

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Efficient Techniques for Fast Packet
Classification

A Dissertation Presented
by

Alok Tongaonkar

to
The Graduate School

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science
Stony Brook University

August 2009

Stony Brook University

The Graduate School

Alok Tongaonkar

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor R. Sekar, (Advisor)
Computer Science Department, Stony Brook University

Professor I. V. Ramakrishnan, (Chairman)
Computer Science Department, Stony Brook University

Professor Robert Johnson, (Committee Member)
Computer Science Department, Stony Brook University

Professor Nitesh Saxena, (External Committee Member)
Computer Science and Engineering Department, Polytechnic Institute of NYU

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Efficient Techniques for Fast Packet Classification

by

Alok Tongaonkar

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Rule-based packet classification plays a central role in network intrusion de-

tection systems, firewalls, network monitoring and access-control systems. To

enhance performance, these rules are typically compiled into a matching au-

tomaton that can quickly identify the subset of rules that are applicable to a

given network packet. The principal metrics in the design of such an automa-

ton are its size and the time taken to match packets at runtime. Previous

techniques for this problem either suffered from high space overheads (i.e.,

automata could be exponential in the number of rules), or matching time that

increased quickly with the number of rules. In contrast, we present a new tech-

nique that constructs polynomial size automata. Moreover, we show that the

matching time of our automata is insensitive to the number of rules. The key

idea in our approach is that of decomposing and reordering the tests contained

iii

in the rules so that the result of performing a test can be utilized on behalf

of many rules. Our experiments demonstrate dramatic reductions in space

requirements over previous techniques, as well as significant improvements in

matching speed. Our technique can uniformly handle prioritized and unprior-

itized rules, and support single-match as well as multi-match classification.

iv

To my parents,

my sister Meghana,

my brother-in-law Nitin,

and my wonderful nephew Aryan.

Contents

List of Figures ix

Acknowledgments x

1 Introduction 1

1.1 Packet Classification . 3

1.1.1 Overview of Our Approach 5

1.1.2 Contributions . 5

1.2 Dissertation Organization . 7

I Packet Header Matching 9

2 Background 10

2.1 Preliminaries . 10

2.2 Packet Classification Automata 13

2.2.1 Computational Issues 15

3 Condition Factorization 17

3.1 Residue . 19

3.1.1 Computing Residue . 21

3.2 Condition Factorization in Automata Construction 23

4 Matching Automata Construction 26

vi

5 Techniques for Realizing Select 29

5.1 Partitioning Tests . 30

5.2 Ensuring Polynomial-Size Automata 31

5.3 Benign Nondeterminism . 33

5.4 Improving Matching Time . 35

6 Implementation: Putting It All Together 36

6.1 Language for Specifying Packet Classifiers 36

6.1.1 Packet Type Description 37

6.1.2 Rules . 40

6.1.3 Compilation . 41

6.2 Integration with Snort . 43

6.2.1 Snort Language . 43

6.2.2 Packet Classification in Snort 44

7 Evaluation of Packet Classification 47

7.1 Experiments using IDS . 47

7.1.1 Automaton Size . 48

7.1.2 Matching Time . 50

7.1.3 Measuring Match Time 52

7.1.4 Experiments with Firewall Rules 54

II Deep Packet Inspection 56

8 Handling Content Matching 57

8.1 Background in DPI . 57

8.2 Improving End-to-End Performance using Packet Classification

Automata . 59

8.3 Incorporating String Matching in Packet Classification Automata 59

8.4 Implementation . 61

8.5 Evaluation of End-to-End Performance 62

vii

9 Related Work 64

9.1 Packet Header Matching . 64

9.1.1 Early Works . 64

9.1.2 Techniques targeted for routers 69

9.1.3 Hardware based techniques 71

9.1.4 Techniques based on reordering of tests 72

9.1.5 Techniques from term rewriting 72

9.2 Deep Packet Inspection . 73

10 Conclusions and Future Work 75

10.1 Conclusions . 75

10.2 Future Work . 75

Bibliography 78

viii

List of Figures

1 A deterministic classification automaton. 13

2 A nondeterministic classification automaton. 14

3 DCA for rules before applying condition factorization. 18

4 DCA for rules after applying condition factorization. 19

5 Computation of Residue on Tests. 22

6 Algorithm for Constructing Matching Automaton 27

7 Priority relation between rules. 41

8 Automaton Size for Snort Rules 48

9 Effect of Optimizations on Automaton Size for Snort Rules . . 49

10 Matching Time for Our Lab Traffic 51

11 Matching Time for Lincoln Lab Traffic 52

12 Path Length for Snort Rules 53

13 Automaton Size for Firewall Rules 54

14 Matching Time for Firewall Rules 55

15 Total Matching Time . 62

16 Tree Model . 65

17 CFG Model . 65

18 Tree filter for host foo . 66

19 CFG Filter for host foo . 67

20 Composite filters in PathFinder 68

21 CFG for “all packets sent between X and Y” 69

ix

Acknowledgments

In poverty and other misfortunes of life, true friends are a sure

refuge. The young they keep out of mischief; to the old they are a

comfort and aid in their weakness, and those in the prime of life

they incite to noble deeds. — Aristotle.

Working on my PhD dissertation has been a wonderful journey. I am grateful

to take this opportunity to sincerely thank all those who helped me on the

way. First and foremost, I would like thank my advisor, Prof. R. Sekar,

for his constant support, invaluable guidance and infinite patience. His work

ethic and constant endeavor to achieve perfection have been a great source of

inspiration.

I wish to extend my sincere thanks to Prof. I.V. Ramakrishnan, Prof.

Robert Johnson, and Prof. Nitesh Saxena for consenting to be on my defense

committee and offering invaluable suggestions to improve this report. I am

thankful for what I learnt, inside and outside the classroom, from Prof. Michael

Bender, Prof. C.R. Ramakrishnan, Prof. Tzi-cker Chieuh, Prof. Qin Lv, and

Prof. Scott Stoller.

I would like to thank my friends: Akshay Athalye, Vishnu Navda, Amit

Purohit, Sumukh Shevde, Vaishali and Ibrahim Muckra, Swetha and Mohan

Reddy, Shruti and Salil Gokhale, Uttara and Gaurav Gothoskar, Sandeep

Bhatkar, Namit Joshi, and Varun Puranik for being my family away from

home; Diptikalyan Saha and Girish Ramakrishnan for being great roommates;

Niranjan Inamdar, Sreenaath Vasudevan, Mayur Mahajan, Manuel Rivera,

Vishal Chowdhary, T. V. Lakshmi Kumar, and Lohit Vijayrenu for work-

ing tirelessly on projects with me; Kiran Kumar Reddy, Wei Xu, Zhenkai

Liang, and Weiqing Sun for providing much needed guidance; Varun Katta

and Mithun Iyer for being great sounding boards; Sandhya Menon, Namrata

Godbole, Prachi Kaulgud, Srivani Narra, and Anupama Chandwani for pro-

viding many lighter moments that were a welcome relief from the humdrum

of graduate life; Lorenzo Cavallaro and Yves Younan for bringing European

touch to the lab; Pinkesh Zaveri, Gaurav Salia, Gopalan Sivathanu, Michelle

Carmelo, and Neeti Gore for being there when I needed them; Abhiraj Bu-

tala, Arvind Ayyengar, Bhuvan Mittal, Ashish Misra, and Prachi Deshmukh

for seeing me over the finishing line; and countless other friends in Stony Brook.

I would also like to thank my friends who have encouraged and inspired

me even before I started this journey: Rudhir Patil, Nirjhar Goel, Shruti

Singh, Sonali Singh, Mangesh Edke, Milap Paun, Gulzar Wadiwala, Suyog

Lokhande, Omkiran Sharma, Trupti Suryavanshi, Ashutosh Deshpande, and

Niranjan Potnis.

I have been fortunate to work with mentors who were really passionate

about their work: Morton Swimmer and Sailesh Kumar; managers who were

very approachable and friendly: Andreas Wespi and Pere Monclus; and Fy-

odor, Andrea Baldini, and Valentina Alaria who gave me an opportunity to

work on some really interesting projects. I wish I could have spent more time

working on projects with all of them. I am also thankful to Karthick Iyer for

providing a new challenge for me. The best part of my internships was the

friendships that I formed there – the pool group in Zurich – Lukasz Juszczyk,

Corrado Leita, Alex Mathey, Milton Yates, Karima Rehioui, and Michel Be-

rard, and Domenico Ficara – in California – who was always ready for a dinner

outing.

I would like to thank Brian Tria, Betty Knittweis, Kathy Germana, Cindy

Scalzo, Chris Kalesis, and Mara Green who got me out of countless sticky

administrative situations.

Finally, and most importantly, I would like to thank my parents, sister

Meghana, brother-in-law Nitin Sadawarte, and my extended family without

whose support this work would have been impossible.

This research is supported mainly by an ONR grant N000140110967 and

in part by NSF grants CCR-0098154 and CCR-0208877.

CHAPTER 1

Introduction

The past few years have seen an explosive growth in the number of systems

connected to networks. This has radically changed the way we perform many

day-to-day tasks such as accessing our bank accounts, buying and selling,

reading news or books, listening to music, watching live events, and staying

in touch with people. Growth of computer networks has made it easier to

perform these tasks. Businesses and governments are also taking advantage of

the additional convenience and cost reductions brought about by this growth.

They are becoming increasingly reliant on computer networks for their day-

to-day operations.

The result of this reliance on networked systems is that security of these

systems has become of paramount importance to our society. Security breaches

can have consequences like huge financial losses. The problem is worsened by

the fact that cyber crimes have become financially lucrative, leading attackers

to use more and more resources to exploit vulnerabilities in networked sys-

tems. It is therefore crucial to employ various system and network security

mechanisms that can thwart these attacks.

The two main goals of network security are (i) to protect data in transit,

and (ii) to protect end host systems from unauthorized access. Mechanisms

that use cryptographic techniques are commonly used to achieve the first goal.

In this dissertation, we will focus on applications such as firewalls, signature-

based network intrusion detection systems, and networking monitoring tools

1

that try to achieve the latter goal. These applications form the first-line of

defense for many networked systems. They inspect network packets and try

to identify packets that can lead to unauthorized access. They are typically

rule-based systems, where the rules are used to specify how to process network

packets:

• Firewalls and access control systems are used to control access between

hosts on different networks. They are deployed on the edge of a private

network that needs to be protected. The hosts on the network being

protected are considered as inside hosts. All other hosts are considered

as belonging to the outside network. These systems permit or deny

incoming (or outgoing) network packets based on the conditions specified

in firewall or access-control rules. These rules specify which hosts and/or

networks are allowed access to the services provided by inside hosts and

which outside services are allowed access by inside hosts. These systems

look for the first matching rule in a linearly ordered rule set.

• Network intrusion detection systems (NIDS) are used to detect attacks

over the network. Network intrusion detection system rules define sus-

picious activity using patterns that are observed in network packets in-

volved in known attacks. To avoid missing any potential attack, NIDS

need to match network packets against unordered rule sets and identify

all the matching rules. NIDS are deployed at key points of the network

like the edge to protect the network infrastructure.

• Network monitoring applications are deployed on network devices to se-

lectively monitor, record, or analyze network packets belonging to a par-

ticular traffic. These applications use rules to specify conditions on the

packets of interest. Typically, they are concerned with packet filtering,

i.e., identifying if any of the conditions is satisfied rather than identifying

the matching rules.

The key challenge in deploying these security mechanisms effectively in

today’s networks is their performance. Network speeds have increased to the

2

point where gigabit link rates are commonplace now at the edge and in the

core of many networks. Firewalls, network intrusion detection systems, and

networking monitoring systems need to operate at these line-rates to avoid

dropping packets or missing unauthorized accesses. One of the key factors

that determines the performance of these systems is the amount of process-

ing time that they spend in identifying the matching rules for each network

packet. Achieving acceptable performance for rule matching has become very

challenging due to the increasing size and complexity of the typical rule sets

used by these applications. Nowadays, network intrusion detection systems

rule sets contain several thousand rules to deal with the rapid escalation in

the number of new attacks. Similarly, the growth in network sizes and the

number of applications supported has resulted in typical firewall rule set size

to grow to several hundred rules.

In this dissertation, we present techniques for improving the performance

of packet classification, which is the mechanism that inspects a network packet

and determines how it is to be processed. In essence, given a set of rules

{R1, ..., Rn}, a packet classifier identifies the subset of rules that match the

packet. These rules typically contain tests on packet header fields and patterns

for matching against the packet payload. This latter operation is commonly

referred to as deep packet inspection or content-matching. In the following

sections we describe our approach for generating fast and scalable packet clas-

sifiers that can be used in a variety of applications.

1.1 Packet Classification

A naive technique for packet classification is that of sequentially matching

each rule against an incoming packet. The performance of such a technique

degrades linearly with the number of rules. Since the number of rules used

in network intrusion detection systems and firewalls are typically large, this

naive technique will not scale even to moderate speed networks.

The naive technique repeats computations involved in matching: in par-

ticular, a test that occurs in multiple rules is tested once on behalf of each rule.

3

This repetition can be avoided by building a finite-state automaton (referred to

as matching automaton): the states of the automaton can be used to “remem-

ber” the tests already performed before reaching a state, and avoid repetitions.

Transitions in the automata correspond to simple tests (e.g., equality or in-

equality checks) involving packet fields, and the final states indicate a match

with one or more rules. Traditionally, finite-state automata have been used

for deep packet inspection. In particular, finite-state automata can identify

the matching strings or regular expression in a single pass over the payload.

A finite-state automaton can be either deterministic or nondeterministic.

A deterministic automaton can identify all matching rules in a single scan of

the input packet in time that is independent of the number of rules. Unfor-

tunately, previous research has established an exponential lower bound on the

size of deterministic automata [24], even in the simple case where we are re-

stricted to equality checks with constants. Nondeterministic automata (also

called as backtracking automata) do not suffer from this exponential blowup,

but have the drawback that packet fields can be reexamined again and again.

The matching times, in practice, can increase quickly with the number of rules

for such automata. Previous packet classification techniques either used de-

terministic automata ([14]) or relied on nondeterministic automata ([18], [7],

[4], [3]). Clearly, neither alternative is satisfying:

• Exponential blow-ups can’t be tolerated since the number of rules can

be large, e.g., several hundred to many thousands in the case of network

intrusion detection systems and firewalls.

• Even a modest rate of increase in matching time with number of rules

may not be acceptable in high-speed networks. For instance, consider a

technique whose matching time increases at the rate of
√

N , where N is

the number of rules. It slows down by a factor of 50 when the number

of rules is increased to 2500.

4

1.1.1 Overview of Our Approach

Matching automata have been studied extensively in the context of term in-

dexing and functional programming. Lot of works in these areas have focused

on reducing the space and matching time requirements of such automata. Pre-

vious research has shown that both space and matching time of deterministic

matching automata can be improved by designing a traversal order to suit the

input rule set rather than using a predefined order [24]. Unfortunately, these

results do not hold in the more general setting setting of packet classification,

where disequalities and inequalities also need to be handled. Moreover, packet

matching needs to support arbitrary bitmasking operations that further com-

plicate designing such traversal order.

In this dissertation, we develop an algorithm for constructing classifi-

cation automata that generalizes and applies the ideas developed in these

areas. Our approach improves classification speed using a novel technique

called condition factorization that breaks down tests involving packet fields

in such a manner as to expose commonalities across different types of tests

such as equality tests, inequality tests, tests involving bit-masking operations,

etc. Moreover, in contrast with previous techniques, our algorithm guaran-

tees a polynomial size automata in the worst-case. Our experimental results

indicate that we construct classification automata that are tens to hundreds

of times smaller than previous techniques while improving classification time

substantially. Moreover, our experiments indicate an overall performance gain

of 30%.

1.1.2 Contributions

The key contributions of our work are summarized below.

• Security applications have differing packet classification requirements.

Firewalls need to identify the first matching rule from a linearly ordered

rule set. Network intrusion detection systems look for all matching rules

from unordered rule sets. Network monitoring may require only the

ability to identify if a packet matches any of the rules. Previous research

5

efforts address one specific flavor of the matching problem. In contrast,

we present a new packet classification technique that addresses single-

match as well as multi-match classification, and supports ordered and

unordered rules within a uniform framework.

• We develop the concept of condition factorization which is the core oper-

ation behind our algorithm. Condition factorization refers to decompo-

sition and reordering of the tests contained in packet classification rules

so that the result of performing a test can be utilized on behalf of as

many rules as possible.

• We develop several techniques for selecting the order of tests to build

space- and time-efficient automata. Our experiments show that a com-

bination of these techniques is needed to achieve significant reduction in

space and classification time of the automata.

(a) We develop the notion of a partitioning test which makes the au-

tomaton size polynomial in the size of input rules if such tests are

selected at every state. Typically, fields in packet headers that are

used to identify higher layer protocols, are partitioning tests.

(b) We present a new technique that guarantees polynomial space bounds

(where the degree of the polynomial can be user-specified) by trad-

ing off some determinism. We point out that this theoretical possi-

bility of nondeterminism wasn’t observed in our experiments. Thus,

our technique was able to guarantee quadratic worst-case space re-

quirement, without incurring, in practice, the performance penalties

associated with nondeterminism.

(c) We develop the notion of benign nondeterminism, which enables the

introduction of nondeterministic branches in the automaton without

any increase in matching times. Use of benign nondeterminism can

lead to dramatic reductions in automata size for certain rule sets.

(d) To improve the matching times we develop the concept of utility of a

test which captures the notion of how useful the test is in matching

6

the rule set. We try to pick tests with high utility values at each

state to minimize the matching time of the automaton.

• We use a packet classification language that uses a strong type system

similar to packet types [5] to ensure the safety of the matching code

generated by our technique. This enables native code to be used for

matching, resulting in very fast matching times, as opposed to previous

techniques which use interpreters for matching their automata. The

experimentally observed classification time remains virtually constant,

regardless of the number of rules.

• We develop a metric for matching time that can be understood indepen-

dent of the specifics of underlying hardware or software implementations

to evaluate the performance of the classifiers generated by our technique.

• We generalize and extend these techniques to improve the performance

of deep packet inspection as used in security applications like network

intrusion detection systems.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Part I describes our tech-

niques for packet header matching. We formally define the packet classification

problem in Chapter 2. We present our technique of condition factorization in

Chapter 3. An algorithm for constructing packet classification automata using

condition factorization is presented in Chapter 4. This algorithm is parame-

terized with respect to a function that selects tests to be performed at each

automata state. Techniques for reducing size and matching time of automata

are described in Chapter 5. Chapter 6 provides the details about how these

techniques are implemented for the selection function. Chapter 7 presents

experimental results. Chapters 8 in Part II discusses how our technique can

be extended to handle deep packet inspection and shows the improvement in

7

overall system performance due to our technique. Related work is described

in Chapter 9 followed by concluding remarks and future work in Chapter 10.

8

Part I

Packet Header Matching

9

CHAPTER 2

Background

Security applications like firewalls, network intrusion detection systems (NIDS),

and network monitoring tools use rules of the form “cond −→ act,” where act

specifies the action to be taken on a packet that matches the condition cond.

Given a set of rules {R1, ..., Rn}, and a packet p, a packet classifier identifies

the rules, Ri, that match p.

In this chapter we present the packet classification problem. We focus

on packet header matching in this part. We defer the discussion about deep

packet inspection to Part II.

2.1 Preliminaries

In the rest of this dissertation, we are concerned only with the condition com-

ponents of classification rules, which are referred to as filters henceforth. We

associate a label with each filter to identify the corresponding rule. For sim-

plifying the presentation, we will not consider content-matching initially, but

we will show later on (in Chapter 8) how they can be encoded into packet

filtering rules of the form discussed here.

Definition 2.1 (Tests, Filters and Priorities) A test involves a variable

x and one or two constants (denoted by c) and has one of the following forms.

• Equality tests of the form x = c

10

• Equality tests with bitmasks of the form x&c1 = c

• Disequality tests of the form x 6= c

• Disequality tests with bitmasks of the form x&c1 6= c

• Inequality tests of the form x ≤ c or x ≥ c

A filter F is a conjunction of tests. A set F of filters may be partially ordered

by a priority relation. The priority of F is denoted as Pri(F).

An example of a filter, as defined above, is

(dport = 22) ∧ (sport ≤ 1024) ∧ (flags & 0xb = 0x3)

We do not consider more complex conditions that do not satisfy the definition

of a filter, e.g.,

(sport + dport < 1024) ∧ (sport < ttl),

since they do not seem to arise in practice in our application domains (firewalls

and network intrusion detection systems).

A filter F can be “applied” to a network packet p, denoted F (p), by

substituting variables, which denote the names of packet fields, with the cor-

responding values from p. We define the notion of matching based on whether

the filter evaluates to true after this substitution. For example, consider a

filter F1 : (icmp type = ECHO). At packet classification time, for each input

packet, the value of icmp type field is obtained from that packet, and then

the test is performed.

Definition 2.2 (Prioritized Matching) For a set F of filters, we say that

F ∈ F matches a packet p, denoted MF (F, p), provided:

• F (p) is true, and

• F ′(p)is false, ∀F ′ ∈ F that have a strictly higher priority than F .

11

The match set of p, denoted MF(p) consists of all filters that match p,

with the exception that among equal priority filters, at most one is retained in

MF(p).

Thus, a filter cannot match a packet unless matches with higher priority filters

are ruled out. To illustrate matching, consider the following filter set F :

• F1 : (icmp type = ECHO)

• F2 : (icmp type = ECHO REPLY) ∧ (ttl = 1)

• F3 : (ttl = 1)

Also consider an icmp echo packet p1 and an icmp echo reply packet p2, both

having a ttl of 1.

• If these filters have incomparable priorities, then F1 matches p1, F2

matches p2, and F3 matches both. As a result, MF(p1) = {F1, F3}
andMF(p2) = {F2, F3}

• If Pri(F1) > Pri(F2) > Pri(F3), then MF(p1) = {F1}, and MF(p2) =

{F2}.

• If Pri(F3) > Pri(F2) > Pri(F1), thenMF(p1) =MF(p2) = {F3}.

• If Pri(F1) = Pri(F3) > Pri(F2), then MF(p1) can either be {F1} or

{F3}, whileMF(p2) = {F3}.

These examples illustrate how various flavors of matching can be captured

using priorities.

• Packet-filtering can be done by setting equal priorities for all filters. By

virtue of the definition of match sets, this priority setting causes a match

to be announced as soon as a match for any filter is identified.

• Ordered matching, as used in firewalls and access control lists can be

done by assigning priorities that decrease monotonically with the rule

number.

12

1

2 4

8

1095 6

7

3

ttl = 1

icmp type = ECHO REPLY

ttl = 1

{F1, F2, F3}

φ

∧icmp type 6= ECHO

{F2, F3}

φ

{F1, F3}

{F1, F3}

{F3}

icmp type 6= ECHO REPLY

{F2, F3}

ttl 6= 1

{F3}

icmp type = ECHO

{F1}
ttl = 1

ttl 6= 1

ttl 6= 1

Figure 1: A deterministic classification automaton.

• Multi-matching, as used in network intrusion detection systems, can be

solved by using incomparable priorities among filters.

2.2 Packet Classification Automata

In this section we describe packet-classification automata (also known as match-

ing or classification automata). Examples of packet-classification automata

(PCA) for the filter set in Section 2.1 with incomparable priorities is shown in

Figures 1 and 2. Figure 1 shows a deterministic automaton (DCA), in which

all of the transitions from any automaton state are mutually exclusive. A non-

deterministic automaton (NCA) is shown in Figure 2, where the transitions

may not be mutually exclusive. We make the following observations about the

structure of classification automata:

• All but one of the transitions from each state are labeled with a test

as defined above; the remaining (optional) transition, called an “other”

13

3

2

5 6

7 8

4

1

{F2, F3} φ

{F3}

ttl = 1

φ

{F3}

ttl 6= 1ttl = 1

ttl 6= 1

{F1}

icmp type = ECHO

{F2, F3}

{F1, F2, F3}

icmp type = ECHO REPLY

icmp type 6= ECHO REPLY

Figure 2: A nondeterministic classification automaton.

transition, is labeled with a more complex condition C as follows:

– In a nondeterministic automaton, C is the conjunction of negations

of a subset of the tests on the rest of the transitions, e.g., the third

transition from the start state in Figure 2.

– In a deterministic automaton, C is the conjunction of negations of

all the tests on the rest of the transitions, e.g., the third transition

from the start state in Figure 1. In this case, the “other” transition

is mutually exclusive with the rest of the transitions, and hence is

also called an “else” transition.

• The transitions from each automaton state are simultaneously distin-

guishable, i.e.,

14

– apart from the “other”-transition, the tests on the rest of the tran-

sitions are mutually exclusive

– it is possible to determine, using a single operation with O(1) ex-

pected time complexity, which of the transitions out of a state is

applicable to a given packet.

• Each final state S correctly identifies the match set corresponding to any

packet satisfying all the tests along a path from the start state to S.

In a deterministic automaton, only one of the trasitions is taken at each

state at runtime. For example, consider the deterministic automaton in Fig-

ure 1 and an icmp echo packet with a ttl of 1. At state 1, the leftmost transition

corresponding to icmp type = ECHO is chosen followed by the leftmost transi-

tion at state 2 to reach state 5. State 5 identifies that rules F1 and F3 match

the given packet.

In a nondeterministic automaton, nondeterminism is simulated at run-

time using backtracking: suppose that a packet satisfies a test Ti on one of

the transitions out of an automaton state s, e.g., icmp type = ECHO transition

from the root of the NCA shown in Figure 2. If Ti does not appear in the

“other”-transition, then the match will first proceed down the Ti transition,

and then subsequently backtrack to s and then resume matching down the

“other”-transition. This need for backtracking is depicted in Figure 2 using

a dotted transition. Note that whether such backtracking will take place is

independent of the success or failure of matches below the Ti-transition. No

backtracking is required if ¬Ti appears in the “other”-transition, which is the

case for the icmp type = ECHO REPLY in Figure 2.

2.2.1 Computational Issues

The two main computational issues in construction of classification automata

are its size and matching time. Although our experimental evaluation consid-

ers the number of automaton states as a measure of its size, for simplifying

mathematical analysis, our discussion in this dissertation will use the automa-

ton breadth as the size metric. Since the automaton is acyclic, and since tests

15

are never repeated, it can be shown that the total number of automaton states

can, in the worst case, be at most S times its breadth, where S is the number

of distinct tests across all the filters [24]. In practice, the factor is closer to

average size of filters, which can be significantly smaller than S.

Typically, most filters contain a small number of tests, while the num-

ber of filters is large. As a result, path lengths in the automata are short

as compared to its breadth. The matching time of an automaton is closely

related to path lengths. In particular, the worst-case matching time equals

the longest path length in a DCA. The average matching time is dependent

on the distribution of packets observed at runtime, but it is common to use

the average path length of a DCA as an estimate of average matching cost.

In an NCA, note that at each state, two branches may have to be followed at

runtime, and this has to be taken into account in computing the worst-case as

well as average matching times.

In the next chapter, we introduce the notion of condition factorization

that will play a central role in our automata construction algorithm.

16

CHAPTER 3

Condition Factorization

Condition factorization refers to the process of decomposing filters into combi-

nation of more primitive tests — a process that is intuitively similar to factor-

ization of integers. This decomposition exposes those primitive tests that are

common across different tests, and thus enables shared computation of these

common primitive tests. To see this, consider the following rules involving

different bit-mask tests on the same field x:

• F1: (x & 0xd3 == 0x92)

• F2: (x & 0x3d == 0x28)

• F3: (x & 0x11 == 0x11)

Figure 3 shows the DCA constructed from these rules in a straightforward

fashion. For ease of understanding, we omit transitions to the final state that

corresponds to an empty match set and also labels on some of the transitions.

At the start state, we test the value of (x & 0xd3) (taken from F1). There are

two transitions from this state – the left one corresponds to this value being

equal to 0x92 and the right one for all other values. For the left child, we see

that F1 has matched and F2 and F3 can potentially match. For the right child,

F2 and F3 can match but a match for F1 is ruled out. Next, we pick the test

(x & 0x3d) from F2 at these children nodes. Continuing on in this way, we get

the automaton as shown in Figure 3.

17

{F1, F2, F3}

x & 0xd3

x & 0x3d

{F2, F3}
x & 0x3d

{F3}{F2, F3}{F1, F3}

{F1, F2, F3}

else

{F1, F2, F3} {F1, F2}

elseelse

{F2, F3} {F3}

0x92

0x28

{F1, F2, F3} {F1, F3}

{F2}{F1}

0x28

Figure 3: DCA for rules before applying condition factorization.

Using condition factorization, we can break up the tests in these rules to

get the following equivalent rules.

• F1: (x & 0x11 == 0x10) ∧ (x & 0xc2 == 0x82)

• F2: (x & 0x11 == 0x0) ∧ (x & 0x2c == 0x28)

• F3: (x & 0x11 == 0x011)

It is clear from these new rules that the test for (x & 0x11) is common

in all the rules. Figure 4 shows the DCA for these rules. Here, we select the

common test at the root. This results in each of the rules falling along only

one transition. It is clear that the DCA obtained from the rules after applying

condition factorization is more compact than the one for the original rules.

18

{F1, F2, F3}

x & 0x11

0x11

{F2}
x & 0x2c

0x28
0x82

{F1}

0x10 0

{F3}
x & 0xc2

{F1} {F2}

Figure 4: DCA for rules after applying condition factorization.

3.1 Residue

The basis for condition factorization is the residue operation. We first define

residue and then describe how to compute it. To motivate the need for defining

residues, suppose that we want to determine if there is a match for a filter C1.

Also assume that we have so far tested a condition C2. A residue captures the

additional tests that need to be performed at this point to verify C1. We can

define residue as follows:

Definition 3.1 (Residue) For conditions C1 and C2, the residue C1/C2 is

another condition C3 such that C2 ∧ C3 ⇔ C1.

Intuitively residue operation is analogous to integer division and con-

junction is analogous to product operation. The above definition follows nat-

urally from the fact that for integers n1, n2, and n3, n1/n2 = n3 implies that

n2 ∗ n3 = n1. Following are some examples that illustrate the residue as per

this definition:

• (x ∈ [1, 20])/(x ∈ [15, 25]) is (x ≤ 20)

• (x ∈ [1, 20])/(x = 35) is false

• (x ∈ [1, 20])/(x 6= 15) is (x ∈ [1, 14]) ∨ (x ∈ [16, 20])

19

We can see in the last example that the result of a residue operation

may have disjunctions. After we present the automata construction algo-

rithm, Build, in the next chapter, it will become apparent that the presence

of disjunctions, would complicate it significantly, and can adversely impact

its efficiency. For instance, if we want to compute the residue of x ∈ [1, 100]

with respect to (x 6= 3) ∧ (x 6= 6) ∧ · · · ∧ (x 6= 99), then a single filter would

get replaced by about 30 filters, since we do not permit disjunctions within

filters. This will significantly increase the runtime of Build as well as the size

of matching automaton. Moreover, the resulting tests (e.g., x ∈ [1, 2]) are

no cheaper to test than x ∈ [1, 100]. Hence, whenever the accurate value of

residue C3 according to above definition contains disjunctions, we choose to

approximate it with a stronger condition that consists of a single test. For

example, we return (x ∈ [1, 20]) for (x ∈ [1, 20])/(x 6= 15). Due to the way

Build uses residues, this has the effect that some tests that may be implied

by other previously performed tests may be repeated in the automaton. How-

ever, a syntactically identical test won’t be repeated, and moreover, matches

would never be announced prematurely. We redefine residue to capture this

approximation as follows:

Definition 3.2 (Residue) For conditions C1 and C2, the residue C1/C2 is

another condition C3 such that C2 ∧ C3 ⇒ C1.

Computing residue as per Definition 3.2 leaves the possibility that C3

can be too strong and hence, not useful for our purpose of increasing sharing

between tests. For example, this definition can always be satisfied by setting

C3 to false. This leads us to our final definition of residue (Definition 3.3).

This is the definition that we use in the rest of the dissertation.

Definition 3.3 (Residue) For conditions C1 and C2, the residue C1/C2 is

another condition C3 such that:

(1) C2 ∧ C3 ⇒ C1, and

(2) C1 ∧ C2 ⇒ C3.

20

For a filter set, F/C = {F/C|F ∈ F ∧ F/C 6= false}.

The condition (2) in the definition ensures that C3 cannot be too strong.

Definition 3.3 also defines the residue of a filter set F w.r.t. a condition C.

Intuitively, it means that the F/C is the set of the residue of each filter in F
w.r.t C that are not false.

3.1.1 Computing Residue

In Figure 5 we specify the rules to compute residue (according to Definition 3.3)

for the types of tests that are present in our application domain (Definition

2.1). In the figure, the notation x denotes bit-wise complement of x, while

& denotes bit-wise “and” operation. In addition, inequalities are expressed

using interval constraints, e.g., x ≤ 7 is represented as x ∈ [−∞, 7], if x is an

integer-valued variable. Note that a single interval constraint can represent a

pair of inequalities involving a single variable, e.g., (x ≤ 7) ∧ (x > 3) can be

represented as x ∈ [4, 7].

For any pair of tests T1 and T2, the first row in the table that matches the

structure of T1 and T2 yields the value of T1/T2. In addition, the value of T3

in a row can be used only when the constraint in the last column is satisfied.

We illustrate residue computation using several examples:

• (x 6= a)/(x = a) is false, as given by the second row in the table (which

defines T/¬T).

• (x = 5)/(x&0x3 6= 1) is false, as given by the 5th row.

• for (x = 5)/(x&0x3 6= 0), 5th row is no longer applicable since the

condition c&c1 = c2 does not hold. (Here, c = 5, c1 = 0x3, and c2 = 0.)

Hence the applicable row is the last row, which yields (x = 5)/(x&0x3 6=
0) = (x = 5). The result is understandable: although the two conditions

are compatible with each other, the test x&0x3 6= 0 does not contribute

to proving x = 5.

• (x ∈ [1, 10])/(x 6= 5) is also given by the last row to be (x ∈ [1, 10]).

21

T1 T2 T1/T2 Conditions

T T true
T ¬T false

T x = c T [x← c]

x = c x & c1 = c2 x & c1 = c & c1 c & c1 = c2

false c & c1 6= c2

x = c x & c1 6= c2 false c & c1 = c2

x = c x ∈ [c1, c2] false c 6∈ [c1, c2]

x 6= c x & c1 = c2 x & c1 6= c & c1 c & c1 = c2

true c & c1 6= c2

x 6= c x & c1 6= c2 true c & c1 = c2

x 6= c x ∈ [c1, c2] true (c < c1) ∨ (c > c2)

x ∈ [c1, c2] x ∈ [c3, c4] true c1 ≤ c3 ≤ c4 ≤ c2

x ∈ [−∞, c2] c1 ≤ c3 ≤ c2 ≤ c4

x ∈ [c1,∞] c3 ≤ c1 ≤ c4 ≤ c2

x ∈ [c1, c2] c3 ≤ c1 ≤ c2 ≤ c4

false (c2 < c3) ∨ (c4 < c1)
x ∈ [c1, c2] x & c3 = c4 false c4 > c2

x & c1 = c2 x & c3 = c4 x & (c1 & c3) = (c2 & c3) c2 & c3 = c1 & c4

false otherwise
x & c1 = c2 x ∈ [c3, c4] false c2 > c4

x & c1 6= c2 x & c3 = c4 x & (c1 & c3) 6= (c2 & c3) c2 & c3 = c1 & c4

true otherwise
x & c1 6= c2 x ∈ [c3, c4] true c2 > c4

T T ′ T

Figure 5: Computation of Residue on Tests.

To illustrate residues on filter sets, consider

F = {F1 : (x = 5), F2 : (x = 7), F3 : (x < 10)}.

Then

• F/(x = 5) = {F1 : true, F3 : true}

22

• F/(x < 7) = {F1 : (x = 5), F3 : true}

Finally, we describe how to compute residues of complex conditions. In this

regard, we note that Build does not need to compute residues with respect to

conditions that contain disjunction operations, hence we don’t consider that

case below:

• (C1 ⊕ C2)/C3 = (C1/C3)⊕ (C2/C3), for ⊕ ∈ {∧,∨}

• C1/(C2 ∧ C3) = (C1/C2)/C3

Using this definition, we can compute:

• ((x > 2) ∨ (y > 7))/(x = 5) is true, and

• ((x > 2) ∧ (y > 7))/(x = 5) is (y > 7).

3.2 Condition Factorization in Automata Con-

struction

Condition factorization plays a key role in the Build algorithm that is ex-

plained in the next chapter. For each state, Build maintains two sets: (i)

match set that consists of all filters for which a match can be announced at

that state, and (ii) candidate set that consists of those filters that haven’t

completed a match, but future matches can’t be ruled out either. For a state

s the candidate set is denoted by Cs and the match set by Ms.

Given a state s of a matching automaton for a filter set F , we denote

the conjunction of tests on the path from the start state to s by Ps. We can

compute the match set Ms corresponding to an automata state s using the

following steps:

• M1 = {M ∈ F/Ps|(M = true)}, i.e., M1 consists of those filters that

are implied by the conditions examined on the automaton path reaching

s.

23

• M2 = {M∈M1|¬∃M ′∈F/Ps Pri(M ′) > Pri(M)}, i.e.,M2 is obtained

by deleting those filters from M1 for which a future match with higher

priority filters can’t be ruled out.

• Ms is obtained by considering filters with equal priorities in M2, and

deleting all but one of them.

Now, Cs can be computed using the following two equations:

Cs = C(F/Ps,Ms)

C(F ,M) = {C∈F | ¬∃M ′∈M with Pri(M ′) ≥ Pri(C)}

These equations can be interpreted procedurally as follows. First, identify

the list of all filters that are compatible with the automaton path reaching

s. Next, eliminate filters that are superseded by higher (or equal) priority

filters for which a match has already been completed. We maintain only the

residuals of the original filters in Cs and Ms, after factoring out the tests

performed on the path from the root of the automaton to the state s. Hence,

we are conveniently keeping track of those tests in each filter that haven’t yet

been performed. (Or more accurately, we are keeping track of those tests that

aren’t already known to be satisfied.)

To understand this, let us see how residues are used in constructing the

DCA in Figure 1 from the rules in Section 2.1. At each state we need to

select a field to test and decide the trasitions out of the state. The criteria

for selecting this field are explained in Chapter 5. Suppose, at state 1, we

decide to test icmp type. Then we create transitions corresponding to the

values for this field in the filter set. In our example we create transitions cor-

responding to (icmp type = ECHO) and (icmp type = ECHO REPLY). We also

create the else transition which corresponds to all other values for icmp type.

Now as described above, we compute the residue of the filter set with the test

on each transition to get the match set and candidate set of the next state.

For instance, at state 2, we get the match set as {F1 : true}. Note that the

condition component of F1 has become true since we computed the residue of

24

the original condition (i.e., (icmp type = ECHO)) with respect to the condition

(icmp type = ECHO) on the path from the automaton root to state 2. In addi-

tion, note that we can rule out a match for F2 at this state, but a match for F3

is still possible. Thus, the candidate set for this state is {F3 : (ttl = 1)}. In

Figures 1 and 2, we have annotated final states with match sets, and non-final

states with the union of match and candidate sets. In the next chapter, we

describe this automata construction algorithm in detail.

25

CHAPTER 4

Matching Automata

Construction

Our algorithm Build for constructing a matching automata is shown in Fig-

ure 6. Build is a recursive procedure that takes an automaton state s as its

first parameter, and builds the subautomaton that is rooted at s. It takes two

other parameters: Cs, the candidate set of the state s, andMs, the match set

of s. For the start state, Cs consists of all filters in the input filter set, andMs

is empty.

A final state is characterized by the fact that there are no more filters

left in Cs. This condition is tested at line 2, and s is marked final, and is

annotated to indicate Ms as its match set. If the condition at line 2 isn’t

satisfied, then the construction of automaton is continued in lines 5–16. First,

a procedure select (to be defined later) is used at line 5 to identify a set of tests

T1, ..., Tk that would be performed on the transitions from s. This procedure

also indicates whether Ti is going to be a deterministic transition or not: in

the former case di is set to true, while in the latter case, di = false. Section

5.2 explains the need to support nondeterministic transitions. Based on which

Ti are deterministic, the condition To associated with the “other”-transition

is computed on line 6: ¬Ti is included in To iff Ti is to be a deterministic

transition.

The actual transitions are created in the loop at line 7–16. At line 8, we

26

1. procedure Build(s, Cs,Ms)
2. if Cs is empty /* No more filters to match */

3. then match[s] =Ms /* Annotate final state with match set */

4. else
5. (D, T) = select(Cs) /* Ti ∈ T is tested on ith transition */

/* di ∈ D indicates if this transition is deterministic */

6. To = {∧di∈D|di=true ¬Ti}
/* Compute test corresponding to the “other”-transition */

7. for each Ti ∈ (T ∪ {To}) do
8. Ci = Cs/Ti

9. if ((Ti 6= To) ∧ ¬di) then Ci = Ci − C/To endif
/* For a nondeterministic transition, do not duplicate */

/* filters from the “other” branch */

10. computeMsi
and Csi

from Ci andMs

11. if a state si corresponding to (Csi
,Msi

) isn’t present
12. create a new state si

13. Build(si, Csi
,Msi

)
14. endif
15. create a transition from s to si on Ti

16. end
17. endif

Figure 6: Algorithm for Constructing Matching Automaton

compute the subset Ci of filters in Cs that are compatible with Ti. However,

if this is going to be a nondeterministic transition, then a match would be

tried down the transition labeled Ti and then subsequently down the “other”-

transition. For this reason, we can eliminate from Ci any filter that will be

considered on the “other”-transition. This elimination is performed on line 9.

At line 10, Msi
and Csi

for the new state are computed. (The procedure for

computing match and candidate sets was described in Section 3.2.)

Since the behavior of Build is determined entirely by the parameters Cs
and Ms, two invocations of Build with the same values of these parameters

will yield identical subautomata. Hence a check is made at line 11 to examine

if an automaton state already exists corresponding to Csi
andMsi

, and if not,

a new state is created at line 12, and Build recursively invoked on this state.

27

Finally, a transition to this state is created at line 15.

The algorithm presented in this chapter incorporated two main optimiza-

tions to reduce automaton size and matching time, both derived from our

definition of condition factorization: detecting and sharing equivalent states,

and avoiding repetition of (semantically) redundant tests. In the next chapter,

we present techniques for realizing the select function that yields significant

additional reduction in automata size.

28

CHAPTER 5

Techniques for Realizing Select

Definition of select amounts to determining the test that should be performed

at a particular state of the automaton. Since the test identifies the packet

field to be examined, select can be viewed as defining an order of examination

of packet fields. Not all orders of examination may be acceptable, since some

packet fields (e.g., the protocol field) may need to be examined before others

(e.g., the port field). We will describe in section 6.1.3 how our type system

captures such ordering constraints among tests. Our implementation of select

ensures that these constraints are respected.

The simplest approach for defining select is to test the fields in the order

of their occurrence in a network packet, as done in some of the previous works

[3, 7]. We call such a traversal order as left-to-right traversal and refer to an

automaton using this traversal order as L-R automaton. A better strategy,

called adaptive traversal, was first proposed in the context of term-matching

[24], and was then generalized to deal with binary data in [11]. In the termi-

nology of this dissertation, an adaptive traversal would select a set of tests T
at an automaton state s as follows. It identifies a packet field x that occurs

in every filter in Cs. (If no such field can be found, it falls back to another

choice, e.g., choosing the left-most field that hasn’t yet been examined.) Now,

T consists of all tests on x that occur in any of the filters in Cs.
Since adaptive traversal was developed in a context where the tests were

all restricted to be simple equalities with constants, it is easy to see that the set

29

T described above consists of tests that can be simultaneously distinguished1,

and hence can form the transitions from s. Moreover, it has been shown [24]

that, as compared to other choices, this choice of transitions will simultane-

ously reduce the automaton size as well as matching time. Unfortunately,

none of these hold in the more general setting of packet classification, where

disequalities and inequalities also need to be handled. For instance, consider

a candidate set that consists of two filters (x 6= 25) and (x < 1024). These

tests are not simultaneously distinguishable. Moreover, neither of these tests

contributes towards verifying a match with the other. More generally, it can

be shown that, in the presence of disequality and inequality tests, the choices

that decrease automaton size do not necessarily decrease matching time (and

vice-versa). We therefore focus first on a criterion for reducing automaton size.

5.1 Partitioning Tests

The main reason for the blow-up in size of automata is the duplication of

rules. Consider a node that examines a field that is not present all the rules.

If the node has two children, rules that do not examine this field would need to

be duplicated across these children. Repeated duplication leads to automata

whose size, in the worst-case, is exponential in the number of rules [24]. Our

first strategy aims to avoid the blow-up in size by picking tests that do not

lead to duplication in the children nodes. We formalize this notion using the

the following definition:

Definition 5.1 (Partitioning Set) A set T of conditions is said to be a

partitioning set for a filter set F iff for every F ∈ F there exists at most

one T ∈ T such that F belongs to the candidate set of F/T .

The set T = {x = 5, x = 6, (x 6= 5) ∧ (x 6= 6)} is partitioning for the filter

set C = {x = 5, x = 6, x > 7}, but not for {x = 6, x > 4}. This means if

we create 3 outgoing transitions corresponding to the three tests in T from

1Recall that simultaneous distinguishability refers to the ability to identify the matching
transition in O(1) expected time.

30

an automata state s with the candidate set C, none of the filters in C will be

duplicated among the children of s. As a result, in an automaton that uses

only partitioning tests, the candidate sets (as well as the match sets) associated

with the leaves will be disjoint. Since there are at most n disjoint subsets of a

set of size n, it immediately follows that any automaton that is based entirely

on partitioning tests will have at most O(n) breadth.

5.2 Ensuring Polynomial-Size Automata

Since partitioning tests may not always exist, it may be necessary to choose

non-partitioning tests. This choice introduces overlaps among the candidate

sets of sibling states in the automaton. These overlaps, in turn, mean that

at any level in the automaton, there may be as many as 2n distinct candi-

date sets. Thus, the breadth of the automaton can become exponential in the

number of filters. Exponential lower bounds have previously been established

even in the simple case where all tests are restricted to be equalities [24]. Al-

though some of the previously developed techniques can avoid such explosion,

this has been accomplished at the cost of introducing significant backtrack-

ing at runtime [18, 7, 3, 4], especially for the kinds of filters that occur in

the context of intrusion detection. Other techniques avoid exponential size by

introducing O(n) operations for each transition at runtime, as they require

runtime maintenance of match sets [21, 11]. With large filter sets that are

often found in enterprise firewalls and network intrusion detection systems,

O(n) time complexity for transitions becomes unacceptable.

We present a new technique that can provide a polynomial size bound,

while limiting nondeterminism in practice. Indeed, any desired polynomial

bound P (n) can be achieved by our technique. However, by using a larger

bound, e.g., n2 instead of n log n, one can obtain deterministic automata in

almost all cases.

Our technique is based on the observation that the breadth of subau-

tomaton rooted at s can be captured, in terms of the sizes of candidates sets

31

associated with s and its children, using the recurrence

B(|Cs|) =
k∑

i=1

B(|Csi
|),

where B(1) = 1. Let P (n) be the desired polynomial on n that bounds the

automaton size. Based on the above recurrence, we can show, by induction

on the height of s that the bound will be satisfied as long as the following

condition holds at every state s of the automaton.

P (|Cs|) ≥
k∑

i=1

P (|Csi
|) (1)

By selecting tests that satisfy this constraint, our implementation of select

ensures that the automaton size will be O(P (n)). If no such test can be found,

our technique picks a test that comes the closest to satisfying this constraint,

and then makes some of the outgoing transitions nondeterministic so as to

ensure that sizes of candidate sets associated with the descendant automaton

states satisfy the above constraint. Recall from line 9 of Build that making

a test Ti nondeterministic enables us to avoid overlaps between Ci and Co.
So, our algorithm makes one or more transitions out of an automaton state

nondeterministic until Inequality 1 is satisfied. In our implementation, we

have set P (n) to be n2, which guarantees a quadratic worst-case automaton

size.

The above technique can be extended further: rather than looking at one

level of the automaton at a time, we could examine all of the ancestors of a

state s, and ensure that collectively, they stay within the budget permitted

by P (n). This would permit a greater degree of overlap at s if the degree

of overlap among (the children of) the ancestors of s was smaller than the

budget.

To understand the importance of the above technique, note that a purely

deterministic technique ensures good performance at runtime, but risks catas-

trophic failure on large rule sets that cause an exponential blow up — memory

32

will be exhausted in that case and hence the rule set can’t be supported. In

contrast, our approach converts this catastrophic risk into the less serious risk

of performance degradation. Unlike previous techniques for space reduction

that led to increases in runtime in practice, performance degradation remains

a theoretical possibility with our technique, rather than something observed

in our experiments. (This is because of the fact that with the rule sets we

have studied in our experiments, the quadratic bound was never exceeded,

and hence nondeterminism was not introduced.)

5.3 Benign Nondeterminism

For our final space-reduction technique, we define the concept of benign non-

determinism, which enables us to benefit from the space-savings enabled by

nondeterminism without incurring any performance penalties. It is based on

the following notion of independence among filter sets.

Definition 5.2 (Independent Filters) Two filters F1 and F2 are said to be

independent of each other if

• Pri(F1) and Pri(F2) are either equal or incomparable,

• for every test T in F1, F2/T = F2, and

• for every test T in F2, F1/T = F1.

F1 and F2 are said to be independent if ∀F1 ∈ F1, ∀F2 ∈ F2, F1 and F2 are

independent.

Suppose that there is a filter set F that can be partitioned into two indepen-

dent subsets F1 and F2. We can then build separate automata for F1 and F2.

Packets can now be matched using the first automaton and then the second

one. For the packet-filtering case, characterized by equal priorities among all

filters, we need to match with the second automaton only if the first automa-

ton reports no matches. From the above definition, it is clear that the tests

33

appearing in the two automata are completely disjoint, and hence no decrease

in runtime can be achieved by constructing a single automaton for F .

Our experiments show that the above technique leads to dramatic re-

ductions in space usage. The intuition for this is as follows. If F1 and F2

are independent, then a packet may match F1, F2, both, or neither. A deter-

ministic automaton must have a distinct leaf corresponding to each of these

possibilities. Extending this reasoning to independent filter sets, if an automa-

ton for the set F1 has k1 states, and the automaton for F2 has k2 states, then

a deterministic automaton for F1 ∪ F2 will have k1 ∗ k2 states. In contrast,

using benign nondeterminism, the size is limited to k1 + k2. If there are m

independent filter sets, then the use of benign nondeterminism can reduce the

automaton size from a product of m numbers to their sum.

The second reason for significant reductions in practice, especially in the

case of network intrusion detection system rules, is as follows. After examin-

ing some of the fields that are common across many rules, as we get closer to

the automaton leaf, independent sets arise frequently. For instance, we may

be left with one set that examines only the destination port, another set that

examines only the source port, yet another set that examines only the destina-

tion network, and so on. Thus, independent rule sets tend to arise frequently,

and lead to massive increases in space usage if they are not recognized and

exploited using our benign nondeterminism technique.

There is a simple algorithm for checking if F contains two independent

subsets. First, partition F into subsets such that any two rules F1, F2 such that

Pri(F1) > Pri(F2) are in a single subset. Now, these subsets are taken two at

a time, and merged if they are not independent. This process is repeated until

no more merges are possible. If there are multiple subsets left at this point,

then these subsets are independent.

To deal with benign nondeterminism, the interface between select and

Build needs to be extended so that the former can return a set of indepen-

dent filter sets {F1, . . . ,Fk}, instead of a test set. At this point, Build will

create a k-way nondeterministic branch. On the ith branch, it will invoke

Build(si,Fi,Fi ∩Ms).

34

5.4 Improving Matching Time

To reason about matching time, we need to define a function that assigns

computational costs to each test. A simple cost model is one that assigns

unit cost to all tests. Note that such a measure would treat tests on 1-bit

fields the same as on 32- or 64-bit fields. While this may seem reasonable, it

does not capture the intuition that checking a test y&0xff = 3 contributes

partially towards checking y = 0x703. For this reason, we prefer to use a

measure that assigns a cost of r to tests involving r-bit quantities. In this

case, cost(y&0xff = 3) will be 8, while cost(y = 0x703) will be 16, assuming

y is a 16-bit field. However, to simplify our presentation, we will use the

uniform cost model below, and ignore priorities. Our technique for reducing

matching time is based on the following notion:

Definition 5.3 (Utility) The utility Us(T, F) of a test T at an automaton

state s for a filter F ∈ Cs is

• 0, if a match for F is ruled out when T is satisfied

• cost(F)− cost(F/T)− cost(T), otherwise.

The utility Us of the set T of tests on the transitions from s is the weighted

average, ∑
F∈Cs

∑
T∈T Us(T, F)

|T | ∗ |Cs|
.

We assume that filters do not contain redundant tests. In this case, the utility

value can never be greater than zero. A negative value, which indicates that

potentially unnecessary computation was carried out, is characterized by the

fact that a test T costs more to perform than the cost it takes away from

future tests that need to be performed for verifying a match for F . The lowest

possible value of U(T, F) is −cost(T).

Our technique for improving matching time is based on choosing tests

that have high utilities. Our implementation of select places more impor-

tance on size reduction than matching time. As such, it chooses test sets that

maximize utility among those that minimize size.

35

CHAPTER 6

Implementation: Putting It All

Together

We use a high-level language to specify packet classifiers. We have developed

a compiler that uses the techniques presented in Chapters 4 and 5 to con-

struct packet classification automaton from the given packet classifier speci-

fication. Once the automaton is constructed, our compiler generates C-code

corresponding to the automaton, which is then compiled into native code using

a C-compiler. This chapter describes the high-level specification language and

how the techniques presented previously are implemented in the back-end of

the compiler. In the last part of this chapter, we describe how to integrate the

code generated by the compiler into existing security applications.

6.1 Language for Specifying Packet Classifiers

The performance of packet classification can be improved by using native code

instead of interpreted code. Native code can be generated from packet classi-

fication code written in a low-level language like C. The most straight forward

way to write such code is by treating the packet as a sequence of bytes. There

are many problems with this approach. To access any field of the packet, the

offset of that field from the start of the byte sequence has to be calculated.

This way of accessing fields with offset calculations has many potential pitfalls.

36

For example, to access the source port field of tcp header, one needs to first

ensure that the packet is a tcp packet. The offset for tcp source port depends

on the length of the variable-length options field of ip header. Also, the bytes

at those offsets need typecasting to unsigned short and conversion to the

host order. It is clear that writing such code is very clumsy and error-prone.

A better approach is to overlay the packet header structure on the byte

sequence and then access packet header fields as fields of the structure. Even

this approach does not solve the problem completely due to the presence of

variable length fields and the need to perform protocol decoding before ac-

cessing any field. Another approach is to use a special language developed

explicitly for packet processing. Such a language can have a hand-crafted

type checker for particular network protocols or have a generic type checker

that supports different network protocols. In the former approach, the packet

structure for supported protocols are hard coded into the compiler. This ap-

proach is very rigid and supporting new protocols requires modification to the

compiler. We use the latter approach which is more flexible and extensible.

Our specification language is based on type systems that have been de-

veloped for handling network packets [5, 23]. These type systems can cap-

ture packet structures while providing the capabilities to dynamically identify

packet types at runtime. This enables an approach where we can generate na-

tive code from the packet classifier specification, and be assured that this code

can be safely loaded and run within the kernel if needed. Our techniques for

generating space- and time-efficient packet classification automata have been

implemented in the back-end of the compiler for this language.

A specification in our language consists of type declarations for describing

packet structures and packet classification rules. In the following sections we

describe each of these components of specifications.

6.1.1 Packet Type Description

We specify the type of packet headers using declarations that are similar

to struct declarations in C-language. Below is the declaration of Ethernet

37

header:

#define ETH_LEN 6

struct ether_hdr {

byte e_dst[ETH_LEN]; /* Ethernet destination */

byte e_src[ETH_LEN]; /* Ethernet source */

unsigned short e_type; /* protocol of carried data */

};

The nested structure of protocol header can be captured using a notion

of inheritance. For example, an IP header can be considered as a sub-type of

Ethernet header with extra fields to store information specific to IP protocol.

The specification language permits multilevel inheritance to capture proto-

col layering. Inheritance is augmented with constraints to capture conditions

where the lower layer protocol data unit (PDU) has a field identifying the

higher layer data that is carried over the lower layer protocol. For instance, IP

header derives from Ethernet header only when e type field in the Ethernet

header equals 0800h.

#define ETHER_IP 0x0800

struct ip_hdr : ether_hdr with e_type == ETHER_IP {

bit version[4]; /* IP version */

bit ihl[4]; /* header length */

byte tos; /* type of service */

unsigned short tot_len; /* total length */

unsigned short id; /* identification */

unsigned short flags_and_frag; /* flags and fragment offset */

byte ttl; /* time to live */

byte protocol; /* protocol */

short check_sum; /* header checksum */

unsigned int s_addr; /* source IP address */

unsigned int d_addr; /* destination IP address */

};

Similarly, the following defines TCP over IP:

38

#define TCP 0x10

struct tcp_hdr: ip_hdr with protocol == TCP {

unsigned short tcp_sport; /* source port number */

unsigned short tcp_dport; /* destination port number */

unsigned int tcp_seq; /* sequence number */

unsigned int tcp_ackseq; /* acknowledgement number */

bit tcp_hlen[4]; /* header length */

bit tcp_reserved[4]; /* reserved */

byte tcp_flag; /* tcp flags */

unsigned short tcp_win; /* window size */

unsigned short tcp_csum; /* checksum for header & data */

unsigned short tcp_urp; /* urgent pointer */

};

To capture the fact the same higher layer data may be carried in different

lower layer protocols, the language provides a notion of disjunctive inheritance.

The semantics of the disjunctive inheritance is that the derived class inherits

fields from exactly one of the possibly many base classes. The following

struct ip_hdr : (ether_hdr with e_type == ETHER_IP) or

(tr_hdr with tr_type == TOKRING_IP) {

...

}

represents the fact that IP may be carried within an Ethernet or a token ring

packet. Now we can define a variable of type ether hdr as follows:

ether_hdr p;

The fields of the headers are accessed similar to fields of a structure. For

example, p.s addr refers to the IP source address and p.tcp sport refers to

the TCP source port. We explain in Section 6.1.3 how the compiler ensures

type safety of this access at runtime. From now on, we drop the variable part

and just refer to the field names for ease of understanding. For example, we

use s addr instead of p.s addr.

39

6.1.2 Rules

The rules are of the form cond −→ act, where act specifies the action to be

taken on a packet that matches the condition cond. The condition is a conjunc-

tion of tests on packet fields. The language supports various tests like equality,

disequality, and inequality along with bit-masking operations on packet fields

as described in Section 2.1. A packet matches a rule if all tests in the rule

succeed. If multiple rules match at the same time, actions associated with

each rule are launched. Labels are used to identify the rules. Consider the

following rules:

R1 : (p.s addr& 0xffffff00 == 0xc0a80200)&& (p.d addr == 0xc0a80100)

&& (p.tcp dport == 80) −→ alert(R1);

R2 : (p.s addr& 0xffffff00 == 0xc0a80200)&& (p.d addr == 0xc0a80100)

&& (p.ttl >= 220) −→ alert(R2);

The first test in the rule R1 is equivalent to checking whether the source

address of the packet belongs to 192.168.2.0/24. Here, 0xc0a80200 is the

hex representation of 192.168.2.0 and 0xffffff00 corresponds to the 24-bit

subnet mask. This rule further checks that destination address is 0xc0a80100

(192.168.1.0) and destination port is 80. The second rule R2 also contains

the same tests on source and destination address. In addition, it tests if the

time-to-live (ttl) value is greater than 220.

Priority relation over the rules can be specified using priority declara-

tions. The priority relation can be a partial order. Figure 7 shows an example

of how the priority relation is defined for some rules {R1, R2, ..., R6}. R1 has a

higher priority than R2. The priorities for {R1, R2} cannot be compared with

any of {R3, R4, R5, R6}. R3 has higher priority than {R4, R5}. R4 and R5 have

equal priority that is higher than R6. These priorities can be specified in our

language as follows:

priority {R1, R2};
priority {R3, {R4, R5}, R6};

40

R2

R1 R3

R4 R5

R6

Figure 7: Priority relation between rules.

6.1.3 Compilation

Rule compilation involves the following steps:

• Introduction of constraints based on type declarations: Based on type decla-

rations of network packets, our rule compiler automatically inserts the con-

straints associated with a structure before any member of that structure can

be accessed. These constraints are identified as preconditions that must be

satisfied before a certain test can be performed. A precondition P associated

with a test T is denoted as 〈P 〉 : T . For instance, the test

(s addr & 0xff000000 == 192)

would be converted into:

〈e type == ETHER IP〉 : (s addr & 0xff000000 == 192)

This ensures that the s addr is tested only after e type = ETHER IP has been

verified. Except for this constraint on ordering of tests, preconditions are

handled just like other tests in our technique.

41

• Construction of matching automata from the classification rules is the most

important step of our technique. Our implementation compiles the given

packet classifiers into an automaton using the Build algorithm presented in

Chapter 4. Residues are computed as specified in Section 3.1.1. Our select

implementation proceeds as follows:

– select first attempts to find a partitioning test set (Section 5.1). If

several of them exist, our technique selects a set that maximizes utility

(Section 5.4).

– if no partitioning test sets exist, it examines opportunities for benign

nondeterminism (Section 5.3).

– if neither of the above steps succeed, it returns a set of tests that achieves

the polynomial size target specified, as described in Section 5.2.

In order to speed up select, our implementation starts by examining fields

that occur in all filters in a candidate set, giving preference to those fields

that contain primarily equality tests. Such fields have a high likelihood of

yielding partitioning tests with zero (i.e., maximum possible) utility, at which

point select returns this set. As mentioned earlier, any constraints regarding

the order of examination of fields are enforced by select.

• Generating native code from the matching automaton: Once the automaton is

constructed, our compiler generates C-code corresponding to the automaton,

which is then compiled into native code using a C-compiler. The code genera-

tion is done in straight-forward manner using an if-then-else, a binary search,

or a hash-based branching to implement transitions. Further, it involves map-

ping of field name accesses into accesses on network packets. Accesses using

variable names are translated into accesses involving offsets within packets.

In addition, appropriate checks on the length of the packet are added. The

compiler also takes care of converting packet fields from network to host order

when needed.

42

6.2 Integration with Snort

The packet classification algorithm that we developed can be used as plug-in re-

placement in many existing security tools. This allows us to use existing rule sets

for these systems. This is very beneficial for tools such as Snort [22], a popular

open source network intrusion detection system, that have a large established base.

Snort [22] comes with default rules that are comprehensive and up-to-date. More-

over, the performance can be improved without requiring modifications to the other

components of the system such as alert processing.

In this section we describe how the packet classification code generated by our

technique can be used in tools like Snort.

6.2.1 Snort Language

Snort uses a simple rule-based language. Snort rules are written in a configuration

file which is read when Snort starts up. A Snort rule file consists of variable declara-

tions and rules. The variable declarations are similar to typedefs in C; the value of

the variable is substituted in the rules for matching. The rules themselves consists

of a rule header and a rule body.

Rule header consists of action, protocol, ip addresses, ports, and direction op-

erator. Rule actions specify the action like logging or alerting that Snort should

perform when a rule matches a packet. Each rule is applicable to packets belonging

to a particular protocol like TCP, UDP, ICMP, or IP. For TCP and UDP rules, the

header specifies the source and destination ip addresses and port fields for which the

rule is to be applied. Specifying “any” for one of these fields means that the field

in the rule matches for any value in a packet. The fields to the left of the direction

operator (→) are the source fields, while the ones on the right hand side are for the

destination. An alternative operator, called bidirectional operator (<>), indicates

that the rule is to be applied to both directions of the flow. A rule that generates an

alert when it sees a tcp packet from any port on an internal host to host 192.168.1.1

on port 80 can be writtern as follows:.

var internal_host 192.168.2.0/24

alert tcp $internal_host any -> 192.168.1.1 80

where “internal host” is a variable whose value is the host address 192.168.2.0

43

with subnet mask of 24 bits. So any host with this subnet address matches inter-

nal host variable.

Rule body consists of rule options which belong to one of the following cate-

gories:

(i) meta-data options provide information about the rule but are not used in rule

matching operation,

(ii) payload options are concerned with tests for deep packet inspection,

(iii) non-payload options specify other tests including tests on packet header fields,

and

(iv) post-detection options specify some triggers which are fired when a rule matches

a packet.

Consider the rule body appended to the previous Snort rule:

var internal_host 192.168.2.0/24

alert tcp $internal_host any -> 192.168.1.1 80 (msg:‘‘web-attack’’;

ttl: 5; content: ‘‘abc’’; logto: ‘‘logfile’’;)

In this rule, msg is a meta-data option that specifies the message to be gener-

ated when a packet matches this rule. logto is a post-detection option that specifies

the file to be used for logging. content is a payload option which means that the

rule is matched by a packet only if it contains the string “abc” somewhere in the

payload. Further, the packet has to satisfy the constraint that ttl field value is

equal to 5 for the rule to match. A packet can match a rule only if it matches the

rule header and all the payload and the non-payload options in rule body. These

options can be viewed as tests for packet classification and hence, a rule is a logical

conjunction of these tests. We ignore meta-data and post-detection options in the

rest of this dissertation as they are not used for packet classification.

6.2.2 Packet Classification in Snort

In this part, we consider only the rule header and the non-payload options. We

defer the discussion about the payload options to Part II. Snort uses certain fields –

44

source and destination ports for TCP and UDP, type for ICMP, and protocol

for IP rules – to divide the rule set into groups.

At runtime, Snort captures packets using pcap library. It uses simple packet

classification to identify the rule group that a packet belongs to. All the rules in the

rule group are matched in sequence against the packet. The alerting sub-system is

called for the rules that match the packet.

To use our packet classification algorithm, we convert the Snort rule set to a

specification for our language. We implemented a Perl based translator for convert-

ing Snort rules into a specification for our language. The translator generates the

packet structure specification and generates a rule in the specification for each rule

in a Snort rule file. So there is a one-to-one correspondence between the rules in

the Snort rules file and the rules in our specification file. The rules in our specifica-

tion contain only the tests on packet header fields. The other tests in the rules are

checked by Snort itself.

For each non-payload detection option of Snort rules we generate the corre-

sponding packet field test in our language. For example, consider the following rule

in Snort,

alert tcp $EXTERNAL_NET any -> $INTERNAL_NET 80 (..., ttl: 5; ...)

This rule generates alerts for tcp packets with ttl field of 5 from external

network to internal network on port for http (80). The corresponding rule in our

specification language is

R1: (p.proto == tcp) && (p.s_addr == $EXTERNAL_NET)

&& (p.d_addr == $INTERNAL_NET) && (p.tcp_dport == 80)

&& (p.ttl == 5) -> alert(R1)

We use our compiler to compile the Snort rules in our specification format

into C code. The compiler generates the packet classification automaton for the

rules using our techniques from Chapter 4 and 5. Then it generates the C-code

for matching this automaton in a straight-forward way using if-then-else branching,

switch statements, and hashing as appropriate. We use C compiler like gcc to gen-

erate native packet classification code in the form of a shared library. So to update

the rules, all that one needs to do is to compile the rules offline and then reload the

45

shared library. We note that this approach is no more disruptive than that of Snort

where the rules need to be re-read and recompiled.

We load the shared library containing the packet classification code when Snort

starts up. At runtime, when a packet is delivered to Snort by pcap library, we pass

on the packet to the shared library. The shared library matches the packet against

all the rules and returns the rules that match. At this point control is transferred to

the default Snort processing engine. From this point on, the usual Snort processing

(like logging) is performed on the packet.

We note that using this approach does not modify the behavior of Snort. In

particular, for any packet the modified Snort matches the same rules as the original

Snort. This is because we are just changing the way packet classification is performed

without changing the actual tests in a rule.

46

CHAPTER 7

Evaluation of Packet

Classification

We evaluated the effectiveness of our techniques in the context of network intrusion

detection systems (Section 7.1) and firewalls (Section 7.1.4). Our experiments were

performed on a system with 1.70Ghz Pentium 4 processor and 520MB memory,

running CentOS-4.2 (Linux kernel 2.6.9).

7.1 Experiments using IDS

For our experiments we use Snort [22] as it has publically available default rules

that are comprehensive and up-to-date. Snort rules consist of two main components:

tests involving packet fields, and content-matching operations on the payload. Ac-

cording to [8], packet classification and content-matching are the most expensive

parts of Snort, accounting for 21% and 31% of the execution time. Within network

intrusion detection systems research community, researchers have been investigat-

ing techniques for parallelizing packet-field matches as well as content matches. In

this part, our evaluation focusses only on the packet field matching component of

network intrusion detection systems.

Although earlier versions of Snort relied largely on sequential matching (i.e.,

matching a packet against one rule at a time), newer versions of Snort (specifically,

version 2.0 and later) attempt to match the rules in parallel. Newer versions of

Snort rely on an ad-hoc approach for parallelizing rule matches where a small set

47

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250 300

N
um

be
r

of
 S

ta
te

s

Number of Rules

Condition Factorization
Snort-NG multiple trees

Snort-NG single tree

Figure 8: Automaton Size for Snort Rules

of hand-picked packet fields, such as destination ports, are tested first, but there

is no systematic technique for matching other packet fields in parallel. In contrast,

Kruegel and Toth developed the Snort NG [14] system, which demonstrated the per-

formance gains achievable by parallelizing the rule matching. They use an entropy-

based algorithm to decide which packet field to test at each node. Their technique

is the only one that we are aware of that uses a sophisticated packet-classification

algorithm for Snort-type rules. Hence we compare our performance results with

them. To simplify this comparison, we used the default rule set that comes with

Snort NG, which consists of 1635 rules. Since our focus is only on matching packet

fields, we combined the rules that differ only in terms of payload contents. This

resulted in a rule set with 305 unique rules.

7.1.1 Automaton Size

We provided Snort NG and our technique with the same set of 305 rules. The

Snort NG algorithm suffers from a space explosion if all of the rules are put into a

single decision tree. To cope with this, they arbitrarily divide the rules into several

48

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300

N
um

be
r

of
 S

ta
te

s

Number of Rules

LR Tree
LR DAG

Adaptive Tree
Adaptive DAG w/o benign nondet
Adaptive DAG w/ benign nondet

Figure 9: Effect of Optimizations on Automaton Size for Snort Rules

subsets, and build multiple decision trees, which can degrade runtime performance.

Our technique builds a single deterministic automaton.

Figure 8 shows the effect of increasing the number of rules on the number of

automaton states. We note that Snort NG decision tree has a complicated structure,

where some of the states do not perform any tests, but are used to identify the

type of field being tested. For our experiments we count only the states which

actually perform some test. We can see from the graph that as the number of

rules increases, the number of states in Snort NG (even after splitting the rules into

multiple trees) increases much faster than our technique. For 300 rules, Snort NG

automaton contains over 45,000 states whereas the automaton constructed by our

technique has only about 4000 states. This translates to a size reduction by a factor

of about 10.

7.1.1.1 Effect of Optimizations on Automaton Size

Figure 9 illustrates the effects of different optimizations on the automaton size. We

studied different combinations of techniques: with and without sharing of equivalent

states in the automata, and with different traversal orders.

49

• Order of testing fields. As compared to L-R order for examining packet fields,

our technique (which uses the select function as described in Section 6.1.3

produces tree automata that are much smaller: for 120 rules, the L-R au-

tomaton had 150,000 states, whereas the tree automaton had less than 3000

states.

• DAG Vs tree automata. Our results show that DAG automata were smaller

than tree automata by about 25% for our technique. Larger space reductions

were achieved with DAG optimization for L-R automata, but still, L-R au-

tomata remain significantly larger than the one constructed by our technique.

• Benign nondeterminism. By exploiting benign nondeterminism, we were able

to achieve dramatic reductions in space usage. This is because Snort con-

tains many rules which test some common fields. Our technique prefers these

common fields for testing, since they are the ones that are likely to be parti-

tioning. Once these common fields are tested, the residual rule sets contain

many independent subsets.

We point out that a combination of our techniques was necessary to achieve the size

reductions we have reported. In particular, benign nondeterminism leads to large

improvements in size when combined with partitioning tests. It is much less effective

when used with L-R technique, since the factors contributing to the occurrence of

independent filter sets do not apply in the case of L-R technique.

7.1.2 Matching Time

For measuring runtime performance, we used two sets of data. The first one consists

of all packets captured at the external firewall of our laboratory that hosts about

30 hosts. Since the firewall is fully open to the Internet (i.e., the traffic is not pre-

screened by another layer of firewalls in the university or elsewhere), the traffic is

a reasonable representative of what one might expect a network intrusion detection

systems to be exposed to. Our packet trace consisted of about 21 million packets

collected over a few days. Figure 10 shows the matching time taken by Snort, Snort

NG and our technique for classifying these packets as the number of rules change.

We also used a second packet trace for performance measurement. This data

corresponds to 10 days of packets from the MIT Lincoln Labs IDS evaluation data

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

M
at

ch
in

g
T

im
e

(i
n

s)

Number of Rules

Snort
Snort-NG

Condition Factorization

Figure 10: Matching Time for Our Lab Traffic

set [16], consisting of 17 million packets. While there has been some criticism of

this data for the purpose of evaluating IDS, they primarily concern artifacts in the

data that may make it easier to detect attacks. Since our focus is not on evaluating

the quality of the rule set, these concerns are not that significant in our context.

Moreover, we note that the results obtained with both data sets are similar.

In the Figures 10 and 11, it can be seen the matching time remains essentially

constant with our technique, even as the number of rules are increased from about 10

to 300. In contrast, the matching times for Snort and Snort NG increase significantly

with the number of rules. The base matching time for all the techniques (with no

rules enabled) is basically the same, as it corresponds to the time spent by Snort to

read the packets from a file and do all related processing except matching.

One of the reasons for a drastic difference in the rate of increase in matching

time is due to the fact that we compile our automata into native code, whereas

Snort-NG and Snort use an interpreted approach. As explained in section 6.2.2, the

packet classification code that we generate is compiled into a shared library. So to

update the rules, all that one needs to do is to compile the rules offline and then

reload the shared library. We note that this approach is no more disruptive than

51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

M
at

ch
in

g
T

im
e

(i
n

s)

Number of Filtering Rules

Snort
Snort-NG

Condition Factorization

Figure 11: Matching Time for Lincoln Lab Traffic

that of Snort where the rules need to be re-read and recompiled.

7.1.3 Measuring Match Time

We now proceed to develop an implementation-independent metric for quantifying

the overall matching cost of an automaton. Such a metric is preferable to raw

runtimes that are heavily influenced by low-level implementation decisions. For in-

stance, since our matching automaton is compiled into native code, it is many times

faster than some of the techniques that we compare against. Thus the raw num-

bers don’t necessarily reflect the benefits obtained using the algorithms developed

in this approach, which are applicable to compiled as well as interpretation-based

implementations.

Our metric is based on lower bounds on match verification cost. In particular,

suppose that there exists a nondeterministic matching algorithm that can “guess”

the subset of rules that match a given packet p, and then proceeds to verify the

correctness of this guess. One can reasonably expect that a deterministic matching

algorithm would need to perform more computation than such a nondeterministic

52

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

N
um

be
r

of
 T

es
ts

Number of Rules

Lower Bound
Avg Path Length

Figure 12: Path Length for Snort Rules

algorithm. For this reason, a deterministic algorithm that comes fairly close to the

lower bound for nondeterministic algorithms, say, within a factor of two, could be

considered a very good algorithm. We therefore use the ratio of actual matching

cost to the lower bound for match verification cost as a metric for evaluating an

automaton. In our experiments, we computed this metric statically: in particular,

we computed the average of this ratio across all paths in the automaton.

Observation 7.1 (Minimum Match Verification Cost)

• The lower bound for verifying a successful match of a filter F is O(|F |).

• The lower bound for verifying a successful match of all filters in a set M is

O(k), where k is the number of distinct fields (or distinct number of field and

bit-mask combinations) tested across all the filters in M.

It is clear that a match cannot be announced without testing all conditions in F

and hence the bound in the first case. In the second case too, it is clear that all

the fields present in all the filters in M have to be examined before announcing a

match for all of them, and hence O(k) time is needed.

53

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 s

ta
te

s

Number of Filtering Rules

Adaptive Traversal DAG

Figure 13: Automaton Size for Firewall Rules

In order to better understand the effectiveness of our technique in reducing

the matching time, we compared the cost of our automata with the lower bounds

for match verification cost in Figure 12. Our results show that our matching cost

is within a factor of two from this bound. More remarkably, the number of tests

performed increases by only a factor of 3 when the number of rules is increased from

1 to 300.

7.1.4 Experiments with Firewall Rules

The firewall rule set we considered is typical for a small to medium scale organization

such as a department in a University. It divides a network into several subnets: the

main network (all servers, workstations, etc), DMZ network, a wireless network, and

a testbed network. The firewall is used for the traffic between these subnets and

also between the outside world. The firewall rules are in the form of iptable rules

for a Linux machine. There are different chains of rules for each of the subnets.

Excluding the rules for defining and branching to user-defined chains, there were

140 actual filtering rules.

54

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

N
um

be
r

of
 T

es
ts

Number of Rules

Lower Bound
Avg Path Length

Figure 14: Matching Time for Firewall Rules

Figure 13 shows the automaton size as a function of the number of rules. The

automaton size increases at a somewhat faster rate than in the case of network

intrusion detection systems because firewall rules are totally ordered in terms of

priorities. As a result, they can never have independent subsets of filters, and hence

the benign nondeterminism technique cannot be applied.

Figure 14 compares the cost of our automata with the lower bounds for match

verification. Although the results in this case seem similar to that obtained for

network intrusion detection systems rules, we point out that they are actually better

than what they appear to be. In particular, to verify a match for a filter F in the

presence of priorities, it is not sufficient to just verify if the tests in F hold, but we

also need to verify that at least one of the tests in each of the higher priority rules

don’t match. As a result, the match verification lower bound is strictly higher than

the number for unprioritized rule sets that arise in the context of network intrusion

detection systems.

55

Part II

Deep Packet Inspection

56

CHAPTER 8

Handling Content Matching

Modern intrusion detection systems use rules that look for patterns of known, suspi-

cious activity in packet payload, in addition to tests on packet header fields. These

systems typically scan evey byte of the packet payload and identify the matching

patterns. This operation is called as deep packet inspection (DPI). In this chapter,

we describe how we extend the techniques presented in previous chapters to handle

DPI efficiently for network intrusion detection systems such as Snort.

8.1 Background in DPI

Snort rules consist of tests on packet header fields and the strings to be searched

in the payload. Hence, rule matching in Snort involves matching the packet header

fields and string matching operation over the packet payload. A Snort rule that

specifies multiple strings can match only if all the strings in the rule are found in the

payload. To reduce false positives, Snort allows rule writers to specify additional

constraints on string matching. For example, a writer can specify constraints on

strings s1, s2 in a rule such as, the rule matches only if:

• s1 is found at a certain “offset” from the start of the payload,

• s1 is found atleast “distance” bytes away from a previous match for s2,

• s1 is found “within” certain number of bytes from a previous match for s2.

57

String matching is an expensive operation at it may require scanning every byte

of the packet payload. Multi-pattern matching algorithms such as Aho-Corasick [1]

and Wu-Manber [30] that identify all matching patterns in a single scan of the input

can not be directly used in the presence of such constraints on strings. Moreover,

due to these constraints, same input byte may need to be scanned multiple times.

In particular, if a string is found but an associated constraint fails then the string

matching has to be continued to find other occurrences of the same string. To see

why this is needed, consider a rule that looks for a string “a” and another string “b”,

that is “within” 1 byte of “a”. Now if a packet payload, contains “aab”, then after

the first “a” and the “b” is matched, the constraint fails. In this case, the string

matching operations need to be performed again starting from the second byte for

the rule to match. This slows down the string matching operation further and as a

result the performance of rule matching deteriorates rapidly.

A straightforward way for improving the performance of rule matching is to

avoid the slow string matching whenever possible. Snort uses an ad-hoc technique

to achieve this. Snort uses a small set of packet fields that are used in almost all

rules, e.g., source and destination ports (for TCP- and UDP-related rules), and type

field (for ICMP-related rules), to divide the rules into different groups. For each

such group, it extracts the longest string contained within the content-matching

part of the rule, and builds an Aho-Corasick automaton for these rules. At runtime,

a simple packet classification technique is used to identify the rule group against

which a packet needs to be matched. Then the content of the packet is matched

using the Aho-Corasick automaton associated with this group. Since this automaton

only considers the longest string from each rule, some of the rules returned by this

automaton may not really match the packet. (However, the automaton will always

return a superset, not a subset of matching rules.) To handle the other complex

conditions, e.g., a constraint on the distance between two strings within a rule, Snort

performs a one-on-one match between a packet and each of the rules returned by

the automaton. From here on, we will refer to these string operations which are

performed on per rule basis as slow search.

58

8.2 Improving End-to-End Performance using

Packet Classification Automata

Snort is able to efficiently construct these groups by limiting the number of fields

used to divide the rules into groups. But the drawback of this approach is that the

number of rules that belong to the same group remain substantial. As a result, the

sequential matching phase can still take significant time.

We can improve this scheme, by replacing the simple packet classification

scheme of Snort, with the matching automaton constructed by our technique. At

each leaf of this automaton, we replicate the technique used by Snort, i.e., we build

an Aho-Corasick automaton to recognize the longest string contained in each of

the rules in the candidate set of the leaf. Finally, a one-on-one match is perfomed

between the rules returned by this automaton and the network packet. The main

benefit of this approach is apparent – by testing most of the packet fields first we

ensure that number of sequential matches performed is substantially reduced. Sec-

tion 8.5 shows the improvements that we achieve in the end-to-end performance of

Snort using this approach.

We note here that in the presence of nondeterminism, we needed to modify

the above technique so as to avoid repetition of string-matching tests after back-

tracking. Specifically, we built the Aho-Corasick at the first nondeterministic node

encountered on a root-to-leaf path in the automaton, and performed an intersection

of the set of rules returned by the Aho-Corasick with the rule sets of each of the

matching leaves.

8.3 Incorporating String Matching in Packet

Classification Automata

An even better approach to reducing the number of times the slow string matching

operation is performed is to use all the strings tests directly in the matching au-

tomaton. In this section we describe how we extend the techniques presented in the

previous sections to incorporate string matching tests.

To handle string matching, we extend the definition of tests (Definition 2.1)

to include tests which look for strings in the payload. These tests are of the form

59

content = si, where si stands for each unique string that is tested in a rule set.

Each filter may have multiple such tests. An example of a rule set, F , containing

such rules is:

• F1 : (tcp sport = 80) ∧ (content =“Command complete”)

• F2 : (tcp sport = 80)∧(content =“Bad command”)∧(content =“Bad filename”)

• F3 : (tcp sport = 25) ∧ (content =“Command complete”)

For ease of understanding, we represent each filter Fi as a conjunction of the

packet field conditions Ci and the strings sj that are tested by the filter. So the

above filter set F can be succintly represented as:

• F1 : C1 ∧ s1

• F2 : C2 ∧ s2 ∧ s3

• F3 : C3 ∧ s1

where, s1, s2, and s3 stand for “Command complete”, “Bad command”, and “Bad

filename” respectively.

The obvious approach of directly incorporating string checks as tests in the au-

tomata does not work since each string test potentially requires the entire payload

to be scanned. We overcome this problem by constructing an Aho-Corasick automa-

ton from the strings and matching all the strings in a single scan of the payload.

We use boolean variables to remember which strings matched in the Aho-Corasick

automaton. We associate a boolean variable Xi with each si to indicate whether a

string si is present in the payload of a packet. The values for these variables are

bound when we run the Aho-Corasick algorithm on the packet payload. We can

now replace each si in F with a test which checks whether Xi is set to get F ′:

• F ′
1

: C1 ∧ (X1 = 1)

• F ′
2

: C2 ∧ (X2 = 1) ∧ (X3 = 1)

• F ′
3

: C3 ∧ (X1 = 1)

We can now construct a packet classification automata for F ′ treating the tests

on these boolean variables just like tests on packet fields. At runtime, the values of

60

these boolean variables are bound by the string matching component. But to use

the string matching component, we need to figure out the start of the payload in

the packet. To ensure that we identify the type of the packet correctly before doing

the string matching, we add preconditions (as explained in Section 6.1.3) to these

boolean variables.

Even though this approach of utilizing all string tests reduces the number of

slow searches performed as compared to the approach of the previous section, it

may not result in significant runtime improvement. This is because in this approach

we perform the Aho-Corasick matching, which involves scanning every byte of the

payload, for every packet. We can avoid this by performing lazy binding for the

boolean variables, i.e, performing the Aho-Corasick matching only when we reach

a node that tests a boolean variable. Using this approach of late binding, we can

avoid the Aho-Corasick matching for packets that match a path, from root to a leaf,

that does not contain any such boolean variable test.

Since string matching is expensive we give preference to the simpler packet

header fields. We modify Select function to pick these boolean variable tests at a

state only when there are no remaining tests on packet fields. This ensures that the

expensive string operation is performed for a packet only after all simpler packet

header field tests have been performed.

Further improvements can be obtained by constructing separate Aho-Corasick

automata for each path instead of constructing a single Aho-Corasick automaton

that matches the strings in all the rules. The Aho-Corasick automaton for any path

contains only the strings corresponding to the boolean variables tested on that path.

In the presence of nondeterminism we modify this technique, as before, to construct

an Aho-Corasick automaton at the first nondeterministic node on the path from

the root-to-leaf. This automaton contains all the strings corresponding to all the

boolean variables tested at the sub-tree rooted at this node.

8.4 Implementation

We generate the matching code for the automaton as explained in Section 6.1.3.

For the nodes that test these boolean variables, we generate code which first checks

if the values of the boolean variables are bound. If the variables are not bound,

then the string matching is called using the Aho-Corasick automaton for that path,

61

 0

 2000

 4000

 6000

 8000

 10000

0 100 300 500 700 900 1100 1300 1500

Pr
oc

es
si

ng
 T

im
e

Pe
r

Pa
ck

et
 (

in
 n

s)

Number of Rules

Condition Factorization
Snort

Figure 15: Total Matching Time

which binds the variables. From this point on the matching code can just check the

values of these variables. For the rules matched by our automata, we perform the

sequential match to identify the final matched rules.

We note that Snort supports writing patterns as regular expressions also.

These regular expressions can be matched very fast by using deterministic finite-

state automata (DFAs). But for several classes of rules DFAs can blowup in space.

Hence, Snort uses nondeterministic finite-state automata (NFAs) to match regular

expression at the expense of higher time complexity for rule matching. Separate

NFAs are constructed for each rule and they are matched individually. We perform

this regular expression matching operation as part of the final sequential match

phase.

8.5 Evaluation of End-to-End Performance

In our experiment, we replaced the simple packet classification used in Snort 2.6

with the matching automata constructed by our technique. Our implementation

reuses almost all of Snort code, including the code for Aho-Corasick automaton,

62

and the final one-on-one match. It only replaced the initial packet classification

component. As a result, the performance improvements obtained by our technique

are entirely due to the use of our sophisticated packet classifier.

We measured the total time taken by original Snort, and the version of Snort

we modified to use our matching automaton. These times were computed for a

21-million packet trace collected in our laboratory consisting of about 30 hosts. We

used the same rule set as in Section 7.1 but with all the tests now. So we had 1635

rules in this experiment.

In this experiment, we observed that the one-on-one matching phase was in-

voked about 120M times in the original Snort, whereas it was invoked only 40M

times with our packet classifier in place. This reduction in the number of one-on-

one matches translates to about 30% reduction in the overall time taken by Snort.

Figure 15 shows the overall time taken by Snort with and without our modi-

fication, as we vary the number of rules. While the performance is nearly identical

for small rule sets, it quickly increases to (and stabilizes at) about 30% at a few

hundred rules.

63

CHAPTER 9

Related Work

In this chapter, we discuss related research efforts in (i) packet header matching,

and (ii) deep packet inspection.

9.1 Packet Header Matching

In this section, we discuss the related work in the area of packet header matching.

9.1.1 Early Works

The CMU/Stanford Packet Filter (CSPF)

The CMU/Stanford packet filter [19] is an interpreter based filtering mechanism.

The filter specification language uses boolean expression tree. The tree model maps

naturally into code for a stack machine. In the tree model, each interior node

represents a boolean operation (e.g. AND, OR) while the leaves represent test

predicates on packet fields. Each edge in the tree connects the operator(parent node)

with its operand(child node). The algorithm for matching the packets proceeds in

a bottom up manner. Packets are classified by evaluating the test predicates at the

leaves first and then propagating the results up. A packet matches the filter if the

root of the tree evaluates to true. Fig. 16 shows a tree model that recognizes either

IP or ARP packet on Ethernet.

The major contribution of CSPF is the idea of putting a pseudo-machine lan-

guage interpreter in the kernel. This approach forms the basis of many later-day

64

OR

ether.type = IP ether.type = ARP

Figure 16: Tree Model

ether.type = IP

yes

yes

false true

no

no

ether.type = ARP

Figure 17: CFG Model

packet filter mechanisms. Also the filter model is completely protocol independent

as CSPF treats a packet as a byte stream.

However, CSPF suffers from shortcomings of the tree model. The tree model

of expression evaluation may involve redundant computations. For example, con-

sider a filter that accepts all packets with an Internet adress foo. We want to

consider IP, ARP, and RARP packets carried on Ethernet only. The tree filter

function is as shown in figure 18. As can be seen the filter will compute the value

of (ether.type = IP) even if (ether.type = ARP) is true. Although, this problem

can be somewhat mitigated by adding short circuit operators to the filter machine,

some inefficiency is inherent dure to the hierarchical design of network protocols.

Packet headers must be parsed to reach successive layers of encapsulation. Since

each leaf of the expression tree represents a packet field independent of other leaves,

redundant parses ay be carried out to evaluate the entire tree.

There is also a performance penalty for simulating the operand stack. More-

over, the filter specification language is restricted to deal with only fixed length

fields since it does not contain an indirection operator.

The BSD Packet Filter (BPF)

BPF [18] was originally created for BSD UNIX and has been ported to many UNIX

flavors. It is also an interpreter based filter. It attempts to address some of the

limitations of CSPF. BPF filters are specified in a low-level language. The language

provides support for handling varying length fields. BPF uses directed acyclic con-

trol flow graph(CFG) model. In this model, each node node represents a packet

field predicate. The edges represent control transfer. One branch is traversed if a

65

ip.dst = fooether.type = IPether.type = RARP

OR OR OR

OR

AND AND

ether.type = ARP ip.src = fooarp.src = foo arp.dst = foo

Figure 18: Tree filter for host foo

predicate is true and the other if it is false. Two terminating leaves represent true

and false for the entire filter. The filter IP or ARP on Ethernet can be represented

in CFG model as shown in fig. 17.

Use of CFG helps BPF to avoid some redundant computation. For example,

the filter for accepting packets with an Internet address foo (as described in section

9.1.1) is represented in CFG model as shown in figure 19. However, BPF checks

multiple filters sequentially and hence, does not scale well for large number of rules.

The Mach Packet Filter (MPF)

The Mach packet filter [32] enhances BPF to handle end-port based protocol pro-

cessing in the Mach operating system. The primary focus of MPF is on demulplexing

packets. So they consider only filters that share common prefix and differ at a sin-

gle point in the header, say TCP port. This common prefix,recognized using simple

template-matching heuristics, is merged and additional checks are included for the

differing packet field. Although MPF performs demultiplexing efficiently, it does

not provide a general way of matching multiple filters.

PathFinder

PathFinder [3] is a pattern based packet filtering mechanism that is designed so

that it can be efficiently implemented in both software and hardware. It allows for

66

ether.type = IP

ether.type = ARP

ether.type = RARP

ip.src = foo

ip.dst = foo

arp.src = foo

arp.dst = foo

FALSE TRUE

T

T

T

T

T

T
F

F

F

F

T

F

F

F

Figure 19: CFG Filter for host foo

more general composition of filters with common prefixes than MPF. The packet field

predicates are represented by templates called “cells”. The cells are chained together

to form a “line”. A line, which can be considered as a single filter, represents a logical

AND operation over constituent predicates. A collection of lines i.e. a composition

of filters, represents the logical OR operation over all lines. PathFinder eliminates

common prefixes as new lines are installed. For example, filters for identifying two

flows, say one from any source to destination 192.169.0.1 port A and the other

from any source to destination 192.169.0.1 port B are composed as shown in figure

20. These optimizations only share tests that can be identified as common prefix

of filters and hence, miss opporutnities to share other tests which do not occur as

prefix.

67

IP
header header

TCPSrc addr = * Dest addr =
192.169.0.1

Src port = *

Dest port = A

Dest port = B

Path 1

Path 2

Figure 20: Composite filters in PathFinder

BPF+

BPF+ [4] provides a high-level declarative predicate language for representing fil-

ters. The BPF+ compiler translates the predicate language into an imperative,

control flow graph. Before converting this control flow graph into low-level code,

BPF+ applies a global data-flow algorithm, which they call as redundant predicate

elimination for predicate optimization. BPF+ uses other common compiler opti-

mizations like peep-hole transformations also. For example, if we specify a filter

to accept all packets sent between host X and host Y, then a CFG representation

would be as shown in figure 21. Here, MPF and PathFinder would not be able to

perform any optimization as there is no common prefix. But BPF+ will be able to

identify an opportunity for optimization using global data flow optimization tech-

niques. If control reaches the node (dest host = Y) then we know that the source

host is X. Therefore, the source host can not be Y. So the node (source host = X)

is redundant. But this node can not be removed as there is another path through

that node. So the dashed edge is transformed to point to false node. This reduces

the average path length, and thereby improves filter execution performance.

All these optimizations are done while preserving the order in which the tests

are specified. On the other hand, our technique reorders the tests to increase the

opportunities for sharing common tests. Moreover, our condition factorization tech-

nique is more general than those of BPF+, being able to reason about semantic

redundancies in the presence of bit-masking operations, and comparisons involving

different constants.

68

source host == X

source host == Y

dest host == X

dest host == Y

FALSE TRUE

F

F

F

F

T

T

T

T

Figure 21: CFG for “all packets sent between X and Y”

9.1.2 Techniques targeted for routers

Many techniques for packet classification have been developed in the context of

routers. These techniques restrict the problem so as to either work on a fixed

number of fields or handle only certain forms of tests such as prefix lookup. Our

techniques do not place any such restrictions. We discuss some of these techiques

below.

Set-pruning tries

Decasper et al [6] present set-pruning tries that can be used where packet classifica-

tion involves prefix matching for each field. Each field is considered as a set of bits

that are checked in order. Longest prefix matching for a single field can be done

efficiently by constructing a trie where each level in the trie corresponds to a bit

being tested. Set-pruning tries extend this idea to handle multiple fields as follows.

A trie is created for the first field. Leaves of this trie contain pointers to tries for the

second field containing rules that match the first field. This process is repeated for

other fields. Set-pruning tries suffer from memory blowup as rules can be duplicated

69

in the tries.

Grid-of-tries

Srinivasan et al [28] proposes grid-of-tries data structure for 2-dimensional classifi-

cation, such as destination-source pairs, that avoids the memory blowup problem

of set-pruning tries by allocating a rule to only one trie node. Grid-of-tries reduces

query time by pre-computing and storing a switch pointer in some trie nodes. How-

ever, the performance of this technique degrades rapidly as the number of fields is

increased.

Cross-producting

The paper presents another technique called cross-producting which performs better

than grid-of-tries for more fields. Cross-producting works by creating lookup tables

for each field. A packet is matched against each such table to identify the rules

that match in that field. A final step that intersects the results for each field gives

the rules that match a packet in all field. Cross-producting works only for prefix

matching. Range checks are converted to (possibly multiple) prefix matches. Hence,

the storage requirements for packet classification may increase rapidly when any field

contains range checks. This technique can be used for only small rule sets because

of the high worst-case storage requirement.

Tuple space search

Tuple space search [27] is another technique that addresses packet classification

over multiple fields involving prefix matching. This technique creates a tuple for

the number of bits that are checked in each field. For each such tuple, rules that

check those bits are put in a set. For example, consider 2-dimensional rules R1 =

{10∗, 110∗}, R2 = {110∗, 1∗}, and R3 = {11∗, 101∗}. Here, R1 and R3 are put in

the tuple set (2, 3) while R2 is put in tuple set (3, 1). At runtime, each of these sets

is searched using efficient techniques such as hashing. This technique works well

only when the number of tuple sets is small.

70

HiCuts

HiCuts [10] partitions multi-dimensional search space guided by heuristics that ex-

ploit the structure of the packet classifiers. HiCuts builds a decision tree using local

optimization at each node to choose the next field to test. The leaves of the tree

contain some small number of rules that are tested in sequence.

HyperCuts

HyperCuts [25] reduces the depth of these trees by testing multiple fields at some

levels. Hence, the tests at nodes are more expensive. They reduce this testing

time by using arrays to identify the transitions. This results in increased storage

requirements. These techniques suffer from exponential space requirement in the

worst case.

9.1.3 Hardware based techniques

Many router vendors use Ternary CAMs that use parallel hardware to simultane-

ously check all rules. TCAMs are fast but unsuitable for large rule sets due to their

power consumption and cost. Below we describe some algorithmic solutions that

try to exploit hardware parallelism.

Bit-vector search

In the bit vector linear search algorithm [17], search is done for each field to yield sets

of rules that match the packet for that particular field. These sets are intersected

efficiently using bitmaps to yield the final set of rules that match the packet for all

fields. This algorithm works well for moderate size rule sets.

Recursive Flow Classifier (RFC)

Recursive Flow Classifier [9] attempts to map all the bits of the packet header to

an action identifier that corresponds to all the rules that can match the packet. It

does this mapping over several stages. In each stage a set of memories, accessed in

parallel, returns a value shorter (in terms of numer of bits used) than the index of

the memory access. This technique also works well for moderate size rule sets as

the memory requirement increases rapidly for larger rule sets.

71

9.1.4 Techniques based on reordering of tests

Dynamic reordering

Dynamic Packet Filter (DPF) [7] uses dynamic code generation, which allows dy-

namic reordering of tests. Dynamic reordering improves performance by detecting

match failures earlier. Al-Shaer et al [12] and Woo [29] significantly improve on the

dynamic reordering technique used in DPF by using efficient algorithms to main-

tain statistics regarding the traffic. Their techniques are analogous to profile-based

optimizations in compilers, whereas ours is analogous to static-analysis based opti-

mizations. Thus, the two techniques can complement each other.

Static reordering

Kruegel et al [14] build a decision tree using information gain to decide the order

of testing fields. They present an approach for avoiding redundancy, where, by

restricting the form of allowable tests, every test was converted into a canonical form

so that semantically identical tests would also be syntactically identical. However,

tests in canonical form can in general be more expensive than the original test, e.g.,

in order to support tests on IP addresses that may sometimes involve bit-masking

operations and at other times involve equality, they convert both tests into smaller

tests that examine one bit of address at a time. Moreover, the canonical form places

more restrications on the form of tests.

9.1.5 Techniques from term rewriting

Pattern matching automata have been extensively studied in the context of term

rewriting, functional and equational programming, theorem proving and rule-based

systems. Augustsson described pattern matching techniques for functional pro-

gramming that are based on left-to-right traversal [2]. Sekar et al [24] presented

a technique for adapting the traversal order to reduce space and matching time

complexity of term-matching automata. Gustafsson and Sagonas [11] extended this

technique to handle binary data like network packets. Our technique generalizes

their technique further by adding support for inequalities, disequalties, and bit-

masks that are more general than their notion of bit-fields. More importantly, their

automata has an exponential worst-cast space complexity. Although they describe a

72

technique for constructing linear-size guarded sequential automata, these automata

require runtime operations to manipulate match and candidate sets. In particular,

their transitions, strictly speaking, become O(N) operations, which contrasts with

our approach that takes O(1) expected time per transition.

9.2 Deep Packet Inspection

Lot of research has focused on reducing the memory requirements of DFAs for

intrusion detection system rules. Unlike our technique which tries to improve the

end-to-end performance, these technique look at deep packet inspection in isolation.

They focus on making regular expression matching more efficient. These techniques

are complementary to the technique that we presented for improving the end-to-end

performance.

Bro: Intrusion Detection System

Vern Paxson [20] developed Bro which is another popular network intrusion detec-

tion system. Bro has a powerful policy language that allows the use of sophisticated

rules. Sommer and Paxson [26] enhanced Bro rule matching to use regular expres-

sions. They build DFAs from the regular expressions. They overcome the problem

of exponential space requirements of DFAs by building the DFAs incrementally at

runtime. Moreover, they mention using the constraints on packet fields to reduce

the size of the sets of rules that are compiled into a DFA. In that respect, our tech-

nique can help them in avoiding the exponential blowup, as we generate small sets

for content-matching.

Multiple DFAs

Fang Yu et al [31] studied the regular expressions commonly used in network mon-

itoring and security applications. They identified the features in these regular ex-

pressions that cause exponential blowup when they are compiled into DFA. They

propose regular expression rewriting techniques to reduce memory usage. They use

a set-splitting technique that combines rules into multiple DFAs instead of a single

DFA. They use simple heuristics to decide which rules should be grouped together

73

to stay within available memory budget. Matching in this case may require the

traversal of multiple automata.

Delayed Input DFA (D2FA)

Delayed Input DFAs [15] reduce the number of transitions stored in each state. Each

transition table stores only the transitions that are distinct to that state. Transitions

that are common to many states are stored in a transition table that can be reached

by default transition in other states. This approach may require the traversal of

multiple default transitions per byte.

Multiple Alphabet Compression Tables

Estan et. al [13] use an orthogonal approach to reduce the number of transitions.

They use multiple alphabet compression tables to reduce the number of entries in

the transition table of each state. This approach adds one extra lookup per input

byte.

74

CHAPTER 10

Conclusions and Future Work

10.1 Conclusions

In this dissertation we presented a new technique for fast packet classification. Un-

like previous techniques, our technique is flexible enough to support filtering as well

as classification applications. It can support prioritized rules such as those used in

firewalls, as well as unprioritized rules requiring all matches to be reported, such

as those used in intrusion detection systems. We developed novel techniques and

algorithms that guarantee polynomial size automata, while, in practice, avoiding

any repetition of tests. Our experimental results show that the technique is very

effective in reducing automata size as well as matching time. Finally, we presented

techniques for combining string matching and packet classification that can be used

to achieve high end-to-end performance for rule matching.

10.2 Future Work

There is a lot of interesting work that still needs to be done. This includes:

• In Part II of this dissertation, we presented techniques for incorporating string

matching tests in our automata construction algorithm. In future we want

to extend these ideas to handle the constraints on string matching (Section

8.1). We can associate some variables with these constraints similar to the

boolean variables associated with string tests. For example, to handle the

75

constraint that a string match occurs within certain depth, say 100 bytes

of the payload, we can use a test (depth ≤ 100). The value of depth is

bound when a string match occurs. Such tests can be directly used in the

automaton construction. To ensure the correctness of these tests, the test on

boolean variable associated with the string test for the constraint, is added

as precondition. As explained before, the select implementation will ensure

that the preconditions are satisfied before the test. We plan to extend our

technique to incorporate all tests which can be computed by storing some

variables at the states in the Aho-Corasick automata.

• We can increase the opportunities for sharing of string match tests by using a

different encoding for the variables associated with strings. One possible way

to do this is to associate the same variable with multiple strings that have

certain parts in common. For example, if a string s1 is a substring of s2, then

we can associate a variable X1 with both. We can then set X1 to 1 if s1 is

found and to 2 if s2 is found. Now we can associate test (X1 ≥ 1) to stand for

finding s1 and (X1 ≥ 2) for finding s2. Now, using the residue computation

of section 3.1.1, it is clear that (X1 ≥ 1)/(X1 ≥ 2) is true. This captures the

notion that if string s2 is found, then that implies that s1 is also present. We

plan to investigate other encodings such as bit-mask based tests to increase

the opportunities for sharing the results of string tests.

• Recent years have seen attackers targeting the vulnerabilities in higher layer

applications. For instance, newer attacks target the applications running on

the web server rather than the web server itself. Vulnerability signatures,

which are predicates on higher level application fields, are more effective at

detecting such attacks than simple string or regular expression based signa-

tures. Matching vulnerability signatures is very expensive as it requires com-

plex tasks such as application parsing and session maintenance. Researchers

are working on improving the performance of these tasks. Another hindrance

for the widespread adoption of vulnerability signatures is that current tech-

niques for rely on sequential search. Our technique can improve the perfor-

mance of this phase. We can use the packet classification automaton to match

the application level fields on behalf of multiple signatures. As before, pre-

conditions on these fields can be used to enforce any constraint on the relative

76

order of testing these fields. Preconditions can also be used when the parsing

of a field depends on the value of an earlier field.

77

Bibliography

[1] A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic

search. Communications of the ACM, 18(6):333–343, 1975.

[2] L. Augustsson. Compiling pattern matching. Functional Programming and

Computer Architecture, 1985.

[3] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar. Pathfinder:

A pattern-based packet classifier. In Operating Systems Design and Implemen-

tation, 1994.

[4] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting global data-flow

optimization in a generalized packet filter architecture. In SIGCOMM, 1999.

[5] S. Chandra and P. McCann. Packet types. In Second Workshop on Compiler

Support for Systems Software (WCSSS), 1999.

[6] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router plugins: a software

architecture for next generation routers. SIGCOMM Computer Communication

Review, 28(4):229–240, 1998.

[7] D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing

using dynamic code generation. In SIGCOMM, 1996.

[8] M. Fisk and G. Varghese. Fast content-based packet handling for intrusion

detection. Technical report, University of California at San Diego, 2001.

[9] P. Gupta and N. McKeown. Packet classification on multiple fields. In SIG-

COMM, 1999.

[10] P. Gupta and N. McKeown. Packet classification using hierarchical intelligent

cuttings. In Hot Interconnects, 1999.

78

[11] P. Gustafsson and K. Sagonas. Efficient manipulation of binary data using

pattern matching. J. Funct. Program., 16(1):35–74, 2006.

[12] H. Hamed, A. El-Atawy, and E. Al-Shaer. On dynamic optimization of packet

matching in high-speed firewalls. IEEE Journal on Selected Areas in Commu-

nications, 24(10), 2006.

[13] S. Kong, R. Smith, and C. Estan. Efficient signature matching with multiple

alphabet compression tables. In SecureComm, 2008.

[14] C. Kruegel and T. Toth. Using decision trees to improve signature-based in-

trusion detection. In Recent Advances in Intrusion Detection, 2003.

[15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms to

accelerate multiple regular expressions matching for deep packet inspection. In

SIGCOMM, 2006.

[16] MIT Lincoln Labs. Darpa intrusion detection evaluation.

http://www.ll.mit.edu/IST/ideval, 1999.

[17] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding

using efficient multi-dimensional range matching. In SIGCOMM, 1998.

[18] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for

user-level packet capture. In USENIX Winter, 1993.

[19] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient mechanism

for user-level network code. In Symposium on Operating Systems Principles,

1987.

[20] V. Paxson. Bro: A system for detecting network intruders in real-time. In

USENIX Security, 1998.

[21] R. Ramesh, I. Ramakrishnan, and D. Warren. Automata-driven indexing of

prolog clauses. In Seventh Annual ACM Symposium on Principles of Program-

ming Languages, pages 281–290, San Francisco, 1990. Revised version appears

in Journal of Logic Programming, May 1995.

[22] M. Roesch. Snort - lightweight intrusion detection for networks. In Systems

Administration Conference, USENIX, 1999.

79

[23] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A high-performance network

intrusion detection system. In ACM Conference on Computer and Communi-

cations Security, 1999.

[24] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching.

In SIAM Journal of Computing, pages 1207–1234, 1995.

[25] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using

multidimensional cutting. In SIGCOMM, 2003.

[26] R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection

signatures with context. In ACM Conference on Computer and Communica-

tions Security, 2003.

[27] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple search

space. In SIGCOMM, 1999.

[28] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer

four switching. In SIGCOMM, 1998.

[29] T. Y. C. Woo. A modular approach to packet classification: Algorithms and

results. In INFOCOM, 2000.

[30] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical

Report TR-94-17, 1994.

[31] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. Katz. Fast and memory-

efficient regular expression matching for deep packet inspection. In Architec-

tures for Networking and Communications Systems, 2006.

[32] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient packet

demultiplexing for multiple endpoints and large messages. In USENIX Winter,

1994.

80

