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Abstract of the Thesis

The Influence of Disorder on Bloch
Oscillations in a System of Ultracold Atoms in

an Optical Lattice

by

Stefan Walter

Master of Arts

in

Physics

Stony Brook University

2009

During the last decade ultracold atoms in optical lattices have
become a great experimental tool for studying quantum systems.
The topic that is being addressed in this thesis, is inspired from
a solid state point of view. Crystals are a periodic system and it
is easy to describe the transport of electrons in such a periodic
system.However, the perfect periodic crystal is rarely realized in
nature. Impurities and defects, which lead to a disorder of the pe-
riodic system are always present. This disorder affects for instance
the transport of electrons in the crystal. A system of ultracold
atoms in an optical lattice gives an instrument to resemble the
perfectly periodic crystal. In recent years the possibility to realize
disorder experimentally in an optical lattice has emerged. This
allows one to address many new questions on the influence of dis-
order in such systems. In this thesis we are especially interested in
the dynamics of a wave packet in such a disordered system.

The dynamics which are investigated in this work are Bloch os-
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cillations in a disordered system of ultracold atoms in an optical
lattice. We use numerical simulations to solve the time dependent
Schrödinger equation. After having solved the Schrödinger equa-
tion for the wave function, the dynamics of the system, perfectly
periodic or disordered, can be explored.

As a result of disorder in the system, the Bloch oscillations get
damped, and a dependance of the damping on the parameters qual-
ifying the disorder is being established.

An interesting effect in a disordered optical lattice with interaction
between atoms in neighboring wells, is that increasing the interac-
tion, leads to a decrease in the damping of the Bloch oscillations
caused by disorder. This effect is covered in the last part of the
thesis.
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Chapter 1

Introduction

The dynamics of electrons in the periodic potential of a crystalline solid
exposed to an external homogeneous field has been an important problem in
solid state physics since the paper of Bloch in 1928 [1]. In contrast to an
expected uniform acceleration these electrons oscillate in coordinate as well
as in momentum space. These oscillations are called Bloch oscillations. How-
ever, Bloch oscillations are not observable in crystals because the characteristic
scattering time τ for electrons due to impurities is shorter than the period of
the Bloch oscillations. In the 1970s, the fabrication of semiconductor super-
lattices which are a controllable one-dimensional periodic system lead to the
direct observation of Bloch oscillations [2–4]. In recent years ultracold atoms
in optical lattices have provided an exceptional experimental tool for study-
ing phenomena which have their origin in solid state physics. Optical lattices
are an analogue to the perfect pure crystal and have been used to study a
great variety of solid state problems. Bloch oscillations have been observed
in [5–11], Wannier-Stark ladders were studied in [12] and Zener-tunneling was
investigated in [13, 14].

The great advantage of optical lattices is the possibility to modify the po-
tential with great freedom. The depth of the potential wells, the interaction
between atoms in adjacent wells and the force of the external field can be
adjusted easily. This system also inherits the possibility to place “impuri-
ties” on certain lattice sites. Systems with two competing periodic potentials
generated by two standing laser waves can also be realized. In this case one
laser generates the actual optical lattice and the other one plays the role of
disorder. These two lasers could be commensurate or incommensurate in their
wavelengths.

One goal of this thesis is to investigate the influence of impurities on Bloch
oscillations in optical lattices including weather a periodic pattern of impurities
shows Bloch oscillations and what happens if impurities are randomly placed
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in the optical lattice.
Another goal will be the study of an optical lattice with two competing

periodic potentials. These systems represent a very controlled way to introduce
disorder in an optical lattice. For this kind of disorder, the dependance of the
damping of Bloch oscillations on the parameters which describe the disorder,
is being explored.

In an optical lattice, atoms in neighboring wells also interact with each
other. This interaction alone will lead to a damping of Bloch oscillations.
However, in the case of a disordered system, these interactions can counteract
the damping of Bloch oscillations due to the disorder. This interesting inter-
play between interaction and disorder will also be investigated in this thesis.

The main instrument for studying these effects is the numerical simulation
of the time dependent Schrödinger equation with a potential that describes
the disorder. The simulation of the Schrödinger equation resembles the actual
experimental situation very well.
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Chapter 2

Properties of particles in a
crystal

2.1 Bloch’s Theorem

The optical lattice is equivalent to a perfectly pure crystal where the po-
tential is given by the atoms in the crystal. It is therefore necessary to review
the formalism borrowed from solid state physics to describe the properties of
electrons in a periodic potential, as for instance done in [15]. In the following
we examine the one-dimensional case of a periodic potential, which can easily
be generalized to three dimensions. The Schrödinger equation for an electron
in a one-dimensional potential V (x) is given by

[

− ~
2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = E ψ(x) . (2.1)

Solutions of Eq. (2.1) for different kinds of potentials, e. g. V (x) = 0 (free
electron case), V (x) = Kx2/2 (harmonic oscillator), V (x) = eǫx (uniform
electric field ǫ), etc. are well known. A special kind of potential, which is of
interest in solid state physics, is the periodic potential

V (x+ma) = V (x) , (2.2)

with a being the period of the potential and m being an integer. Electrons in
such a periodic potential are called Bloch electrons. From the periodicity of
the potential it follows that its Fourier expansion only includes plane waves
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with wavenumbers Kn = 2 π
a
n, which is a reciprocal lattice vector:

V (x) =

∞
∑

n=−∞

Vn e
iKnx . (2.3)

In the special case of free electrons, V (x) = 0 in Eq. (2.1), the wave functions
are plane waves of the form

ψk(x) =
1√
L
eikx , (2.4)

with ψk(x) normalized to 1 in the interval 0 ≤ x ≤ L where L denotes the
length of the crystal. The corresponding eigenvalues are

E(k) =
~

2k2

2m
. (2.5)

The plane waves in Eq. (2.4) are an orthonormal set of functions and can
therefore be used as an expansion set. Using the Fourier expansion of the
periodic potential and the plane waves as a basis, we can write Eq. (2.1) as

[

− ~
2

2m
(k −K)2 − E

]

ck−K +
∑

K ′

VK ′−K ck−K ′ = 0 . (2.6)

Eq. (2.6) is a matrix equation for each allowed k-value in the first Brillouin
zone. Since k is restricted to the first Brillouin zone, k ∈ [−π/a, π/a], only
coefficients ck, ck−K1, ck−K2, ... (which lie outside the first Brillouin zone) are
coupled, leading to an independent set of equations for each k in the first
Brillouin zone. The secular equation in Eq. (2.6) can be diagonalized for each
k, and the obtained eigenvectors lead to the eigenfunctions of the system,
which can be written as

φn,k(x) =
∑

K

cnk−K e
i(k−K)x (2.7)

= eikx
∑

K

cnk−K e
−iKx , (2.8)

where n is the band index. This leads us to the result

φn,k(x) = eikx un,k(x) , (2.9)
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with un,k(x + a) = un,k(x) having the same periodicity as the potential.
Eq. (2.9) is called Bloch’s theorem. Another way of writing Bloch’s theorem is

φn,k(x+ma) = eikma φn,k(x) , (2.10)

where ma is a translation by multiples of the lattice constant. The eigenvalues
of the secular equation in Eq. (2.6) are the energy values En,k for each k. Both,
the Bloch functions φn,k(x) and the energy values En,k have the periodicity of
the reciprocal lattice

φn,k+K(x) = φn,k(x) (2.11)

En,k+K = En,k . (2.12)

In the next section we will show how the Hamiltonian matrix is computed for
the cosine-potential, which is used throughout this work.

2.2 The cosine-potential

For what follows, we choose the periodic potential in Eq. (2.1) to be a
cosine-potential V (x) = V0 cos(2 π

a
x). With this choice we can easily compute

the matrix elements of the Hamiltonian Eq. (2.1) in a plane wave basis. The
starting point is the Hamiltonian

H = − ~
2

2m

∂2

∂x2
+ V0 cos(

2π

a
x) . (2.13)

The expansion of the wave function to this Hamiltonian in plane waves reads

ωn(x) =
1√
L
ei(k−Kn)x . (2.14)

We can evaluate the matrix elements of the Hamiltonian Eq. (2.13) in the
following way,

〈ωm(x)|H |ωn(x)〉 =
~

2 (k −Kn)2

2m
δm,n +

1

L

∫ L

0

dx e−i(Km−Kn)x V0 cos(
2π

a
x)

(2.15)

=
~

2 (k −Kn)2

2m
δm,n +

V0

2
(δm,n+1 + δm,n−1) . (2.16)
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The diagonalization of H yields the following secular equation for the energy
eigenvalues E

[

~
2 (k −Kn)2

2m
−E

]

δn,m +
V0

2
(δm,n+1 + δm,n−1) = 0 . (2.17)

Fig. 2.1 shows a plot of En(k) as a result of diagonalizing Eq. (2.13). App. A.1
describes how to compute the band structure numerically.

- Π / a 0 Π / a

0.0

0.5

1.0

1.5

k

E
(k

)

Figure 2.1: Band structure for a cosine-potential. To illustrate the band
structure of a periodic potential, the energy bands in the first Brillouin zone
are shown.

2.3 Dynamics of particles in a periodic

potential

The first quantity of interest is the electron velocity v(k), which is given
by

v(k) = 〈φn,k(x)|
p

m
|φn,k(x)〉 . (2.18)
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We start from

〈φn,k(x)|
p2

2m
+ V (x) |φn,k(x)〉 = En(k) (2.19)

〈

e−ikxun,k(x)
∣

∣

p2

2m
+ V (x)

∣

∣eikxun,k(x)
〉

= En(k) (2.20)

〈un,k(x)|
(p+ ~k)2

2m
+ V (x) |un,k(x)〉 = En(k) , (2.21)

and take the derivative of Eq. (2.21) with respect to k which yields

〈un,k(x)|
~(p+ ~k)

m
|un,k(x)〉 =

dEn(k)

dk
(2.22)

〈φn,k(x)|
~p

m
|φn,k(x)〉 =

dEn(k)

dk
. (2.23)

Together with Eq. (2.18) we arrive at the well known expression for an elec-
tron’s velocity:

v(k) =
1

~

dEn(k)

dk
. (2.24)

Under the influence of an external uniform electric field ǫ the Hamiltonian in
Eq. (2.1) becomes

H = − ~
2

2m

∂2

∂x2
+ V (x) + eǫx , (2.25)

where e is the electronic charge. The time evolution of an initial state prepared
as a Bloch state φn,k0(x, 0) is then given by

φ(x, t) = e
− i

~

„

p2

2m
+V (x)+eǫx

«

t
φn,k0(x, 0) . (2.26)

Performing a translation x→ x+ a leads us to

φ(x+ a, t) = e
− i

~

„

p2

2m
+V (x+a)+eǫ(x+a)

«

t
φn,k0(x+ a, 0) (2.27)

= e
− i

~

„

p2

2m
+V (x)+eǫx

«

t
e−

i
~
eǫateik0aφn,k0(x, 0) (2.28)

= e
− i

~

„

p2

2m
+V (x)+eǫx

«

t
ei(− eǫt

~
+k0)aφn,k0(x, 0) (2.29)

= eik(t)aφ(x, t) . (2.30)

The result is that the wave function is a Bloch-type wave function with a time
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dependent function k(t), which evolves linearly with time according to

k(t) = −1

~
eǫt+ k0 , (2.31)

or in the form of the well known acceleration theorem:

d(~k)

dt
= −eǫ . (2.32)

If we now restrict the electron only to be in the first band, i. e. neglecting
Zener-tunneling [16], the motion of the electron is governed by Eq. (2.31) and
Eq. (2.24). Fig. 2.2 shows the schematic time evolution in the band picture
for the free electron case (left) and for a periodic potential (right). In the case

- Π / a 0 Π / a
0.0

0.5

1.0

1.5

2.0

2.5

k

E
(k

)

- Π / a 0 Π / a
0.0

0.5

1.0

1.5

2.0

2.5

k

E
(k

)

Figure 2.2: Motion of an electron in k-space under the influence of an
external field F . Left: In the free electron case (V (x) = 0), the electron’s
momentum, velocity and energy are increasing infinitely with time. Right: In
the case of a periodic potential the band structure shows energy gaps between
Bloch bands. Neglecting the tunneling to higher bands, the electron performs
an oscillating motion in the lowest Bloch band.

of a periodic potential and an additional external field, the electron performs
a periodic motion in momentum space as well as in real space. The period
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of these oscillations can be obtained from Eq. (2.31) by the assumption that
it takes the electron the time TB to cross the whole Brillouin zone (distance
2π/a)

TB =
2π~

aeǫ
. (2.33)

The amplitude A′ of the Bloch oscillations can be obtained by the simple
tilted band picture of Zener, see Fig. 2.3. The whole space available for the
oscillations A, can in this picture be determined as

A =
∆

eǫ
, (2.34)

where ∆ is the bandwidth of the band, in which the oscillation is considered.
The amplitude is A′ = A/2 due to symmetry. In this whole derivation the

Figure 2.3: Tilted bands. The bandwidth ∆ can be calculated and the slope
eǫ is given by the strength of the electric field ǫ, this leads to the space covered
by the Bloch oscillations in real space.

perfectly periodic pure crystal was considered, but in reality, electrons in a
crystal are being scattered from impurities. The average time between two
collisions is called τ . This means that Bloch oscillations in a real crystal can
only be observed if the time τ between two collisions is larger than the Bloch
period TB. This condition is not satisfied in real crystals, which means no
Bloch oscillations are observed. The first experimental realization of systems,
which show observable Bloch oscillations were semiconductor superlattices.
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These systems have a larger lattice constant a, which decreases the Bloch
period and they also have a larger characteristic scattering lifetime τ . As a
consequence, the condition TB < τ could be satisfied in these systems.

2.4 Wannier-Stark ladders

To give a complete description of phenomena occurring in a periodic lattice,
if an external homogeneous field is applied, we give a short description of the
Wannier-Stark ladder. The first description of this problem was given by
Wannier in 1960 [17], followed by a long controversy on the topic. The history
is well summarized in [18, 19].

Due to the external field the translation invariance of the system is broken
and the band picture has to be abandoned. However, there can be found
another quantization which is called the Wannier-Stark ladder. Given that the
stationary Schrödinger equation plus external electric field has eigenfunctions
Ψ(x) with corresponding eigenvalues E

[

− ~
2

2m

∂2

∂x2
+ V (x) + eǫx

]

Ψ(x) = EΨ(x) , (2.35)

a translation x→ x+ma in Eq. (2.35) leads us to:

[

− ~
2

2m

∂2

∂x2
+ V (x) + eǫx

]

Ψ(x+ma) = (E +maeǫ) Ψ(x+ma) . (2.36)

We rewrite Eq. (2.36) in the following form

[

− ~
2

2m

∂2

∂x2
+ V (x) + eǫx

]

Ψµ,m(x) = Eµ,m Ψµ,m(x) , (2.37)

with Eµ,m = Eµ,0 + maeǫ being the Wannier-Stark ladder and Ψµ,m(x) =
Ψµ,0(x + ma) being the Wannier-Stark states. As a result the solutions to
Eq. (2.35) are quantized in ladders with rungs separated by maeǫ, where m is
an integer denoting the lattice site and µ is the ladder index. The description
of a tilted lattice in terms of Wannier-Stark states could be used to gain insight
into the tunneling probability of a wave function to higher bands, enhanced
by a strong external electric field ǫ.
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Chapter 3

Bose-Einstein Condensates

As previously mentioned, the systems under consideration are cold atoms
in optical lattices. Therefore we give a short description of the systems and
the realization of an “impure” optical lattice. Since from now on the tilt of
the periodic lattice is not created by an electric field, a force F is introduced
which yields the external potential Fx.

3.1 The Gross-Pitaevskii equation

The wave function of a Bose-Einstein Condensate at low temperatures can
be described by the Gross-Pitaevskii equation, which is a nonlinear Schrödinger
equation. What follows is a short discussion on the Gross-Pitaevskii equation,
see for instance [20]. We start with the Hamiltonian of a Bose-Einstein Con-
densate in a potential V (r) in second quantization

H =

∫

d3r Ψ̂†(r)H0Ψ̂(r) +
1

2

∫

d3r

∫

d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r, r
′)Ψ̂(r′)Ψ̂(r)

(3.1)
where H0 = −~

2/2m∇2 +Vext is the single particle Hamiltonian with m being
the mass of the particle and Vext being the external potential acting on the
system. Vint(r, r

′) is the interaction between two particles, three or more body
interactions are already neglected. Ψ̂(r) and Ψ̂†(r) are bosonic annihilation
and creation operators of a boson at position r respectively, satisfying the
following bosonic commutation rules

[

Ψ̂(r′), Ψ̂†(r)
]

= δ(r′ − r) (3.2)
[

Ψ̂(r′), Ψ̂(r)
]

=
[

Ψ̂†(r′), Ψ̂†(r)
]

= 0 . (3.3)
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We can simplify the interaction potential Vint(r, r
′), considering that the Bose-

Einstein Condensate is a dilute and ultracold gas. Therefore we can neglect
partial waves with an angular momentum l 6= 0. The interactions between
atoms are then readily described using only s-wave collisions. To model this
interaction, which is an elastic collision the following pseudo-potential is used

Vint(r, r
′) =

4π~
2as

m
δ(r − r′) = ḡδ(r − r′) , (3.4)

where as is the s-wave scattering length. We use this pseudo-potential in
Eq. (3.1) and integrate over d3r, which leads us to

H =

∫

d3r Ψ̂†(r)H0Ψ̂(r) +
ḡ

2

∫

d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) . (3.5)

Together with the commutation rules Eq. (3.2) the Heisenberg equation of
motion becomes

i~∂tΨ̂(r′) =
[

H0 + ḡΨ̂†(r′)Ψ̂(r′)
]

Ψ̂(r′) . (3.6)

Bogoliubov [21] proposed the following ansatz for solving Eq. (3.6), namely the
decomposition of the field operator Ψ̂(r′) into a mean-field term (c-number)
and a fluctuation term (operator)

Ψ̂(r′) = â0ψ(r′) +
∑

m

âmψm(r′) (3.7)

≈
√
Nψ0(r

′) + δΨ̂(r′) , (3.8)

where âm is a bosonic annihilation operator and N ≫ 1 is the occupation
number of the state ψ0, with ‖ψ0‖2 = 1. The wave function could also have
the norm ‖ψ0‖2 = N , however the choice throughout this work is the former
one. We now can use Eq. (3.7) in Eq. (3.6) and arrive to the time dependent
Gross-Pitaevskii equation

i~∂tψ0(r, t) =
[

H0 + g|ψ0(r, t)|2
]

ψ0(r, t) , (3.9)

with the interaction given by

g = ḡN =
4π~

2asN

m
. (3.10)

During this derivation we neglected many body interactions and approximated
the two body interaction with the pseudo potential in Eq. (3.4). We also
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replaced the bosonic field operators with a wave function, by neglecting the
fluctuations δΨ̂(r′). These approximations are all valid, if the temperature is
much lower than the transition temperature for the onset of the condensation
and if the density of the condensate is also low enough (weakly-interacting
system).

3.2 The one dimensional Gross-Pitaevskii

equation

The purpose of this section is to obtain some understanding of the one-
dimensional Gross-Pitaevskii equation, and especially the role of the nonlinear
term in it. To start we need to know that a Bose-Einstein Condensate is
produced by cooling a dilute gas in a harmonic trap

V (r) =
m

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(3.11)

below the transition temperature for the onset of condensation. In order to
arrive at a quasi one-dimensional or two-dimensional Bose-Einstein Conden-
sate, the trap has to be a very anisotropic one, to restrict the movement of the
atoms in one or two dimensions. The atoms then only can populate the ground
state of the harmonic potential. Since in this thesis only one-dimensional sys-
tems are considered it is necessary to get an effective interaction constant g1D

for the one-dimensional case. For an anisotropic radially symmetric trap with
ωx ≪ ωy = ωz = ωr and an interaction energy gρmax ≪ ~ωr, where ρmax is the
maximum density of the condensate, the condensate is in the ground state of
the radial potential. This allows us to separate the field operator

Ψ̂(r) = Ψ̂(x)ϕ(y, z) (3.12)

into a one-dimensional field operator Ψ̂(x) and the ground state wave function
ϕ(y, z) of the two-dimensional harmonic oscillator

ϕ(y, z) =
1√
πa⊥

e

„

−
y2+z2

2a2
⊥

«

, (3.13)
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with a2
⊥ = ~/ (mωr). Using this decomposition for the interaction term (second

one) in Eq. (3.1) leads to

Hint =
g̃

2

∫

d3 Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (3.14)

=
g̃

2

∫

dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

∫

dy dy |ϕ(y, z)|4 (3.15)

=
g̃

2 2πa2
⊥

∫

dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) . (3.16)

As above, the ansatz Eq. (3.7) is made, Ψ̂(x) ≈
√
Nψ(x), with ‖ψ(x)‖2 = 1.

This leads to the one-dimensional Gross-Pitaevskii equation

i~∂tψ(x, t) =

[

− ~
2

2m
∇2 + V (x) + g1D|ψ(x, t)|2

]

ψ(x, t) , (3.17)

with the effective one-dimensional interaction constant

g1D =
g3D

2πa2
⊥

=
2~asN

ma2
⊥

. (3.18)

3.3 The optical lattice

An optical lattice is created by the interaction of light with matter. The
energy states of an atom interacting with light are dependent on the inten-
sity of the light, a spatially dependent intensity therefore leads to a spatially
dependent potential energy. The simplest realization of an optical lattice is
created by using two counter propagating laser beams, which produce a stand-
ing wave with a lattice period λL/2 where λL is the wavelength of the laser.
The periodic potential acting on the cold atoms in the laser field arises from
the dipole force. The review [22] gives a good overview of the experimental
realization of an optical lattice. We give a short description how the optical
lattice is created, using a two state system as also done in [23]. |g〉 and |e〉
will be the ground-state and exited-state of the two state system. The electric
field acting on an atom, which is small compared to the wavelength of the
monochromatic laser is of the form

E(r, t) = E(r) cos(ωLt) . (3.19)
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In this electric dipole approximation the Hamiltonian HAF , which describes
the interaction of the atom with the external field becomes

HAF = −d · E(r, t) , (3.20)

where d = dê(|e〉 〈g| + |g〉 〈e|) is the dipole moment of the atom and ê is the
unit vector in the direction of quantization. Using Eq. (3.20) and the rotating
wave approximation, we then can write the interaction energy as

HAF = −〈g|d · E(r, t) |e〉 |g〉 〈e| − 〈e|d · E(r, t) |g〉 |e〉 〈g| (3.21)

≈ −1

2
eiωLt 〈g|d · E(r) |e〉 |g〉 〈e| − 1

2
e−iωLt 〈e|d · E(r) |g〉 |e〉 〈g| . (3.22)

The rotating wave approximation is valid if the electric field is close to reso-
nance with the atomic transition frequency ω0. We then have ∆′ = ω0−ωL ≪
ω0 + ωL, where ∆′ is called detuning. The rotating wave approximation now
neglects the frequencies ω0+ωL, which only would lead to fast oscillating terms
in Eq. (3.21), rapidly averaging out. In the end the only relevant frequency is
the detuning ∆′ of the laser. The Hamiltonian describing the whole system of
an atom interacting with the electric field is given by

H = HA +HAF , (3.23)

where HA = p̂2/2m + ~ω0 |e〉 〈e| is the atomic Hamiltonian. In matrix repre-
sentation we can write Eq. (3.23) as

H = ~ω0

(

1 0
0 0

)

+
p̂2

2m

(

1 0
0 1

)

− 1

2
~Ω(r)

(

0 e−iωLt

eiωLt 0

)

, (3.24)

where the Rabi frequency Ω(r) is given by

Ω(r) = Ω(r)† =
〈g|d · E(r) |e〉

~
≈ 〈g|d |e〉 · E(r)

~
. (3.25)

With the wave function

|ψ〉 =

(

e−iωLtψe(r, t)
ψg(r, t)

)

= e−iωLtψe(r, t) |e〉 + ψg(r, t) |g〉 (3.26)
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and Eq. (3.24) we gain the following two coupled Schrödinger equations

i~∂tψe(r, t) =
p̂2

2m
ψe(r, t) + ~∆′ψe(r, t) −

~Ω(r)

2
ψg(r, t) (3.27)

i~∂tψg(r, t) =
p̂2

2m
ψg(r, t) −

~Ω(r)

2
ψe(r, t) . (3.28)

Now to simplify the coupled equations Eq. (3.27) and Eq. (3.28), we use an
approximation called adiabatic elimination. This approximation allows us to
eliminate the variable which changes faster with time and to obtain an effective
equation for the slowly varying variable. In this case this is done by assuming
that ~∆′ is much larger than the kinetic energy of the atom. The elimination
of the rapidly changing variable in Eq. (3.27) leads to ψe ≈ Ω

2∆′ψg. Then we
can write Eq. (3.28), the Schrödinger equation for a particle in the ground
state |g〉 as

i~∂tψg(r, t) =

[

p̂2

2m
− ~Ω(r)2

4∆′

]

ψg(r, t) . (3.29)

Meaning that the atom is moving in a dipole potential

Vdipole = −~Ω(r)2

4∆′
, (3.30)

which is ∼ I(r), the intensity of the laser field. As mentioned in the beginning,
two counter propagating lasers with wave number kL are used to generate a
standing wave with an intensity of I0 cos2(kLx); here only the one-dimensional
case is considered. This leads to a periodic optical potential

Vdipole =
~Ω(0)2

4∆
cos2(kLx) , (3.31)

with a period λL/2.
Below, we give a short description of units used in experiments. Most of the

time the Schrödinger equation under consideration here is the one-dimensional
time dependent Schrödinger equation with an external homogeneous field given
by

i~∂tψ(x, t) =

[

− ~
2

2m

d2

dx2
+
V0

2
cos(2kLx) + Fx

]

ψ(x, t) , (3.32)

with kL being the wave number of the laser used to produce the optical lattice.
The period of the created lattice is given by a = λL/2. If we use kL = 2π/λL,
we can write kL as kL = π/a. In a next step we can rewrite Eq. (3.32) in
dimensionless form, defining z = kLx. The natural unit of energy in these
dimensionless units is the recoil energy ER = ~

2k2
L/2m, with one recoil energy
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being the amount of kinetic energy an atom gains by absorbing a photon of a
laser with wave number kL. In these units Eq. (3.32) becomes

i∂τψ(z, τ) =

[

− d2

dz2
+

V0

2ER

cos(2z) +
Fa

ER

z

π

]

ψ(z, τ) , (3.33)

where V0 is the depth of the lattice in ER. If gravity is the force F , Fa/ER can
be evaluated as Fa/ER = mRbgλL/2ER, where mRb is the mass of the ultracold
Rubidium atoms and g ≈ 9.81m/s2 is the acceleration of gravity. The units
used in the numerical simulations are however chosen differently, because of
their easy implementation in the numerical calculations, see App. A.1. These
two choices of units have a one to one correspondence and can easily be con-
verted into each other. As an example of the units described above, the band
structure for an 10ER deep optical lattice is shown in Fig. 3.1.

-1 0 1

-2

0

2

4

6

k / kL

E
(k

)
/E

R

Figure 3.1: Band structure for a 10ER deep optical lattice. A deep
optical lattice has a very flat first band, ∆ = 0.08ER. The gap between the
first and second band Egap = 4.57ER is fairly large.

3.4 Realization of disorder in an optical lattice

Ultracold atoms in optical lattices are extremely tunable quantum systems
with the possibility of controlling the Hamiltonian of the system very easily.
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In the main part of this thesis we will discuss disordered optical lattices as an
extension to the perfect periodic optical lattice. Experimentally, disordered
systems are an easy to realize extension to the the periodic case and we will give
a short overview of the different kinds of possibilities to obtain a disordered
optical lattice. A first approach to realize a disordered system uses speckle
patterns [24]. Speckle patterns are created by laser light passing a diffusive
platte, a device by which the incident light is scattered. The scattered laser
light is interfering and creating the speckle pattern. The image of this pattern
is shown onto the atoms and creates a disordered potential. We however,
are not focusing on this technique, but consider the following two realizations
of disorder. The first one is the realization of disorder by the bichromatic
optical lattice [25]. The bichromatic lattice is created by a main lattice and
an additional optical lattice with a different lattice constant an depth than
the main lattice. This very controllable way of producing disorder is further
described in Sec. 3.4.1. The second considered realization of disorder is the
possibility of placing impurities on distinct lattice sites using a mixture of
atoms. It is then possible to address a distinct lattice site in the optical lattice
with an impurity [26]. This technique is further described in Sec. 3.4.2.

3.4.1 Disorder introduced by an incommensurate po-
tential

In the case of disorder introduced by a bichromatic optical lattice, the
potential in the Schrödinger equation is extended by an additional periodic
potential:

V ′(x) = V ′
0(x) + V ′

1(x) (3.34)

= V ′
0 cos(2kL1x) + V ′

1 cos(2kL2x) , (3.35)

where kL1 is the wave number of the laser producing the main lattice and
kL2 is the wave number of the laser creating the second lattice acting as a
perturbation to the first one. In the following we rewrite Eq. (3.35) in the
units described in App. A.1, to use it in the numerical calculations

V (x) = V0(x) + V1(x) (3.36)

= cos(x) + s cos(αx) . (3.37)

In Eq. (3.37) α is the fraction of the used laser’s wave numbers and s is
the measure for the depth of the second lattice in terms of the first one. For
α = p/q being a fraction of integers the potential is called quasi-periodic, for an
irrational number α, the potential is called incommensurate. The left part of
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Fig. 3.2 shows the potentials V0(x) and V1(x) and the resulting incommensurate
potential V (x) for arbitrary values of s and α.

If the ratio α is the result of a fraction of two integers, the periodicity of
the potential V (x) is 2πq. To ensure the incommensurability, this period has
to be larger than the system size. We then can call the potential effectively
incommensurate and it has the character of a disordered system.

3.4.2 Disorder introduced by an atomic mixture

Another possibility for introducing disorder in an optical lattice mimics
the presence of impurity atoms in a crystal lattice. In an optical lattice this is
done by a mixture of two different kinds of atoms. Atoms A, called scatterers
occupy only some distinct wells of the optical lattice. The scatterers are now
distributed over the lattice and act as random potentials to atoms of nature
B called test-particles, which move through the modified potential. The test-
particles must not be trapped in the optical lattice. To ensure this, atoms A
and B have to have different resonance frequencies in order that only atoms
of species A are trapped in the lattice.

The realization of this kind of disorder was accomplished in the numerical
model, by adding a bump of Gaussian shape to the desired lattice site. See
right of Fig. 3.2.
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Figure 3.2: Two kinds of realizations of disorder in an optical lattice.
Left panel: The top shows a sketch of the main lattice V0(x). In the middle
the second lattice V1(x), which introduces the disorder is shown. On the
bottom the whole bichromatic lattice V (x), is illustrated. Right panel: On
the top the main lattice V (x) = cos(x) is depicted. The plot in the middle
illustrates the main lattice (solid line) and a bump of gaussian shape (dashed
line) representing the impurity atom. On the bottom, the whole lattice with
randomly placed impurities is shown.
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Chapter 4

Numerical results

4.1 Bloch oscillations in optical lattices

We intend to solve the time dependent Schrödinger equation

i ~ ∂t ψ(x, t) =

[

−~
2

2
∇2 + cos(x) + F x

]

ψ(x, t) , (4.1)

to investigate the time-evolution of the wave function. We solve Eq. (4.1)
by means of the Split-Operator method [27]. This method entails the time-
propagation of an initial wave function using a time-evolution operator. The
time-evolution operator, which is proportional to exp((T + V )t), where T and
V are the kinetic and potential energy of the Hamiltonian, can be split by
using the Baker-Campbell-Hausdorff formula into a part containing only the
kinetic energy and one containing only the potential energy, exp((T + V )t) →
exp(Tt) exp(V t). The parts exp(Tt) and exp(V t) are diagonal in momen-
tum space and coordinate space, respectively. Starting with an initial wave
function in coordinate space, a propagation by one time-step involves firstly
a multiplication by exp(V t), secondly a Fast-Fourier transform to momentum
space, thirdly a multiplication by exp(Tt) and finally a Fast-Fourier transform
back to coordinate space. A detailed explanation and an implementation of
this method in Mathematica can be found in App. B.2. In App. A.1, the choice
of units used in the numerical calculations throughout this thesis is described.

The initial wave packet is chosen to be a normalized Gaussian wave packet
of the form

ψ0(x, t = 0) =
1

(2 π σ2)1/4
e
− x2

(2 σ)2 . (4.2)

Later in thesis we will also use the projection of the wave packet in Eq. (4.2)
onto the first Bloch band as an initial state to describe the evolution only in
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the lowest Bloch band, as described in Sec. 2.3. In the following the projected
initial state is called ψp(x, t = 0)

|ψp,n〉 =

∫

BZ

dk 〈φn,k| |ψ0〉 |φn,k〉 , (4.3)

where φn,k is the Bloch function for band n and momentum k. Details are
described in App. B.1.

These two different initial states should evolve differently in time. On the
one hand, the wave packet ψ0(x, t = 0) has significant contributions from all
the Bloch bands, which means that the evolution of ψ0(x, t = 0) in the system
Eq. (4.1) should show a decay of the wave packet to higher bands due to Zener-
tunneling. On the other hand, the wave packet ψp(x, t = 0) should virtually
show no decay to higher Bloch bands because it is entirely made out of the
first Bloch band and the band gap separating the lowest Bloch band from the
next one is fairly large.

Figure 4.1: Density |ψ0(x, t)|
2 and |ψp(x, t)|

2 as a function of position
and time. The bright regions illustrate a high density, darker regions low
density. On the left the wave packet ψ0(x, t) has contributions from all bands,
therefore some weight is lost to the higher bands. On the right the time-
evolution of the wave packet ψp(x, t) shows no loss to higher bands because
the wave function is entirely made out of the first Bloch band.

We choose the parameters for the numerical calculation in accordance with
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the experimental situation in [5], which leads to a large amplitude of the Bloch
oscillations. In this experiment the lattice depth is 1.4ER leading to a scaled
Planck constant ~ = 3.3806. The field strength is set to F = 0.005. For both
wave packets, the width σ = 40 π, which means that initially 20 wells of the
optical lattice are populated.

Fig. 4.1 summarizes the results of the propagation of ψ0 and ψp in time. The
figure shows a density plot of |ψ0(x, t)|2 on the left and |ψp(x, t)|2 on the right,
with bright regions illustrating a high density, darker regions a low density. In
the case of ψ0 one can clearly see one part of the wave packet escaping to −∞,
which corresponds to the part of the wave packet that immediately tunnels
through all the upper bands. The main part of the wave packet oscillates in
the negative x-direction, with TB being the period of the oscillation. A third
part of the wave packet oscillates with a larger amplitude than the main part
in the positive x-direction. This oscillation can be thought of as part of the
wave packet oscillating in the second band, which has a larger bandwidth and
opposite curvature compared to the first band, leading to a larger amplitude
and opposite velocity for the oscillation. The time-evolution of ψp shows an
evolution of the wave packet only in the first band, and no noticeable decay
to upper bands, as expected.

4.2 Disorder in optical lattices introduced by

an additional potential

We add a second periodic potential Vdis(x) to the Hamiltonian in Eq. (4.1),
in order to study the influence of disorder in an optical lattice on the Bloch
oscillations

i ~ ∂t ψ(x, t) =

[

−~
2

2
∇2 + cos(x) + s cos(αx) + F x

]

ψ(x, t) . (4.4)

We choose the values of the parameters together with Dominik Schneble to
be realistic ones for the system in his lab at Stony Brook. In the following
the lattice depth is taken to be 10ER and the tilt of the lattice is given by
0.2 g where g = 9.81m/s2 is the acceleration of gravity. In scaled units this
corresponds to ~ = 1.2649 and F = 0.0036. The calculation of the band
structure yields a width of the first band ∆ = 0.0153, which leads according
to Eq. (2.34) to an amplitude of the Bloch oscillations ABO = 0.68 a, for the
case of s = 0. The initial wave function is taken to be the one projected onto
the first Bloch band of the system Eq. (4.4) with s = F = 0.

We first show the results of a numerical calculation where s = 0, leading
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to undamped Bloch oscillations. Fig. 4.2 shows the average position 〈x(t)〉 =
∫

dxψ∗(x) xψ(x) of the Bloch oscillations with ~ = 1.2649 and F = 0.0036.
The undamped Bloch oscillations are clearly visible.
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Figure 4.2: Undamped Bloch oscillations. Shown is the average position
as a function of time for a tilted periodic lattice.

As described in Sec. 3.4.1, the addition of a second periodic potential is a
model for a disordered optical system and is easy to implement experimentally
as well as in the numerical calculation. The two parameters describing the
disorder are s and α. In the following we will explore the effect of tuning these
parameters on the Bloch oscillations. Two cases are then of interest:

• Changing the ratio α and keeping the amplitude of the disorder s fixed.

• Keeping the ratio α fixed and varying the amplitude of the disorder s.

4.2.1 Changing the ratio α between the two optical lat-

tices

In the following we keep the amplitude of the second optical lattice constant
at s = 0.0005 and vary the ratio α of the two lasers producing the optical lattice
from 0 to 2. To get an impression of how this kind of disorder affects the Bloch
oscillations, the average position 〈x(t)〉 for the case s = 0.0005 and α = 0.4 is
shown in Fig. 4.3, to compare with Fig. 4.2.
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Figure 4.3: Damped Bloch oscillations. Shown is the average position as
a function of time. In comparison to Fig. 4.2 the system is now a disordered
one with s = 0.0005 and α = 0.4 describing the disorder.
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Figure 4.4: Mean width ∆σ of a wave packetin a disordered system.
The wave packet starts to breath as it gets damped. The parameters for the
disorder are the same as in Fig. 4.3.
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One can clearly see the damping of the oscillations and also a revival of
the oscillations after they have been damped completely. This revival is not
a surprising observation because there are no dissipative processes present, in
the numerical simulation as well as in the experimental optical lattice.

To illustrate that the energy is conserved in the system at the point where
the wave packet is coming to rest (in Fig. 4.3 approximately at t = 11TB),
we also calculate the mean width of the wave packet in the following way,

〈∆σ〉 =
(

〈x2〉 − 〈x〉2
)1/2

, and show it for α = 0.4 in Fig. 4.4.
One can see that the width of the wave packet has a maximum value

at the time where the wave packet is at rest. As soon as the wave packet
starts to move again, the width of the wave packet decreases. To summarize
energy is exchanged between the center-of-mass motion and the breathing
mode of the wave packet. An analogy would be a pendulum where the energy is
oscillating between kinetic and potential energy. The properties of a breathing
wave packet under the influence of the nonlinearity g in the Gross-Pitaevskii
equation in an optical lattice has been studied in [28] and [29].

The goal is now to establish a connection between the damping of the
oscillations and the ratio α. Therefore we simulate the time evolution of the
system Eq. (4.4) for different values of α. We again calculate the average
position 〈x(t, α)〉 and fit it to a function of the form

f (A, η, B; t) = Ae−η t2 cos

(

2π

TB

t

)

− B (4.5)

with A, η and B being fit parameters. The values for η are then a measure
of the damping of the oscillations. Fig. 4.5 summarizes the results of the
simulation and shows η as a function of α for s = 0.0005.

What strikes first in Fig. 4.5, are the values for the quasi-periodic cases
α = {0, 0.5, 1, 1.5, 2}, where the damping of the Bloch oscillations is zero.
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Figure 4.5: Damping of Bloch oscillations as a function of α and
s = 0.0005. For five distinct values of α no damping is observed, which
is explained in the text.

In the following we give an explanation for each of these points.

α = 0

In this case it is obvious that this corresponds to an offset in potential
energy by s. The offset does not change the dynamics of the system and
undamped Bloch oscillations are observed.

α = 0.5

To explain the situation α = 0.5, one can think of a new system with a
unit cell twice as large. The Brillouin zone of the new system is therefore half
the size.

To illustrate what happens, we show on the right of Fig. 4.6 the band
structure of a system with s = 0.0005 and α = 0.5. In such a system, it
follows from Eq. (2.33) that the Bloch period should be 1/2 TB, where TB is
the Bloch period for s = 0, in contrast to what can be seen on the left of
Fig. 4.6. This leads to the conclusion that a large part of the wave function
tunnels through the tiny gap at the edge of the new Brillouin zone to the upper
band and fulfills the Bloch oscillation by tunneling back to the lower band at
the other Brillouin zone boundary. Fig. 4.7 shows a scheme of the motion in
the band picture to illustrate the explanation.
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Figure 4.6: 〈x(t)〉 and band structure for α = 0.5 and s = 0.0005. On
the left the average position is shown. Contrary to the expected bisection of
TB, it is still the same as if s = 0. The right shows the band structure. The
Brillouin zone for a unit cell with two atoms ranges from [−π/2a, π/2a]. The
inset shows a zoom in the region around the Brillouin zone edge where a gap
opens due to a nonzero s.
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Figure 4.7: Motion in a system with two periodic potential with s =
0.0005 and α = 0.5. This plot shows the motion in the band picture as
described in the text.

The overlap of the wave function, | 〈ψ(x, t = 0)|ψ(x, t)〉 |, gives even more
insight. In Fig. 4.8 this overlap is plotted for the case α = 0.5 and one can see
that for late times a small peak develops at (n+ 1

2
)TB, where n is an integer.

This means that the wave function, which was initially only built out of the
first Bloch band of the system with s = 0, is slowly evolving into the system
with the new periodicity of double the unit cell.
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Figure 4.8: Overlap | 〈ψ(x, t = 0)|ψ(x, t)〉 | for α = 0.5. The left shows
the overlap over the whole range. On the right a zoom is shown, which shows
a small overlap developing at multiples of 1/2nTB.

α = 1

For α = 1 the resulting potential has the period a, but with an amplitude
1 + s, which leads to a modification of the bandwidth ∆ and, according to
Eq. (2.34), to a larger amplitude of the Bloch oscillations. Since s ≪ 1 the
change in the amplitude of the Bloch oscillations is not recognizable. Since
the system is still a periodic one, the Bloch oscillations are undamped.

α = 1.5

In this case the explanation follows the one for α = 0.5.

α = 2

The band structure for α = 2 is not the same as in the case of α = 0,
because the Fourier components of these potentials are different. However,
the periodicity for α = 2 and s 6= 0 is still a. Therefore the Bloch oscillations
are not damped by this potential.

From Fig. 4.5 arises also the question of weather the values α = 0.5 and
α = 1.5 are singularities. To see the details in this regions, Fig. 4.9 therefore
shows these regions enlarged. The plots reveal that the points α = 0.5 and
α = 1.5 are not singularities, but we have a smooth function η(α).
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Figure 4.9: The regions around α = 0.5 and α = 1.5 enlarged. The
zoom into these regions shows that η is a smooth function of α. Here s =
0.0005.

4.2.2 Changing the depth V0 of the optical lattices

To further investigate the regions around α = 0.5 and α = 1.5, we now
change the depth of the optical lattice to V0 = 1ER (black), V0 = 5ER (blue),
V0 = 8ER (orange) and V0 = 10ER (red). The strength of the disorder is kept
at s = 0.0005 in all cases. Tab. 4.1 gives an overview on the values of the
scaled units and the resulting amplitude of the Bloch oscillations.

V0 /ER ~ F ABO /a

1 4 0.0357 6.90
5 1.7889 0.0071 2.36
8 1.4142 0.0045 1.10
10 1.2649 0.0036 0.68

Table 4.1: Summary on amplitudes ABO for different lattice depths
V0. A deeper lattice has shallower bands, the results are Bloch oscillations
with smaller amplitudes.

The change in the depth of the lattice affects the amplitude of the Bloch
oscillations as can be read in Tab. 4.1. For smaller lattice depths, the wave
packet now moves over a larger range in coordinate space than before, and
should therefore experience the disordered potential landscape in a more de-
tailed way, since the width of the wave packet is left unchanged. As above, a
fit to 〈x(t)〉 was performed according to Eq. (4.5).

The dependance of the damping on α for the different depth of the optical
lattice is shown in Fig. 4.10. The first thing that can be seen from Fig. 4.10 is
that the overall damping decreases as the depth of the lattice also decreases,
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Figure 4.10: Damping of Bloch oscillations for different depths of the
optical lattice at s = 0.0005. With a decreasing depth of the optical lattice,
we also observe a decreasing damping of Bloch oscillations.

which is not a surprising effect. As a second effect one can see, that η(α)
in the regions around α = 0.5 and α = 1.5 is no longer a fast changing
function of α. The explanation would be that the wave packet is now more
sensitive to a change of the incommensurability parameter α. To define how
effectively incommensurate the potential is, the length scale on which the Bloch
oscillations happen is a crucial parameter.

4.2.3 Changing the amplitude s of the disorder poten-

tial

To increase the disorder the amplitude s of the disorder potential has to
be turned up. Intuitively more disorder should lead to a faster damping of
the Bloch oscillations, which indeed can be seen in Fig. 4.11, where η is again
plotted over α for s = 0.0005 (black), s = 0.001 (blue) and s = 0.0013 (orange)
at a fixed lattice depth of 10ER. One can clearly see the increased damping
if the disorder is increased by turning up the parameter s. The shape of the
α-dependance stays the same for different values of s.
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Figure 4.11: Damping of Bloch oscillations for different disorder
strengths s. A larger amplitude s leads to a faster damping of the Bloch
oscillations, which leads to a larger η.

4.2.4 Analytical Approach

In order to help explain the damping of Bloch oscillations due to the dis-
order, we now try an analytical approach. This approach uses a tight binding
model of the Schrödinger equation Eq. (4.4). We can write

i~∂tψ(x, t) = [H0 + s cos(αx)]ψ(x, t) , (4.6)

with H0 defined as

H0 = −~
2

2
∇2 + cos(x) + Fx . (4.7)

This Hamiltonian has, as described in Sec. 2.4, stationary solutions in the form
of Wannier-Stark states Ψµ,n

H0Ψµ,n = εµ,nΨµ,n , (4.8)

where µ is the Wannier-Stark ladder index and n the lattice site index. The
eigen-energies of Eq. (4.8) build the Wannier-Stark ladder εµ,n = ε0,n +2πFn.
In the following, the ladder index µ is suppressed because only the lowest
ladder is taken into account due to negligible Zener tunneling. We obtain the
necessary eigenstates of Eq. (4.8) by the above mentioned tight binding model
in a site basis. In matrix form the Hamiltonian we have to diagonalize can be
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written as
H0,nm = J (δn−1,m + δn+1,m) + 2πnF δn,m , (4.9)

where n is the lattice site index and J is the hopping element. The hopping
element is taken to be J = ∆/4, where ∆ is the bandwidth of the lowest Bloch
band.

The wave function in Eq. (4.6) is now expanded in terms of the Wannier-
Stark states Ψn

ψ(x, t) =
∑

m

cm(t)Ψm(x) , (4.10)

with time dependent expansion coefficients cm(t). This leads to

i~∂t

∑

m

cm(t)Ψm(x) =
∑

m

(ε0+2πFm)cm(t)Ψm(x)+
∑

m

s cos(αx)cm(t)Ψm(x) ,

(4.11)
which we can multiply from the left by Ψ∗

n(x) and integrate over all space.
With the property

∫ ∞

−∞

dxΨ∗
n(x)Ψm(x) = δn,m (4.12)

Eq. (4.11) becomes

i~∂tcn(t) = 2πFncn(t) + s
∑

m

cm(t)Ψ∗
n(x) cos(αx)Ψm(x) , (4.13)

where ε0 would only lead to a global phase and has been set to zero without loss
of generality. We now have to take a closer look at the last term in Eq. (4.13).
Since the Wannier-Stark states are exponentially localized at a lattice site, we

can safely neglect the overlap

∫ ∞

−∞

dxΨ∗
n(x)Ψn+1(x) in this model. Therefore,

we can write Eq. (4.13) as

i~∂tcn(t) = 2πFncn(t) + scn(t) cos(2παn) . (4.14)

The next step is to split the time dependent expansion coefficients cn(t) into
an amplitude and phase

cn(t) = ρn(t)eiϕn(t) . (4.15)

As an initial state to this problem the cn are of the form

cn ∼ e
− n2

(2σ)2 . (4.16)
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Eq. (4.14) together with Eq. (4.15) leads us to

i~ρ̇n − ~ϕ̇nρn = 2πFnρn + sρn cos(2παn) , (4.17)

the dot denotes the derivative with respect to time. We assume a broad spread
of the initial state, which leads to small amplitudes ρn, ρn(t = 0) ≪ 1. The
amplitudes ρn(t), compared to the phases ϕn(t), are slowly changing in time,
we therefore assume the amplitudes to be constant in time. We then write
Eq. (4.17) as two differential equations

~ϕ̇n = −2πFn− s cos(2παn) (4.18)

~ρ̇n = 0 , (4.19)

with solutions

ϕn(t) = −1

~
(2πFn+ s cos(2παn)) t (4.20)

ρn(t) = ρn(0) . (4.21)

The normalized time independent ρn are taken to be

ρn =
1√

2πσ2
e
− n2

(2σ)2 , (4.22)

in order to be similar to the initial states used in the previous chapters.

The tight binding model compared to exact numerical calculations

The wave function in the time dependent Schrödinger equation Eq. (4.6)
can now be written as

ψ(x, t) =
∑

n

cnΨn (4.23)

=
∑

n

ρne
− i

~
(2πFn+s cos(2παn))tΨn . (4.24)

We obtain the functions Ψn via the simple tight binding Hamiltonian Eq. (4.9).
In Fig. 4.12 the exact numerical result (dashed-red line) for the average po-
sition 〈x(t)〉 is compared to the one attained by using the above described
model (solid black line). The parameters were in scaled units ~ = 1.2649,
F = 0.0036, s = 0.0005 and α = 0.4.

It should be noted that this tight binding approximation is only in accor-
dance with the exact calculation for values of α < 1. However, this simple
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Figure 4.12: Exact numerical results compared to a tight binding
model. The dashed-red line shows the result of an exact numerical simulation
compared to the solid black line which shows the result attained by a tight
binding model.

model allows us to gain at least some insight in the question why the Bloch
oscillations are damped. We can see from Eq. (4.20) that the phase of the
wave function no longer evolves linearly with time with a nonzero s. Later on
in Sec. 4.4, we will have a closer look on the evolution of the wave packet in
momentum space and see that this nonlinear evolution of the phase leads to
a broadening of the momentum distribution in time, causing the damping of
the Bloch oscillations.

4.3 Disorder introduced by impurities at dis-

tinct lattice sites

The goal in this section is to examine the influence of impurities at dis-
tinct lattice sites on Bloch oscillations. Therefore, we consider the following
Hamiltonian

i ~ ∂t ψ(x, t) =

[

−~
2

2
∇2 + cos(x) + Vimp(x) + F x

]

ψ(x, t) , (4.25)
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where Vimp(x), as described in Sec. 3.4.2, is a sum of Gaussians centered at a
specific lattice site. The Gaussian itself has the form

Vimp,n(x) = e
−

(x−xn)2

2σ2
imp , (4.26)

where σimp is the width of the Gaussian and xn denotes the lattice site n of
its center. We chose a Gaussian to mimic an impurity in the lattice because
it is a very controllable function and it is easy to implement in the numerical
calculation. Throughout this section, the Gaussian has an amplitude equal to
1 and a width σimp = 0.1 π2, in order to cut off one well of the cosine potential.
See the right of Fig. 3.2 for a schematic picture. The parameters for the system
(~ and F ) in this section are chosen as in Sec. 4.1, in order to have a larger
amplitude ABO of the Bloch oscillations. The initial wave function is of the
form in Eq. (4.2).

4.3.1 Patterns of impurities

We first test if a periodic pattern of impurities will show Bloch oscillations,
therefore we place an impurity on every second lattice site. This can be thought
of as doubling the lattice constant; a′ = 2 a. This should lead to a halving of
the Bloch time TB, where throughout this section TB will be the reference Bloch
time of the pure system with lattice constant a. The result of a simulation is
shown in Fig. 4.13, where as before the average position of the wave packet
is plotted over time. The plot is slightly distorted, because the initial wave
function is not projected on a first band of the periodic impure system. Despite
this fact, the plot shows exactly what is expected, a new period for the Bloch
oscillations, namely TB/2. Although the lattice is now impure, the Bloch
oscillations still exist, because of the periodic placement of impurities. The
size of the new unit cell is not restricted to be 2 a. In general, it could be
a′ = l a, with l being an integer. This will lead to a Bloch time

TB,l =
2π~

laF
, (4.27)

where l is the size of the new unit cell. Summing up we can see that the
introduction of a periodic pattern of impurities in a formerly clean system,
does not destroy the Bloch oscillations. However, there is a constraint to the
width of the initial wave packet. It has to be broad enough to cover at least
one new unit cell in order to “experience” the new periodicity.
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Figure 4.13: Bloch oscillations in a system with an impurity on every
other lattice site. Placing an impurity on every other lattice site leads to a
bisection of TB as anticipated from Eq. (2.33)
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Figure 4.14: Bloch oscillations in a system with a slightly periodic
pattern of impurities. An impurity is placed on every other lattice site
except site i. The black solid line shows the case of an impurity on every
second lattice site. Removing an impurity on site i destroys the formerly
periodic pattern and as a consequence the Bloch oscillations are damped.
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It is now instructive to check if a slightly non-periodic placement of impu-
rities affects the Bloch oscillations. Therefore, we place an impurity on every
second site except lattice site i. The impurities are only removed in an interval
between lattice site −41 to 21, because the wave packet only moves over this
finite range on the lattice. In Fig. 4.14 we showe the results. We see that the
Bloch oscillations are not destroyed completely by the non-periodic placement
of impurities, but instead get damped in a way similar to that of Sec. 4.2. Re-
moving an impurity from the periodic pattern on a site nearly out of the wave
packet’s range of movement causes less damping of the oscillations (compare
the black and purple lines in Fig. 4.14). In conclusion we can say that even
the slightest perturbation of the periodic pattern affects the Bloch oscillations,
and as a consequence they get damped. In the next section the impurities are
randomly placed in the lattice, and we will see that the influence on the Bloch
oscillations is stronger.

4.3.2 Randomly distributed impurities

It is also very easy to introduce a totally random distribution of impurities
in the system, and investigate the influence on Bloch oscillations. With the
knowledge from above, the impurities are only placed on lattice sites in the
interval [−41, 21].

To get a first impression of how the randomly placed impurities affect the
Bloch oscillations, we plot as in the sections before 〈x(t)〉. The result can be
seen in Fig. 4.15. The number of impurities placed in lattice is chosen to be
1, 2, 3, 4, 5, 10 and is shown in parts a) to f) of Fig. 4.15 respectively. The
different colors denote different kinds of random placements of the impurities.
The general trend with increasing disorder, is an increased damping of the
Bloch oscillations, up to a point where no clear movement of the wave packet’s
center can be recognized. Looking at each part of Fig. 4.15 separately, one
can see that how the Bloch oscillations are damped depends very much on the
placement of the impurities, but due to the random placement, the damping
of the Bloch oscillations happens in no distinct way.

In the case of random disorder, the overlap | 〈ψ(x, t = 0)|ψ(x, t)〉 | gives
more insight into what happens with increasing disorder. Fig. 4.16 shows the
overlap for the different amounts of disorder (again parts a) to f)). Illustrated
dashed-red in each part is the overlap for the case of zero disorder, where
the wave packet fully returns after each Bloch period. In comparison with
the dashed-red line, the correlation of the wave function in a disorder system
(solid black line) at multiples of TB decreases with increasing disorder. This
leads to the conclusion, that randomly distributed impurities destroy the Bloch
oscillations.
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Here we can see an analogy to Anderson Localization [30]. Anderson Local-
ization occurs in a randomly disordered metal with non-interacting electrons.
The disorder induces a metal to insulator transition, or differently speaking a
transition from extended states to localized states. Numerically the localiza-
tion can be investigated in simple tight binding model, where the disorder is
realized by randomly varying onsite energies. In the system we consider here,
the randomly disordered optical lattice, we also observe a localization of the
wave packet, if random disorder is introduced.
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Figure 4.15: 〈x〉 (t) for randomly distributed impurities. Parts a) to f)
show for 1, 2, 3, 4, 5, 10 impurities in the system the influence on the damping.
Increasing the amount of disorder increases the damping of Bloch oscillations.
The different colors in each part illustrate different configurations of random
disorder.
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Figure 4.16: Overlap of the wave function for the case of randomly
distributed impurities. For a random distribution of impurities the overlap
| 〈ψ(x, t = 0)|ψ(x, t)〉 | is shown (black) in comparison to the overlap of a pure
system (dashed-red). With increasing disorder the wave packet does not return
and the overlap at multiples of TB is less than 1, meaning no periodic movement
of the wave packet is recognizable.
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4.4 Mechanism of the damping

In an undisturbed tilted lattice, the energies differ from site to site by

∆E = aF , (4.28)

where F is the field that tilts the lattice and a is the lattice constant. We can
define a phase ϕ(t) in the evolution of the wave function using Eq. (2.30) and
Eq. (2.31) in the following way

ϕ(t) =
Fa

~
t =

∆E

~
t . (4.29)

In the case of absent disorder the energy difference ∆E, is the same from site
to site. This leads to a constant evolution of the phase and momentum in
time.

If disorder is introduced in the system, the energy difference ∆E from site
to site is no longer a constant. The energy difference becomes a spatially
dependent one, ∆E(x), leading to a varying phase and momentum evolution.

Figure 4.17: Density |ψ(k, t)|2 with and without disorder. Left: If no
disorder is present in the system, this will lead to a constant evolution of
the momentum. Middle: The evolution of the momentum for 2 randomly
placed impurities shows a weak secondary peaks and a broadening in the main
peak of the momentum. Right: In the case of the bichromatic lattice distinct
secondary peaks start to appear.

This can be observed in the time evolution of the momentum, which is
shown in Fig. 4.17, as the density |ψ(k, t)|2. The left plot in Fig. 4.17 shows
the evolution of the momentum in the unperturbed case, where the narrow
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momentum distribution evolves constantly in time. The plots in the middle
and on the right illustrate the time evolution of the momentum for a random
pattern of 2 impurities in the lattice and for the bichromatic lattice respec-
tively. In the case of disorder, the momentum no longer evolves constantly, but
we can see smaller peaks arising shortly after the beginning of the movement.

There is also a difference in the momentum evolution for the two different
kinds of disorder, which we can also see in Fig. 4.17. In the case of a random
distribution of impurities the arising peaks are still very low, but we can see a
broadening of the main peak of the momentum distribution. The evolution of
the momentum in the case of a bichromatic lattice shows no such broadening
in the main peak, but very distinct and higher secondary peaks.

The broadening of the main peak and occurrence of secondary peaks in the
momentum distribution causes the damping of the Bloch oscillations, since the
momentum no longer evolves linearly with time.

4.5 Disorder and interaction

In this section the interplay between disorder and interaction, which is
described in the full Gross-Pitaevskii equation Eq. (3.9) by the mean field
term g |ψ(x, t)|, is investigated. It is known from [28, 29], that the interaction
alone leads to a damping of the Bloch oscillations. To illustrate this effect we
perform a numerical simulation of the following system

i ~ ∂t ψ(x, t) =

(

−~
2

2

d2

dx2
+ cos(x) + Fx+ g |ψ(x, t)|2

)

ψ(x, t) . (4.30)

To solve the full Gross-Pitaevskii equation with the Split-Operator Method,
the wave function appearing in the mean-field term is taken to be the one
from the last time-step. If the time-steps are small enough, the error will be
negligible. The implementation in Mathematica is shown in App. B.3.

The interaction term g in the Gross-Pitaevskii equation is taken to be the
one-dimensional one from Eq. (3.18), where a⊥ is the transverse width of the
Bose-Einstein Condensate. In the following, the number of (Rubidium-)atoms
is 102 and a⊥ = 10µm. This leads to a scaled interaction term g = 0.15. The
other parameters are the same as in Sec. 4.2: ~ = 1.2649, F = 0.0036. For
this case Fig. 4.18 shows the average position over time. A damping due to
the mean-field term is clearly visible.

As shown in Sec. 4.2, a disordered potential realized with a bichromatic
optical lattice also damps the Bloch oscillations. There is however an inter-
esting interplay between disorder and interaction. To explore this interplay
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Figure 4.18: Damped Bloch oscillations in a system with interactions.
The nonlinear term in Eq. (4.30) is a measure for the interaction between
atoms in a Bose-Einstein Condensate and leads to a damping of the Bloch
oscillations.

we fix the parameters which describe the disorder in the bichromatic lattice to
s = 0.0005 and α = 0.4, and vary the interaction term g. Fig. 4.19 summarizes
the results of a numerical simulation of the system

i ~ ∂t ψ(x, t) =

(

−~
2

2

d2

dx2
+ cos(x) + s cos(αx) + Fx+ g |ψ(x, t)|2

)

ψ(x, t) .

(4.31)
It can be seen that due to an increase of the interaction term, the damping

of the Bloch oscillations decreases. If however the interaction is getting too
strong, the damping of the Bloch oscillations is governed by the interaction
term. This also has been investigated in [31, 32], where the disorder was
realized with speckle patterns.

To gain more insight into why Bloch oscillations are damped due to disor-
der or interaction, and why they can cancel each other out, we expand upon
a simple model which was introduced in [33]. This model is a tight binding
one and describes the influence of the nonlinear term in the Gross-Pitaevskii
equation on the Bloch oscillations fairly well. In this tight binding approxi-
mation the wave function ψ(x, t) in the Gross-Pitaevskii equation Eq. (3.17)
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Figure 4.19: Interplay between disorder and interaction. An increasing
nonlinearity counteracts the disorder and leads to less damped Bloch oscil-
lations, up to a point where the damping of the Bloch oscillations is then
dominated by the nonlinearity.

is expanded in Wannier functions w(x− xn) from only the lowest Bloch band

ψ(x, t) =
∑

n

Ψn(t)w(x− xn) , (4.32)

where Ψn(t) is a time dependent amplitude and the Wannier functions
w(x− xn) are localized wave functions in each well n. The potential V (x) in
Eq. (3.17) has now the form V (x) = Vperiodic(x) + Vext(x). We are using the
ansatz Eq. (4.32) in the Gross-Pitaevskii equation Eq. (3.17) and the result is
the discrete nonlinear Schrödinger equation

i~∂tΨn = −J (Ψn−1 + Ψn+1) + VnΨn + g|Ψn|2Ψn , (4.33)

where J is the tunneling probability for neighboring sites (in the tight binding
approximation J = ∆/4, with ∆ being the bandwidth of the lowest Bloch
band) and Vn describing the external potential. The model in [33] uses a
classical Hamiltonian approach to describe the time dependent Schrödinger
equation Eq. (4.33). Therefore, we can identify Eq. (4.33) as an equation of
motion to

Ψ̇n =
∂H ′

∂i~Ψ∗
n

, (4.34)
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with the conjugate variables i~Ψ∗
n and Ψn and the Hamiltonian

H ′ =
∑

n

[

−J
(

ΨnΨ∗
n+1 + Ψ∗

nΨn+1

)

+ Vn|Ψn|2 +
g

2
|Ψn|4

]

. (4.35)

As also proposed in [33], we study the dynamical behavior of Eq. (4.35) with a
semiclassical variational approach. The variational wave function is a Gaussian
profile wave packet

Ψn,var(t) =

(

2

γ2π

)
1
4

e
ip(n−ξ)−

(n−ξ)2

γ2 +i δ2

2
(n−ξ)2

, (4.36)

with variational parameters ξ(t) and p(t) being the center and its momentum
of the wave packet and γ(t) and δ(t) being the width and its momentum of
the wave packet. The equations of motions to the variational parameters are
given by

d

dt

∂L

∂q̇i
=
∂L

∂qi
, (4.37)

with the Lagrangian

L =
∑

n

i~Ψ̇nΨ∗
n −H ′ . (4.38)

The equations of motion for the qi(t) = ξ(t), p(t), γ(t), δ(t) are then derived as

ṗ = −1

~

∂V (γ, ξ)

∂ξ
(4.39)

ξ̇ = 2J
1

~
sin(p)e−η (4.40)

γ̇ = 2J
1

~
γδ cos(p)e−η (4.41)

δ̇ = 2J
1

~

(

4

γ4
− δ2

)

cos(p)e−η +
2g√
πγ3

− 4

γ

∂V (γ, ξ)

∂γ
, (4.42)

with

η =
1

2γ
+
γ2δ2

8
, (4.43)

and V (γ, ξ) describing the external potential Vn

V (γ, ξ) =

(

2

γ2π

)
1
2
∫ ∞

−∞

dn Vne
−

2(n−ξ)2

γ2 . (4.44)
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The effective Hamiltonian for the conjugate variables ξ, p and γ/8, δ reads

H = −J cos(p)e−η + V (γ, ξ) +
g

2
√
πγ

. (4.45)

We are also able to define a group velocity of the wave packet

vg = ∂H/∂p = ξ̇ = tan(p)/m∗ (4.46)

and with that, an effective inverse mass

(m∗)−1 = ∂2H/∂p2 = cos(p)e−η . (4.47)

The external potential Vn in the case of a tilted disordered potential generated
by a bichromatic optical lattice has the form

Vn = Fn− s cos(αn) . (4.48)

With this we can easily integrate Eq. (4.44) and the resulting V (γ, ξ) can be
plugged into the equations of motion Eq. (4.39) and Eq. (4.42). It should be
mentioned that the potential Eq. (4.48) differs from the one used in Eq. (4.31)
by the minus sign in front of the term s cos(αx). The exact numerical sim-
ulation of Eq. (4.31) shows that this sign does not affect the result, but it
is necessary in this section to describe the correct interplay between disorder
and interaction. We can see in Eq. 4.51 or Eq. 4.53 that we need the minus
sign, so that the interaction can cancel the damping effect due to disorder.
This model is only thought of as an illustrative one. It does not reproduce
the independence on the sign of s, as it is observed in the exact numerical
simulation of the system. With this, the resulting coupled equations can then
be solved numerically for each of the variational parameters.

More insight in the dynamics is gained by looking at the second order dif-
ferential equation for ξ(t). We therefore take the time derivative of Eq. (4.40)
and plug in the expressions for γ̇ and ξ̇, which leads us to

ξ̈ +

(

gδ

2~
√
πγ

− 1

4~
α2sδγ2 cos(αξ)e−

1
8
α2γ2

)

ξ̇+ (4.49)

+
2J

~2
e−η cos(p)

(

F + αs sin(αξ)e−
1
8
α2γ2

)

= 0 . (4.50)

This reminds one of the differential equation of a damped oscillator, where we
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can define a damping term β

β =
gδ

2~
√
πγ

− 1

4~
α2sδγ2 cos(αξ)e−

1
8
α2γ2

. (4.51)

To understand why the Bloch oscillations are damped out, the limits of
γ(t) and δ(t) for t → ∞ are necessary. From the numerical solution of the
equations of motions Eq. (4.39) to Eq. (4.42) we see that the width of the wave
packet tends to a constant value γ∞, not very different from γ(t = 0). The
center of the wave packet also tends to a constant value ξ∞, which is equal
to the amplitude of the undamped Bloch oscillations. With this, δ has a time
dependance that goes as

δ ∼
(

1

~

2g√
πγ3

∞

− α2s cos(αξ∞)e−
1
8
α2 .γ2

∞

)

t . (4.52)

The effective mass m∗ is also a time dependent variable and for the limit
t→ ∞ it goes as

m∗ ∼ e
γ2
∞

8~2 t2
„

2g√
πγ3∞

−α2s cos(αξ∞)e−
1
8 α2γ2

∞
«2

. (4.53)

With this background the damping of the Bloch oscillations could be thought
of a diverging effective mass m∗. In Eq. (4.53) one can also see that disorder
and interaction can cancel each other out if the exponential becomes zero, or
equal the damping term β = 0, which is the case if

g =
1

2

√
πγ3

∞α
2s cos(αξ∞)e−

1
8
α2γ2

∞ . (4.54)

Within this approximation and the approximations made in the limit for t→
∞, we find that Eq. (4.54) describes the cancellation of disorder and interaction
remarkably well. This model is however not in exact agreement with the
results of the exact numerical calculation. We use it as an illustrative method
to explain the possibility of the counteracting effect of interaction on disorder.
We are also able to understand the dependance on e−t2 of the fit function
Eq. (4.5), using this model, see Eq. (4.53).

To conclude this section, we were able to show with exact numerical calcula-
tions, that interactions can counteract the damping of Bloch oscillations caused
by disorder. A variational principle of the discrete nonlinear Schrödinger equa-
tion Eq. (4.33) lead to the equations of motion of the variational parameters
which can be solved numerically. With Eq. (4.54), an expression was found
to predict the value of the interaction necessary to neutralize the damping of
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Bloch oscillations due to disorder described by the parameters α and s.
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Chapter 5

Conclusion

We have investigated the influence of disorder in an optical lattice on Bloch
oscillations. To gain information on the dynamics of the system we had to
solve the time dependent Schrödinger equation, which was done by the Split
Operator Method.

It could be shown that the damping of Bloch oscillations is dependent on
the form of disorder present in the system.

In the case of the bichromatic optical lattice the Bloch oscillations were
damped nicely and showed a revival. We also investigated the dependance of
the damping on the parameters α and s, which describe the disorder. The
expected increase in the damping of the Bloch oscillations for an increasing
strength of the disorder s is clearly observable in the numerical simulations.
Changing the parameter α has a non-trivial influence on the damping of Bloch
oscillations. For certain special values of α, no damping is expected, which we
have observed and explained.

For a realization of disorder by impurities on distinct lattices sites, it was
shown that a periodic pattern of impurities leads to a new unit cell in the lattice
and to a new Bloch time TB. A slightly distorted periodic pattern damps the
Bloch oscillations, but not drastically. We were also able to show that a
totally random distribution of impurities in the lattice is heavily affecting the
Bloch oscillations. If the concentration of impurities is large enough, the Bloch
oscillations will be destroyed completely.

Future work on the topic should contain a more analytical approach, to
quantify the damping in terms of the disorder parameter. This is also impor-
tant when it comes to the interplay between disorder and interactions.
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Appendix A

Units

A.1 Units used for numerical calculations

In the following, we are giving a description of the used scaled units. The
system of units is motivated by the used cosine-potential and by reducing the
number of free parameters to a minimum. Considered is the Gross-Pitaevskii
equation which describes the wave function of a Bose-Einstein Condensate

i~∂tψ(x, t) =

[

− ~
2

2m

∂2

∂x2
+ V (x) + Fx+ g |ψ(x, t)|2

]

ψ(x, t) . (A.1)

The scaled mass is taken to be ms = 1 and the period of the potential is chosen
as as = 2 π. The energy scale is set that the potential varies in the interval
[−1, 1]. With these conditions we can simply write the potential in scaled
units as Vs(xs) = cos(xs). With the scaled space coordinate xs = (2π/a) x,
the period of Vs is 2π. We are now defining V̄ = V0/2. Dividing Eq. (A.1) by
V̄ and replacing x by xs we arrive at at the scaled Gross-Pitaevskii equation

i~s∂tsψ(xs, ts) =

[

−~
2
s

2

∂2

∂x2
s

+ Vs(xs) + Fsxs + gs |ψ(xs, ts)|2
]

ψ(xs, ts) ,

(A.2)
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with the following conversion rules

~s =
2π

a
√
mV̄

~ (A.3)

Fs =
a

2πV̄
F (A.4)

gs =
2π

V̄ a
g (A.5)

ts =
2π

a

√

V̄

m
t . (A.6)

The Bloch period TB becomes

TB =
2π~

aF
(A.7)

TB,s =
~s

Fs
. (A.8)

The actual period of the optical lattice is a = λL/2 where λL is the wave-
length of the laser generating the optical lattice. Given the recoil energy
Er = ~

2k2
L/2m, here kL is the wave number of the laser and knowing the

depth of the optical lattice V0 in recoil energies, we can evaluate the scaled
Planck constant to

~s =
4

√

V0/Er

. (A.9)

The parameters in this thesis are chosen in order to resemble the experimen-
tal values in the group of Dominik Schneble here at Stony Brook. Tab. A.1
summarizes the used values. The strength of the force Fg was chosen 0.2Fg
in oder to ensure that Zener-tunneling is negligible.

λL/nm V0/ER 0.2Fg/ER ~s Fs

1064 10 0.5604 1.2649 0.0036

Table A.1: Summary of used parameters. The parameters are chosen to
represent the experimental ones in Dominik Schneble’s group at Stony Brook.
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Appendix B

Numerical methods

B.1 Solving the stationary Schrödinger equa-

tion for Bloch bands and Bloch functions

In this section a description is given how the Schrödinger equation Eq. (2.1)
with a periodic potential V (x + a) = V (x) can be solved numerically. The
periodic potential throughout this thesis is a cosine-potential V (x) = cos(x).
The Hamiltonian on the left hand side of Eq. (2.1) can easily be solved in a
plane wave basis. The matrix elements then read

Hi,j =
~

2

2

(

k − 2π

a
j

)2

δi,j +
V0

2
(δi,j+1 + δi,j−1) . (B.1)

The obtained matrix can then be diagonalized for each allowed k-value leading
to the eigenvalues En(k), where n denotes the band index. An implementation
in Mathematica is shown in the following lines. Tab. B.1 summarizes the
arguments appearing in the functions.

The function kVEC[...] defines the allowed k-values:

kVEC[counterk_, a_, lengthsys_] :=

Module[{countk, A, NN},

countk = counterk;

A = a;

NN = lengthsys;

kv = N[2*Pi*countk/NN/A];

Return[kv];

]

The next function KLattice[...] defines the reciprocal lattice vector:
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Parameter Meaning

counterk counter variable for k
counterK counter variable for K
a lattice constant
lengthsys length to discretize k-values
hbar scaled Plack’s constant
U0 depth of lattice, with scaled units always one
kk distinct k-value
size determines the size (2 size+ 1) of the matrix
sigma width of wave function to be projected onto a Bloch band

Table B.1: Summary of arguments. The number of parameters is intended
to be kept small.

KLattice[counterK_, a_] := Module[{countK, A},

countK = counterK;

A = a;

KL = N[2*Pi*countK/A];

Return[KL];

]

The matrix (2.17) is generated using the function SetMatrix[...]\verb:

SetMatrix[hbar_, U0_, a_, kk_, size_] :=

Module[{h, ampCos, ampCos2, A, s, ki, matrixSize},

h = hbar;

ampCos = U0;

A = a;

ki = kk;

matrixSize = size;

matrix =

Table[0.5*h^2*(ki - KLattice[i, A])*(ki - KLattice[i, A])*

KroneckerDelta[i, j] +

0.5*ampCos*(KroneckerDelta[(i - j) - 1] +

KroneckerDelta[(i - j) + 1]), {i, -matrixSize,

matrixSize}, {j, -matrixSize, matrixSize}];

Return[N[matrix]];

]

The last function bands[...] diagonalizes the matrices Eq. (2.17) for every k-
value. With evaluating the function bands[...], the calculated Bloch bands
are stored in band[n] and Bloch functions can be plotted using the function
blochFunction[kindex, bandindex, x].
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bands[hbar_, U0_, a_, lengthsys_, size_] :=

Module[{h, ampCos, A, NN, matrixSize},

h = hbar;

ampCos = U0;

A = a;

matrixSize = size;

NN = lengthsys;

delk = 1/NN;

kTable = Table[kVEC[m, A, NN], {m, -NN/2 + 1, NN/2}];

eigenSYS =

Thread[{Table[kVEC[m, A, NN], {m, -NN/2 + 1, NN/2}],

Table[Sort[

Transpose[

Eigensystem[

SetMatrix[h, ampCos, A, kVEC[m, A, NN], matrixSize]]],

Re[#1[[1]]] < Re[#2[[1]]] &], {m, -NN/2 + 1, NN/2}]}];

blochFunction[kindex_, bandindex_, x_] :=

Exp[I*eigenSYS[[kindex, 1]]*x]*

Sum[eigenSYS[[All, 2, bandindex]][[kindex, 2,

sumindex]], {sumindex, 1, (2*matrixSize + 1)}];

For[o = 1, o <= (2*matrixSize + 1), o++,

band[o] =

Transpose[

Join[{eigenSYS[[All, 1]]}, {eigenSYS[[All, 2, o]][[All, 1]]}]];

];

plotList = Table[band[t], {t, 1, (2*matrixSize + 1)}];

]

We are now discussing the projection of any initial wave function |Ψ0〉 onto
a distinct Bloch band n. The following ansatz is made, with |Ψn〉 being the
projected wave function

|Ψn〉 =

∫

BZ

dk 〈φn,k| |Ψ0〉 |φn,k〉 , (B.2)

where
|φn,k〉 =

∑

i

cn,i(k) |Ki + k〉 , (B.3)

is the Fourier expansion of the Bloch function in plane waves. The cn,i(k) are
the entries (labeled i) of the eigenvectors to the corresponding k-value of band
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n, resulting from the diagonalization of the matrix Eq. (2.17). We can write
the scalar product in Eq. (B.2) as

〈φn,k| |Ψ0〉 = βn(k) =
∑

i

c∗n,i(k) 〈Ki + k| |Ψ0〉 (B.4)

=
∑

i

c∗n,i(k)Ψ̃(Ki + k) , (B.5)

with Ψ̃(Ki + k) being the representation of Ψ0 in momentum space. The
projection in the end reads

Ψ̃n(k′) =

∫

BZ

dk βn(k) cn,i(k) , (B.6)

k′ = (Ki + k). The code in Mathematica is shown below. It uses a normal-
ized Gaussian of the form Eq. (4.2) as |Ψ0〉. The only input to the function
blochPRO[...] is the width σ of the Gaussian. In the code below the wave
function is projected onto the ground band.

blochPRO[sigma_] := Module[{widthPsi},

widthPsi = sigma;

(* coeff of matrix diagonalization *)

blochcoeff1 =

Flatten[Table[

Reverse[eigenSYS[[All, 2, 1, 2, i]]], {i, 1,

Length[eigenSYS[[1, 2, 1, 2]]]}]];

(* psi init in momentum space *)

psi0 = N[(2/Pi)^0.25*widthPsi^0.5*Exp[-widthPsi^2*kGrid^2]];

(* cut blochcoeff to have same length as psi0 *)

cut = (Length[blochcoeff1] - Length[psi0])/2;

blochcoeffcut1 =

blochcoeff1[[cut + 1 ;; Length[blochcoeff1] - cut]];

(* init psipro and coeff for psipro*)

psiPROk1 = Table[0, {Length[psi0]}];

b1 = Table[0, {Length[kTable]}];

indexmax = Floor[(Length[psi0]/Length[kTable] - 1)/2];

index =

Table[i, {i, -indexmax, indexmax}]*

Length[kTable] + (Length[psi0] - Length[kTable])/2;

For[counter = 1, counter <= Length[kTable], counter++,

b1[[counter]] =
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blochcoeffcut1[[index + counter]].psi0[[index + counter]];

psiPROk1[[index + counter]] =

b1[[counter]]*blochcoeffcut1[[index + counter]];

];

psiPROkend = psiPROk1;

(* transform psiPROk to real space *)

psiPROkendrot = RotateLeft[psiPROkend, Length[psiPROkend]/2 - 1];

psiPROxend =

Chop[RotateRight[Fourier[psiPROkendrot], Length[psiPROkend]/2 - 1]];

]

B.2 The Split Operator Method

The Split-Operator Method [27] is a technique for propagating a wave
function in time, i. e. to solve the time dependent Schrödinger equation

i~ ∂t Ψ(t) = Ĥ Ψ(t) = (T̂ + V̂ ) Ψ(t) . (B.7)

The main idea behind this technique is that the action of the quantum mechan-
ical position-operator is a multiplication in coordinate space and the action of
the quantum mechanical momentum operator is a multiplication in momen-
tum space. Switching between coordinate space and momentum space is done
by a Fast Fourier transform. Given an explicitly time independent Hamilto-
nian as in Eq. (B.7) the formal solution to the time dependent Schrödinger
equation is given by

Ψ(t) = Û(t, t0) Ψ(t0) (B.8)

where U is the time-evolution operator

Û(t, t0) = e−
i
~
Ĥ(t−t0). (B.9)

For one time step ∆t of the evolution, Eq. (B.8) becomes with Eq. (B.9)

Ψ(t+ ∆t) = e−
i
~
(T̂+V̂ )∆t Ψ(t) . (B.10)

We cannot write the exponential of the sums in Eq. (B.10) as a product of
exponentials because the kinetic energy operator T̂ ∼ p̂ does not commute
with the potential energy operator V̂ ∼ x̂.

But in oder to apply the above mentioned fast Fourier transform the ex-
ponential in (B.10) has to be split. We are doing this by applying the Baker-
Campbell-Hausdorff formula and in order to keep the error small, the Baker-
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Campbell-Hausdorff formula for three operators is considered

eÂeB̂eĈ = eÂ+B̂+Ĉ+ 1
2
[Â;B̂]+ 1

2
[Â;Ĉ]+ 1

2
[B̂;Ĉ]+ 1

12
[[Â;B̂];Â+B̂+Ĉ]+... . (B.11)

We are applying Eq. (B.11) to the exponential in (B.10) and arrive at

e−
i
~

Ĥ∆t = eT̃+Ṽ = eT̃ /2+Ṽ +T̃ /2 (B.12)

= eT̃ /2eṼ +T̃ /2e−1/2[T̃ /2;T̃ /2+Ṽ ]+O(∆t3) (B.13)

= eT̃ /2eṼ +T̃ /2e−1/2[T̃ /2;Ṽ ]+O(∆t3) (B.14)

= eT̃ /2eṼ eT̃ /2e−1/2[Ṽ ;T̃ /2]+O(∆t3)e−1/2[T̃ /2;Ṽ ]+O(∆t3) (B.15)

= eT̃ /2eṼ eT̃ /2eO(∆t3) , (B.16)

where we have substituted H̃ = − i
~
Ĥ∆t. The evolution over one time step of

the wave function now becomes

Ψ(t+ ∆t) = e−
i
~
T̂ /2∆te−

i
~
V̂ ∆te−

i
~
T̂ /2∆t Ψ(t) , (B.17)

with an error ∼ ∆t3. To keep the error of order ∆t3, we split the kinetic
energy part of the Hamiltonian in half. We could also have done this with
the potential energy operator, which was actually done in the code below. An
implementation of this technique in Mathematica is shown in the following
lines.

(* time evolution operator part for potential on x-grid *)

Vop[delt] = N[Exp[-0.5*I*delt*modelV/hbar]];

(* time evolution operator part for kinetic energy on k-grid *)

Kop[delt] = N[Exp[-0.5*I*delt*hbar*kGridROT*kGridROT]];

(* here psi is the wave packet on the x-Grid at time t *)

U[delt_]@psi_ :=

Chop[Vop[delt]*

RotateRight[

Fourier[Kop[

delt]*(Chop[

InverseFourier[RotateLeft[Vop[delt]*psi, n/2 - 1]]])],

n/2 - 1]];

(* propagation of psi forward in time over nt steps by applying U[delt] *)

psi[nt_, psi0_] := Nest[U[delt][#] &, psi0, nt];

Do[psi[nt] = psi[tout, psi[nt - tout]], {nt, tout, stepsmax, tout}];

During the time evolution of an initial wave packet, it could be possible that
the wave packet reaches the grid edge and gets reflected back into the system.
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This unphysical behavior can be prevented by multiplying the propagated
wave function each time step with a function that is equal to one over the part
of the grid where the evolution takes places and is smoothly going to zero at
the grid boundaries [34]. Another possibility is placing an absorbing potential
at the grid boundaries [35]. This potential has to be negative and imaginary.
The second approach is much faster than the first one because the absorbing
potential has to be add only once before the propagation. We use the potential
proposed in [35]

Vabs =

{

−i Vabs,0
x−x0

δx
for x0 < x ≤ x0 + δx

0 for x ≤ x0 .
(B.18)

Vabs,0 is the amplitude of the potential Vabs. x0 is the beginning of the potential
and δx is the width of the absorbing potential. Vabs,0 and δx can approximately
be determined by an estimation made in [35], but for perfect absorption one
has to try different values for the parameters.

B.3 The Split Operator Technique for the

nonlinear Schrödinger equation

The Gross-Pitaevskii equation is a nonlinear Schrödinger equation where
we can interpret the nonlinear term g |Ψ(x, t)|2 = Vg(x, t) as a second time
dependent potential

i ~ ∂t Ψ(x, t) =
(

T̂ + V̂ + g |Ψ(x, t)|2
)

Ψ(x, t) (B.19)

=
(

T̂ + V̂ + V̂g(x, t)
)

Ψ(x, t) (B.20)

= Ĥ(t) Ψ(x, t) . (B.21)

The time evolution operator for an evolution t = t′ = 0 → t = t′′ = ∆t is given
by

Ψ(∆t) = Û(∆t) Ψ(0) , (B.22)

and also fulfills a time dependent Schrödinger equation

i~ ∂tÛ = Ĥ(t) Û . (B.23)
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Integrating Eq. (B.23), we have to respect time ordering

Û(∆t) = 1 +

∞
∑

n=1

(

− i

~

)n ∫ ∆t

0

dt1

∫ t1

0

dt2 ...

∫ tn−1

0

dtn Ĥ(t1) Ĥ(t2) ... Ĥ(tn) .

(B.24)
We can rewriting the Hamiltonian Ĥ(t) = T̂ + Ṽ + Ṽg with the following
definitions

Ṽ = V̂ + V̂g(t) (B.25)

Ṽg(t) = V̂g(t) − V̂g(0) . (B.26)

Eq. (B.25) can now be plugged in Eq. (B.24). We are showing the first two
integration steps below

∫ ∆t

0

dt Ĥ(t) =

∫ ∆t

0

dt
(

T̂ + Ṽ + Ṽg(t)
)

(B.27)

=
(

T̂ + Ṽ
)

∆t+O(∆t2) (B.28)

∫ ∆t

0

dt1

∫ t1

0

dt2 Ĥ(t1) Ĥ(t2) =
∆t2

2

(

T̂ + Ṽ
)2

+O(∆t3) (B.29)

and in the end

Û(∆t) = 1 +
∞

∑

n=1

(

− i

~

)n
(

T̂ + Ṽ
)n ∆tn

n!
+O(∆t2) (B.30)

= e−
i
~
(T̂+Ṽ )∆t +O(∆t2) . (B.31)

To summarize, the Split-Operator Method for the Gross-Pitaevskii equation
has an error of O(∆t2) because the term g |Ψ(x, tn)|2 for every time step is
being taken to be the term at the beginning of the time step (i. e. neglecting
the term Ṽg(t)). An implementation in Mathematica is shown below.

psiListout = {psiI};

Vopf[psin_] := N[Exp[-0.5*I*delt*(modelV + NL*Abs[psin]^2)/hbar]];

Kopf = N[Exp[-0.5*I*delt*hbar*kGridROT*kGridROT]];

For[j = 1, j <= stepsmax, j++,

psix = Vopf[psie]*psie;

psik = Chop[InverseFourier[RotateLeft[psix, n/2 - 1]]];

psix = Chop[Vopf[psie]*RotateRight[Fourier[Kopf*psik], n/2 - 1]];

psie = psix;

Clear[psix];
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If[Mod[j, tout] == 0, psiListout = Append[psiListout, psie]];

];

In this piece of code psiI is the initial wave function. Vopf[psin_] denotes
the part of the time evolution operator containing the potential energy with
the potential modelV, the wave function from the time step before psin and
the strength of the nonlinearity NL. Kopf is the part of the time evolution
operator containing the kinetic energy. The time propagation of the initial
wave function is done in the for-loop. After every tout time steps, the wave
function is stored in a list called psiListout.
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