

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Modeling and Verification Techniques for
Ad Hoc Network Protocols

a dissertation presented

by

Anu Singh

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

computer science

Stony Brook University

August 2009

Stony Brook University

The Graduate School

Anu Singh

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor C. R. Ramakrishnan, Advisor
Department of Computer Science

Professor Scott A. Smolka, Co-Advisor
Department of Computer Science

Professor Radu Grosu, Chairperson of Defense
Department of Computer Science

Professor Scott D. Stoller, Committee Member
Department of Computer Science

Professor Rance Cleaveland, External Member
Department of Computer Science

University of Maryland

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Modeling and Verification Techniques for Ad Hoc Network

Protocols

by

Anu Singh

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Ad hoc networks are widely used for unmanaged and decentralized operations.

Mobile ad hoc networks (MANETs) and wireless sensor networks are examples of ad

hoc networks used for supporting self-configured and non-monitored services such as

network routing and surveillance.

We developed the ω-calculus, a process-algebraic framework for formally modeling

and reasoning about ad hoc networks and their protocols. The ω-calculus naturally

captures essential characteristics of MANETs, including the ability of a MANET node

to broadcast a message to any other node within its physical transmission range (and

no others), and to move in and out of the transmission range of other nodes in the

network. A key feature of the ω-calculus is the separation of a node’s communication

and computational behavior, described by an ω-process, from the description of its

physical transmission range, referred to as an ω-process interface. The ω-calculus uses

the notion of groups to model local broadcast-based communication, and separates the

description of the actions of a protocol (called processes) from that of the network

topology (specified by sets of groups, called interfaces of processes). As a result,

the problems of verifying reachability properties and bisimilarity are decidable for a

large class of omega calculus specifications (even in the presence of arbitrary node

movement).

iii

Ad hoc network protocols pose a unique verification problem called instance explo-

sion because an AHN, with a fixed number of nodes, can assume exponential number

of topologies. We have developed an automata-theoretic framework, based on key

features of the omega-calculus, for the verification of ad hoc network protocols over

unknown network topologies. Instance explosion is mitigated by using constraints

to represent sets of topologies. A corresponding symbolic verification algorithm can

efficiently infer the set of topologies for which an AHN protocol possesses a given

correctness property.

We have also developed a partial model checker for parameterized systems of

omega-calculus nodes. For a node M in an n-node system and a given formula ϕ,

the partial model checker treats M as a property transformer, inferring the formula

Π(M)(ϕ) that must hold in the (n-1)-node system with M removed. Our technique

is such that n may be infinite, thereby supporting the verification of infinite families

of processes.

iv

To My Family

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Problem Addressed in this Thesis . 3

1.2 Overview of Our Approach . 4

1.2.1 Modeling and Verification Framework 4

1.2.2 Constraint-Based Verification 8

1.2.3 Parameterized Verification . 9

2 Background and Related Work 11

2.1 Formal Methods and Process Calculi 11

2.2 Related Work . 13

3 Syntax and Transitional Semantics of the ω-Calculus 15

3.1 Syntax of the ω0-Calculus . 15

3.2 Transitional Semantics of the ω0-Calculus 17

3.3 The ω1-Calculus . 22

3.4 The full ω-calculus: ω2-calculus. 25

3.5 Symbolic Semantics for the ω-Calculus 27

4 Properties of the ω-Calculus 32

vi

5 Towards Verification of ω-Calculus Specifications 43

5.1 Prototype Verifier for the ω-Calculus 43

5.2 Modeling and Verifying MANET Protocols using the ω-Calculus . . . 46

5.2.1 Case Study 1: A Leader Election Protocol for MANETs . . . 47

5.2.2 Case Study 2: The AODV Routing Protocol 51

5.3 Discussion . 54

6 Query-Based Model Checking of Ad Hoc Network Protocols 56

6.1 An Example of Topologies and Topology Constraints 57

6.2 Related Work . 58

6.3 Modeling Framework . 59

6.3.1 Syntax . 59

6.3.2 Concrete Semantics . 61

6.3.3 Symbolic System Specification 62

6.4 Constraint-Based Verification . 65

6.4.1 Verification of Reachability Properties 65

6.4.2 Complexity Analysis for the SymReach Algorithm 67

6.4.3 Model Checking Symbolic AHNs 69

6.5 Verification of the LMAC Protocol 70

6.6 Discussion . 75

7 Towards Parameterized Verification of Ad Hoc Network Protocols 76

7.1 Property Specification Logic . 77

7.2 Compositional Model Checker for the ωm-Calculus 80

7.3 An Example . 84

7.4 Discussion . 85

8 Conclusion 86

8.1 Summary of Major Results . 86

8.2 Discussion . 87

8.3 Future Work . 88

8.4 Final Notes . 90

Bibliography 91

vii

Appendix A Proof of Lemma 9 98

Appendix B Symbolic Bisimulation for the ω0-Calculus 110

Appendix C Proof of Theorem 20 114

viii

List of Figures

1 Ad Hoc Network Example . 1

2 Multiple views of a MANET network. 5

3 Node mobility example. 7

4 Derivation for a node mobility example. 22

5 Encoding of selected symbolic transition rules in Prolog. 45

6 Message flow in leader election protocol 47

7 ω-calculus encoding of the leader election protocol for MANETs. . . . 49

8 ω-calculus specification of leader election protocol. 50

9 Encoding of the AODV protocol in the ω-calculus. 53

10 Example topologies for collision in the LMAC protocol. 57

11 Concrete and symbolic views of network topology of Fig. 10(a). . . . 58

12 Symbolic Reachability Algorithm . 66

13 LMAC protocol model. 72

14 Semantics of the property specification logic. 79

15 Partial model checker for the ωm-calculus. 81

16 Definition of φ+G and φ−G. 82

17 Example of a parameterized system. 84

18 Property transformation example . 85

ix

List of Tables

1 Structural congruence relation for the ω0-calculus. 17

2 Transition rules for ω0-calculus basic node expressions. 18

3 Transition rules for ω0-calculus structured node expressions. 19

4 Transition rules for unicast communication in ω1-calculus. 24

5 Additional structural congruence rules for the ω-node expressions. . . 25

6 Additional transitional semantics rules for basic ω-node expressions. . 26

7 Additional transition semantics rules for structured ω-node expressions. 26

8 Symbolic semantics for basic ω-node expressions. 27

9 Symbolic semantics for basic ω-node expressions. 28

10 Symbolic semantics for structured ω-node expressions. 29

11 Symbolic semantics for structured ω-node expressions. 30

12 Verification statistics for ω-calculus model of leader election protocol. 50

13 Verification statistics for ω-calculus model of AODV protocol. 55

14 Verification statistics for the LMAC protocol for detected collisions. . 74

x

Acknowledgements

I would like to sincerely thank all people who have supported and encouraged me to

complete this thesis.

Foremost, I would like to express my sincere gratitude to my advisor Prof. C. R.

Ramakrishnan for his continuous support, guidance and patience during my doctoral

study and research. His willingness to help his students and closely work with them

made my research experience highly rewarding. Through his immense knowledge

and breadth of expertise he offered me opportunities and led me to work on diverse

exciting projects.

I would like to express my sincere thanks to my co-advisor Prof. Scott A. Smolka,

an eminent researcher in the field of formal methods and verification. His rigor and

passion of research helped me develop insights into formal methods. His guidance and

constructive comments on research, writing and presentation have been very helpful.

I am grateful to the rest of my thesis committee : Prof. Radu Grosu, Prof.

Scott D. Stoller and Prof. Rance Cleaveland for their encouragement and insightful

comments. Their suggestions helped in improving the quality of this thesis.

I would like to extend my thanks to Prof. I. V. Ramakrishnan for his support and

encouragement all these years. He provided a motivating environment to work in the

Applied Logic Lab and conduct exciting research.

I had the opportunity to work with Prof. David Warren. Interaction with him

helped me realize the potential for research through smallest observations. I also

had the opportunity to interact with Prof. Jennifer Wong. Her cordial nature and

eagerness to help with minute details helped me quickly acquire knowledge on new

topics and expand my research interests.

I thank all my lab-mates in the Applied Logic Lab who made it a convivial place

to work. Their efforts and accomplishments inspired me in research. I treasure all

precious moments we shared in the lab. I am also thankful to the departmental staff

for providing computing and administrative facilities.

My deepest gratitude goes to my entire family for their constant love and support

throughout my life; this thesis would have not been possible without them. I am

deeply indebted to my parents for their love and inspiration. My husband provided

me continuous support as a friend and as a guide. His belief in me to accomplish this

thesis kept me motivated all these years. I feel fortunate to get immense support and

encouragement from my family. I dedicate my thesis to my them.

Chapter 1

Introduction

An ad hoc network (AHN) is a collection of autonomous nodes connected by wireless

links. Each node N has a physical transmission range within which it can directly

transmit data to other nodes. Any node that falls within N ’s transmission range

is considered a neighbor of N . Mobile ad hoc networks (MANETs) are a special

case of AHNs, where nodes can move freely, leading to rapid change in the network’s

communication topology.

N4

N1N2 N3

Figure 1: Ad Hoc Network Example

An example of an AHN is shown in Figure 1. There are four nodes labeled N1,

N2, N3 and N4 in the network. The dotted circle centered around a node represents

its transmission range. Thus, N1 is within the transmission range of N2, N3, and N4

and vice versa, and N2 and N4 are in each other’s transmission range. The figure

shows the topology of the network at an instant of time as nodes are free to move in

and out of each other’s transmission range.

AHNs are used in a variety of application domains including unmanaged and

1

2

decentralized operations. Mobile ad hoc networks (MANETs) and wireless sensor

networks (WSNs) are examples of AHNs used for supporting self-configured and non-

monitored services such as network routing, surveillance, etc. Minimal configuration

and quick deployment make them suitable for ad hoc applications, including emer-

gency situations like natural disasters or military operations, health and environment

monitoring. Such applications are safety-critical and demand reliability. Thus, it is

important to verify the behavior of an AHN protocol before its use in a real network.

In the computer networks community, system verification is mainly done through

simulation. Though simulation can provide performance guarantees for a system, it

cannot guarantee absence of errors, due to some unseen erroneous system behavior

during simulation. To this end, formal methods serve as a suitable tool for verifying

concurrent system behavior. In this thesis, we focus on formalisms for modeling and

verifying AHNs and their associated protocols.

Two aspects of AHNs make them especially difficult to model using existing formal

specification languages such as process algebras. First, AHNs use wireless links for

local broadcast communication: an AHN node can transmit a message simultaneously

to all nodes within its transmission range, but the message cannot be received by

any node outside that range. Secondly, the neighborhood of nodes that lie within

the transmission range of a node can change unpredictably due to node movement,

thereby altering the set of nodes that can receive a transmitted message.

Ideally, the specification of an AHN node’s control behavior should be indepen-

dent of its neighborhood information. Since, however, the eventual recipients of a

local broadcast message depend on this information, a model of an AHN or MANET

protocol given in a traditional process calculus must intermix the computation of

neighborhood information with the protocol’s control behavior. This tends to render

such models unnatural and unnecessarily complex. In order to directly and succinctly

model these features, a formal framework is required that enables the concise expres-

sion of node movement and local broadcast communication particular to AHNs.

3

1.1 Problem Addressed in this Thesis

The environments in which AHN applications operate are generally unreliable due

to node failure and mobility and intermittent wireless communication links. AHNs

are resource-constrained and have arbitrary topology. These problems require AHN

applications to be robust, and necessitate behavioral assurances for AHN applications

before their actual deployment. AHNs introduce a rich domain of networking appli-

cations with complex control structures and optimizations for resource usage. The

complexity of AHN applications make them difficult to model and verify.

Another prominent source of complexity in the verification of AHN protocols is the

fact that the number of network topologies grows exponentially with the square of the

number of nodes. Due to the vast space of possible network topologies, the verification

of AHN protocols is a computationally intensive if not intractable task. Consider,

for example, the verification of the LMAC medium access control [vHH04] protocol

performed in [FvHM07]. The approach taken in there was to separately model check

each of the possible network topologies (modulo isomorphism) for a fixed number of

nodes in order to detect those that might lead to unresolved collisions. The problem

with this approach is that as the number of nodes in the network grows, the number

of possible topologies grows exponentially, posing an instance explosion problem for

verification.

In this thesis, we present a formal framework for modeling and analysis of AHNs

and their protocols. The framework consists of a process-algebraic modeling language

called the ω-calculus, which separates the description of a node’s behavior from the

description of the network topology. The modeling language provides abstraction

for node locations in contrast to using real numbers to represent node locations as

in [Mer07], thus making verification decidable for finite-control models. The frame-

work also consists of a procedure to check if two AHNs are bisimilar, i.e. they exhibit

the same behavior. The largest bisimulation is defined to be a congruence, i.e. two

AHNs that are bisimilar can replace each other in any network context. We also

extend this basic framework with data operations for the modeling and verification

of complex AHN protocols.

This thesis also presents an efficient symbolic verification algorithm to combat

instance explosion. The symbolic algorithm uses constraints to represent sets of

4

topologies. The algorithm can be used to verify AHN systems for all possible instances

of topologies in a single verification run. It can also infer the set of topologies for

which a property holds in the system.

This thesis also addresses the problem of parameterized verification of AHN proto-

cols that enables the verification of infinite families of ω-calculus nodes. In comparison

to prior works on parameterized verification [And95, EN96, BR06, YBR06], the new

concerns that arise in case of (mobile) ad hoc network protocols are broadcast-based

communication and node mobility.

1.2 Overview of Our Approach

In this thesis, we present a unified framework for the following:

• Modeling and abstraction of dynamic network topology and local broadcast

communication in an AHN, and verification of AHN protocols.

• Symbolic representation of network topologies, enabling verification of AHN

protocols over multiple network topologies in a single run.

• Parameterized verification of AHN protocols.

1.2.1 Modeling and Verification Framework

We developed the ω-calculus, a conservative extension of the π-calculus [MPW92]

that has been designed expressly to address the MANET modeling problems outlined

in Section 1.1. A key feature of the ω-calculus is the separation of a node’s communi-

cation and computational behavior, described by an ω-process, from the description of

its physical transmission range, referred to as an ω-process interface. This separation

allows one to model the control behavior of a MANET protocol, using ω-processes, in-

dependently from the protocol’s underlying communication topology, using process in-

terfaces. (A similar separation of concerns has been achieved in several recently intro-

duced process calculi for wireless and mobile networks [NH06, MS06, Mer07, God07],

but not as simply and naturally as in the ω-calculus.) An ω-process interface is a set

of groups, each of which operationally functions as a local broadcast port. Mobility

5

N2 N1 N3

N4 N4 N2

g1

N1

g2

N3

N4

N1N2 N3 N2

N4

N1 N3

 (a) Wireless Network (b) Neighboring Nodes

 (d) Group−based View (c) Node Connectivity Graph

Figure 2: Multiple views of a MANET network.

is captured in the ω-calculus by the dynamic creation of new groups and dynamically

changing process interfaces.

As an illustrative example of the ω-calculus, consider the MANET of Fig. 2(a)

(same as in Fig. 1). We assume that the transmission ranges of all nodes are iden-

tical, and hence connectivity is symmetric. The assumption of symmetry makes the

notation cleaner, although the assumption can be readily removed, as discussed later

in this section.

Fig. 2(b) highlights the maximal sets of neighboring nodes in the network, one

covering N1, N2, and N4, and the other covering N1 and N3. A maximal set of

neighboring nodes corresponds to a maximal clique in the network’s node connectivity

graph (Fig. 2(c)), and, equivalently, to an ω-calculus group, as illustrated in Fig. 2(d).

The set of groups to which a node is connected is specified by the interface of the

underlying process; i.e. the process executing at the node. Thus, the ω-calculus

expression for the network is the parallel composition N1|N2|N3|N4, where N1 =

P1 :{g1, g2}, N2 = P2 :{g1}, N3 = P3 :{g2}, N4 = P4 :{g1}, for process expressions P1,

P2, P3 and P4.

Note that process interfaces may contain groups that do not correspond to max-

imal cliques. Groups that do not represent any additional connectivity information

are redundant. Group g2 of Fig. 3 is an example of a redundant group. A canonical

form for ω-calculus expressions can be defined in which redundant groups are elided.

6

Fig. 2 provides multiple views of the MANET’s topology at a particular moment

in time. As discussed below, the network topology may change over time due to

node movement, a feature of MANETs captured operationally in the ω-calculus via

dynamic updates of process interfaces.

Local Broadcast in the ω-calculus. The ω-calculus action to locally broadcast

a value x is bx, while r(y) is the action for receiving a value y. Thus, when a process

transmits a message, only the message x to be sent is included in the specification.

The set of possible recipients depends on the process’s current interface: only those

processes that share a common group with the sender can receive the message and

this information is not part of the syntax of local broadcast actions. In the example

of Fig. 2, if P2 can broadcast a message and P1, P3, P4 are willing to receive it, then

the expression

N = r(x).P ′
1 :{g1, g2} | bu.P ′

2 :{g1} | r(y).P ′
3 :{g2} | r(z).P ′

4 :{g1}

may evolve to

N = P ′
1{u/x} :{g1, g2} | P ′

2 :{g1} | r(y).P ′
3 :{g2} | P ′

4{u/z} :{g1}

Observe that P3 does not receive the message since N3 is not in N2’s neighborhood.

It should be noted that communication is assumed to be lossy, and hence even nodes

that are within a sender’s transmission range may not receive a message.

When the interfaces of two nodes share a group name, the nodes are in each oth-

ers’ transmission ranges. We can remove the assumption of symmetric connections

by partitioning the interface into transmission and reception parts. Then a node N1

can send a message that can be received by node N2 if the transmission interface of

N1 overlaps with the reception interface of N2. Note that N2’s transmission inter-

face and N1’s reception interface may be disjoint. This captures the scenario where

N2 is in N1’s transmission range, but N1 is not in N2’s transmission range. While

asymmetric connections can be handled in principle, this introduces notational clut-

ter. Consequently, our technical development for the ω-calculus assumes symmetric

connections.

Node mobility in the ω-calculus. Node mobility is captured through the dy-

namic creation of new groups and dynamically changing process interfaces. Fig. 3

7

N2

g1

N4 N1

g2

N3

g3N2

N3

N1

N4

Figure 3: (a) Node Connectivity Graph after N3’s movement and (b) View in
ω-calculus.

shows the topology of the network of Fig. 2 after N3 moves away from N1’s trans-

mission range and into N4’s transmission range. N3’s movement means that the

ω-calculus expression

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | P3 :{g2} | P4 :{g1})

evolves to

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} | P4 :{g1, g3}))

The new group g3 in the above expression represents the new maximal set of neigh-

boring nodes N3 and N4 that arises post-movement. We use the familiar νg notation

for group-name scoping.

When process interfaces are allowed to change arbitrarily, the network topology

may change without any restriction. Correctness properties of many MANET al-

gorithms and protocols may hold only in certain restricted class of topologies. We

restrict node movement in the ω-calculus by imposing an invariant over a network’s

topology, called the connectivity invariant. The connectivity invariant must be pre-

served whenever the topology changes. Note that a connectivity invariant of “true”

will allow arbitrary node movement.

Nodes vs. Processes. In an ω-calculus specification, nodes typically represent

physical devices; as such, the calculus does not provide a primitive for node creation.

Process creation, however, is supported, as processes model programs and other exe-

cutables that execute within the confines of a device.

The ω-calculus framework [SRS08, SRS09a] and its properties are described in

Chapters 3 and 4. The practical utility of the framework is demonstrated through

case studies involving several AHN protocols in Chapter 5.

8

1.2.2 Constraint-Based Verification

Due to the ad-hoc nature of AHNs, an n-node AHN can assume any one of the

possible O(2n2

) topologies. This vast space of possible network topologies makes

the verification of AHN protocols a computationally intensive if not intractable task.

Consider, for example, the verification of the LMAC medium access control [vHH04]

protocol performed in [FvHM07]. The approach taken in [FvHM07] was to separately

model check each of the possible network topologies (modulo isomorphism) for a fixed

number of nodes in order to detect those that might lead to unresolved collisions. An

unresolved collision occurs when neighboring nodes (connected by at most two links)

without a common neighbor attempt to transmit within the same time slot; due to the

lack of a common neighbor, the collision remains undetected. The problem with this

approach is that as the number of nodes in the network grows, the number of possible

topologies grows exponentially, posing an instance explosion problem for verification.

To combat instance explosion, we developed a new, constraint-based symbolic veri-

fication technique for ad-hoc network protocols. The basic idea behind our approach is

as follows. We use the key features of the ω-calculus as the basis for the development

of an automata-theoretic framework. As in the ω-calculus, AHNs are represented

as a collection of nodes of the form P : I, where P is a sequential process and I

is an interface. An interface is a set of groups, with each group corresponding to a

clique in the network topology. Dually, a group is used as a local-broadcast (multi-

cast) communication port. Two nodes in the network can communicate (are within

each other’s transmission range) only if there respective interfaces have a non-null

intersection (share a common group).

To achieve a symbolic representation of an AHN, we treat process interfaces as

variables and introduce a constraint language for representing topologies. Terms of

the language are simply conjunctions of connection and disconnection constraints of

the form conn(Ji,Jj) and dconn(Ji,Jj), respectively. Here, Ji and Jj are interface

variables, and conn(Ji,Jj) signifies that Ji and Jj are connected (Ji∩Jj 6= ∅), while

dconn(Ji,Jj) means that Ji and Jj are disconnected (Ji ∩ Jj = ∅). As such, each

term of the language symbolically represents a set of possible topologies.

Given this symbolic representation of AHNs, one can now ask model-checking

queries of the form: under what evaluations (i.e. topologies) of the symbolic interface

9

variables does the reachability property in question hold? Our symbolic reachability

algorithm explores the symbolic state space of an AHN. A symbolic state is a pair

of the form (s, γ), where s is a network state comprising both the locations of the

component processes and valuations of their local variables, and γ is a term from

our topology constraint language. A symbolic transition from (s, γ) to (s′, γ′) is con-

structed by adding constraints to γ to obtain γ′ whenever a communication (local

broadcast) occurs. Assuming the communication involves process Pi as the broad-

caster, the following constraints will be added: those of the form conn(Ji,Jj), where

Pj is a process capable of performing a corresponding receive action and deemed to

fall within the transmission range of Pi; and those of the form dconn(Ji,Jk), where

Pk is also a process capable of performing a receive action and deemed not to fall

within Pi’s transmission range.

We present an efficient symbolic reachability algorithm to verify reachability prop-

erties of symbolic AHNs, and demonstrate its practical utility by applying it to the

problem of detecting unresolved collisions in the LMAC protocol [vHH04]. Our results

show that our symbolic approach to query-based model checking is highly effective: in

the case of a 6-node network, our symbolic reachability algorithm explored only 2,082

symbolic topologies, compared to a possible 32,768 actual topologies. Moreover, all

2,082 symbolic topologies were considered in a single verification run. In contrast,

for the same property, the authors of [FvHM07] considered no more than a 5-node

network, using 61 separate verification runs, one for each unique (modulo isomor-

phism) concrete topology. The constraint-based verification algorithm [SRS09b] and

its demonstration through the case study of LMAC protocol [vHH04] is presented in

Chapter 6.

1.2.3 Parameterized Verification

Communication networks describe an infinite family of systems, parameterized by

the number of concurrent components in the system. Traditional model-checking

techniques are restricted to verifying properties of a given instance of a parameterized

system. A number of techniques have been developed to verify parameterized systems

for all instances of their parameter space. We address the problem of parameterized

verification of AHNs.

10

A compositional model checking technique for automatic verification of infinite

families of systems specified in CCS [Mil89] process algebra has been presented

in [BR06]. CCS expressions for system specifications are interpreted over a do-

main of modal mu-calculus [JB01] formulas. Processes are treated as property

transformers using partial model checking [And95]. A similar approach has been

adopted in [YBR06] for verifying infinite-families of mobile systems specified in the

π-calculus [MPW92]. The partial-model-checking technique used in [BR06, YBR06]

treats each process in a system as a property transformer. For a property ϕ that is to

be verified of an N-process system, a partial model checker is used to infer property

ϕ′ that must hold of an (N-1)-process system. If the sequence of formulas ϕ, ϕ′, . . .

thus constructed converges, and the limit is satisfied by the deadlocked process, it is

concluded that the N-process system satisfies ϕ.

The partial model checking technique has been described more formally

in [YBR06] as follows: given a property (formula) ϕ and a system containing a pro-

cess P (specified using some process algebra), compute the property ϕ′ that should

hold in P ’s environment (say, Q) if ϕ holds in P |Q. The property transformer of a

process P , denoted by Π(P), is such that: ∀Q.(P |Q |= ϕ) ⇔ (Q |= Π(P)(ϕ)).

Following the approach of [BR06, YBR06], we developed a partial-model-checking

technique for the verification of parameterized AHNs that allow us to verify infi-

nite families of AHN protocols. The key difference between this work and prior

work [BR06, YBR06] is the broadcast-based communication vs. binary communica-

tion. Broadcast raises issues for partial model checking because it cannot be known

in advance how many concurrent processes in the environment of a broadcasting pro-

cess will receive the broadcast. This is not the case in binary communication where

there can be only one receiver process that can synchronize with the send action of

a process. The partial-model-checking technique for AHN protocols is described in

Chapter 7.

Chapter 2

Background and Related Work

2.1 Formal Methods and Process Calculi

Formal Methods. Formal methods are mathematically based techniques used to

specify, develop and verify systems [Cla96]. Specification involves describing the be-

havior of a system in a language with a mathematically defined syntax and semantics.

The properties desired of a system are also specified formally. Verification involves

checking whether the system description meets the specified properties.

Process Calculi. Process calculi are formal techniques for specifying and rea-

soning about the behavior of concurrent and communicating systems. Pioneering

process calculi are the Calculus of Communicating Systems (CCS) [Mil89] and Com-

municating Sequential Processes (CSP) [Hoa85]. CCS is based on point-to-point

(binary) communication. Process actions are either input/output on ports or the

internal action. Input on a port α is represented by the port itself (α) and output

on α is represented by the complementary port α. Two agents that can perform

actions involving complementary ports can synchronize and evolve simultaneously.

CSP is based on multi-way communication. All the processes that can perform an

action involving a port name can synchronize. The calculus of broadcasting systems

(CBS) [Pra93a, Pra93b, Pra94, Pra95] is a calculus with broadcast as the basic com-

munication primitive. CBS does not use a notion of channel or port for transmitting

values. CCS, CSP and CBS do not provide mechanism to model process mobility.

11

12

Process Calculi for Mobile Processes. The π-calculus [MPW92] is one of

the first process calculi developed for mobile processes. Names are used to represent

communication links as well as communicable data across links. Links are considered

as references to processes. Communication is binary, i.e. only two processes can

communicate at a time. The concept of using link names as data, together with the

ability to generate fresh and unique names, is the basis for the π-calculus and gives

it the expressive power to model dynamically reconfigurable systems.

Though change in the interconnection of processes can be modeled using the π-

calculus, one-to-many (synchronous) communication cannot be expressed. It has been

shown in [EM99] that it is difficult to encode broadcast in a calculus based on point-to-

point communication. This motivated the development of bπ-calculus [EM01] which is

based on the π-calculus and CBS. The basic communication primitive in bπ-calculus

is broadcast. The bπ-calculus can be used to model a notion of process mobility

similar to that in the π-calculus.

Many variants of the π-calculus have been proposed: asynchronous π-calculus

[HT91], fusion calculus [PV98] (a simplification of π-calculus with a more symmetric

form of communication), the spi-calculus [AG97] (designed for the specification and

analysis of cryptographic protocols), the join-calculus [FG96], and the typed π-

calculus [DZG00] which develops a notion of groups for typing channels.

The π-calculus does not directly model the distribution of processes in different

localities, or migrations of processes from one location to another. To overcome this

limitation of π-calculus, process calculi with an explicit notion of locality and explicit

primitives for process migration have been developed. Such process calculi are cate-

gorized as distributed process calculi. The addition of an explicit notion of location to

a process calculus was introduced in [AP94]. Subsequently, a distributed version of

the π-calculus, the Dπ-calculus [HR98, FH05], a language for specifying dynamically

evolving networks of distributed processes, was proposed. The Dπ-calculus extends

the π-calculus with notions of remote execution and migration. The Ambient calcu-

lus [CG98] is a process calculus for modeling mobile computing (computation carried

out in mobile devices) and mobile computation (mobile code that moves between

devices) in a single framework.

13

There are two notions of mobile processes addressed in the process calculi litera-

ture:

• Labile processes: Processes which undergo dynamic changes in their interaction

structure.

• Motile processes: Processes which can exhibit motion by changing their physical

locations.

The π-calculus is suitable for modeling labile processes. The ambient calculus and

distributed process calculi can be used to model motile processes.

2.2 Related Work

Several process calculi have recently been developed for wireless and mobile ad hoc

networks. The closest to our work are CBS# [NH06], CWS [MS06], CMN [Mer07],

and CMAN [God07]. These calculi provide local broadcast and separate control

behavior from neighborhood information. However, there are significant differences

between these calculi and ours, which we now discuss. CBS# [NH06], based on

the CBS process algebra of [Pra95], supports a notion of located processes. Node

connectivity information is given independently of a system specification in terms of

node connectivity graphs. The effect of mobility is achieved by nondeterministically

choosing a node connectivity graph from a family of such graphs when a transition is

derived. In contrast, the ω-calculus offers a single, integrated language for specifying

control behavior and connectivity information, and permits reasoning about changes

to connectivity information within the calculus itself.

In CWS [MS06], node location and transmission range are a part of the node

syntax. Node movement is not supported, although the authors suggest the addition

of primitives for this feature. CWS is well-suited for modeling device-level behaviors

(e.g., interference due to simultaneous transmissions) in wireless systems.

In CMN [Mer07], a MANET node is a named, located sequential process that can

broadcast within a specific transmission radius. Both the location and transmission

radius are values in a physical coordinate system. Nodes are designated as mobile or

stationary, and those of the former kind can move to an arbitrary location (resulting in

14

a tau-transition). Bisimulation as defined for CMN is based on a notion of physically

located observers. A calculus based on physical locations may pose problems for

model checking as a model’s state space would be infinite if locations are drawn from

a real coordinate system.

In CMAN [God07], each node is associated with a specific location. Furthermore,

each node n is annotated by a connection set : the set of locations of nodes to which n is

connected. Connections sets thus determine the network topology. Synchronous local

broadcast is the sole communication primitive. The connection set of a node explicitly

identifies the node’s neighbors. Consequently, when a node moves, its neighbors

actively participate by removing from (or adding to) their connection sets the location

of the moving node. This explicit handling of connection information affects the

modularity of the calculus’s semantics (the definition of bisimulation, in particular),

and may preclude reasoning about open systems. In contrast, in the ω-calculus,

neighborhood information is implicitly maintained using groups, thereby permitting

us to define bisimulation relations in a natural way.

Other calculi for mobile processes that have been proposed in the literature include

the π-calculus [MPW92], HOBS [OPT02], distributed process calculus Dπ [HR98],

and the ambient calculus [CG98]. These calculi do not support broadcast. Some

calculi that support broadcast as a primitive are the bπ-calculus [EM01] and

PRISMA [BL08]. The bπ-calculus adds broadcast communication as a primitive to

the π-calculus and provides the same mechanism for mobility as in the π-calculus.

PRISMA is a parametric calculus that can be instantiated with different interaction

policies, and provides a uniform framework for expressing different synchronization

models such as unicast and broadcast. Mobility in PRISMA is provided by name-

passing as in the π-calculus. These calculi could be used to model MANETs but not

as in a concise and natural fashion as with the ω-calculus because they intermix the

specification of network structure with the specification of the control behavior of a

protocol.

Chapter 3

Syntax and Transitional Semantics

of the ω-Calculus

We begin this section by presenting the syntax and semantics of ω0, our core calcu-

lus for MANETs. We then introduce the extensions to ω0 that result in the more

expressive ω1- and ω2-calculi.

3.1 Syntax of the ω0-Calculus

A system description in the ω0-calculus comprises a set of nodes, each of which runs

a sequential process annotated by its interface. We use N and P to denote the sets

of all nodes and all processes, respectively, with M,N ranging over nodes and P,Q

ranging over processes. We also use names drawn from two disjoint sets: Pn and

Gn. The names in Pn, called pnames for process names, are used for data values.

The names in Gn, called gnames for group names, are used for process interfaces.

We use x, y, z to range over Pn and g (possibly subscripted) to range over Gn. The

ω0-calculus has a two-level syntax describing nodes and processes, respectively.

The syntax of ω0-calculus processes is defined by the following grammar:

P ::= nil | Act .P | P + P | [x = y]P | A(
⇀
x)

Act ::= bx | r(x) | τ

Action bx represents the local broadcast of a value x, while the reception of a

locally broadcasted value is denoted by r(x). Internal (silent) actions are denoted by

15

16

τ . Process nil is the deadlocked process; Act .P is the process that can perform action

Act and then behave as P ; and + is the operator for nondeterministic choice. Process

[x = y]P (where x and y are pnames) behaves as P if names x and y match, and as nil

otherwise. A(
⇀
x) denotes process invocation, where A is a process identifier (having

a corresponding definition) and
⇀
x is a comma-separated list of actual parameters

(pnames) of the invocation. A process definition is of the form A(
⇀
x)

def
= P , and

associates a process identifier A and a list of formal parameters
⇀
x (i.e. distinct pnames)

with process expression P . Process definitions may be recursive.

The following grammar defines the syntax of ω0-calculus node expressions:

M ::= 0 | P :G | (νg)M | M |M

0 is the inactive node, while P :G, where G ⊆ Gn, is a node with process P having

interface G. The operator (νg) is used to restrict the scopes of gnames. M |N rep-

resents the parallel composition of node expressions M and N . Node expressions of

the form P :G are called basic node expressions, while those containing the restriction

or parallel operator are called structured node expressions. Note that gnames occur

only at the node level, capturing the intuition that, in an ad hoc network, the behav-

ioral specification of a (basic) node (represented by its process) is independent of its

underlying interface.

Free and Bound Names. For a process expression P , the set of free names and

bound names of P , denoted as fn(P) and bn(P), respectively, are defined as follows:

fn(nil) = ∅

fn(bx.P) = fn(P) ∪ {x}

fn(r(x).P) = fn(P) \ {x}

fn(τ.P) = fn(P)

fn(P + Q) = fn(P) ∪ fn(Q)

fn([x = y]P) = fn(P) ∪ {x, y}

fn(A(x1, . . . , xn)) = {x1, . . . , xn}

bn(nil) = ∅

bn(bx.P) = bn(P)

bn(r(x).P) = bn(P) ∪ {x}

bn(τ.P) = bn(P)

bn(P + Q) = bn(P) ∪ bn(Q)

bn([x = y]P) = bn(P)

bn(A(x1, . . . , xn)) = ∅

In a process definition of the form A(
⇀
x)

def
= P ,

⇀
x are the only names that may

occur free in P . The set of all names in a process expression P is given by n(P),

where n(P) = fn(P) ∪ bn(P). Similarly, the set of all pnames and gnames in a

node expression M are denoted by pn(M) and gn(M), and those that occur free are

17

P1. P + Q ≡ Q + P
P2. (P + Q) + R ≡ P + (Q + R)
P3. P ≡Q, if P ≡αQ

N1. M ≡ M | 0
N2. M1 |M2 ≡ M2 |M1

N3. (M1 |M2) |M3 ≡ M1 | (M2 |M3)
N4. (νg)M ≡ M, if g /∈ fgn(M)
N5. (νg)M |N ≡ (νg)(M |N), if g /∈ fgn(N)
N6. (νg1)(νg2)M ≡ (νg2)(νg1)M
N7. M ≡N, if M ≡αN
N8. P :G≡Q :G, if P ≡Q
N9. P :G≡ (νg)(P :G ∪ {g}), if g /∈ G

Table 1: Structural congruence relation for the ω0-calculus.

denoted by fpn(M) and fgn(M), respectively. Gname g is bound in (νg)M , and all

gnames in G are free in P :G. The set of all free names in a node expression M is

given by fn(M) = fpn(M) ∪ fgn(M). An expression without free names is called

closed. An expression that is not closed is said to be open. The theory developed in

the following sections is applicable to both open and closed systems (expressions).

3.2 Transitional Semantics of the ω0-Calculus

The transitional semantics of the ω0-calculus is defined in terms of a structural con-

gruence relation ≡ (Table 1) and a labeled transition relation −→⊆ N × L × N,

where L = {Gx,G(x), τ, µ | G ⊆ Gn, x ∈ Pn} is a set of transition labels. A labeled

transition (M,α,M ′) ∈−→, is also represented as M
α

−→ M ′. As such, only node

expressions have transitions. When a node of the form P :G broadcasts a value x, it

generates a transition labeled by Gx. When P :G receives a broadcast value x, the

corresponding transition label is G(x). Actions µ and τ also serve as transition labels,

with µ, as explained below, indicating node movement, and τ representing internal

(silent) actions.

For transition label α, the sets of bound names and gnames of α are denoted bn(α)

and gn(α), respectively, and defined as follows:

18

Rule Name Rule Side Condition

MCAST
(bx.P):G

Gx
−→ P :G

G 6= ∅

RECV
(r(x).P):G

G(x)
−→ P :G

G 6= ∅

CHOICE
P :G

α
−→ P ′:G

(P +Q):G
α

−→ P ′:G

MATCH
P :G

α
−→ P ′:G

([x=x]P):G
α

−→ P ′:G

DEF
P{

⇀
y /

⇀
x}:G

α
−→ P ′:G

A(
⇀
y):G

α
−→ P ′:G

A(
⇀
x)

def
= P

Table 2: Transition rules for ω0-calculus basic node expressions.

bn(Gx) = ∅, bn(G(x)) = {x}, bn(µ) = ∅, bn(τ) = ∅.

gn(Gx) = G, gn(G(x)) = G, gn(µ) = ∅, gn(τ) = ∅.

We define a label restriction operation α \ G that makes visible only those group

names in α that are not in set G as follows:
τ \G = τ

µ \G = µ

G1x \G2 = G1 −G2 x

G1(x) \G2 = (G1 −G2)(x)

where we use G1 −G2 to denote the set {g | g ∈ G1, g 6∈ G2}.

We use the standard notion of substitution for names, viz. a mapping σ : Pn×Pn.

We also use the standard notation for application of substitution to terms. The

expression M{y/x} denotes the node expression in which all free occurrences of x are

replaced by y in M , with a change of bound names if necessary to avoid any of the

new name y from becoming bound in M .

Process interfaces provide an abstract specification of network topology in terms of

node connectivity graphs. Formally, the node connectivity graph of a node expression

M , denoted by χ(M), is an undirected graph (V,E) such that V , the set of vertices,

19

Rule Name Rule Side Condition

STRUCT
N ≡M M

α
−→ M ′ M ′≡N ′

N
α

−→N ′

MOBILITY(I)
M |P :G

µ
−→ M |P :G′

G′ 6= G,
G′ ⊆ G ∪ fgn(M),
I(M |P :G) =⇒

I(M |P :G′)

PAR(I)
M

α
−→ M ′

M |N
α

−→ M ′ |N

bn(α) ∩ fn(N) = ∅
I(M |N) =⇒ I(M ′ |N)

COM
M

Gx
−→ M ′ N

G′(y)
−→ N ′

M |N
Gx
−→ M ′ |N ′{x/y}

G ∩ G′ 6= ∅

GNAME-RES1
M

α
−→ M ′

(ν g)M
α\{g}
−→ (ν g)M ′

α ∈ {τ, µ}, or
gn(α)\{g} 6= ∅

GNAME-RES2
M

Gx
−→ M ′

(ν g)M
τ

−→ (ν g)M ′
G = {g}

Table 3: Transition rules for ω0-calculus structured node expressions.

are the basic nodes of M (i.e. subexpressions of M of the form P : G) and E, the set of

edges, is defined as follows. There is an edge between two vertices P1 :G1 and P2 :G2

of χ(M) only if P1 and P2’s interfaces overlap; i.e. G1 ∩ G2 6≡ ∅ (assuming bound

names of M are unique and distinct from its free names). The node connectivity

graph for the ω0 node expression of Fig. 2(d) is given in Fig. 2(c).

We use the notion of connectivity invariant, to impose different models of node

movement on the calculus. A connectivity invariant is a decidable property over

undirected graphs. For example, k-connectedness, for a given k, is a candidate con-

nectivity invariant, as is true, indicating no constraints on node movement. We write

I(U) to indicate that undirected graph U possesses property I. We also use I(M),

thus overloading I, to denote I(χ(M)) which means that the connectivity graph of

node expression M satisifies connectivity invariant I.

20

The transitional semantics of the ω0-calculus is given by the inference rules of

Tables 2 and 3, with the former supplying the inference rules for basic node expressions

and the latter for structured node expressions. Rules CHOICE, MATCH, and DEF

of Table 2 are standard. Rules MCAST and RECV of Table 2, together with COM

of Table 3, define a notion of local broadcast communication. RECV states that a

basic node with process interface G can receive a local broadcast on any gname in G.

This, together with COM, means that a local-broadcast sender can synchronize with

any local-broadcast receiver with whom it shares a gname (i.e. the receiver is in the

transmission range of the sender). Note that a node with an empty in interface cannot

perform send or receive actions. Note also that the above definition corresponds to

late semantics due to the late instantiation of received names.

Local-broadcast synchronization results in a local-broadcast transition label of the

formGx, thereby enabling other receivers to synchronize with the original send action.

PAR rule indicates the interleaving semantics for actions of nodes in parallel. The

first side condition is standard and is used to avoid name capture. The second side

condition permits only those node movements that preserve a connectivity invariant

I in a larger network context.

GNAME-RES1 and GNAME-RES2 define the effect of closing the scope of a

gname. GNAME-RES1 states that a restricted gname cannot occur in a transition

label. GNAME-RES2 states that when all gnames of a local-broadcast-send action

are restricted, it becomes a τ -action. MCAST, GNAME-RES1 and GNAME-RES2

together mean that a local-broadcast send is non-blocking; i.e., it can be performed

on a set of restricted groups even when there are no corresponding receive actions.

In contrast, other actions containing gnames, such as local-broadcast receive, are not

covered by GNAME-RES2, and hence have blocking semantics: a system cannot per-

form actions involving restricted gnames unless there is a corresponding synchronizing

action.

In contrast to the broadcast calculi of [EM01, NH06], a node that is capable of

receiving a local broadcast is not forced to synchronize with the sender. The semantics

of local broadcast in the ω-calculus allows a receiver to ignore a local-broadcast event

even if this node is in the transmission range of the broadcasting node. A semantics

of this nature captures the lossy transmission inherent in MANETs. The semantics

21

of local broadcast can be modified to force all potential receivers to receive a local

broadcast, as done in other broadcast calculi [EM01, NH06]. This would require the

addition of a side-condition to the PAR rule, allowing autonomous broadcast/receive

actions only when the context (node expression N in the PAR rule) is incapable of

synchronizing with that action.

The notion of structural congruence (Table 1) considered in rule STRUCT is de-

fined for processes (rules P1-P3) in the standard way—P and Q are structurally

congruent if they are alpha-equivalent or congruent under the associativity and com-

mutativity of the choice (‘+’) operator—and then lifted to nodes (rules N1-N9). Two

basic node expressions are structurally congruent if they have identical process in-

terfaces and run structurally congruent processes (rule N8). Rules N4-N6 are for

restriction on gnames. Rule N9 allows basic nodes to create and acquire a new group

name or drop a local group name. Structural congruence of nodes includes alpha-

equivalence (rule N7) and the associativity and commutativity of the parallel (‘|’)

operator (rules N2 and N3).

Semantics of mobility. The semantics of node movement is defined by the MO-

BILITY rule, which states that the process interface of node P :G can change from G

to G′ whenever the node is in parallel with another node M . In particular, the side

condition G′ ⊆ G ∪ fgn(M) stipulates that P may drop gnames from its interface or

acquire free gnames from M .

The MOBILITY rule reflects the fact that P ’s interface may change when node

P :G, or the nodes around it, are in motion. A change in P ’s interface may further

result in a corresponding change in the overall network topology. Note that the

rule does not specify which nodes moved, only that the topology has been updated

as the result of movement of one or more nodes. The third side condition to the

MOBILITY rule, decrees that whenever M
µ

−→ M ′ is derived using the MOBILITY

rule, the resulting transition must preserve a connectivity invariant.

We thus have that the MOBILITY and PAR rules in particular, and the calculus’s

semantics in general, are parameterized by the connectivity invariant, thus taking into

account the constraints on node movement.

An example derivation of node movement is shown in Fig. 4. This derivation was

obtained using the structural congruence and transition rules defining the semantics

22

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} |P3 :{g2} |P4 :{g1})
µ

−→

MOBILITY

(νg1)(νg2)(P1 :{g1, g2} |P2 :{g1} |P3 :{g2} | (νg3)(P4 :{g1, g3}))
µ

−→

(νg1)(νg2)(P1 :{g1, g2} |P2 :{g1} | (νg3)(P3 :{g3} |P4 :{g1, g3}))

GNAME-RES1 (thrice)

(P1 :{g1, g2} |P2 :{g1} |P4 :{g1, g3}) |P3 :{g2}
µ

−→

(νg1)(νg2)(P1 :{g1, g2} | P2 :{g1} | (νg3)(P3 :{g3} |P4 :{g1, g3}))

(P1 :{g1, g2} |P2 :{g1} |P4 :{g1, g3}) |P3 :{g3}

P1 :{g1, g2} |P2 :{g1} |P3 :{g2} |P4 :{g1, g3}
µ

−→

P1 :{g1, g2} |P2 :{g1} |P3 :{g3} |P4 :{g1, g3}

(νg1)(νg2)(νg3)(P1 :{g1, g2} |P2 :{g1} |P3 :{g3} |P4 :{g1, g3})

(νg1)(νg2)(νg3)(P1 :{g1, g2} |P2 :{g1} |P3 :{g2} |P4 :{g1, g3})
µ

−→

STRUCT

STRUCT

STRUCT

Figure 4: Derivation for movement of N3 from its position in Fig. 2 to that in Fig. 3.

of the ω-calculus, and “connectedness” as the connectivity invariant.

3.3 The ω1-Calculus

The ω1- and ω2-calculi are defined in a modular fashion by adding new syntactic

constructs, and associated inference rules for their semantics, to the ω0-calculus. In

this section, we consider the extension ω1.

Extending ω0 to ω1. Syntactically, we obtain ω1 from ω0 as follows:

• We add restriction operators for pnames for both process-level and node-level

expressions. We use the standard notation of (νx)P for a pname x restricted to

a process expression P , and (νx)N for a pname x restricted to a node expression

N . As usual, x is bound in (νx)P and (νx)N .

23

• We introduce unicast communication as a prefix operator for process expres-

sions. Although unicast in principle can be implemented on top of broadcast,

we prefer to give it first-class status, as it is a frequent action in MANET pro-

tocols. Doing so also facilitates concise modeling and deterministic reasoning

(only the intended recipient can receive a unicast message). We use the stan-

dard notation of xy to denote the sending of name y along x, and x(y) to denote

the reception of a name along x that will bind to y. As usual, x and y are free

in the expression xy.P , and x is free and y is bound in x(y).P .

Unlike in ω0 where pnames are used strictly as data values, in ω1, pnames (the set

Pn) can be used as communicable data as well as communication (unicast) channels.

Semantically, the introduction of scoped pnames needs new inference rules to han-

dle scope extrusion. We add OPEN and CLOSE rules (as in the π-calculus [MPW92])

and, in addition to the broadcast communication rule (COM) of ω0, a rule for com-

munication of bound names. We also add RES rules at the process and node levels to

disallow communication over a restricted name. These additional rules follow closely

the standard rules for handling scopes and scope extrusion in the π-calculus; details

are omitted. New structural congruence rules are added to take the restriction of

pnames into account. For instance, restriction of pnames and gnames commute (i.e.

(νx)(νg)N ≡ (νg)(νx)N), and the restriction operator can be pushed into or pulled

out of node and process expressions as long as free names are not captured. At first

glance, it may appear that the structural congruence rules for scope extension of

pnames are redundant in the presence of the scope-extrusion rules (OPEN/CLOSE).

However, the OPEN/CLOSE rules are essential for reasoning about open systems,

and the scope extension rules are essential for defining normal forms (see Definition 3).

The addition of unicast communication raises certain interesting issues with re-

spect to mobility. Recall that groups encapsulate the locality of a process. When two

processes share a private name, they can use that name as a channel of communi-

cation. However, after establishing that link, if the processes move away from each

other, they may no longer be able to use that name as a channel. In summary, unicast

channels should also respect the locality of communication. We enforce this in the

ω1-calculus by annotating unicast action labels with the interfaces of the participating

processes, and allowing synchronization between actions only when their interfaces

24

Rule Name Rule Side Condition

UNI-SEND
(zx.P):G

z:Gx
−→ P :G

G 6= ∅

UNI-RECV
(z(x).P):G

z:G(x)
−→ P :G

G 6= ∅

UNI-COM
M

z:Gx
−→ M ′ N

z:G′(y)
−→ N ′

M |N
τ

−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

Table 4: Transition rules for unicast communication in ω1-calculus.

overlap (meaning that the processes are in each other’s transmission range). Hence,

the execution of a unicast send action of value x on channel z by a basic node with

process interface G is represented by action label z :Gx; the corresponding receive

action is labeled z :G(x).

The semantic rules for unicast send (UNI-SEND), receive (UNI-RECV), and syn-

chronization (UNI-COM) are given in Table 4. Scope extrusion via unicast com-

munication is accomplished by naturally extending their π-calculus counterparts

(OPEN/CLOSE) rules as follows. Bound-output actions (due to OPEN) are anno-

tated with the interface of the participating process, and the CLOSE rule applies only

when the interfaces overlap. These extensions are straightforward, and the details are

omitted.

The set of bound names and gnames for the transition labels introduced by the

ω1-calculus are given below:

bn(z : Gx) = ∅, bn(z : G(x)) = {x}, bn((νx)z : Gx) = {x}, bn((νx)Gx) = {x}.

gn(z : Gx) = G, gn(z : G(x)) = G, gn((νx)z : Gx) = G, gn((νx)Gx) = G.

Note that the scope of a name may encompass different processes regardless of

their interfaces, and hence two processes may share a secret even when they are

outside each others transmission ranges. The restriction we impose is that shared

names can be used as unicast channels only when the processes are within each

others transmission ranges.

25

P4. (νx)P ≡ P, if x /∈ fn(P)
P5. (νx)(νy)P ≡ (νy)(νx)P
P6. P |Q ≡ Q |P
P7. (P |Q) |R ≡ P | (Q |R)
P8. (νx)P1 |P2 ≡ (νx)(P1 |P2) if x /∈ fn(P2)

N10. (νx)M ≡ M, if x /∈ fpn(M)
N11. (νx)M1 |M2 ≡ (νx)(M1 |M2), if x /∈ fpn(M2)
N12. (νx)(νy)M ≡ (νy)(νx)M
N13. (νg)(νx)M ≡ (νx)(νg)M
N14. ((νx)P) :G ≡ (νx)(P :G)

Table 5: Additional structural congruence rules for the ω-node expressions.

3.4 The full ω-calculus: ω2-calculus.

We obtain the ω2-calculus by adding the parallel composition (‘|’) operator at the

process level, thereby allowing concurrent processes within a node. This addition

facilitates e.g. the modeling of communication between layers of a protocol stack run-

ning at a single node; it also renders the π-calculus a subcalculus of the ω2-calculus.

In ω2, the actions of two processes within a node may be interleaved. Moreover, two

processes within a node can synchronize using unicast (binary) communication. We

add PAR, COM and CLOSE rules corresponding to intra-node interleaving, synchro-

nization and scope extrusion, respectively; these rules are straightforward extensions

of the corresponding rules in the π-calculus.

The syntax of processes in the ω-calculus is defined by the following grammar:

P ::= nil | Act .P | P + P | (νx)P | [x = y]P | P |P | A(
⇀
x)

Act ::= xy | x(y) | bx | r(x) | τ

The following grammar defines the syntax of node expressions in the ω-calculus:

M ::= 0 | P :G | (νg)M | (νx)M | M |M

The structural congruence rules for the ω-calculus are given in Tables 1 and 5,

and the transitional semantics rules are given in Tables 2, 3, 4, 6, and 7.

26

Rule Name Rule Side Condition

PROC-PAR
P :G

α
−→ P ′:G

(P |Q):G
α

−→ (P ′ |Q):G
bn(α) ∩ fn(Q) = ∅

PROC-COM
P :G

z:Gx
−→ P ′:G Q:G

z:G(y)
−→ Q′:G

(P |Q):G
τ

−→ (P ′ |Q′{x/y}):G

PROC-CLOSE
P :G

(νx)z:Gx
−→ P ′:G Q:G

z:G(x)
−→ Q′:G

(P |Q):G
τ

−→ ((νx)(P ′ |Q′)):G

Table 6: Additional transitional semantics rules for basic ω-node expressions.

Rule Name Rule Side Condition

UNI-OPEN
M

z:Gx
−→ M ′

(νx)M
(νx)z:Gx
−→ M ′

x 6= z

UNI-CLOSE
M

(νx)z:Gx
−→ M ′ N

z:G′(x)
−→ N ′

M |N
τ

−→ (νx)(M ′ |N ′)
G ∩ G′ 6= ∅

OPEN
M

Gx
−→ M ′

(νx)M
(νx)Gx
−→ M ′

COM-RES
M

(νx)Gx
−→ M ′ N

G′(x)
−→ N ′

M |N
(νx)Gx
−→ M ′ |N ′

G ∩ G′ 6= ∅

CLOSE
M

(νx)Gx
−→ M ′

(ν g)M
τ

−→ (ν g)(νx)M ′
G = {g}

PNAME-RES
M

α
−→ M ′

(νx)M
α

−→ (νx)M ′
x /∈ n(α)

Table 7: Additional transition semantics rules for structured ω-node expressions.

27

3.5 Symbolic Semantics for the ω-Calculus

We now define a symbolic transitional semantics for the ω-calculus. The symbolic

semantics binds names lazily and enables more efficient construction of transition

systems for verification. In particular, transition system for a node expression is

given using the traditional semantics (Section 3) assuming that the free names in the

expression are all distinct. Consequently, transition system for an expression needs

to be generated for each context in which the expression is used. In contrast, the

symbolic semantics can be used to generate a symbolic transition system for each

expression, and the transition system can then be applied to each context of the

expression. The symbolic semantics also permits us to introduce useful operators,

such as a π-calculus-like mismatch operator to the ω-calculus, and provide concise

semantics to such operators.

Rule Name Rule Side Condition

MCAST
(bx.P):G

true,Gx
−→ P :G

G 6= ∅

RECV
(r(x).P):G

true,G(x)
−→ P :G

G 6= ∅

CHOICE
P :G

λ
−→ P ′:G

(P +Q):G
λ

−→ P ′:G

MATCH
P :G

C1,α
−→ P ′:G

([x=y]P):G
C1∧[x=y],α

−→ P ′:G
x, y /∈ bn(α)

MISMATCH
P :G

C1,α
−→ P ′:G

([x6=y]P):G
C1∧[x6=y],α

−→ P ′:G
x, y /∈ bn(α)

DEF
P{

⇀
y /

⇀
x}:G

λ
−→ P ′:G

A(
⇀
y):G

λ
−→ P ′:G

A(
⇀
x)

def
= P

Table 8: Symbolic semantics for basic ω-node expressions.

28

Rule Name Rule Side Condition

UNI-SEND
(zx.P):G

true,z:Gx
−→ P :G

G 6= ∅

UNI-RECV
(z(x).P):G

true,z:G(x)
−→ P :G

G 6= ∅

PROC-PAR
P :G

C,α
−→ P ′:G

(P |Q):G
C,α
−→ (P ′ |Q):G

bn(α) ∩ fn(Q) = ∅

PROC-COM
P :G

C1,w:Gx
−→ P ′:G Q:G

C2,z:G(y)
−→ Q′:G

(P |Q):G
C1∧C2∧[w=z],τ

−→ (P ′ |Q′{x/y}):G

PROC-CLOSE
P :G

C1,(νx)w:Gx
−→ P ′:G Q:G

C2,z:G(x)
−→ Q′:G

(P |Q):G
C1∧C2∧[w=z],τ

−→ ((νx)(P ′ |Q′)):G

Table 9: Symbolic semantics for basic ω-node expressions.

We define a symbolic semantics for the ω-calculus in a manner similar to that

for the π-calculus [Par01]. The symbolic semantics is given in terms of a symbolic

labeled transition relation. Each symbolic transition has an associated constraint

representing the conditions under which that transition is enabled. More specifically,

symbolic transitions are of the form M
C,α
−→ M ′, where C is a constraint on the free

pnames of M . Constraints are conjunctions of zero or more atomic constraints, which

are of the form true, false, and for pnames x and y, x = y and x 6= y. An empty

constraint is equivalent to true as are constraints of the form x = x. Constraints of

the form x 6= x are equivalent to false. A conjunction containing false is equivalent

to false. In the following, we assume that constraints are maintained, using these

equivalences, in simplified form.

The inference rules for the symbolic semantics of the ω-calculus are given in Ta-

bles 8-11. In the tables, we use λ to represent transition labels, i.e., pairs (C, α).

The rules also use a constraint expression of the form C − x, which represents the

constraint obtained from C by replacing all occurrences of x = y by false and x 6= y

29

Rule Name Rule Side Condition

STRUCT
N ≡M M

λ
−→ M ′ M ′≡N ′

N
λ

−→N ′

MOBILITY(I)
M |P :G

true,µ
−→ M |P :G′

G′ 6= G,
G′ ⊆ G ∪ fgn(M),
I(M |P :G) =⇒

I(M |P :G′)

PAR(I)
M

C,α
−→ M ′

M |N
C,α
−→ M ′ |N

bn(α) ∩ fn(N) = ∅
I(M |N) =⇒ I(M ′ |N)

COM
M

C1,Gx
−→ M ′ N

C2,G′(y)
−→ N ′

M |N
C1∧C2,Gx

−→ M ′ |N ′{x/y}

G ∩ G′ 6= ∅

GNAME-RES1
M

C,α
−→ M ′

(ν g)M
C,α\{g}
−→ (ν g)M ′

α ∈ {τ, µ}, or
gn(α) \ {g} 6= ∅

GNAME-RES2
M

C,Gx
−→ M ′

(ν g)M
C,τ
−→ (ν g)M ′

G = {g}

Table 10: Symbolic semantics for structured ω-node expressions.

by true. We do not need to consider cases such as x = x since we assume that C is

in simplified form.

Rule MATCH and the rules corresponding to binary (unicast) synchroniza-

tion (PROC-COM, UNI-COM, and UNI-CLOSE) generate equality constraints over

pnames. In the non-symbolic case, we say that two nodes performing unicast send

and receive operations can synchronize only if they use identical channel names. In

contrast, in the symbolic case, we permit any two such operations to synchronize and

generate a condition that the two channels should be the same (represented by the

equality constraint between the two names). Inequality constraints are introduced by

the MISMATCH rule.

Consider the PNAME-RES rule, which says that (νx)M
C′,α
−→ (νx)M ′ can be

30

Rule Name Rule Side Condition

UNI-COM
M

C1,w:Gx
−→ M ′ N

C2,z:G′(y)
−→ N ′

M |N
C1∧C2∧[w=z],τ

−→ M ′ |N ′{x/y}
G ∩ G′ 6= ∅

UNI-OPEN
M

C,z:Gx
−→ M ′

(νx)M
C−x,(νx)z:Gx

−→ M ′
x 6= z

UNI-CLOSE
M

C1,(νx)w:Gx
−→ M ′ N

C2,z:G′(x)
−→ N ′

M |N
C1∧C2∧[w=z],τ

−→ (νx)(M ′ |N ′)
G ∩ G′ 6= ∅

OPEN
M

C,Gx
−→ M ′

(νx)M
C−x,(νx)Gx

−→ M ′

COM-RES
M

C1,(νx)Gx
−→ M ′ N

C2,G′(x)
−→ N ′

M |N
C1∧C2,(νx)Gx

−→ M ′ |N ′
G ∩ G′ 6= ∅

CLOSE
M

C,(νx)Gx
−→ M ′

(ν g)M
C,τ
−→ (ν g)(νx)M ′

G = {g}

PNAME-RES
M

C,α
−→ M ′

(νx)M
C−x,α
−→ (νx)M ′

x /∈ n(α)

Table 11: Symbolic semantics for structured ω-node expressions.

inferred from M
C,α
−→ M ′ if x is not a name in α. Note that while C is a constraint

on the free pnames of M , C ′ is a constraint on the free pnames of (νx)M ; i.e., C ′

does not contain x. Consider an equality constraint of the form x = y in C. This

constraint will be unsatisfiable in the context of (νx) since x is a restricted pname.

Now consider a disequality constraint of the form x 6= y in C. This constraint will be

always satisfiable in the context of (νx) since x is a restricted name and y is a free

name. Hence we obtain C ′ as C − x: derived from C by replacing all occurrences of

x = y by false and x 6= y by true.

31

The equality constraints in a conjunction of constraints induce an equivalence

relation on the names appearing in the constraints. For a given constraint C, we use

σC to denote a substitution that maps all names in the same equivalence class to a

representative name (chosen arbitrarily) of the class. We use C1 ⊲C2 to indicate that

C1 implies C2.

We can establish a correspondence between the symbolic semantics and the tran-

sitional semantics presented in Section 3, formalized as follows.

Theorem 1 (Correspondence) For all M in the mismatch-free fragment of the

ω-calculus: M
C,α
−→M ′ iff MσC

ασC−→M ′σC .

This theorem can be proved by induction on the derivation length.

Chapter 4

Properties of the ω-Calculus

In this chapter, we prove some fundamental properties of the ω-calculus, including

congruence results for strong bisimulation equivalence and a weak version of bisimu-

lation equivalence that treats τ - and µ-actions as unobservable.

Embedding of the π-Calculus. The ω-calculus is a conservative extension of the

π-calculus [MPW92]. That is, every process expression P in the π-calculus can be

translated to an ω-node expression P : G, for G ⊆ Gn and G 6= ∅, such that the

transition system generated by P :G is isomorphic to the one generated by P . We

impose the condition G 6= ∅ since a basic node with an empty interface (P : {}) cannot

perform any action. This property is formally stated by the following theorem, which

is readily proved by induction on the length of derivations.

Theorem 2 For any process expression P in the π-calculus, P : G is a node ex-

pression in the ω-calculus, where G ⊆ Gn and G 6= ∅. Moreover, P
α

−→ P ′ is a

transition derivable from the operational semantics of the π-calculus if and only if

P : G
α′

−→ P ′ :G is derivable from the operational semantics of the ω-calculus, and

one of the following conditions hold: (i) α = α′ = τ ; (ii) α = x(y) and α′ = x :G(y);

(iii) α = xy and α′ = x :Gy; or (iv) α = (νy)xy and α′ = (νy)x :Gy, for some names

x, y.

Decidability of the Finite-Control Fragment. The finite-control fragment of

the ω-calculus, as in the case of the π-calculus, is the subcalculus where recursive

32

33

definitions do not contain the parallel operator (‘|’) and every occurrence of process

identifiers is guarded. Reachability properties are decidable for closed process expres-

sions (i.e. those without free names) specified in the finite-control fragment [Dam97].

We extend the notion of finite control to the ω-calculus, and show that reachabil-

ity remains decidable for closed node expressions. This result, formally stated in

Theorem 3, is of practical importance in verifying MANET system specifications.

Formally, we say that an ω-calculus expression N is reachable from M (denoted by

M−→∗N) if there is a finite sequence of transitions M
α1→ M1

α2→M2 · · ·
αn→ N .

Theorem 3 Let M be a closed finite-control ω-calculus expression and let RM =

{N | M−→∗N}≡ be the set of node expressions reachable from M modulo the struc-

tural congruence relation ≡. Then, RM is finite.

The following proof uses the finite reachability result for the finite-control π-calculus

given in [Dam97].

Proof Sketch: Consider the fragment ωπ of the ω-calculus without broadcast actions

and the MOBILITY rule. For a node expression M in ωπ, the corresponding π-

calculus process expression, denoted by Mπ, is obtained from M by deleting process

interfaces and gname restrictions. Let M be a ωπ-expression such that all process

expressions have the same process interface. ThenM ’s transition system is isomorphic

to that of Mπ.

Now further assume that M is closed and finite-control. Then the set of expres-

sions reachable from M , RM , is similar (except for occurrences of process interfaces

and gnames) to that for Mπ. Since only finitely many expressions are reachable from

Mπ, RM is also finite.

Next, extend ωπ to ωbπ by including broadcast actions. Let M1 be such a ωbπ-

expression that is both closed and finite-control. The process contexts due to broad-

cast action prefixes are analyzed in a similar manner as the binary-synchronization

action prefixes. Using an argument similar to the one used above for ωπ, it can be

concluded that RM1
is finite.

Finally, we include the MOBILITY rule in ωbπ, extending ωbπ to the ω-calculus.

Let M2 be a closed finite-control ω-expression. The MOBILITY rule affects only

the gnames (including process-interfaces) appearing in expressions reachable from

M2. It can be observed that the set RM2
is a variant of the set RM1

, with different

34

combinations of process-interfaces (permitted by the MOBILITY rule) attached to

the process expressions appearing in the elements of RM1
. The different combinations

of process interfaces possible for n basic nodes in an ω-expression (modulo ≡) is finite

and bounded by the number of topologies that a network of n nodes can assume. This

implies that RM2
is finite.

Hence, reachability for the finite-control fragment of the ω-calculus is decidable.

⊓⊔

Bisimulation for the ω-Calculus. The definition of strong (late) bisimulation for

the π-calculus [MPW92] can be extended to the ω-calculus.

Definition 1 A relation S ⊆ N × N is a strong simulation if M SN implies:

• fgn(M) = fgn(N), and

• whenever M
α

−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
α

−→ N ′ and for all y ∈

Pn, M ′{y/x}S N ′{y/x},

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
α

−→ N ′ and M ′ S N ′.

S is a strong bisimulation if both S and S−1 are strong simulations. Nodes M and

N are strong bisimilar, written M ∼ N , if M SN for some strong bisimulation S.

Proposition 4 (i) ∼ is an equivalence; and (ii) ∼ is the largest strong bisimulation.

Strong bisimulation equivalence is a congruence for the ω-calculus, as formally stated

in Theorem 10. We use the bisimulation up to ≡ technique [San98] to establish this

result. The following definitions and lemmas are also needed.

Notation: For a given relation R, the relation ≡R≡ is given by: {(x, y) | (x′, y′) ∈

R, x ≡ x′, y ≡ y′}.

Definition 2 A symmetric relation S ⊆ N × N is a strong bisimulation up to ≡ if

M SN implies

• fgn(M) = fgn(N), and

35

• whenever M
α

−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
α

−→ N ′ and for all y ∈

Pn, M ′{y/x} ≡ S ≡ N ′{y/x},

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
α

−→ N ′ and M ′ ≡S≡ N ′.

Lemma 5 If S is a strong bisimulation up to ≡, then for any M,N ∈ N, M SN

implies M ∼ N .

Proof: For any M,N ∈ N, M SN implies M ≡S≡ N . It is sufficient to show that

≡S≡ is a strong bisimulation because then M ≡S≡ N would imply that M and N

are strong bisimilar. M ≡S≡ N implies there exist some M1 and N1 s.t. M ≡ M1,

N ≡ N1, and M1 S N1. From STRUCT rule, M
α

−→M ′ implies that there exists M ′
1

s.t. M1
α

−→ M ′
1 and M ′ ≡M ′

1.

For the case α /∈ {G(x), z :G(x)}, using Def. 2 it can be inferred that M1 S N1

and M1
α

−→ M ′
1 imply that there exists N ′

1 s.t. N1
α

−→ N ′
1 and M ′

1 ≡S≡ N ′
1. M SN

and M
α

−→ M ′ imply that there exists N ′ s.t. N
α

−→ N ′, and N ′
1 ≡ N ′ because

N ≡ N1. M
′
1 ≡S≡ N ′

1 holds since M1 S N1 and S is a strong bisimulation up to ≡.

By transitivity of ≡, M ′ ≡S≡ N ′.

Similarly, it can be shown that for α ∈ {G(x), z :G(x)}, and for each y ∈ Pn,

M ′{y/x} ≡S≡ N ′{y/x}.

From Def. 2 and M SN , it holds that fgn(M) = fgn(N).

Hence, ≡S≡ is a strong bisimulation. Therefore, M ≡S≡ N implies M ∼ N .

⊓⊔

An intermediate step in establishing that strong bisimulation equivalence is a

congruence for the ω-calculus is to prove it for ω-expressions in a normal form, defined

below. We use the term “guarded restrictions” in the context of ω-expressions to mean

restrictions that are preceded by an action prefix.

Definition 3 (Normal Form) An ω-expression is in normal form if all bound

names are distinct and all unguarded restrictions are at the top level with all gnames

preceding pnames.

We use Nnf to denote the set of ω-node expressions in normal form. The structural

congruence rules are extended by the following rules (as in [Par01]).

36

(νx)0 ≡ 0

(νx)P +Q ≡ (νx)(P +Q) if x /∈ fn(Q)

[y = z](νx)P ≡ (νx)[y = z]P if x 6= y and x 6= z

A(
⇀
y) ≡ P{

⇀
y/

⇀
x} A(

⇀
x)

def
= P

Proposition 6 Every ω-expression is structurally congruent to an ω-expression in

normal form.

Every ω-expression can be converted into a structurally congruent ω-expression in

normal form by renaming all bound names so that they are distinct and using struc-

tural congruence rules to pull out all unguarded restrictions to the outermost level.

The following lemma originally appeared in [Par01] and is lifted here to the ω-calculus.

Lemma 7 If M
α

−→M ′ and M ≡ N where N ∈ Nnf , then there exists N ′ ∈ N such

that by inference of no greater depth, N
α

−→ N ′ and M ′ ≡ N ′.

Proof Idea: The proof is by induction on the inference of M ≡ N and involves

examination of all the structural congruence rules. ⊓⊔

Lemma 8 For every M,M ′ ∈ N, if M
α

−→ M ′, then there exists an N ∈ Nnf such

that N ≡ M and

(i) N is of the form (νg̃)(νx̃)N ′ where g̃ and x̃ are nonempty sets, and

(ii) there exists M ′′ ∈ N such that N
α

−→ M ′′, M ′′ ≡ M ′, and N
α

−→ M ′′ can

be derived without using STRUCT rules in the last two steps of the derivation.

Proof Sketch: Clearly, we can always find an N in normal form obeying condition

(i) that is equivalent to any given M ∈ N. Since N has an outermost (non-empty)

gname restriction and a non-empty pname restriction at the next level, any derivation

for a transition from N will involve at least two steps.

Consider the shortest derivation for N
α

−→ M ′′ (shortest among all N equivalent

to M). For such a derivation, the last step cannot be an application of STRUCT

rule. To the contrary, assume that the last step in the derivation is an application of

the STRUCT rule. Then the last step is of the form:

N ≡M1 M1
α

−→M2 M2 ≡M

N
α

−→M

37

M1 cannot be in normal form; otherwise there is a shorter derivation. However,

by Lemma 7, there is a normal form equivalent to M1 that has at least as short a

derivation. Thus, there is a shorter derivation for N ′′ α
−→ M ′′ for some normal form

N ′′ ≡ M , which is a contradiction. Hence the last step in the shortest derivation

cannot be an application of the STRUCT rule.

This means that the last step in the shortest derivation must be due to the out-

ermost gname restriction. We can similarly argue that in the shortest derivation, the

next-to-last step is not an application of STRUCT rule. ⊓⊔

Lemma 9 For all M1,M2 ∈ Nnf , i.e., M1, M2 are in normal form, the following

hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;

(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and

(iii) M1 ∼ M2 implies ∀N ∈ Nnf : M1|N ∼ M2|N .

Proof Sketch. We give a sketch of the proof in what follows. The complete proof is

given in Appendix A.

We show parts (i–iii) of the lemma simultaneously by considering the set S =

{((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) | M1 ∼ M2, g̃ ⊆ Gn, x̃ ⊆ Pn,M1,M2, N ∈

Nnf}. Following Lemma 5, it is sufficient to show that S is a strong bisimulation

upto ≡.

Note that if M1 ∼ M2 then fgn(M1) = fgn(M2), and hence

fgn((νg̃)(νx̃)(M1|N)) = fgn((νg̃)(νx̃)(M2|N)) for all g̃, x̃ and N . We then show

that every transition from (νg̃)(νx̃)(M1|N) can be matched by (νg̃)(νx̃)(M2|N) by

considering the derivations of transitions. Transitions for (νg̃)(νx̃)(M1|N) can be

derived by use of rules CLOSE, GNAME-RES1, GNAME-RES2, MOBILITY, PAR,

UNI-COM, UNI-CLOSE, COM, COM-RES, UNI-OPEN, OPEN and PNAME-RES.

Only the last three steps of each transition derivation are considered in the proof.

Most importantly, following Lemma 8, we do not need to consider derivations that

use STRUCT rules in the last two steps. From the structural operational semantics,

the last step of a derivation will be due to the outermost (νg̃) in the expression, the

next-to-last step will be due to the (νx̃) following the outermost (νg̃), and the step

before that will be due to the parallel composition (M1|N). We omit in the proof the

38

symmetric cases arising due to the commutativity of the parallel operator ‘|’. This

gives rise to 15 cases (owing to the combinations of rules applied during the last three

steps in a derivation). For illustration, we show here one such case:

Case CLOSE, OPEN, COM:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N

′{x′/y}) given M1
Gx′

−→ M ′
1 and N

G′(y)
−→

N ′. The derivation is as follows, where x̃1 = x̃ \ {x′}.

COM:
M1

Gx′
−→ M ′

1 N
G′(y)
−→ N ′

M1|N
Gx′
−→ M ′

1|N
′{x′/y}

G ∩G′ 6= ∅

OPEN:
(νx̃)(M1|N)

(νx′)Gx′
−→ (νx̃1)(M

′
1|N

′{x′/y})
CLOSE:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx′)(νx̃1)(M
′
1|N

′{x′/y})
G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that M2
Gx′

−→ M ′
2

and M ′
1 ∼ M ′

2. Moreover, there exist expressions M ′
N1, M

′
N2 and N ′

N in nor-

mal form such that M ′
1 ≡ M ′

N1, M
′
2 ≡ M ′

N2 and N ′{x′/y} ≡ N ′
N . Now, since

M ′
1 ∼ M ′

2, we know M ′
N1 ∼ M ′

N2. Hence by construction of S, we can conclude

that the pair ((νg̃)(νx′)(νx̃1)(M
′
N1|N

′
N), (νg̃)(νx′)(νx̃1)(M

′
N2|N

′
N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N

′{x′/y}), (νg̃)(νx̃)(M ′
2|N

′{x′/y})) ∈ ≡S≡.

By considering the 15 cases that cover all possible derivations, we conclude that for

every transition from (νg̃)(νx̃)(M1|N), there is a transition from (νg̃)(νx̃)(M2|N)

such that the destinations of the two transitions are related by ≡ S ≡. Thus we

establish that S is a strong bisimulation upto ≡. ⊓⊔

Theorem 10 (Congruence) ∼ is a congruence for the ω-calculus; i.e., for all

M1,M2 ∈ N, the following hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;

(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and

(iii) M1 ∼ M2 implies ∀N ∈ N : M1|N ∼ M2|N .

Proof: Let M1 ≡ MN1
and M2 ≡ MN2

, where M1,M2 ∈ N and MN1
,MN2

∈ Nnf .

Then the following hold:

• M1 ∼ M2 implies MN1
∼ MN2

(from Definition 2 and Lemma 5). MN1
∼ MN2

implies ∀x ∈ Pn: (νx)MN1
∼ (νx)MN2

(by Lemma 9), which in turn implies

39

(νx)M1 ∼ (νx)M2 (from Definition 2 and Lemma 5). Therefore, whenever

M1 ∼ M2 then (νx)M1 ∼ (νx)M2.

• M1 ∼ M2 implies MN1
∼ MN2

(from Definition 2 and Lemma 5). MN1
∼ MN2

implies ∀g ∈ Gn: (νg)MN1
∼ (νg)MN2

(by Lemma 9), which in turn implies

(νg)M1 ∼ (νg)M2 (from Definition 2 and Lemma 5). Therefore, whenever

M1 ∼ M2 then (νg)M1 ∼ (νg)M2.

• M1 ∼ M2 implies MN1
∼ MN2

(from Definition 2 and Lemma 5). MN1
∼ MN2

implies for any N ∈ N, and N ≡ NN where, NN ∈ Nnf : (MN1
|NN) ∼

(MN2
|NN) (by Lemma 9), which in turn implies (M1|N) ∼ (M2|N) (from Defi-

nition 2 and Lemma 5). Therefore, whenever M1 ∼M2 then (M1|N) ∼ (M2|N).

∼ is preserved by all node contexts. Hence, ∼ is a congruence . ⊓⊔

Recall that we defined a late semantics for transition systems in the ω-calculus.

Late semantics yields a more deterministic proof system for deriving transitions (as

compared to that of early semantics) because of the late instantiation of an input

name. Using the late semantics we defined a strong late bisimulation. Late bisimu-

lation is more natural for automated verification tools because the late instantiation

of names leads to more efficient checking of bisimulation.

Early bisimulation can also be defined for the ω-calculus using the late semantics.

It turns out that early bisimulation equivalence is also a congruence for the ω-calculus.

The fact that nodes in the ω-calculus cannot be placed in the context of an input or

output prefix (only processes can be) makes the congruence result hold for both late

and early bisimulation equivalences. In contrast for the π-calculus neither late nor

early bisimulation equivalence is a congruence due to input prefix. The congruence

results for early bisimulation equivalence in the ω-calculus can be established similar

to that for the late bisimulation. A lemma similar to Lemma 9 can be used to

prove congrunce for early bisimulation equivalence. In the proof of Lemma 9 given in

Appendix A, all the cases except case 9 will be identical to those for late bisimulation

equivalence. Case 9 which includes derivations for input transition labels, will have a

more elaborate proof for early bisimulation equivalence to consider early instantiation

of input names.

40

Weak Bisimulation for the ω-Calculus. We can also define a notion of weak

bisimulation for the ω-calculus, in which τ - and µ-actions are treated as unobservable.

Its definition is similar to that for strong bisimulation (Definition 1) and is given in

Definition 4. We also establish that weak bisimulation equivalence, like its strong

counterpart, is a congruence for the ω-calculus.

We use =⇒ to denote
(τ |µ)
−→

∗

, i.e., zero or more τ - or µ-transitions, and
bα

=⇒ to

denote
(τ |µ)
−→

∗
α

−→
(τ |µ)
−→

∗

if α /∈ {τ, µ} and =⇒ otherwise.

Definition 4 A relation S ⊆ N × N is a weak simulation if M SN implies:

• fgn(M) = fgn(N), and

• whenever M
α

−→M ′ where bn(α) is fresh then:

– if α ∈ {G(x), z :G(x)}, there exists an N ′′ s.t. N=⇒
α

−→ N ′′ and for all

y ∈ Pn, there exists an N ′ s.t. N ′′{y/x}=⇒N ′ and M ′{y/x}S N ′,

– if α /∈ {G(x), z :G(x)}, there exists an N ′ s.t. N
bα

=⇒ N ′ and M ′ S N ′.

S is a weak bisimulation if both S and S−1 are weak simulations. Nodes M and N

are weak bisimilar, written M ≈ N , if M SN , for some weak bisimulation S.

Proposition 11 (i) ≈ is an equivalence relation; and (ii) ≈ is the largest weak bisim-

ulation.

Weak bisimulation equivalence is a congruence for the ω-calculus as formally stated

below.

Theorem 12 (Congruence) ≈ is a congruence for the ω-calculus; i.e., for all

M1,M2 ∈ N, the following hold:

(i) M1 ≈ M2 implies ∀x ∈ Pn : (νx)M1 ≈ (νx)M2;

(ii) M1 ≈ M2 implies ∀g ∈ Gn : (νg)M1 ≈ (νg)M2; and

(iii) M1 ≈ M2 implies ∀N ∈ N : M1|N ≈ M2|N .

Proof Sketch. It suffices to show that S =

{((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) |M1 ≈ M2, g̃ ⊆ Gn, x̃ ⊆ Pn,M1,M2, N ∈ N}

is a weak bisimulation.

41

M1 ≈ M2 implies that if M1
α

−→ M ′
1, where α /∈ {G(x), z : G(x)}, then there

exists an M ′
2 such that M2

bα
=⇒ M ′

2 and M ′
1 ≈ M ′

2. M2
bα

=⇒ M ′
2 implies that there

exist M2a and M2b such that M2 =⇒M2a, M2a
α

−→M2b, and M2b =⇒ M ′
2.

It can be shown that if (νg̃)(νx̃)(M1|N)
α

−→ (νg̃)(νx̃)(M ′
1|N

′), then also

(νg̃)(νx̃)(M2a|N)
α

−→ (νg̃)(νx̃)(M2b|N
′) which implies (νg̃)(M2|N)

bα
=⇒ (νg̃)(M ′

2|N
′).

We can similarly reason about the case when α ∈ {G(x), z :G(x)}. Using these ar-

guments along with the ideas used in the proof of congruence for strong bisimulation

equivalence, it can be shown that weak bisimulation equivalence for ω-calculus is a

congruence. ⊓⊔

Symbolic Bisimulation for the ω-Calculus. We now proceed to define symbolic

bisimulation for the ω-calculus. As desired, the congruence results of Section 4 can

be established for this extension as well.

Definition 5 A relation S ⊆ N × N on nodes is a symbolic simulation if M SN

implies:

• fgn(M) = fgn(N), and

• whenever M
C1,α
−→ M ′, where bn(α) is fresh, there exist N ′, β, and C2 s.t. N

C2,β
−→

N ′ and

– C1 ⊲ C2

– ασC1
≡ βσC1

– M ′σC1
S N ′σC1

.

S is a symbolic bisimulation if both S and S−1 are symbolic simulations. Nodes

M and N are symbolic bisimilar, written M ≍ N , if M SN for some symbolic

bisimulation S.

Proposition 13 (i) ≍ is an equivalence relation; and (ii) ≍ is the largest symbolic

bisimulation.

Symbolic bisimulation equivalence is a congruence for the ω-calculus, as formally

stated below.

42

Theorem 14 (Congruence for Symbolic Bisimulation for the ω-Calculus)

≍ is a congruence for the ω-calculus; i.e., for all M1,M2 ∈ N, the following hold:

(i) M1 ≍ M2 implies ∀x ∈ Pn : (νx)M1 ≍ (νx)M2;

(ii) M1 ≍ M2 implies ∀g ∈ Gn : (νg)M1 ≍ (νg)M2; and

(iii) M1 ≍ M2 implies ∀N ∈ N : M1|N ≍ M2|N .

See Appendix B for a proof for the ω0-calculus; proofs for the extended calculi follow

along the same lines.

For mismatch-free fragment of the ω-calculus, the symbolic bisimulation and the

strong (late) bisimulation coincide. The notion of weak transitions used in defining

the weak bisimulation for the ω-calculus, can be lifted to the symbolic semantics to

define symbolic weak transitions. A weak version of symbolic bisimulation can be

defined over the symbolic weak transitions.

Chapter 5

Towards Verification of ω-Calculus

Specifications

5.1 Prototype Verifier for the ω-Calculus

In this section, we present two developments that yield a prototype system for the

specification and verification of ω-calculus specifications. First, we extend the cal-

culus with constructs that simplify the specification of practical MANET protocols.

Secondly, we show how the transitional semantics of the ω-calculus can be directly

encoded in Prolog, in order to generate the transition system corresponding to a given

specification.

Syntactic extensions to the ω-calculus. The ω-calculus provides the basic

mechanisms needed to model MANETs. In order to make specifications more con-

cise, we extend the calculus to a polyadic version (along the lines of the polyadic

π-calculus [Mil93]) and add support for data types such as bounded integers and

structured terms. The matching prefix is extended to include equality over these

types. Terms composed of these types can be used as values in a unicast or local

broadcast transmission, or as actual parameters in a process invocation. We also

introduce set-valued types and permit the use of a membership operation (denoted

by ‘∈’) in a match. Note that finite sets can be represented by finite terms, and the

test for set membership can be implemented by a sum of equality tests. Hence the

addition of set-valued data can be regarded as syntactic sugar and does not affect the

43

44

proofs of the properties of the calculus given in Section 4. The modifications to the

theory developed in the preceding sections to account for these syntactic extensions

to the calculus are straightforward.

Encoding the transitional semantics in Prolog. Following the Prolog encoding

of the semantics of value-passing CCS and the π-calculus [RRR+97, YRS04] using the

XSB tabled logic-programming system [XSB], we encoded the symbolic transitional

semantics of the ω-calculus using Prolog rules. Each inference rule of the semantics is

represented as a rule for the predicate trans, which evaluates the transition relation

of an ω-calculus model.

In our encoding, each ω-calculus expression is represented as a Prolog term. For

instance, a basic node expression of the form P : G is represented by the term

basic(P, G), where P and G are the Prolog terms representing the process expression

P and set of group names G, respectively. The key aspect of our encoding is to

represent names in the ω calculus—pnames as well as gnames—as Prolog variables.

This representation was used for the π-calculus in our earlier work [YRS04].

Using this representation, several operations such as renaming of bound names

need not be implemented by our encoding explicitly; the way the deductive engine

of Prolog handles logical variables implements all the necessary name manipulation.

For instance, our encoding of the transitional semantics does not have to handle

substitutions to names explicitly (which arise in the application of process names).

Moreover, it is not necessary to encode alpha-renaming; bound names are implicitly

renamed when clause instances are picked by Prolog’s resolution step (which renames

all variables in the selected program clause). Finally, when encoding the symbolic

semantics of ω-calculus, we explicitly represent only the disequality constraints on

transitions (i.e., those of the form x 6= y); the equality constraints are processed

implicitly using Prolog’s unification mechanism.

In our encoding, each symbolic transition is represented by an instance of a 4-ary

prolog predicate trans. In particular, a symbolic transition of the form M1
C,α
−→ M2

is represented by trans(M1, C, α, M2). The derivation of a symbolic transition

from the semantic rules is realized by encoding the rules as clauses defining trans,

and using query evaluation in Prolog.

Figure 5.1 shows the Prolog encoding of selected symbolic transition rules of the

45

% MCAST

trans(basic(pref(bcast(X),PExp),Gs), [], bcast(Gs,X), basic(PExp,Gs)).

% RECV

trans(basic(pref(recv(X),PExp),Gs), [], brecv(Gs,X), basic(PExp,Gs)).

% UNI-SEND

trans(basic(pref(out(Z,X),PExp),Gs), [], unisend(Z,Gs,X), basic(PExp,Gs)).

% COM

trans(par(M1, N1), C, bcast(Gs1, X), par(M2, N2)) :-

trans(M1, C1, bcast(Gs1, X), M2),

trans(N1, C2, brecv(Gs2, X), N2),

non_disjoint(Gs1, Gs2), % sets Gs1 and Gs2 have common gname(s)

and(C1, C2, C).

% GNAME-RES2

trans(nu_g(G, M1), C, tau, nu_g(G, M2)) :-

trans(M1, C, bcast(Gs, X), M2),

Gs == [G].

% UNI-OPEN

trans(nu(X, M1), C, unires(Z, Gs, X), M2) :-

trans(M1, C1, unisend(Z, Gs, Y), M2),

X == Y, Z \== X,

remove_from_constraint(C1, X, C). % C = C1-X

Figure 5: Encoding of selected symbolic transition rules in Prolog.

ω-calculus. Observe that the encoding of the MCAST, RECV and UNI-SEND rules

is straightforward. For these rules, the constraint true is represented by the empty

list ‘[]’. The encoding of COM rule is also direct. Predicate non disjoint is used

to test for non-disjointness of two sets (represented as lists) and predicate and is

used to compute the conjunction of two constraints. Note that in a broadcast-receive

transition of the form M
C,G(y)
−→ M ′, the name y is a bound name of M . In the

symbolic semantics, we assume that before applying the COM rule, y is renamed to

the name received in COM. Such alpha-renaming corresponds to an application of

the STRUCT rule. In our encoding, we first ensure that all bound names are mapped

to distinct Prolog variables and are also distinct from free names. We then ensure

that the receiving and sent names are identical by unifying the corresponding Prolog

variables.

46

The GNAME-RES2 rule is applicable only when the set of group names involved

in the broadcast action (Gs in our encoding) is a singleton set containing only G, the

restricted group name. Since group names are encoded as variables, this check has to

be performed by testing if Gs is identical to [G]: i.e. whether for all substitutions θ

the two terms Gsθ and [G]θ are the same. This test is accomplished using the “==”

operator in Prolog. Note that if we had used “=” instead, we would have incorrectly

unified Gs with [G], thereby possibly treating two distinct group names as the same.

Finally, consider the encoding of UNI-OPEN. This rule is applicable when the

name sent by unicast is a restricted name. In the encoding, we apply this rule by

first generating transitions from M1, and then checking if the name Y sent by unicast

is same as the restricted name X. As in the case of GNAME-RES2, we use “==” to

test whether two names are identical. This rule also uses “\==” to test whether two

names are not identical (i.e. distinct).

The other symbolic transition rules of the ω-calculus are encoded similarly. As

remarked earlier, the key aspect of the encoding is the representation of pnames and

gnames by Prolog variables, following [YRS04]. The soundness and completeness of

our encoding can be established along the same lines as in [YRS04].

5.2 Modeling and Verifying MANET Protocols

using the ω-Calculus

We used our Prolog encoding of the semantics of the ω-calculus to develop and analyze

formal ω-calculus models of a leader-election algorithm for MANETs [VKT04] and

the AODV routing protocol [PBRD03]. The main purpose of these case studies is to

show that models of realistic MANET protocols can be constructed in the ω-calculus,

and the semantics of these encodings, in terms of labeled transition systems, can be

effectively computed. We use the derived transition systems to verify reachability

properties of these protocols.

47

3 65

7 8

2

E

4

EE E

EE

A

A

A A

A

E L

1

E
A

L

EE L

L

L

L

L

A

E − election message

A − ack message

L − leader message

M − mobile node

E

M

Figure 6: Message flow in leader election protocol

5.2.1 Case Study 1: A Leader Election Protocol for

MANETs

The algorithm of [VKT04] elects the node with the maximum id among a set of

connected nodes as the leader of the connected component. A node that initiates a

leader election sends an election message to its neighboring nodes. The recipients of

the election message mark the node from which they received the message as their

parent and send the election message to their neighbors, thereby building a spanning

tree with the initiator as the root. After sending an election message, a node awaits

acknowledgements from its children in the spanning tree. A child node n sends its

parent an acknowledgement ack with the maximum id in the spanning tree rooted at

n. The maximum id in the spanning tree is propagated up the tree to the root. The

root node then announces the leader to all the nodes in its spanning tree by sending

a leader message. To keep track of the neighbors of a node, probe and reply messages

are used periodically. When a node discovers that it is disconnected from its leader,

it initiates an election process. The flow of election, ack, and leader messages is

depicted in Fig. 6, where the node with id 1 is the initiator.

Specification of the leader election protocol in the ω-calculus. We model

a network as the parallel composition of basic ω-nodes, whose process interfaces re-

flect the initial topology of the network. Each node runs an instance of process

node(id, chan, init, elec, lid, pChan) defined in Fig. 7. The meaning of this pro-

cess’s parameters is the following: id is the node identifier; chan is an input channel;

init indicates whether the node initiates the election process; elec indicates whether

the node is part of the election process; lid represents the node’s knowledge of the

48

leader id; and pChan is the parent’s input channel. These parameters are represented

by pnames and integers.

A node may receive election, ack, and leader messages, representing an election

message, an acknowledgement to the election process, and a leader message, respec-

tively. We need not consider probe and reply messages in our model because a node

can broadcast to its neighbors without knowing its neighbors, and the effect of dis-

connection between nodes can be modeled using the choice operator. The ω-calculus

model of the protocol is given in Fig. 7. The messages, their parameters, and the

parameters used in the definitions appearing in Fig. 7 are explained below:

Messages: election(sndrChan); ack(maxid); leader(maxid).

Message parameters: sndrChan: input channel of the sender of the message;

maxid: maximum id seen so far by the sender of the message.

Definition parameters: id: id of the node, chan: input channel of the node; init:

1 if node initiated the election process, 0 otherwise; elec: 1 if node is participating

in the election process, 0 otherwise; lid: node’s knowledge of the leader id; pChan:

input channel of the node’s parent in the spanning tree; sndrChan: input channel of

the sender node of the message; maxid: maximum id seen so far by the node.

An example specification of an eight-node network running the leader election

protocol of Fig. 7 is given in Fig. 8. The initial network topology is the same as

that of the network of Fig. 6. The node with id 1 (initElection) is designated to be

the initiator of the leader-election process. The last parameter none in the process

invocations indicates that the parent channel is initially not known to the processes.

Verifying the leader election protocol model. Using our implementation of the

transitional semantics of the ω-calculus, we verified the following correctness property

for the leader election protocol for MANETs: On some computation path in the

transition system, eventually a node with the maximum id in a connected component

is elected as the leader of the component, and every node connected to it (via one or

more hops) learns about it.

Note that the reachability property stated above does not guarantee that a leader

will be always computed. In fact, due to lossy communication, there will be paths in

49

/* A node may receive an election or a leader message. */

node(id, chan, init, elec, lid, pChan)
def
=

r(election(sndrChan)). processElection(id, chan, init, 1, lid, pChan, sndrChan)
+ r(leader(maxid)). processLeader(id, chan, init, elec, lid, pChan,maxid)

/* Node that initiates election process broadcasts election msg and awaits ack in state
awaitAck. */

initElection(id, chan, init, elec, lid, pChan)
def
=

b election(chan). awaitAck(id, chan, init, 1, id, none)

/* When a node receives an election message it reaches the processElection state where it
broadcasts the election message and goes to state awaitAck. */

processElection(id, chan, init, elec, lid, pChan, sndrChan)
def
=

b election(chan). awaitAck(id, chan, init, elec, lid, sndrChan)

/* A node in awaitAck state may receive an ack and reach processAck state or it may
nondeterministically conclude that it has received ack from all its children in the spanning
tree. In the latter case, it declares the leader by broadcasting a leader message if it is
the initiator. Otherwise, it sends (unicast) an ack to its parent node (pChan) with the
maximum id in the spanning tree rooted at this node. */

awaitAck(id, chan, init, elec, lid, pChan)
def
=

chan(ack(maxid)). processAck(id, chan, init, elec, lid, pChan,maxid)

+ [init = 1]b leader(lid). node(id, chan, init, 0, lid, pChan)

+ [init = 0] pChan ack(id, lid). node(id, chan, init, elec, lid, pChan)

/* On receiving an ack, a node stores the maximum of the ids received in ack messages. */

processAck(id, chan, init, elec, lid, pChan,maxid)
def
=

[maxid >= lid] awaitAck(id, chan, init, elec, maxid, pChan)
+ [maxid < lid] awaitAck(id, chan, init, elec, lid, pChan)

/* On receiving a leader message, a node sets its lid parameter to the maxid in the leader
message. If maxid is less than lid, then either the node was not part of the election process
or did not report ack to its parent node (probably because it moved away from its parent).
In either case, it broadcasts its lid as the maximum id. */

processLeader(id, chan, init, elec, lid, pChan, sndrChan,maxid)
def
=

[maxid = lid](

[elec = 1] b leader(maxid). node(id, chan, init, 0, lid, pChan)
+ [elec = 0] node(id, chan, init, 0, lid, pChan)

)

+ [maxid > lid] b leader(maxid). node(id, chan, init, 0,maxid, pChan)

+ [maxid < lid] b leader(lid). node(id, chan, init, 0, lid, pChan)

Figure 7: ω-calculus encoding of the leader election protocol for MANETs.

50

M = (νa)(νb)(νc)(νd)(νe)(νh)(νi)(νj)(νg1)(νg2)(νg3)(νg4)(νg5)(νg6)(νg7)
(initElection(1, a, 1, 0, 1, none) : {g1, g2}

|node(2, b, 0, 0, 2, none) : {g1, g3, g4}
|node(3, c, 0, 0, 3, none) : {g4}

|node(4, d, 0, 0, 4, none) : {g2, g5}
|node(5, e, 0, 0, 5, none) : {g3}

|node(6, h, 0, 0, 6, none) : {g5, g6, g7}
|node(7, i, 0, 0, 7, none) : {g6}

|node(8, j, 0, 0, 8, none) : {g7})

Figure 8: ω-calculus specification of leader election protocol for an 8-node tree-
structured network.

Nodes Tree Ring
States Transitions Time(sec) States Transitions Time(sec)

5 77 96 0.97 98 118 1.22
6 168 223 3.35 212 281 4.45
7 300 455 11.55 453 664 17.58
8 663 1073 45.85 952 1560 71.22

Table 12: Verification statistics for ω-calculus model of leader election protocol.

the transition system where a leader may never be elected; hence the correctness con-

dition can be shown only using fairness assumptions, e.g. that message loss does not

happen infinitely often. Our implementation verifies reachability properties without

fairness conditions, and hence we only verify the weaker property stated above.

The verification was performed on models having tree- and ring-structured initial

topologies. A distinguished node (with maximum id, for example, node 8 marked ‘M’

for “mobile” in Fig. 6) was free to move as long as the network remained connected.

A mobility invariant was used to constrain the other nodes to remain connected to

their neighbors. For verification purposes, we added a node final to the model that

remains connected to all other nodes. A node, upon learning its leader, forwards this

information to node final. After final receives messages from every other node with

their leader ids equal to the maximum id in the network, it performs the observable

action action(leader(MaxId)). The closed ω-specification of the protocol was checked

for weak bisimilarity with an ω-specification that emits action(leader(MaxId)) as the

only observable action. Weak bisimilarity between these two specifications indicates

that the correctness property is true of the system.

51

Our Prolog encoding of the weak bisimulation checker for the ω-calculus includes

the weak version of the transition relation, abstracting τ - and µ-transitions, encoded

as the dtrans predicate. The predicate nb(S1, S2) checks if two ω-specifications S1

and S2 are weak bisimilar.

We verified the correctness property for networks containing 5 through 8 nodes.

Table 12 lists the states, transitions and time (in seconds) it took our Prolog imple-

mentation of the calculus and weak bisimulation checker to verify the property for

networks with initial tree and ring topologies.

5.2.2 Case Study 2: The AODV Routing Protocol

The Ad Hoc On-Demand Distance Vector (AODV) protocol [PBRD03] is a routing

protocol that discovers and maintains point-to-point routes in a MANET. Route

discovery is initiated by a node on demand. If a node (source) does not know a route

to a destination node to which it wants to route a packet, it initiates route discovery

by locally broadcasting a route request. On receiving a route request, if a node knows

a route to the destination node or is itself the destination, it responds to the sender

node with a route reply, otherwise it forwards (locally broadcasts) the route request.

Each route request is marked with a broadcast-id, assigned by the originator node of

the request. The broadcast-id and the originator node’s id uniquely define a route

request, and are used to avoid processing of duplicate requests. The broadcast-id is

incremented by a node every time it originates a route request. Sequence numbers

are used with route requests and route replies to maintain freshness of routes. Route

error messages are used to convey invalidation of routes due to staleness of routes,

indicated by a lower sequence number.

Specification of the AODV Protocol in the ω-calculus. We model a MANET

as the parallel composition of basic ω-nodes. The interfaces of all nodes are initial-

ized in accordance with the initial topology of the network. Each node in the network

runs an instance of process aodv defined in Fig. 9. Process aodv has the following

parameters: process identifier id (a pname), broadcast id bid , sequence number sqn

(for messages and route requests), route table rt (a list of tuples), set of previously

seen route requests rreqs (a list of tuples), and set of known destinations kD (a list

of pnames). These parameters record the state of a node which may change as the

52

protocol runs and the network evolves. An aodv process can receive a message either

destined for it, or a message locally broadcasted by a neighboring node. A node may

receive data, rreq, rrep, rerr messages representing data packet, route request, route

reply and route invalidation, respectively. On receiving a message, the protocol may

modify its state and/or broadcast a message. The aodv process invokes message han-

dlers, defined using ω-process definitions, to process the received messages. Reception

of data, rreq, rrep, and rerr (parameterized) messages is handled by processes de-

fined by pktP , rreqP , rrepP , and rerrP , respectively (See Fig. 9). A route table rt is

a set of tuples with each tuple containing id, sequence number, hop count, next hop,

active neighbors, and route validity for each known destination node. Data manip-

ulation code for updating route table (rt to nrt), extracting next hop (y), sequence

number (dsqn), and active neighbors (dactn) for a destination, from the route table,

and incrementing sequence number, broadcast id, and hop count is omitted from the

encoding given in Fig. 9.

On receiving a data packet, a node accepts it if the packet is destined for it,

otherwise if it knows the route to the destination, it sends the packet to the next hop

towards the destination node, else it initiates a route discovery for the destination

node. On receiving a route request rreq, a node replies with rrep, if it knows a route to

the destination, otherwise it forwards the rreq via local broadcast. Each such request

is associated with a broadcast id (mbid) set by the originator (identified by srcid)

of the message. A route request rreq is discarded if it had been received previously

((srcid,mbid) ∈ rreqs). Otherwise, the route table is updated (to nrt) with a route

to node srcid. If the node itself is the destination node (identified by did) to which

the route is sought, or if the node knows a route to the destination (did ∈ kD), a

route-reply message (rrep) is sent. Otherwise, the node locally broadcasts the rreq

message (via action b) with the hop count (hops) incremented by one (to nhops).

On receiving a route reply rrep, a node updates its route table accordingly. If the

node itself is not the initiator of the corresponding rreq, it forwards the rrep to the

next hop towards the initiator node. Detection of a change in network topology is

modeled using non-determinism. On detection of a change in network topology, a

node invalidates the route table entry for the disconnected neighbor node, and sends

a route error rerr to the affected nodes.

53

aodv(id, bid, sqn, rt, rreqs, kD)
def
=

r(msg). ([msg = pkt(data, did, sndrid)]
pktP (data, did, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rreq(hops, mbid, did, dsqn, srcid, ssqn, sndrid)]
rreqP (hops, mbid, did, dsqn, srcid, ssqn, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rrep(hops, did, dsqn, srcid, sndrid)]
rrepP (hops, did, dsqn, srcid, sndrid, id, bid, sqn, rt, rreqs, kD)

+ [msg = rerr(did, dsqn, sndrid)]
rerrP (did, dsqn, sndrid, id, bid, sqn, rt, rreqs, kD))

pktP (data, did, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[did = id] aodv(id, bid, sqn, rt, rreqs, kD)
+ [did 6= id] /* y is the next hop node towards did. nrt is obtained by
adding sndrid to actn of did in rt */
([did ∈ kD] y pkt(data, did, id). aodv(id, bid, sqn, nrt, rreqs, kD)

+ /* newbid is bid + 1 and rdsqn is the sequence number for did in rt */

[did /∈ kD] b rreq(0, newbid, did, rdsqn, id, sqn, id).
aodv(id, newbid, sqn, rt, rreqs, kD))

rreqP (hops, mbid, did, dsqn, srcid, ssqn, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[(srcid, mbid) ∈ rreqs] aodv(id, bid, sqn, rt, rreqs, kD)
+ [(srcid, mbid) /∈ rreqs] (

/* y is the next hop node towards srcid. maxsqn is the maximum of
sqn and dsqn. nrt is obtained by updating the route to srcid in rt. */

[did = id] b rrep(y, 0, id, maxsqn, srcid, id).
aodv(id, bid, maxsqn, nrt, rreqs, kD)

+ /* dhops is the number of hops towards did in rt. rsqn is the
sequence number for did. nhops is hops + 1. */

[did 6= id] ([did ∈ kD] b rrep(y, dhops, did, rsqn, srcid, id).
aodv(id, bid, sqn, nrt, rreqs, kD)

+ [did /∈ kD] b rreq(nhops, mbid, did, dsqn, srcid, ssqn).
aodv(id, bid, sqn, nrt, rreqs, kD)))

rrepP (hops, did, dsqn, srcid, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

/* nrt is obtained by updating the route to did in rt. */
[srcid = id] aodv(id, bid, sqn, nrt, rreqs, kD)
+ /* y is the next hop node towards srcid. nhops is hops + 1. */
[srcid 6= id] y rrep(nhops, did, dsqn, srcid, id). aodv(id, bid, sqn, nrt, rreqs, kD)

rerrP (did, dsqn, sndrid, id, bid, sqn, rt, rreqs, kD)
def
=

[did ∈ kD] /* dactn are active neighbors for did in rt.
nrt is obtained by invalidating the route to did. */
notifyAllRErr (dactn, rerr(did, dqsn, id), id, bid, sqn, nrt, rreqs, kD)

+ [did /∈ kD] aodv(id, bid, sqn, rt, rreqs, kD)

notifyAllRErr (actn, msg, id, bid, sqn, rt, rreqs, kD)
def
=

[actn = []] aodv(id, bid, sqn, rt, rreqs, kD)
+ [actn 6= []] notifyRErr (actn, msg, id, bid, sqn, rt, rreqs, kD)

notifyRErr (actn, msg, id, bid, sqn, rt, rreqs, kD)
def
=

/* x is an element in actn and remactn are remaining elements of actn */
xmsg. notifyAllRErr (remactn, msg, id, bid, sqn, rt, rreqs, kD)

Figure 9: Encoding of the AODV protocol in the ω-calculus.

54

Verifying the AODV protocol model. Using our Prolog encoding of the tran-

sitional semantics of the ω-calculus, we verified a simplified version of the AODV

routing protocol. The simplified version ignores sequence numbers and uses two dis-

tinguished nodes as the source and destination nodes for the route discovery process.

Broadcast id (bid) and hop count (hops) are modeled as bounded integers. Routes

get invalidated due to node movement or link failures along the route. We verified

following properties:

• deadlock-freedom: There is no state in the model without an outgoing transition.

• route-found: As long as there exists a path from a source node to a destination

node during route detection, on some computation path in the transition system

it will eventually be detected.

It should be noted that, similar to the leader-election property, the route-found prop-

erty is a weaker form of the correctness condition that a route is always found provided

node mobility and message loss do not occur infinitely often.

The verification was performed on models with initial line topologies, with the

destination node being 1-, 2-, 3-hops away from the source node in networks with

2, 3, and 4 nodes, respectively. The network topology was allowed to change freely

during verification. The deadlock-freedom property involved searching for states with

no transitions. In the model, when a node has found a route it performs an external

action action(routeFound). The route-found property was verified by checking for

reachability of a transition labeled action(routeFound) from the start state of the

model. Table 13 lists the number of states and transitions generated using our XSB-

based implementation of the ω-calculus for network models containing 2, 3 and 4

nodes, as well as the time (in seconds) it took to verify deadlock-freedom and route-

found properties.

5.3 Discussion

We consider our current implementation of the calculus to be a prototype. Its main

purpose is to demonstrate the feasibility and straightforwardness of implementing the

calculus in a tabled logic-programming system. As future work, we plan to develop

55

Nodes Deadlock Freedom Route Found
States Transitions Time(sec) States Transitions Time(sec)

2 8 16 0.07 5 10 0.06
3 30 78 0.25 15 39 0.16
4 380 1440 4.56 191 732 2.74

Table 13: Verification statistics for ω-calculus model of AODV protocol.

an optimizing compiler for the ω-calculus, along the lines of one for the π-calculus im-

plemented in the MMC model checker [YDRS05]. As these prior results demonstrate,

this should significantly improve the performance of our implementation.

We observed a number of benefits in using the ω-calculus to model the leader

election protocol for MANETs and the AODV routing protocol. (1) Neither of these

protocols assumes reliable communication. This fits well with the ω-calculus se-

mantics which models lossy broadcast. (2) The concise and modular nature of our

specifications is a direct consequence of the calculus’s basic features, including sep-

aration of control behavior (processes) from neighborhood information (interfaces),

and modeling support for unicast, local broadcast, and mobility. (3) The mobility

constraints imposed on the leader election protocol model (Section 5.2.1) are specified

independently of the control logic using a mobility invariant. For the case at hand,

the invariant dictates that all nodes other than a distinguished node (node 8 in Fig. 6)

remain connected to their initial neighbors. Thus, during protocol execution, process

interfaces may change at will as long as the mobility invariant is maintained. (4) Our

specifications of the leader-election protocol and the AODV protocol are given in

the finite-control sub-calculus of the ω-calculus, thereby rendering them amenable to

automatic verification; see also Theorem 3.

Chapter 6

Query-Based Model Checking of

Ad Hoc Network Protocols

A prominent source of complexity in the verification of ad hoc network (AHN) pro-

tocols is the fact that the number of network topologies grows exponentially with the

square of the number of nodes. To combat this instance explosion problem, we devel-

oped a query-based verification framework for AHN protocols that utilizes symbolic

reachability analysis. Specifically we consider AHN nodes of the form P : I, where

P is a process and I is an interface: a set of groups, where each group represents a

multicast port. Two processes can communicate if their interfaces share a common

group. To achieve a symbolic representation of network topologies, we treat process

interfaces as variables and introduce a constraint language for representing topolo-

gies. Terms of the language are simply conjunctions of connection and disconnection

constraints of the form conn(Ji,Jj) and dconn(Ji,Jj), where Ji and Jj are interface

variables. Our symbolic reachability algorithm explores the symbolic state space of an

AHN in breadth-first order, accumulating topology constraints as multicast-transmit

and multicast-receive transitions are encountered. We demonstrate the practical util-

ity of our framework by applying it to the problem of detecting unresolved collisions

in the LMAC protocol for sensor networks.

56

57

 2

 1

 3

 4

(a) Topology
with detected
collision

 1 4

 2 3

(b) Topology with
undetected colli-
sion

Figure 10: Example topologies for collision and collision-detection in the LMAC
protocol.

6.1 An Example of Topologies and Topology Con-

straints

Below we illustrate the use of a constraint language for representing sets of network

topologies. In the LMAC protocol of [vHH04], which is used to allocate transmission

slots in a sensor network MAC layer, collision, i.e. simultaneous transmission between

two nodes with overlapping ranges, is detected by neighbors common to both nodes.

Fig. 10(a) shows a network topology for which a collision between nodes 1 and 2 can

be detected due to the presence of a common neighbor (node 4). Fig. 10(b) shows a

topology for which a collision between 1 and 2 remains undetected since they do not

share a neighbor.

As described earlier, we consider AHN nodes of the form P : I, where P is

a process and I is an interface. Further, an interface is a set of groups, with

each group g representing a shared communication channel and dually correspond-

ing to a clique in the network topology. Figs. 11(a) and 11(b) provide a group-

based view and concrete representation based on process interfaces of the network

topology of Fig. 10(a). A symbolic representation of the same topology is given in

Fig. 11(c) using connection (conn) and disconnection (dconn) constraints over in-

terface variables J1–J4. The language in which symbolic topology constraints is

expressed is formally described in Section 6.3. The symbolic representation permits

us to compactly represent sets of topologies. For instance, consider the constraint

58

 1 2 4 3

g2g1

(a) Group-Based View

AHN
Π1≤i≤4Pi : Ii
I1 = {g1}
I2 = {g1, g2}
I3 = {g2}
I4 = {g1, g2}

(b) Concrete Repre-
sentation of Inter-
faces

AHN
Π1≤i≤4Pi : Ji

conn(J1,J2)
conn(J1,J4)
conn(J2,J3)
conn(J2,J4)
conn(J3,J4)
dconn(J1,J3)

(c) Symbolic Repre-
sentation of Inter-
faces

Figure 11: Concrete and symbolic views of network topology of Fig. 10(a).

conn(J1,J2) ∧ conn(J1,J4) ∧ conn(J2,J3) ∧ conn(J3,J4). This represents topolo-

gies that contain edges (1, 2), (1, 4), (2, 3) and (3, 4). The topologies in this set may or

may not contain edges (1, 3) and/or (2, 4). Hence the above constraint represents four

4-node topologies, including the ones in Fig. 10. We use topology constraints when

constructing a symbolic verification proof (by reachability or model checking) to con-

sider a set of topologies simultaneously. These constraints may get refined as needed

as we progress in the proof, corresponding to case splits among the set of topologies.

The constraint representation and lazy case-splitting enable us to consider a large

number of topologies simultaneously within a single verification run.

6.2 Related Work

Our symbolic approach to query-based model checking of AHN protocols can

be considered a form of constraint-based model checking. Traditionally this

technique has been used for the verification of infinite-state systems [DP99,

Pod00], data-independent systems [SR03], systems with non-linear arithmetic con-

straints [CABN97], timed automata [Fri99], and imperative infinite-state pro-

grams [Fla04]. In these works, constraints were used to compactly represent sets

of states of a system being verified. In contrast to these, our approach uses variables

in the system specification (to represent interconnections) and finds their valuations

(in this case, topologies) for which a property holds. In this sense, our approach is

59

closely related to temporal logic query checking, introduced in [Cha00], which ad-

dresses the following problem: given a Kripke structure and a temporal logic formula

with a placeholder, determine all propositional formulas φ such that when φ is in-

serted in the placeholder, the resulting temporal logic formula is satisfied by the

Kripke structure. Query checking has been extended in a number of ways, including

query checking of a wide range of temporal logics using a new class of alternating

automata [BG01]; the application of query checking to a variety of model exploration

tasks, ranging from invariant computation to test case generation [GCD03]; and its

adaptation to solving temporal queries in which formulas may contain integer vari-

ables [ZC05].

Recently, symbolic representation of the set topologies has been used in [GFM09]

to analyze ad hoc networks. The constraint language in that work can only express

the presence of connections between nodes, and not the absence of connections, in

contrast to our work. It should be noted that the undetected collision problem in

the LMAC protocol (see Section 6.5) is due to absence of connections, and cannot be

detected using the constraint language of [GFM09].

The correctness of the 4-node and 5-node LMAC protocol [vHH04] has been previ-

ously established in [FvHM07] using the UPPAAL model checker for timed automata.

By systematically considering all 11 topologies for the 4-node case and all 61 topolo-

gies for the 5-node case (modulo isomorphism), they report all network topologies for

which collisions may remain undetected in the LMAC protocol. They also iteratively

improve the protocol model so that the number of topologies for which the protocol

may fail is reduced. In contrast, our query-based approach verifies a property related

to unresolved collisions using a single symbolic reachability run, thereby allowing us

to additionally consider the 6-node case.

6.3 Modeling Framework

6.3.1 Syntax

We formally define the syntax and semantics of our framework. Systems in our

framework are modeled as composition of nodes. Following the notion of separation

of a node’s communication and computation behavior presented in the ω-calculus,

60

we consider a node to consist of a process (computational behavior) and an interface

(communication capability). We present the notations used in defining our framework,

followed by formal definitions of the components of our framework, namely a process,

an interface, a node, and a system.

Let D be a non-empty domain with a set of operations F and relations R defined

over it, and Var be a countable set of variables over domain D. For instance, D may

be a set of finite integers, with F containing arithmetic operations, and R comprising

equality, dis-equality and relational operations over integers. Symbols x, y (possibly

subscripted) range over elements of Var. An environment θ : X 7→ D, whereX ⊆ Var

is a mapping from variables in Var to values in domain D. Symbol Θ is used to

denote the set of all environments over Var and D. We use E to denote the set

of expressions, which are terms over elements of D ∪ Var ∪ F . Expressions are

represented by symbol e (possibly subscripted). A primitive condition is a term with

a symbol from R whose arguments are elements of E . A condition is a conjunction

of primitive conditions. An assignment is of the form x := e, where x ∈ Var and

e ∈ E . Following traditional programming language semantics, we use [[.]] to represent

semantics for expressions, conditions and assignments. For an expression e, condition

cond, and assignment asgn, [[e]] : Θ 7→ D, [[cond]] : Θ 7→ Bool, and [[asgn]] : Θ 7→ Θ

are mappings from an environment to domain D, Bool = { true , false }, and an

environment, respectively. Semantics of a single assignment can be extended to a

set of simultaneous assignments in the standard way.

The syntactic definition of a process is as follows.

Definition 6 (Process) A process = 〈L,X,Σ, δ, l0, η0〉, is an extended finite state

automaton over domain D, where:

• L is a finite set of locations.

• X ⊆ Var is a set of local variables for the process.

• Σ is a finite set of action labels containing

– b e, e ∈ E (broadcast action).

– r (x), x ∈ X (receive action).

61

• δ is a finite set of transitions. A transition is a tuple (l, α, l′, 〈ρ, η〉), where

– l, l′ ∈ L are source and target locations, respectively.

– α ∈ Σ is an action label.

– ρ, a condition, is a transition guard.

– η is a set of simultaneous assignments of the form x1 := e1, . . . ,

xn := en, where the xi are pairwise distinct.

• l0 ∈ L is the start location.

• η0 is the set of initial assignments of the form x := c, ∀x ∈ X, and c ∈ D.

In the above definition of a process, we require that a variable that is used in a receive

transition should not be assigned in the same transition.

An interface, represented by symbol I (possibly subscripted), is a finite set of

names called group names. Group names are denoted by symbol g (possibly sub-

scripted). We use I to denote the set of all interfaces. A node P :I denotes a process

P with interface I. Henceforth we use n to denote the set {1, . . . , n}, and Pi, i ∈ n,

to denote the process 〈Li, Xi,Σ, δi, l0,i, η0,i〉 over domain D.

Definition 7 (Ad Hoc Network, AHN) For i ∈ n, Pi = 〈Li, Xi,Σ, δi, l0,i, η0,i〉

s.t. Xi ⊆ Var are pairwise disjoint, then Πi∈nPi :Ii is an AHN.

6.3.2 Concrete Semantics

We provide a labeled transition system (LTS) based semantics for AHNs. An LTS

is a 4-tuple (S,Act,−→, s0), where S is a set of states, Act is a set of labels, −→⊆

S×Act×S is a ternary relation of labeled transitions, and s0 ∈ S is the initial state.

A labeled transition (s, α, t) ∈−→, is also represented as s
α

−→ t.

Definition 8 (Semantics of an AHN) The semantics of an AHN Πi∈nPi : Ii,

denoted as [[Πi∈nPi : Ii]], is the LTS (S,Act, T, s0) such that:

• S = L × Θ, where L = L1 × . . .× Ln, Θ is the set of all possible environments

X 7→ D, X = X1 ⊎ · · · ⊎Xn.

62

• Act = {b v | v ∈ D}.

• −→ is such that (l, θ)
b v
−→ (l

′
, θ′), where l = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:

– ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and

– k = {k|(lk, r (xk), l
′
k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k 6= i, Ii ∩ Ik 6= ∅}, such that :

∗ ∀j ∈ n \ (k ∪ {i}): l′j = lj

∗ ρ = ρi ∧
∧

k∈k
ρk, [[ρ]]θ is true

∗ η = ηi ∪
⋃

k∈k
ηk[v/xk] ∪ {xk := v}

• s0 = (l0, θ0), where l0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n
η0,i]]θǫ, and θǫ is the empty

environment.

In the description of the transition relation (−→) in Definition 8, i denotes the index

of a process capable of performing a broadcast (b e) action, and k denotes the set

of indices of processes that are able to receive a value broadcast by process Pi. Note

that processes not participating in the synchronization remain in the same location.

For a transition to be enabled, the guards of synchronizing processes must be true.

When a transition is taken, the value transmitted by the broadcaster is propagated

to all receivers, and the assignments of the participating processes are performed.

6.3.3 Symbolic System Specification

We define a symbolic semantics for AHNs in which process interfaces are treated as

variables. For example, for a node P : I, I is treated as a variable in contrast to the

concrete semantics, where I represents a set of group names. We use J to denote the

set of interface variables and J (possibly subscripted) to denote elements of J.

Topology Constraint Language. Constraints on process interface variables are

given by the following grammar. Symbol Γ represents the constraint language and γ

(possibly subscripted) represents elements of Γ.

Γ ::= true | false | conn(J,J) | dconn(J,J) | Γ ∧ Γ

A valuation ϑ : J → I maps an interface variable J to an interface I. A valuation ϑ

is a model of a constraint γ, written as ϑ |= γ, defined as follows:

63

ϑ |= true

ϑ 6|= false

ϑ |= conn(J1,J2) if ϑ(J1) ∩ ϑ(J2) 6= ∅

ϑ |= dconn(J1,J2) if ϑ(J1) ∩ ϑ(J2) = ∅

ϑ |= Γ1 ∧ Γ2 if ϑ |= Γ1 ∧ ϑ |= Γ2

A constraint of the form conn(J1,J2) requires that nodes with interface variables J1

and J2 be connected, enabling them to communicate with each other. Constraint

dconn(J1,J2) requires nodes with interface variables J1 and J2 to be disconnected.

A constraint γ is satisfiable, if there exists an interface valuation ϑ that assigns each

interface variable in γ a value (set of group names) such that ϑ |= γ. Two constraints

γ1 and γ2 are equivalent (≡) if for every valuation ϑ s.t. ϑ |= γ1, it holds that ϑ |= γ2,

and vice-versa.

Proposition 15 Satisfiability of topology constraints is decidable.

Proof Sketch: The following procedure determines the satisfiability of conjunction of

primitive constraints over interface variables, and returns a satisfying assignment if

there exists one.

Consider a constraint γ over interface variables J1, . . . ,Jn.

• Step 1: For every constraint of the form conn(Ji,Jj), add a fresh name gij to

Ji and Jj (so that Ji ∩ Jj 6= ∅).

• Step 2: For every Ji that is not assigned a value in Step 1, initialize Ji to

singleton set {gi}, such that gi has not been assigned to any interface variable

in Step 1.

• Step 3: For every constraint of the form dconn(Ji,Jj), if Ji ∩ Jj = ∅, then

constraint γ is satisfiable, otherwise γ is unsatisfiable.

This procedure terminates and if γ is satisfiable, returns one satisfying assignment.

⊓⊔

For example, solution to the constraint conn(J1,J2)∧ conn(J1,J4)∧ conn(J2,J3)∧

conn(J3,J4), is J1 = {g1,2, g1,4},J2 = {g1,2, g2,3},J3 = {g2,3, g3,4},J4 = {g1,4, g3,4}.

64

A symbolic AHN is an AHN for which topology is represented using interface vari-

ables.

Definition 9 (Symbolic AHN) For i ∈ n, Pi = 〈Li, Xi,Σ, δi, l0,i, η0,i〉 s.t. Xi ⊆

Var are pairwise disjoint, then Πi∈nPi :Ji is a symbolic AHN.

Definition 10 (Semantics of a symbolic AHN) The semantics of a symbolic

AHN Πi∈nPi : Ji, denoted as [[Πi∈nPi : Ji]], is the symbolic LTS (S,Act, T, s0),

such that:

• S = L× Θ×Γ, where L = L1×. . .×Ln, Θ is the set of all possible environments

X 7→ D, X = X1 ⊎ · · · ⊎Xn.

• Act = {b v | v ∈ D}.

• ; is such that (l, θ, γ)
b v
; (l

′
, θ′, γ′), where l = (l1, . . . , ln), l

′
= (l′1, . . . , l

′
n),

θ′ = [[η]]θ, v = [[e]]θ if:

– ∃i ∈ n: (li,b e, l′i, 〈ρi, ηi〉) ∈ δi, and

– k = {k|(lk, r (xk), l
′
k, 〈ρk, ηk〉) ∈ δk, k ∈ n, k 6= i}, ∃kc,kd : k = kc ⊎ kd

such that:

∗ ∀j ∈ n \ (kc ∪ {i}): l′j = lj

∗ ρ = ρi ∧
∧

k∈kc
ρk, [[ρ]]θ is true

∗ η = ηi ∪
⋃

k∈kc
ηk[v/xk] ∪ {xk := v}

∗ γ′ = γ ∧
∧

k∈kc
conn(Ji,Jk) ∧

∧

k∈kd
dconn(Ji,Jk) is satisfiable

• s0 = (l0, θ0, true), where l0 = 〈l0,1, . . . , l0,n〉, θ0 = [[
⋃

i∈n
η0,i]]θǫ, and θǫ is the

empty environment.

In the clause for transition relation (;) in Definition 10, i denotes the index of a

process enabled to do a broadcast (b e) action, and k denotes the set of indices of

processes that are enabled to perform a receive action. kc and kd form a partition

of k such that kc is the set of indices of processes that synchronize with the Pi; thus

conn constraint is generated for processes in kc. Processes with indices in kd do not

65

synchronize with broadcast action of Pi, and thus are not connected to Pi, and dconn

constraint is generated for the transition. Note that, as in the concrete semantics,

processes not involved in the synchronization remain in their locations. The guards

and assignments are treated exactly as in the concrete semantics, considering only

the synchronizing processes.

Theorem 16 (Correspondence) The symbolic semantics is sound and complete

w.r.t. the concrete semantics; i.e. (s, γ)
α
; (s′, γ′) in [[Πi∈nPi :Ji]] iff ∀ interface

valuations ϑ s.t. ϑ |= γ′, s
α

−→ s′ in [[Πi∈nPi :ϑ(Ji)]].

Proof Sketch:

• Soundness: Consider a symbolic transition (s, γ)
α
; (s′, γ′) in Πi∈nPi : Ji.

From the semantics of the symbolic transitions, γ′ =⇒ γ. For all ϑ s.t. ϑ |= γ′

(also ϑ |= γ), there exists a concrete transition s
α

−→ s′ in Πi∈nPi :ϑ(Ji).

• Completeness: Consider a concrete transition s
α

−→ s′ in Πi∈nPi :Ii. Let ϑ be

an interface valuation, γ′ be a constraint, and for i ∈ n, Ji be interface variables,

such that ϑ(Ji) = Ii, and ϑ |= γ′. Then ∃γ : γ =⇒ γ′, and (s, γ)
α
; (s′, γ′)

in Πi∈nPi :Ji. ⊓⊔

6.4 Constraint-Based Verification

6.4.1 Verification of Reachability Properties

We first consider verification of symbolic AHNs for reachability properties, which is

done by constructing and traversing the symbolic transition system.

Definition 11 (Reachability) For an AHN AC = Πi∈nPi : Ii, the set of states

reachable from a state s in [[AC]], denoted by ReachC(s, AC), is the smallest set such

that s ∈ ReachC(s, AC) and for every s′ ∈ ReachC(s, AC) and for every α ∈ Act if

s′
α

−→ s′′ ∈ [[AC]] then s′′ ∈ ReachC(s, AC)

For a symbolic AHN AS = Πi∈nPi :Ji, the set of states reachable from a symbolic

state (s, γ) in the [[AS]], denoted by ReachS((s, γ), AS), is the smallest set such that

(s, γ) ∈ ReachS((s, γ), AS), and for every (s′, γ′) ∈ ReachS((s, γ), AS) and for every

α ∈ Act if (s′, γ′)
α
; (s′′, γ′′) then (s′′, γ′′) ∈ ReachS((s, γ), AS).

66

Algorithm SymReach
Input : predicate p ; symbolic AHN AS; initial symbolic state (s0, γ0)
Output : CS the set of most general constraints in states that satisfy p and

are reachable from initial state (s0, γ0)

1.
2.

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

R := {(s0, γ0)}

CS :=

{
{γ0} if (s0, γ0) |= p
∅ otherwise

}

WS := {(s0, γ0)} // working set (FIFO queue)
while (WS 6= ∅)

let (s, γ) ∈ WS
WS := WS \ (s, γ)

for each transition (s, γ)
α
; (s′, γ′) in [[AS]]

if γ′ not subsumed by any constraint in CS
if there exists no (s′, γ′′) ∈ R such that γ′ =⇒ γ′′

WS := WS ∪ {(s′, γ′)}
R := R ∪ {(s′, γ′)}
if (s′, γ′) |= p

CS := mg(CS ∪ {γ′})
return CS

Figure 12: Symbolic Reachability Algorithm

Satisfaction of a Property. A property over a concrete AHN AC , denoted by φ

is either a proposition, defined over the states of AC , or of the form EFp, where p is

a proposition. We use s |= φ to denote satisfaction of property φ in state s. We say

that s |= EFp if there is some state s′ reachable from s such that s′ |= p. The notion

of satisfaction of a property is lifted to symbolic states, denoted as (s, γ) |= φ, if γ

is satisfiable, and φ is true in s in every topology ϑ such that ϑ |= γ. The following

proposition establishes that when verifying a reachability property for a symbolic

AHN, it is sufficient to examine a subset of symbolic states. In particular, once (s, γ)

is visited and (s, γ) |= φ, all states (s, γ′) such that γ′ =⇒ γ can be discarded from

consideration.

Proposition 17 For a given symbolic state (s0, γ0), symbolic AHN AS, and prop-

erty φ, if ∃(s, γ) ∈ ReachS((s0, γ0), AS) s.t. (s, γ) |= φ, then ∀(s, γ′) ∈

ReachS((s0, γ0), AS) s.t. γ′ =⇒ γ, (s, γ′) |= φ.

Algorithm SymReach (Fig. 12) uses Prop. 17 to prune the search space for prov-

ing reachability properties. For a given predicate p, a symbolic AHN and a start state

67

(s0, γ0) in the AHN, Algorithm SymReach returns the set of most general constraints

CS such that for all γ ∈ CS (s0, γ) |= EFp. The set of reachable states are stored in R

and a working set WS is used to store unvisited states (Line 3) during a breadth-first

traversal of the transition system. At the beginning of each iteration (Line 4) states

in R −WS have been completely explored. Since each transition only adds to the

topology constraints, we discard symbolic states whose topologies are already known

to satisfy the reachability property (Line 8). Line 9 uses Prop. 17 to prune the search

space. In Line 13, mg chooses the most general set of constraints from a given set of

constraints. Algorithm SymReach returns the CS set upon termination. It is easily

shown that for a finite-state AHN Algorithm SymReach terminates.

The following theorem formally states the correctness of the algorithm: that the

set of topology constraints computed by SymReach exactly covers the topology

constraints in ReachS (Def. 11).

Theorem 18 (Correctness) Let CS ′ = {γ | (s, γ) ∈ ReachS((s0, γ0), AS), (s, γ) |=

φ} be the set of all constraints that are part of the reachable symbolic states (s, γ)

for which φ holds. Let CS be the set returned by Algorithm SymReach (Figure 12).

Then ∀γ′ ∈ CS ′ ∃γ ∈ CS : γ′ =⇒ γ, and ∀γ ∈ CS ∃γ′ ∈ CS ′ : γ ≡ γ′.

The choice of breadth-first search (BFS) in Algorithm SymReach is important

for the following two reasons. First, subsumption-based pruning of search space is

more effective with BFS because general constraints are visited before more specific

constraints. Secondly, the use of BFS makes it easy to show the tight bound on the

total number of symbolic transitions, used in the complexity analysis.

6.4.2 Complexity Analysis for the SymReach Algorithm

Consider a concrete AHN AC with n nodes. Let the total number of states in AC

be |S|, and the total number of transitions in AC be |T | = O(|S|2). The time for

reachability analysis from a given initial state in AC is bounded by the number of

transitions and is equal to |T | = O(|S|2). The total number of topologies for an n-node

AHN is O(2n2

). Therefore, the time complexity for exploring states reachable from a

given state in all n-node AHNs (all possible topologies) is O(2n2

)× |T | = O(2n2

|S|2).

68

Let AS = Πi∈nPi : Ji be a symbolic AHN and AC the set of all concrete AHNs

ACj
= Πi∈nPi : Ii,j, where index j indicates one of the O(2n2

) possible topologies

for an n-node network. Recall that each state of AS is of the form (s, γ), where s is

a location-environment pair, and γ is a topology constraint. Let |S| be the largest

number of states of any concrete AHN AC ∈ AC. Since the number of distinct γ’s is

O(2n2

), the total number of symbolic states is bounded by O(2n2

|S|).

The number of symbolic transitions is bounded by the total number of concrete

transitions for all possible topologies. We can establish this bound by defining a

1-1 mapping between symbolic transitions from a symbolic state (s, γ) in AS to a

transition from concrete state s in AC. Consider associating each state in R and

WS with an index which is the length of the shortest path from the initial state to

(s, γ). Now, let (s, γ) be the selected state with index i at some iteration of the

algorithm. There is no state (s, γ′) in R − WS (i.e. visited state) such that γ =⇒ γ′

(due to the use of subsumption, line 9 of the algorithm). First consider the case when

there is no other state (s, γ′) in R with index i. It follows from Theorem 16 that for

every concrete topology that satisfies γ, state s is reachable in i or fewer steps. In

fact, there is a concrete topology ϑ |= γ for which the shortest path to reach s is of

length i. The symbolic transition that placed (s, γ) in WS can then be mapped to

the corresponding concrete transition in the topology given by ϑ. Now consider the

case when there is another state (s, γ′) in R with index i. If (s, γ) and (s, γ′) can be

reached using a single transition from a common state, say (s′′, γ′′), then the symbolic

transition that placed (s, γ) in WS can then be mapped to the corresponding concrete

transition in a topology that satisfies γ ∧ ¬γ′. Otherwise, (s, γ) and (s, γ′) descend

from two distinct states, both of which have the same index. We can then associate

with the symbolic transition to (s, γ) the same concrete instance ϑ used to map the

transition to its parent (and similarly with (s, γ′)).

We now show that reachability computation over symbolic state space takes no

additional time, in the asymptotic sense, than reachability over concrete state spaces.

The main additional cost of symbolic reachability algorithm is constraint subsumption

(line 9 of the algorithm). We can do this operation in amortized constant time,

as follows. First, consider computing and storing the subsumption lattice for the

constraints a priori. The construction cost of this lattice is O(2n2

) but is paid only

69

once. We can associate a set, initially empty, with each constraint in the lattice. To

determine whether (s, γ) should be added to R, we check if s is in the set associated

with γ in the lattice. This check can be done in constant time. When (s, γ) is added

to R, we add s to the sets associated with constraints more specific than γ. This

operation may take O(2n2

) in the worst case, but note that an element s may be

added to the set associated with γ at most once, and hence maintaining this data

structure incurs a total cost of O(2n2

|S|) over the entire run of the algorithm. Hence

symbolic reachability can be done in O(2n2

|S|2), the same complexity as that of the

concrete algorithm.

The space complexity is bounded by the size of the set of reachable states, R. The

number of elements of this set is 2n2

|S|. The size of each element is O(n2) due to the

size of the topology constraint, but this factor gets down-played in the asymptotic

case. Hence the asymptotic space complexity for the symbolic algorithm is O(2n2

|S|).

6.4.3 Model Checking Symbolic AHNs

The symbolic transition system can be readily used for checking LTL properties of

AHNs. We can use the standard procedure of constructing the product between a

Büchi automaton (corresponding to the negation of a given LTL property) and the

symbolic transition system and look for reachable accepting cycles in the product

graph. Note that for every symbolic transition of the form (s, γ) ; (s′, γ′), it holds

that γ′ =⇒ γ. Hence it follows that if (s, γ) and (s, γ′) are two states in a cycle, then

γ ≡ γ′. Hence the constraint component of states in a cycle are all equivalent. Let

(s1, γ), (s2, γ), . . . , (sn, γ) be states in an accepting cycle such that (si, γ) ; (si+1, γ)

for 1 ≤ i < n, and (sn, γ) ; (s1, γ). It follows from Theorem 16 that for every

concrete topology ϑ such that ϑ |= γ, the states s1, s2, . . . , sn will be in an accepting

cycle. Hence reachable good cycles in the symbolic case mean that there are reachable

good cycles in the concrete case. This forms the basis for LTL model checking of

symbolic AHNs.

Model checking of other temporal logics such as CTL and CTL* can be performed

over symbolic AHNs by using the standard algorithms over the symbolic transition

system. From the complexity results for reachability checking, it follows that model

70

checking for symbolic AHNs can be done in time and space comparable to the total

time and space for model checking of concrete AHNs for all topologies.

6.5 Verification of the LMAC Protocol

We built a prototype implementation of SymReach in the XSB logic programming

system [XSB]. XSB adds the capability of memoizing inferences to a traditional

Prolog-based system, which simplifies the implementation of fixed point algorithms

such as SymReach . Below we present the results of verifying the LMAC proto-

col [vHH04], a medium access control protocol for wireless sensor networks, using

this prototype.

LMAC protocol for Wireless Sensor Networks

The LMAC protocol aims to allocate each node in the sensor network a time slot dur-

ing which the node can transmit without collisions. Note that for collision freedom,

direct (one-hop) neighbors as well as two-hop neighbors must have pairwise differ-

ent slots. The protocol works by nondeterministically assigning slots, and resolving

any collisions that result from this assignment. We apply our query-based verifica-

tion technique to this protocol to compute the set of topologies for which there are

undetected and hence unresolved collisions.

Protocol Description [vHH04]. In schedule-based MAC protocols, time is di-

vided into slots, which are grouped into fixed length frames. Every node is allocated

one time slot in which it can carry out its transmission in a frame without causing

collision or interference with other transmissions. Each node broadcasts a set of time

slots occupied by its (one-hop) neighbors and itself. When a node receives a message

from a neighbor it marks the respective time slot as occupied. The four phases of

the LMAC protocol involved in allocating time slots to nodes are as follows. Initial-

ization phase: a node listens on the wireless medium to detect other nodes. On

listening from a neighboring node, the node synchronizes by learning the current slot

number and transitions to the wait phase. Wait phase: a node waits for a random

period of time and then continues with the discover phase. Discover phase: a node

listens to its one-hop neighbors during one entire frame and records the time slots

71

occupied by them and their neighbors. On gathering information regarding the occu-

pied time slots, the node randomly chooses a time slot from the available ones (time

slots that do not interfere in its one-hop and two-hop neighborhood), and advances

to the active phase. Active phase: a node transmits a message in its own time

slot and listens during other time slots. When a neighboring node informs that there

was a collision in the time slot of the node, the node transitions to the wait phase to

discover a new time slot for itself. Collisions can occur when two or more one-hop or

two-hop neighboring nodes choose the same time slot for transmission. Nodes causing

a collision cannot detect the collision themselves, they need to be informed by their

neighboring nodes about the collision. When a node detects a collision it transmits

information about the collision in its time slot.

Modeling the LMAC protocol in our framework. Our encoding of the LMAC

protocol in our framework follows the encoding used in [FvHM07]. We carry over

the underlying assumption in the LMAC protocol, that the local clocks of nodes are

synchronous. Since there is no support for modeling time in our prototype framework,

we define a special timer node that informs other nodes about the end of a time slot

by broadcasting an end of slot message. Nodes update their local information at

the end of every time slot.

An encoding of a process in an AHN model of LMAC is presented in Fig. 13.

At the beginning, we assume that one distinguished node is “active” (i.e. in active

location) and the rest are “passive” (i.e. in init location). Note that the figure gives

the definition of a passive node; the definition of the active node is identical except

for its initial state. The (symbolic) system specification for a 3-node network is

shown below.

A = timer : J1 | active node : J2 | passive node : J3 | passive node : J4

Transitions in Fig. 13 are specified in the form [label] l & ρ → l′ & η, where

label is the label of the transition, l and l′ are the source and destination locations,

ρ is the (optional) guard and η is the set of simultaneous assignments. We use the

standard notation of primed variables to denote variables in the destination state.

We use “epsilon” transitions (denoted by action label [] in the figure) to simplify

the encoding. We can derive the epsilon-free description (as in the formal definition

72

Passive LMAC Process : < L, X, Σ, δ, l0, η0 >
L = {init, init1, init2, listening0, recOne0, done0, choice0, choice, active, sent,

listening, recOne, recTwo, collision detected}
X = {Current, RecV ec, Counter, SlotNo, F irst, Second, Col, Collision}
Σ = {r (msg(Sslot, Scollision,Sfirst)), r (eos),b msg(slot, collision,first)}
l0 = init
η0 = {Current := −1, RecV ec := ∅, Counter := 0, SlotNo := −1, F irst := ∅,

Second := ∅, Col := −1, Collision := −1}
Transitions (l, α, l′, 〈ρ, η〉) ∈ δ are given below:

Init

[r (msg(Sslot, ,))] init → init1 & Current′ := Sslot
[r (eos)] init1 → listening0 & Current′ := (Current + 1)%frame, Counter′ := 0
[r (msg(, ,))] init1 → init2
[r (eos)] init2 → init

Discover

[r (msg(, ,Sfirst))] listening0 → recOne0 & RecV ec′ := Sfirst,
F irst′ := {Current} ∪ First

[r (msg(, ,))] recOne0 → done0 & if Collision < 0 then Collision′ := Current,
RecV ec′ := ∅

[r (eos)] done0 → choice0 & Current′ := (Current + 1)%frame
[r (eos)] recOne0 → choice0 & Current′ := (Current + 1)%frame,

Second′ := RecV ec ∪ Second, RecV ec′ := ∅
[r (eos)] listening0 → choice0 & Current′ := (Current + 1)%frame
[] choice0 & Counter < frame − 1 → listening0 & Counter′ := Counter + 1
[] choice0 & Counter >= frame − 1 → choice & Second′ := First ∪ Second

Choice

[] choice & Second 6= AllSlots → active & SlotNo′ ∈ AllSlots \ Second,
Second′ := ∅

[] choice & Second = AllSlots → listening0 & Counter′ := −1, Collision′ := −1,
F irst′ := ∅, Second′ := ∅

Active

[bmsg(SlotNo, Collision, F irst)] active & Current=SlotNo → sent & Collision′:=−1
[] active & Current 6= SlotNo → listening

Send

[r (eos)] sent → active & Current′ := (Current + 1)%frame

Listen

[r (msg(, Scollision,))] listening → recOne & Col′ := Scollision,
F irst′ := Current ∪ First

[r (eos)] listening → active & Current′ := (Current + 1)%frame
[r (msg(, ,))] recOne → recTwo & if Collision′ < 0 then Collision′ := Current
[r (eos)] recTwo → active & Current′ := (Current + 1)%frame
[r (eos)] recOne & Col 6= SlotNo → active & Current′ := (Current + 1)%frame

Collision Reported

[r (eos)] recOne & Col = SlotNo → collision detected & First′ := ∅, RecV ec′ := ∅
Current′ := (Current + 1)%frame,
Counter′ := 0, SlotNo′ := −1,
Col′ := −1, Collision′ := −1

[] collision detected → listening0

Figure 13: LMAC protocol model.

73

of AHNs, Defn. 6) using standard automata construction techniques. In our model

of LMAC, locations init, init1 and init2 correspond to the initialization phase;

locations listening0, recOne0, done0, choice0 and choice to the discover phase; and

locations active, sent, listening, recOne, recTwo, and collision detected to the active

phase. It should be noted that the wait phase of the protocol is not modeled, since

its function is to only separate the initialization and discover phases by an arbitrary

period of time.

The length of a time frame i.e. number of slots (= 5 for 5-node network) is rep-

resented by frame, and AllSlots denotes the set of all time slots. The state variables

of a node are: Current (the current slot number w.r.t. the beginning of a frame),

RecVec (auxiliary set to record the slots occupied by one-hop and two-hop neigh-

bors), Counter (used to count the number of slots seen by the node in a frame),

SlotNo (slot number of the node), First (set of slots occupied by one-hop neighbors

of the node), Second (set of slots occupied by two-hop neighbors of the node), Col

(collision slot reported by another node), Collision (slot in which the node detects

a collision). The parameters of messages (msg) exchanged between nodes are: Slot,

Collision, and First variables of the sender node.

Analysis of the LMAC protocol. The property “every collision is eventually

detected” can be encoded in LTL as G(collision ⇒ F collision detected), where col-

lision and collision detected are propositions that are true in states where collision

and collision detection occur, respectively. Although LTL model checking of symbolic

AHNs can be done as outlined in 6.4, our current prototype implementation supports

only reachability checking. We hence checked a related property “there is a de-

tected collision” (EF collision detected). Let CS be the set of all topology constraints

computed using algorithm SymReach when checking for reachability of proposition

collision detected. Let ϑ be a valuation such that ϑ 6|= γ for any γ ∈ CS . Note that in

the LMAC protocol, there may be a collision between any two neighboring nodes. If

γ does not represent a fully disconnected topology, then we can conclude that there

is an undetected collision in γ. Hence, by checking for reachability of proposition

collision detected, we can compute (a subset of) topologies which have undetected

collision. Moreover, using this method is sound: if there is an undetected collision in

some topology, we will find at least one representative.

74

Nodes # Topologies # States # Transitions CPU Time Memory
Symbolic/Concrete (MB)

2 1/2 36 36 0.08 sec 2.42

3 5/8 110 123 0.24 sec 2.46

4 25/64 458 667 3.38 sec 3.05

5 181/1024 2204 5223 69.51 sec 5.09

6 2082/32768 29012 110194 2 hr 51 min 46 sec 49.79

Table 14: Verification statistics for the LMAC protocol for detected collisions.

Verification Statistics and Results. We did symbolic reachability checking for

2- to 6-node networks. The performance results are shown in Table 14. The results

were obtained on a machine with Intel Xeon 1.7GHz processor and 2Gb memory

running Linux 2.6.18, and with XSB Prolog version 3.1. For 2- and 3-node cases

there were no collisions. For 4-, 5- and 6-node cases, topologies containing one-hop

neighboring (directly connected) node pairs that appeared in a ring in the topology

and did not have a common direct neighbor were found to be in collision that remained

undetected.

The second column in the table gives two numbers ξs/ξc, where ξs is the number

of symbolic topology constraints explored in a reachability run, i.e. the number of

distinct γ such that (s, γ) ∈ R as per the algorithm in Fig. 12; and ξc is the total

number of possible concrete topologies. Observe that for the 6-node case the number

of symbolic topology constraints examined is smaller than the number of concrete

topologies by a factor of more than 5. It should also be noted that the same property

was verified for a 5-node network in [FvHM07] by using 61 separate verification runs,

one for each unique (modulo isomorphism) concrete topology. In contrast, we verified

a related property using a single symbolic reachability run.

The third and fourth columns in Table 14 give the number of symbolic states and

transitions explored, respectively; and the last two columns give the CPU time and

total memory used. Observe that the performance of our prototype implementation

is efficient enough to be used for topologies of reasonable size (e.g. 6 nodes). It should

be noted that our technique and its implementation does not exploit the symmetry

inherent in the problem by identifying isomorphic topologies. At a high level, sym-

metry reduction can be incorporated by using a check in line 9 of SymReach that

75

recognizes constraints representing the same set of topologies modulo isomorphism.

Doing so will enable the technique to scale to large network sizes.

6.6 Discussion

We presented an efficient query-based verification technique for ad hoc network pro-

tocols. Network topologies are represented symbolically using interface variables, and

the model-checking process generates constraints on the topology under which a sys-

tem specification satisfies a specified property. As such, a term in our constraint

language compactly represents a set of concrete topologies that may lead to the sat-

isfaction of the property in question. We demonstrated the practical utility of our

approach by considering the verification of a medium access control protocol for sensor

networks (LMAC) [vHH04], identifying topologies under which collision may remain

unresolved.

The basic data structure for query-based verification is the symbolic transition

system, where each state carries with it a topology constraint. If a symbolic state

is reachable, then, for every topology satisfying its constraint, the corresponding

concrete state is reachable. This structure makes it possible to infer topologies under

which reachability properties hold. As described in this chapter, it is also possible

to verify properties specified in temporal logics such as LTL over symbolic transition

systems, inferring sets of topologies under which the properties hold. Extending

our prototype implementation to handle verification with an expressive temporal

logic is a topic of future work. There are several avenues for further improving the

efficiency of the symbolic verification technique. Some of these are optimizations to

common low-level operations, subsumption checks, while others are high-level state-

space reductions, e.g. by exploiting symmetries in systems and topologies.

In this work, the focus is on a verification technique and not on the modeling

language. We considered ad hoc networks whose topology does not change with time.

We deliberately considered only closed systems and chose a simple language that uses

interfaces to separate node behavior from network topology as in the ω-calculus. As

part of our future work, we plan to extend this work to open systems specified in the

ω-calculus, and consider compositional verification in that setting.

Chapter 7

Towards Parameterized

Verification of Ad Hoc Network

Protocols

In the previous chapter, we presented a technique for verification of AHN proto-

cols for arbitrary instances of topologies. In this chapter, we describe a verification

technique for AHNs parameterized on the number of nodes to facilitate verification

of AHN protocols for arbitrary number of nodes. As discussed in Section 1.2.3,

compositional analysis facilitates parameterized verification of infinite instances of

a system (nth instance having n nodes in the system). In [BR06], a parameter-

ized verification technique has been developed for systems specified in CCS process

algebra and interpreted over modal µ-calculus formulas. The work in [YBR06] de-

veloped parameterized verification technique for systems specified in the π-calculus

and interpreted over an extended version of modal µ-calculus formulas, extensions in-

cluding constructs for representing names and their scopes, and actions. Both of the

techniques [BR06, YBR06] developed partial model checkers considering processes as

property transformers. The verification problem is reduced to finding a limit to the

transformed formulas and deciding the satisfiability of the limit to the formula. Con-

sider a parameterized system P n consisting of n instances of a process P . In order to

verify whether property ϕ holds in P n for all n, construct the sequence of properties

ϕ0, ϕ1, . . . such that ϕ0 = ϕ and ϕi+1 = Π(P)(ϕi) for all i ≥ 0, where Π denotes a

76

77

property transformer introduced in Section 1.2.3. Let the sequence converge after k

steps: i.e. ϕk+1 = ϕk. By the definition of Π, it holds that for n ≥ k, P n |= ϕ if

P n−k |= ϕk. Let 0 denote the deadlocked process, the unit of the parallel composition

operator. Specifically, P n is equivalent to P n|0. It then follows that ∀n ≥ k, P n |= ϕ

if 0 |= ϕk, i.e. the zero process has the property specified by the limit of the sequence

of formulas.

In [BR06, YBR06], optimization techniques have been developed to determine

equivalence of formulas and accelerate the convergence of formula transformation to

facilitate practical utility of their partial model checking techniques. The techniques

in [BR06, YBR06] have been developed for systems that communicate using binary

synchronization. In comparison to these works, the new concerns that arise in the

context of AHNs are broadcast-based communication. Compositional analysis of

AHNs requires extending similar techniques devised for point-to-point synchronous

communication to broadcast (multi-party) synchronization. Following the approach

of [BR06, YBR06], we present a compositional analysis technique based on partial

model checking, for verification of parameterized AHN protocols. We demonstrate

our compositional analysis technique using a fragment of the ω0-calculus (referred to

as ωm-calculus) without node mobility.

7.1 Property Specification Logic

We present a property specification logic, referred to as the ωµ-calculus, for speci-

fying properties of systems specified in the ωm-calculus. The ωµ-calculus is similar

to the Cµ-calculus formula logic of [YBR06]. The Cµ-calculus extends value-passing

µ-calculus with explicit syntactic structures to specify and manipulate local names,

parameterized formula variables, modalities with actions that are closed under com-

plementation. Similarly, the ωµ-calculus extends value-passing µ-calculus with pa-

rameterized formula variables and modalities with actions for local broadcast and

receive.

78

The grammar for formula expressions in the ωµ-calculus is given below:

φ ::= tt | ff | x = y | x 6= y | φ ∨ φ | φ ∧ φ

| 〈A〉φ | [A]φ | 〈G(y)〉∃y.φ | 〈G(y)〉∀y.φ | [G(y)]∃y.φ | [G(y)]∀y.φ

| X(
→
e) | (µX(

→
z).φ)(

→
e) | (νX(

→
z).φ)(

→
e)

A ::= Gy | Gy | G{y} | τ

We use Φ to denote the set of all formula expressions. Symbols φ, ϕ and ψ

(possibly subscripted) range over formula expressions. Formulas tt and ff stand for

propositional constants true and false, respectively. Equality and disequality of names

also constitute atomic formulas. Conjunction, disjunction, diamond (existential) and

box (universal) modalities and quantifiers can be used to construct formulas. The

modal actions G(y), Gy, and τ represent input (broadcast-receive), free input and

internal actions, respectively. Gy is a free output (broadcast-send) action where y is

a free name and G{y} is an output action that has binding occurrence of variable y.

In input and output actions G(y) and G{y}, y is bound; in free input and free out-

put actions, all names are free. 〈G(y)〉∃y.φ and 〈G(y)〉∀y.φ represent early and late

diamond modalities for input action G(y), respectively. [G(y)]∃y.φ and [G(y)]∀y.φ

represent the early and late box modalities for input action G(y), respectively. The

intuition behind the choice of the modal actions is to capture all possible behaviors

of nodes. X(
→
z) represents a parameterized formula variable. The least and greatest

fixed point formulas are specified as (µX(
→
z).φ)(

→
e) and (νX(

→
z).φ)(

→
e), respectively,

where
→
z represents formal parameters and

→
e represents actual parameters. A for-

mula is often represented as a sequence of fixed point equations. Any property with

formula expressions of the form σX(
→
z).ϕ can be converted in linear time to set of

equations of the form X(
→
z) =σ ϕ similarly as described in [YBR06]. For a given

ωµ-calculus formula ϕ where each fixed point variable has distinct names, the num-

ber of equations in the corresponding equational set is equal to the number of fixed

point sub-formulas of ϕ. The formulas in the equational form follow the nesting

of the corresponding (sub-)formulas in the property. Each sub-formula of the form

σX.φ is translated to an equation X =σ ψ, where ψ is obtained by replacing every

occurrence of its sub-formula with the formula variable. For example, the formula

expression νX(u).(µY (v).([{g1}u]X(u)∧ [{g2}v]Y (v))) is translated to X(u) =ν Y (v)

79

1. (a) [[x = y]]ξδ =

{
{sδ|s ∈ S} if δ |= x = y
∅ otherwise

(b) [[x 6= y]]ξδ =

{
{sδ|s ∈ S} if δ |= x 6= y
∅ otherwise

2. [[ϕ ∨ ψ]]ξδ = [[ϕ]]ξδ ∪ [[ψ]]ξδ

3. [[ϕ ∧ ψ]]ξδ = [[ϕ]]ξδ ∩ [[ψ]]ξδ

4. [[〈τ〉ϕ]]ξδ = {s | ∃s′.s
b,τ
−→s′ ∧ (δ |= b) ∧ s′ ∈ [[ϕ]]ξδ}

5. [[〈G1y〉ϕ]]ξδ = {s | ∃s′.s
b,G2y
−→s′ ∧ (δ |= b) ∧ (G1 = G2) ∧ s

′ ∈ [[ϕ]]ξδ}

6. [[〈G1{y}〉ϕ]]ξδ = {s | ∃s′.s
b,G2x
−→s′ ∧ (δ |= b) ∧ (G1 = G2) ∧ s

′ ∈ [[ϕ{x/y}]]ξδ}

7. [[〈G1y〉ϕ]]ξδ = {s | ∃s′.s
b,G2(x)
−→ s′ ∧ (δ |= b) ∧ (G1 ∩G2 6= ∅) ∧ s′{y/x} ∈ [[ϕ]]ξδ}

8. [[〈G1(y)〉∃y.ϕ]]ξδ = {s | ∃s′.s
b,G2(x)
−→ s′ ∧ (δ |= b)∧ (G1 ∩G2 6= ∅)∧ ∃v.s′{v/x} ∈

[[ϕ{v/y}]]ξδ}

9. [[〈G1(y)〉∀y.ϕ]]ξδ = {s | ∃s′.s
b,G2(x)
−→ s′ ∧ (δ |= b)∧ (G1 ∩G2 6= ∅)∧ ∀v.s′{v/x} ∈

[[ϕ{v/y}]]ξδ}

10. [[X(−→e)]]ξδ = ξ(X)(−→e δ)

11. [[(µX(−→z).ϕ)(−→e)]]ξδ = (∩{f | [[ϕ]](ξ ◦ {X 7→ f}) ⊆ f})δ[−→e /−→z]

12. [[(νX(−→z).ϕ)(−→e)]]ξδ = (∪{f | f ⊆ [[ϕ]](ξ ◦ {X 7→ f})})δ[−→e /−→z]

Figure 14: Semantics of the property specification logic.

and Y (v) =µ [{g1}u]X(u)∧ [{g2}v]Y (v) where X is the outer-fixed point variable and

Y is the inner one. The use of equational form permits the transformation to be done

on a per-equation basis and eliminates the need to keep track of all the sub-formulas

of a formula in a non-equational form. We assume that all formulas are closed, i.e.

all free names in a formula appear in the parameters of the definition.

The formulas are interpreted over the symbolic semantics of the ω0-calculus defined

in Section 3.5, excluding the MOBILITY rule. The semantics of the formula logic

is presented in Fig. 14. The semantics relation [[ϕ]]ξδ represents the set of symbolic

states that satisfy the formula ϕ under substitution δ over pnames, over which equality

80

(=) and disequality (6=) constraints on pnames are interpreted, and a function ξ

that maps formula variables to sets of symbolic states of the symbolic transition

system. The set of states of the symbolic transition system are represented by S.

The symbolic transition relation is used as an implicit parameter in the definition.

All rules are evaluated w.r.t. the same transition system. Rules 1-3 for equality

and disequality constraints on pnames, and conjunction and disjunction of formulas

are straightforward. Rules 4-9 provide semantics for the diamond modality. The

semantics for the box modality can be obtained by considering it as the dual of the

diamond modality. The substitution δ is updated in Rules 11 and 12 to capture the

mapping of formal parameters (free names) to actual arguments. We use notation

s |=δ ϕ to denote s ∈ [[ϕ]]ξδ.

7.2 Compositional Model Checker for the ωm-

Calculus

We define a compositional model checker for the ωm-calculus based on a transforma-

tion function Π : N → Φ → Φ in a manner similar to as done for CCS in [BR06] and

for the π-calculus in [YBR06]. Given nodes M and N , a formula ϕ ∈ Φ, and a set of

substitutions δ, the transformation function Π is defined such that

M |N | 0 |=δ ϕ⇔ N |0 |=δ Π(M)(ϕ) ⇔ 0 |=δ Π(N)(Π(M)(ϕ))

The transformation function Π, similar to as defined for CCS in [BR06] and for the

π-calculus in [YBR06], generates formulas which represent the temporal obligation of

the environment of the process(node) used for the transformation. This technique is

referred to as partial model checking.

The transformation function Π is define for each formula expression as shown

in Fig. 15. Rule 5 transforms a parameterized formula variable X(
→
e) into a new

formula XN(
→
e1) where

→
e is formed by concatenation of

→
e1 and free names of N .

Compositionality of property transformers is represented by rule 9. Rule 10 uses

functions φ+G and φ−G (defined in Fig. 16) for considering the effect of restricted

gnames appearing in the node expression that does the transformation. For φ−G,

there may be cases when G \ G′ is ∅. We impose conditions that a modal receive

81

1. (a) Π(N)(tt) = tt (b) Π(N)(ff) = ff

2. (a) Π(N)(x = y)=

{
tt ifx = y
x = y otherwise

(b) Π(N)(x 6= y)=

{
ff ifx = y
x 6= y otherwise

3. Π(N)(ϕ1 ∨ ϕ2) = Π(N)(ϕ1) ∨ Π(N)(ϕ2)

4. Π(N)(ϕ1 ∧ ϕ2) = Π(N)(ϕ1) ∧ Π(N)(ϕ2)

5. Π(N)(X(
→
e)) = XN (

→
e1) where

→
e1 =

→
e + fn(N)

6. (a) Π(N)(∃x.ϕ) = ∃x.Π(N)(ϕ) (b) Π(N)(∀x.ϕ) = ∀x.Π(N)(ϕ)

7. (a) Π(0)(ϕ) = ϕ (b) Π(nil :G)(ϕ) = ϕ

8. Π(A(
⇀
x) : G)(ϕ) = Π(P : G)(ϕ) whereA(

⇀
x)

def
= P

9. Π(N1 | N2)(ϕ) = Π(N2)(Π(N1)(ϕ))

10. Π((νg)N)(ϕ) = (Π(N{g′/g})(ϕ+{g′}))−{g′} whereg′ /∈ n(ϕ)

11. Π(a.P : G)(〈α〉ϕ) = 〈α〉Π(a.P : G)(ϕ) where bn(α) ∩ fn(a.P : G) = ∅

∨







Π(P : G)(ϕ) if a = τ ∧ α = τ

Π(P : G)(ϕ) if a = bx ∧ α = G′x ∧ G = G′

Π(P : G)(ϕ{x/y}) if a = bx ∧ α = G′{y} ∧ G = G′

Π(P : G)(ϕ{x/y}) if a = r(x) ∧ α = G′(y) ∧ G ∩ G′ 6= ∅
Π(P{y/x} : G)(ϕ) if a = r(x) ∧ α = G′y ∧ G ∩ G′ 6= ∅
ff otherwise







∨







〈Gx〉Π(P : G)(ϕ) if a = bx ∧ α = G′x ∧ G = G′

〈Gx〉Π(P : G)(ϕ{x/y}) if a = bx ∧ α = G′{y} ∧ G = G′

〈G′y〉Π(P{y/x} : G)(ϕ), where bn(a) ∩ n(ϕ) = ∅ if a = r(x) ∧ α = G′y ∧ G ∩ G′ 6= ∅
〈G′{y}〉Π(P{y/x} : G)(ϕ), where bn(a) ∩ n(ϕ) = ∅ if a = r(x) ∧ α = G′{y} ∧ G ∩ G′ 6= ∅
〈G′(x)〉Π(P : G)(ϕ{x/y}), where bn(a) ∩ n(ϕ) = ∅ if a = r(x) ∧ α = G′(y) ∧ G ∩ G′ 6= ∅
〈G′y〉Π(P{y/x} : G)(ϕ), where bn(a) ∩ n(ϕ) = ∅ if a = r(x) ∧ α = G′y ∧ G ∩ G′ 6= ∅
ff otherwise







12. Π((P1 + P2) :G)(〈α〉ϕ) = 〈α〉Π((P1 + P2) :G)(ϕ) ∨ Π(P1 : G)(〈α〉ϕ) ∨ Π(P2 : G)(〈α〉ϕ)

13. Π((P1 + P2) :G)([α]ϕ) = [α]Π((P1 + P2) :G)(ϕ) ∧ Π(P1 : G)([α]ϕ) ∧ Π(P2 : G)([α]ϕ)

14. Π([x = y]P : G)(ϕ) = C ∧ Π(P : G)(ϕ) whereC =

{
tt ifx = y
x = y otherwise

A. Π(N)(X(−→z) =σ ϕ ∪ E) = {

XN (−→z1) =σ Π(N)(ϕ) where ((n(ϕ) −
−→
z) ∩ fn(N) = ∅) and −→z1 = −→z + fn(N)}

∪ Π(N)(E) ∪
⋃
{Π(N ′)(X ′(−→z2) =σ′ ϕ′) s.t. X ′

N ′(
−→z3) is a subformula of

Π(N)(ϕ),−→z3 = −→z2 + fn(N ′) and (n(ϕ′) −−→z2) ∩ fn(N ′) = ∅)}
B. Π(N)({}) = ({})

Figure 15: Partial model checker for the ωm-calculus.

82

φ φ+G φ−G

tt tt tt
ff ff ff
x = y x = y x = y
x 6= y x 6= y x 6= y
ϕ ∨ ψ ϕ+G ∨ ψ+G ϕ−G ∨ ψ−G

ϕ ∧ ψ ϕ+G ∨ ψ+G ϕ−G ∧ ψ−G

〈G′x〉ϕ 〈G′x〉ϕ+G ∨ 〈G′ ∪Gx〉ϕ+G 〈G′\G x〉ϕ

〈G′x〉ϕ 〈G′x〉ϕ+G ∨ 〈G′ ∪Gx〉ϕ+G 〈G′\Gx〉ϕ

〈G′{x}〉ϕ 〈G′{x}〉ϕ+G ∨ 〈G′ ∪G {x}〉ϕ+G 〈G′\G {x}〉ϕ−G

〈τ〉ϕ 〈τ〉ϕ+G ∨ 〈G{x}〉ϕ+G 〈τ〉ϕ−G

〈µ〉ϕ 〈µ〉ϕ+G 〈µ〉ϕ−G

[G′x]ϕ [G′x]ϕ+G ∧ [G′ ∪Gx]ϕ+G [G′\Gx]ϕ−G

[G′x]ϕ [G′x]ϕ+G ∧ [G′ ∪Gx]ϕ+G [G′\Gx]ϕ−G

[G′{x}]ϕ [G′{x}]ϕ+G ∧ [G′ ∪G {x}]ϕ+G [G′\G {x}]ϕ−G

[τ]ϕ [τ]ϕ+G ∧ [G{x}]ϕ+G [τ]ϕ−G

[µ]ϕ [µ]ϕ+G [µ]ϕ−G

〈G′(y)〉∃y.ϕ 〈G′(y)〉∃y.ϕ+G ∨ 〈G′ ∪G (y)〉∃y.ϕ+G 〈G′\G (y)〉∃y.ϕ−G

〈G′(y)〉∀y.ϕ 〈G′(y)〉∀y.ϕ+G ∨ 〈G′ ∪G (y)〉∀y.ϕ+G 〈G′\G (y)〉∀y.ϕ−G

[G′(y)]∃y.ϕ [G′(y)]∃y.ϕ+G ∧ [G′ ∪G (y)]∃y.ϕ+G [G′\G (y)]∃y.ϕ−G

[G′(y)]∀y.ϕ [G′(y)]∀y.ϕ+G ∧ [G′ ∪G (y)]∀y.ϕ+G [G′\G (y)]∀y.ϕ−G

X(
→
e) X(

→
e) X(

→
e)

(µX(
→
z).ϕ)(

→
e) (µX(

→
z).ϕ+G)(

→
e) (µX(

→
z).ϕ−G)(

→
e)

(νX(
→
z).ϕ)(

→
e) (νX(

→
z).ϕ+G)(

→
e) (νX(

→
z).ϕ−G)(

→
e)

Figure 16: Definition of φ+G and φ−G.

action on an empty (∅) interface is not satisfied by any node, and a modal broadcast

action on an empty (∅) interface is satisfied by a node if the node satisfies a modal τ

action.

Rule 11 represents transformation of 〈α〉ϕ by a node with action-prefixed process

(a.P :G). There are three cases to be considered in which a.P :G when composed

with an environment can satisfy 〈ϕ〉.

1. The environment takes action α satisfying the modal obligation (first disjunct).

The side condition demands that the bound names in α do not bind any free

names of a.P :G. An alpha-conversion (renaming of all bound names in a for-

mula with fresh names) can be used to ensure the satisfaction of this condition.

2. Node a.P : G satisfies the modal obligation (second disjunct). The action a

83

matches the modal obligation with appropriate substitution of names applied

to the generated formula in case of input (free and bound) and bound output.

3. The environment synchronizes with node a.P :G (third disjunct). Synchroniza-

tion in the ω0-calculus happens when a broadcasting node synchronizes with a

receiver. The third disjunct in rule 11 (in Fig. 15), corresponds to broadcast

synchronization. The first two cases in the third disjunct in rule 11 are in-

dicative of when the transformer node a.P :G matches the broadcast action of

the formula and the environment has to perform a receive action. In the third

and fourth cases node a.P :G performs a receive action synchronizing with the

broadcast action that the environment is obligated to perform. The fifth and

sixth cases correspond to the scenario when both a.P :G and the environment

both must perform a receive action and synchronize.

Similar to rule 11, a dual rule can be defined for actions with box modality. Rule

12 specifies the transformation of a diamond modal formula using a basic node with

choice-process expression. The resulting formula contains disjuncts corresponding to

the cases when the environment is left with the obligation to satisfy the modal action,

and when the first or the second process is selected for subsequent transformation.

Rule 13 is similar to rule 12. Rule 14 defines the transformation of a formula us-

ing a node with match process expression. The match is converted to an equality

formula in the transformation. Rules A and B define transformation of formula ex-

pressions in equational form. The nesting of the formula variables is preserved in this

transformation.

The correctness of the partial model checker (represented by rules given in Fig. 15)

is stated below in Theorem 20. For establishing this theorem, we use the result

presented below in Proposition 19 which considers the effect of restriction of gnames

on property satisfaction and shifts the restriction from node expression to property

and vice-versa.

Proposition 19 For an ω0-expression N , group name g, formula ϕ, and δ a set of

substitutions, following holds:

(a). N |=δ ϕ =⇒ (νg)N |=δ ϕ−{g}

(b). (νg)N |=δ ϕ =⇒ N |=δ ϕ+{g}

where ϕ−{g} and ϕ+{g} are interpreted using the definition given in Fig. 16.

84

Theorem 20 (Correctness) Let M and N be two node expressions, and δ a set of

substitutions. Then for all formulas ϕ, the following holds:

M |N |=δ ϕ ⇔ M |=δ Π(N)(ϕ)

The proof proceeds by induction on the size of the node expression and the for-

mula, and is given in Appendix C.

7.3 An Example

P
def
= b y.P

Q
def
= r (x).Q

sys(n) represents (νg)(P :{g} | Q :{g} | . . . | Q :{g}
︸ ︷︷ ︸

n instances

)

Figure 17: A simple example of a parameterized system.

We consider a simple example of a parameterized system containing a node that

repeatedly does a broadcast, and n receiver nodes. The example is shown in Fig. 17,

where the system sys contains a broadcasting node P :{g} and n instances of receiver

node Q : {g}. The system sys is parameterized on n, the number of receivers. The

property to be verified, ϕ0, is specified in the ωµ-calculus and written in the equational

form (Fig. 18). The property is a greatest fixed point formula and states that a

τ action is possible after every τ action. An example of parameterized verification

problem is to determine whether ∀n.sys(n) |= ϕ0. The property ϕ0 is first transformed

by P : {g} leading to property ϕ1. Then Q : {g} transforms property ϕ1 to property

ϕ2. Formulas ϕ1 and ϕ2 differ only in the names of formula variables and hence

represent the same property. Thus the sequence of transformed properties converges

at ϕ2. Due to this convergence, it suffices to check whether inactive node 0 satisfies

ϕ2, to determine ∀n.sys(n) |= ϕ0. The steps involved in the transformation from ϕ0

to ϕ2 are shown in Fig. 18.

85

ϕ0 ≡ X =ν 〈τ〉tt ∧ [τ]X
By proposition 19,

P :{g} | Q :{g} | . . . | Q :{g}
︸ ︷︷ ︸

n instances

|=δ ϕ0+{g}

=⇒ (νg)(P :{g} | Q :{g} | . . . | Q :{g}
︸ ︷︷ ︸

n instances

) |=δ ϕ0 where g /∈ n(ϕ)

ϕ1 ≡ Π(P :{g′})(ϕ0+{g′})

≡ X1 =ν Π(P :{g′})((〈τ〉tt ∨ 〈{g′}{z}〉tt) ∧ ([τ]X ∧ [{g′}{z}]X))

≡ X1 =ν ((〈τ〉tt ∨ tt ∨ . . .) ∧ ([τ]X1 ∧ X1 ∧ [{g′}{z}]X1 ∧ [{g′}y]X1))

≡ X1 =ν ([τ]X1 ∧ X1 ∧ [{g′}{z}]X1 ∧ [{g′}y]X1)
ϕ2 ≡ Π(Q :{g′})(ϕ1)

≡ X2 =ν ([τ]X2 ∧ X2 ∧ [{g′}{z}]X2 ∧ [{g′}y]X2)

Figure 18: Property transformation for example in Fig. 17

7.4 Discussion

We presented an automatable parameterized verification technique for AHN proto-

cols specified using the ωm-calculus (ω0 without mobility). Properties are specified

in an expressive logic, ωµ-calculus. The technique is based on a compositional model

checker for the ωm-calculus, verifying each instance of a node in an unknown environ-

ment. This technique leads to generation of a large number of formulas at each step of

property transformation. A complete automation of the technique will require devel-

opment of optimization techniques to reduce the potential blow-up due to generated

formulas and techniques for checking equivalence of formulas. Using this technique

AHN protocols such as LMAC [vHH04] protocol can be verified for infinite instances

of nodes for static topologies. Currently, this technique does not consider mobility of

nodes. Future extensions to this technique will include consideration of mobility of

nodes which will require symbolic representation of process interfaces as discussed in

the previous chapter, to handle all possibilities of changes to process interfaces in an

unknown environment. With the above optimizations and extensions to mobility it

will be feasible to verify AHN protocols with node mobility such as AODV [PBRD03]

routing protocol, leader election [VKT04] protocol, for infinite instances of nodes.

Chapter 8

Conclusion

In this thesis, we addressed the problem of modeling and verifying ad hoc network

(AHN) protocols. Below we summarize our major results followed by a brief discussion

of our work, and directions for future work.

8.1 Summary of Major Results

• Modeling and Verification Framework. We developed a process-algebraic

framework, the ω-calculus, for modeling and verifying AHNs. The ω-calculus

enables concise modeling of AHNs and provides abstraction for broadcast-based

communication over dynamically changing network topologies. The ω-calculus

provides a separation between the description of the control behavior of nodes

and the network topology, thus permitting a natural and succinct modeling of

AHNs. Bisimulation equivalence is defined for the ω-calculus and is shown to

be a congruence.

• Constraint-Based Verification. We developed a constraint-based verifica-

tion technique for AHNs to mitigate instance explosion. Symbolic verification of

AHN protocols over a constraint-based representation of the network topology

enables verification of a protocol for all possible topologies in a single verifica-

tion run and permits inference of the topologies for which a property holds for

the protocol under consideration.

86

87

• Parameterized Verification. Partial model checking of AHNs enables param-

eterized verification of AHN protocols. We developed a compositional analysis

technique to analyze infinite instances of AHN protocols (in the absence of node

mobility).

• Implementation and Case Studies. Prototype implementations of mod-

eling and verification framework for AHNs presented in this thesis have been

developed using the XSB tabled logic-programming system [XSB]. These im-

plementations have allowed us to demonstrate the utility of our framework by

verifying key properties of distributed algorithms for routing, leader election,

and medium access control in AHNs.

8.2 Discussion

In this thesis, we developed the ω-calculus, a conservative extension of the π-calculus

that permits succinct and high-level encodings of AHN protocols. The salient aspect

of the calculus is its group-based support for local broadcast communication over dy-

namically changing network topologies. We have shown that reachability is decidable

for the finite-control fragment of the calculus, and late strong, weak, and symbolic

bisimulation equivalences are a congruence. We also showed how the calculus’s opera-

tional semantics can be readily encoded in the XSB tabled logic-programming system,

thereby permitting the generation of transition systems from ω-calculus specifications.

We used this feature to implement a prototype verifier for the ω-calculus, which we

then used to verify certain key properties of our encodings of the leader election

algorithm of [VKT04] and the AODV routing protocol [PBRD03].

Using the ω-calculus framework as a basis, we devised a constraint-based verifica-

tion technique for AHNs. Network topologies are specified symbolically using inter-

face variables. Models with multiple possible topologies can be verified efficiently by

generating interface constraints that may lead to the satisfaction of the system prop-

erty under consideration. We demonstrated the utility of this technique through the

verification of a medium access control protocol (LMAC) for sensor networks [vHH04].

Lastly, we developed a partial model checking technique for the parameterized

verification of AHNs. The technique is developed for the ω-calculus in the absence

88

of node mobility and extends the parameterized verification techniques developed for

CCS in [BR06] and for the π-calculus in [YBR06].

We now discuss some limitations of the ω-calculus. Due to the intermittent nature

of communication links and the difference in transmission powers of nodes, asymmet-

ric connections are possible in AHNs. The ω-calculus models bidirectional (symmet-

ric) connections only. In order to model asymmetric connections, the ω-calculus will

require extensions as discussed in Section 1.2.1. Use of AHNs for safety- and mission-

critical operations requires models of AHNs to be able to represent time realistically.

Presently, ω-calculus models abstract away time using non-determinism. In order

to facilitate analysis of time-critical AHN protocols, it will be useful to extend the

ω-calculus with a notion of time. Similar concerns have been addressed in [GN09],

where time is added to a process calculus for mobile processes. A global notion of

time is used, and time advances simultaneously for all nodes. Node mobility in the

ω-calculus is restricted by a class of invariants that are decidable properties over

network topologies. More realistic mobility models (taking direction and speed into

account) such as those considered in [GN09] cannot be represented in the ω-calculus.

The prototype verifiers developed in this thesis check only for reachability proper-

ties. Extending these implementations to full-fledged model checkers will be useful

for verifying non-trivial properties of AHN protocols.

8.3 Future Work

We present some avenues for future work including verification techniques and formal

modeling features for AHN protocols.

• Reduction Techniques. Several symmetry reduction techniques [MDC06]

have been developed to reduce the explored state-space for verification of

communication-network protocols. Traditional reduction techniques exploit

symmetry for specific network topologies, e.g. ring and star. These techniques

cannot be readily used in the context of AHNs since the network topologies may

be arbitrary. The dynamic network structure raises difficulty in recognizing and

89

exploiting symmetry in AHNs. Our constraint-based representation of topolo-

gies, and AC (associative-commutative) unification technique [Sti81] for sym-

metry reduction as used for the model checking of mobile processes [YDRS05],

can be leveraged in the context of AHNs.

• Parameterized Verification. Partial model checking facilitates parameter-

ized verification [And95, EN96, BR06, YBR06] of infinite families of processes.

The new concerns that arise in the context of parameterized verification of AHNs

are broadcast-based communication and dynamic network structure. We have

developed compositional analysis for broadcast feature of AHNs by extend-

ing similar techniques devised for point-to-point synchronous communication

to broadcast (multi-party) synchronization. Dynamic network structure poses

a problem for the partial model checking of AHNs because the effect of the

dynamic neighborhood on a node’s communication capabilities is not known.

Constraint-based representation and processing of topologies can be used to

address this problem. Symmetry reduction techniques for AHNs as presented

above can be applied in addition to partial model checking. In this thesis, we

developed a technique for verification of AHN protocols for arbitrary instances

of topologies; parameterized verification of AHNs will facilitate verification of

AHN protocols for an arbitrary number of nodes.

• Model Generation. The effort required in modeling applications limits the

use of formal verification to experienced users. Ideally, a user should be able to

leverage formal analysis techniques directly for the implementation of an appli-

cation rather than having to specify a formal model for it. This motivates the

plan to develop an integrated framework for model generation and verification

from implementations of AHN applications. There are two approaches for veri-

fying implementations: verify the model generated from an implementation, or

verify the implementation directly. It will be useful to develop a framework for

verifying implementations specified in nesC, an event-driven language widely

used for programming sensor networks. nesC programs are structured which

makes it easier to translate a nesC specification, as compared to translating a

similar specification in other programming languages (such as C), into a for-

mal model. The difficulty in verifying nesC implementations is that they may

http://nescc.sourceforge.net/

90

contain arbitrary data structures e.g. process identifiers, route tables, increas-

ing sequence numbers. Classical counterexample-guided abstraction-refinement

techniques and symmetry reduction techniques as stated above will be useful in

efficiently handling complex data structures for verification of nesC implemen-

tations.

• Modeling Language. The scenarios in which AHN protocols operate, such as

intermittent links, unreliable communication, timing issues, motivate the need

for a rich modeling language for AHNs. Such a language will have capabilities

to model real-time aspects and probabilistic behavior of nodes and communi-

cation links. Development of such an enhanced modeling language for AHNs is

orthogonal to the development of the verification techniques proposed above.

8.4 Final Notes

AHNs are used in many applications including health and environment monitoring,

and military operations. Such applications are safety-critical and demand reliabil-

ity. The work presented in this thesis develops formal frameworks for assessing the

reliability of AHN applications, and could therefore lead to more widespread use of

AHNs. We also believe that the fundamental theory and techniques developed in this

thesis for the analysis of AHNs is useful for the formal analysis of safety-critical and

distributed applications in general.

Bibliography

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic pro-

tocols: The spi calculus. In Fourth ACM Conference on Computer and

Communications Security, pages 36–47. ACM Press, 1997.

[And95] Henrik Reif Andersen. Partial model checking. In Proceedings of Tenth

Annual IEEE Symposium on Logic in Computer Science, pages 398–407.

IEEE Computer Society Press, 1995.

[AP94] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. In

FSTTCS, pages 205–216. Springer-Verlag, 1994.

[BG01] Glenn Bruns and Patrice Godefroid. Temporal logic query checking. In

LICS, pages 409–417, 2001.

[BL08] Roberto Bruni and Ivan Lanese. Parametric synchronizations in mobile

nominal calculi. Theor. Comput. Sci., 402(2-3):102–119, 2008.

[BR06] Samik Basu and C. R. Ramakrishnan. Compositional analysis for veri-

fication of parameterized systems. Theor. Comput. Sci., 354(2):211–229,

2006.

[CABN97] William Chan, Richard Anderson, Paul Beame, and David Notkin. Com-

bining constraint solving and symbolic model checking for a class of a

systems with non-linear constraints. In CAV, pages 316–327. Springer-

Verlag, 1997.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In FOSSACS.

Springer-Verlag, 1998.

91

92

[Cha00] William Chan. Temporal-logic queries. In CAV, volume 1855, pages 450–

463. Springer, 2000.

[Cla96] Edmund M. Clarke, et al. Formal methods: state of the art and future

directions. ACM Computing Surveys, 28(4):626–643, 1996.

[Dam97] M. Dam. On the decidability of process equivalences for the π-calculus.

Theoretical Computer Science, 183:215–228, 1997.

[DP99] Giorgio Delzanno and Andreas Podelski. Model checking in CLP. In

TACAS, pages 223–239. Springer-Verlag, 1999.

[DZG00] Silvano Dal-Zilio and Andrew D. Gordon. Region analysis and a pi-calculus

with groups. In Proceedings of the 25th International Symposium on Math-

ematical Foundations of Computer Science, pages 1–20. Springer-Verlag,

2000.

[EM99] Cristian Ene and Traian Muntean. Expressiveness of point-to-point ver-

sus broadcast communications. In Fundamentals of Computation Theory,

pages 258–268, 1999.

[EM01] Cristian Ene and Traian Muntean. A broadcast-based calculus for com-

municating systems. In Intl. Workshop on Formal Methods for Parallel

Programming: Theory and Applications, 2001.

[EN96] E. Allen Emerson and Kedar S. Namjoshi. Automatic verification of pa-

rameterized synchronous systems. In CAV, pages 87–98, 1996.

[FG96] Cedric Fournet and Georges Gonthier. The reflexive cham and the join-

calculus. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 372–385, New

York, NY, USA, 1996. ACM Press.

[FH05] Adrian Francalanza and Matthew Hennessy. A theory of system behaviour

in the presence of node and link failures. In CONCUR, pages 368–382.

Springer, 2005.

93

[Fla04] Cormac Flanagan. Automatic software model checking via constraint

logic. Sci. Comput. Program., 50(1-3):253–270, 2004.

[Fri99] Laurent Fribourg. Constraint logic programming applied to model check-

ing. In In Proc. 9th Int. Workshop on Logic-based Program Synthesis and

Transformation (LOPSTR’99), LNCS 1817, pages 30–41. Springer-Verlag,

1999.

[FvHM07] Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader. Modelling

and verification of the LMAC protocol for wireless sensor networks. In

IFM, pages 253–272, 2007.

[GCD03] Arie Gurfinkel, Marsha Chechik, and Benet Devereux. Temporal logic

query checking: A tool for model exploration. IEEE Trans. Software Eng.,

29(10):898–914, 2003.

[GFM09] F. Ghassemi, W.J. Fokkink, and A. Movaghar. Equational reasoning on

ad hoc networks. In Proceedings of the Third International Conference on

Fundamentals of Software Engineering (FSEN), 2009.

[GN09] Jens Chr. Godskesen and Sebastian Nanz. Mobility models and be-

havioural equivalence for wireless networks. In Coordination Models and

Languages, 11th International Conference (COORDINATION), volume

5521 of Lecture Notes in Computer Science, pages 106–122. Springer, 2009.

[God07] Jens Chr. Godskesen. A calculus for mobile ad hoc networks. In COOR-

DINATION, volume 4467 of Lecture Notes in Computer Science, pages

132–150. Springer, 2007.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc.,

NJ, USA, 1985.

[HR98] Matthew Hennessy and James Riely. Resource access control in systems

of mobile agents. In High-Level Concurrent Languages, volume 16.3 of

Electr. Notes Theor. Comput. Sci., pages 3–17, 1998.

94

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous

communication. In ECOOP ’91: Proceedings of the European Confer-

ence on Object-Oriented Programming, pages 133–147, London, UK, 1991.

Springer-Verlag.

[JB01] C. Stirling J. Bradfield. Modal logics and mu-calculi: an introduction. In

Handbook of Process Algebra. Elsevier, 2001.

[MDC06] Alice Miller, Alastair F. Donaldson, and Muffy Calder. Symmetry in

temporal logic model checking. ACM Comput. Surv., 38(3), 2006.

[Mer07] Massimo Merro. An observational theory for mobile ad hoc networks. In

International Conference on the Mathematical Foundations of Program-

ming Semantics (MFPS’07), volume 173 of Electr. Notes Theor. Comput.

Sci., pages 275–293. Elsevier, 2007.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., NJ,

USA, 1989.

[Mil93] Robin Milner. The polyadic pi-calculus: a tutorial. In Logic and Algebra

of Specification, pages 203–246. Springer-Verlag, 1993.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts

I and II. Information and Computation, 100(1):1–77, 1992.

[MS06] N. Mezzetti and D. Sangiorgi. Towards a calculus for wireless systems. In

Proc. MFPS ’06, volume 158 of Electr. Notes Theor. Comput. Sci., pages

331–354. Elsevier, 2006.

[NH06] Sebastian Nanz and Chris Hankin. A framework for security analysis of

mobile wireless networks. Theoretical Computer Science, 367(1-2):203–

227, 2006.

[OPT02] Karol Ostrovsky, K. V. S. Prasad, and Walid Taha. Towards a primitive

higher order calculus of broadcasting systems. In PPDP, pages 2–13.

ACM, 2002.

95

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Bergstra, Ponse,

and Smolka, editors, Handbook of Process Algebra, pages 479–543. Elsevier,

2001.

[PBRD03] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R.

Das. Ad hoc on-demand distance vector routing protocol.

Internet-draft, IETF MANET Working Group, 2003. Available at

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt.

[Pod00] Andreas Podelski. Model checking as constraint solving. In Proceedings of

the 7th International Symposium on Static Analysis (SAS), pages 22–37.

Springer-Verlag, 2000.

[Pra93a] K. V. S. Prasad. A calculus of value broadcasts. In Parallel Architectures

and Languages Europe, pages 391–402, 1993.

[Pra93b] K. V. S. Prasad. Programming with broadcasts. In International Confer-

ence on Concurrency Theory, pages 173–187, 1993.

[Pra94] K. V. S. Prasad. Broadcasting with priority. In European Symposium on

Programming, pages 469–484, 1994.

[Pra95] K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Pro-

gram., 25(2-3):285–327, 1995.

[PV98] Joachim Parrow and Bjorn Victor. The fusion calculus: Expressiveness

and symmetry in mobile processes. In Logic in Computer Science, pages

176–185, 1998.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A.

Smolka, Terrance Swift, and David Scott Warren. Efficient model checking

using tabled resolution. In CAV, volume 1254 of LNCS, pages 143–154.

Springer, 1997.

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathematical.

Structures in Comp. Sci., 8(5):447–479, 1998.

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt

96

[SR03] Beata Sarna Starosta and C. R. Ramakrishnan. Constraint-based model

checking of data-independent systems. In International Conference on

Formal Engineering Methods (ICFEM), volume 2885 of Lecture Notes in

Computer Science, pages 579–598. Springer, 2003.

[SRS08] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus

for mobile ad hoc networks. In Proceedings of the 10th International Con-

ference on Coordination Models and Languag es (COORDINATION), vol-

ume 5052 of Lecture Notes in Computer Science, pages 296–314. Springer,

2008.

[SRS09a] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka.

A process calculus for mobile ad hoc networks. Sci-

ence of Computer Programming Journal (To Appear), 2009.

http://www.cs.sunysb.edu/∼anusingh/research/scp.pdf.

[SRS09b] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. Query-based model

checking of ad hoc network protocols. In Proceedings of the 20th Interna-

tional Conference on Concurrency Theory (CONCUR) (To Appear), 2009.

http://www.cs.sunysb.edu/∼anusingh/research/mcq.pdf.

[Sti81] Mark E. Stickel. A unification algorithm for associative-commutative func-

tions. J. ACM, 28(3):423–434, 1981.

[vHH04] L.F.W. van Hoesel and P.J.M. Havinga. A lightweight medium access

protocol (LMAC) for wireless sensor networks: Reducing preamble trans-

missions and transceiver state switches. In 1st International Workshop on

Networked Sensing Systems (INSS), pages 205–208, 2004.

[VKT04] Sudarshan Vasudevan, James F. Kurose, and Donald F. Towsley. Design

and analysis of a leader election algorithm for mobile ad hoc networks. In

ICNP, pages 350–360. IEEE Computer Society, 2004.

[XSB] XSB. The XSB logic programming system.

http://xsb.sourceforge.net.

http://www.cs.sunysb.edu/~anusingh/research/scp.pdf
http://www.cs.sunysb.edu/~anusingh/research/mcq.pdf
http://xsb.sourceforge.net

97

[YBR06] Ping Yang, Samik Basu, and C. R. Ramakrishnan. Parameterized veri-

fication of pi-calculus systems. In TACAS, volume 3920 of LNCS, pages

42–57. Springer, 2006.

[YDRS05] Ping Yang, Yifei Dong, C. R. Ramakrishnan, and Scott A. Smolka. A

provably correct compiler for efficient model checking of mobile processes.

In PADL, volume 3350 of LNCS, pages 113–127. Springer, 2005.

[YRS04] Ping Yang, C. R. Ramakrishnan, and Scott A. Smolka. A logical encoding

of the pi-calculus: Model checking mobile processes using tabled resolu-

tion. International Journal on Software Tools for Technology Transfer

(STTT), 6(1):38–66, 2004.

[ZC05] Dezhuang Zhang and Rance Cleaveland. Efficient temporal-logic query

checking for presburger systems. In ASE, pages 24–33. ACM, 2005.

Appendix A

Proof of Lemma 9

Lemma 9. For all nodes M1,M2 ∈ Nnf , i.e., M1, M2 are in normal form, the

following hold:

(i) M1 ∼ M2 implies ∀x ∈ Pn : (νx)M1 ∼ (νx)M2;

(ii) M1 ∼ M2 implies ∀g ∈ Gn : (νg)M1 ∼ (νg)M2; and

(iii) M1 ∼ M2 implies ∀N ∈ Nnf : M1|N ∼ M2|N .

Proof. We show parts (i–iii) of the lemma simultaneously by considering the set

S = {((νg̃)(νx̃)(M1|N), (νg̃)(νx̃)(M2|N)) | M1 ∼ M2, g̃ ⊆ Gn, x̃ ⊆ Pn,M1,M2, N ∈

Nnf}. Following Lemma 5 it is sufficient to show that S is a strong bisimulation upto

≡ to establish this lemma.

Note that if M1 ∼ M2 then fgn(M1) = fgn(M2), and hence

fgn((νg̃)(νx̃)(M1|N)) = fgn((νg̃)(νx̃)(M2|N)) for all g̃, x̃ and N . We then show

that every transition from (νg̃)(νx̃)(M1|N) can be matched by (νg̃)(νx̃)(M2|N) by

considering the derivations of transitions. Transitions for (νg̃)(νx̃)(M1|N) can be

derived by use of rules CLOSE, GNAME-RES1, GNAME-RES2, MOBILITY, PAR,

UNI-COM, UNI-CLOSE, COM, COM-RES, UNI-OPEN, OPEN and PNAME-RES.

Only the last three steps of each transition derivation are considered in the proof.

Most importantly, following Lemma 8, we do not need to consider derivations that

use STRUCT rules in the last two steps. From the structural operational semantics,

the last step of a derivation will be due to the outermost (νg̃) in the expression, the

next-to-last step due to the (νx̃) following the outermost (νg̃), and the earliest of the

three steps due to the parallel composition (M1|N).

98

99

We omit in the proof the symmetric cases arising due to the commutativity of

the parallel operator ‘|’. This gives rise to 15 cases (combinations of rules in the last

three steps in a derivation).

1. Case CLOSE, OPEN, COM: (νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N

′{x′/y})

given M1
Gx′

−→ M ′
1 and N

G′(y)
−→ N ′. The derivation is as follows, where

x̃1 = x̃ \ {x′}.

COM:
M1

Gx′
−→ M ′

1 N
G′(y)
−→ N ′

M1|N
Gx′
−→ M ′

1|N
′{x′/y}

G ∩G′ 6= ∅

OPEN:
(νx̃)(M1|N)

(νx′)Gx′
−→ (νx̃1)(M

′
1|N

′{x′/y})
CLOSE:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx′)(νx̃1)(M
′
1|N

′{x′/y})
G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that M2
Gx′

−→ M ′
2

and M ′
1 ∼M ′

2. Moreover, there exist expressions M ′
N1, M

′
N2 and N ′

N in normal

form such that M ′
1 ≡ M ′

N1, M
′
2 ≡ M ′

N2 and N ′{x′/y} ≡ N ′
N . Now, since

M ′
1 ∼ M ′

2, we know M ′
N1 ∼M ′

N2. Hence by construction of S, we can conclude

that the pair ((νg̃)(νx′)(νx̃1)(M
′
N1|N

′
N), (νg̃)(νx′)(νx̃1)(M

′
N2|N

′
N)) ∈ S, and

hence ((νg̃)(νx̃)(M ′
1|N

′{x′/y}), (νg̃)(νx̃)(M ′
2|N

′{x′/y})) ∈ ≡S≡.

2. Case CLOSE, OPEN, PAR:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N) given M1

Gx′

−→ M ′
1 , where x̃1 =

x̃ \ {x′}. The derivation is given below:

PAR:
M1

Gx′
−→ M ′

1

M1|N
Gx′
−→ M ′

1|N
OPEN:

(νx̃)(M1|N)
(νx′)Gx′
−→ (νx̃1)(M

′
1|N)

CLOSE:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx′)(νx̃1)(M

′
1|N)

G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1 and

100

M ′
N2 in normal form such that M ′

1 ≡ M ′
N1 and M ′

2 ≡ M ′
N2. Now, since

M ′
1 ∼ M ′

2, we know M ′
N1 ∼ M ′

N2. Hence by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N), (νg̃)(νx̃)(M ′

N2
|N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N), (νg̃)(νx̃)(M ′

2|N)) ∈ ≡S≡.

3. Case CLOSE, PNAME-RES, COM-RES:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃1)(M
′
1|N

′) given M1
(νx′)Gx′

−→ M ′
1 and N

G′(x′)
−→

N ′ where x̃1 = x̃ ∪ {x′}. The derivation is given below:

COM-RES:
M1

(νx′)Gx′
−→ M ′

1 N
G′(x′)
−→ N ′

M1|N
(νx′)Gx′
−→ M ′

1|N
′

G ∩G′ 6= ∅

PNAME-RES:

(νx̃)(M1|N)
(νx′)Gx′
−→ (νx̃)(M ′

1|N
′)

x′ /∈ x̃

CLOSE:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx′)(νx̃)(M ′

1|N
′)

G \ g̃ = ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
(νx′)Gx′

−→ M ′
2 and M ′

1 ∼M ′
2. Moreover, there exist expressions M ′

N1, M
′
N2 and

N ′
N in normal form such that M ′

1 ≡ M ′
N1, M

′
2 ≡ M ′

N2 and N ′ ≡ N ′
N . Now,

since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N ′

N), (νg̃)(νx̃1)(M
′
N2
|N ′

N)) ∈ S, and

hence ((νg̃)(νx̃1)(M
′
1|N

′), (νg̃)(νx̃1)(M
′
2|N

′)) ∈ ≡S≡.

4. Case CLOSE, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃1)(M
′
1|N) given M1

(νx′)Gx′

−→ M ′
1, where

x̃1 = x̃ ∪ {x′}. The derivation is given below:

101

PAR:
M1

(νx′)Gx′
−→ M ′

1

M1|N
(νx′)Gx′
−→ M ′

1|N
x′ ∩ fn(N) = ∅

PNAME-RES:

(νx̃)(M1|N)
(νx′)Gx′
−→ (νx̃)(M ′

1|N)

x′ /∈ x̃

CLOSE:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx′)(νx̃)(M ′

1|N)
G \ g̃ = ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
(νx′)Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
and

M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N), (νg̃)(νx̃1)(M

′
N2
|N)) ∈ S, and hence

((νg̃)(νx̃1)(M
′
1|N), (νg̃)(νx̃1)(M

′
2|N)) ∈ ≡S≡.

5. Case GNAME-RES1, UNI-OPEN, PAR:

(νg̃)(νx̃)(M1|N)
(νx′)z:G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N) given M1

z:Gx′

−→ M ′
1, where

x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is given below:

PAR:
M1

z:Gx′
−→ M ′

1

M1|N
z:Gx′
−→ M ′

1|N
UNI-OPEN:

(νx̃)(M1|N)
(νx′)z:Gx′

−→ (νx̃1)(M
′
1|N)

x′ 6= z, z /∈ x̃

GNAME-RES1:

(νg̃)(νx̃)(M1|N)
(νx′)z:G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N)

G′′ 6= ∅

Since M1 ∼ M2, M1
z:Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
z:Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
and

M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N), (νg̃)(νx̃1)(M

′
N2
|N)) ∈ S, and hence

((νg̃)(νx̃1)(M
′
1|N), (νg̃)(νx̃1)(M

′
2|N)) ∈ ≡S≡.

102

6. Case GNAME-RES1, OPEN, COM:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N

′{x′/y}) given M1
Gx′

−→ M ′
1 and

N
G′(y)
−→ N ′, where x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is given

below:

COM:
M1

Gx′
−→ M ′

1 N
G′(y)
−→ N ′

M1|N
Gx′
−→ M ′

1|N
′{x′/y}

G ∩G′ 6= ∅

OPEN:

(νx̃)(M1|N)
(νx′)Gx′
−→ (νx̃1)(M

′
1|N

′{x′/y})
GNAME-RES1:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N

′{x′/y})

G′′ 6= ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that M2
Gx′

−→ M ′
2

and M ′
1 ∼ M ′

2. Moreover, there exist expressions M ′
N1

, M ′
N2

and N ′
N in

normal form such that M ′
1 ≡ M ′

N1
, M ′

2 ≡ M ′
N2

and N ′{x′/y} ≡ N ′
N . Now,

since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N ′

N), (νg̃)(νx̃1)(M
′
N2
|N ′

N)) ∈ S, and

hence ((νg̃)(νx̃1)(M
′
1|N

′{x′/y}), (νg̃)(νx̃1)(M
′
2|N

′{x′/y})) ∈ ≡S≡.

7. Case GNAME-RES1, OPEN, PAR:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N) given M1

Gx′

−→ M ′
1, where

x̃1 = x̃ \ {x′} and G′′ = G \ g̃. The derivation is given below:

PAR:
M1

Gx′
−→ M ′

1

M1|N
Gx′
−→ M ′

1|N
OPEN:

(νx̃)(M1|N)
(νx′)Gx′
−→ (νx̃1)(M

′
1|N)

GNAME-RES1:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃1)(M
′
1|N)

G′′ 6= ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
and

M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

103

M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N), (νg̃)(νx̃1)(M

′
N2
|N)) ∈ S, and hence

((νg̃)(νx̃1)(M
′
1|N), (νg̃)(νx̃1)(M

′
2|N)) ∈ ≡S≡.

8. Case GNAME-RES1, PNAME-RES, MOBILITY:

(νg̃)(νx̃)(M1|N)
µ

−→ (νg̃)(νx̃)(M ′
1|N

′). The derivation is given below:

MOBILITY:
M1|N

µ
−→ M ′

1|N
′

PNAME-RES:
(νx̃)(M1|N)

µ
−→ (νx̃)(M ′

1|N
′)

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

µ
−→ (νg̃)(νx̃)(M ′

1|N
′)

and I(M1|N) =⇒ I(M ′
1|N

′) for a connectivity invariant I.

Now consider the following cases for M ′
1 and N ′:

(a) M ′
1 = M1 and N ′ differs from N only in one of its basic node’s interface,

i.e. N ′ is obtained by replacing one basic node P : G in N by P : G′,

where G′ ⊆ fgn(M1) ∪ fgn(N).

Since M1 ∼ M2, fgn(M1) = fgn(M2) and M1|N
µ

−→ M1|N
′ imply that

M2|N
µ

−→ M2|N
′ such that I(M2|N) =⇒ I(M2|N

′), and it can be

derived that (νg̃)(νx̃)(M2|N)
µ

−→ (νg̃)(νx̃)(M2|N
′). Moreover, there

exist N ′
N in normal form such that N ′ ≡ N ′

N . Hence, by construction of

S, we can conclude that pair ((νg̃)(νx̃)(M1|N
′
N), (νg̃)(νx̃)(M2|N

′
N)) ∈ S,

and hence ((νg̃)(νx̃)(M1|N
′), (νg̃)(νx̃)(M2|N

′)) ∈ ≡S≡.

(b) N ′ = N and M ′
1 is obtained from M1 by replacing one of its basic node

P : GP in M1 by P : G′
P in M ′

1, where G′
P ⊆ fgn(M1) ∪ fgn(N).

Let M2 contain a basic node Q : GQ and M ′
2 differ from M2 only due to

Q : GQ replaced by Q : G′
Q, where G′

Q ⊆ fgn(M2) ∪ fgn(N).

Consider the following two cases:

(i) G′
P and G′

Q contain gnames only in fgn(M1) and fgn(M2), respectively,

then M ′
1 and M ′

2 can be derived using MOBILITY rule from M1 and M2,

104

respectively. Since M1 ∼M2, fgn(M1) = fgn(M2) and M1
µ

−→ M ′
1 implies

that M2
µ

−→ M ′
2, and M ′

1 ∼M ′
2.

(ii) G′
P and G′

Q also contain gnames in fgn(N). Since the possible new free

gnames (other than fgn(M1) and fgn(M2)), added to basic nodes P : GP

in M1 and Q : GQ in M2 leading to M ′
1 and M ′

2, respectively, are drawn

from the same set of gnames fgn(N), similarity in behavior (transitions)

of M ′
1 and M ′

2 is preserved i.e. M ′
1 ∼M ′

2.

M2|N
µ

−→ M ′
2|N and it can be derived that

(νg̃)(νx̃)(M2|N)
µ

−→ (νg̃)(νx̃)(M ′
2|N) such that I(M2|N) =⇒

I(M ′
2|N). Moreover, there exist expressions M ′

N1
and M ′

N2
in normal

form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since M ′
1 ∼ M ′

2,

we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can conclude

that the pair ((νg̃)(νx̃)(M ′
N1
|N), (νg̃)(νx̃)(M ′

N2
|N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N), (νg̃)(νx̃)(M ′

2|N)) ∈ ≡S≡.

9. Case GNAME-RES1, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N)
α\g̃
−→ (νg̃)(νx̃)(M ′

1|N) given M1
α

−→ M ′
1. The derivation is

given below:

PAR:
M1

α
−→ M ′

1

M1|N
α

−→ M ′
1|N

bn(α) ∩ fn(N) = ∅

PNAME-RES:
(νx̃)(M1|N)

α
−→ (νx̃)(M ′

1|N)
x̃ ∩ n(α) = ∅

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

α\g̃
−→ (νg̃)(νx̃)(M ′

1|N)

Since M1 ∼ M2, M1
α

−→ M ′
1 means that there is an M ′

2 such that

M2
α

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
and

M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N), (νg̃)(νx̃)(M ′

N2
|N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N), (νg̃)(νx̃)(M ′

2|N)) ∈ ≡S≡.

For the case α = µ, the conditions I(M1|N) =⇒ I(M ′
1|N) and

105

I(M2|N) =⇒ I(M ′
2|N), for a connectivity invariant I, also come into

effect.

Note that if α \ g̃ is of the form G(x′) or z :G(x′), where x′ ∈ Pn, the proof

involves following reasoning:

M1 ∼ M2 implies for all y ∈ Pn, M ′
1{y/x

′} ∼ M ′
2{y/x

′}. More-

over, there exist expressions M ′
N1

and M ′
N2

in normal form such

that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. We infer that for all y ∈ Pn,

M ′
1{y/x

′} ∼ M ′
2{y/x

′} implies M ′
N1
{y/x′} ∼ M ′

N2
{y/x′}. Therefore,

for all y ∈ Pn, ((νg̃)(νx̃)(M ′
N1
{y/x′}|N), (νg̃)(νx̃)(M ′

N2
{y/x′}|N)) ∈ S.

Since bn(α) ∩ fn(N) = ∅, we know x′ /∈ fn(N). Hence, for all

pname y ∈ Pn, (νg̃)(νx̃)(M ′
N1
{y/x′}|N) = ((νg̃)(νx̃)(M ′

N1
|N)){y/x′}

and (νg̃)(νx̃)(M ′
N2
{y/x′}|N) = ((νg̃)(νx̃)(M ′

N2
|N)){y/x′}. Hence, by

construction of S, we can conclude that for all y ∈ Pn, the pair

(((νg̃)(νx̃)(M ′
N1
|N)){y/x′}, ((νg̃)(νx̃)(M ′

N2
|N)){y/x′}) ∈ S, and hence for

all y ∈ Pn, (((νg̃)(νx̃)(M ′
1|N){y/x′}), ((νg̃)(νx̃)(M ′

2|N)){y/x′}) ∈ ≡S≡.

10. Case GNAME-RES1, PNAME-RES, UNI-COM:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N

′{x′/y}) given M1
z:Gx′

−→ M ′
1 and

N
z:G′(y)
−→ N ′. The derivation is given below:

UNI-COM:
M1

z:Gx′
−→ M ′

1 N
z:G′(y)
−→ N ′

M1|N
τ

−→ M ′
1|N

′{x′/y}
G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

τ
−→ (νx̃)(M ′

1|N
′{x′/y})

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx̃)(M ′

1|N
′{x′/y})

Since M1 ∼ M2, M1
z:Gx′

−→ M ′
1 means that there is an M ′

2 s.t. M2
z:Gx′

−→ M ′
2

and M ′
1 ∼ M ′

2. Moreover, there exist expressions M ′
N1

, M ′
N2

and N ′
N in

normal form such that M ′
1 ≡ M ′

N1
, M ′

2 ≡ M ′
N2

and N ′{x′/y} ≡ N ′
N . Now,

since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

106

conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N ′

N), (νg̃)(νx̃)(M ′
N2
|N ′

N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N

′{x′/y}), (νg̃)(νx̃)(M ′
2|N

′{x′/y})) ∈ ≡S≡.

11. Case GNAME-RES1, PNAME-RES, UNI-CLOSE:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃1)(M
′
1|N

′) given M1
(νx′)z:Gx′

−→ M ′
1 and

N
z:G′(x′)
−→ N ′, where x̃1 = x̃ ∪ {x′}. The derivation is given below:

UNI-CLOSE:
M1

(νx′)z:Gx′
−→ M ′

1 N
z:G′(x′)
−→ N ′

M1|N
τ

−→ (νx′)(M ′
1|N

′)
G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

τ
−→ (νx̃)(νx′)(M ′

1|N
′)

GNAME-RES1:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx̃)(νx′)(M ′

1|N
′)

Since M1 ∼ M2, M1
(νx′)z:Gx′

−→ M ′
1 means that there exists an M ′

2 such that

M2
(νx′)z:Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
, M ′

N2

and N ′
N in normal form such that M ′

1 ≡ M ′
N1

, M ′
2 ≡ M ′

N2
and N ′ ≡ N ′

N . Now,

since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃1)(M
′
N1
|N ′

N), (νg̃)(νx̃1)(M
′
N2
|N ′

N)) ∈ S, and

hence ((νg̃)(νx̃1)(M
′
1|N

′), (νg̃)(νx̃1)(M
′
2|N

′)) ∈ ≡S≡.

12. Case GNAME-RES1, PNAME-RES, COM:

(νg̃)(νx̃)(M1|N)
G′′x′

−→ (νg̃)(νx̃)(M ′
1|N

′{x′/y}) given M1
Gx′

−→ M ′
1 and

N
G′(y)
−→ N ′, where G′′ = G \ g̃. The derivation is given below:

COM:
M1

Gx′
−→ M ′

1 N
G′(y)
−→ N ′

M1|N
Gx′
−→ M ′

1|N
′{x′/y}

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

Gx′
−→ (νx̃)(M ′

1|N
′{x′/y})

x′ /∈ x̃

GNAME-RES1:

(νg̃)(νx̃)(M1|N)
G′′x′
−→ (νg̃)(νx̃)(M ′

1|N
′{x′/y})

G′′ 6= ∅

107

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there exists an M ′

2 such that

M2
Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
, M ′

N2
and

N ′
N in normal form such that M ′

1 ≡ M ′
N1

, M ′
2 ≡ M ′

N2
and N ′{x′/y} ≡ N ′

N .

Now, since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we

can conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N ′

N), (νg̃)(νx̃)(M ′
N2
|N ′

N)) ∈ S, and

hence ((νg̃)(νx̃)(M ′
1|N

′{x′/y}), (νg̃)(νx̃)(M ′
2|N

′{x′/y})) ∈ ≡S≡.

13. Case GNAME-RES1, PNAME-RES, COM-RES:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃)(M ′
1|N

′) given M1
(νx′)Gx′

−→ M ′
1 and

N
G′(x′)
−→ N ′, where G′′ = G \ g̃. The derivation is given below:

COM-RES:
M1

(νx′)Gx′
−→ M ′

1 N
G′(x′)
−→ N ′

M1|N
(νx′)Gx′
−→ M ′

1|N
′

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

(νx′)Gx′
−→ (νx̃)(M ′

1|N
′)

x′ /∈ x̃

GNAME-RES1:

(νg̃)(νx̃)(M1|N)
(νx′)G′′x′

−→ (νg̃)(νx̃)(M ′
1|N

′)

G′′ 6= ∅

Since M1 ∼ M2, M1
(νx′)Gx′

−→ M ′
1 means that there is an M ′

2 such that

M2
(νx′)Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expressions M ′

N1
, M ′

N2

and N ′
N in normal form such that M ′

1 ≡ M ′
N1

, M ′
2 ≡ M ′

N2
and N ′ ≡ N ′

N .

Now, since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we

can conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N ′

N), (νg̃)(νx̃)(M ′
N2
|N ′

N)) ∈ S, and

hence ((νg̃)(νx̃)(M ′
1|N

′), (νg̃)(νx̃)(M ′
2|N

′)) ∈ ≡S≡.

14. Case GNAME-RES2, PNAME-RES, COM:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N

′{x′/y}) given M1
Gx′

−→ M ′
1 and

N
G′(y)
−→ N ′. The derivation is given below:

108

COM:
M1

Gx′
−→ M ′

1 N
G′(y)
−→ N ′

M1|N
Gx′
−→ M ′

1|N
′{x′/y}

G ∩G′ 6= ∅

PNAME-RES:
(νx̃)(M1|N)

Gx′
−→ (νx̃)(M ′

1|N
′{x′/y})

x′ /∈ x̃

GNAME-RES2:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx̃)(M ′

1|N
′{x′/y})

G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there is an M ′

2 such that M2
Gx′

−→ M ′
2

and M ′
1 ∼ M ′

2. Moreover, there exist expressions M ′
N1

, M ′
N2

and N ′
N in

normal form such that M ′
1 ≡ M ′

N1
, M ′

2 ≡ M ′
N2

and N ′{x′/y} ≡ N ′
N . Now,

since M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N ′

N), (νg̃)(νx̃)(M ′
N2
|N ′

N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N

′{x′/y}), (νg̃)(νx̃)(M ′
2|N

′{x′/y})) ∈ ≡S≡.

15. Case GNAME-RES2, PNAME-RES, PAR:

(νg̃)(νx̃)(M1|N)
τ

−→ (νg̃)(νx̃)(M ′
1|N) given M1

Gx′

−→ M ′
1.

PAR:
M1

Gx′
−→ M ′

1

M1|N
Gx′
−→ M ′

1|N
PNAME-RES:

(νx̃)(M1|N)
Gx′
−→ (νx̃)(M ′

1|N)
x′ /∈ x̃

GNAME-RES2:
(νg̃)(νx̃)(M1|N)

τ
−→ (νg̃)(νx̃)(M ′

1|N)
G \ g̃ = ∅

Since M1 ∼ M2, M1
Gx′

−→ M ′
1 means that there exists an M ′

2 such that

M2
Gx′

−→ M ′
2 and M ′

1 ∼ M ′
2. Moreover, there exist expression M ′

N1
and

M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

M ′
1 ∼ M ′

2, we know M ′
N1

∼ M ′
N2

. Hence, by construction of S, we can

conclude that the pair ((νg̃)(νx̃)(M ′
N1
|N), (νg̃)(νx̃)(M ′

N2
|N)) ∈ S, and hence

((νg̃)(νx̃)(M ′
1|N), (νg̃)(νx̃)(M ′

2|N)) ∈ ≡S≡.

By considering the 15 cases and their symmetric counterparts due to commutativity

of ‘|’ operator, all possible derivations are covered and we conclude that for every

109

transition from (νg̃)(νx̃)(M1|N), there is a transition from (νg̃)(νx̃)(M2|N) such that

the destinations of the two transitions are related by ≡S≡. Thus we establish that S

is a strong bisimulation upto ≡. Following Lemma 5, we conclude that S is a strong

bisimulation. Therefore, ∼ is preserved by restriction of pnames and gnames, and

the parallel operator for ω-expressions in normal form.

This proof is complete because at each proof step all possible transitions from an

expression are considered to find its derivatives. The fifteen cases along with their

symmetric counterparts for the parallel operator cover all the derivation possibilities.

All the possible transitions at the node level (pertaining to broadcast, unicast, silent

action, and mobility) are taken into account through the derivations given in the

proof. ⊓⊔

Appendix B

Symbolic Bisimulation for the

ω0-Calculus

We prove that the symbolic bisimulation equivalence for the ω0-calculus is a congru-

ence. The proof for the extended calculi follow along the same lines.

Lemma 21 For all M1,M2 ∈ Nnf , i.e., M1,M2 are in normal form, the following

hold:

(i) M1 ≍ M2 implies ∀g ∈ Gn : (νg)M1 ≍ (νg)M2; and

(ii) M1 ≍ M2 implies ∀N ∈ Nnf : M1|N ≍ M2|N .

Proof. We show parts (i–ii) of the lemma simultaneously by considering the set

S = {((νg̃)(M1|N), (νg̃)(M2|N)) | M1 ≍ M2, g̃ ⊆ Gn,M1,M2, N ∈ Nnf}. Following

Lemma 5 it is sufficient to show that S is a strong bisimulation upto ≡ to establish

this lemma.

Note that if M1 ≍ M2 then fgn(M1) = fgn(M2), and hence fgn((νg̃)(M1|N)) =

fgn((νg̃)(M2|N)) for all g̃ and N . We then show that every transition from

(νg̃)(M1|N) can be matched by (νg̃)(M2|N) by considering the derivations of transi-

tions. Transitions for (νg̃)(M1|N) can be derived by the use of rules GNAME-RES1,

GNAME-RES2, MOBILITY, PAR and COM. Only the last two steps of each tran-

sition derivation are considered in the proof. Most importantly, following Lemma 8,

we do not need to consider derivations that use STRUCT rules in the last step. From

the structural operational semantics, the last step of a derivation will be due to the

110

111

outermost (νg̃) in the expression, and the first step due to the parallel composition

(M1|N). We omit in the proof the symmetric cases arising due to the commutativity

of the parallel operator ‘|’. This gives rise to 5 cases (combinations of rules in the last

two steps in a derivation).

1. Case GNAME-RES1, COM:

(νg̃)(M1|N)
C1∧C,G′′x
−→ (νg̃)(M ′

1|N
′{x/y}) given M1

C1,Gx
−→ M ′

1 and N
C,G′(y)
−→

N ′, where G′′ = G \ g̃. The derivation is given below:

COM:
M1

C1,Gx
−→ M ′

1 N
C,G′(y)
−→ N ′

M1|N
C1∧C,Gx
−→ M ′

1|N
′{x/y}

G ∩G′ 6= ∅

GNAME-RES1:

(νg̃)(M1|N)
C1∧C,G′′x

−→ (νg̃)(M ′
1|N

′{x/y})

G′′ 6= ∅

Since M1 ≍ M2, M1
C1,Gx
−→ M ′

1 implies ∃M ′
2, β, and C2 such that M2

C2,β
−→ M ′

2

and C1 ⊲ C2, GxσC1
≡ βσC1

, M ′
1σC1

≍ M ′
2σC1

. Moreover, there exist

expressions M ′
N1

, M ′
N2

and N ′
N in normal form such that M ′

1 ≡ M ′
N1

,

M ′
2 ≡ M ′

N2
and N ′{x/y} ≡ N ′

N . Now, since M ′
1σC1

≍ M ′
2σC1

, we know

M ′
N1
σC1

≍ MN2
σ′

C1
. Hence, by construction of S, we can conclude that

the pair ((νg̃)(M ′
N1
σC1

|N ′
NσC1∧C), (νg̃)(M ′

N2
σC1

|N ′
NσC1∧C)) ∈ S, and hence

((νg̃)(M ′
1|N

′{x/y})σC1∧C , (νg̃)(M
′
2|N

′{x/y})σC1∧C) ∈ ≡S≡.

2. Case GNAME-RES1, MOBILITY:

(νg̃)(M1|N)
true,µ
−→ (νg̃)(M ′

1|N
′). The derivation is given below:

MOBILITY:
M1|N

true,µ
−→ M ′

1|N
′

GNAME-RES1:
(νg̃)(M1|N)

true,µ
−→ (νg̃)(M ′

1|N
′)

and I(M1|N) =⇒ I(M ′
1|N

′) for a connectivity invariant I.

A case analysis of M ′
1 and N ′, similar to as in Case 8 (GNAME-RES1,

PNAME-RES, MOBILITY) for proof of Lemma 9 given in Appendix A, can

112

be used to conclude that ((νg̃)(M ′
1|N

′), (νg̃)(M ′
2|N

′)) ∈ ≡S≡.

3. Case GNAME-RES1, PAR:

(νg̃)(M1|N)
C1,α\g̃
−→ (νg̃)(M ′

1|N) given M1
C1,α
−→ M ′

1. The derivation is given

below:

PAR:
M1

C1,α
−→ M ′

1

M1|N
C1,α
−→ M ′

1|N
bn(α) ∩ fn(N) = ∅

GNAME-RES1:
(νg̃)(M1|N)

C1,α\g̃
−→ (νg̃)(M ′

1|N)

Since M1 ≍M2, M1
C1,α
−→M ′

1 implies ∃M ′
2, β, and C2 such that M2

C2,β
−→ M ′

2 and

C1 ⊲ C2, ασC1
≡ βσC1

, M ′
1σC1

≍ M ′
2σC1

. Moreover, there exist expressions M ′
N1

and M ′
N2

in normal form such that M ′
1 ≡ M ′

N1
and M ′

2 ≡ M ′
N2

. Now, since

M ′
1σC1

≍ M ′
2σC1

, we know M ′
N1
σC1

≍ M ′
N2
σC1

. Hence, by construction of S,

we can conclude that the pair ((νg̃)(M ′
N1
σC1

|NσC1
), (νg̃)(M ′

N2
σC1

|NσC1
)) ∈ S,

and hence ((νg̃)(M ′
1|N)σC1

, (νg̃)(M ′
2|N)σC1

) ∈ ≡S≡.

For the case α = µ, the conditions I(M1|N) =⇒ I(M ′
1|N) and

I(M2|N) =⇒ I(M ′
2|N), for a connectivity invariant I, also come into

effect in the above derivations.

For the case when α \ g̃ is of the form G(x′), we can reason in a manner similar

to that for the Case 9 (GNAME-RES1, PNAME-RES, PAR) for proof of

Lemma 9 given in Appendix A.

4. Case GNAME-RES2, COM:

(νg̃)(M1|N)
C1∧C,τ
−→ (νg̃)(M ′

1|N
′{x/y}) given M1

C1,Gx
−→ M ′

1 and N
C,G′(y)
−→ N ′.

The derivation is given below:

113

COM:
M1

C1,Gx
−→ M ′

1 N
C,G′(y)
−→ N ′

M1|N
C1∧C,Gx
−→ M ′

1|N
′{x/y}

G ∩G′ 6= ∅

GNAME-RES2:
(νg̃)(M1|N)

C1∧C,τ
−→ (νg̃)(M ′

1|N
′{x/y})

G \ g̃ = ∅

Since M1 ≍ M2, M1
C1,Gx
−→ M ′

1 implies ∃M ′
2, β, and C2 such that M2

C2,β
−→ M ′

2

and C1 ⊲ C2, GxσC1
≡ βσC1

, M ′
1σC1

≍ M ′
2σC1

. Moreover, there exist

expressions M ′
N1

, M ′
N2

and N ′
N in normal form such that M ′

1 ≡ M ′
N1

,

M ′
2 ≡ M ′

N2
and N ′{x/y} ≡ N ′

N . Now, since M ′
1σC1

≍ M ′
2σC1

, we

know M ′
N1
σC1

≍ M ′
N2
σC1

. Hence, by construction of S, we can conclude

that ((νg̃)(M ′
N1
σC1

|N ′
NσC1∧C), (νg̃)(M ′

N2
σC1

|N ′
NσC1∧C)) ∈ S, and hence

((νg̃)(M ′
1|N

′{x/y})σC1∧C , (νg̃)(M
′
2|N

′{x/y})σC1∧C) ∈ ≡S≡.

5. Case GNAME-RES2, PAR:

(νg̃)(M1|N)
C1,τ
−→ (νg̃)(M ′

1|N) given M1
C1,Gx
−→ M ′

1. The derivation is given

below:

PAR:
M1

C1,Gx
−→ M ′

1

M1|N
C1,Gx
−→ M ′

1|N
GNAME-RES2:

(νg̃)(M1|N)
C1,τ
−→ (νg̃)(M ′

1|N)
G \ g̃ = ∅

Since M1 ≍ M2, M1
C1,Gx
−→ M ′

1 implies ∃M ′
2, β, and C2 such that M2

C2,β
−→ M ′

2

and C1 ⊲C2, GxσC1
≡ βσC1

, M ′
1σC1

≍M ′
2σC1

. Moreover, there exist expression

M ′
N1

and M ′
N2

in normal form such that M ′
1 ≡M ′

N1
and M ′

2 ≡M ′
N2

. Now, since

M ′
1σC1

≍M ′
2σC1

, we know M ′
N1
σC1

≍M ′
N2
σC1

. Hence, by construction of S, we

can conclude that ((νg̃)(M ′
N1
σC1

|NσC1
), (νg̃)(M ′

N2
σC1

|NσC1
)) ∈ S, and hence

((νg̃)(M ′
1|N)σC1

, (νg̃)(M ′
2|N)σC1

) ∈ ≡S≡.

By considering the 5 cases and their symmetric counterparts due to the commu-

tativity of ‘|’ operator, all possible derivations are covered and we conclude that S

is a symbolic bisimulation up to ≡. Following Lemma 5 we conclude that S is a

114

symbolic bisimulation. Therefore, ≍ is preserved by restriction of gnames and the

parallel operator for ω0-expressions in normal form.

This proof is complete because at each proof step all possible transitions from

an expression are considered to find its derivatives. The five cases along with their

symmetric counterparts for the parallel operator cover all the derivation possibilities.

All the possible transitions at the node level (pertaining to broadcast send/receive,

silent action, and mobility) are taken into account through the derivations given in

the proof. ⊓⊔

Theorem 22 (Congruence for Symbolic Bisimulation for the ω0-Calculus)

≍ is a congruence for the ω0-calculus; i.e., for all M1,M2 ∈ N, the following hold:

(i) M1 ≍ M2 implies ∀g ∈ Gn : (νg)M1 ≍ (νg)M2; and

(ii) M1 ≍ M2 implies ∀N ∈ N : M1|N ≍ M2|N .

Proof: Let M1 ≡ MN1
and M2 ≡ MN2

, where MN1
and MN2

are in normal form.

Then the following holds:

• M1 ≍ M2 implies MN1
≍ MN2

(from Definition 2 and Lemma 5). MN1
≍ MN2

implies ∀g ∈ Gn: (νg)MN1
≍ (νg)MN2

(by Lemma 21), which in turn implies

(νg)M1 ≍ (νg)M2 (by Def. 2 and Lemma 5). Therefore, whenever M1 ≍ M2

then (νg)M1 ≍ (νg)M2.

• M1 ≍ M2 implies MN1
≍ MN2

(from Definition 2 and Lemma 5). MN1
≍

MN2
implies for any N ∈ N, and N ≡ NN where, NN ∈ Nnf : (MN1

|NN) ≍

(MN2
|NN) (by Lemma 21), which in turn implies (M1|N) ≍ (M2|N) (by Def. 2

and Lemma 5). Therefore, whenever M1 ≍M2 then (M1|N) ≍ (M2|N).

≍ is preserved by all the node contexts for the ω0-calculus. Hence, ≍ is a congru-

ence for the ω0-calculus. ⊓⊔

Appendix C

Proof of Theorem 20

Proposition 23 Let M and N be two ω0 node expressions, δ a set of substitutions

on pnames. Then for all formulas ϕ following holds:

M ≡ N =⇒ (M |=δ ϕ⇔ N |=δ ϕ)

Theorem 20. Let M and N be two node expressions, and δ a set of substitutions.

Then for all formulas ϕ, the following holds:

M |N |=δ ϕ ⇔ M |=δ Π(N)(ϕ)

Proof: The proof proceeds by induction on the size of the node expression and the

formula. We go through each of the rules of the compositional model checker to

complete the proof.

• Rule 1: The theorem is trivially true when ϕ is a propositional constant (tt or

ff).

• Rule 2: ϕ = (x = y) or ϕ = (x 6= y).

M |N |=δ (x = y) ⇔ δ |= x = y ⇔ M |=δ Π(N)(ϕ)

• Rules 3 and 4: ϕ = ϕ1 ∨ ϕ2

M |N |=δ ϕ1 ∨ ϕ2

⇔ M |N |=δ ϕ1 ∨M |N |=δ ϕ2

115

116

⇔ M |=δ Π(N)(ϕ1) ∨M |=δ Π(N)(ϕ2)

⇔ M |=δ Π(N)(ϕ1) ∨ Π(N)(ϕ2)

⇔ M |=δ Π(N)(ϕ1 ∨ ϕ2)

The case for conjunctive formula (Rule 4) follows along the same lines.

• Rule 6: ϕ = ∃x.ψ.

M |N |=δ ∃x.ψ ⇔ M |=δ Π(N)(∃x.ψ) ⇔ M |=δ ∃x.Π(N)(ψ) , if x /∈ fn(N).

The case for ϕ = ∀x.ψ is similar.

• Rule 7: Node expression N = 0

M | 0 |=δ ϕ ⇔ M |=δ ϕ ⇔ M |=δ Π(0)(ϕ)

• Rule 8: Process definition A(
⇀
x)

def
= P

M |A(
⇀
x) :G |=δ ϕ

⇔M |P :G |=δ ϕ

⇔M |=δ Π(P :G)(ϕ)

⇔M |=δ Π(A(
⇀
x) :G)(ϕ)

• Rule 9: Consider the case N = N1 |N2

M | (N1 |N2) |=δ ϕ

⇔M |N1 |=δ Π(N2)(ϕ) induction hypothesis

⇔M |=δ Π(N1)(Π(N2)(ϕ)) induction hypothesis

⇔M |=δ Π(N1 |N2)(ϕ)

• Rule 10: N = (νg)N ′ where g is a local name.

M | (νg)N ′ |=δ ϕ

⇔ (νg′)(M |N ′{g′/g}) |=δ ϕ from Proposition 23

where g′ /∈ fgn(M) ∪ fgn(N ′) ∪ n(ϕ)

⇔M |N ′{g′/g} |=δ ϕ+{g′} from Proposition 19

⇔M |=δ Π(N ′{g′/g})(ϕ+{g′}) induction hypothesis

⇔ (νg′)M |=δ Π(N ′{g′/g})(ϕ+{g′}) from Proposition 23

⇔M |=δ (Π(N ′{g′/g})(ϕ+{g′}))−{g′} from Proposition 19

⇔M |=δ Π((νg)N ′)(ϕ)

117

• Rules 12 and 13: N = (P1 + P2) :G

M | (P1 + P2) :G |=δ 〈α〉ϕ

⇔M ′ | (P1 + P2) :G |=δ ϕ, if M
b,α
−→ M ′ ∧ (δ |= b)

∨M |P1 :G |=δ 〈α〉ϕ

∨M |P2 :G |=δ 〈α〉ϕ

⇔M ′ |=δ Π(P1 + P2 :G)(ϕ) ∨M |=δ Π(P1 :G)(〈α〉ϕ) ∨M |=δ Π(P2 :G)(〈α〉ϕ)

⇔M |=δ 〈α〉Π((P1 +P2) :G)(ϕ)∨M |=δ Π(P1 :G)(〈α〉ϕ)∨M |=δ Π(P2 :G)(〈α〉ϕ)

⇔M |=δ 〈α〉Π((P1 + P2) :G)(ϕ) ∨ Π(P1 :G)(〈α〉ϕ) ∨ Π(P2 :G)(〈α〉ϕ)

The case for [α]ϕ is similar.

• Rule 11: N = a.P :G and ϕ = 〈α〉ϕ′

Consider the case when α = G′{y}.

M | a.P :G |=δ 〈G′{y}〉ϕ′

⇔M ′ | a.P :G |=δ ϕ
′{x/y} if M

b,G′′x
−→ M ′ ∧ (δ |= b) ∧G′′ = G′

∨M |P :G |=δ ϕ
′{x/y} if a = bx ∧G = G′

Considering the first disjunct,

M ′ | a.P :G |=δ ϕ
′{x/y}

⇔M ′ |=δ Π(a.P :G)(ϕ′{x/y})

⇔M |=δ 〈G′{y}〉Π(a.P :G)(ϕ′) where y /∈ fn(a.P :G)

Considering the second disjunct,

M |P :G |=δ ϕ
′{x/y}

⇔M |=δ Π(P :G)(ϕ′{x/y})

Finally,

M |=δ Π(a.P :G)(〈G′{y}〉ϕ′)

⇔M |=δ 〈G′{y}〉Π(a.P :G)(ϕ′) where y /∈ fn(a.P :G)

∨ M |=δ (Π(P :G)(ϕ′{x/y}) ∧G = G′)

⇔M |=δ 〈G′{y}〉Π(a.P :G)(ϕ′) where y /∈ fn(a.P :G)

∨ (Π(P :G)(ϕ′{x/y}) ∧G = G′)

Similarly, we can prove for other cases of α and for actions with box modality,

the dual of rule 11.

118

• Rules 5, A and B: Let X(−→z) =σ ϕ.

M |N |=δ X(−→z) =σ ϕ

⇔M |=δ Π(N)(X(−→z)) =σ Π(N)(ϕ)

⇔M |=δ (XN(−→z)) =σ Π(N)(ϕ)

⇔M |=δ Π(N)(X(−→z) =σ ϕ)

For finite-control node expressions, the number of different substitutions to be

considered for the parameters −→z are finite, thus leading to termination of the

transformation.

⊓⊔

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Addressed in this Thesis
	Overview of Our Approach
	Modeling and Verification Framework
	Constraint-Based Verification
	Parameterized Verification

	Background and Related Work
	Formal Methods and Process Calculi
	Related Work

	Syntax and Transitional Semantics of the -Calculus
	Syntax of the 0-Calculus
	Transitional Semantics of the 0-Calculus
	The 1-Calculus
	The full -calculus: 2-calculus.
	Symbolic Semantics for the -Calculus

	Properties of the -Calculus
	Towards Verification of -Calculus Specifications
	Prototype Verifier for the -Calculus
	Modeling and Verifying MANET Protocols using the -Calculus
	Case Study 1: A Leader Election Protocol for MANETs
	Case Study 2: The AODV Routing Protocol

	Discussion

	Query-Based Model Checking of Ad Hoc Network Protocols
	An Example of Topologies and Topology Constraints
	Related Work
	Modeling Framework
	Syntax
	Concrete Semantics
	Symbolic System Specification

	Constraint-Based Verification
	Verification of Reachability Properties
	Complexity Analysis for the SymReach Algorithm
	Model Checking Symbolic AHNs

	Verification of the LMAC Protocol
	Discussion

	Towards Parameterized Verification of Ad Hoc Network Protocols
	Property Specification Logic
	Compositional Model Checker for the m-Calculus
	An Example
	Discussion

	Conclusion
	Summary of Major Results
	Discussion
	Future Work
	Final Notes

	Bibliography
	Appendix A Proof of Lemma 9
	Proof of Lemma 9
	Appendix B Symbolic Bisimulation for the 0-Calculus
	Symbolic Bisimulation for the 0-Calculus
	Appendix C Proof of Theorem 20
	Proof of Theorem 20

