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Abstract of the Dissertation

Impact of Responsive and Directive Adaptation on

Local Dialog Processing

by

Svetlana Stoyanchev

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Spoken dialog systems allow users to access information and accomplish tasks using

speech. Understanding and interpreting complex and ambiguous natural language

phrases is a challenging task for these systems. Adaptation (the phenomenon of

one conversational partner’s behavior causing changes in the behavior of the other

conversational partner) can be a powerful tool to improve dialog system performance.

In this work I examine communication errors in human-computer dialog. I explore

the role of directive adaptation (in which the dialog system’s behavior guides the

user’s behavior) and responsive adaptation (in which the user’s behavior affects the

system’s behavior) in avoiding and fixing these errors. The goal of this work is not

to model human interaction, but to design methods for improving dialog systems

informed by the model of human communication.

The contributions of this thesis include 1) a computational analysis of adaptation
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in dialog, 2) experiments evaluating user adaptation to the form of system prompts,

and 3) experiments evaluating the effect of system adaptation to the content of user

utterances.

In the first study, I compare two possible explanations for adaptation in dialog:

partner design and recency. I propose a new measure of adaptation and use it in

a study of the Communicator human-computer spoken dialog corpus to compare

strength of adaptation due to recency and to partner design.

In the second set of studies, I examine user adaptation to the system’s lexical

and syntactic choices in the context of the deployed Let’s Go! dialog system. I show

that in deployed dialog systems with real users, as in laboratory experiments, users

adapt to the system’s lexical and syntactic choices. I also show that system prompt

formulation can be used to guide users into producing utterances conducive to task

success.

In the third set of studies, I evaluate the effect on speech recognition performance

of language model adaptation to the task-related topic and content of user utterances.

I show that lexical and dialog history features are useful in prediction of utterance

content and that the prior knowledge of the content of a user utterance can lead to

improvements in speech recognition performance.
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Chapter 1

Introduction

Numerous psycholinguistic studies have demonstrated that people adapt their lan-

guage use in conversation to that of their conversational partners. For example, user

studies have shown that conversational partners adapt to each other’s choice of words,

particularly referring expressions (Brennan and Clark, 1996), converge on certain syn-

tactic choices (Pickering et al., 2000), adapt to conversation partner’s needs Lockridge

and Brennan (2002), adapt their prosody to help their partners disambiguate syntactic

ambiguities (Kraljic and Brennan, 2005), and also adapt using audiovisual informa-

tion (Kraut et al., 2003). Some of these results have been duplicated using corpus

studies: researchers have found evidence of within-speaker and between-speaker con-

vergence to certain syntactic constructions in dialog corpora (Dubey et al., 2006b;

Reitter et al., 2006a). Finally, there is some evidence that people adapt their lan-

guage use in conversation with computer partners. For example, researchers have

shown that users of dialog systems adapt to the system’s choice of referring expres-

sions (Brennan, 1991, 1996), the system’s choice of modality for referring (Bell et al.,

2000; Skantze, 2002), and the system’s choice of words (Gustafson et al., 1997).

Spoken dialog systems allow users to access computer interfaces using speech. The

1



richness of natural language allows for great variability in the grammar and vocab-

ulary of user utterances to dialog systems. In conversation with a flexible input

dialog system (a system that allows user to say phrases and full sentences), a user is

not restricted to following a predefined grammar. For example, in a bus information

system the response to the prompt “How can I help you” can be a general specification

of the task, e. g. “scheduling”, a general request for information on a particular bus

route, e.g. “i need /uh/ information on the 56e”, or a question about a specific route,

e.g. ”when is the next 28x from downtown to the airport?”. Variability is possible

even in simple utterances specifying a single concept such as time: four pm, four

o’clock, around four. This variability in the use of natural language complicates the

dialog system designer’s task and often causes misrecognitions.

In this thesis I explore the possibility of using adaptation to improve the user ex-

perience in dialog with automatic dialog systems. I address the question of adaptation

from the three different perspectives. First, I study adaptation in a human-human

dialog corpus. Second, I perform an empirical study of the user adaptation to system

prompts and the effect of system prompts on the local dialog processing. Third, I

evaluate the effect of system adaptation to user utterances on system performance.

Adaptation in dialog is exhibited by the convergence of language use and in-

teractive behavior of two agents in dialog. This convergence can be lexical, syntactic,

semantic, prosodic, or acoustic. In my work I focus on studying lexical and syn-

tactic convergence in dialog. Convergence is possible when there is variability. We

can observe convergence (or lack of it) when a speaker has an option of choosing

among alternative expressions, such as synonymous words, tenses, or concepts. A

speaker converges to the conversation partner if the speaker makes a linguistic choice

by following the partner.

Psycholinguistic researchers hypothesize that speakers maintain a model that

affects their linguistic choices. Studies of adaptation in the psycholinguistics literature
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identify two potential contributions to convergence: dialog partner and recency.

A partner model is structured information pertinent to the current dialog and

held by a dialog participant about his/her dialog partner. A partner model may store

partner-specific information pertaining to lexical, syntactic, semantic, or prosodic

preferences. For example, a model may record how the partner refers to a particular

object, which tense the partner prefers to use, the prosodic characteristics of the part-

ner’s utterances, or the native language of the partner. This model may be partially

constructed from prior knowledge about the dialog partner, e.g. from previous con-

versations. The model is dynamically updated in the course of a dialog. Researchers

hypothesize that partners in human-human dialogs maintain models of their dialog

partners. In human-computer dialog the user maintains a model of the system (the

system model) and the system maintains a model of each user or group of users

(the user model). The system consults the user model to customize its behavior

to the user, for example, generating responses tailored to a specific user, or adjust-

ing automatic speech recognizer to fit a specific user action. In the psycholinguistic

literature, adaptation due to a partner model is referred to as the partner effect or

partner-specific adaptation.

A recency model stores information pertinent to the most recent utterance(s)

in a dialog. A recency model may store the same information as the partner model,

but it does not maintain separate models for each partner. This model is constructed

from the most recent utterances in the dialog. In the psycholinguistic literature,

adaptation to the most recent utterance(s) in a dialog is refereed to as the recency

effect, recency-specific adaptation, or convergence.

The term priming is predominantly used in the context of adaptation due to

recency in the psycholinguistic literature. It refers to the behavior that is later

adapted/repeated (behavior is faster/easier when repeated or after exposure to a

stimulus).
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In this thesis I consider both partner and recency adaptation. I use the term

priming to refer to any event in a dialog that influences linguistic decision-making.

An instance of priming occurs when a syntactic structure or lexical item giving evi-

dence of a linguistic choice (prime) influences the recipient to make the same decision,

i.e. re-use the structure, at a later choice-point (target) (Reitter et al., 2006b). I use

the term convergence to refer to the effect of either partner or recency adaptation.

Convergence occurs when dialog participants change their language use to be more

similar to each others over time. I use the term prime to indicate an utterance, a

dialog, or a document that contains priming features. I use the term target to indi-

cate an utterance, a dialog, or a document in which convergence for these features is

measured. I use the term adaptation to indicate the direction of convergence. So,

for example, the prime is in the system utterance and the target is a user utterance,

I look for user adaptation to the system.

My goal is to evaluate the effect of lexical and syntactic priming. I analyze user

adaptation to the system’s choice of verbs, prepositions, and the form of task-related

concepts. A concept in this context is a piece of information that a system has to

obtain from a user. In an flight booking system concepts would include departure

city, date, time, airline, etc. Some concepts can be specified in a number of ways

(e.g. four pm/four o’clock/four). Variability in the forms specifying a concept allows

for adaptation in user utterances. I also look at system adaptation to the user’s

choices of form for task-related concepts. In this thesis I do not presume that either

partner or recency adaptation is the only cause of adaptation in dialog. After all,

a computer partner can build partner and recency models simultaneously. Instead, I

look for convergence in dialog, and examine the impact of computational modeling

of convergence on dialog system performance.

My research objective is to understand convergence in human-computer dialogs
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1.1. THESIS CONTRIBUTIONS

and its utility for the human-computer communication. I focus on two types of adap-

tation in system behavior: responsive adaptation, in which the system modifies its

own behavior to better fit the user’s behavior; and directive adaptation, in which

the system uses behaviors designed to guide the user into less error-prone behav-

iors. Directive adaptation aims at directing the user explicitly or implicitly into

adapting to the system or using vocabulary and syntax that may be more easily pro-

cessed by the system. Directive adaptation may be accomplished through directive

prompts, system prompts that use a particular form of a concept or specific words

to prime the user and direct them into specific syntax or vocabulary. Every prompt

has some directive power, or ability to guide the user. In my work I evaluate the

directive power of system prompts. Responsive adaptation in a dialog system

involves adjusting system components to a particular user or a dialog situation. This

may involve language or acoustic model adaptation in the speech recognition compo-

nent, or adaptation of a dialog policy in the dialog manager. In my work I evaluate

speech recognition improvement by adapting the dialog system’s language model and

increasing the context sensitivity of the recognizer.

1.1 Thesis Contributions

The main contributions of this work are:

• A study measuring partner and recency adaptation in human-human dialog.

– I designed two new measures of adaptation between dialogs. The new

measures take into account frequency of a feature in the prime and target

documents (while the previous measures took into account only presence

of a feature).

– I compared recency and partner-model adaptation. I found that speakers
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1.1. THESIS CONTRIBUTIONS

exhibit adaption to both types. I outlined differences in the features that

are adapted to recency and to the partner model: syntactic features tend

to be adapted to the most recent partner. Lexical features with a personal

pronoun ‘I’ are adapted to the most recent partner. Features indicating

direction (across, through, about the), and features with the pronoun ‘you’

tend to be adapted to a specific partner, regardless of recency.

• An empirical study of user adaptation to system prompts using a live spoken

dialog system and real users. I examined how users can be guided into using

specific words, syntax, and concept forms.

– I collected and transcribed a spoken dialog corpus using CMU’s deployed

Let’s Go! system.

– I found that users adapt to 1) verbs and prepositions in the system prompt;

and 2) function verb form in the system prompt.

– I measured adaptation to concept forms. Users switch their form of con-

cept, but at a lower rate than in previously reported studies.

– I found that when a spoken dialog system adapts its concept form to the

user, the user is significantly more likely to keep his/her originally used

concept form.

• A study of language model adaptation to content of user utterances.

– I built a statistical model to predict which concept is used in the user’s

utterance. Prosodic and dialog history features are helpful for this predic-

tion.

– I achieved a statistically significant improvement in speech recognition in

a spoken dialog system by adapting the language model to the predicted

concept in the user’s utterance.
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1.2. OUTLINE OF THE THESIS

– I achieved a statistically significant improvement in speech recognition in

a spoken interface to question answering by adapting the language model

to the name in the query.

Before continuing, the reader should be cautioned: this is a computational the-

sis that uses insights from psycholinguistic studies to improve dialog system perfor-

mance. My goal is not to build new models of human-human communication, but

to be informed by it and to see how these models can be applied to human-compuer

communication.

In the next section I outline the contents of the thesis.

1.2 Outline of the Thesis

This thesis consists of eight chapters. My original experiments are described in Chap-

ters 3, 5, 6, and 7.

In Chapter 2 I review psycholinguistic experiments that look at adaptation in

human-human and human-computer conversation, computer science studies of lex-

ical and syntactic adaptation in text and dialog corpora, and spoken dialog systems

with adaptation capabilities.

In Chapter 3 I describe my experiments on measuring adaptation in the human-

human Maptask corpus. I introduce two new methods for measuring adaptation and

compare adaptation due to recency and due to a specific partner. A preliminary

versioin of this work was published in (Stenchikova and Stent, 2007).

Chapter 4 contains a discussion of spoken dialog systems architectures. From a

system engineering perspective, I describe how adaptation can be built into modern
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1.2. OUTLINE OF THE THESIS

dialog systems. Part of this work was published in (Stent et al., 2006).

In Chapter 5 I describe directive adaptation I performed using Let’s Go! spoken

bus information dialog system. I analyze the effect of system prompts on the lexical

and syntactic choices of users. I evaluate the impact of prompt design on overall di-

alog system performance. Part of this work was published in (Stoyanchev and Stent,

2009c).

In Chapter 6 I describe a responsive adaptation study I performed using a human-

computer dialog corpus from the Let’s Go! dialog system. I evaluate the potential

improvement in speech recognition performance of the system adapting its language

model to predicted concepts likely to appear in the users utterance. A preliminary

version of this work was published in (Stoyanchev and Stent, 2009b).

In Chapter 7 I describe a responsive adaptation study I performed in the domain of

spoken question answering interface. I evaluate the potential speech recognition per-

formance improvements due to the system adapting its language model to the topic

of the user’s question. I show that responsive adaptation is useful in open-domain

QA as well as in closed-domain spoken dialog. A preliminary version of this work was

published in (Stoyanchev et al., 2008a).

In Chapter 8 I summarize my findings and outline future work.
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Chapter 2

Previous Research on Adaptation

In this chapter I describe related work in psycholinguistics and in computer science

on adaptation in human-human and human-computer dialog.

2.1 Psycholinguistic Perspective

Much prior research on adaptation is done in psycholinguistics. Psycholinguists study

language use in dialog by conducting controlled experiments in laboratory settings.

Convergence, or the evidence of adaptation, is revealed by studies of lexical and syn-

tactic variability in dialog. Researchers find that while there is a great deal of lexical

variability across conversations, there is far less lexical variability within a conversa-

tion (Brennan and Clark, 1996; Garrod and Doherty, 1994). Brennan (1998) finds

evidence for lexical convergence in human-human dialogs and shows that frequency

of a word used in a conversation affects the durability of the priming effect for that

word.

Psycholinguistic research also aims at identifying the underlying mechanism and

causes of convergence in human dialog. Currently, two alternative explanations of

adaptation (or convergence) exist in the psycholinguistic literature. One explanation
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2.1. PSYCHOLINGUISTIC PERSPECTIVE

attributes adaptation to recency while the other attributes it to partner adaptation.

Researchers including Brown and Dell (1987); Pickering and Garrod (2004); and

Chartrand and Bargh (1999) attribute adaptation to recency (the effect of the most

recent utterance). The authors assume a tight coupling of a speaker’s mental pro-

cesses for language production and comprehension. They describe an output/input

coordination principle, saying that a speaker formulates an utterance according to

words and syntactic rules used to formulate or interpret the most recent utterance(s)

spoken and heard by the speaker. Pickering and Garrod (2004) argue that seman-

tic and pragmatic representations used in comprehension are also aligned with those

used in production and are evoked through lexical and syntactic priming during in-

teraction. This interactive alignment process also explains why dialog partners may

complete each others phrases and reuse the same expressions. Pickering and Gar-

rod (2007) claim that listeners also engage in a production process, predicting the

speaker’s upcoming words, grammatical categories and meanings: “This emulator

enables rapid comprehension and, at the same time, helps listeners deal with noisy

input.”

In an alternative explanation of adaptation in dialog, researchers including Bren-

nan and Clark (1996); and Horton and Gerrig (2002) argue that convergence and

complementarity in dialog is caused by partner adaptation. According to the part-

ner adaptation theory, speakers build partner models (see Section 1) and adjust their

speech production to their current conversational partner. Kraljic and Brennan (2005)

show that speakers prosodically mark the boundaries of syntactically ambiguous con-

structions and adapt their prosody to help their partners disambiguate syntactic

ambiguities. Lockridge and Brennan (2002) identify syntactic expressions that dia-

log participants design specifically for an addressee. Besides explaining convergence,

partner adaptation also explains complementarity as adaptation to a dialog partner’s

needs, where these needs may be different for different dialog participants.
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2.2. MEASURING ADAPTATION IN DIALOG

Hartsuiker et al. (2007) evaluate the combined lexical and syntactic convergence.

The authors find that syntactic convergence is further enhanced by lexical choices.

Speakers are more likely to repeat syntactic forms with the same words than with

different words. However, this enhancement effect is short-lived, while the effect

of word-independent syntactic priming (syntactic convergence) is long-lasting. The

difference in the time frame of pure syntactic and lexicalized syntactic effects points

at possible diverse causes of convergence. The authors compare syntactic priming

to a form of implicit learning. Reitter and Keller (2007) also hypothesize that short

and long-term convergence are evoked by different mechanisms. The authors find

that in the short-term dialog participants converge on syntactic constituents but not

distituents (part-of-speech pairs that cross constituent boundaries) while in the long-

term they converge on distituents as well as constituents.

Regardless of the type or cause of adaptation, researchers have shown that adap-

tation also occurs when humans interact with spoken dialog systems. For example,

users of dialog systems adapt to the system’s choice of referring expressions (Brennan,

1996), the system’s choice of modality for referring (Bell et al., 2000; Skantze, 2002),

and the system’s choice of words (Gustafson et al., 1997).

2.2 Measuring Adaptation in Dialog

Computer scientists have also studied adaptation in human-human dialog by analyz-

ing corpora and developing systems with adaptation capabilities. In general, these

studies confirm the experimental results summarized above. However, each compu-

tational study also produces either (a) an algorithm for measuring adaptation; or (b)

an algorithm for modeling/reproducing adaptation in dialog.
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2.2. MEASURING ADAPTATION IN DIALOG

Church (2000) introduced a method for measuring lexical ‘adaptation’1 by com-

puting positive adaptation using probabilities of co-occurrences. This method deter-

mines whether the appearance of a lexical feature in the priming (earlier) portion of

a document affects the likelihood of its appearance in the target (later) portion. The

positive adaptation for a word w is computed as Pr(w ǫ target|w ǫ prime). To deter-

mine the priming effect, positive adaptation is compared to the prior (Pr(w ǫ target)).

A higher ratio of positive adaptation to the prior probability indicates a stronger adap-

tation effect. Church applied this method in a study of a corpus of text documents,

treating the first half of each document as the priming portion and the second half as

the target. He showed that positive lexical adaptation does occur, more strongly for

content words than for function words. Dubey et al. (2006b) used Church’s method

to evaluate adaptation for selected syntactic constructions in coordinating structures

in the Brown news text and Switchboard dialog corpora. The priming and target por-

tions in Dubey’s coordinating structure experiment were the left and right sides of

coordinating constructions (and and or) in the corpus. The authors reported positive

adaptation for each of the syntactic constructions they considered.

In recent work, Reitter et al. (2006b) investigated syntactic adaptation in Switch-

board and Maptask. Instead of using Church’s method, the authors used logistic

regression to examine short-term priming effects within a small window of time in

single dialogs. In this method the numbers of occurrences of lexical terms and syn-

tactic constructions are plotted over time after priming. This method permits study

of the time course of adaptation. A negative slope of a fitted line with a low residual

error indicates a priming effect with decay over time. Reitter et al. (2006a) analyzed

human-human dialog corpora and detected a strong priming effect for syntactic rules

in task oriented dialogs. They also showed rapid degradation of the syntactic priming

1Although it was used for measuring adaptation, Church’s measure was developed to identify the
most useful features for information retrieval, rather than for study of adaptation per se.
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2.2. MEASURING ADAPTATION IN DIALOG

effect in a dialog over time.

Ward and Litman (2007a) used logistic regression to show that the lexical priming

effect in human-human tutoring dialog decays over time. The effect is identified by

a negative slope of a line fit to the counts of occurrences of primed words over the

dialog. The authors isolated the effect of lexical priming from semantic convergence

by removing no choice words - words for which there is no alternative synonym (e.g.

the, it, is, to). With these words removed, priming effect is still present in the

corpus. The authors also measured priming effect on acoustic (energy) and prosodic

(pitch) features. While the effect for lexical features is significant, it is very small

(slope coefficient<-0.1 for all experiments). The effect for prosodic features is much

stronger (slope coefficient -16 for the maximum energy value)2.

Researchers find that adaptation is related to dialog success. Reitter and Moore

(2007) and Nenkova et al. (2008) independently showed that lexical adaptation pos-

itively correlates with task success in human-human task-oriented dialog. Ward and

Litman (2007b) present evidence that lexical convergence as well as acoustic and

prosodic convergence correlate with student learning in tutoring dialogs. The au-

thors show that combined lexical and semantic convergence correlates with student

learning even stronger than lexical convergence alone (Ward and Litman, 2008).

In this thesis I devise a new measure for adaptation. The new adaptation measure

is a modification of Church’s measure. My approach to measuring adaptation differs

from previous research as I measure adaptation between dialogs. I use the new measure

to analyze and compare partner and recency adaptation. This experiment is described

in Chapter 3.

2A smaller value indicates a stronger local priming effect.
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2.3. RESPONSIVE ADAPTATION IN DIALOG SYSTEMS

2.3 Responsive Adaptation in Dialog Systems

I refer to responsive adaptation in automatic dialog as the system’s adjustment of

its behavior in response to a user or a dialog situation. A system can respond to

the user by changing its lexical or syntactic choices (Natural Language Generation),

changing its dialog moves (Dialog Management), or adapting its language models

or grammars (Speech Recognition/Natural Language Understanding). This section

describes several dialog systems that utilize user models to drive adaptation in Nat-

ural Language Generation, Dialog Management, or Automatic Speech Recognition.

Evaluations conducted by the developers of these systems indicate that responsive

adaptation to the user improves system performance.

2.3.1 Natural Language Generation Component

The Adaptive Place Adviser (Thompson et al., 2004) is a personalized spoken dia-

log system that recommends books, movies, and restaurants. It uses a personalized

long-term user model based on domain-specific user preferences for items and item

characteristics. The adaptive version of the system learns user preferences from inter-

action with the user, while the non-adaptive version uses preset preferences. During

interaction the system’s dialog manager selects a dialog move based on the user’s

input query, user model, and match of the user’s query with a database. Possible

system moves include suggesting that the user constrain or relax the query, recom-

mending an item from the database, providing a list of choices, or asking the user for

a clarification. In a system evaluation, users interacted with either the adaptive sys-

tem or a generic recommendation system. System performance, measured by dialog

length (in number of turns and time), improved in the adaptive condition.

MATCH (Walker et al., 2004) is a multimodal dialog system for giving suggestions

about restaurants. The system tailors every generated utterance to a user model. The
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2.3. RESPONSIVE ADAPTATION IN DIALOG SYSTEMS

user model indicates how important features such as decor, price, and food quality

are to the user. The model is static and is generated from an offline user survey.

The system selects restaurants to recommend to the user, and determines which

attributes of a restaurant to mention, based on the user’s query and the user model.

In an overhearer-style system evaluation, users were asked to rate the information

quality and conciseness of user-tailored and other-tailored system recommendations

and comparisons of restaurants. User-tailored recommendations and comparisons

were preferred over other-tailored presentations.

Stent et al. (2004) describes a trainable sentence planner for complex information

presentations in spoken dialog systems. The syntax of generated system utterances

is adapted based on user preferences collected in a rating experiment. An evaluation

showed that user-adapted presentations were preferred over presentations generated

using templates.

Guo and Stent (2005) show that using individual user preferences for a multi-

media presentation results in generation of different presentation styles for different

users. User preferences were learned using objective and subjective methods. In the

objective method users were asked to reply to questions about the information in

the presentation. User preferences were derived from the correctness of their answer

which reflected the amount of information retained by the user from the presentation.

In the subjective method users were explicitly asked to rate the clarity of the presen-

tation. In the evaluation presentations generated using learned user preferences were

ranked as high as presentations generated with manually created presentation styles.

Purver and Kempson (2004) implement a dialog parser/generator using the prim-

ing theory of Pickering and Garrod (2004) who argue for the interrelatedness of speech

production and comprehension processes. In Purver and Kempson’s implementation

a tree structure represents the semantic interpretation of a string. Parsing and gen-

eration use the same tree representations. When a string is parsed, a tree with a
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2.3. RESPONSIVE ADAPTATION IN DIALOG SYSTEMS

corresponding semantic representation is generated. During parsing, trees are built

in a word-by-word incremental fashion allowing analysis of anaphora and ellipses.

During generation a semantic tree structure is converted into a string. According to

priming theory, the priming effect causes users to choose the most recently used syn-

tactic rule or word during production. In Purver and Kempson’s implementation the

lexicon search considers the most recently used words first, emulating lexical adapta-

tion. The incremental nature of the generation process also allows the generation of

bare fragments reusing structure from previous sentences, e.g. What did you eat for

breakfast? Porridge.

2.3.2 Dialog Manager Component

A dialog manager is equivalent to the brain of a dialog system. At each point in a

dialog, the dialog manager is responsible for choosing the system’s next action. Adap-

tation in the dialog manager affects the system’s choice of actions and dialog acts.

Rules for adaptation in a dialog manager can be manually encoded or automatically

learned.

Brennan and Hulteen (1995) apply a collaborative theory of human communica-

tion theory (Clark and Schaefer, 1989) to human-computer communication. They

aim at efficiency in dialog by providing just enough evidence to the user to handle a

system’s error. Their experimental system dynamically adjusts its grounding crite-

rion and adapts the amount of feedback given to the user of the dialog system. Rules

based on the dialog history, the physical environment, and the task model are used

to determine what kind of feedback messages to provide and when to provide them.

The proposed model filters out the excessive feedback that in a Wizard-of-Oz study

users found annoying, but leaves the feedback that users find important.

Another example of a dialog system where adaptation is encoded in a set of rules

is described by Komatani (2005). The system generates cooperative help messages
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based on a user model. The user model includes the skill level, knowledge level, and

urgency of the user. The user model is determined automatically at the time of the

user’s call based on dialog-initial user utterances. Evaluation results show that novice

users learn to communicate with the system more efficiently when the user model is

utilized while more advanced users are not forced to listen to basic help messages and

experience shorter completion times.

Recent work on dialog modeling explores reinforcement learning for automatic

determination of dialog moves (Bohus et al., 2006; Williams et al., 2007; Lemon et al.,

2006; Henderson et al., 2006). These approaches are adaptive to the dialog situation:

the choice of system action is based on the user’s previous actions. Bohus et al. (2006)

automatically learn to choose an error recovery policy between explicit confirmation,

implicit confirmation, and an extensive help message. Williams et al. (2007) improves

a handcrafted dialog manager by incorporating reinforcement learning. The authors

explicitly encode a user goal model that tracks how the user’s goal changes over time.

Komatani et al. (2007) describe an approach to presenting users with help after

misrecognition that is adapted to the current status of information obtained by the

system. Their dialog system tracks the known degrees of each node in a system do-

main concept tree. The domain concept tree contains four layers: system, function,

element, and content word. The known degrees are updated after each user utterance.

For example, if the user utters a content word, the known degrees of the correspond-

ing concept in the content layer is incremented. This method allows the system to

selectively present help messages only when they are necessary.

2.3.3 Automatic Speech Recognition Component

Speech recognition is one of the largest causes of errors in human-computer dialog.

Although domain-dependent speech recognition in a dialog system is more tractable

than open-domain speech recognition, user variation in grammar and vocabulary

17



2.3. RESPONSIVE ADAPTATION IN DIALOG SYSTEMS

causes problems for robust speech recognition. In the past twenty years, since the

breakthrough in basic speech recognition (Rabiner and Juang, 1986), researchers have

been working on incremental improvements to the Hidden Markov Model (HMM)-

based algorithm. In recent years researchers have focused on: improving statistical

language modeling technology; combining grammar-based ASR with statistical lan-

guage modeling; and giving users additional guidance about the language the system

can process. Acoustic and prosodic variations due to hyperarticulation in dialog have

been investigated in Soltau (2005).

Language Model Adaptation

A language model encodes probabilities of n-grams (strings of length n) occurring in

an utterance. The similarity between the user utterance and the dataset used for

generating a language model affects the performance of recognition. For example,

an utterance containing words frequent in the language model is more likely to be

recognized correctly than an utterance containing infrequent words.3 Language model

adaptation is a technique for improving speech recognition. It involves adjusting

probabilities in the language model or selecting the data for building the model. The

goal of this adaptation is to make the model more similar to the data, leading to

speech recognition improvement.

Riccardi and Bangalore (1998) describe an improvement to a system’s language

model by learning phrase grammars with unsupervised clustering techniques (iterative

entropy reduction). They automatically learned phrase grammars allow for general-

ization. Using these grammars one may automatically generate phrases never seen

in the training corpus, yet similar to the phrases in the training corpus. Evaluation

shows improvement in a call classification task.

3Please refer to Chapter 6 for further description of language model use in speech recognition.
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Riccardi and Gorin (2000) describe an approach to language model adaptation in

which the language model is conditioned on the current state of the dialog system,

leading to reductions in word error rate. It has now become standard practice to use

dialog state specific language models (Bechet et al., 2004). Depending on the dialog

state, the language model gives more weight to the words and phrases that are more

likely to be used in that state.

Iyer and Ostendorf (1999) adapted the language model based on topic rather than

on dialog state. They obtained a 4.5% reduction in word error rate on the Wall Street

Journal text corpus by using a weighted combination of topic-specific language mod-

els, but only a 1.2% relative reduction in word error rate on the Switchboard spoken

dialog corpus. An example of language model use in natural language understanding

is Dubey et al. (2006a), who incorporate probability models of previous syntactic

rule use into an incremental parser. Incremental adaptive parsing can potentially be

useful for a dialog system if user utterances are recognized incrementally.

Co-constraining Automatic Speech Recognition and Natural Language Under-

standing (NLU) has been shown to benefit both processes. Young (1994) use output

from the NLU along with acoustic probabilities to detect misrecognized words on a

second pass through the recognizer.

Using Grammar-Based Speech Recognition

Grammar-based and statistical ASR have been combined in numerous previous re-

search projects to improve ASR performance. In some research, a probabilistic gram-

mar is used directly (e.g. Jurafsky et al. (1995); Knight et al. (2001)). By contrast

Gorrell et al. (2002) and Hockey et al. (2003) use a combination of grammar-based

and statistical speech recognition in a two-pass approach. First, the user’s utterance

is passed through a grammar-based language model (LM). Using a threshold on con-

fidence level, the system either accepts the utterance or passes it to a statistical LM.

19



2.4. DIRECTIVE ADAPTATION

Gabsdil and Lemon (2004) implement context-sensitive speech recognition by using

machine learning on a combination of acoustic and dialog context features. They

automatically learn rules for grammar switching in a dialog system.

In my experiments I also address the speech recognition problem through language

model adaptation using a 2-stage recognition approach. The language model adap-

tation methods described above introduce context sensitivity into dialog systems. In

my experiments, I increase context sensitivity in an already context sensitive dialog

system. I use machine learning on features similar to these used by Gabsdil and

Lemon (2004) and Litman et al. (2006). The novelty of my approach is the type of

information that I predict using machine learning: task-related concepts in the user

utterance. I adapt the language model to the expected concepts in the user utterance

and achieve improvement in speech recognition performance. My speech recogni-

tion experiment with a dialog system is described in Chapter 6. I extend this work

to open-domain speech recognition experiment with a spoken interface to question

answering, as described in Chapter 7.

2.4 Directive Adaptation

I refer to directive adaptation as system utterances or actions that guide users to

change their behavior. In this section I include descriptions of studies of the effect on

user behavior of various types of directed help messages, the user’s initial perceptions

about the system, and the system interaction style, such as personal/impersonal or

polite/impolite.

2.4.1 Directive Help Messages

Systems often provide help information to users when users have trouble commu-

nicating with the system. Recently researchers have experimented with providing
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additional guidance to users with the specific goal of shaping their responses. For

example, Tomko and Rosenfeld (2006) “teach” users to utilize “speech graffiti”, a

limited language of simple commands, when speaking with the system. The authors

find that in the movie theater information domain, their limited input system outper-

forms a flexible input one.

In the movie theater domain the number of types of different user questions is rel-

atively small. However, in a call routing domain, where the number of possible user

utterances is large, Sheeder and Balogh (2003) find a higher call routing accuracy

when users speak with natural language sentences rather than keywords. Further-

more, the authors find an effect of system help message type (keyword vs. natural)

on the immediately following user utterance command. They find that a natural help

message causes users to also use natural sentences in their input and improves system

performance.

Gorrell et al. (2002); Hockey et al. (2003); and Fukubayashi et al. (2006) look

at targeted help system messages following misrecognition errors. Gorrell describes

two approaches where automatically recognized user utterances with low recognition

confidence scores are used to identify a help message. In the first approach the help

message is one of several predefined messages. A classifier using features from the

speech recognizer selects an appropriate help message to be played to the user. In the

second approach a help message is generated by matching the user’s utterance to the

closest in-grammar utterance. The first approach was implemented in a command

and control application and the second in a question answering application. Both

applications were evaluated and lead to significant improvements in task completion

rates and user satisfaction.

Hockey et al. (2003) assists users in becoming experts by providing informative

help messages. The researchers identified three major types of errors in their push-to-

talk command and control application: 1) endpointing errors (when a initial word is
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cut off), 2) out-of-vocabulary words, and 3) subcategorization errors (in-vocabulary

but out-of-grammar). The authors designed rules to handle each type of error. For

example, after an out-of-vocabulary error the system response is “the system does

not understand the word X”.

Rotaru and Litman (2006) examine a human-computer tutoring dialog corpus and

identify that emotions and certainty interact with speech recognition problems in the

system. Forbes-Riley and Litman (2009) show that incorporating the information

about the user’s certainty into system response strategies improves tutoring dialogs.

2.4.2 System Interaction Style

Brennan (1991) find that both users’ system models and systems’ responses have an

effect on users’ syntactic and dialog act choices. For example, in a Wizard-of-Oz

study, she finds that users are more likely to acknowledge a response when they be-

lieve that the partner is a human rather than a computer. Independent of the user’s

system model, the user adapts to the style (long vs. short) of the preceding system

utterance. Brennan and Ohaeri (1994) compare an anthropomorphic text dialog sys-

tem (that refers to itself using a personal pronoun “I”) and a non-anthropomorphic

system. The authors find that users are more likely to use personal pronouns with an

anthropomorphic system. Kruijff-Korbayova and Kukina (2008) confirm this finding

in a spoken dialog system. Both studies find no significant effect of the user’s percep-

tion of the system’s level of proficiency on the user’s use of personal pronouns . By

contrast, Pearson et al. (2006) use an experimental setup to show that the strength

of user adaptation effect is determined by the user’s perception of the system’s level

of proficiency, which can be manipulated by a single 10 second screen display prior

to the start of the dialog.

In my work I evaluate whether syntactic and lexical choices in system prompts

affect the user choices in his/her responses. I confirm some of the results described
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above in a deployed system with real users. I also explicitly address adaptation to

the form of task-related concepts. These experiments are described in Chapter 5.
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Chapter 3

Measuring Adaptation Between

Dialogs

3.1 Motivation and Research Goals

In this chapter I describe an adaptation study of human-human dialog. The work

described here builds on the psycholinguistic and computational studies described in

Sections 2.1 and 2.2. My research aims at modeling humans’ lexical and syntactic

choices during speech production.

As I said in previous chapters, currently there is a debate in the psycholinguistics

community about the causes of adaptation, whether adaptation is:

• partner adaptation – adaptation based on a model of the partner (Brennan and

Clark, 1996; Horton and Gerrig, 2002).

• recency adaptation – adaptation due to representations of words, concepts etc.

being activated, or brought to the forefront during language production, by

previous perception or comprehension (Brown and Dell, 1987; Pickering and

Garrod, 2004; Chartrand and Bargh, 1999).
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In this work I address the questions outlined in the Table 3.1.

1 Can we identify the features that affect partner adaptation and recency
adaptation?

2 Is partner adaptation or recency adaptation more prevalent?
3 Does feature frequency in the prime affect feature frequency in the

target ?

Table 3.1: Questions addressed in adaptation study

Existing measures of adaptation previously introduced by other researchers (Church,

2000; Reitter et al., 2006b) do not directly permit separation of adaptation due to the

partner or to recency. Also, neither of the existing measures examines how frequency

of a feature w in the prime affects the likelihood of consecutive occurrence of this

feature (I call this adaptation strength1).

To address these issues I propose two new measures, one that measures the pres-

ence of adaptation and another that measures its strength. Together, these measures

can identify adaptation within a single document or between documents; can identify

the strength of adaptation as well as its presence; and can be used to identify the

source of the adaptation. I use these measures to study adaptation in the Maptask

spoken dialog corpus. I close this chapter with some ideas about how to apply these

measures to dialog system development, and some ideas for future work.

3.2 Experimental Method

3.2.1 Previous Adaptation Measures

Two adaptation measures introduced by Church (2000) and Reitter et al. (2006b) are

found in the literature. These measures analyze how use of a feature (or a linguistic

stimulus) affects its consecutive occurrences. Both of the measures assume that the

1This is different from strength discussed by Reitter
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prime portion of a document exhibits a linguistic stimulus. The measures analyze the

effect of this stimulus in the target portion of the document. Both of the measures

have been applied for evaluating lexical and syntactic adaptation in text and dialog.

Although Church designed adaptation measure to analyze feature occurrences in text

documents with a goal of improving information retrieval, his measure is also suited

for analyzing adaptation in dialog. Dubey et al. (2006b) consequently used Church’s

measure to analyze adaptation in dialogs. In this work, I start with Church’s measure

and change it for the purpose of measuring adaptation between dialogs.

In Church’s measure the prime and target are two separate partitions of a docu-

ment (see Figure 3.1).

Figure 3.1: Church’s adaptation model

Church computes adaptation for each feature over a set of documents. A stimulus

for a feature w exists in a document if w is present in the prime partition. The

probability of positive adaptation is computed as a function of occurrences of a feature

w in the prime and target partitions:

P+(w) = Pr(w ∈ target | w ∈ Prime) =
wp,t

wp,t + wp,t̄

(3.1)

(See notation explanations in Table 3.2.) Positive adaptation is compared to a
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notation explanation
wp,t # prime/ptarget pairs where w occurs BOTH in prime and in target
wp,t̄ # prime/ptarget pairs where w occurs in prime and NOT in target
wp̄,t # prime/ptarget pairs where w occurs NOT in prime and in target
wp̄,t̄ # prime/ptarget pairs where w occurs NEITHER in prime NOR in

target

Table 3.2: Notations for Church’s adaptation measure

prior, the probability of a feature w occurring in the target:

Pprior(w) = Pr(w ∈ target) =
wp,t + wp̄,t

N
(3.2)

A higher ratio between positive adaptation for a feature w and the prior for this

feature indicates stronger adaptation for the feature. Church’s measure allows to

compare the adaptation effect between different features.

Figure 3.2: Reitter’s adaptation model

Another measure, introduced by Reitter et al. (2006b), evaluates priming over time

in a document or dialog. This approach uses a sliding window where each sentence

(or utterance) is considered a prime containing a stimulus and consecutive sentences

are considered the target. The sliding window is applied throughout the document.

Linear regression approximates a linear relation for the number of the repetitions of a
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feature over the distance from its prime (see Figure 3.2). The slope of the fitted line

reflects the effect of the prime. A negative slope of the approximated line indicates

priming effect and its decay over time. A steeper slope indicates a stronger priming

effect. Reitter’s method allows to study the time course of adaptation and detect

attenuation over time. Ward and Litman (2007a,b, 2008) applied this measure to

examine priming in tutoring dialogs.

In my study of adaptation I compare recency and partner adaptation and address

the research questions outlined in Table 3.1. I evaluate adaptation between dialogs.

Adaptation due to recency studied in this work differs from the priming effect studied

in (Reitter et al., 2006b), because I hypothesize that there is adaptation between

dialogs affecting a speaker’s linguistic choices.

Let’s assume that three speakers Ali, Bob, and Tom take turns participating in

dialogs (see Figure 3.3). First, Ali talks to Bob, then Ali talks to Tom, then Ali talks

Figure 3.3: Comparing Partner and Recency adaptation effect

to Bob again. The first dialog is the priming dialog (Ali is primed by Bob). The

second dialog is the target where I look for adaptation due to recency. The third

conversation is the target where I look for adaptation due to the partner.2 I measure

2The second dialog with Tom plays the role of distructor for measuring partner effect in the third
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the effect of priming by Bob on Ali’s utterances and examine the effect in the second

and the third dialogs. A bigger adaptation effect in the second dialog is an argument

for adaptation due to recency, while a bigger adaptation effect in the third dialog

is an argument for adaptation due to the partner. The effects are compared by the

number of features exhibiting adaptation and by the strength of this adaptation (the

proportionate increase in frequency of a feature in the target). Partners in a single

dialog may also have an effect on each other’s utterances. However, in this study I

measure adaptation between dialogs. For example, I am not measuring the effect of

Tom on Ali in the second dialog although this effect is likely to be present.

My choice of the adaptation measures for this experiment is guided by the goals

of the experiment. In my experiment the prime and target pair are two separate

dialogs. I hypothesize that lexical and syntactic choices in the prime dialog have an

effect in the target. Hence, Reitter’s measure of attenuation in priming over time is

not applicable to test my hypothesis. Church’s measure was developed to identify the

most useful features for information retrieval, rather than for study of adaptation per

se. Consequently, it has several disadvantages for studying adaptation directly:

• For each feature, his method provides an answer to the question ”Did the fea-

ture occur in the prime/target?”; however, it does not take into account the

frequency of occurrence of a feature, so it cannot be used to measure the effect

of frequency in prime.

• His method requires large amounts of data in order to obtain a statistically

significant support for the hypotheses. It cannot be used to identify adaptation

in a single document or between a single pair of documents.

• His method under-reports adaptation in frequently occurring features, such as

closed class words, that are present in essentially every document.

dialog.
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3.2.2 Proposed Adaptation Measures

I propose two measures. The first one measures the prevalence of adaptation between

two documents, while the second one measures the strength of adaptation. The

measures are outlined in Table 3.3.

Measure Description

Adaptation Ratio Measures presence of adaptation: priming
of a feature increases its probability in the
target

Adaptation Strength A feature exhibits stronger adaptation if it
is more frequent in the target

Table 3.3: Adaptation measures

Throughout this discussion, I will use the term document to refer to a dialog or

part of a dialog, and the term feature to refer to any phenomenon (lexical, syntactic,

referring expression, dialog act, etc.) that occurs in or is labeled in a dialog.

To measure the degree to which a feature f exhibits adaptation, following Church’s

approach I divide the corpus into a collection of prime documents and target docu-

ments. In Church’s document the prime and target were separate portions of the

same document while in my approach the prime and target are two different docu-

ments. For each feature f , I compute the frequency of occurrence of the feature in the

prime document (p), the target document (t), and the corpus as a whole (baseline, or

b). I chose to use all documents in order to have a larger corpus for the estimation.

Assuming that priming effect is present, target documents may have higher frequen-

cies of the primed features. By including target documents my baseline values may

be higher leading to more conservative measures. One may use relative frequencies

rather than absolute frequencies, or smooth low-frequency features; I do not do this

in the experiments reported in this study because earlier experiments showed that

these did not change my results. Both of my measures compare p and t to b. I use
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Figure 3.4: Prime and target dialog pairs used in my adaptation measure. N is the
total number of (prime, target) dialog pairs; P is the number of prime dialogs where
frequency of f > b; T is the number of target dialogs where frequency of f > b; P∩T
is the number of prime&target dialog pairs where frequency of f > b in both prime
and target dialog.

the notation f ∈ D as a shortcut to indicate that the frequency of occurrence of f in

document D is greater than the baseline frequency for f .

3.2.3 Adaptation Ratio Measure

The adaptation ratio measures presence of adaptation for a feature in a set of prime

and target document pairs. Similarly to Church’s measure, adaptation ratio for a

feature is computed as a ratio of the probability that the feature occurs after priming

(+adapt) to the probability that it occurs by chance.

AdaptationRatio = +adapt/chance (3.3)

However, my methods of computing +adapt and chance differ from Church’s.
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This measure is a modification of Church’s measure in two ways. First, it uses the

frequency of occurrence of a feature in each document rather than merely its presence

or absence. For each feature, I compute a baseline b – the average frequency of the

feature per document. I consider a feature to be primed in a prime/target document

pair if its frequency in the prime document is greater than b. I consider a feature

to be adapted if its frequency in the target document is greater than b. To compute

adaptation, I use counts of prime and target documents where frequency of a feature

is above the baseline (P, T, P∩T in the Figure 3.4). Using Church’s measure, a

frequent feature, such as “the”, is primed in almost all document pairs, while the

adaptation ratio measure considers it primed only if its frequency is above the baseline.

The adaptation ratio measure evaluates adaptation both on frequent features and on

infrequent features. Second, instead of using Church’s prior probability I use an

estimate of the probability of feature co-occurrence in prime and target by chance.

Next, I describe how chance and +adapt probabilities are calculated. See Figure 3.4

for a graphical illustration of the parameters used in my calculations.

Chance

The probability of a feature co-occurring in prime and target by chance is the prod-

uct of probabilities of its occurrence in prime and target independently, assuming

independence of the two. It is represented by P ∩ T area in the Figure 3.4.

P ∩ T = Pr(f ∈ prime ∩ f ∈ target) =

Pr(f ∈ prime) ∗ Pr(f ∈ target) (3.4)

For N (prime, target) dialog pairs where feature f occurs more that b times in P

primes and more than b times in T targets, the probability of chance co-occurrence
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of f in prime and target can be approximated by:

chance = (P/N) ∗ (T/N) (3.5)

+Adapt

Church defines positive adaptation for a feature f as follows:

+adapt = Pr(f ∈ target | f ∈ Prime) (3.6)

which I approximate as:

+adapt = P ∩ T/P (3.7)

I compute for each feature both chance and +adapt. I define the adaptation ratio

as +adapt/chance. I sort the features in decreasing order by adaptation ratio. Those

at the top of the list exhibit more positive adaptation. I also compute χ2 to identify

features for which the adaptation ratio is significant.

3.2.4 Adaptation Strength Measure
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Figure 3.5: Distance adaptation measure
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The adaptation Strength measure identifies the effect of priming on the feature

frequency in the target. I use this measure to analyze the relation between the

frequencies of a feature in the prime and target. Instead of using binary values for

each feature indicating presence or absence of that feature in a document, I use the

actual frequency of occurrence of the feature in the document. I assume that a feature

exhibits stronger adaptation if it is more frequent in the target.

To measure the strength of adaptation on a per-feature basis, I use a distance

measure. For a feature f with frequency in prime of p, frequency in target of t and

baseline frequency b,

distance = t − (p + b)/2 (3.8)

Imagine adaptation as a force pulling t towards p and away from b. If there is positive

adaptation, then t will be closer to p than to b, as illustrated in Figure 3.5. I consider

a feature to be adapted in a pair of dialogs if the target point lies to the right of

mid-point in the figure (I conservatively chose the midpoint between b and p; a point

closer to b could be chosen for a more liberal interpretation of adaptation). Distance

is computed for each feature for each dialog pair. Its value suggests the strength of

adaptation for this feature in this dialog pair. I define by the adaptation strength for

a dialog the average distance over all adapted features.

3.3 Data

The Maptask corpus (Anderson et al., 1991) contains 32 sequences of dialogs involving

four speakers who discuss routes displayed on maps and trade dialog partners as shown

in Table 3.4. In each dialog, one partner is a giver of the route description and the

other is a follower. From each of the 32 Maptask dialog sequences, I extract the

dialog triples (1,4,6) and (2,3,5) corresponding to the sequences of dialogs between

Ali, Bob, and Tom in Figure 3.3. The follower in the first dialog of each triple, Ali, is
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dlg # giver follower pair1 pair2
1 a1 b1 prime (Bob&Ali)
2 b2 a2 prime (Bob&Ali)
3 a2 a1 recency (Ali&Tom)
4 b1 b2 recency (Ali&Tom)
5 a2 b2 partner(Ali&Bob)
6 b1 a1 partner (Ali&Bob)
7 a1 a2
8 b2 b1

Table 3.4: Maptask dialog order

the giver in the second and third dialogs. In the second dialog, Ali speaks with a new

partner Tom. In the third dialog Ali speaks with Bob, the same partner as in the first

dialog. I hypothesize that recency adaptation by Ali may be displayed in the second

dialog in each triple (Ali&Tom), which are the next dialogs after priming for Ali, and

partner adaptation of Ali to Bob may be displayed in the third dialog in each triple

(Ali&Bob), which are the dialogs with a repeated partner for Ali. To evaluate the

recency effect, I use giver Bob’s utterances in the first dialog as the prime document

and giver Ali’s utterances in the second dialog as the target. To evaluate the partner

effect, I use giver Bob’s utterances in the first dialog as the prime and giver Ali’s

utterances in the third dialog as the target. This analysis allows me to compare how

the effect of the first conversation with Bob differs between Ali’s later conversations

with Tom and with Bob. In the following sections I will refer to the first and second

dialogs as the recency dialog pair and to the first and third dialogs as the partner

dialog pair.3

3It would also be interesting to measure adaptation if the dialog with the same partner (Ali &
Bob) immediately followed the priming dialog (Bob & Ali), but Maptask did not have this scenario.
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3.4 Experiments

I consider two feature types: lexical (word stems, part-of-speech tagged to help dis-

tinguish between word senses; and bigrams); and syntactic (productions from the

Maptask parse tree annotations).

3.4.1 Identifying Adapting Features

In this experiment I use the adaptation ratio and χ2 test to identify features that are

affected by priming. I conservatively define an adapted feature as a feature with:

1. Adaptation ratio +adapt/chance > 1

2. Occurring in more than 10 prime dialogs (to enable statistical inference) with

frequency higher than the baseline

3. χ2 significance level above 95%

Adaptation ratio> 1 identifies features that are likely to become more frequent

after being primed.

χ2 measures the statistical significance of the priming effect. χ2 is an approxi-

mation and is applicable only when the values of the variables are “large”. Some

statistics books consider this number to be >5 and others >10. Hence, I chose a

threshold of 10 for the frequency of a feature in priming documents. I use both the

adaptation ratio and χ2 measures in conjunction to increase the accuracy of finding

adapting features.

Table 3.5 shows examples of two stem/POS features and their +adapt and chance

values. The feature you/DET occurs with frequency above the baseline in 13 (out

of 32) priming dialogs. It occurs 8 times with frequency above the baseline in both

prime and target dialogs. For this feature, +adapt is .62 and chance is .14. The
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+adapt/chance ratio is 4.4 > 1 and χ2 is above 4.841, the 95% significance level for

a test with one degree of freedom. Hence you/DET exhibits adaptation. For the

feature finish/VB +adapt is less than chance. Hence, finish/VB does not exhibit

adaptation.

feature prime target prime +adapt chance +adapt χ2

∩target chance
you/DET 13 11 8 0.62 0.14 4.4 7.16
finish/VB 11 9 1 0.09 0.10 0.9 3.00

Table 3.5: Example lexical features with adaptation ratio and chi2. Significance level
is >95% when χ2 > 4.841

partner recency

ADJ right-hand bottom, right-hand
ADV when, diagonal right, well, about
AUX have
CONJ if till, that, so
DET you, across, on, what, that my, i, just, that
INTJ sorri, er, uh
NOUN bottom map
PREP across, through, along, from from, by, to
VERB know, got, take, pass say

Table 3.6: Adapted word-stem features

Tables 3.6 and 3.7 show the adapted stem/POS and bigram features. I observe two

interesting lexical categories of features that adapt: perspective and directionality. In

Maptask, speakers can take up a “map-based” perspective (and use words like north,

south, east, west) or a “paper-based” perspective (and use words like right, left,

top, bottom). For example, if Bob in the first dialog of Figure 3.3 said right-hand

more frequently than average, Ali in both the second and third dialogs is likely to

say right-hand more frequently than average. Lexical features indicating perspective

are adapted in both partner and recency dialog pairs; the same is true for bigram

37



3.4. EXPERIMENTS

type partner recency

Perspective &
Directionality

about the, abov the, just
abov, right-hand side, round
the, up toward, your left

down about, down to, just be-
low

Motion come to, you come, go round
With pronoun
I/my

i mean, my map, on my, yeah
i

With pronoun
you

if you, right you, when you,
you got, you just, your left

now you, no you, you just, you
got, ’til you

With no no no, no you
Other a wee just to, okay and

Table 3.7: Adapted bigram features

features. Other features in this category (e.g. left, top) also show adaptation but

occur too infrequently for the adaptation to be significant. Directionality in Maptask

is indicated by prepositions such as across, through, along, around, from, by, to. These

prepositions are intimately tied to the spatial perspective by a pair of conversation

partners. Most of them are adapted for partner dialog pairs.

Verbs and bigrams containing motion verbs such as come, go, got, take, and pass

are adapted in partner dialog pairs but not in recency dialog pairs. This finding

suggests that Ali adapts to her partner Bob in the usage of motion verbs. If Bob in

the first conversation uses motion verbs more frequently than average, Ali does not

tend to increase her usage of these verbs in the next conversation with a different

speaker Tom. However, when speaking again with Bob she is more likely to use these

words more frequently.

Table 3.8 shows the adaptation ratio and adaptation strength for the selected

features with the highest difference between partner and recency adaptation ratios.

All of these features (except to be) have adaptation ratio >1 (although not all are

significant according to the χ2 test). Directional features across and through have a

higher partner adaptation ratio than recency adaptation ratio. However, adaptation

38



3.4. EXPERIMENTS

feature Adapt. ratio Adapt. strength
partner recency partner recency

across 7.314 4.655 0.285 3.452
through 5.642 3.385 0.785 1.285
sorri 4.180 1.741 0.410 0.161
i 1.714 3.0 7.240 8.573
uh 3.413 5.973 1.054 0.471
sai 1.693 5.642 2.430 4.680

about the 4.478 1.492 0.640 2.016
right-hand side 5.924 3.022 2.099 1.640
when you 5.642 2.987 0.660 0.493
my map 2.418 7.052 1.816 0.416
on my 3.173 6.770 1.328 0.328
to be 0.846 3.847 0.265 1.065

Table 3.8: Comparing adaptation ratio and adaptation strength in partner and recency
dialog pairs for the features with the highest differences between the adaptation ratios.
The highest score in each pair between partner and recency is highlighted in bold.

strength is higher for recency dialog pairs. This means that if Bob in the first conver-

sation said across more frequently than average, Ali will be likely to say across more

frequently in both of the the following conversations with Tom and Bob, but more so

in the conversation with Bob. However, if she did say across while talking to Tom,

she would be more likely to say it more frequently than in the conversation with Bob.

Bigram and word-stem features containing a first person pronoun (I/my) exhibit

statistically significant adaptation for recency pairs but not for partner pairs (Ta-

bles 3.6 and 3.7). If Bob in the first conversation uses more than average first person

pronouns, Ali is affected in the next conversation with Tom by also using more than

average first person pronouns. However, Ali will not be affected by the priming for

first person pronouns when she speaks again with Bob in the third dialog. The fea-

tures I, my map, on my are among the features with the highest differences between

partner and recency adaptation ratios in favor of recency (Table 3.8). Bigrams and

word-stem features containing a second person personal pronoun (you) exhibit both
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partner and recency adaptation. In the Maptask domain, one speaker describes direc-

tions using a map while the other speaker follows the directions on a different map.

The direction giver can use different strategies of achieving the task. One of the

strategies is to describe what speaker sees on his or her own map, in which case the

speaker would use the first person pronoun. Another strategy is to ask or try to guess

what is shown on their partner’s map, in which case the speaker would use second

person pronoun. The adaptation in individualistic pronouns suggests that speakers

adapt game strategies to their partners. The game strategy where the speaker de-

scribes his or her own map is adapted to the most recent conversation partner, while

the game strategy where the speaker asks about the other person’s map is adapted

both to the most recent conversation and to the specific partner.

Bigrams containing a negation (no) are adapted in recency dialog pairs but not

in partner dialog pairs. If Bob was excessively negative in the first dialog, Ali will be

negative in the next dialog with Tom but not when she speaks again with Bob. The

effect of priming of negation is similar to the effect of priming of the individualistic

pronouns. Negation can be described as another strategy where the speaker wants to

go back to

partner recency
advp→ advp
np→ at at ap nn ap nn; np ap nn; at nn nn; np; np

np; pn; ppg nn
pp→ in; rp pp not pp; ql rp pp; rp aff
s→ s aff aff s; hv np vp; np; np bez; s s aff s; np; np s
vp→ vp be np; bez pp; to vp; vb np pp;

vb vb pp; vbg pp
advp vp; ber vp; md vp; vb np; vbg;
vbg pp vbn pp; vp vp

Table 3.9: Examples of adapted syntactic features

Overall more syntactic features exhibit statistically significant recency adaptation

than partner adaptation (see Table 3.9). For the noun phrase syntactic produc-

tions (NP) only one production exhibits statistically significant partner adaptation
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(NP→AT4 AT AP5 NN), while seven productions exhibit recency adaptation. For

the prepositional phrase syntactic structure (PP) I find both partner and recency

adaptation but the rules exhibiting adaptation differ between partner and recency di-

alog pairs. The structures where PP is a single preposition: PP→IN6 and PP→RP7

exhibit partner adaptation, while the structures PP→PP NOT PP, PP→QL RP PP,

and PP→RP AFF exhibit recency adaptation. For the syntactic sentence structures

(S) complex sentence structures, such as S→S AFF AFF S and S→S S exhibit partner

adaptation, while simple sentence structure S→NP exhibit both partner and recency

adaptation. Sentence structures starting with the auxiliary verb have S→HV NP VP

or ending with the auxiliary verb is/was S→NP BEZ8 exhibit partner but not recency

adaptation. For the verb phrase structures (VP) I find both partner and recency

adaptation but the structures exhibiting partner and recency adaptation differ. For

example, the structure with the auxiliary verb is/was VP→BEZ PP exhibits partner

but not recency adaptation.

feature Adapt. ratio Adapt. strength
partner recency partner recency

NP→NP PP 1.896 2.6 31.699 17.249
NP→NN 2.963 2.963 0.781 2.656
NP→DT NN 3.048 3.048 0.445 0.695
NP→DT AP NN 2.308 3.077 0.254 0.503

Table 3.10: Adaptation for the syntactic features examined by Dubey

Table 3.10 shows adaptation ratio and adaptation strength for some of the syn-

tactic features that were examined in Dubey et al. (2006b). Dubey found small but

statistically significant adaptation for these features. In my experiment, the features

4AT includes articles a, an, no, the.
5AP includes few, further, final, last, least, less, little, many, more, most, much, next, only,

other, same, single, very
6IN includes prepositions
7RP include adverbial prepositions
8BEZ includes auxiliary verbs is, was
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have adaptation ratio above 1 but the effect is not statistically significant accord-

ing to the χ2 test. All but the first and last features show comparable partner and

recency adaptation ratios. The adaptation strength for the feature NP→NP PP

shows stronger partner adaptation than recency adaptation. By contrast, the feature

NP→NN shows stronger recency adaptation.

3.4.2 Comparing Partner and Recency Adaptation

In this experiment, I use adaptation ratio and adaptation strength to compare partner

and recency adaptation. Table 3.11 shows adaptation ratio and adaptation strength

averaged over all features for each feature type (Stem/POS, Stem/bigram, Syntactic).

According to the adaptation ratio measure, there is no significant differences

between partner adaptation and recency adaptation for lexical features. However,

according to the adaptation strength measure, lexical features (Stem/bigram) have

stronger adaptation in the recency dialog pairs. Syntactic features, taken as a whole,

have significantly higher adaptation ratios for recency than for partner.

Table 3.12 reports the same measures as Table 3.11 over the subset of adapted

features from Tables 3.6, 3.7, and 3.9. The results on this subset of adapted features

are similar to the results for all features.

feature Adaptation ratio Adaptation strength
partner recency partner recency

Stem/POS 2.64 2.71 3.46 3.67*
Stem/bigram 2.99 3.03 1.71 1.91*
Syntactic 2.71 2.92* 4.70* 4.11

Table 3.11: Average adaptation ratio and adaptation strength for all features; * in-
dicates a statistically significant difference between partner and recency adaptation
(p<.05).

Table 3.13 shows the % of features that were adapted according to the adaptation
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feature Pr(+adapt)/Pr(Chance) Adapt. Strength
partner recency partner recency

Stem/POS 3.36 3.15 3.71 3.82
Stem/bigram 3.86 3.68 1.30 1.62*
Syntactic 3.09 3.36* 5.49* 4.99

Table 3.12: Average adaptation ratio and adaptation strength for adapted features;
* indicates a statistically significant difference between partner and recency adapta-
tion (p<.05).

num %adapted avg. adapt. strength
partner recency partner recency

p≥b 151.7 .14 .17 2.42 2.55
p≥b+1 78 .12 .14 3.47 3.59
p≥b+2 51.8 .12 .15 3.94 3.82

Table 3.13: Average distance measures for adapted features (Stem/POS only).9

measure and the corresponding adaptation strength for all adapted features. I con-

sidered three sets of features with varying frequencies in prime in the 32 partner and

32 recency priming dialog pairs. The first set includes all features where frequency in

prime is at least equal to the baseline frequency (p ≥ b); the second set includes all

features where frequency in prime is at least one above the baseline (p ≥ b + 1); and

the third set includes all features where frequency in prime is at least two above the

baseline (p ≥ b + 2). Num column indicates average number of features examined in

each feature set.

The results show that with the increase in prime frequency the % of adapted

features does not increases for neither partner nor recency adaptation. This indicates

that adaptation is not affected by frequency in prime. However, adaptation strength

increases for both partner and recency adaptation. This indicates that for the adapted

features, the feature frequency in the target is affected by the frequency in the prime.

I hypothesize that a speaker’s lexical and syntactic choices in a dialog are affected

by the speaker’s dialog model. My results suggests that a speaker’s conversation
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model is a combination of previous conversations by the speaker. The difference in

the types of features adapted to the most recent dialog and to the dialog with the

same partner suggests that the most recent and specific partner affect different parts

of the speaker’s dialog model. For example, the use of the first-person pronoun or

negation is pervasive in the very next conversation with a different partner but not

in the following conversation with the same partner, while the use of the direction-

specifying prepositions, such as across and through, is pervasive in the dialogs with

the same partner but not in the very next dialog with a different partner. This

suggests that some sections of the speaker’s model are affected by the most recent

user’s experiences, some sections are affected by the partner-specific experiences, and

some are affected by both.

3.5 Discussion

In this chapter I presented two methods for measuring adaptation in dialog. The

adaptation ratio measure, a variation on Church’s measure of adaptation, evaluates

how likely a feature is to appear in a target document with frequency greater than

average if it appears in the prime document with frequency greater than average.

The adaptation strength measure evaluates the strength of adaptation, the increase

in frequency of adapted features. These measures have several advantages over those

used in previous work. Comparing the frequency to an average instead of using a

binary ‘occurred’/‘did not occur’ distinction allows us to measure adaptation on both

frequent and infrequent features. Comparing adapt+ to chance allows us to measure

adaptation in a relatively small corpus of dialog pairs. Evaluation of adaptation

strength allows us to measure adaptation of a feature in single dialog pair (instead of

across a whole corpus).

I used these measures to compare adaptation in partner- and recency-primed
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dialog pairs. I showed through a series of analysis of the Maptask corpus that these

measures can identify features that exhibit adaptation and can be used across dialogs

to evaluate the presence and strength of partner and recency adaptation.

I found that speakers exhibit adaption of both types. I outlined differences in the

features that are adapted to recency and to the partner model: syntactic features

tend to be adapted to the most recent partner. Lexical features with a personal

pronoun ‘I’ are adapted to the most recent partner. Features indicating direction

(across, through, about the), and features with the pronoun ‘you’ tend to be adapted

to a specific partner, regardless of recency.

The findings of this work suggest that speakers adapt to spacial perspective and to

the task-specific strategy, where the strategy is closely related to the speaker’s lexical

choices. Perhaps, in the case of adaptation to recency, if a speaker perceives that

previously used strategy was successful, he/she will be likely to use the same strategy

in the next conversation. In the case of adaptation to the partner, the speaker may

remember which strategy the was used in their previous conversation and use the

same strategy.

In this work I compared adaptation effect exhibited by different features and com-

pared it between partner and recency. An interesting direction for future work is to

determine the proportion of dialogs exhibiting adaptation and to investigate whether

partner adaptation has an effect on quality of a conversation with a repeating partner,

such as task success, dialog length, number of misunderstandings and clarifications.

Reitter found that adaptation within a dialog positively correlates with task success.

I would like to investigate whether partner-specific adaptation between dialogs has a

similar effect on task success.
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Chapter 4

Adaptation and System Building

Adaptation in a dialog system can be either local or global. In the local approach

an existing system may be modified to support adaptation in one of its components.

Local adaptation implementation is minimally invasive and may be independent of

the overall system architecture. Examples of local adaptation include adaptation

in speech recognition (Yu et al., 2000; Riccardi and Gorin, 2000; Soltau, 2005) and

language generation (Walker et al., 2004; Stent et al., 2004) components. In the global

adaptation approach, the system design supports adaptation. Multiple components

may be involved. For example, Kempson et al. (2009) propose an adaptive dialog

system with merged parsing and generation components.

In my work I do not redesign system architecture to incorporate adaptation. In-

stead, I use lightweight local adaptation and apply it to existing systems. In this

chapter I describe three spoken interface systems that use different architectures: the

Rate-A-Course dialog system developed at Stony Brook, the Let’s Go! dialog system

developed at CMU, and a spoken question answering interface developed partly at

Stony Brook. I show how local adaptation is applied in each of these systems. I

use the Let’s Go! dialog system and the spoken question answering system for the

experiments described in the following chapters.
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4.1 Rate-A-Course Survey Dialog System

Surveys are a natural and commercially viable application for spoken dialog systems.

Survey dialog systems also present interesting opportunities for research on spoken

dialog and on survey design. The Stony Brook Rate-A-Course system is a survey dia-

log system that permits college students to evaluate their courses over the telephone.

The Rate-A-Course system is a prototype telephone-based spoken dialog system that

could be used as a replacement for or adjunct to other course evaluation methods.

The novelty factor of talking to a dialog system might increase response rates; be-

cause the survey results (including comments in response to open-ended questions)

are available in electronic form, they can be distributed over the web or telephone.

4.1.1 System Description

Figure 4.1: Rate-A-Course system architecture

The Rate-A-Course system is implemented in VoiceXML, XML and Javascript.

It runs on the BeVocal Cafe platform and uses Nuance speech recognizer (BeVocal).

Figure 4.1 shows the architecture of a system deployed on the BeVocal. A system

developer provide VoiceXML forms, corresponding speech recognition grammars and

resource files. Speech recognition, text-to-speech, and a phone line are provided by
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BeVocal. When a user calls and enters an application code, the corresponding VXML

form is activated and executed.

In the Rate-A-Course system the survey questions and potential answers are stored

in the resource XML document that can be automatically generated from a web-based

survey design interface. This interface permits the selection of choice points (for

subdialogs), question types and error-handling strategies. The XML document is used

to automatically generate speech recognition grammars and to populate VoiceXML

forms that act as templates for different question types. Javascript embedded in the

VoiceXML forms permits automatic logging of all system and respondent interactions.

Topic Synonyms Answers/Ratings

Instructor teacher, profes-
sor

very good/100, good/75, okay/50, bad/25, very
bad/0

Exams tests,
midterms

too hard/0, hard/50, about right/100, easy/50,
too easy/0

Class size course size, size

of the class

too packed/0, packed/50, about right/100,

small/50, too small/0

Assignments homeworks,
course work

too hard/0, hard/50, about right/100, easy/50,
too easy/0

TA t a, teachers

assistant

very good/100, good/75, okay/50, bad/25, very

bad/0

Table 4.1: Topics used in Rate-A-Course system experiment

Survey respondents are asked about five topics for a course that is being evaluated.

For each topic, they are first asked to rate that aspect of the course (e.g. “Was the

instructor very good, good, okay, bad or terrible?”). Then, they were asked to explain

their rating (e.g. “Why did you think the instructor was okay?”). Table 4.1 gives

information about the course topics.

Possible answers to closed-ended questions (e.g. “Was the instructor very good,

good, okay, bad or terrible?”) and question-related keywords taken from the XML

document are used to create recognition grammars; these permit respondents to an-

swer closed-ended survey questions using full or partial sentences, using the terms
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specified in the question or using synonyms of question terms. In this version of

the system, no attempt is made to automatically process the answers to open-ended

questions (e.g. “Why did you think the instructor was okay?”) during the survey.

The Rate-A-Course system permits respondents to ask for the last question to

be repeated and to ask for help at any time. A request for help is interpreted as a

request for clarification of the current question. The system also provides help on a

recognition failure or no input; this help can be a simple repetition of the question,

an explanation of the answers or an example answer, or a subdialog, depending on

the XML specification for the survey. Respondents in the experiment described here

were allowed to go back or cancel only for certain questions (e.g. course department

and number).

The Rate-A-Course system generates structured logs in the form of question-

answer pairs for all questions, as well as a complete dialog history with pointers to

the audio files containing respondents’ speech.

System S: We will now ask your opinion on the following aspects of

your course: the instructor, the assignments and the exams.
Is the instructor: very good, good, okay, bad, or very bad?

Mixed S: Which topic was the next most important to you? Your

choices are ...

User S: Would you like to discuss another topic?
U: Yes

S: Which topic is the next most important to you? Your
choices are ...

Table 4.2: System questions by initiative condition

The Rate-A-Course system implements several different dialog behaviors leading

to different amounts of system interactivity:

• Choice of question type: In the XML document, survey designers can specify

whether a question should be open-ended or closed-ended and can specify valid

answers to a close-ended question.
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• Question ordering: The VoiceXML forms implement random ordering of

questions when the survey designer does not specify question order.

• Initiative: There are VoiceXML forms for a survey with system initiative (the

system chooses the question order), mixed initiative (the respondent chooses

in which order to answer survey questions), or user initiative (the respondent

chooses which survey questions to answer, as well as the order in which to

answer them). Table 4.2 shows how the system moves from topic to topic in

each initiative condition.

The survey designer can give the respondent a code that pre-specifies system behav-

iors. This means that in addition to collecting survey data, the system can be used

to perform research about spoken dialog and survey design.

4.1.2 Adaptation in Rate-A-Course

In this section I describe local adaptation in the Rate-A-Course system. This simple

implementation allows us to study whether system adaptation has an effects on the

user.

The Rate-A-Course system implements adaptation in lexical realization. It runs in

one of the adaptation conditions (adaptive/non-adaptive). The concepts of the system

are the topics that may be evaluated by a user: teacher, exams, homework, etc. Each

concept has several synonimous forms of realization (e.g. teacher/lecturer/instructor).

The system at first uses a randomly-selected form of each survey concept. In the

adaptive condition the system switches after a user’s utterance to the user’s choice of

concept realization (e.g. if a user says “the instructor was very good”, the system will

then use the word instructor in the following prompts). In the non-adaptive condition

the system never switches its initially chosen form of a concept. The system also

implements syntactic adaptation. In the adaptive condition, the system switches its
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id S/U Utterance

1 S: Please choose one of the following: instructor, class size,

text book, etc.

2 U: instructor

3 S: Is the instructor very good, good, okay, bad, or very bad

4 U: very good

5 S: Please describe why do you think instructor is very good

6 U: the professor was very funny at times also entertaining as

well as very informative and [um] it was obvious to all the
students that it was a very intellectual person [uh] definitely

knew what he was talking about and [um] yeah it was a good
class

7 S: Please choose one of the following: teaching assistant, class

size, text book etc.

8 U: T. A.

9 S: Was the T. A. very good, good, okay, bad, or very bad

10 U: very good

Table 4.3: An example dialog with the Rate-A-Course system where the system
adapts to the user

tense (the form of the verb is/was) to the tense used by the user.

In the example dialog shown in Table 4.3, the user first chooses to discuss the

instructor and then the T.A. T.A. and teaching assistant are the two alternative real-

izations of the same concept. In the question (7), the system used teaching assistant.

The user chooses to discuss the T.A in (8). The system switches its vocabulary and

uses the word “T.A” in the next utterance (9). In the free response (6), the user uses

past tense “professor was”. In the following utterance (9), the system switches to

using past tense as well.

It has been shown that adaptation in human-human conversations correlates with

rapport between speakers. Comparison of user’s answers in communication with

adaptive system and non-adaptive systems allows to study user’s perception of a

dialog system and determine whether users of adaptive system be more sincere in

their discussion. Unfortunately, in our study we did not have enough participants to
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make conclusions about adaptation.

4.2 Let’s Go! System: Online Bus Information

4.2.1 System Description

The Let’s Go! Raux et al. (2005) system is developed, maintained, and deployed

at Carnegie Mellon University. This telephone-based system provides information

about bus routes, departure times, and bus connections in Pittsburgh. The system is

reachable through the local Port Authority number outside of the hours when human

operators answer the phone lines. The system receives calls from users of all ages and

language backgrounds.

Figure 4.2: Let’s Go! system architecture
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Let’s Go! was developed using the distributed Olympus framework with an archi-

tecture shown on Figure 4.2. System components run as separate applications com-

municating with messages through central hub. The system uses the Pocket Sphinx

speech recognizer (Huggins-Daines et al., 2006). The result of the recognition is parsed

by Phoenix, a robust parser using an extended context-free grammar. It allows the

system to skip unknown words and perform partial parsing (Ward and Issar, 1994a).

The dialog manager is developed using RaveClaw (Bohus and Rudnicky, 2003) that

allows “object-oriented” specification of a dialog structure. The dialog in RavenClaw

architecture is defined as a graph. Each node in the graph is a minimal dialog com-

ponent that performs a specific action and has pre- and post-conditions. The dialog

flow is determined by edges between nodes. With this structure, the reuse of minimal

dialog components inside the dialog manager is maximized. The Rosetta template-

based generator is used for response generation. The speech synthesis component is

the off-the shelf open source Free TTS system. Other research Olympus-based dialog

systems developed at CMU include the Room Line, LARRI (Bohus and Rudnicky,

2002), and Calendar (Stenchikova et al., 2007)1 systems.

To accommodate the diverse user population and noisy speaking conditions the

dialog system is designed as a linear system-initiative dialog. The system asks the

user for several concepts sequentially: an optional bus route number, a departure

place, a destination and a desired travel time. Each concept is explicitly confirmed.

The backend of the system is the database of all stops and bus routs in Pittsburgh

provided by the Port Authority. Table 4.4 shows a sample dialog with the system.

The system receives on average 40 calls per day. Average call length is 12.9 turns

with a large standard deviation. A 2005 call analysis showed a speech recognition

error rate of 68%. The task success rate is estimated at 43%.

1The first dialog systems based on the Ravenclaw/Olympus framework to be developed outside
of CMU.
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SYSTEM: Welcome to the CMU Lets Go! Bus Information
System. How may I help you?

USER: I’d like to go to Forbes and Murray.
SYSTEM: To Forbes and Murray. Where are you leaving

from?
USER: Carnegie Mellon.

SYSTEM: From Carnegie Mellon. There are five buses run-
ning between Carnegie Mellon and Forbes and

Murray: the 501, the 59U, the 61A, the 61B,
and the 61C.

What else can I do for you?
USER: When is the next one?
SYSTEM: The next 61C going to Forbes and Murray will

leave Carnegie Mellon at 5:13 PM.

Table 4.4: Sample dialog with Let’s Go!

Researchers at Carnegie Melon transcribed and hand-annotated the first two

months of Let’s Go! system operation in 2005 (2411 dialogs), and one month in

2006 (1430 dialogs). Since 2007, CMU researchers have provided the system as a re-

source for outside developers. It is a valuable resource for the dialog system research

community as it provides a testbed on a real system for experimenters and a large

and stable pool of users. I was granted permission to run two adaptation experiments

on the Let’s Go! system. These experiments are described in Chapters 5 and 6.

4.2.2 Adaptation in Let’s Go!

I use the system for directive and responsive short-term adaptation experiments with

real users. I modify the natural language generation component to use different

phrasing of the prompts. This allows me to evaluate immediate effect of the system

prompt on a user. In Chapter 5 I describe my experiments evaluating whether users

are likely to use the same syntactic structures and lexical choices as the system. I

compare user responses to the departure location prompt with different phrasing,

(e.g. Where are you leaving from? and What is the place of your departure?).
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These experiments are achieved by the local modification of natural language com-

ponent of the system, Rosetta. I create four natural language generation conditions.

The conditions differ between each other by presence of verbs and prepositions. I

parametrize Rosetta, such that an input parameter defines which of the four types of

four conditions is used. I modify all of the system prompts for each condition.

Users’ Lexical and syntactic choices may be affected by the system throughout

the dialog. In my directive adaptation experiment I am interested in user’s syntactic

and lexical choices in response to the initial system prompt and not further on in the

dialog.

Figure 4.3: Dialog states and language models used in Let’s Go!

Let’s Go! system implements local adaptation in its speech recognition. Speech

recognition is a statistical process that uses two kinds of models: an acoustic model

and a language model. An acoustic model is generated from spoken data with aligned

transcription. Acoustic model records the probabilities of mapping acoustic frequency

features to lexical units. A language model records probabilities of n-grams (strings

of length n) occurring in an utterance. The similarity between the recognized user

utterances and the dataset used for generating a language model affects recognition
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performance.

In order to provide the user with route information, Let’s Go! elicits a departure

location, a destination, a departure time, and optionally a bus route number. Let’s

Go! has four dialog states corresponding to the information it elicits: first-query,

place, time, and confirm. Figure 4.3 illustrates the dialog states currently used in

Let’s Go!.2 Initially the system is in the first-query dialog state, in which it asks a

general question What can I do for you?. Let’s Go! is a flexible input system. It

allows users to specify any combination of concepts in each state. For example, as an

answer to first query a user can specify all of the information about the route, e.g.

Going from Downtown to Oakland at four p.m., or only part of the information, e.g.

Leaving from Downtown. To answer the place prompt, Where are you leaving from?,

users are likely to specify a place concept, however they can also take task initiative

and specify other concepts. Each concept value provided by the user is explicitly

confirmed by the system.

In each of the system states, a state-specific language model is used for recognizing

a user’s answer. The state-specific language models are trained on user utterances

from the corresponding system states from previously annotated user interactions

with the system. The system’s speech recognizer adapts to the context of a dialog

as it switches language model used for recognition. In Chapter 6 I describe my

experiments with further adaptation of a system’s language model for content of user

utterances in confirm system state.

2There is also next-query which is similar to first-query and is omitted from the diagram
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4.3 Spoken Interface for Question Answering

Question answering (QA) is the task of automatic retrieval of an answer given a

question (e.g. Who invented silly putty? or When was Mozart born?). Question an-

swering provides a natural language interface for information retrieval. This interface

also opens the possibility of access to information retrieval using voice. Prior to an-

swer retrieval, a question has to be recognized. Spoken interface for QA recognizes

the spoken question and passes it to QA system to retrieve an answer.

Figure 4.4: Spoken question answering system architecture

Figure 4.4 shows a diagram of an adaptive spoken QA interface. The proposed

interface first asks the user to specify a question topic. For example, a topic of When

was Mozart born is a named entity Mozart. This information is used to create a

grammar or a language model for the recognition of the question. Next, the question

is recognized using the topic-specific language model.

In my experiments I evaluate the potential performance improvement of the speech

recognition on questions with the proposed adaptive system architecture.The results
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of the experiment are described in Chapter 7. In the future work I would like to

implement the proposed architecture and address the performance of named entity

recognition.

Adaptation in the speech recognition of spoken question answering is similar to the

adaptation in speech recognition of a dialog system described earlier in this chapter.

In both cases the language model used for recognition of a user’s utterance is adapted

according to the system’s expectation about the user’s utterance. In the Let’s Go!

dialog system, the language model is adapted to the expectation of the concept that

the user specifies (place, bus, or time). In the spoken interface to QA, thelanguage

model is adapted to the topic (or named entity) of the question. From the system

building perspective, both systems have an additional component (a classifier in Let’s

Go and a dynamic language model builder in spoken QA) that make a selection of

the model.
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Chapter 5

Directive Adaptation in Dialog

5.1 Motivation and Research Goals

In this chapter I describe my experiments on directive adaptation. The goal of these

experiments is to explore user behavior in response to varying system conditions. In

this study I investigate whether dialog system users in noisy real-world conditions

adapt to system prompts as they do in a conversation with another person or with

a dialog system in controlled experimental conditions. This is the first study, to the

best of my knowledge, that investigates the adaptive behavior of real users of a live

dialog system. Previous research on user adaptation to dialog systems was conducted

in laboratory settings (see Section 2.1). However, the behavior of recruited subjects

in a quiet laboratory may differ from that of real users in the noisy world because

of the user’s real needs and eagerness to complete the task. Experimental users may

have a different strategy of dealing with system errors in a dialog. For example, users

of an airline reservation system (Walker et al., 2002) in experimental settings often

switch their departure or destination location after continuous misunderstandings. I

hypothesize that a user with a real need to depart from the particular location would

use a different strategy to overcome system’s recognition error and be more eager
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to complete the task (Ai et al., 2007). External stimuli, such as noise and varying

quality of cell-phone signal, may also affect the user’s interaction with the system.

In the experiments described in this chapter analyze dialogs from the CMU’s Let’s

Go! dialog system (Raux et al., 2005). The results presented here confirm prior results

showing that users exhibit adaptation to the system’s lexical and syntactic choices. I

observe statistically significant differences in users’ lexical and syntactic choices be-

tween system conditions as I vary the form of system prompts. I observe statistically

significant differences in the system’s ability to detect task-related concepts in user

utterances as I vary the form of system prompts. In the following sections I describe

my analysis of: effect of the dialog system’s lexical and syntactic choices on user re-

sponses (Section 5.2), and effect of the system’s choice of concept form on the user’s

choices of concept form (Section 5.3).

5.2 Lexical and Syntactic Variation in System Queries

In this experiment I analyze user adaptation to the presence of a verb/preposition

and to the form of a function verb in the system’s prompt. I also analyze the effect

of the system’s lexical and syntactic choices on dialog performance.

Knowledge about user adaptation to the words or syntactic structures in the

system’s prompt can be particularly useful in flexible input dialog systems. Flexible

input dialog systems allow the user to respond to system prompts with phrases and

sentences and specify information other than that currently requested. Flexible input

systems may also allow the user to take task initiative. Limited input dialog systems,

on the other hand, require the user to respond to each system prompt using only

the concept and words currently requested by the system. Speech recognition (ASR)

accuracy in limited input systems is better than in flexible input systems (Danieli and

Gerbino, 1995; Smith and Gordon, 1997). However, depending on a task, flexible input
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systems may achieve better overall system performance (Chu-Carroll and Nickerson,

2000; Smith and Gordon, 1997). With user adaptation, in flexible input dialog systems

prompts can be formulated to maximize ASR accuracy and reduce the number of ASR

timeouts (Sheeder and Balogh, 2003).

5.2.1 Experimental Design

Speaker Task
type

Utterance

Sys Open Welcome to the CMU
Let’s Go bus informa-
tion system. What can
I do for you?

Usr 61A schedule
Sys Request

Depar-
ture

Where do you wanna
leave from?

Usr Location From downtown
Sys Confirm

Depar-
ture

Leaving from down-
town. Is this correct?

Usr Location Yes
Sys Request

Arrival
Where are you going
to?

Usr Location Oakland
Sys Confirm

Arrival
Going to Waterfront.
Is this correct?

Usr Location No, to Oakland

Table 5.1: Sample dialog from Let’s Go! with labeled system task type

I conducted my experiment using the Let’s Go! telephone-based spoken dialog

system that provides information about bus routes and is described in Section 4.2.

The users are naive callers seeking information about buses. In order to provide the

user with route information, Let’s Go! elicits a departure location, a destination, a
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departure time, and optionally a bus route number. Let’s Go! is a flexible input dialog

system. The user can respond to a system prompt using a single word or short phrase,

e.g. Downtown, or a complete sentence, e.g. I am leaving from downtown1 . Each

concept value provided by the user is explicitly confirmed by the system. Table 5.1

illustrates an example dialog with the system.

The variables in this experiment are 1) presence of a verb and/or prepositions in a

system prompt; and 2) a verb form in a system prompt. I chose to focus on the verbs

leaving/leave and going/go because according to the preliminary corpus analysis these

are the most frequently used verbs by the users of the Let’s Go!. In this experiment

I had enough time to run four experimental conditions. Hence, I decided to focus

the experiment on adaptation to the presence of a verb/preposition and adaptation

to the verb form. In future work I would like to also include the verbs departing and

arriving in the experimental variables and expand the study by measuring adaptation

to the verb choice (leaving vs. departing) as well as the perspective choice (going to

vs. arriving at).

cond request departure confirm departure request arrival confirm arrival

location location location location

1 Where are you

leaving from?

Leaving from X,

is this correct?

Where are you

going to?

Going to X, is

this correct

2 Where are you
leaving from?

From X, is this
correct?

Where are you
going to?

To X, is this cor-
rect

3 What is the place

of your departure

X, is this correct? What is the place

of your arrival?

X, is this correct

4 Where do you
want to leave

from?

You want to leave
from X, is this

correct?

Where do you
want to go to?

You want to go to
X, is this correct

Table 5.2: Experimental conditions

I ran four experimental conditions, varying the lexical choices and syntax of system

1The user response can also contain concepts not requested in the prompt, e.g. specifying depar-
ture location and bus number in one response.
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prompts for the request departure location, request arrival location, confirm departure

location, and confirm arrival location tasks (see Table 5.2). System prompts in each

system condition differ by presence of a verb (to leave, to go) or a preposition (to,

from), and by the syntactic form of the verb. The request location prompt contains

a verb in only two of the experimental conditions (1 and 4). The confirm location

prompt contains both a verb and a preposition in conditions 1 and 4, only a preposi-

tion in condition 2, and neither a verb nor a preposition in condition 3. In conditions

1 and 4, both request and confirmation prompts differ in the verb form (leaving/leave,

going/go).

The practical motivation for this experiment is a potential improvement of a

speech recognition in the system. I hypothesize that knowledge about a user’s utter-

ance may help improve speech recognition performance in a dialog system. This study

aims to determine whether lexical and syntactic choices in a system prompt help pre-

dict content of a user’s utterance. In case of a correlation between presence of a verb

and its form in a system prompt and in a user’s utterance, the system can 1) guide

users into using verbs, prepositions, or particular verb forms; and 2) dynamically

adapt ASR component based on the expected content of a user’s utterance.

5.2.2 Experimental Data

I collected 2184 dialogs (over 500 for each experimental condition).

In the Sections 5.2.3 and 5.2.5, I describe analysis done using automatically rec-

ognized user utterances on the whole dataset of 2184 dialogs. Although the data

contains recognition errors, the only difference in system functionality between the

conditions is the formulation of the system prompt.

In order to confirm my conclusions from my analysis of automatically recognized

utterances, I manually transcribed a subset of 143 dialogs where the speech recignizer
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recognized a verb. The purpose of this exercise was to 1) transcribe data for a con-

tribution to the Let’s Go Project and 2) confirm conclusions on lexical and syntactic

adaptation from my analysis of recognized output. The results on the transcribed

dataset are reported in Section 5.2.4.

5.2.3 Results: User Adaptation to System Lexical Choice

I analyze whether users are more likely to use action verbs (leave, leaving, go, or

going) and prepositions (to, from) in response to system prompts that use a verb

or a preposition. This analysis is interesting because automatic speech recognition

partially relies on context words, words related to a particular concept type such as

place, time or bus route. For example, the likelihood of correctly recognizing the

location Oakland in the utterance “going to Oakland” is different from the likelihood

of correctly recognizing the single word utterance “Oakland”.

Cond. Sys uses Sys uses % with % with
verb prep verb prep

Users’ responses to request location prompt
(1) yes yes 2.3% ∗ 5.6%
(2) yes yes 1.9% 4.3%
(3) no no 0.7% 4.5%
(4) yes yes 2.4%∗ 6.0%

Users’ responses to confirm location prompt
(1) yes yes 15.7% ∗ ♠ 23.4%
(2) no yes 3.9% 16.9%
(3) no no 6.4% 12.7%
(4) yes yes 10.8% 22.0%

Table 5.3: Percentages of utterances containing verbs and prepositions. ∗ indicates
a statistically significant difference (p<.01 with Bonferroni adjustment) from the no
action verb condition highlighted in bold. ♠ indicates a statistically significant dif-
ference from the no action verb in confirmation condition (2).

Table 5.3 shows the percentages of user responses in each experimental condition
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that contain a verb and/or a preposition. I observe adaptation to the presence of

a verb in the system prompt in user responses to request location prompts. The

prompts in conditions 1, 2 and 4 contain a verb, while those in condition 3 do not.

The differences between conditions 1 and 3, and between conditions 4 and 3, are

statistically significant (p<0.01)2. The difference between conditions 2 and 3 is not

statistically significant, perhaps due to the absence of the verb in the confirm location

prompt giving less priming.

A similar adaptation to the presence of a verb in the system prompt is seen in user

responses to confirm location prompts. The prompts in conditions 1 and 4 contain a

verb while those in conditions 2 and 3 do not. The differences between conditions 1

and 2, and between conditions 1 and 3, are statistically significant (p<.01), while the

difference between conditions 2 and 4 exhibits a trend. I hypothesize that the lack of

the statistically significant differences between conditions 2 and 4, and conditions 3

and 4, is caused by the low relative frequency in the dataset of dialogs in condition 4.

I do not find statistically significant differences in the use of prepositions. How-

ever, I observe a trend showing higher likelihood of a preposition in user responses to

confirm location in the conditions where the system uses a preposition. Prepositions

are short closed-class context words that are more likely to be misrecognized (Gold-

water et al., 2008). Hence, more data (or human transcription) may be required to

see a statistically significant effect. More detailed analysis of prepositions is part of

the future work for this project.

5.2.4 Results: User Adaptation to System Verb Form

I analyze whether the system’s choice of a particular verb form affects the user’s

choice of verb form. For this analysis I only consider user utterances in response to

a request location or confirm location prompts that have an automatically identified

2All analysis in this section are t-tests with Bonferroni adjustment.
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Condition Usr: LEAVING Usr: LEAVE total

Progressive system form 74.5% 25.5% 55
Simple system form 43% 57% 42

Neutral system form (unprimed) 61.3% 38.7% 31

Condition GOING GO total

Progressive system form 84.4% 15.6% 45
Simple system form 46.5% 53.5% 43

Neutral system form (unprimed) 66.6% 33.4% 21

Table 5.4: Usage of verb forms in user automatically recognized utterances

concept and contain at least one of the verb forms leaving, going, leave, and go3.

Table 5.4 shows the total counts and percentages of each verb form in the simple

form priming condition (condition 4), the progressive form priming condition (condi-

tion 1), and the neutral condition (condition 3)4. I find that the system’s choice of

verb form has a statistically significant impact on the user’s choice (χ2 test, p<0.01).

In the neutral (unprimed) condition, users are more likely to choose the progressive

verb form. In the progressive form priming condition, this preference increases by

13.2% for the verb to leave, and by 17.8% for the verb to go. By contrast, in the

simple form priming condition, this preference decreases by 18.3% for the verb to

leave and by 20.1% for the verb to go, making users slightly more likely to choose the

simple verb form than the progressive verb form.

I manually transcribed 63 dialogs in the simple form priming condition and 80

dialogs in the progressive form priming condition. To maximize the number of dialogs

of interest (that contain a verb in a specification of a place) I used automatic speech

recognition to guide the selection of dialogs for transcription. I selected the dialogs

where the automatic speech recognizer recognizes any of the words go, going, leave,

leaving anywhere in the dialog.

3Such utterances constitute 3% of all user responses to all request and confirm place prompts in
the dataset.

4I ignore condition 2 where the verb is used only in the request prompt.
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Table 5.5 shows the percentages of each verb form in the transcribed data. These

are proportions of utterances that contain a place concept and occur anywhere in

the dialog. Similarly to the result on recognized speech, this result shows a strong

indication that users are more likely to use the same verb form as the system (χ2 test,

p<0.01).

Condition/user’s verb Usr: LEAVING Usr: LEAVE total

Progressive system form 90% (45) 10% (5) 50
Simple system form 40% (12) 60% (18) 30

Condition/user’s verb Usr: GOING Usr: GO total

Progressive system form 88% (60) 12%(8) 68
Simple system form 37% (16) 63% (27) 43

Table 5.5: Usage of verb forms in users’ transcribed utterance

5.2.5 Results: Prompt Design and System Concept Detec-

tion

The correct identification and recognition of task-related concepts in user utterances

is an essential functionality of a dialog system. Table 5.6 shows the percentage of

user utterances following a request location prompt that contain an automatically-

recognized location concept. Note that this analysis is of automatic concept identifi-

cation and is performed on the speech recognition output of 2184 dialogs. Automatic

concept identification does not directly correspond to recognition accuracy, but on a

large dataset it approximates the recognition accuracy. Condition 4, where the sys-

tem prompt uses the verb form to leave, achieves the highest concept identification

rates. The differences in concept identification rates between conditions 1 and 4, and

between conditions 3 and 4, are statistically significant for request arrival location (in-

ference on proportions test, p<.01). Other differences are not statistically significant,

perhaps due to lack of data.
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System
prompt

Arrival
request

Departure
request

(1) 72.2% ∗ 63.8%
(2) 77.4% 61.0%
(3) 74.5% ∗ 61.5%
(4) 82.0% 66.0%

Table 5.6: Concept identification rates following request location prompts

5.3 Concept Form Variation

Concepts in a human-computer dialog convey task-specific information to the system.

Concept recognition is essential for the system’s ability to handle the task. In Let’s

Go! system concepts are names of neighborhoods (Downtown, Squirrel Hill, etc.), bus

routes (28X, 61A etc.), and time (now, four a.m., seven o’clock, etc.). In an airline

system, concepts would also include departure and arrival cities, airport names, and

dates. Concepts differ from other words in a user’s utterance because they contain

task-required information.

In this work, I investigate whether users adapt to the form of a concept used in

the system’s prompt. In addition to providing further evidence of convergence in

human-computer dialog, the findings of this experiment have implications for dialog

system design. Currently, much dialog systems research is devoted to improving ASR

accuracy, because this is a significant contributor to task success rates and to dialog

length. If users adapt to the systems choices of realization for task-related concepts,

we can predict the users choice of realization and use this to adjust the systems

language model, improving ASR accuracy specifically on concept words. Another

way to improve ASR accuracy is to guide the user into using words that are likely

to be recognized correctly (Hockey et al., 2003; Sheeder and Balogh, 2003; Tomko

and Rosenfeld, 2006). In Chapters 6 and 7 I describe speech recognition experiments

where prediction of a concept in an utterance improves recognition of the utterance.
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I hypothesize that prediction of concept form can similarly lead to speech recognition

improvements.

Study of adaptation in concept form may have implication for both limited and

flexible input dialog systems. To complete a task, users of any task-oriented dialog

system must specify system-required concepts. When a concept has multiple realiza-

tion forms (e.g. four p.m. and four in the afternoon), users must choose one of the

forms to use in an utterance. When users of a flexible input dialog system specify

time, they can say a full sentence (e.g. I am leaving at four), a phrase (e.g. at four),

or simply a concept (e.g. four). When users of a flexible input dialog system specify

destination, they can use different syntax (e.g. going to Downtown, arriving Down-

town), or, again, use a single concept (e.g. Downtown). While the non-concept words

in a user’s utterance (e.g. I, am, leaving, at, arriving, etc.) are optional, presence

of a concept (e.g. four, Downtown) is essential. The user of a limited input dialog

system has less flexibility in the choice of non-concept words than the user of a flexible

input dialog system. However, the user of a limited input dialog system has the same

flexibility in the choice of concept form as the user of a flexible input system.

In this work I investigate adaptation to the time concept because time has multiple

different realizations. To indicate the same time, a user may say four, four o’clock,

four p.m., or four in the afternoon. All of these realizations of time are common

English phrases and I can safely assume that users are familiar with each of the

realizations. The correct recognition of the part of day specification in time concept

is important in the Let’s Go! system because the system makes an assumption about

the part of day based on the time of a call. So, if a user calls at night to check

the morning busses, the recognition of the part-of-day is essential. Table 5.7 shows

the time forms used by users of the Let’s Go! system and their relative frequencies

in a Let’s Go! corpus. I chose to study the time concept because it has the most

variability in a Let’s Go! dialog system. This variability is not unique to time and
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time form example realization frequency

TIME ONLY four, five, six thirty. . . 31.1%
TIME APM four a.m., ten p.m., one fif-

teen p. m.
43.5%

TIME POD four in the morn-
ing/evening/afternoon/

4.6%

TIME OCLOCK five o’clock 16%
OTHER four o’clock p. m., a. m. 4.8%

Table 5.7: Formats of the time in users’ utterances and their relative frequencies in
one month of Let’s Go! 2006 dataset.6

the findings of this work may apply to other system concepts. Place names can have

multiple realizations. For example, SAC and Student Activity Center refer to the

same location at Stony Brook Campus. Fifth and Madison and Madison and Fifth

refer to the same intersection in New York City.

I hypothesize that the user’s choice of the concept form (time form in Let’s Go!)

is affected by the system’s choice of the concept form. In the next sections I describe

my experiment and results supporting this hypothesis.

5.3.1 Experimental Design

For this experiment, I use the Let’s Go! dialog system described in Chapter 4.2.

I evaluate three time forms of system priming: TIME ONLY, TIME APM, and

TIME POD7 (see Table 5.7 for examples). These time forms have different properties:

TIME ONLY is the most frequent form in the Lets Go! corpus, but it is potentially

ambiguous as it can mean either night or day. The TIME APM form is the shortest

unambiguous form. TIME POD is the long unambiguous form and has a very low fre-

quency in the Lets Go! corpus. I chose to investigate TIME ONLY and TIME POD

forms because they are the most frequently used forms by the system users according

to the previously transcribed data. Another frequent time form is TIME OCLOCK.

7POD stands for Pard-Of-Day
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To keep the experiment tractable I did not investigate it in this experiment.8 I chose

to investigate TIME POD because I was interested to test adaptation to an infre-

quently used time form.

I investigate the directive effect of the system prompts: whether users are likely to

use the same form of the time as the system. I measure and compare the frequencies of

each time form in user utterances in different experimental conditions. The directive

effect of a system prompt on the user’s form of concept would suggest that the system

prompts have directive power to guide users into using concept forms that are easier

for the system to automatically recognize. Ability to predict the form of a concept in

a user’s utterance allows grammar or language model adaptation of the ASR and NLU

components to the expected concept form that can lead to improvement in speech

recognition performance. I hypothesize that in dialog systems with more complex

domains, such as tutoring or technical assistance, where more concepts may have

diverse synonymous realizations, system’s ability to guide a user into using a specific

concept form may play an important role for speech recognition improvement.

In this experiment the system primes the user for one of the time forms in the

prompt asking the user about departure time. I assume that priming of the time con-

cept occurs when the system specifies the time. If the system uses the TIME ONLY

form, (e.g. Are you leaving at four?), I assume that the user was primed for the

TIME ONLY form. If the system uses the TIME APM form, (e.g. Are you leaving

at four p.m.?), I assume that the user was primed for the TIME APM form. If the

system uses the TIME ONLY form, (e.g. Are you leaving at four?), I assume that

the user was primed for the TIME ONLY form.

In a normal conversation with a system, users specify time before the system

can prime them (see Table 5.8). Only in a confirmation utterance, after the user

8It would have been desirable to study TIME OCLOCK. I expect to observe similar results on
the TIME OCLOCK as on the TIME APM.
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id Speaker Utterance

1 Sys What time do you want to leave?
2 Usr at seven
3 ASR at seven
4 Sys Leaving at seven in the morning
5 Usr yes

Table 5.8: Normal dialog flow with time request

1 - 7, 2 - 10, 3 - 6, 4 - 7, 5 - 9, 6 - 3,7 - 11, 8 - 10, 9 - 1, 10 - 1, 11 - 7

Table 5.9: Simulated error in time recognition

specifies time, the system says a time. However, if the time was correctly recognized

by the system, the user does not repeat the time after the system’s confirmation

prompt. I use a trick to cause users to say a time after the system’s confirmation.

For experimental purposes, I made a modification to the system that allows users

to be primed. After the initial time query: What time are you leaving?, the system

simulates a recognition error. To make the system’s error more realistic, the time in

the simulated error is a time that is phonetically closer to the time (hour and minute)

initially recognized by the ASR. The system’s choice for the incorrect time to present

to the user in a confirmation with a simulated error is shown in Table 5.9. A sample

dialog with a simulated error is shown in the Table 5.10. In response to the simulated

error, the user makes one of the four responses: 1) correct the system immediately,

2) answer negatively to the confirmation and then correct the system, 3) start a new

query, and 4) hang up. In this experiment I am interested in user responses of type

1 and 2 as illustrated in Table 5.9.

Another possible method of priming the user would be through a forced help

message. For example, after the system’s time prompt What time would you like to

depart?, the system could play an explicit help message: For example, you can say

four p.m. Help messages in the Let’s Go! system are played for the user when the

72



5.3. CONCEPT FORM VARIATION

id Speaker Utterance

1 Sys What time do you want to leave?
2 Usr at seven
3 ASR at seven
4 Sys Leaving at one in the morning

User response type 1
1.5 Usr no at seven a. m.

User response type 2
2.5 Usr no
2.6 Sys What time do you want to leave?
2.7 Usr at seven a. m.

User response type 3
3.5 Usr new query

User response type 4
3.5 Usr HANGUP

Table 5.10: Simulated error in a dialog flow with time request

system perceives a communication problem. Under normal circumstances it is not

desirable to burden users with excessive help. Also, the priming effect in an explicit

help message may be stronger than priming in a normal conversation. To compare

my results with Brennan (1996)’s, I choose the simulated error priming method for

this experiment.

5.3.2 Experimental Data

System Condition System’s Confirmation Question dialogs
transcribed

SYS TIME ONLY Leaving at T? 44
SYS TIME APM Leaving at T a. m./p. m. ? 49
SYS TIME POD Leaving at T in the morn-

ing/evening/afternoon ?
47

Table 5.11: Confirmation prompt and the number of dialogs transcribed for each
system condition (T can be hour or hour+minutes)
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User Utterances Description # utterances

Unprimed Initial utterance before priming 141
First primed First utterance after a simulated error

prime
130

All primed All utterances after a simulated error
prime

258

Table 5.12: Number of Unprimed, First primed, and All primed utterances

I collected over 2000 dialogs with Let’s Go! using this setup.9 However, not

all of these dialogs contained mention of the time concept. The most common user

response to the Let’s Go! system’s prompt When do you want to leave? is now. The

dialogs where users say now instead of explicitly specifying time are not useful for

this experiment. I used automatic speech recognition output to guide me in selecting

dialogs with user responses of type 1 and 2 in Table 5.10 by selecting dialogs where

a time was recognized at least twice. I manually transcribed 50 dialogs for each

condition.

Table 5.11 shows the system’s prompts and number of transcribed dialogs for the

three system conditions: SYS TIME ONLY, SYS TIME APM, and SYS TIME POD.

The number of dialogs for each condition excludes the transcribed dialogs that did

not contain mentions of time after a confirmation.

5.3.3 Results: User Adaptation to System Concept Form

If the user adapts to the systems time form, then we would expect to see a greater pro-

portion of the systems time form in user utterances following the prime. I compare the

proportion of three time forms (U TIME APM, U TIME ONLY, and U TIME POD)10

in each system condition for 1) unprimed, 2) First primed, and 3) All primed user’s

9The same set of dialogs was collected in the experiment described in Section 5.2.
10Corresponding to the time forms in Table 5.7. Prefix ’U’ stands for ’user’.
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utterances (see Table 5.12). Unprimed utterances are the user’s initial specifica-

tions of time before the system’s confirmation prompt. First primed utterances are

user utterances immediately following system’s confirmation (utterances 2.7 or 3.5

in Table 5.10). The First primed utterances are guaranteed to follow the system’s

confirmation prompt immediately. All primed utterances are all user utterances in

a dialog following system’s confirmation with the simulated error. All primed utter-

ances include First primed, plus all consecutive utterances with time in the dialog

(excluding utterances after the user says new query). The separation of First primed

and All primed was inspired by Brennan (1996) who evaluated convergence on im-

mediate (immediately following the priming prompt) and delayed (following later in

dialog) user utterances. I measure the priming effect in First and All primed ut-

terances separately because All primed utterances may not immediately follow the

system’s priming utterance and priming decays over time (Reitter et al., 2006a).

I hypothesize that for the unprimed user utterances there will be no difference in

proportions of each of the examined time form among different system conditions.

I hypothesize that for the primed (both All and First) user utterances each time

form will be most frequent in the corresponding system condition than in the other

two conditions. I predict that in primed user utterances 1) U TIME APM is more

frequent in SYS TIME APM than in SYS TIME ONLY and SYS TIME POD; 2)

U TIME ONLY is more frequent in SYS TIME ONLY than in SYS TIME APM and

SYS TIME POD; and 3) U TIME POD is more frequent in SYS TIME POD than in

SYS TIME APM and SYS TIME ONLY. Table 5.13 shows the proportions of each

time form among all user utterances specifying time in each of the system conditions.

To test statistical significance of the results I perform inference on proportions for a

large sample.

U TIME APM

As expected, There are no statistically significant differences in the proportions of
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Unprimed

system/user U TIME APM U TIME ONLY U TIME POD U OTHER

SYS TIME APM 25% 42% 8% 25%

SYS TIME ONLY 30% 52% 2% 16%

SYS TIME POD 24% 49% 4% 23%

First Primed

system/user U TIME APM U TIME ONLY U TIME POD U OTHER

SYS TIME APM 49% 29% ♠ 2% 20%

SYS TIME ONLY 21% ♣ 58% 0% 21%

SYS TIME POD 29% 45% 5% 21%

ALL Primed

system/user U TIME APM U TIME ONLY U TIME POD U OTHER

SYS TIME APM 63% 19% ♣ 3% 15%

SYS TIME ONLY 21% ♣ 50% 2% 27%

SYS TIME POD 37% ♣ 38% 4% 21%

Table 5.13: Percentages of user utterances with each time format. The highest pro-
portion for each system condition is highlighted in bold. ♠ indicates a statistically
significant difference from the highest value in the column (p<.05 with Bonferroni
adjustment). ♣ indicates a statistically significant difference from the highest value
in the column (p<.01 with Bonferroni adjustment)

unprimed U TIME APM forms for the different system conditions. The propor-

tion of U TIME APM forms in First primed utterances is significantly higher in

the SYS TIME APM condition than in the SYS TIME ONLY condition (p<.01),

although not significantly different than in the SYS TIME POD condition. The pro-

portion of U APM forms in the All primed utterances is significantly higher in the

SYS TIME APM condition than in both the SYS TIME ONLY and the SYS TIME POD

conditions (p<.01). I conclude that there is user adaptation to the TIME APM

form.

U TIME ONLY

There are no statistically significant differences in the proportions of unprimed U TIME ONLY

forms for the different system conditions. The proportions of U TIME ONLY forms

in the First primed utterances in the SYS TIME ONLY condition is significantly

higher than that in the SYS APM condition (p<.01), but not significantly higher
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than that in the SYS POD condition. The same is true of U TIME ONLY forms

in the All primed utterances. I conclude that there is user adaptation to the

TIME ONLY form.

U TIME POD

I did not find statistically significant differences in U POD forms for the different

system conditions in either the unprimed, First primed or All primed data. The

proportions of TIME POD in user utterances after confirmation is as low as it is

before confirmation in the SYS TIME POD condition. I note that this is the long

unambiguous form; users may have felt that it would not be recognized or that it was

inefficient to produce it.

Figure 5.1: Proportions of user utterances with the TIME APM and the TIME ONLY
for each system condition

Figure 5.1 graphically illustrates the proportions of user utterances with the two

time forms (TIME APM and TIME ONLY) that exhibit user adaptation effect. Af-

ter priming users are more likely to use the same condition as the system: the

SYS TIME APM bar is the highest for TIME APM utterances (left graph, black

bar) and the SYS TIME ONLY bar is the highest for the TIME ONLY utterances

(right graph, black bar). I also observe that TIME APM form decreases after priming
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in SYS TIME ONLY condition (left graph, white bar) while TIME ONLY form de-

creases in SYS TIME APM condition (right graph, white bar). The proportion of ut-

terances in the SYS TIME POD condition behaves similarly to the SYS TIME APM

condition: it grows after priming for TIME APM (left graph, gray bar) and decays

after priming for TIME ONLY (right graph, gray bar), although at a lower rate.

5.3.4 Results: Comparing User Adaptation with Previous

Work

System condition keep switch to adapt switch to different

System adaptive
SYS APM

APM→APM - APM→T/O,
APM→POD,

APM→CLOCK

System adaptive
SYS TIME ONLY

T/O→T/O - T/O→APM,
T/O→POD,

T/O→CLOCK

System non-
adaptive

SYS TIME APM

T/O→T/O,
POD→POD,

CLOCK→CLOCK

T/O→APM,
POD→APM,

CLOCK→APM

T/O→CLOCK,
T/O→POD,

POD→CLOCK,
CLOCK→POD,

System non-

adaptive
SYS TIME ONLY

APM→APM,

POD→POD,
CLOCK→CLOCK

APM→T/O,

POD→T/O,
CLOCK→T/O

APM→CLOCK,

APM→POD,
POD→CLOCK,

CLOCK→POD,

Table 5.14: User action in adaptive and nonadaptive system conditions

In this section I compare my results to the previous work by Brennan (1996). The

author analyzed lexical convergence of a user with a Wizard-of-Oz dialog system.

The experiment measured convergence of a user to a system’s embedded (implicit)

and exposed (explicit) corrections of a term, such as school/college. Brennan (1996)

reports proportion of cases where the user switches to use system’s term.

In Let’s Go! system the user can 1) keep the same time form, 2) switch to

adapt to a system’s form, or 3) switch to a different form. Table 5.14 illustrates the
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possible user’s actions in the Let’s Go! system. Here, I look at the proportions of

user utterances in the switch to adapt column of the table. I define convergence to

TIME APM to be the proportion of utterances in the SYS TIME APM condition

that switch from another form to TIME APM. I define convergence to TIME ONLY

to be the proportion of utterances in the SYS TIME ONLY condition that switch

from another form to TIME ONLY.

Figure 5.2: Comparing lexical convergence in the Let’s Go! system and in Brennan
(1996)’s experiment

Figure 5.2 shows the proportions of convergence to TIME APM and convergence

to TIME ONLY and the proportions of the the embedded delayed and embedded

immediate lexical convergence in Brennan’s experiments.11

In the Let’s Go! system convergence to TIME APM is higher than convergence to

TIME ONLY. This may be due to the difference in the two prompts. TIME APM is

the prompt that primes with presence of AM/PM, while TIME ONLY primes with

absence of any suffix. To converge to TIME ONLY a user would have had to have

11Since my experiment is more similar to embedded (or implicit) correction in Brennan’s experi-
ment, I only show the results for convergence with embedded correction.
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another suffix originally, such as am/pm, o’clock, etc. These results suggest that

the priming with a suffix (am/pm) has a stronger effect than priming with no suffix.

Perhaps, users are more inclined to switch from using one suffix to another than from

using a suffix to no suffix. This difference may also be caused by the ambiguity of

the TIME ONLY form. The priming effect of the TIME ONLY form conflicts with

the ambiguity of the format. In some cases users may want to emphasize the part of

the day that they are interested in.

Brennan reports higher convergence in immediate utterances than in delayed ut-

terances. Convergence in the time form in Let’s Go! system is lower than lexical con-

vergence in Brennan’s experiment. Although I measured user’s switch of time form

immediately of priming, convergence to TIME APM in the Let’s Go! is comparable

to the delayed convergence and is lower than immediate convergence in Brennan’s

experiment. In Brennan’s experiment, the system’s embedded correction happens in

the system’s answer:

User: what college does Aida attend?

System: the school Aida attends is Williams

while in Let’s Go! system, the embedded correction happens in a question:

User: seven o’clock

System: Did you say one a. m.?

Brennan’s results show that the users are more likely to adapt to exposed correc-

tion than to embedded correction. I hypothesize that the type of utterance containing

the embedded correction may affect convergence. When primed by a question that

exposes an error in the system’s understanding (as in my Let’s Go! experiment), the

user’s attention may be shifted to the semantic information that needs to be speci-

fied. In this case the user may be less likely to notice the different form used by the
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system and consecutively less likely to converge. I also hypothesize that the nature

of the task may affect convergence. The Let’s Go! experiment was conducted with

real users looking for bus information over a noisy phone channel, while Brennan’s

experiment was conducted with paid subjects in a laboratory.

5.3.5 Results: the Effect of System Adaptation on the User

condition keep switch to adapt switch to different total
the same form to the system than the system

adaptive 81.8% (27) - 18.2% (6) 33
system cond.
non-adaptive 36.7% (18) 28.6% (14) 34.7% (17) 49
system cond.

Table 5.15: Proportions of user actions in First primed confirmation utterances (keep-
ing or changing the form of time)

In this section I use the dialogs in the SYS TIME APM and SYS TIME ONLY

conditions for evaluating the effect of the system appearing to adapt to the user.

Adaptive cases include the dialogs when 1) the user in an unprimed utterance says

TIME APM in the SYS TIME APM condition; and 2) the user in an unprimed ut-

terance says TIME ONLY in the SYS TIME ONLY condition (see Table 5.14). Al-

though in this experiment the system did not explicitly adapt to the user, the sys-

tem’s behavior (choice of time form) is co-incidentally adaptive in these two scenarios.

The TIME POD form is extremely rare in user utterances. The experiment did not

produce adaptive cases in the SYS TIME POD condition. Hence, I excluded the

SYS TIME POD condition from this analysis.

The dataset contains 33 adaptive and 48 non-adaptive dialogs for the two system

conditions12. I examine the First primed confirmation user utterance. I differentiate

between three possible user actions: 1) keep (the time form is unchanged), 2) switch

12I excluded those dialogs where users chose to start a new query after time specification.
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to same (the user switches to the system’s form), and 3) switch to different (the user

switches to a different form from the system’s form).

Table 5.15 shows the proportions and the number of cases when the user keeps

or switches the time form. To test statistical significance of the results I perform

inference on proportions test. The results indicate that in the adaptive condition

users are twice as likely to keep the time form than in the non-adaptive condition

(81.8% vs. 37.5%). This difference is statistically significant (p<.001).

In the non-adaptive system condition users who switch the time form are slightly

more likely to switch to a different time form (35.4%) than to the system’s form

(29.1%). The results suggest that when the system does not adapt to the user, user’s

choice is unpredictable. However, if the system adapts to the user, the user is likely

to keep the same form. This means that if the system can adapt to the user when

the user chooses a form that is more likely to be recognized correctly, that provides

positive reinforcement, making the user more likely to use that felicitous form in the

future. Furthermore, if the system does adapt to the user then it may be possible

with high accuracy to predict the users form for subsequent utterances, and to use

this information to improve ASR accuracy for subsequent utterances (Stoyanchev and

Stent, 2009a).

One might argue that users’ lack of adaptation in the non-adaptive system con-

dition is caused by the semantic difference between the time forms used for priming.

TIME ONLY is an ambiguous form. Consider a case where the user indicates a de-

parture time four o’clock in the SYS TIME ONLY condition:

S: What time would you like to leave?

U: four o’clock

S: leaving at seven

U: No, at four p. m.!
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The system’s confirmation uses an ambiguous TIME ONLY form. Why is the user

not likely to switch to the TIME ONLY form? Possibly, the user may be inclined

to clarify the part of day using unambiguous form in the First primed confirmation

utterance. However, users who used TIME ONLY in the unprimed utterance, tend

to keep TIME ONLY in the SYS TIME ONLY condition. Hence, this argument does

not hold.

Consider an example in the SYS TIME APM system condition:

S: What time would you like to leave?

U: four

S: leaving at seven a. m.

U: No, at four!

Why is the user not more likely to switch to the TIME APM form? According to

Gricean maxim of quantity (Grice, 1981), a speaker’s contribution is “as informative

as is required for the current purposes of the exchange”. According to the this princi-

ple, speakers specify the minimum amount of the information required for the message

to be understood. In the case of a correction, the minimal information is only the part

needing correction (i.e. seven). However, in the adaptive SYS TIME APM condition,

users are more likely to keep the TIME APM form when primed with TIME APM.

Hence, this argument does not hold.

The result of the adaptation to time form experiment contradicts most of the

previous experimental results on adaptation that suggest users’ adaptation to the

system. What is the difference in this case? This experiment is different from the

past experiments in two ways. First, I am looking at adaptation to the form of

a concept, while most other experiments evaluated adaptation to verbs or nouns.

Second, the priming happens after a user has had a chance to say one of the time

forms.
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The result suggests that the adaptive system condition where the user’s choice of

the concept form is reinforced by system’s prompt, increases the user’s probability of

repeating this form. In this experiment, I expected to find that system priming causes

users to change their time form to the same form as the system. Instead, I found an

effect of system adaptation on the probability of user’s change: system adaptation

affects the likelihood of the user changing the concept form.

5.4 Discussion

In this chapter, I showed that in deployed dialog systems with real users, as in lab-

oratory experiments, users adapt to the lexical and syntactic choices of the system.

I analyzed users’ adaptation to the presence of verbs and prepositions, to the verb

form, and to the form of a task-related concept. I showed that users do adapt to the

system’s lexical and syntactic choices, as well as concept forms.

These results indicate that the system prompts have directive power, or the

ability to guide users into using particular words and syntax. Formulation of system

prompts in a flexible input dialog systems can be used to guide users into producing

utterances conducive to task success. My results show that variations in system

prompts can have an impact on recognition of task-related concepts. The system’s

the ability to guide a user may depend on multiple factors, such as the amount and

type of information contained in the prompt, dialog history, or the user’s focus of

attention. In future work, I would like to evaluate which factors make it more likely

for the users to adapt to the system.

I showed that users are more likely to adapt to the system’s choice when the

system appears to adapt to them. The finding of the effect of system adaptation to

the user has a potential implication for the design of dialog systems: systems should

adapt to the user’s choices of concept forms. By adapting to the user, the system
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guides the user into adapting to self and to the system, leading to a more predictable

user behavior. The predictable user behavior enables the system to limit its grammar

and language model in the ASR and NLU components and potentially improve speech

recognition and concept identification in a dialog system. In my experiments I found

that users adapt to the form of time concept in the Let’s Go! bus information system.

I hypothesize that presence of adaptation to the form of time concept in the Let’s

Go! suggests that this directive effect is likely be present for other types of concepts

and needs to be investigated further. In the future work I would like to confirm the

effect of system adaptation to other system concepts, such as a place concept (in an

application where place has multiple realizations). Dialog applications with a more

diverse domain than bus information, such as tutoring or technical assistance, may be

interesting for studying effect of adaptation as they have more topic-specific (math,

physics, etc.) concepts with multiple realizations.
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Chapter 6

Responsive Adaptation in Dialog

6.1 Motivation and Research Goal

Responsive adaptation involves a change in a system’s behavior in response to a user

or a dialog situation. The change can be manifested in any of the components of

a dialog system: Natural Language Understanding, Natural Language Generation,

Dialog Management, or Speech Recognition, as illustrated in Section 2.3. In this

work I address responsive adaptation in the speech recognition module of a dialog

system.

Figure 6.1: Automatic speech recognition

Speech recognition is a statistical process. Acoustic frequency features A are ex-

tracted at a constant rate from an utterance (see Figure 6.1). Recognition is achieved

by maximizing the probability of the word sequence, W , given the acoustic features,
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A. Speech recognizers use two kinds of models: an acoustic model and a language

model. An acoustic model is generated from spoken data with aligned transcription.

Acoustic model encodes the probabilities of mapping acoustic frequency features to

lexical units. A language model encodes probabilities of n-grams (strings of length

n) occurring in an utterance. Modern recognizers commonly use 3-gram models that

record probabilities of words (1-grams), bi-grams, and tri-grams. A language model

can be statistical (generated from text) or grammar-based (generated from a man-

ually constructed context free grammar). This means that the similarity between a

recognized user utterance and the dataset used for generating a language model affects

the performance of recognition. For example, an utterance containing words frequent

in the language model is more likely to be recognized correctly than an utterance

containing infrequent words.

Figure 6.2: Dialog systems recognition and interaction

Word error rates for commercial state-of-the-art open-domain speaker-independent

speech recognition technology are around 25%-30% (Riccardi and Hakkani-Tür, 2003).

Word error rates in research dialog systems are known to be even lower. Noisy con-

ditions, speaker’s accent, or speaking out of vocabulary increase recognition errors.
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The performance of speech recognition is often dependent on the type of input the

system is designed to recognize (see Figure 6.2). On the one hand, limited input dialog

systems require the user to respond to each system prompt using only the concepts

and words currently requested by the system. On the other hand, flexible input dialog

systems allow the user to respond to system prompts with phrases and sentences and

specify information other than that currently requested. Flexible input systems may

also allow the user to take task initiative.

Speech recognition (ASR) accuracy in limited input systems is better than in

flexible input systems (Danieli and Gerbino, 1995; Smith and Gordon, 1997). However,

task completion rates and times can be better in flexible input systems (Chu-Carroll

and Nickerson, 2000; Smith and Gordon, 1997). Researchers have shown that user

training improves performance of limited input systems, while prompt design improves

performance of flexible input systems For example, Tomko and Rosenfeld showed that

trained users communicating with a limited input dialog system achieve better speech

recognition than users communicating with flexible input dialog systems (Tomko and

Rosenfeld, 2006). Sheeder and Balogh showed that in flexible input dialog systems

prompts can be formulated to maximize ASR accuracy and reduce the number of

ASR timeouts (Sheeder and Balogh, 2003).

I hypothesize that information about the content of a user utterance may help

improve speech recognition for the utterance. I automatically predict the content of

user utterances using features from the dialog content and from the utterance. Then

I adapt the ASR’s language model to the predicted content of the user’s utterance.

It is now common practice to adapt the recognizer to the type, context or style of

input speech (Bellegarda, 2004). Language model (LM) adaptation has been used to

improve automatic speech recognition performance in automated meeting transcrip-

tion (Tur and Stolcke, 2007), speech-driven question answering (Stoyanchev et al.,
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2008a), broadcast news recognition (Gildea and Hofmann, 1999), and spoken dia-

log systems (Tur et al., 2005). LMs in dialog systems can be adapted to the dialog

state (Riccardi and Gorin, 2000; Esteve et al., 2001), the topic (Iyer and Ostendorf,

1999; Gildea and Hofmann, 1999), or the speaker (Tur, 2007). In this work I use the

concept type(s) in the user’s utterance to adapt the recognizer’s LM.

6.2 Experimental Approach

6.2.1 Concepts and Confirmations

In this experiment I address the problem of speech recognition of concepts (system-

specific information provided by a user) that are specified by a user after system

confirmations (yes/no questions confirming system’s understanding of a concept).

System’s ability to recognize a concept is essential for successful conversation. Failure

to recognize a concept may lead to cascading errors and complicate dialog. System

may improve its concept recognition by adapting its language model to dialog context.

In request prompts, when a system requests specific information, context is the type

of information requested. However, after confirmation promts, users often choose to

switch context making it more difficult for the system to adapt to context. My work

addresses this issue. I show that it is possible to automatically predict dialog context

after a system’s confirmation and improve speech recognition or user’s concepts by

adapting language model to the automatically predicted context.

In this experiment I use annotated dialog transcripts and speech from the Let’s

Go! system described in Section 4.2. Lets Go! is a telephone-based spoken dialog

system that provides information about bus routes in Pittsburgh (Raux et al., 2005).

The data used in this experiment comes from the first two months of Let’s Go! system

operation in 2005 (2411 dialogs), and one month in 2006 (1430 dialogs). Researchers
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at Carnegie Melon transcribed and hand-annotated this data for concept types. In

the annotated transcripts, the following concept types are labeled: neighborhood,

place, time, hour, minute, time-of-day, and bus. For the experiments I col-

lapsed these concepts into three concept types: time, place and bus (see Table 6.1)

Concept Type Example User Utterance

place I need to go from Oakland:p

time Leaving at four p. m.:t

bus I need 28X:b

Table 6.1: Examples of user utterances with a concept in Let’s Go! system. Concept
annotations: :p indicates place, :t indicates time, and :b indicates bus.

System’s confirmation ques-
tion

User response Response type

Going to WOOD STREET.
Did I get that right?

yes Positive confirmation

Leaving from DOWNTOWN.

Did I get that right?

no, Oakland Rejection & correction

Leaving from Waterfront, is
this correct?

yes and go to Oakland Topic change

Leaving from ROBINSON. Is

this correct?

from Polish Hill Correction

Going to REGENT SQUARE.
Is this correct?

no, Braddock avenue Rejection & correction

The 61A. Did I get that right? wondering when the
next bus is

Topic change

Table 6.2: Example answers to system confirmations

In most dialog systems, the system explicitly confirms user-provided task-relevant

concepts. The user’s response to a confirmation prompt such as “Leaving from Wa-

terfront?” may consist of a simple confirmation (e.g. “yes”), a simple rejection (e.g.

“no”), a correction (e.g. “no, Braddock avenue”) or a topic change (e.g. “no, leave at

7” or “yes, and go to Oakland”). (See Table 6.2 for more examples of users’ responses

to confirmation questions in the Let’s Go! corpus). The user’s response type has im-

plications for further system processing. In particular, corrections and topic changes
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are likely to contain unrequested task-relevant concepts that are not well represented

in the recognizer’s post-confirmation language model. In Let’s Go! users specify a

concept in 18% of post-confirmation utterances. As Figure 6.3 shows, in Let’s Go!

the word error rate on post-confirmation Let’s Go! utterances containing a concept is

10% higher than on utterances without a concept. My goal is to improve recognition

of the user’s post-confirmation utterances that contain a concept.

Figure 6.3: Word error rate on post-confirmation user utterances

6.2.2 Dialog States and Language Models

In order to provide the user with route information, Let’s Go! elicits a departure

location, a destination, a departure time, and optionally a bus route number. Let’s

Go! has four dialog states corresponding to the information it elicits: first-query,

place, time, and confirm. Figure 6.4 illustrates the dialog states used in the original

version of Let’s Go!. Each concept value provided by the user is explicitly confirmed

by the system.

In each of the system states, a state-specific language model is used for recognizing

a user’s answer. The state-specific language models are trained on user utterances
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Figure 6.4: Dialog states and language models used in the original version of Let’s
Go!

from the corresponding system states in the 2005 dataset. State-specific language

models reflect the distribution of user’s answers in each state. For example, the Place

LM is built on user’s answers to the Where are you leaving from? prompt. Place LM

has a higher chance of recognizing correctly typical answers with vocabulary such as

leaving, from, going, to and a name of a place.1 It is less likely to correctly recognize

untypical answers (e.g. at four).

The generic Confirm LM is trained on all user post-confirmation utterances from

the 2005 dataset. Typical answers to confirmation prompts (e.g. Leaving from X?,

Traveling at Y?, You want the bus Z?) do not contain a concept. Only 15.6% of post-

confirmation utterances in the 2005 dataset contain a place concept, 3.2% contain a

time concept, and 6.4% contain a bus concept (see Concept Type Features in Table 6.3).

Hence, utterances with a concept are not well represented by the Generic Confirm LM

and recognition is likely to fail on utterances containing a concept. Even though such

1Language models used by Let’s Go! are hierarchical, the concept names are stored in the
dictionary. If training data contains an utterance with place concept (labeled with :p), the model
should be capable of recognizing all places in the database used in a similar context.
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utterances are quite rare, they are disproportionately important. This work addresses

the relatively small problem of improving recognition of post-confirmation utterances

with a concept (18% of all post-confirmation utterances). However, misrecognition of

a concept is a critical problem in a dialog system that can lead to cascading errors.

My previous analysis of Communicator corpus (Walker et al., 2002) shows that the

probability of a consecutive error (when a sequence of utterances is misrecognized)

is significantly higher than the probability of an initial error (Stoyanchev and Stent,

2009a). Correct determination of the concept type of post-confirmation utterances

can lead to improved speech recognition, fewer and shorter sequences of speech recog-

nition errors, and improved dialog system performance.

Figure 6.5: Two-pass Automatic Speech Recognition approach

I adopt a two-pass recognition architecture previously introduced by Young (1994).

The process is shown in Figure 6.5. In the first pass, the input utterance is processed

using the generic confirm LM. Recognition may fail on concept words such as “Oak-

land” or “61C”, but is likely to succeed on closed-class words (e.g. ”yes”, ”no”, ”and”,
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”but”, ”leaving”). I then use acoustic, lexical and dialog history features to deter-

mine the task-related concept type(s) likely to be present in the utterance. In the

second recognition pass, any utterance containing a concept type is re-processed us-

ing a concept-specific LM. I show that: (1) it is possible to achieve high accuracy in

determining presence or absence of particular concept types in a post-confirmation

utterance; and (2) 2-pass speech recognition with concept type classification and lan-

guage model adaptation can lead to improved speech recognition performance for

post-confirmation utterances.

6.2.3 Post-Confirmation User Utterances in Let’s Go

Table 6.3 shows statistics on post-confirmation user’s utterances in Let’s Go! for the

2005 and 2006 datasets. Perhaps because of system improvements and user experi-

ence, the two data sets are significantly different. Most confirmation prompts in both

data sets are for a place (61% and 59.2% respectively). However, in the 2005 dataset

the bus and time concepts occurred with almost the same frequency in confirmation

prompts (19.4% and 19.6%), while in the 2006 dataset, bus concepts occurred in only

17.6% of confirmation prompts and time concepts in 22.3% of confirmation prompts.

Perhaps some users figured out that bus is actually not a required piece of informa-

tion; start and end locations are sufficient for the system to figure out the bus route.

There are also differences in user responses to confirmation prompts. The propor-

tion of responses containing “yes”, “no”, and/or a concept all dropped from the 2005

dataset to the 2006 dataset. This may be caused by users in the 2006 dataset using

more variation when responding to confirmation prompts.

I also observe some differences in variance of duration of users’ utterances. This

may be due to improvement in detecting when a user stops speaking. The 2006

dataset also shows higher RMS mean that may be due to change in the hardware

settings in the two years of operation.
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Event 2005 2006

num % num %

Total dialogs 2411 1430

Total confirm utts 9098 100 9028 100
Confirms utts with a concept 2194 24 1635 18.1

Dialog State

Total confirm place system utts 5548 61 5347 59.2
Total confirm bus system utts 1763 19.4 1589 17.6

Total confirm time system utts 1787 19.6 2011 22.3

Concept Type Features

User’s post-confirm utts with place 1416 15.6 1007 11.2

User’s post-confirm utts with time 296 3.2 305 3.4
User’s post-confirm utts with bus 584 6.4 323 3.6

Lexical Features

User’s post-confirm utts with ‘yes’ 4395 48.3 3693 40.9
User’s post-confirm utts with ‘no’ 2076 22.8 1564 17.3
User’s post-confirm utts with ‘I’ 203 2.2 129 1.4

User’s post-confirm utts with ‘from’ 114 1.3 185 2.1
User’s post-confirm utts with ‘to’ 204 2.2 237 2.6

Acoustic Features

feature mean stdev mean stdev

Duration (seconds) 1.341 1.097 1.365 1.242
RMS mean 0.037 0.033 0.055 0.049

F0 mean 183.0 60.86 185.7 58.63
F0 max 289.8 148.5 296.9 146.5

Table 6.3: Statistics on post-confirmation utterances

Because of these differences between two datasets, I used cross-validation on the

2006 data for the concept type classification experiments. In my experiments, I used

the 2006 data to train concept type classifiers and for testing. I used the 2005 data

to build LMs for the speech recognition experiment.2

2I chose to use the 2005 dataset for building language models to use more data for training.
The difference between the datasets may lower the speech recognition performance across all of the
experiments.
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6.3 Predicting Concept Type

In this section I describe my experiments on concept type prediction.

6.3.1 No-Concept Baseline Prediction

Since majority of the post-confirmation utterances do not contain a concept, the first

baseline method predicts “no concept” for all utterances. Overall accuracy of this

prediction method is 82%. However, it is not useful for improving speech recognition

on utterances containing a concept as its prediction for these utterances is always

incorrect.

6.3.2 Confirm-Type Baseline Prediction

Figure 6.6: A confirm-type baseline approach to language modeling

A simple approach to predicting concept types in user utterances is to use the

concept type being confirmed by the system (Figure 6.6). If the system requests con-

firmation of a place, this method predicts that the user’s post-confirmation utterance

will contain a place concept. If the system requests confirmation of a bus, it predicts a

bus concept. If the system requests confirmation of a time, it predicts a time concept.

There are two problems with this approach. First, the majority of utterances (82%
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place bus time
2005 dataset

confirm place 0.86 0.13 0.01
confirm bus 0.18 0.81 0.01
confirm time 0.07 0.01 0.92

2006 dataset
confirm place 0.87 0.10 0.03
confirm bus 0.34 0.64 0.02
confirm time 0.15 0.13 0.71

Table 6.4: Confirmation state vs. user concept type

in 2006 dataset) do not contain any concept. Second, users may attempt topic changes

in post-confirmation utterances, or use a different concept than the one confirmed.

Table 6.4 shows a confusion matrix for confirmation prompt concept type and post-

confirmation utterance concept type. For example, in the 2006 dataset after a system

confirmation prompt for a bus, a bus concept is used in only 64% of concept-containing

user utterances. Post-confirmation corrections are more likely to be topic changes in

the 2006 dataset than in the 2005 dataset. In the Section 6.4.2 I compare speech

recognition results using prediction of the confirm-type baseline method with the

machine learning method.

6.3.3 Machine Learning Method

I use decision trees to classify each post-confirmation user utterance by the concept

type(s) it contains (place, time, bus or none). I experimented with using lexical,

prosodic, and dialog history features in the machine learning algorithm. All of these

features are available at run-time and can be used in a live system. The features are

outlined in Table 6.5 and described below.

System confirm-type feature (DIA)

The system confirm-type feature corresponds to the confirm-type baseline prediction.

It indicates the concept type requested in the confirmation prompt and takes the
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Feature type Feature source Feature description

System confirm-type

(DIA)

system log System’s confirmation prompt concept type

(confirm time, confirm place, or confirm bus)

Acoustic (RAW) raw speech F0 max; RMS max; RMS mean; Duration;
Difference between F0 max in first half and in

second half

Lexical (LEX) transcripts/ASR
output

Presence of specific lexical items; Number of
tokens in utterance; [transcribed speech only]

String edit distance between current and pre-
vious user utterances

Dialog history (DH1,

DH3)

1-3 previous ut-

terances

System’s dialog states of previous utter-

ances(first query, place, time, confirm place,

confirm time, or confirm bus); [transcribed

speech only] Concept(s) that occurred in
user’s utterances (YES/NO for each of the
concepts place, bus, time)

ASR confidence
score (ASR)

ASR output Speech recognizer confidence score

Concept type match

(CTM)

transcripts/ASR

output

Presence of concept-specific lexical items

Table 6.5: Features for concept type classifiers
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value of place, bus, or time.

Acoustic Features (RAW)

The acoustic features are extracted from the raw audio of the user utterances. I

use utterance maximum pitch (F0 max), energy (RMS), duration, and the difference

between F0 max in the first and second halves of the utterance. The F0 difference

feature is intended to capture the raising and falling intonation in a user’s utterance.

I used Pratt (Boersma and Weenink) scripts to automatically extract these features

from the audio. These features were inspired by the work of Litman et al. (2006)

on detecting speech recognition errors. I anticipated that these features would help

distinguish corrections and rejections from confirmations.

# spkr Utterance DIA State History Concept His-
tory

1 S What can I do for you?
2 U I want to catch the 28x
3 S

(conf)
The 28X. Did I get that
right?

4 U
(post
conf)

Yes. From the airport to
downtown

conf
bus

SH1=first query
SH2=∅ SH3=∅

CH1=bus
CH2=∅ CH3=∅

5 S
(conf)

Leaving from the Airport.
Is this correct?

6 U
(post
conf)

Yes. conf
place

SH1=confirm bus
SH2=first query
SH3=∅

CH1=place
CH2=bus
CH3=∅

7 S
(conf)

Okay. Going to Down-
town. Is this correct?

8 U
(post
conf)

Yes. conf
place

SH1=confirm place
SH2=confirm bus
SH3=first query

CH1=∅
CH2=place
CH3=bus

Table 6.6: Dialog state and history features example

Dialog History Features (DH)

I use from one to three utterances of dialog history (DH1, DH3). These features
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capture information about the dialog state history (SH) and concept history (CH).

In DH1, the dialog state and concept of the previous utterance are recorded. In DH3,

the dialog states and concepts of the three previous utterances are recorded. The

dialog state values can be first query, place, time, confirm place, confirm time, or

confirm bus. This feature is extracted from the system log of the dialog. The concept

history values are extracted from the annotated, transcribed speech and could be

place, time, bus, or none.3 Figure 6.6 shows the values of dialog state (DIA), state

history, and concept history features on an sample from a Let’s Go! dialog. User’s

utterance #4 is an answer to a confirmation prompt about a bus route number, so

its DIA feature value is confirm bus. The value for SH1 is first query, the value of

the preceding system state corresponding to system utterance #1. The value for

CH1 contains bus because the previous user utterance (#2) mentioned a bus. For

utterance #4 there are no user utterances more than one back.

Lexical Features (LEX)

LEX features include non-concept words and bigrams from the user’s current utter-

ance, such as go, leave, to, from, etc. I hypothesize that these features are highly

indicative both of concept presence and absence, as well as of the presence of a par-

ticular concept type. For example, going to may be highly correlated with a place

concept and leaving at may be correlated with a time concept. I explored two meth-

ods for identifying the most salient lexical features: manual and mutual information

extraction. Both of these methods selected a set of the most salient features that

were then used for concept classification.

Manual approach:

I manually selected five lexical features: yes (indicates a confirmation), no (indicates

a rejection), to and from (indicate presence of concept types place and time), and

3Concept history can have multiple values. It is represented as a binary feature for each of the
possible concepts (bus, place, or time).
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I (indicates complete sentence). These features were selected based on a heuristic

estimate of their importance and their high relative frequency in the corpus.

Mutual information approach:

I selected lexical features according to the mutual information between potential fea-

ture and concept types (Manning et al., 2008). I extracted lexical features (unigrams

and bigrams) from the transcribed user utterances. I removed all words that realize

concepts (e.g. “61C”, “Squirrel Hill”), as these are likely to be misrecognized in the

first pass recognition of a post-confirmation utterance. I computed the mutual infor-

mation between each potential lexical feature and concept type and selected features

with the highest mutual information score.

I computed the mutual information score I for each lexical feature t and each

concept type class c ∈ { place +, place -, time +, time -, bus +, bus -} as follows:

I =
Ntc

N
∗ log2

N ∗ Ntc

Nt. ∗ N.c

+
N0c

N
∗ log2

N ∗ N0c

N0. ∗ N.c

+

Nt0

N
∗ log2

N ∗ Nt0

Nt. ∗ N.0

+
N00

N
∗ log2

N ∗ N00

N0. ∗N.0

where Ntc= number of utterances where t co-occurs with c, N0c= number of utterances

with c but without t, Nt0= number of utterances where t occurs without c, N00=

number of utterances with neither t nor c, Nt.= total number of utterances containing

t, N.c= total number of utterances containing c, and N = total number of utterances.

Table 6.7 shows several lexical features with high mutual information for each concept

type. For example, the feature to co-occurs with the concept place in 217 utterances

(Ntc), and occurs without the concept place in only 39 utterances (Nt0), so presence

of this feature in an utterance is indicative of presence of a place. The feature yes,

on the other hand, occurs without the concept place in 3652 utterances and with the

concept place in only 41 utterances, so it is indicative of absence of place.
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Features N0c Nt0 N00 Ntc Info.
mea-
sure

place
yes 964 3652 2501 41 0.127
to 788 39 6114 217 0.069
from 828 25 6128 177 0.058
going 891 14 6139 114 0.038

route
yes 307 3678 3158 15 0.036
the 232 80 6756 90 0.036
the next 297 26 6810 25 0.0089

time
yes 167 3690 3298 3 0.022
at 151 26 6962 19 0.0085
on 166 23 6965 4 0.0008

Table 6.7: Mutual information for selected features

I try two methods of selecting features with the highest MI. In the first method

I select for each concept type the 50 features with the highest mutual information.

In the second method I select for each concept type the 30 features with the highest

mutual information that occurred at least 20 times in the training data4.

Concept Type Match Features (CTM)

The CTM feature indicates whether a user’s utterance matches a concept. I tok-

enized all concepts: names of bus stops, places, buses, and time. Each automatically

recognized user utterance was matched to the bag of words for each of the concepts.

I used three binary features CTM place, CTM bus, and CTM time. For example,

CTM place feature is set to true when a recognized utterance matches a part of one

of the place concepts, such as street or avenue.

For transcribed speech there is a one-to-one correspondence between presence of

4I aimed to select an equal number of features for each class with information measure in the
top 25%. 30 was an empirically derived threshold for the number of lexical features to satisfy the
desired condition.
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the concept and the CTM feature. So this feature alone has 100% concept prediction

accuracy. Hence I only evaluate this feature for recognized speech. I hypothesized

that the CTM feature will improve cases where a part of (but not the whole) concept

instance is recognized in first-pass recognition. The generic language model used in

first-pass recognition recognizes some concept-related words. So, if in the utterance

Madison avenue, avenue (but not Madison), is recognized in the first-pass recognition,

the CTM feature can flag the utterance with a partial match for place, helping the

classifier to correctly assign the place type to the utterance. Then, in the second-

pass recognition the utterance will be decoded with a place concept-specific language

model, potentially improving speech recognition performance.

6.3.4 Experimental Results

In this section I examine the impact of the features presented in Table 6.5 on concept

type classification performance. I report overall classification performance separately

for feature combinations with lexical features from transcribed speech (Table 6.10)

and from recognized speech (Table 6.12). The results on transcribed speech gives us

an idea of the best possible performance on concept type classification5. The results

on recognized speech provide a realistic estimate for the performance in a live dialog

system.

I performed a series of 10-fold cross-validation experiments to examine the impact

of different feature combinations on concept type classification. I trained three binary

classifiers for each experiment, one for each concept type, i.e. I separately classified

each post-confirmation utterance as place + or place -, time + or time -, and bus +

or bus -. I used Weka’s implementation of the J48 decision tree classifier (Witten

and Eibe, 2005)6. The overall performance is computed over all three concepts.

5I exclude concept words (e.g. Downtown) from LEX features.
6J48 gave the highest classification accuracy compared to other machine learning algorithms I
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Performance for predicting each concept is reported in Table 6.11 for transcribed

speech and Table 6.13 for recognized speech.

Measure Description Computation

pre+ precision of predicting pres-
ence of a concept

tp/(tp+fp)

rec+ recall of predicting presence
of a concept

tp/(tp+fn)

f+ f-measure for predicting
presence of a concept

2*[rec+]*[pre+] / ([pre+] + [rec+])

acc overall accuracy (tp+tn)/(tp+tn+fp+fn)
switch+ error due to misclassification

of utts with concept with an
incorrect concept

1-(tp/all utts with concept)

switch error due to misclassification
of any utt with an incorrect
concept

1-((tp+fp)/all utts)

Table 6.8: Measures of concept prediction. tp=True Positives, tn=True Negatives,
fp=False Positives, fn=False Negatives

For each experiment, I report precision (pre+) and recall (rec+) for determining

presence of each concept type, and overall classification accuracy for each concept

type (place, bus and time). I do not report precision or recall for determining absence

of each concept type. In the data set 82.2% of the utterances do not contain any

concepts (see Table 6.3). Consequently, precision and recall for determining absence

of each concept type are above .9 in each of the experiments. I also report over-

all pre+, rec+, f-measure (f+), and classification accuracy across the three concept

types. Finally, I report the percentage of switch+ errors and switch errors. Switch+

errors are the proportion of utterances with a concept classified as containing a dif-

ferent concept. Utterances containing bus classified incorrectly as time/place, time as

bus/place, and place as bus/time are counted as switch+ errors. In the second pass of

speech recognition these utterances will be decoded with a language model built for a

tried on this data.
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concept different than the concept in the utterance and will be likely to have a higher

word error rate. Utterances with a concept misclassified as none will be decoded with

the same generic confirm language model in the second pass of the recognition. The

word error rate while recognizing these utterances in the second pass will be the same

as in the first pass. The Switch error is the proportion of all utterances misclassified

with one of the concepts. Switch errors include utterances with no concept classi-

fied as place, bus or time. Table 6.8 outlines each of my performance measures and

describe how they are computed.

I compare results using a paired t-test with Bonferronni correction. Utterances

classified as containing one of the three concept types are subject to second-pass

recognition using a concept-specific language model. Utterances that are classified

correctly as containing a particular concept type (rec+) will be subject to second-pass

recognition using a more appropriate language model. Speech recognition perfor-

mance on these utterances may improve in the second pass of the ASR. On the other

hand, utterances that are incorrectly classified as containing a particular concept type

(switch+) will be subject to second-pass recognition using a poorly-chosen language

model. This may cause speech recognition performance to suffer. This means that I

want to maximize (rec+) and minimize switch+ errors.

Baselines

The No-Concept baseline achieves overall classification accuracy of 82% but rec+ of

0. At the other extreme, the Confirm-type baseline achieves rec+ of .79, but overall

classification accuracy of only 14%. I always use the current confirmation prompt

type (DIA) feature.
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Features Classification accuracy
rec+ acc

LEXmanual5 0.55 0.89
LEXtopMI50 0.52 0.88
LEXfreq30 0.56 0.89

RAW+DH+LEXmanual5 0.57 0.89
RAW+DH+LEX50 0.56 0.89
RAW+DH+LEXfreq30 0.62 0.90

Table 6.9: Comparing selection methods of lexical features. Classification accuracy
on lexical features from recognized speech.

Comparing lexical feature selection methods

First, I compare a manually selected lexical features with automatically selected lex-

ical features. I tried two methods for automatic selection of lexical feature sets: (a)

LEX50, the 50 features with the highest mutual information; and (b) LEXfreq30, the

30 features with the highest mutual information that occurred at least 20 times in

the training data. As Table 6.9 shows, the LEXfreq30 feature set achieves the high-

est classification accuracy and rec+. The prosodic (RAW) and dialog history (DH)

feature sets lead to additional improvements in performance.

In the experiments described later in this section, all LEX features are selected

with the LEXfreq30 method. Throughout this section, I call the model trained on LEX

features the LEX model, the model trained on RAW features, the RAW model, and

so on. The significance tests in this section are done using inference on proportion of

correctly classified utterances.

Features from the current utterance (RAW, LEX, LEX RAW)

I first look at lexical (LEX) and prosodic (RAW) features from the current utterance.

A model trained on RAW features achieves rec+ of 0.34 and overall accuracy of 0.85.

This model performs surprisingly well, beating both baselines in overall accuracy
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Features Overall
pre+ rec+ f+ acc switch+ switch

No Concept 0 0 0 0.82 0 0
Confirm-type 0.14 0.79 0.24 0.14 0.170 0.723

RAW 0.67 0.34 0.45 0.85 0.064 0.040
LEX 0.87 0.72 0.79 0.93 0.073 0.032
LEX RAW 0.88 0.70 0.78 0.93 0.074 0.030

DH1 LEX 0.88 0.81 0.84 0.95 0.055 0.029
DH3 LEX 0.89 0.78 0.83 0.94 0.052 0.026

Table 6.10: Overall concept type classification results: transcribed speech (all models
include feature DIA). Best overall values in each group are highlighted in bold.

Features Place Time Bus

pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc

No Concept 0 0 .86 0 0 0.81 0 0 .92

Confirm-type 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96

LEX 0.81 0.88 0.96 0.77 0.48 0.98 0.83 0.59 0.98

LEX RAW 0.83 0.84 0.96 0.75 0.54 0.98 0.76 0.59 0.98

DH1 LEX 0.85 0.91 0.97 0.72 0.63 0.98 0.89 0.83 0.99

DH3 LEX 0.85 0.87 0.97 0.72 0.59 0.98 0.92 0.82 0.99

Table 6.11: Concept type classification results for each concept: transcribed speech
(all models include feature DIA).
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Features Overall
pre+ rec+ f+ acc switch+ switch

No Concept 0 0 0 0.82 0 0
Confirm-type 0.14 0.79 0.24 0.14 0.170 0.723

RAW 0.67 0.34 0.45 0.85 0.064 0.040
LEX 0.75 0.56 0.64 0.89 0.099 0.049
LEX RAW 0.76 0.60 0.67 0.90 0.103 0.051

DH1 LEX RAW 0.77 0.60 0.67 0.90 0.082 0.046
DH3 LEX RAW 0.77 0.62 0.68 0.90 0.072 0.046
ASR DH3 LEX
RAW

0.77 0.62 0.68 0.90 0.072 0.045

CTM DH3 LEX
RAW

0.85 0.74 0.79 0.93 0.039 0.029

CTM ASR DH3
LEX RAW

0.85 0.74 0.79 0.93 0.042 0.030

Table 6.12: Overall concept type classification results: recognized speech (all models
include feature DIA). Best overall values in each group are highlighted in bold.

Features Place Time Bus

pre+ rec+ acc pre+ rec+ acc pre+ rec+ acc

No Concept 0 0 .86 0 0 0.81 0 0 .92

Confirm-type 0.87 0.85 0.86 0.64 0.54 0.58 0.71 0.87 0.78

RAW 0.65 0.53 0.92 0.25 0.01 0.96 0.38 0.07 0.96

LEX 0.70 0.70 0.93 0.67 0.15 0.97 0.65 0.62 0.98

LEX RAW 0.70 0.72 0.93 0.66 0.38 0.97 0.68 0.57 0.98

DH1 LEX RAW 0.71 0.68 0.93 0.68 0.38 0.97 0.78 0.63 0.98

DH3 LEX RAW 0.71 0.70 0.93 0.67 0.42 0.97 0.79 0.63 0.98

ASR DH3 LEX

RAW

0.71 0.70 0.93 0.69 0.42 0.97 0.79 0.63 0.98

CTM DH3 LEX

RAW

0.82 0.82 0.96 0.86 0.71 0.99 0.76 0.68 0.98

CTM ASR DH3
LEX RAW

0.82 0.81 0.96 0.86 0.69 0.99 0.76 0.68 0.98

Table 6.13: Concept type classification results for each concept type: recognized
speech (all models include feature DIA).
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(0.85 vs. 0.82 & 0.14 for the no-concept & confirm-type baselines, p < .001 for

both). However, this model only works for place concepts. As shown in Figure 6.13,

the rec+ for RAW model is 0.53 for the place concept, but only 0.01 and 0.07 for

the time and bus concepts. This result indicates that utterances with place concept

contain prosodic information that can be used for classifying presence of a concept.

For utterances with time and bus concepts prosodic features alone are not helpful

for determining presence of a concept. One possible reason for this difference in

performance may be the lack of training data for the bus and time concepts. Another

reason may be the difference in length of the concept types. Table 6.14 shows average

number of non-concept words in an utterance, average number of words in a concept,

and average number of characters in a concept7. The number of words in utterances

and concepts are similar. However, the time concept is much shorter in character

length8. This may explain the low performance of the RAW model on the utterances

with the time concept, as the prosodic features may not be as reliable on shorter

utterances. However, the performance of RAW model on the utterances with the

bus concept is as low as it is on the utterances with the time concept despite the

bigger character length of the bus concepts. I hypothesize that when users specify a

bus concept after a confirmation, the values of the prosodic features chosen for this

experiment are not different from the values in the utterances without a concept.

Hence RAW model is not able to differentiate utterances with the bus concept.

concept average non-concept# average # average #
type words in utt words in concept char in concept
place 1.29 2.2 12.8
bus 1.63 2.9 10
time 1.73 1.7 6.6

Table 6.14: Length of user utterances with concept

7I use the number of characters to approximate the number of syllables
8It is not surprising that the time concept is so short. The most common time concept, now, is

3 characters long.
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LEX model for both transcribed & recognized speech achieve significantly higher

rec+ than the RAW model(0.72 & 0.56 vs. 0.34) and overall accuracy (0.93 & 0.89 vs.

0.85, p < .001 for both). As expected, lexical features, even with speech recognition

errors, are more useful than prosodic features in isolation. For recognized speech,

the LEX model has significantly more switch+ errors than the RAW model (0.064

vs. 0.099, p < .001). This is not surprising since the RAW model has low recall on

utterances with concepts (rec+), so the majority of errors made by the RAW model

are labeling an utterance with a concept as none.

For transcribed speech, the LEX RAW model does not perform significantly dif-

ferently from the LEX model in terms of overall accuracy, rec+, or switch+ errors.

However, for recognized speech, LEX RAW achieves significantly higher rec+ (0.60)

and overall accuracy (0.90) than LEX (rec+ 0.56 and acc 0.89, p < .001). Lexical

features from transcribed speech are very good indicators of concept type. Prosodic

features do not improve the prediction performance. However, lexical features from

recognized speech are noisy, so concept type classification for ASR output can be

improved by using acoustic/prosodic features.

Figure 6.7: Dialog systems’ recognition and interaction

Prediction accuracy varies widely across concepts. Figure 6.7 illustrates rec+
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for place, time, and bus concepts using LEX from transcribed speech, LEX from

recognized speech, and LEX RAW from recognized speech. Classification of the place

concept achieves the highest rec+ out of all of the concepts using each of the feature

combinations. This may be partially due to the fact that I have more training data for

the place concept than for the other concepts, and partially due to more informative

lexical features in utterances with the place concept. The Time concept has the

lowest rec+, and the biggest drop in performance due to recognition errors (difference

between LEX on transcribed and LEX on recognized speech). However, I observe

that prosodic features help the rec+ for time concept, improving rec+ from a low

0.15 to 0.38.

Models containing only features from the current utterance perform significantly

worse than the confirmation state baseline in terms of rec+ (p < .001). However, they

have significantly better overall accuracy and fewer switch+ errors (p < .001) .

Features from the Dialog History (DH1, DH3)

Next, I add features from the dialog history to my best-performing models so far.

For transcribed speech, DH1 LEX performs significantly better than LEX in terms

of rec+ (0.81 vs 0.72), overall accuracy (0.95 vs. 0.93), and switch+ errors (0.055 vs.

0.073, p < .001). DH3 LEX performs significantly worse than DH1 LEX in terms

of rec+ (0.78 vs. 0.81 p < 0.05). For recognized speech, neither DH1 LEX RAW

nor DH3 LEX RAW is significantly different from LEX RAW in terms of rec+ or

overall accuracy. However, both DH1 LEX RAW and DH3 LEX RAW do perform

significantly better than LEX RAW in terms of switch+ errors (p < .05). There are

no significant performance differences between DH1 LEX RAW and DH3 LEX RAW.

Features Specific to Recognized Speech (ASR, CTM)

Finally, I add the ASR and CTM features to models trained on recognized speech.
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I hypothesized that the classifier can use the recognizer’s confidence score to decide

whether an utterance is likely to have been misrecognized. However, ASR DH3 LEX RAW

is not significantly different from DH3 LEX RAW in terms of rec+, overall accuracy

or switch+ errors. This corresponds to the finding of Lemon and Konstas (2009) who

also find that ASR scores are not helpful for the classification of hypothesis quality.

Adding the CTM feature to DH3 LEX RAW and ASR DH3 LEX RAW leads to a

large statistically significant improvement in all measures: a 12% absolute increase in

rec+, a 3% absolute increase in overall accuracy, and decreases in switch+ errors (p <

.001). There are no statistically significant differences between CTM DH3 LEX RAW

and CTM ASR DH3 LEX RAW.

Summary and Discussion

In this section I evaluated different models for concept type classification. The best

performing transcribed speech model, DH1 LEX, significantly outperforms the Con-

firmation State baseline on overall accuracy and on switch+ and switch errors (p

< .001), and is not significantly different on rec+. The best performing recognized

speech model, CTM DH3 LEX RAW, significantly outperforms the Confirmation

State baseline on overall accuracy and on switch+ and switch errors, but is sig-

nificantly worse on rec+ (p < .001). The best transcribed speech model achieves

significantly higher rec+ and overall accuracy than the best recognized speech model

(p < .01).

6.4 Speech Recognition Experiment

In this section I report the impact of concept type prediction on recognition of post-

confirmation utterances in Let’s Go! system data. I hypothesized that speech recog-

nition performance for utterances containing a concept can be improved with the
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use of concept-specific LMs. I evaluate speech recognition of post-confirmation user

utterances using several types of language models and several approaches to concept

prediction. I (1) compare the existing generic-confirm LM used in Let’s Go! with

the proposed concept-specific adaptation; (2) compare two methods for selecting user

utterances for building language models; and (3) evaluate the impact of different

concept type classifiers on concept-specific LM adaptation.

6.4.1 Method

I used the PocketSphinx speech recognition engine (Huggins-Daines et al., 2006) with

gender-specific telephone-quality acoustic models built for Communicator (Rudnicky

et al., 2000). I trained trigram LMs using 0.5 ratio discounting with the CMU lan-

guage modeling toolkit (Xu and Rudnicky, 2000)9. I built state- and concept-specific

LMs from the Let’s Go! 2005 data. The LMs encode semantic information (Ward

and Issar, 1994b), smoothing probabilities for the concepts not used in the data.

I evaluate speech recognition performance on the post-confirmation user utterances

from the 2006 testing dataset. Each experiment varies in 1) the LM used for the final

recognition pass and 2) the method of selecting a LM for use in decoding.

Method Models Data for building a model

Baseline generic-confirm all post-confirmation utterances

Confirm-type confirm-place post-confirmation utts afterconfirm place

confirm-time post-confirmation utts afterconfirm time

confirm-bus post-confirmation utts afterconfirm bus

Concept-based concept-place post-confirmation utts with place concept
concept-confirm post-confirmation utts with time concept

concept-confirm post-confirmation utts afterbus
generic-confirm all post-confirmation utterances

Table 6.15: Methods of building language models

9I chose the same speech recognizer, acoustic models, language modeling toolkit, and LM building
parameters that are used in the live Let’s Go! system Raux et al. (2005).
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Method Prediction Decision based on

Baseline no prediction

Confirm-type confirm-place post-confirmation utts afterconfirm place

confirm-time post-confirmation utts afterconfirm time

confirm-bus post-confirmation utts afterconfirm bus

Concept-based concept-place Classifier predicts place concept

concept-confirm Classifier predicts time concept
concept-confirm Classifier predicts bus

none Classifier predicts none or multiple concepts10

Table 6.16: Methods of choosing language models

Language models

I use the language model types outlined in Table 6.15. The generic-confirm model is

trained on all utterances in the 2005 dataset that were produced in the confirm dialog

state. This corresponds to the current approach used in Let’s Go!. The confirm-type

models are trained using all utterances from the 2005 dataset that were produced

in the confirm dialog state following confirm place, confirm bus and confirm time

system confirmation prompts respectively. The concept-based models are trained on

all utterances from 2005 dataset that were produced in the confirm dialog state and

contain a mention of a place, bus or time.

I use the three methods for choosing language models outlined in Table 6.16.

The first, baseline method simply uses one model for recognizing all utterances. For

the second method (confirm-type) I use the concept-type based confirm-type baseline

method to choose one of the three models: confirm-place, confirm-time and confirm-

bus. The third method of choosing a LM (concept-based method) uses one of the

classifiers described in the Section 6.3. The classifier predicts place, time, bus, or no

concept.
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Recognizers

I report results for seven experimental conditions (see Table 6.17). The experimen-

tal conditions vary in method of building and choosing LMs. In the experimental

conditions 1 - 3, the recognition decoding is done in a single pass. In the base-

line experimental condition (1), I use the generic-confirm LM to recognize all post-

confirmation utterances. In the 1-pass confirm experimental condition (2) I use the

confirm-type method for building and choosing language models. I build confirm-

place, confirm-bus and confirm-time LMs to recognize testing utterances produced

following a confirm place, confirm bus and confirm time prompt respectively11. In the

1-pass concept experimental condition (3) I use the concept-place, concept-bus and

concept-time LMs to recognize testing utterances produced following a confirm place,

confirm bus and confirm time prompt respectively.

In the experimental conditions 4 - 7 I use the 2-pass recognition model outlined in

Figure 6.5. I perform first-pass recognition using the Generic-Confirm LM. Then, I

classify the output of the first pass using a concept type classifier. Finally, I perform

second-pass recognition using the concept-place, concept-bus or concept-time LMs if

the utterance was classified as place, bus or time respectively12. I used the three classi-

fication models with highest overall rec+: DH3 LEX RAW (4), ASR DH3 LEX RAW

(5), and CTM ASR DH3 LEX RAW (6). To get an idea of “best possible” perfor-

mance, I also report 2-pass oracle (7) recognition results, assuming an oracle classifier

that always outputs the correct concept type for an utterance.

11As shown in Table 6.4, most, but not all, utterances in a confirmation state contain the corre-
sponding concept.

12I treat utterances classified as containing more than concept type as none. In the 2006 data,
only 5.6% of utterances with a concept contain more than one concept type.
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Exp Num Predict LM Build LM Overall Concept utterances
# pass method method WER WER Concept

recall
1 1-pass baseline baseline 38.49% 49.12% 50.75%
2 1-pass confirm-type confirm-type 38.83% 48.96% 51.36%
3 1-pass confirm-type concept-type 46.47% ♠ 50.73% ♣ 52.9% ∗
4 2-pass DH3

LEX RAW
concept-type 38.48% 47.56% ♠ 53.2% ∗

5 2-pass ASR
DH3 LEX
RAW

concept-type 38.51% 47.99% ♣ 52.7%

6 2-pass CTM ASR
DH3 LEX
RAW

concept-type 38.42% 47.86% ♣ 52.6%

7 2-pass oracle concept-type 37.85% ♠ 45.94% ♠ 54.91% ♠

Table 6.17: Speech recognition results. ♠ indicates a statistically significant difference
(p<.01). ♣ indicates a statistically significant difference (p<.05). * indicates a near-
significant trend in difference (p<.07). Significance for WER is computed as a paired
t-test. Significance for concept recall is computed as an inference on proportions.

6.4.2 Experimental Results

In Table 6.17 I report average per-utterance word error rate (WER) on post-confirmation

utterances, average per-utterance WER on post-confirmation utterances containing a

concept, and average concept recall rate (percentage of correctly recognized concepts)

on post-confirmation utterances containing a concept. In slot-filling dialog systems

like Let’s Go!, the concept recall rate largely determines the potential of the system to

understand user-provided information and continue the dialog successfully. My goal

is to maximize concept recall and minimize WER on concept-containing utterances,

without causing overall WER to decline.

As Table 6.17 shows, the 1-pass confirm-type (2) and 1-pass concept-type

(3) experimental recognizers perform better than the baseline recognizer (1) in terms

of concept recall, but worse in terms of overall WER. Most of these differences are
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not statistically significant. However, the 1-pass concept-type recognizer (3) has

significantly worse overall and concept utterance WER than the baseline recognizer

(p < .01). Confirm-type prediction method has the highest switch+ (17%) and switch

(72%) errors (see Table 6.10). With confirm-type prediction all utterances without a

concept (82%) are decoded with a language model built on utterances with a concept.

This explains the increase in overall WER. The switch+ error indicates that 17% of

utterances with concepts were classified with a different concept and decoded with a

LM built for different concept. The data used for building LM is non-representative

of the data used for decoding. Hence, the WER on these utterances is expected to

be higher than the WER with the Generic-Confirm model (baseline). This explains

the increase in WER on utterances with concept.

All of the 2-pass recognizers (4-7) use automatic concept prediction and achieve

significantly lower concept utterance WER than the baseline recognizer (p < .05).

Differences between these recognizers in overall WER and concept recall are not

significant.

The 2-pass oracle recognizer (7) shows the best possible improvement from using

concept-type language models. It achieves significantly higher concept recall and

significantly lower overall and concept utterance WER than the baseline recognizer

(p < .01). It also achieves significantly lower concept utterance WER than any of the

2-pass recognizers that use automatic concept prediction (p < .01).

My results with 2-pass recognition show that it is possible to use knowledge of

the concepts in a user’s utterance to improve speech recognition. My results with

the 1-pass concept-type recognizer condition show that this cannot be effectively

done by assuming that the user will always address the system’s question; instead,

one must consider the user’s actual utterance and the discourse history (as in the

DH3 LEX RAW model).

117



6.5. DISCUSSION

6.5 Discussion

In this chapter, I examined user responses to system confirmation prompts in task-

oriented spoken dialog. I showed that these post-confirmation utterances may contain

unrequested task-relevant concepts that are likely to be misrecognized. Using acous-

tic, lexical, dialog state and dialog history features, I was able to classify task-relevant

concepts in the ASR output for post-confirmation utterances with 90% accuracy. I

showed that use of a concept type classifier can lead to improvements in speech recog-

nition performance in terms of WER and concept recall.

Of course, any possible improvements in speech recognition performance are de-

pendent on (1) the performance of concept type classification; (2) the accuracy of the

first-pass speech recognition; and (3) the accuracy of the second-pass speech recogni-

tion. For example, with the general language model, I get a fairly high overall WER

of 38.49%. In future work, I will systematically vary the WER of both the first-

and second-pass speech recognizers to further explore the interaction between speech

recognition performance and concept type classification.

The improvements the two-pass recognizers achieve have quite small local effects

(up to 3.18% absolute improvement in WER on utterances containing a concept, and

less than 1% on post-confirmation utterances overall) but may have larger impact

on dialog completion times and task completion rates, as they reduce the number of

cascading recognition errors in the dialog (Shin et al., 2002). Furthermore, I could

also use knowledge of the concept type(s) contained in a user utterance to improve

dialog management and response planning (Bohus, 2007). In future work, I will look

at (1) extending the use of the concept-type classifiers to utterances following any

system prompt; and (2) the impact of these interventions on overall metrics of dialog

success.

In Chapter 5 I described an experiment on directive adaptation where I analyzed
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user’s adaptation to a selected set of choices in system prompts. The directive and

responsive adaptation experiments differ in their granularity. In the directive adap-

tation experiment I analyzed adaptive behavior of human users. Hence, it was useful

and feasible to create a fine-grained expereiment by measuring adaptation to selected

features. On the other hand, in the responsive adaptation experiment I adapted the

recognizer’s language model as a whole and analyzed the system’s speech recognition

improvement. The two experiments differ because of their diverse goals: directive

adaptation experiment described in Chapter 5 evaluated user’s adaptation and re-

sponsive adaptation experiment described in this chapter evaluate the effect of the

system’s adaptation.

Modern dialog systems adapt language models to static context defined by the

system’s question. In my approach I evaluated a novel idea of adapting the speech

recognizer’s language model to dynamic context of a dialog. I have shown that dialog

history and prosodic features helped improve automatic prediction of context. The use

of prosodic features was motivated by the previous work of Litman et al. (2006) where

the authors have shown that prosody can predict users’ corrections. During a user’s

conversation with a dialog system, probability distribution of possible dialog topics

mentioned in a user utterance, user’s lexical and syntactic choices change dynamically

throughout the dialog. I showed that a dialog systems can benefit from dynamically

adapting language models and grammars to dialog context and user model on the fly

throughout the dialog.

In my experiment I pre-built language model before system execution and pre-

dicted which concept is used in a user’s utterance. This approach was tractable

because the Let’s Go! system had only three components. I hypothesize that in more

complex dialog systems with a larger and more diverse set of concepts, adaptation to

the context will also be beneficial for the system. Instead of using a discrete prediction

method, a dynamic model adaptation should be done. The ASR language model can
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be changed dynamically based on dialog context, user’s prosody, and system expec-

tations. The work described in this chapter is the first step towards creating flexible

and dynamic ASR input components in a spoken dialog systems.
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Chapter 7

Responsive Adaptation in Spoken

Question Answering

7.1 Motivation and Research Goals

In the previous chapter I looked at responsive adaptation in the speech recognition

component of a dialog system. I adapted the ASR’s language model to the expected

concept in the user’s utterance. In this chapter I address speech recognition in spoken

question answering, a task closely related to spoken dialog.

Question answering (QA) is the task of automatic retrieval of an answer given a

question (e.g. Who invented silly putty? or When was Mozart born?). Question an-

swering provides a natural language interface for information retrieval. This interface

also opens the possibility of access to information retrieval using voice. The user of

a spoken-input question answering system may be a reporter who needs to check a

fact, a driver on the go, a researcher in the field, or a person with visual disabilities.

Spoken question answering can be seen as a more sophisticated version of spoken

information access systems such as phone-based directory assistance (Kellner et al.,

1998) or weather/restaurant/flight/hotel information systems (Zue et al., 2000).
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In this work I address open-domain question answering supporting input ques-

tions on a wide range of topics. This task is also addressed in the annual TREC

competition (Dang et al., 2006). In the spoken-input question answering task, a

question has to be first recognized. This recognition has to be open-domain as input

questions may cover a wide range of topics. Word error rates for the state-of-the-

art open-domain speech recognition technology are around 25%-30% (Riccardi and

Hakkani-Tür, 2003). Goldwater et al. (2008) report that “low-probability words have

dramatically higher error rates than high-probability words”. This finding indicates

that atypical questions containing low-probability words will have lower recognition

rates than typical questions with high-probability words.

Question In what film is Gordon Gekko the main character?

Named Entity Gordon Gekko
Function Words in, what, the
Content Words film, character

Table 7.1: Question components

I address the speech recognition problem for questions containing a named en-

tity: a name, a location, or an organization.1 The words in a question can be classified

into one of three categories: named entity, function words, and content words (Ta-

ble 7.1). Named entities are strongly associated with certain content words. For

example for the named entity Gordon Gekko related content words are associated

with the movie industry, e.g. film and character. My goal is to improve recognition

of these content words using the named entity.

I propose and evaluate a method for improving speech recognition in speech-input

question answering system by allowing interaction during the question specification

phase. Table 7.2 illustrates non-interactive and interactive approaches to question

1Almost all questions in the TREC dataset since 2005 are of this type.
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Non-interactive QA Interactive QA
S: Please say the question. S: Please say the main topic of your ques-

tion.
U: In what film is Gordon Gekko the
main character?

U: Gordon Gekko

Recognize with open-domain LM Recognize with grammar of named entities
High chance of misrecognizing rare
words

S: Please say a question about Gordon
Gekko.
U: In what film is Gordon Gekko the main
character?
or In what film is he the main character?
Recognize with a LM build from documents
matching “Gordon Gekko”

Table 7.2: Interactive and non-interactive question answering approaches

specification. In the non-interactive approach the system recognizes the user’s ques-

tion with an open-domain language model. Rare words have a high chance of being

misrecognized. In the interactive approach, the user is first asked to specify the named

entity of interest: a person’s name, an organization, and so on. A grammar for named

entities is created from a database of named entities existing in the target corpus. If

a named entity is recognized, a language model specific to the name is used by the

speech recognizer. The interaction allows the system to dynamically change language

models based on the target named entity, and so to recognize the question’s content

words better than an open-domain language model. My experimental results show

that interactivity feature improves speech recognition performance for spoken-input

questions answering system.

Although this approach to question specification may seem awkward, in most

question answering evaluations (such as TREC or GALE Distillation) the named

entity in consideration is provided in an explicit way. For example in TREC, first the

target named entity is given and then several questions are asked about the target.

Similarly in the GALE Distillation task, the questions are organized in templates
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such as Describe attacks in [LOCATION] where the variable portion is the named

entity. This is in parallel to my design of first getting the name in question.

In the previous chapter I described an approach for improving recognition of

spoken responses by adapting language model to a concept. In this chapter I describe

an approach for improving recognition of spoken queries by adapting the language

model to the named entity in the query.

7.2 Question Answering (QA) System

7.2.1 System Architecture

Figure 7.1: Question answering architecture

In this section I describe how QA systems work using the example of the StoQA

system (Stoyanchev et al., 2008b) developed at Stony Brook. Most question an-

swering systems employ a pipeline architecture with three main stages as illustrated
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Figure 7.2: Question answering example
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in Figure 7.1: question analysis (stage 1), document and sentence extraction (stage

2), and answer extraction (stage 3). Figure 7.2 illustrates an example of automatic

answering of the TREC question Who became Tufts University president in 1992?.

The question analysis phase involves automatic syntactic and semantic process-

ing of a question and identificatin of question constituents. The output of question

analysis is a query tailored to the search tools used in the system. For example, in Fig-

ure 7.2 the question analysis phase identifies a named entity Tufts University, a verb

became, a linguistic phrase from the question “university president”. The expected

entity types for the answer of the illustrated question are person or institution. The

question analysis algorithm determined that either a person or an institution are the

possible answer types that can potentially “become a university president”. Question

answering systems can use third party software for processing questions. For example,

in StoQA I use the NLTK toolkit (Bird et al., 2008) for part of speech tagging and

identifying linguistic phrases.2 Query expansion can be achieved by adding terms to

search queries using WordNet (Miller, 1995). A query input to the search engine is

constructed from the identified components: words, linguistic phrases, named entities.

In the document and sentence extraction phase, candidate sentences containing

target terms are extracted from the documents retrieved by the query. The sys-

tem can currently retrieve documents from either the Web using the Yahoo search

API (Yahoo!, Inc., 2008), or the AQUAINT corpus (Graff, 2002) using the Lucene in-

dexer and search engine (Apache). When using Lucene, I can assign different weights

to different types of search term (e.g. less weight to terms than to named enti-

ties added to a query) (cf. (Lee et al., 2001)). The candidate sentences are scored

according to the number and the type of constituent from the question present in

them. Candidate sentences with the higher number of constituents are scored higher.

2The impact of identifying linguistic prases on question answering performance is described
in Stoyanchev et al. (2008b).
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Candidate sentences with named entity and linguistic phrase constituents are scored

higher than candidate sentences with single word constituents. The score for each

type of constituent is derived empirically and is aimed at increasing the probability

for the correct answer appearing in a candidate sentence. The Figure 7.2 shows parts

of the two candidate sentences identified and scored in the Document and Sentence

Extraction phase. Both candidate sentence examples contain words from the question

president, a university name Tufts, and the correct answer John DiBiaggio. The sec-

ond example also contains a linguistic phrase “university president”, which explains

the higher score given to the second candidate sentence.

Finally, in the answer extraction phase, the candidate sentences are processed to

identify and extract candidate answers, which are presented to the user. I currently

have two modules for answer extraction, which can be used separately or together.

Candidate sentences can be tagged with named entity information using the Lydia

system (Lloyd et al., 2005). The tagged word/phrase matching the target answer

type (in the example above person or institute) most frequently found is chosen as the

answer. Candidate sentences can also be tagged with semantic role information using

the SRL toolkit from (Punyakanok et al., 2008). In this case, the tagged word/phrase

matching the target semantic role most frequently found is chosen as the answer.

7.2.2 Spoken-Input Interactive QA

In a spoken-input QA system, a question is first recognized. To improve speech

recognition of a question I simulate an interactive system where the user first specifies

a target named entity. The named entity concept is grounded: the user confirms that

the named entity is recognized correctly. In the case of continuous misrecognition, a

named entity may be spelled. This task has been widely studied in the framework

of directory assistance systems (Kellner et al., 1998, among others). A keypad aided

spelling correction may be used as a back-off mechanism (Parthasarathy, 2004) where
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the user uses the phone keypad while spelling the name. In this experiments I am do

not address the problem of initial recognition of the named entity.

Figure 7.3 shows the control flow of the simulated system. Resources marked

as (0) (grammar of named entities GNE and questions language model LMQ) are

built off-line. GNE is built from the database of named entities and LMQ is built

from the dataset of TREC questions. During runtime the system first requests a

user to specify the target named entity (1) and recognizes it (2) with a previously

built grammar GNE
3. Next, the system asks the user to specify a question about the

given named entity while it extracts matching documents from the dataset (3) and

builds a name-specific language model LMDOC(4). The idea is limiting the language

model using the names in consideration. While the name-specific language model

built from the documents matching the name, LMDOC, provides the context words,

the language model built from questions LMQ provide the typical characteristics of

questions, such as the Wh- words at the sentence initial position. LMQ is then

merged with LMDOC using linear interpolation and generating LMDOC + LMQ(5).

The interpolation weight, λ, is kept constant as optimized on a couple of held-out

spoken questions.

PLM(W ) = λ × LMDOC(W ) + (1 − λ) × LMQ(W )

The described approach focuses on the improvement in speech recognition of the ques-

tion by employing interactivity. Once the target named entity is recognized by the

system, a target-specific model is built. I use a search engine to extract the documents

matching the named entity in the target corpus and use these documents to build the

name-specific language model. I hypothesize that these documents are likely to con-

tain the content words of the question resulting in a more relevant model for speech

3This step is not evaluated in this project.
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Figure 7.3: Dialog flow example
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recognition. For example, for the question On what date did Michael Brown resign as

head of FEMA?, the words resign and FEMA may have relatively low probability in

a generic model, but higher probability in a model extracted from documents match-

ing Michael Brown. The documents are extracted from the AQUAINT corpus and

indexed by the Lucene information retrieval engine (Apache). I extract documents

matching the string pattern of the target named entity using the Lucene API.

Note that this approach evaluates only name-specific language models. In all

experiments I kept the acoustic model fixed. Using this approach while I have a

better language model, its size is also smaller than the one obtained using the whole

target corpus. This is very important for the efficiency of a real-time recognizer.

7.3 Speech Recognition Experiment

7.3.1 Experimental Approach

In this study I use the TREC annual benchmark evaluation questions targeting the

AQUAINT corpus consisting of 3 GB of written news (Dang et al., 2006). The corpus

is indexed using the Lucene information retrieval engine (Apache).

Given the question answering architecture described above, how can we generate

language models for recognizing spoken queries? I evaluate six approaches to building

language models for the spoken-input QA task. These are listed in the Table 7.3. The

first four approaches AQUAINT, Q-2006, Q-2007, and AQUAINT-Q2006 use a single

open-domain model to recognize all questions and are used in the non-interactive QA

scenario (outlined in the Table 7.2). The last two approaches AQUAINT-perQ and

AQUAINT-perQ-Q2006 are name-specific models used in the interactive QA scenario.

The method of building non-interactive language models is graphically illustrated in

Figure 7.4.
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Model type vocab size description

Non-interactive models

AQUAINT general 3,000 all AQUAINT documents

Q-2006 general 5,012 TREC questions not contain-

ing test set (total 3713 ques-
tions)

Q-2007 general 5,337 TREC questions containing

test set (total 4158 questions)

AQUAINT-Q2006 general 6,344 all AQUAINT documents
merged with the TREC ques-

tions

Interactive models

AQUAINT-perQ per target name 7,211 up-to-100 top matches for the

target of the question

AQUAINT-perQ-Q2006 per target name 10,210 up-to-100 top matches for the
target of the question

merged with the TREC ques-
tions

Table 7.3: Language models used in the experiment

AQUAINT language model is built with the AQUAINT documents dataset. It

is intuitive to build a language model from the dataset used for retrieving candidate

documents as the dataset covers all topics expected in the users’ questions that can

be answered with the information from this dataset. The vocabulary of the language

model is pruned. Hence, words with lower frequencies are absent from the language

model and will not be recognized if present in a question.

Most sentences in the AQUAINT corpus are statements. Questions recognized

in spoken QA task have a different grammatical structure from the sentences in the

dataset. Question syntactic structure may not be well represented by the AQUAINT

language model and this may cause poor speech recognition. So, the next two ap-

proaches (Q-2006 and Q-2007) use language models built from questions.

I build the Q-2006 model from a set of approximately 4K TREC questions from

previous experiments not containing the questions in the test set. The experiment
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Figure 7.4: Non-interactive language models used in the experiment

with this model simulates a realistic scenario where the users’ questions are not known

in advance. Given that the set of questions used for building language model is large,

it is likely that most of the vocabulary in the test set is covered by the training set used

for building the language model. I expect that the speech recognition performance

on this dataset will be lower or comparable to the AQUAINT dataset.

I build the Q-2007 model from a set of approximately 4K TREC questions includ-

ing the test questions. The experiment with this model simulates a scenario where

the users’ questions come from a known larger pool of questions. Generally, in an

open-domain QA task, the questions are not known in advance. Q-2007 model is a

“cheeting” model since the set of test questions is a subset of training data used to

build this model. I hypothesize that speech recognition of the spoken-input QA will

achieve the best performance on this model.

In order to expand the vocabulary of the Q-2006 model and to enrich AQUAINT

model with question-specific syntactic constructions, I merge the Q-2006 and AQUAINT
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models generating AQUAINT-Q2006. I expect that the speech recognition on the

AQUAINT-Q2006 will improve over both the Q-2006 and AQUAINT models.

The next two approaches AQUAINT-perQ and AQUAINT-perQ2006 use a question-

specific model to recognize each question. I build AQUAINT-perQ model from up

to 100 documents extracted from the AQUAINT dataset matching the previously

specified name. I hypothesize that the recognition performance on this model will

improve over the baseline AQUAINT model. I build AQUAINT-perQ-Q2006 model

by merging AQUAINT-perQ and Q-2006 models. I hypothesize that the recognition

performance on this model will achieve a further improvement. Although the exper-

iments described in this chapter were run off-line, generation of a question-specific

language model can be efficiently implemented for an on-line system.

7.3.2 Questions Datasets

As my test set I have selected 40 questions from the TREC 2007 evaluations. For 18

of the selected questions the target is a person, for 17 of the questions the target is

an organization, and 5 of the questions have another type of target.

Original TREC question How many times has Limbaugh been
married?

Target NE Rush Limbaugh
Modified with NE (WithNE) How many times has Rush Limbaugh

been married?
Modified without NE (NoNE) How many times has he been married?

Table 7.4: Example of a question in the test set

The questions are modified for my experiments. In the WithNE set, all questions

are modified to contain the target named entity. That is, if the original question

contains a pronoun referring to the target named entity, it is replaced with an ap-

propriate form of the target. In NoNE, all questions are modified to not contain the
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named entity by replacing it with an appropriate pronoun. Table 7.4 illustrates how

the questions are modified for the experiment.

The 40 questions with resolved and 40 questions with unresolved named entities

are read and recorded by three subjects. One of the subjects was the the author. The

other two subjects were native english speakers with college education not involved

in this project.

I compare recognition of the test questions using target-specific language models

with recognition using a generic language model. All models in this experiment are

built using the the SRILM language modeling toolkit (Stolcke, 2002). The speech

recognition experiments are performed using SRI’s DynaspeekTMspeech recognition

system (Franco et al., 2002).

7.3.3 Experimental Results

In the Figure 7.5 I report the average word error rate over 40 questions on both

WithNE and NoNE sets using each of the models described above.

The AQUAINT model has the highest word error rate of 58.36% on the WithNE

and 46.64% on the NoNE sets. Although the AQUAINT corpus has large vocabulary

coverage, the form of the questions differs from the form of the sentences in the corpus

(such as sentences starting with Wh- words).

The Q-2006 model is likely to lack the target named entities of the test set.

Nevertheless, Q-2006 model has a lower error rate comparing to AQUAINT of 45.65%

on the WithNE and 32.13% on the NoNE set.

As expected, the Q-2007 model achieves the lowest word error rate of 19.77% on

the WithNE and 17.27% on the NoNE sets. Notice that although the NoNE test set

does not contain names, the word error rate using the Q-2006 model is almost twice

as high as the word error rate using Q-2007 model. This difference can be caused by

the lower recognition of content and function words (other than names) on Q-2006.
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Figure 7.5: WER of recognizing spoken questions

This shows the importance of the content words associated with the target names.

AQUAINT-Q2006 model reduces the error rate compared to AQUAINT by 25%

on the WithNE and 40% relatively on the NoNE set. Its higher word error rate

reduction on the the NoNE sent than on the WithNE set suggests that the recognition

improvement is due to the better recognition of content words and not named entities.

Next, I report the results on a per-question AQUAINT-perQ model. Surprisingly,

it has a high WER of 42.5% on the WithNE and 42.6% on the NoNE set. AQUAINT-

perQ, similarly to AQUAINT is built on statements and not questions. The high error

rate on both sets suggests the importance of a language model reflecting question

sentence structure.

My final model AQUAINT-perQ-Q2006 is a merger of the AQUAINT model with

the Q-2006 model. This model achieves the lowest WER among all tested models

(except the “cheating” Q-2007 model) of 32.4% on the WithNE and 28.7% on the
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NoNE set. This is a relative reduction of 32.2% on the WithNE set compared to the

best generic model performance.

Model % err % err
reduction reduction

AQUAINT 49.4 44.2
Q-2006 35.3 19.0

AQUAINT-Q2006 32.2 8.7
AQUAINT-perQ 30.5 38.9

Table 7.5: Relative error reduction for the AQUAINT-perQ-Q2006 model

Table 7.5 reports the relative word error rate reduction for the test model AQUAINT-

perQ-Q2006 from each other model. Note that, in addition to the dramatic reduction

in word error rate, the ratio of missed named entity recognitions is halved, coming

down to levels which can be obtained using the cheating experiment.

There are also different word error rates for the three speakers. Speakers 1 and

2 have higher word error rate on the WithNE set than on the NoNE set for all the

models; however, speaker 3 achieves higher word error rate on the NoNE set for the

AQUAINT-perQ model. It is possible that speaker 3 was very clear in pronouncing

the target named entities and was able to achieve lower word error rate on the models

that contain target named entities.4

7.4 Discussion

In this chapter I presented an approach for improving speech recognition of spo-

ken questions for the open-domain spoken-input question answering task. In this

approach I adapted the language model to the name in a question and generated

a language model specific to each question. The results show an improvement in

4I did not compare means of the WER between the speakers with ANOVA because the distribu-
tion of WER is not normal
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speech recognition performance using a language model adapted to the name. The

best speech recognition result was achieved using a model built from a combination of

the documents containing the question-specific name and the 4000 questions datasets.

Speech recognition using the models built only from documents, even when these

documents contain the name in the question, had a high word error rate. Speech

recognition using the models built only from questions also had a high word error

rate. The result of this study points to the importance of including the data with the

question-specific vocabulary as well as the data with the question-specific syntax in

the language model.

Figure 7.6: % of missed names during speech recognition

In these experiments I assumed that the name in the question is recognized cor-

rectly. However, in a more realistic scenario the system does not know the named

entity in advance. The word error rate on the dataset containing named entities
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(WithNE) is consistently higher for all language models. Figure 7.6 shows the per-

cent of names missed during recognition of the WithNE set. With the non-interactive

and “non-cheating” approaches (AQUAINT, Q-2006, and AQUAINT-Q2006 ) ASR

misses over 35% of names. By contrast, in the “cheating” Q-2007 model and both

of the interactive approaches AQAINT-perQ and AQAINT-perQ-Q2006, ASR misses

only 14% of names. Recognition using these language models achieves such a low

word error rate because the target named entity is present in the data used to build

the model. An important future work for interactive spoken-input QA approach in-

cludes work on recognition of the name in the first stage of the interaction. A possible

method involves automatic extraction of named entities from the AQUAINT corpus

and building a grammar from these named entities. This list, of course, can be large

and may contain similar and easily confusable words (cognates)5.

To resolve this problem, the system can first ask the user to specify the name in

the question and use the grammar of named entities to recognize it. Then the system

can build N per-question language models using the top N recognition hypotheses.

Once the user specifies the question, the system can recognize the question with all

N models. The hypothesis with the highest ASR score can be used as the final

recognition hypothesis. Several proposed approaches to solving the name recognition

problem in a spoken-input question are outlined in proposal (Stoyanchev, 2009).

5Goldwater et al. (2008) idendify cognates as one of the top reasons for recognition errors.
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Chapter 8

Conclusions and Future Work

In this dissertation, I explore adaptation in spoken dialog. Adaptation is exhibited

by the convergence of language use and interactive behavior of two agents in a dialog.

I hypothesize that dialog participants maintain a conversation model and use it to

adapt both to specific dialog partners and to recent dialog behaviors. In my work I

have analyzed how adaptation may be used to improve the performance of automatic

spoken dialog systems.

I address the question of adaptation from three different perspectives. First, I

analyze adaptation in a human-human dialog corpus, and show that there is lexical

and syntactic adaptation both within and between dialogs. Second, in an empirical

study I show that users adapt to lexical and syntactic choices reflected in system

prompts, and that this adaptation has an effect on dialog system performance. Third,

I show that automatic speech recognition performance of a dialog system can be

improved by adapting the system’s language model to the concepts and topic of the

user. In the following sections I summarize the findings presented in this dissertation,

describe implications for dialog system development, and outline potential directions

for future research.
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8.1 Summary of Findings

8.1.1 Measuring Adaptation

In this study I compared adaptation due to the partner and due to recency in a

human-human spoken dialog corpus. I devised a new method to measure adaptation

between dialogs. I used this method to examine lexical, syntactic and perspective

adaptation in Maptask dialogs (Anderson et al., 1991). I measured adaptation to the

most recent conversation partner and to the specific conversation partner.

For lexical features overall, the difference between the prevalence of adaptation

due to dialog partner and adaptation due to recency was not significant. I found

that primed lexical stem features are approximately 2.7 times more likely to appear

in later dialogs than they would be predicted to appear by chance. Primed bigram

features are approximately 3 times more likely to appear in later dialogs than they

would be predicted to appear by chance.

For syntactic features, on average, adaptation to the most recent partner is stronger

than to the specific partner. Primed syntactic features are on average 2.9 times more

likely to appear in the very next dialog independent of the partner and 2.7 times in

a later dialog with the same partner compared to their appearance by chance.

I also used my new adaptation measure to identify features that tend to exhibit

partner adaptation and those that tend to exhibit recency adaptation. My results

suggest that the semantic category of a lexical feature may affect whether the feature

is likely to exhibit partner adaptation or recency adaptation. For example, words

indicating direction, such as across and through, are more likely to exhibit partner

adaptation than recency adaptation. My results show that sentence structures, such

as complex sentences (S→S S), are more likely to exhibit partner adaptation than

recency adaptation, while most noun phrase constructions exhibit recency adaptation,

particularly noun phrases with possessives (his, her, mine, yours, etc.) or negations.
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One interesting direction for future work on adaptation is to measure the correla-

tion between task success and adaptation of the users in spoken dialog (Schober and

Brennan, 2003). This can be done by correlating dialog length, number of errors, or

successful completion of a task.

8.1.2 Directive Adaptation

In this set of studies I analyzed user adaptation to the form of system prompts

in human-computer dialog. Previous laboratory studies of adaptation in human-

computer dialog have shown lexical and syntactic adaptation. In my work I extended

these findings using a live spoken dialog system with real users.

I used a modified version of the deployed Let’s Go! system for these studies.

I examined adaptation to the use of verbs, prepositions, verb forms, and forms of

task-related concepts. I found that presence of a verb in a system prompt increases

the probability of a verb being used in the user’s response also. I found that users

indeed are more likely to use the same verb form and concept form as the system.

I found a trend in adaptation to the use of prepositions, however the difference was

not statistically significant.

I also compared user adaptation in dialogs with adapting system condition (in

which the system used the same concept form as a user) and non-adapting system

condition (in which the system used a different concept form than the user). I found

that in the adapting system condition, the user is likely to repeat the same concept

form, while in the non-adapting system condition the user is likely to change the

concept form. However, contrary to the findings of previous work that the user

changes his/her concept form to the form used by the system, users in the non-

adapting system condition changed their concept form randomly to any other concept

form. The adapting system condition led to predictable user behavior in terms of

choice of concept realization. The non-adapting system condition led to unpredictable
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user behavior where concept forms could not be accurately predicted.

Today, most dialog systems do not model user or system adaptation. Perhaps this

adaptation is of less importance to limited input dialog systems. However, flexible in-

put dialog systems can benefit from this adaptation phenomena through the use of

(a) directive prompts that guide users to using language that can be better under-

stood by the system, and (b) responsive adaptation that reinforces user adaptation

in confirmation prompts.

8.1.3 Responsive Adaptation

In this set of studies I evaluated the impact of responsive adaptation on the per-

formance of the speech recognition component of a dialog system. The scientific

motivation for this study was the idea that human speech production and compre-

hension are tightly coupled and consequently a dialog system’s expectations about

the content of a speaker’s utterance can help it in utterance interpretation (Pickering

and Garrod, 2007). The engineering motivation for this research was the evidence

that smaller and more targeted language models tend to have better performance for

speech recognizers.

In one experiment I evaluated prediction of the task-related concepts in user’s

utterance. The results of my experiment suggest that prosodic and dialog history

features are useful for predicting task-related concepts in a user utterances, and that

adaptation of the speech recognizer’s language model to the predicted concepts can

lead to small but significant improvements in speech recognition accuracy. In a similar

experiment on a spoken question answering system, I showed that language model

adaptation to the name in a user’s question can lead to significant improvements in

speech recognition accuracy.

My experiments show that adapting language models to contextually appropriate
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lexical forms leads to improvement in speech recognition performance. This has im-

plications for other types of open-domain recognition tasks. For example, recognition

of news reports can use detection of topic shifts to adapt language models.

In this work I focused on the prediction of semantic content in a user’s utterance.

However, my method did not address another major cause of speech recognition

errors, speech disfluencies (Goldwater et al., 2008). Disfluencies include filler words

such as um and uh, restarts, and hesitations. Disfluencies are prevalent in speech

directed at telephone-based spoken dialog systems. In future work I would like to

incorporating disfluency and prosodic/acoustic models in spoken dialog systems. I

hypothesize that disfluency models are speaker-dependent and require the system to

adapt to a specific user.

8.2 Implications

My work has implications for the design of dialog systems. To model and take advan-

tage of adaptation, a dialog system architecture must: 1) facilitate resource sharing

between components; 2) use flexible output components; and 3) use flexible input

components.

8.2.1 Resource Sharing between Components

In my responsive adaptation experiment (see Chapter 6) I showed that speech recogni-

tion accuracy can be improved by adapting the language model according to predicted

topics or concepts in a user’s utterance. In my directive adaptation experiments (see

Chapter 5) I showed that words and syntax used in system prompts affect users’ lexi-

cal and syntactic choices, and that this can affect system performance. These findings

suggest the need for information and resource sharing between system components

143



8.2. IMPLICATIONS

implementing different system functionality: speech recognition and language under-

standing (ASR, NLU), dialog management (DM), and natural language generation

(NLG) (Kempson et al., 2009).

Given that users adapt to the system’s lexical and syntactic choices, the ASR and

NLU components can benefit from dynamically adjusting probabilities of the words

and grammatical structures recently used by the system and generated by the NLG

component. For example, in one of my experiments I showed that if a system prompt

uses a verb, the user is more likely to also use a verb in their utterance. A system may

take advantage of this information and adjust probabilities in the language model of

the ASR: if the system prompt uses a verb, the rules in the ASR grammar containing

a verb may get more probability mass while the rules without a verb may get less.

I also found that adaptive system behavior leads to more predictable user behavior.

I hypothesize that adaptation of NLG to the users’ lexicon and grammar may have

a positive effect on speech recognition accuracy. For example, a dialog system may

mimic the structure of a prepositional phrase attachment in a user’s utterance (e.g.

taking four o’clock bus vs. taking a bus at four) or adapt to the verb choice (e.g.

leaving vs. departing), or adapt to the form of a concept (e.g. Madison and Fifth vs.

Fifth and Madison). The system’s choice to adapt to the user’s lexical and syntactic

choices may lead to a higher likelihood of the user repeating the structure in later

utterances and provide more information for adjusting the ASR’s language model,

which can then lead to improved task success.

My proposed adaptive dialog system architecture is shown in Figure 8.1. The

system stores shared histories for itself and the user: their syntactic choices, lexical

choice, dialog acts, topics, etc. The history is updated dynamically when the user’s

input is recognized by the ASR and parsed by the NLU, or when a prompt is generated

by the NLG, or when an action is taken by the DM.
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Figure 8.1: Architecture of an adaptive resource sharing dialog system

8.2.2 Flexible Output Components

The proposed resource sharing and adaptation place a flexibility requirement on the

dialog system NLG components. If NLG is fixed (e.g. the same prompt formulation is

used in all situations), it can not be adapted to the user or to the dialog context. On

the other hand, a flexible (or trainable) NLG component allows for dynamic prompt

generation.

Prompts in most modern task-oriented systems are designed using templates, i.e.

prompts hand-written by a voice user interface (VUI) designers. This allows VUI

designers to manually create an alignment between ASR and NLG. For example, if

according to the existing data for an application, the sentence schedule an event that

has a higher rate of recognition than the alternative add an event, a VUI designer

may use schedule instead of add in prompts, e.g. Would you like to schedule an event?

instead of Would you like to add an event?. However, manual VUI design is tractable

only in systems where the number of prompts is relatively small. Even in small
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systems, the potential for manual alignment between user utterances and a system

prompts is limited. Although VUI designers may be aware of certain problematic

cases in their dialog systems (such as the choice of add vs. schedule), it would be

difficult to manually exploit all potential lexical and syntactic alignment possibilities

in a dialog system.

A trainable NLG automatically produces system prompts while taking into ac-

count user-specific or dialog-specific information. This makes prompts dynamic and

flexible. With a trainable NLG, the same prompt may be realized differently based

on the speech recognizer’s estimated performance, dialog length, or the user’s ap-

proximated age or gender (van der Sluis and Mellish, 2009). I believe that even

limited domain dialog systems, such as Let’s Go!, can benefit from a trainable NLG

component.

8.2.3 Flexible Input Components

Humans are able to recognize speech even with high levels of background noise. Con-

text helps us immensely in speech recognition. People recognize more easily the words

that are predictable from context than the words that are not predictable from con-

text. I hypothesize that input components in dialog systems can be improved by

giving the same context, with the use of dynamic language models. For example, a

dynamic language model is updated throughout a dialog based on a user model, the

dialog context, user’s vocabulary and prosody.

I have shown in this thesis that language model adaptation to the topic of a user’s

utterance and expected concepts in a user’s utterance can improve speech recognition

accuracy. In the experiments in this thesis I used dialog act history and prosodic

information for language model adaptation. This is a first step towards dynamic

language modeling in a dialog system.
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Dialog system architectures must facilitate information passing and resource shar-

ing for the ASR to be able to build or adapt dynamic language models on the fly or for

the NLU to dynamically adapt its grammar. My proposed architecture (Figure 8.1)

allows use of feature combinations from all system components (NLG, NLU, ASR,

and DM) to dynamically adapt the input system components.

8.3 Future Directions of Research

8.3.1 Evaluate Directive Adaptation

I have shown that users of dialog systems are affected by the systems’ lexical and

syntactic choices. My future work includes evaluation of how adaptation can be

utilized by the system and whether it can lead to improvements in various measures

of dialog system performance.

The resource sharing architecture I propose in the previous section allows to eval-

uate the effect of different features on dialog adaptation and system performance. In

this thesis I have shown that dialog history and utterance prosody are useful features

in content prediction for ASR adaptation. In future work I would like to evaluate

how this effect can be used for improving system performance.

I hypothesize that the directive power of system prompts will be more signifi-

cant in dialog systems with more complex domains, such as tutoring system or a

virtual assistants. These systems have a larger vocabulary and topic space than a

bus information or an airline ticket system. Hence, they have more opportunities for

contextual adaptation.
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8.3.2 User Categorization

In this thesis all dialog system users were treated as the same. However, users have

different personalities and backgrounds. They have different characteristics in com-

munication with a dialog system. For example, some users may be more verbose than

others, some users may be more polite than others. While specifying information,

some users may prefer to specify all information in a single utterance, e.g. When is

the next 28X from Downtown to the Airport? while others may prefer to specify it

step by step in consecutive utterances, e.g. first specify departure location: Leaving

form Downtown, then specify destination: Going to Airport, and finally bus route:

28X. User behavior following dialog system errors may also differ. In some situations,

users may be more successful with correction when the system confirmation prompt

specifies all information: From Downtown to the Airport, is this correct?, while in

other cases users may prefer to have each piece of information confirmed separately.

Knowledge about the user, interaction behavior, or preferences may be used in NLG,

ASR, and NLU components to improve system performance. I hypothesize that users

may be categorized according to their communication patterns (Doddington et al.,

1998). This information may then be used by the system as a feature for 1) predicting

user utterance content and possible improvement of ASR performance, 2) choosing

realization of a prompt, and 3) choosing a dialog move.

8.3.3 Adaptation and Relearning

A need for changes in dialog system functionality is a common scenario. Changes

may involve the wording of system prompts, topic order, addition of a new topics.

Functionality changes aim at improving system performance, however the users learn

or get adapted to a particular spoken interface, just as they learn to use a particular

graphical interface.
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One direction for future work is to determine how to make dialog system changes

less disruptive for the user through adaptation. I would like to study which properties

of a change in a system cause disruption and confusion and how a system can guide

a user to adapt to the changes in the interface.

8.4 Take-Home Message

What is the future of dialog systems? On the one hand, we have limited input systems

that understand key words and phrases requiring users to learn. On the other hand

we have flexible input systems allowing users to speak naturally. One possibility is

that people will become proficient at using limited input dialog systems and there will

be no need for natural verbal communication. However, I would argue that given a

reasonable system performance, natural verbal communication may be preferable for

most users. My experimental results suggest that:

• Adaptation occurs within and between dialogs.

• Responsible adaptation in dialog system can lead to improved system perfor-

mance.

• Directive adaptation can lead to changes in user behavior, which can also lead

to improved system performance.

• In order for the potential benefits for adaptation to be realized in dialog systems

substantial changes to the architecture are needed to support more information

sharing. However, even light-weight adaptation has impact.

• This is just the beginning. Much more research is needed on how adaptation

works and how it can impact different measures of dialog success.
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