evidence indicates that we need

to consider only one displacement mechanism, referred to as piston-type dis-

placement. Our goal is to simulate primary drainage by applying this displace-

ment process and to calculate the relative permeability of the system and the

capillary pressure-saturation relation governing the system.

In the current study we will use values of absolute permeabilities com-

puted via LB-based models but implement an NF-SRG model to calculate the

parametric relationships (capillary pressure-saturation, relative permeability-

saturation) that are required for continuum-scale description of multiphase

flow. NF-SRG model allows to make easy estimation of both phase pore satura-

tions by simplifying pores with appropriate constant cross-sectional tubes. wo-

phase primary drainage is simulated in four different porosity Fontainebleau

samples. We assure immiscible, incompressible, creeping Newtonian flow flu-

ids. The injected fluid is a non-wetting oil with viscosity 1.40 cp and 0.76

g/cm3 density, while the in-situ fluid is brine with viscosity 1.06 cp and den-

sity 1.02 g/cm3. Oil-brine interfacial tension is 35.0 mN/m. The separate flow

rates at the wetting (v1) and non-wetting (v2) fluids are given by the coupled
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Darcy equations:

v1 = −k11

µ1
▽ P1 −

k12

µ2
▽ P2, (23)

v2 = −k21

µ1

▽ P1 −
k22

µ2

▽ P2. (24)

Here Pi is the pressure in fluid i. Fluid i moves both from the gradient of

pressure on itself as well as the gradient of pressure in the other fluid. The

proportionality constants kij , kii are referred to as effective permeabilities. The

ratios kij/µi and kii/µi are called mobilities. The proportionality coefficients

kij depend on the boundary condition at the interface between the two phases.

In our study we assume that capillary forces control the process (the capillary

number µiqi/σ (i=1,2) is low, eg., less than about 10−6) and viscous forces

(µnw/µw >1) are negligeable. There is therefore no hydraulic slip at fluid-

fluid interfaces, which creates a lubricating effect, and the coupling coefficients

k12=k21=0. Under this assumptions, (23) and (24) uncouple and only the

effective phase permeabilities kii play a role in the Darcy system. Equations

(23) and (24) reduce to the uncoupled form of Darcy’s law for two-phase flow:

Qi = (
kiA

µi
)
∆Pi

L
, (i = 1, 2), (25)

where Qi = qiA is a bulk volumetric flow rate, ∆Pi is the pressure drop across

the system, µi is the viscosity of fluid i, A is the cross-sectional area of the

sample and L is its length in the direction of the pressure drop. Kii is replaced

with notationally simpler ki and is the effective permeability of phase i. The

relative permeability for fluid i is defined as the ratio kri=ki/k where k is

absolute permeability of the system. In general though, the assumption of

negligeable viscous forces is incorrect and there is a viscous coupling between

the two phases, which leads to k12 and k21 not equal to zero (the mobility tensor

has off-diagonal terms). At the beginning of primary drainage the sample is

fully saturated with water (Sw=1). Fontainebleau sandstone is considered to
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be strongly water-wet with a receding contact angle of 0 degrees. The fully

wetting condition presumes that there is no trapping of non-wetting phase and

the connate water saturation will be zero. Consequently the wetting phase will

be hydraulically connected throughout the pore network [9]. The result is the

existence of two co-current, continuous flows (one for each fluid) which reside

side by side in the same pore space. The wetting phase generally flows along

pore walls, whereas the non-wetting phase flows in the central part of each pore

and surrounded by the wetting phase. Therefore the information is needed on

the distribution of the two fluids in each and every pore (i.e. the fraction of

the pore cross-section occupied by each fluid must be known at every point)

[21].

Large throats (having small entry pressure) are going to be preferentially

invaded, then smaller ones come into play. It is important to note that pore

entry pressures are therefore completely determined by the size and geometry

of its upstream facing the throats. In §4.3 we investigate several ways of

estimating pore entry pressures: the first based on Mayer and Stowe and

Princen (MS-P) method [67, 68, 69] and the second based on computations of

arc meniscus radii at fluid entry [45] for actual throat geometries using Held’s

VRONI software package [48].

A second necessity in the accurate estimation of relative permeability

curves is the calculation of the hydraulic conductance for each fluid simul-

taneously flowing in a pore. In §4.4, we describe a method introduced by

Patzek and Oren [65, 62] for calculation of the hydraulic conductance of each

phase and for calculation of phase saturations in a single pore. Both compu-

tations require the precise knowledge of where each phase resides in the pore.

The complex geometry of real pores necessitates the use of simplified pore

shapes which non-the-less capture important features of the angular nature of

pores.
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Calculation of relative permeability and water saturation is made at each

capillary pressure Pc = Pnw −Pw (the pressure difference between two phases)

for both liquids. The saturation of fluid phase i is defined as

Si=
Vi

V
, (26)

where Vi is volume of fluid phase i in the sample and V is the total pore volume

in the sample.

Similar to the absolute permeability system of equations, relative perme-

ability system of equations is constructed, and total flow in each phase is

calculated. Then, relative permeabilities are determined from 25. Step by

step procedure is described in §4.2.

In §4.5 we present the results of our NF computations, validate them

against experimental published data, and try to understand a scope of ef-

fect of micro-structure parameters on controlling hydrodynamic behavior in

Fontainebleau sandstone and other porous materials.

4.2 The Bond Invasion-Percolation Problem

In two phase flow, the invading fluid must be connected to the inlet to con-

tinue invasion and the defending fluid must be connected to the outlet to be

displaced. This dynamic percolation is called invasion percolation (IP). In

a permeable rock, fluid flow paths are determined by the randomly oriented

pore network. The fluid transport in the pore networks can be described as

a percolation process [19]. The concept of percolation theory is closely al-

lied with pore network models. Percolation theory provides a mathematical

framework to analyze deterministic motions in a random medium [14]. In the

case of fluid-fluid displacement in porous media, the deterministic rule is the

Laplace equation for capillary displacement rule, while the randomness comes

from the random geometry of each throat. Since drainage is controlled by
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throats (referred as links and bonds in IP terminology) the drainage is equiv-

alent to bond invasion-percolation process. The mechanisms briefly described

below is referred to as ”piston-type” drainage and forms the basis for the in-

vasion percolation algorithm. As the applied capillary pressure is gradually

increased, penetration continues into the pore until the local minimum pore

radius of curvature of the arc-menisci in the corners at the throat is obtained.

By equating the radius of curvature of arc meniscus (AM) to the first curva-

ture of the invading interface, the threshold capillary entry-pressure can be

found [2]. We calculate all entry pressures for throats, using either equations

derived by Mason and Morrow (MS-P method) or using VRONI method and

sort them in strictly ascending order. A further increase in capillary pressure

will result in non-equilibrium displacement of the wetting liquid, which ex-

pands into an adjacent pore and stops when a narrower throat is reached. At

this moment the capillary pressure must be increased for further penetration.

When all the menisci separating continues fluid phase are found to be stable

(that is, they support the imposed capillary pressure), the system has reached

a new equilibrium [73].

Therefore a bond-invasion percolation algorithm for primary drainage con-

sists of the following steps:

1. The receding contact angle during primary invasion is assumed to be zero

since at the beginning of simulation the pore is completely water-filled

and only later, in imbibition process, the contact angle changes but it

yet has to be explored;

2. At each capillary pressure level, find all throats not yet invaded that

have entry-capillary pressure smaller than the current valve and have at

least one adjacent pore filled with non-wetting liquid [2].

3. Invade these throats.
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4. Displacement continues (repeat steps 2-3) until all menisci are found to

be in equilibrium position.

5. After all possible throats and pores are invaded, calculate water-phase

saturation, phase conductances (i=1,2) for each pore in the pore network.

6. Compute relative phase permeabilities at this water-saturation;

7. Increase the capillary pressure to a higher valve and repeat steps 2-

5 until some specified maximum capillary entry pressure or minimum

water saturation is reached. Since there is an assumption that water

filaments can drain completely, the irreducible wetting phase saturation

reaches zero value.

We emphasize one more time that relative permeability values of phase i

are computed using Darcy’s Law:

kr,i =
QiµiL

kA△Pi

, (27)

where Qi is the volumetric total flow rate of phase i, µi is the phase i

viscosity, △Pi is the phase i pressure drop across the network and k is the

absolute permeability of Fontainebleau rock sample computed via the NF-LBC

model (see §3.3). So at several overall water-phase saturations we solve for the

pore (nodal) pressures and then calculate each relative permeability by using

27 for water and non-wetting fluid. The capillary number is sufficiently low,

fluid/fluid interfaces are stable (no slipping) and two fluids are in equilibrium,

so we have two independent networks (two fluids flows). As mentioned in §4.1

one or the other fluid flow behaves as another fluid phase was replaced by a

solid (phase immobilization) therefore the computation of the permeability of

each phase is identical to the calculation for a single-phase flow except that

each phase is considered to occupy a separate sub-network of the pore space.
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Since water remains continuous throughout the network, the pore pressure

calculation is applied to all pores except the ones connected to the inlet and

outlet faces [2]. We start a calculation of non-wetting relative permeability

values when it reaches the bottom. Such state is called a breakthrough point.

The inlet face pores are assigned an arbitrary pressure Pin, whereas outlet face

pores are assigned arbitrary pressure Pout.

From the measurements above one can produce capillary pressure curve and

relative permeability curves for each phase versus wetting fluid saturations.

For drainage these are referred to as primary drainage curves.

If a wetting liquid is at atmospheric pressure, in order to displace this fluid

the pressure in an invading non-wetting fluid has to be increased above atmo-

spheric pressure by an amount given by the capillary pressure. The capillary

pressure Pc is given by

Pc = Pnw − Pw =
2σ

R
|cos(θ + φ)|, (28)

where σ is the surface tension between the two liquids, Pnw is the pressure in

the non-wetting fluid, Pw is the pressure in the wetting fluid and r = R
|cos(θ+φ)|

is the mean radius of curvature of the meniscus (see Fig. 4.2, here θ is angle

A, and φ is angle B). Eq. 29 follows from Laplace’s equation

Pnw − Pw =
2σ

rm
, (29)

where rm is the mean radius of curvature, maintaining mechanical equilibrium

between two fluids. Note that rm = ∞ when P′nw = Pw and the meniscus

becomes planar.

We consider bond-invasion percolation problem with no trapping. Our

system of interest (Fontainebleau sandstone) is strongly water-wet; the wetting

fluid tends to spread on the solid surface and a solid tends to imbibe the wetting

phase thus forming a wetting layer that is continues network throughout the

system. As a result, the wetting fluid can always escape from any location
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Figure 22: Menisci in a conical capillary.

within the network. During primary drainage the wetting liquid occupies the

pore corners, while the non-wetting fluid resides in the middle. As stated, it is

assumed that the wetting layer is continues; that is the wetting layers in the

corners are connected to those in adjacent pores and throats [8]. Despite this

assumption, in reality zero water saturation is very hard to reach, unless the

capillary pressure is allowed to become arbitrary large.

4.3 Primary Drainage Pore Entry Pressures

Capillary entry pressure depends on many parameters such as the receding

contact angle, θi, surface tension and radius of curvature. The invading inter-

face captures complex physical relation between two fluids, fluids and solid and

can hold nonzero stresses so that capillary forces prevent non-wetting phase

from spontaneously entering wetting fluid filled pores. To move the interface

all these relations should be taken into account. In our case, water-wet system,

θi is equal to zero. We investigate two methods of computing capillary entry

pressure P e
C . Note that at the capillary entry pressure (threshold pressure),

non-wetting fluid enters the throat with a fixed curvature and displaces water

from the central part of the throat, leaving some of the water as AM’s in the

corners (see Fig. 23). The drainage of an individual pore in a network depends
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in part upon the rest of the pore network. Below are the brief description of

three methods used to compute throat entry pressures.

4.3.1 MS-P method

Mason and Morrow [54] applied the MS-P theory to derive a general expres-

sion in terms of a throat shape factor, G for the drainage threshold capillary

pressure in triangular pores. The key idea is that the MS-P method for calcu-

lating threshold capillary pressure relies on equating the meniscus curvature of

the arc meniscus (AM’s) to the curvature of the invading interface, the main

meniscus, referred to as the main terminal meniscus (MTM). This assump-

tion holds in the absence of gravity. The meniscus curvature is C=1/r1+1/r2,

where r1 and r2 are the principal radii of the meniscus and are related to

the mean radius of curvature rm as 1/rm=1/2(1/r1+1/r2). For a cylindrical

or triangular tube, the cap is spherical and r1 and r2 are equal (rm=r) and

the pressure difference across a curved interface is described by the classical

Laplace equation:

Pc =
2γnw

r
. (30)

If the AM’s were displaced a small distance dx, the work of the displacement

must be balanced by the change in surface free energy,

PcAeffdx = (Lnwγnw + Lnsγns − Lnsγws)dx, (31)

where the subscripts s, n and w refer respectively to solid, non-wetting, and

wetting phase, Aeff is the effective area occupied by non-wetting phase, Peff

is the effective perimeter occupied by non-wetting phase, Lnw refers to the

perimeter of the AM’s, Lns refers to the length of the solid wall in contact

with non-wetting phase. From Young’s equation, γns −γws = γnwcosθr, θr = 0

and eq. 31 simplifies to

Pc

γnw

=
1

r
=

Lnw + Lns

Aeff

=
Leff

Aeff

. (32)
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Aeff and Leff = Lnw + Lns are readily available from elementary triangular

geometry. The details of calculation can be found in [62]. The threshold

capillary pressure is governed by both the pore shape and the receding contact

angle θr which is zero in our water-wet system.

P e
c = γnwC =

γnw(1 + 2
√

πG)

r
, (33)

where r is the inscribed radius of the throat, G is its shape factor, γnw is the

surface tension between non-wetting and wetting phases, C is a curvature of a

meniscus. C is fixed by the boundary conditions of the interface and is there-

fore governed by both pore structure and wettability. Evident disadvantage

of such method that it uses triangular simplified geometry of throats. How-

ever, corners of triangular throat resemble its grooves and crevices since they

contain water films. In §4.4 we show that triangular presentation of throats

simplifies calculations of hydraulic conductances.

4.3.2 VRONI method

Algorithms, and in some cases, complete software packages have been devel-

oped to analyze the geometry of the pore structure [1] from Computed To-

mography (CT) images [45]. Here we therefore can consider the full polygonal

representation of each throat obtained using the 3DMA-rock software package

as deduced from the CT images of a suite of four Fontainebleau sandstone

core sample discussed in Chap. 2. A detailed discussion of throat finding al-

gorithm can be found in Lindquist and Venkatarangan [46]. In summary, the

throats minimize cross sectional area, not planar, by following the cross sec-

tional geometry of the channel. Following the work of Mason and Morrow,

we project digitized throats onto a plane that is perpendicular to the average

normal to the throat surface. A deviation from planarity is rather mild with

no significant artifact. So the basis of computation is similar to MS-P method,
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Figure 23: Schematic of non-wetting fluid occupation of the cross section of
a capillary tube of arbitrary, simply connected, cross sectional shape. (W. B.
Lindquist, 2006)

in fact for each throat a radius of curvature of the arc meniscus at the critical

(threshold) entry pressure, re, defines the critical entry pressure for that throat

P e
c = γnw/re. (34)

From Fig. 23 it is seen that

Lnw = 2r
∑

αi (35)

and if substitute 34 and 35 into 29, the resulting quadratic equation is

2r2α + rLns(r) − Aeff(r)=0, (36)

to solve for the principal r=re. The article of Lindquist [46] is devoted to a

discussion of the solution of 36 for cross sections of arbitrary, simply connected

polygonal shape. The solution provides a model for penetration of a non-

wetting fluid through the throat separating two pores and become of primary

importance in network models of two-phase flow. In addition to providing

entry pressure conditions for each throat, the solution quantifies details of the

wetting fluid films occurring in corners such as βi- throat corner half-angles,
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Figure 24: Arc meniscus locations (solid arcs) at entry pressure for θ=0 for
the first 16 throats analyzed in the 22% porosity Fontainebleau core sample
image. Solid points indicate centers of the curvature of menisci. The dashed
circle is the maximally described circle, centered at the root location of the
MA. (W. B. Lindquist, 2006)

Awi - wetting phase corner/vertex areas. Such films provide critical pathways

for wetting fluid movement [46]. Fig. 24 shows solutions of 36. In order to

construct the MA for the interior of each throat Held’s Vroni software package

[48] was used and modified by adding a bisection algorithm to compute the

solution to 36 by Lindquist.

We also present the cumulative porosity and pore entry pressure distribu-

tion curves Fontainebleau sandstone for 7.5%, 13%, 15% and 22% porosity

cores in Fig. 26.

In the case of 7.5% porosity sample the cumulative porosity curve pro-

vides proof of the large fraction of small pores (high entry pressure) compared

to other samples with larger porosity. Pore entry pressure distribution for
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Figure 25: The overall saturation of corner filaments versus average saturation
in drainage of Fontainebleau sandstone for 15% and 22% porosity cores.
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Figure 26: The cumulative porosity and pore entry pressure distributions
curves computed from Fontainebleau sandstone samples of 7.5%, 13%, 18%
and 22% bulk porosity from top to bottom respectively.
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7.5% sample is relatively wide and skewed to the right towards higher entry

pressures. Over an increase of porosity we observe that pore entry pressure

distribution narrows and becomes more symmetric. The behavior of relative

permeability curves for various porosity samples can be observed and inter-

preted in parallel with pore entry pressure distributions (Fig. 26) in §4.5.

4.4 Water Saturation and Hydraulic Conduc-

tances in a Single Pore

4.4.1 Water and Oil Saturations

It is important to emphasize here that all the volume of the pore network is in

the pore bodies. So we solely concentrate on pores in order to compute water

saturation. If a pore is filled with non-wetting phase, wetting phase forms thick

films along the walls of pores in grooves and wedges. It is vital to quantify

the amount of water and so the amount of oil in a single pore throughout the

drainage process: as capillary pressure increases, oil squeezes water out and so

water volume in a pore changes. Since water is present as arc meniscii (AM’s)

in the corners, we utilize Held’s Vroni software package [48] for computing

dimensionless total throat wetting area Aw ≡ 1
tan(βi)

− αi where βi is the half

angle of the vertex i and αi is the half angle of the meniscus in vertex i. The

details of an arbitrary throat geometry are in [45]. It is important to note that

throat wetting area is computed using actual throat geometry and therefore is

more accurate compared to a wetting area of a triangular throat. Multiplying

Aw by the radius of arc meniscus (r) squared we get dimensional throat wetting

area for arbitrary capillary pressure (Pc = γnw/r). The drawback is that we do

not compute water volume in a single pore using actual pore surface which can

be a future extension to our work. Instead, the volume of water is estimated
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to be the fraction of the cross section occupied by the phase multiplied by the

total pore body volume. To compute the fraction, we average wetting areas of

throats connected to the pore and divide it by the average pore cross section

area. The overall saturation of each phase is found by adding the volume of

each phase in every pore body and dividing by the total pore volume of the

network.

4.4.2 Water Corner Conductance

The conductances of oil and water when both fluids are present in a sin-

gle pore are computed following the work of Oren et al. [62] and Patzek

[65]. Here we again introduce a channel notion discussed in §3.1. However

if a throat together with two adjoining pores completely filled with water,

the hydraulic conductance of an associate channel is computed using Lattice-

Boltzmann conductance. In case when a channel shares two fluids, each fluid

channel hydraulic conductance is based upon series resistance. The hydraulic

conductance of a throat is computed via 37:

gw,i =
r2Aw,i

Cw,iµw

[62], (37)

where r is the radius of curvature, Aw,i is the corner i area of wetting film, µw

is water viscosity (cp), and Cw,i is a dimensionless flow resistance factor that

accounts for the reduced water conductivity close to the pore walls. Numerical

solutions of the corner flow problem show that Cw depends on the corner geom-

etry, the contact angle, and the boundary condition at the oil/water interface

[62]. Ransonoff et al. [72] studied the problem of low Reynolds number wetting

liquid flow in a non-circular capillary and separated this problem into individ-

ual corner flow problems and solved numerically. The solution is presented in

terms of a dimensionless flow resistance Cw and tabulated as a function of cor-

ner geometry, surface shear viscosity, and a contact angle, which is in our case
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θ=0. So, we need only to choose the correct surface shear viscosity η which

affects the boundary condition at the interface. As mentioned earlier in this

work, we use no-slip boundary condition at the rigid interface, so η = ∞. The

total throat hydraulic conductance is the sum of all the corner conductances.

The hydraulic conductance of a pore is computed using Eq. 37. A pore is

approximated as a triangular duct based on its shape factor, computed from

12 in section §3.1. The effective length lc is determined the same way as in a

single-phase model.

4.4.3 Oil Center Conductance

Since non-wetting phase occupies the center of a pore/throat body, the oil

pore/throat conductance is estimated from

go =
3r2Ao

20µo

[62], (38)

where Ao=A-Aw, A is the throat area, Ao, Aw are areas of oil and water re-

spectively, µo is the viscosity of oil and r is the radius of curvature. Pores are

estimated as triangular ducts.

4.5 Interpretation of Results

The non-wetting phase relative permeability curves kro show two types of be-

havior: in the first (highly heterogeneous), they take the conventional S-shape

curve, while in the second case (homogeneous case) the absence of any plateau

in the low saturation zone is noted. It is seen from Fig. 27 that as the poros-

ity decreases, kro curve tends to flatten out. This fact can be explained by

looking at Fig. 26 and noting that pore entry pressure distribution of 7.5%

porosity sample is skewed to the right depicting large fraction of small pores

with high entry pressure. As the 7.5% porosity sample becomes desaturated,
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the smaller pores are invaded with non-wetting fluid and therefore take part in

non-wetting fluid flow without greatly modifying its permeability but remark-

ably enough changing water saturation. As porosity increases, Fontainebleau

samples have a more uniform porosity and kro values remain small until lower

water saturation (each higher porosity curve is located below lower porosity

curve in Fig. 28).

One curious observation (see Fig. 29) is that the permeability curves

for the wetting fluid are more or less aligned near each other except 7.5%

porosity sample which is found to be more heterogeneous with non-uniform

porosity. This indicates that the characteristic pore space geometry is a more

important factor for the relative permeability estimates than the porosity and

in fact, pore volume and pore entry pressure distributions are similar for 13%,

15% and 22% porosity samples.

A knowledge of how the capillary pressure is related to saturation in a

porous medium, the capillary pressure curve, is useful to characterize the pore

structure of the medium and to predict how one phase displaces the other [16].

It is also used in the study of the capillary pressure versus saturation relation-

ship in dependence on the contact angle and a direction of the displacement

process. Usually capillary pressure curves are derived experimentally either

from nuclear magnetic resonance (NMR) pore size distributions or from mer-

cury porosimetry intrusion tests and applied as input file in numerical reservoir

simulation.

As is apparent from Fig. 30, increasing Pc at first results only in a very

small change in saturation. In this initial phase of the simulation the non-

wetting phase has penetrated only pores at or near the surface of the sample

but soon the Pv versus Sw curve stabilizes, getting flat, until it becomes vertical

again at low saturation values. Since we use the assumption that wetting

phase keeps a continuous network throughout the primary drainage process, no
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Figure 27: Relative permeability curves for two fluids computed from
Fontainebleau sandstone samples of 7.5%, 13%, 18% and 22% bulk porosity.
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Figure 28: Comparison of oil relative permeability curves computed from
Fontainebleau sandstone samples of 7.5%, 13%, 18% and 22% bulk porosity.
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Figure 29: Comparison of water relative permeability curves computed from
Fontainebleau sandstone samples of 7.5%, 13%, 18% and 22% bulk porosity.
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Figure 30: Primary drainage capillary pressure versus water saturation curves
computed from Fontainebleau sandstone samples of 7.5%, 13%, 18% and 22%
bulk porosity.
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Figure 31: Comparison of capillary pressure curves computed from
Fontainebleau sandstone samples of 7.5%, 13%, 18% and 22% bulk porosity.

trapped wetting phase can be observed in Fig. 30 and therefore an ”irreducible”

wetting phase saturation is almost zero. It is shown experimentally that a

wetting phase is not trapped in a sandstone and ,probably, in most natural

water-wet porous media because the grooves, edges, and wedges on the pore

surface. After the non-wetting phase has penetrated the central part of a pore

there is always wetting fluid left in the surface grooves, etc, in the form of

’thick’ films [21]. The shape of capillary pressure curves for various porosity

(Fig. 31) can be explained by the shape of pore entry pressure distributions

(Fig. 26): the wider pore entry pressure distribution, the bigger the slope of

capillary pressure curve.

The experimental methods used to analyze fluid transport through porous

media vary greatly: mercury porosimetry, electrical conductivity, nuclear mag-

netic resonance, acoustic properties of the medium to name a few. These ex-

periments typically have large uncertainties, and the measured permeabilities

often depend on minute experimental details. Carrying out the experiments

as for example the water-flow through low-porosity rock samples is very time
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consuming. In addition to the permeability itself, many material characteris-

tics on which the measured permeability depends, can be difficult to determine

accurately.

A great deal of literature that describes the generic properties of

Fontainebleau sandstone (see Chap. §2) exists. However relatively few at-

tempts have been made to predict petrophysical properties quantitatively. In

fact, there has been a paucity of network studies incorporating any experi-

mental data at all. Experimental data is scarce. In this study we compared

our simulated relative permeability curves for samples of 13%, 15% and 22%

porosity with experimental curves of Sorbie etal . [56]. Experimental reservoir

rock samples are taken from a fairly clean homogeneous well-sorted sand-

stone plugs from a shallow marive depositional environment and are similar

to Fontainebleau sandstone. We were unable to get numerical data from the

authors due to a non-disclosure agreement, so we can only make a qualitative

comparison. In in Fig. 32 we show the experimental curves (blue) extracted

from their paper and the results of our compution (black) for each porosity

sample. We believe that the agreement that we get is a very good indication

that our novel computational methods very accurately describe the primary

drainage process.

In Fig. 33 we demonstrate the invasion process of non-wetting fluid into 7.5

% porosity sample using Geomveiw 3D Visualization software. The marching

cubes algorithm provides interphase surface to the voxel resolution level, and

only limited number of triangles can be displayed due to several constraints

such as random-access memory (RAM) and a memory capacity of a video

card. While great voxel level detail is important for area computation, we

might be interested in the relative position of that non-wetting fluid in the

volume. For such a purpose, visualizing a reduced number of triangles (which

is a common transformation on triangulated meshes) would be enough [70].
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Figure 32: Comparison of experimental relative permeability curves (blue)
obtained by Sorbie [56] with our computation (black) for Fontainebleau sand-
stone 13%, 18% and 22% bulk porosity samples.
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Figure 33: Geomview plots depicting invasion of non-wetting fluid into a 7.5%
porosity Fontainebleau sample. Non-wetting fluid is red.

In §5 we address this problem as a future extension of our work.
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Chapter 5

Discussion

We have developed single-phase and multi-phase network models capturing

essential pore characteristics for predicting hydraulic properties used in reser-

voir simulations. Our sensitivity study indicates that single-phase network

flow models utilizing series resistance computations for pore-to-pore conduc-

tance are capable of “tuning” bulk absolute permeability values over at least

one order-of-magnitude. Our results show that a ”tuned” model will produce

sharp bulk values only over a limited range of porosity.

By comparing with lattice Boltzmann computations, our results indicate

that network flow models employing channel conductances based upon shape

factor do not capture a sufficiently rapid increase of conductance with in-

creasing shape factor. We have extracted a power law model appropriate for

Fontainebleau sandstones which, more accurately, captures this trend.

The NF-LBC hybrid network flow - lattice Boltzmann model that we have

introduced encorporates advantages of both methods. The lattice Boltzmann

simulations are run locally, and in a highly parallelizable fashion, to provide

pore-to-pore conductances for input into a network flow model. This hybrid

model eliminates the need for series resistance conductance computations, and

utilizes the superior ability of the lattice Boltzmann simulations to capture
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individual channel geometry.

The modified NF-LBG model, which requires only estimates for throat

shape factors and the two parameters appearing in (17), should enable more

accurate computations in “artificial” medium models, i.e. those not based

upon a specific 3D realization.

Two-phase model for primary drainage incorporates the throat real ge-

ometries for computing throat entry pressures, water saturations and water

conductances. Absolute permeability used in two-phase model is computed

via the NF-LBC model. The relative permeability curves of water and oil are

analyzed for four samples of Fontainebleau sandstone with various porosities.

The shapes of relative permeability curves linked to pore characteristics which

define hydraulic behavior. It is shown that the oil relative permeability curves

for Fontainebleau sandstone have a convex-like shape and therefore displaying

the homogeneity of pore space. The permeability curves for the wetting fluid

are aligned near each other indicating that the characteristic pore space ge-

ometry is a more important factor for the relative permeability estimates than

the porosity.

We identify the following as the future extensions of our work:

• To improve th calculation of water saturation and water and oil con-

ductances by considering the actual pore surface for water volume cal-

culation and extending Lattice-Boltzmann channel model (NF-LBC) to

two-phase channel model. It is vital to note that for the computation of

water/oil conductances only channel actual geometry is needed for ac-

curate predictions and 3DMA-Rock software provides with actual pore

space description. Such improvement will enhance predictive capabili-

ties of two-phase network as it simulates primary drainage or secondary

imbibition.

• To study of the role of contact angle. So far we analyzed Fontainebleau
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sandstone which is completely water-wet with zero contact angle. Most

porous rocks exhibit mix-wetting and therefore it is inevitable to build

a two-phase pore network which take as input an arbitrary contact an-

gle. Having included a simulation of mixed-wet system one can study

the amount of trapping of the wetting phase in primary drainage and

imbibition.

• To include imbibition into two-phase network model. The microscopic

picture of imbibition in porous media is much more complicated than

that of drainage. Such factors as contact angle hysteresis, oil trapping,

oil clusters tracking and various throat filling scenarios should be con-

sidered and the wealth of information provided by 3DMA-(R)ock should

be incorporated to extend predictive capabilities to network models in-

vestigated at other research groups.

• To simulate two phase flow via LBM [76, 53] in the exact throat and pore

geometries in order to predict relative permeabilities to oil and water.

Then we could compare network flow with LB results and identify which

pore space characteristic parameters play a crucial role in two-phase flow.

• To use of improved visualization methods. Both processes, primary

drainage and secondary imbibition, could be visualized and so one could

see both fluids’ evolution through time steps and its distribution in pore

space, track oil clusters and identify trapped water/oil blobs. For such a

purpose, visualizing a reduced number of triangles (which is a common

transformation on triangulated meshes) would be enough. Therefore,

it would be beneficial if 3DMA-Rock incorporated a preexisting library

functions operating on of triangulated surfaces such as CGAL [40] or

GTS [41].
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