
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Noise and Oscillations in Simple Gene

Networks

A Dissertation Presented

by

David Lepzelter

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

December 2009



Stony Brook University

The Graduate School

David Lepzelter

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Jin Wang – Dissertation Advisor
Professor, Department of Physics and Astronomy

Peter Stephens – Chairperson of Defense
Professor, Department of Physics and Astronomy

Robert Shrock
Professor, Department of Physics and Astronomy

John Reinitz
Professor, Department of Applied Mathematics and Statistics

Stony Brook University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii



Abstract of the Dissertation

Noise and Oscillations in Simple Gene
Networks

by

David Lepzelter

Doctor of Philosophy

in

Physics

Stony Brook University

2009

Gene networks are a subject of increasingly intense study. Un-
derstanding the means by which organisms regulate their cells and
the basic production mechanisms of cells is of immense importance.
However, the means for studying these systems are still being de-
veloped. Monte Carlo simulations are common and accurate, but
tend to make answering important and overarching questions im-
practical. This thesis examines other ways to look at the solutions
to the stochastic equations which are involved in gene networks. It
examines the intrinsic noise in these networks, and the important
theme of coherent biological oscillation.
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Chapter 1

Introduction

1.1 Objective

The aim of the research project described in this doctoral thesis is to study the
roles of intrinsic noise and oscillation in specific genetic networks, and to ex-
plore simple methods for examining these networks. Care is taken in selecting
simple systems, with relatively few independent variables or parameters, in or-
der to characterize the still-complex behavior of those systems with reasonable
completeness.

Specifically, four systems are chosen for study: the Bicoid protein in Drosophila

melanogaster, the two-gene toggle switch, the three-gene repressilator, and the
single-gene self-repressor. These have all been studied previously, but not in
the ways or parameter regimes mentioned in this work.

1.2 Genetic Networks

Genetic networks are central to life as we currently understand it. Every
organism on Earth shares a general means of taking the information encoded
in DNA and using it to carry out the processes it needs to perform in order
to live. These processes are extremely diverse; they include everything from
the basic breakdown of glucose for energy to cell reproduction to even more
complex behavior like neuron firing. All of these processes depend to some
degree on the external environment, but there can be no question that the
role of genes and the proteins they encode is vital to every one.

Many of the mechanisms for these kinds of functions involve complex net-
works of interacting proteins and genes. Current research contains a great deal
of data on individual genes, but often the overall function of these genes in
a cell, through those networks, is poorly understood. The basic processes by
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which genes and proteins interact are known. In general, the enzyme RNA
polymerase synthesizes mRNA from genes, a process called transcription. Ri-
bosomes then synthesize proteins from the mRNA, a step called translation.
Some proteins can then bind to regions of genes called promoters in order
to either increase or decrease the rates of mRNA synthesis. While the ba-
sic interactions seem simple, complex behavior is quite possible even without
additional considerations; a small network of interacting genes and proteins
can create a wide range of interesting and useful behavior, and an even wider
range of behavior which can be harmful to an organism.

Modeling genetic networks has been a focus of a significant amount of
research. Traditionally, researchers have used chemical kinetic equations to
represent the relevant interactions. However, while conventional chemical ki-
netic equations work well under bulk conditions, they do not always give ac-
curate results in the cell. Large statistical fluctuations can be caused by the
relatively small number of molecules involved (often hundreds or thousands);
these fluctuations are referred to as “intrinsic noise.” [2–8].

This noise can sometimes cause surprising behaviors. There are several
means by which one can study intrinsic noise, but by far the most useful
involve the master equation formulation of chemical dynamics.

1.3 Master Equations

Master equation formulations are built on a simple set of ideas. The prob-
ability of n molecules of a given type existing is referred to as P (n). This
probability changes in time in ways which account for different processes that
may occur: for instance, one of the molecules (e.g., a protein) in the system
may be degraded, or another may be synthesized. If the rate of degradation
is k and the rate of synthesis is g, this leads to a master equation of the form

dP (n)

dt
= g (P (n − 1) − P (n)) + k ((n + 1)P (n + 1) − nP (n)) . (1.1)

Noise, in this case, is simply the possibility that, in a given system, the n
of the system is significantly different from its expected (mean) value, < n >=
∑

n nP (n). It is important to note the “Master equation” actually represents
an infinite number of equations, one for each possible value of n from 0 to
∞. Even so, at this point the system is quite uncomplicated and can in fact
be solved analytically. However, if the genetic state is considered (whether
the gene is synthesizing at the maximum rate or not, “on” or “off”), the least
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complicated version of the equations is given by

dPon(n)

dt
= g (Pon(n − 1) − Pon(n)) + k ((n + 1)Pon(n + 1) − nPon(n)) , (1.2)

dPoff(n)

dt
= g (Poff(n − 1) − Poff(n)) + k ((n + 1)Poff(n + 1) − nPoff(n)) . (1.3)

doubling the complication of the system even without consideration of how the
gene state switches from “on” to “off” or vice versa. The simplest switching
is still solvable analytically, though this can be a difficult problem. It quickly
becomes intractable, however, when one considers the possibility of proteins
binding to their own genes’ promoters (except in very specific cases, e.g. the
monomer self-repressor [9]) or multiple kinds of proteins interacting with each
others’ genes.

To this problem, there are two possible answers: numerical solutions or
approximations (or both). Numerical solutions are relatively common, with
stochastic Monte Carlo simulations being especially prevalent partly because
the Master equations already tend to assume processes are Markov. Approxi-
mations are somewhat less common unless one considers the use of bulk chemi-
cal equations instead of master equation formulations. Both methods are used
in this dissertation.

1.4 Specific Systems

One of the systems we examine in this work requires little approximation and
can be solved analytically. For the other three systems, we use a set of approxi-
mations to simplify the mathematics to a point where Monte Carlo simulations
are no longer necessary for solutions. This is particularly important as explo-
rations of all three of these systems involve extensive parameter searches, very
calculation-intensive even without Monte Carlo simulation and almost pro-
hibitively so with such simulation. The last system, however, is also examined
using Monte Carlo methods, and the similarities and differences between the
two methods is discussed briefly.

The first of the four systems selected for study, Bicoid, involves an an-
alytical solution for the statistical distribution (the most complete means of
representing intrinsic noise) of protein number in a spatially non-homogeneous
region. Noise in Bicoid has been heavily studied because its effects in the sys-
tem are so small as to seem anomalous, given the observed fluctuations. It
is also a useful study because theoretical spatially-dependent noise calcula-
tions (crucial to understanding genetic systems with significant spatial non-
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homogeneity) are still in their infancy.
We analyze the second system, the toggle switch, numerically using a few

assumptions and approximations regarding the basic form of the statistical
distributions of proteins involved. The toggle switch is slightly more complex
than Bicoid, involving two genes which mutually repress each other. It is
known as a simple, usefully bistable system which stores a value for a specific
choice made by a cell (e.g., live or die). This is the first system for which we
explore the effects of a wide range of parameters on system behavior.

The third system, the repressilator, we examine in terms of oscillation in
that system using the same kind of approximations and assumptions used in
the toggle switch calculations. This is the largest system we study, with three
genes, and is a representation of oscillation, a kind of behavior that organisms
use as clocks. In the chapter devoted to the repressilator, we discuss the effects
of noise on oscillation and other aspects of that oscillation.

We explore the fourth system, the self-repressor, numerically using aver-
ages in the same way that the toggle switch and repressilator are examined,
and using stochastic simulations. The self-repressor is a common theme in
regulatory genes, and in spite of its apparent simplicity it is not yet fully un-
derstood. In our study of it, we consider the roles of noise, oscillation, and
cooperative binding of proteins.

4



Chapter 2

Bicoid

2.1 Introduction

The first of the systems we examine is Drosophila melanogaster, an excellent
example of a system in which noise is important to an organism1.

D. melanogaster is a common organism for genetic and developmental bi-
ology for several reasons. It is easy to perform experiments on, and a large
amount of background knowledge exists on it. The geometry of the embryo,
roughly ellipsoidal with the anterior-posterior axis being significantly longer
than the other two axes, is simple and easily accounted for mathematically.
Additionally, until about two hours into its development as an embyro, the
organism lacks distinct cells; each embryo has a large number of nuclei, but
there are no cell membranes to block the diffusion of proteins from one nucleus
to another. This last piece of information makes D. melanogaster ideal for re-
fining ideas of diffusion-related spatial pattern formation, and the associated
noise, in an embryo.

Of the proteins and genes in the embryo, a few stand out for having large
effects on development. One of these is the Bicoid protein. It is useful to
observe for four main reasons. First, it seems to have a direct regulatory effect
on many developmental genes [11, 12]. Second, its production is independent
of the presence or absence of other zygotic proteins. Third, its average con-
centration level at any given spatial point is essentially constant in time for
much of the blastoderm stage. Fourth, its concentration and effects on other
proteins are very obviously subject to statistical fluctuations, which make the
use of stochastics absolutely necessary for a realistic understanding of the sys-

1The data and ideas from this chapter, and much of the language in this chapter, were
originally co-authored with Jin Wang. Reproduced in part with permission from [10]. Copy-
right 2008 American Physical Society.
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tem [1, 13]. Specifically, the internal noise of the system, the variability due
to finite numbers of proteins, has caused significant debate on how the embryo
can so accurately determine the spatial location of the sudden jump in the
concentration of a protein, called Hunchback, which is dependent on Bicoid
concentration. The Hunchback gradient, in turn, is an important regulator of
other zygotic proteins, and its spatial precision has been a matter of significant
research [1, 13].

These aspects of the protein have inspired numerical calculations using
implementations of the chemical master equation for the system [13]. Such
calculations have often been in one spatial dimension, in part because there is
an easily recognizable gradient in the anterior-posterior direction which has a
definite effect on development. The dorsal-ventral axis, in contrast, has a much
smaller Bicoid gradient, and therefore Bicoid’s direct effect on dorsal-ventral
development is less significant than its anterior-posterior effects.

Even these numerical calculations need some assumptions, however. We
will show in this chapter that the same simple assumptions which make the
problem calculable numerically or using field theory (as in [14]) also make an
exact and straightforward analytic solution possible for the Bicoid probability
distribution in one spatial dimension. We also offer arguments as to why the
same methods should work in other geometries. This is more than simply a
continuation of a trend away from the bulk average concentration calculations
done in the past, though it is that as well; even with an exact solution already
known from [14], this analysis is important because it significantly clarifies
our understanding of the system and similar systems. It offers a simple global
characterization of the system, as opposed to local approaches or field theoretic
characterizations.

The basic assumptions of our approach involve the three processes which
govern the protein’s behavior. First, production of Bicoid (which is highly
localized in the anterior of the embryo) is assumed to be stochastic in nature.
Second, movement of the protein through the embryo is assumed to behave ac-
cording to traditional (random-walk-type) stochastic diffusion. Third, Bicoid
degradation is assumed to be a stochastic event, i.e. through a decay reaction

Bcd
k−→ ∅.

These three assumptions lead to a spatial dependent chemical master equa-
tion, which is a complete description of the probabilities involved in the system
assuming no other effects. The importance of the chemical master equation to
a gene-protein network can be compared to that of the Schrödinger equation for
an atom: it forms the fundamental basis for further detailed characterization.
While the nonlinear chemical rate equations provide quantitative description
of the cellular networks on the average level showing complex behavior, the
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probabilistic description obeys the linear master equation. So the determin-
istic kinetics can be chaotic but the corresponding probabilistic description
can be quite regular. While the chemical kinetics gives reasonable descrip-
tion in the bulk, the probabilistic description provides the foundation for the
mesoscopic intra- (or, in the case of this chapter, inter-) cellular network. The
chemical kinetics give the deterministic trajectories with probability one. The
probabilistic description provides a distribution of the protein concentrations.
In other words, knowing the probability distribution, one knows the weights
of individual states in protein concentration space. It is in this sense we can
call it a probabilistic landscape in protein concentration space.

Landscape concepts have been introduced to the biology community in the
areas of molecular and developmental biology [15] and population dynamics
[16, 17]. The landscape is quantified in the areas of protein dynamics [18] and
protein folding [19] while the potential energy landscape is known a priori with
quasi equilibrium assumptions. For the non-equilibrium cellular networks, the
potential landscape is associated with the potential free energy of the sys-
tem mapped out over possible states of the system. Though it is not known
a priori, one can obtain it by finding the probabilistic distribution through
solving the master equation. A generalized potential U corresponding to the
probabilistic description P for the non-equilibrium networks can be defined as
U = − ln P in analogy with the Boltzmann relationship in equilibrium sta-
tistical mechanics [20–27]. Once the landscape can be quantified this way, it
can give a global characterization of the network, providing the weight dis-
tribution in the protein concentration space and quantifying the importance
of each state (in terms of weight). The stability, robustness and function of
the network can be now studied in a global and physical way from landscape
perspectives [20–27].

2.2 Master Equation

When the concentration has spatial dependence such as the developmental
process, the probability distribution in protein concentration space becomes a
probabilistic functional of protein concentrations which themselves also depend
on space. It is in that sense a statistical probabilistic field theory representation
(field being the protein concentrations which depend on space). Therefore by
solving the probabilistic functional, we can map out the spatial dependent
landscape of the cellular network. This is crucial for unraveling the origin of
stability, robustness, and function of spatially-dependent cellular networks.

It should be noted that one complicating factor generally not included in
master equation calculations is external noise, which can represent anything
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from environmental temperature fluctuations to diffusion from outside the em-
bryo, and is not explicitly accounted for in this model. This chemical master
equation is most easily expressed in terms of a vector, n, whose components
n = (n0, n∆x, n2∆x . . .) = ({nx}) correspond to the number of Bicoid proteins
at evenly spaced spatial positions x = 0, ∆x, 2∆x, . . . (which each represent
a finite amount of space ∆x assumed to be evenly mixed), with ∆x constant
and essentially arbitrary. The equation is [28, 29]

dP (n)

dt
=

g
(

P (n − 0̂) − P (n)
)

+k
∑

x ((nx + 1)P (n + x̂) − nxP (n))
+D

∑

xy ((nx+1)P (n+x̂−ŷ)−nxP (n)) ,
(2.1)

where P (n) is the probability that number and position of proteins is described
exactly by n. g is the rate of protein generation, 0̂ is a unit vector in the 0
space (representing a single protein at the origin, spatial point 0), and the term
multiplying g represents the process of a protein being created at the origin.
k is the rate of degradation, x̂ represents a single protein at point x, and the
term multiplying k represents the protein decay at any spatial position. D
is the finite-volume diffusion rate, and the term multiplying it gives diffusion
from each spatial point to its neighbors. The sums over x are over all space
x = 0, ∆x, 2∆x, . . ., and over y are all spatial neighbors of x (y = x ± ∆x).

2.3 Ansatz

The next step in this process would be to find a time independent steady-
state solution, dP (n)

dt
= 0 for all n. It should be noted that the deterministic

form of this problem can be easily solved; 0 = ∂C
∂t

= D ∂2C
∂x2 + gδ(x) − kC

yields C(x) = (g/
√

kD)e−x
√

k/D. This corresponds to the reaction diffusion
equation and its associated solution, often used in bulk studies. However, the
uncertainties in concentration due to the finite number of molecules can only
be found by solving the master equation. While the master equation itself
does not immediately suggest a solution, the assumptions made do strongly
suggest the use of Green’s function techniques often encountered in physics and
chemistry. Each individual protein has no interactions of any kind with any
other protein; its creation, diffusion, and decay are all completely independent
of any other effects. Therefore, we propose an ansatz in a format slightly
different from that of the master equation,

P =
∞

∑

n=0

e−g/k(g/k)n

n!

n
∏

m=1

G(xm), (2.2)
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where n is the total number of proteins present in the system, m is a represen-
tation of each protein in the system, and G(xm) is actually a multidimensional
generating function describing the chance that protein m is at the spatial point
xm. One can understand the probability expression above as the decomposi-
tion of the generation functions in Poisson space.

In order to prove the validity of the ansatz, we must first match its form
more closely with the notation used in the master equation. Let us consider
the spatial point x. For any given total number of proteins n, there are n
proteins each with probability distribution G. Let Gx be the discrete version
of G(x). Then for a given n, the probability of nx proteins existing at point x

should be P (nx) =

(

n
nx

)

(Gx)
nx .

Combining this with the simple Poisson probability of n proteins existing,
we find

P (n) =

all space
∏

x

e−gGx/k(gGx/k)nx

nx!
. (2.3)

We note that, while we implicitly used a vector n which began at the
spatial point 0, the solution takes the form of Eq. 2.3 for other geometries as
well. We also note that the form of the solution for the probability of Bicoid
concentration P (n) is simply that of a Poisson distribution with average value
gGx/k for each point in space, without spatial correlations. This is suggested,
but not explored in detail, by a solution to a different problem in [30]. Others
(e.g. [14]) state a Poisson solution, but we believe that this approach offers a
useful contribution to the understanding of the problem because it is relatively
simple and straightforward.

Given the form of the ansatz, we will define the Poisson distribution for the

point x, Px(nx) = e−gGx/k(gGx/k)nx

nx!
, and note that Px(nx+1) = e−gGx/k(gGx/k)(nx+1)

(nx+1)!
=

gGx/k
nx+1

Px(nx).
Then inserting the ansatz into the master equation,

dP (n)

dt
=









g
(

n0

gG0/k
− 1

)

+k
∑

x ((gGx/k) − nx)

+D
∑

xy

(

(ny
Gx

Gy
) − nx

)









space
∏

x′

Px′(nx′).

Using
∑

x Gx = 1, and rearranging a sum,

dP (n)

dt
=

[

kn0

G0
− g + k g

k
− k

∑

x nx

+D
∑

xy

(

(nx
Gy

Gx
) − nx

)

]

space
∏

x′

Px′(nx′).

9



Again, all space in this geometry is x = 0, ∆x, 2∆x, . . ., and the neighbors
x are y = x ± ∆x, except at x = 0 where y can only be ∆x. Therefore

dP (n)

dt
=











kn0

G0
− kn0 + Dn0

(

G∆x

G0
− 1

)

−k
∑∞

x=1 nx

[

1 + D
k

(

Gx+∆x

Gx

+Gx−∆x

Gx
− 2

)]











∞
∏

x′=0

Px′(nx′). (2.4)

Since we are interested in the steady state solution, we solve for dP (n)
dt

= 0.
As nx can in theory be any finite number, to ensure that the right-hand side
of Eq. 2.4 is 0 we must ensure that the coefficients of each nx are 0.

k

G0

− k + D

(

G∆x

G0

− 1

)

= 0.

−k + D

(

Gx+∆x

Gx

+
Gx−∆x

Gx

− 2

)

= 0, x > 0.

Defining for convenience z ≡
(

1 + k
2D

−
√

k2

4D2 + k
D

)

, the solution,

G0 = 1 − z,

Gx = zGx−∆x = zx/∆x(1 − z) = (1 − z)eln(z)x/∆x,

is simple. Since the mean of the distribution should be given by gGx/k, it
is reassuring to note that it corresponds to a decaying exponential function
(ln z < 0), the same form expected from both experiment and non-stochastic
theory. It should be noted that this does not correspond exactly to the ex-

pected e−x
√

k/D; this is because the definition of D is not precisely the same for
finite-volume spaces, and because within each space the solution is assumed
to be well-mixed. However, both of these issues can be avoided by using small
enough distances between spatial points.

Substituting Gx into our formulation of P (n), we obtain the final analytical
expression for the probability:

P (n) =

all space
∏

x

e−gzx/∆x(1−z)/k(gzx/∆x(1 − z)/k)nx

nx!
. (2.5)

We note that, if this form is used in the original chemical master equation,
it does in fact give dP

dt
= 0, and therefore the ansatz is the correct and exact

analytical solution to the steady- state problem.
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Figure 2.1: Calculation of expected distribution versus data, courtesy of Dr.
Thomas Gregor, from an embryo. Error bars include intrinsic Poisson noise
from proteins, photon counting noise, both of which are calculated from first
principles, and a small constant gaussian noise intended to account for focal
plane alignment. Errors from nuclear identification are not included. This fit
gives χ2/dof= 1.26.

2.4 Experimental Data

Both the mean values and the noise given by this model, which decay expo-
nentially from A to P, seem to match current experimental data (see Figs.
2.1, 2.2), with some caveats regarding the effective diffusion constant [1]. In
both figures, the first 20% of the embryo is assumed to be part of a diffuse
source of unknown local concentration and is therefore not considered part of
the overall Green function fit. The main portion of Fig.2.1 has a line with pre-
dicted values, and two more with predicted uncertainties from both intrinsic
and experimental noise.

The inset shows probability distributions with only intrinsic (non-experimental)
noise for nuclei at 47% and 49% embryo length. In spite of significant overlap in
the probability distributions of Bicoid concentrations, the embryo is generally
capable of distinguishing on which side of the 48% embryo length boundary
they fall. While the mechanism of such precision is not explored here, it is use-
ful to know that the minimum reasonable noise, that of a Poisson distribution,
can be considered correct and exact given the basic assumptions mentioned
previously, and also fits with the experimentally observed noise.

These statistical fluctuations, given the Poisson form of the solution, are
easy to calculate: σ =

√

gGx/k =
√

geln(z)x/∆x(1 − z)/k. We see that, since
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Figure 2.2: (Color online) Calculated noise from Fig. 2.1; dotted blue line
shows intrinsic noise only, while solid red line shows both intrinsic and pre-
dicted experimental noise. Inset shows the predicted total experimental stan-
dard deviation divided by the mean, with dotted blue and solid red lines having
the same meaning. Both solid lines follow roughly the trends as in [1], though
without errors from nuclear identification they are somewhat smaller than the
real experimental uncertainties.

ln z < 0, the size of the fluctuation decays from A to P (clearly shown in
Fig.2.2). Adding expected experimental noise from photon counting and focal
plane alignment gives a larger (and no longer purely Poisson) noise. The inset
shows fractional uncertainty, σ/C, where C is the number of Bicoid molecules,
and the trend of increasing total (experimental plus intrinsic) fractional un-
certainty from A to P agrees with experiment.

It should be noted that, even if later and even more detailed experiments
should find that other distributions prove more realistic, the examined model
should give valuable insight into the actual mechanisms in D. melanogaster:
non-Poisson generation, non-monomer decay, or some other important process
not previously mentioned would be vital in forming the shape of the distribu-
tion.

2.5 Discussion

While the precise mathematics have involved a one-dimensional problem with
a source exactly at one end, it would not be difficult to prove the validity
of the same kind of solution with a different geometry. Another boundary
condition, a moved or spread-out source, and an additional dimension or two

12



should make it less easy to find the solution for Gx by hand, but the problem is
not difficult with a computer. In any case, the validity of the general solution,
with a Poisson distribution at every point in space, can be applied in any
situation for which there are particles which diffuse, decay, and have one or
multiple Markovian (Poisson-type) sources.

It important that, even though diffusion relates the concentration at one
point in space with a concentration at another, it does not cause spatial correla-
tions in this system. This is an important result because, while experimenters
and theorists have always assumed Poisson-type intrinsic noise was the mini-
mum possible, additional intrinsic noise and correlations have not previously
been ruled out [13]. In this system, they do not exist because each protein’s
existence and location are independent of every other protein’s existence and
location. Spatial correlations may exist in cases where protein generation is
non-Poisson, protein decay is non-monomer, or spatial transport does not have
the traditional ∇2C form. Of these cases, this chapter’s methods should be
most easily generalized to non-Poisson protein generation.

Now we turn to the discussion of spatial landscape, a different way to view
the probability distributions involved. We use generalized potential landscape
U = − ln P to relate with the steady state probabilistic functional obtained
by the exact solution of the spatial dependent master equation above. In
Figure 2.3, we show the landscape in concentration and space. We can see
from the bottom panel that the shape of the landscape at each spatial point
is like a funnel with the bottom of lowest potential corresponding to the peak
of the probabilistic distribution at that location. This is also clear from the
two-dimensional representations of the potential versus protein number shown
above the main graph at 20%, 50%, and 80% egg length. The widths of the
funnels are measured by the variances in potential at each spatial locations.
A funneled landscape implies that the network is stable and robust. In this
way, it can perform its biological function effectively and reliably. As we can
see the funneled landscape becomes narrower from anterior to posterior. This
implies varying stability and robustness distributed along spatial locations.

In summary, we used a relatively common model of protein production,
diffusion, and degradation, to solve exactly and analytically for the stochastic
distribution of the Bicoid protein in Drosophila melanogaster. The probabilis-
tic solution is a Poisson distribution at each point in space, with the mean
of the Poisson distribution decaying exponentially away from the source, and
matches current experimental data well. The intrinsic fluctuations, noise due
to a finite number of molecules in the system and which do not exist in the bulk,
decrease away from the source at a slower rate than the mean. We also dis-
cussed how to uncover the underlying spatial landscape from the probabilistic
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Figure 2.3: Potential versus number of proteins over space. The main graph
shows the complete figure, in which each point in space (percent egg length)
has its own potential energy function. Three of these are shown explicitly
above the main graph, at 20, 50, and 80 percent egg length.
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distribution. The landscape provides a global and physical foundation of quan-
titatively addressing the critical issues of stability, robustness and function of
the spatial dependent cellular networks. The methodology used here can be
easily generalized to more dimensions and different boundary conditions, and
can be applied to any stochastic system with similar creation, diffusion, and
decay processes.
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Chapter 3

Toggle Switch

3.1 Introduction

Though we have begun to understand many things about genetic networks,
there are many more unknowns1. In many cases, we still lack knowledge of how
specific genes function in the presence of regulating genes and proteins, and
how interactions of many genes can produce sometimes non-intuitive results.
It is accepted that gene switches turning on and off control certain proteins’
production, and that these protein products in turn act on genetic switches.
The two processes often create a complicated network with many-body inter-
actions and feedback loops. This complication makes the system difficult to
study, but also sometimes provides surprising and useful behavior. Addition-
ally, intrinsic noise in the systems can create both difficulties and new behavior
in gene network patterns.

Complete and exact solutions to these problems are severely limited by
system size in both number of types of proteins and number of each type of
protein. To gain an understanding of a complicated gene network within the
limits of current computing power, an efficient and accurate approximation
scheme is necessary.

One such scheme is the Hartree mean field approximation, which signifi-
cantly reduces the system’s effective dimensionality. This scheme been applied
to the toggle switch, in which two genes mutually repress each other, to find
the steady state probabilities [32, 33].

This chapter has three aims. First, we explore the Hartree approximation
and the moment equations that can be derived using it. Second, we examine

1The data and ideas from this chapter, and much of the language in this chapter, were
originally co-authored with Keun-Young Kim and Jin Wang. Reproduced in part with
permission from [31]. Copyright 2007 American Chemical Society.
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the dynamics of the single molecule toggle switch and explore the steady-
state properties as the long time limits of the dynamic evolution equations.
Third, we study the statistical fluctuations, noise evolution and time scale
to equilibrium using our developed time-dependent formalisms for the single
molecule toggle switch [34].

3.2 Method and Materials

A discussion of the biological background, assumptions, and methods used in
this and future chapters follows.

A “repressor” is a protein that binds to a gene to decrease the rate of
transcription. In the toggle switch system, there are two genes, each of which
produces via transcription a protein which acts as a repressor on the other
gene. “Activators,” which have the opposite effect, exist in many systems but
are not relevant to the toggle switch, repressilator, or self-repressor, and so
will be ignored here.

The situation is further simplified by the fact that only a finite number of
proteins can bind to a given gene. In the toggle switch, both of the repressions
are dimer (by which we mean that two proteins are involved; in the sense of
the total number of molecules involved, the reaction is actually tri-molecular),
and no additional repression is possible. Therefore, each of the two genes can
be represented as having an “on” state, with no proteins bound to it, and an
“off” state, with two proteins from the opposite gene bound to it. Binding is
assumed to be highly cooperative, so intermediate states with single proteins
bound to genes are assumed to be very short-lived and are ignored. The
described reactions are given by

Oon
A + 2B

hA−⇀↽−
fA

Ooff
A (3.1)

Oon
B + 2A

hB−⇀↽−
fB

Ooff
B (3.2)

in which A and B represent the proteins that genes A and B, respectively,
produce. Oon

A is equivalent to, in other common notation, DNAA, and Ooff
A is

DNAA·2B. Therefore, Oon
A is gene A without repressors bound to its regulation

area, or in the “on” state; Ooff
A is gene A with two B proteins bound to it, or

in the “off” state. Factors of 2 mean that the repression is a dimer reaction.
The constant h represents the rate of binding, and f is the rate of unbinding.

In this chapter and the next, we also ignore the role of mRNA in the
system, instead combining the transcription and translation processes into a
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BA

Figure 3.1: Illustration of the toggle switch. The flat-headed arrows represent
repression via protein binding.

single stochastic process. Protein production can then be represented by

Oon
A +

(

amino acids/
protein source

)

gA1−−→ Oon
A + bAA (3.3)

Ooff
A +

(

amino acids/
protein source

)

gA0−−→ Ooff
A + bAA. (3.4)

where g1A is the rate of generation when the gene is “on,” g0A is the rate of
generation when the gene is “off,” and bA is the number of A proteins produced
in a single “burst.” The amino acid protein source is a general collection of
basic materials for producing proteins which is assumed to be sufficient for
production and is not explicitly modelled. Also, the system is symmetric, so
the two equations with A → B are included as well. In all the studies done
in this paper, bA = bB = 1. Larger (and sometimes variable) burst sizes can
exist and are not equivalent to a simple rescaling of g.

Lastly, both kinds of proteins can degrade:

A
kA−→

(

degradation byproducts/
protein sink

)

(3.5)

B
kB−→

(

degradation byproducts/
protein sink

)

(3.6)

in which the protein sink, often represented in the literature by ∅, is a collection
of byproducts of protein degradation, which are again not explicitly modeled.
kA is the decay rate of the A protein, which is often set to 1 to define a useful
time scale, especially when the system has kA = kB. In all, the system is
traditionally represented by Fig. 3.1, and is a useful model of several systems,
including the bacteriophage λ[34, 35]. It is, in the chemical sense, an open
driven system, as described in [36].
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From these reactions, one can write down the master equation:

dP1,1(nA, nB)

dt
=

−hAnB(nB − 1)P1,1(nA, nB)
−hB(nA(nA − 1)P1,1(nA, nB)
+fAP0,1(nA, nB) + fBP1,0(nA, nB)
+(kA(nA + 1)P1,1(nA + 1, nB) + kB(nB + 1)P1,1(nA, nB + 1)
−kA(nA)P1,1(nA, nB) − kB(nB)P1,1(na, nB))
+gA1(P1,1(nA − 1, nB) − P1,1(nA, nB))
+gB1(P1,1(nA, nB − 1) − P1,1(nA, nB))

(3.7)

dP0,1(nA, nB)

dt
=

hAnB(nB − 1)P1,1(nA, nB)
−hB(nA(nA − 1)P0,1(nA, nB)
+ − fAP0,1(nA, nB) + fBP0,0(nA, nB)
+(kA(nA + 1)P0,1(nA + 1, nB) + kB(nB + 1)P0,1(nA, nB + 1)
−kA(nA)P0,1(nA, nB) − kB(nB)P0,1(na, nB))
+gA0(P0,1(nA − 1, nB) − P0,1(nA, nB))
+gB1(P0,1(nA, nB − 1) − P0,1(nA, nB))

(3.8)

dP1,0(nA, nB)

dt
=

−hAnB(nB − 1)P1,0(nA, nB)
+hB(nA(nA − 1)P1,1(nA, nB)
+fAP0,0(nA, nB) − fBP1,0(nA, nB)
+(kA(nA + 1)P1,0(nA + 1, nB) + kB(nB + 1)P1,0(nA, nB + 1)
−kA(nA)P1,0(nA, nB) − kB(nB)P1,0(na, nB))
+gA1(P1,0(nA − 1, nB) − P1,0(nA, nB))
+gB0(P1,0(nA, nB − 1) − P1,0(nA, nB))

(3.9)

dP0,0(nA, nB)

dt
=

hAnB(nB − 1)P1,0(nA, nB)
+hB(nA(nA − 1)P0,1(nA, nB)
−fAP0,0(nA, nB) + fBP0,0(nA, nB)
+(kA(nA + 1)P0,0(nA + 1, nB) + kB(nB + 1)P0,0(nA, nB + 1)
−kA(nA)P0,0(nA, nB) − kB(nB)P0,0(na, nB))
+gA0(P0,0(nA − 1, nB) − P0,0(nA, nB))
+gB0(P0,0(nA, nB − 1) − P0,0(nA, nB))

(3.10)

Some choices of notation would indicate that h
2

should be used instead of h in
these equations, but as this is a simple redefinition we simply note the current
choice of notation.

Such a set of equations, already difficult to deal with, are made more so by
the fact that each one is doubly infinite; each P1,1(nA, nB), for instance, is an
equation for a probability of nA A proteins and nB B proteins; both nA and nB

range from 0 to ∞. One can reasonably cut the range off at some maximum
values NA and NB, but even then the number of degrees of freedom in the
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system scales as 4 · NA · NB. However, it is possible to find a smaller, more
manageable set of equations, whose degrees of freedom scale as 4·(NA+N+B).
A Hartree-type approximation, inspired by the same approximations which
give electron wavefunctions in multi-electron atoms, considers the probability
distribution for each type of protein separate from that of the other. Each
type of protein has a mean-field type of effect on the other. It gives

dPA1(nA)

dt
=

−hAnB(nB − 1)PA1(nA) + fAPA0(nA)
+kA(nA + 1)PA1(nA + 1) − kAnAPA1(nA)
+gA1PA1(nA − 1) − gA1PA1(nA)

(3.11)

dPA0(nA)

dt
=

hAnB(nB − 1)PA1(nA) − fAPA0(nA)
+kA(nA + 1)PA0(nA + 1) − kAnAPA0(nA)
+gA0PA1(nA − 1) − gA0PA1(nA)

(3.12)

with two additional equations for which A ↔ B. In this notation, PA1(nA) is
the probability of gene A being in the “on” state and nA A proteins existing,
and PA0(nA) is the probability of gene A being in the “off” state with nA A
proteins.

These equations, while much simpler than the master equation without
approximation, are still difficult to use. Therefore, instead of attempting to
solve them exactly, we use moment equations, given by

∑

nA

(nA)m dPA1(nA)

dt
=

∑

nA

(nA)m

















−hAnB(nB − 1)PA1(nA)
+fAPA0(nA)
+kA(nA + 1)PA1(nA + 1)
−kAnAPA1(nA)
+gA1PA1(nA − 1)
−gA1PA1(nA)

















(3.13)

∑

nA

(nA)m dPA0(nA)

dt
=

∑

nA

(nA)m

















hAnB(nB − 1)PA1(nA)
−fAPA0(nA)
+kA(nA + 1)PA0(nA + 1)
−kAnAPA0(nA)
+gA0PA0(nA − 1)
−gA0PA0(nA)

















(3.14)
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which, with some rearrangement and shifting of terms in the sum, become

d < nm
A1 >

dt
=

−hA < nB(nB − 1) >< nm
A1 > +fA < nm

A0 >
+kA(< nA1(nA1 − 1)m − nm+1

A1 >)
+gA1(< (nA1 + 1)m − nm

A1 >)
(3.15)

d < nm
A0 >

dt
=

hA < nB(nB − 1) >< nm
A1 > −fA < nm

A0 >
+kA(< nA0(nA0 − 1)m − nm+1

A0 >)
+gA0(< (nA0 + 1)m − nm

A0 >)
(3.16)

where < nm
A1 >=

∑

nA
(nA)mPA1(nA) is essentially the probability that gene

A is “on” multiplied by the mth moment of the number of A proteins in the
system. < nB(nB−1) > is, to be more precise, < n2

B0−nB0 > + < n2
B1−nB1 >,

and again there are two identical equations with A ↔ B. Note that these
moments can be added linearly, e.g. < nx

A1 +ny
A1 >=< nx

A1 > + < ny
A1 >, and

that because in general PA1(nA) 6= PA0(nA), both the probabilities of being in
“on” and “off” states and the moments for the “on” and “off” states should
not necessarily have any simple relation to each other.

In order to single out the most easily understood parameters, and in order
to compare our results more easily to other results, it can be convenient to
define the following:

CA1 =< n0
A1 >, the probability of gene A being in the “on” state.

CA0 =< n0
A0 >, the probability of gene A being in the “off” state.

XA1 =
<n1

A1>

CA1
, the average number of A proteins if the gene is in the “on”

state.

XA0 =
<n1

A0>

CA0
, the average number of A proteins if the gene is in the “off”

state.

ω = f
k
, a measure of the relative speed of protein unbinding from

the gene.ω >> 1 is called the “adiabatic limit.”

Xeq = f
h
, the ratio of the rates of protein unbinding from and

binding to the gene. It is called the equilibrium constant.
Xad = g1+g0

2k
, the rate of protein synthesis relative to protein self-

degradation, called the adiabatic parameter. It generally
encourages quick binding.

Of course, the same definitions can be used for the B gene and proteins as
well.

In certain situations, moment equations can couple infinitely; e.g., the
first moment can depend on the second, which depends on the third, and so
on. Such a problem makes it necessary to make assumptions about higher-
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order moments, which in effect becomes an ansatz for the system. In fact,
this system has been studied using a Poisson ansatz[32]. However, because
the toggle switch has no self-interaction, there is no need for an ansatz, and
the moment equations can be solved without further approximations using a
simple computer program. We did use the Poisson ansatz for a small number
of calculations, but only for the sake of comparison between our own Poisson
data and others or for comparing our normal moment equations to Poisson
ansatz results. For the calculations, we wrote C programs for solving the
moment equations, on a Dell Linux desktop which was more than adequate
for the calculations.

3.3 Results and Discussions

The steady state equations based on the Poisson ansatz were derived previously
[32] and the steady state moment equations were studied [33]. We solved the
time-dependent dynamic equations directly and take the long time limit for the
steady state solutions. Fig.3.2, corresponding to a figure given previously by
[33], shows the probability that genes are in the active state, as a function of the
adiabatic parameter Xad = g1+g0

2k
, where gA1 = gB1 = g1 and so forth. Exact

solutions of the moment equations are compared with the Poisson Ansatz
solutions for a single molecule symmetric switch. We see that, in the toggle
switch, there is a transition from mono-stability, when the synthesis rate of
proteins is low, to bistability, when the synthesis rate is high. This result is
consistent with previous studies [32, 33]. It can be explained in a relatively
simple way. For low-g systems, there is very little repression, because even at
maximum production the hn(n − 1) term is small. Both genes are therefore
almost always in the “on” state, so the system naturally has a single steady
state, with both genes “on.” At higher synthesis rates, it is possible for either
gene to synthesize enough proteins to consistently repress the other, leaving
the repressing gene “on” and the repressed gene “off.” Since two choices exist
for which gene is “on,” the system should be expected to have two stable
states.

In the previous section, we discussed the Poisson ansatz. Qualitatively,
we expect that the Poisson ansatz should be a good approximation for each
protein in “on” and “off” states separately in the limit ω = f

k
<< 1, where the

“birth-death term” is dominant, because in this regime each gene state should
be able to produce proteins almost independently of mixing effects (genes
switching from on to off or vice versa). Cases in which genes are permanently
in the “on” or “off” state have perfect Poisson distributions; small effects
from mixing should produce slight perturbations into the Poisson distributions.
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Figure 3.2: Probability C that genes are in the active state as a function of
Xad = (g1 + g0)/2k for a symmetric switch. Exact moment equation solutions
are compared with Poisson ansatz solutions, for a single symmetric switch,
Xeq = f/h = 1000, and ω = f/k = 0.5.
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fA(= fB) CA1 CB1 XA1 XA0 XB1 XB0 FA1 FA0 FB1 FB0

500 0.962 0.013 193 192 6.26 6.26 1.01 1.01 1.00 1.00
0.962 0.013 193 192 6.26 6.26

50 0.962 0.013 193 189 6.28 6.26 1.12 1.12 1.01 1.00
0.962 0.013 193 189 6.29 6.26

5 0.962 0.013 194 163 6.50 6.25 1.80 5.79 1.06 1.05
0.962 0.013 194 163 6.51 6.26

0.5 0.960 0.013 197 72.5 8.61 6.20 1.98 44.6 1.95 1.45
0.962 0.013 198 72.5 8.63 6.21

0.05 0.940 0.013 199 19.0 25.8 5.99 1.26 42.8 11.3 3.68
0.958 0.013 200 19.0 25.5 5.98

0.005 0.884 0.014 200 10.9 75.3 5.35 1.05 9.14 10.8 3.62
0.905 0.014 200 10.9 74.8 5.35

0.0005 0.859 0.014 200 10.1 98.6 5.05 1.01 1.89 2.47 1.42
0.863 0.014 200 10.1 96.8 5.05

Table 3.1: Asymmetric toggle switch with high synthesis rate: kA = kB =
1,gA1 = 200, gB1 = 100, gA0 = 10, gB0 = 5, hA = fA

500
, hB = fB

250
F (XA1)

means Fano factor of (XA1) etc. The first line of each fA is based on moments
equation, and the second line is based on Poisson ansatz.

This approximation should be best in the most probable gene state because
the probabilities being introduced into the state via mixing should be small
compared to the overall probabilities. Since we set kA = kB = 1, ω = fA =
fB = f determines adiabaticity. Small f implies that the unbinding rate of
the regulatory protein to DNA is slow compared with the degradation rate of
protein synthesis.

Table 3.1 is the long time limit steady state results of a toggle switch.
The first line for each f represents the results of the moment equation, using
Eq(3.15), and the second line for each f shows the results from the Poisson
ansatz. The last four columns refer to F , the Fano factor, which is defined as
variance
mean

and would be equal to 1 if the distributions were exactly Poisson. Given
the chosen initial conditions, with gene A activated and gene B repressed, the
long time limit of the system will be that gene A is activated and gene B is
repressed. It is the dominant distribution in each case that we expect to see
the best agreement with the Poisson assumption. Therefore, in this parameter
regime, we expect CA1 and CB0 to be large, XA1 and XB0 to be close to gA1

and gB0 respectively, and FA1 and FB0 to be close to 1.
Indeed, in the extreme non-adiabatic limit (ω = f = 0.0005), this appears
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to be the case. FA1 and FB0 are very close to 1, and the values of XA1 and
XB0 agree with both the values of gA1 and gB0 and the values of XA1 and XB0

obtained from the Poisson ansatz. This strongly supports our interpretation of
a basically Poisson distribution with a very small perturbative addition. FA0

and FB1 are larger but not extremely large, which suggests that the Poisson
ansatz is somewhat but not entirely unrealistic in these two individual states;
the distribution is slightly more spread out, likely with a fat tail on the high-
n end. In a less mathematical sense, this should simply mean that in these
states we should expect large differences between the mean value and any given
single-molecule experiment result, even though the average value should still
be the same. To the extent that the ansatz is not a good one, however, the
overall effect on the system appears to be small; moment equation values for
the C and X values for both proteins in both genetic states still agree with
those acquired from the Poisson ansatz. Note, though, that the overall Fano
factor for the combined probability distribution, which we get by adding the
“on” and “off” states together, is not necessarily even close to 1 for either
gene. In fact, it should be much larger, because the system is close to two
Poisson distributions with different means added linearly.

As the adiabaticity increases with increasing f(= ω), agreement with the
Poisson assumption grows worse for both proteins in both genetic states. At
these values of ω, there is a large spread in the probability distributions, and
they may have multiple peaks. Physically, this means that even if the “on” or
“off” state could be isolated experimentally, the mean values calculated may
not be representative of what we expect to measure in any individual single-
molecule experiment. The increased spread in these distributions generally
suggests that the means of the distributions are very poorly suited to describing
the possible behaviors of the system, and that stochastic treatment is especially
necessary for taking care of the fluctuations at these values of ω.

However, at still larger values of ω, above ω ∼ 10, the system becomes
Poisson-like again. Also, these distributions have more similar means (XA1 ≈
XA0, XB1 ≈ XB0). Such behavior is explained by the fact that high bind-
ing and unbinding rates mix the “on” and “off” gene states so much that
only a single scale can emerge from them, and gene A’s protein production
(for instance) is essentially a single Poisson process with a generation rate of
CA1gA1 + CA0gA0.

Using the same parameters as in Table 3.1 but decreasing the protein syn-
thesis rates (gA and gB) gives Table 3.2. Smaller generation rates mean that
genes which are already almost completely “on” should produce fewer pro-
teins, which therefore should repress their target genes considerably less. This
certainly occurs for the B gene, for which the fractional increase in CB1 from
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fA(= fB) CA1 CB1 XA1 XA0 XB1 XB0 FA1 FA0 FB1 FB0

500 0.968 0.249 38.8 38.7 5.75 5.74 1.00 1.00 1.01 1.01
0.968 0.249 38.8 38.7 5.75 5.74

50 0.968 0.249 38.8 38.1 5.81 5.72 1.02 1.03 1.06 1.06
0.968 0.249 38.8 38.1 5.81 5.72

5 0.965 0.250 38.9 32.7 6.42 5.52 1.15 1.95 1.52 1.54
0.968 0.249 39.0 32.8 6.41 5.51

0.5 0.947 0.251 39.3 14.4 10.5 4.18 1.26 9.71 3.15 4.02
0.961 0.249 39.5 14.5 10.5 4.16

0.05 0.916 0.255 39.8 3.80 17.7 1.79 1.08 9.35 2.00 4.67
0.925 0.254 39.9 3.80 17.7 1.79

0.005 0.908 0.256 40.0 2.19 19.7 1.09 1.01 2.63 1.13 1.80
0.909 0.256 40.0 2.19 19.7 1.09

0.0005 0.907 0.256 40.0 2.02 20.0 1.01 1.00 1.18 1.01 1.09
0.907 0.256 40.0 2.02 20.0 1.01

Table 3.2: Asymmetric toggle switch with low synthesis rate: kA = kB =
1,gA1 = 40, gB1 = 20, gA0 = 2, gB0 = 1, hA = fA

500
, hB = fB

250
. The first line of

each fA is based on moments equation, and the second line is based on Poisson
ansatz.

Table 3.1 to Table 3.2 is enormous. However, with the increased B gene
activity from Table 3.1 to Table 3.2 can come more B proteins, in spite of a
decreased overall generation rate. Therefore, the effect of decreased generation
rates on protein B’s repression target, CA1, is small and not always positive.
In all cases, FB0 significantly increases because there is a larger non-Poisson
probability distribution with which the B off-state mixes.

This does not yet explain the general decrease in Fano factors from Table
3.1 to Table 3.2 due to decreased synthesis, which occurs in the A protein
and possibly in the B protein as well (though at best the effect is somewhat
masked in the B proteins by the previously explained increase). The reasons
for this may be similar to those mentioned for the bifurcation in Fig. 3.2;
smaller synthesis rates should mean less likelihood of binding, and therefore
less switching between “on” and “off” states. Less switching should imply less
perturbation to essentially Poisson-like distributions, as described before.

From the time-dependent solution, we can estimate the time to reach equi-
librium. Fig. 3.3 shows the time-evolution of the protein numbers for a toggle
switch. The horizontal axis is time, and the time scale is defined by k = 1.
Such a parameter choice makes the other time scales easier to put into context;
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Figure 3.3: Time evolution of protein number X (toggle switch) for different
unbinding rate of protein to DNA at given protein synthesis rate g, protein
degradation rate k and binding rate of protein to DNA h (time is in units of
the inverse of rate coefficients): kA = kB = 1,gA1 = 200, gB1 = 100, gA0 = 10,
gB0 = 5, hA = fA

500
, hB = fB

250
. (a) fA = 5 (b) fA = 0.5 (c) fA = 0.05.

smaller binding and unbinding rates mean that any individual protein is un-
likely to bind before it decays, while larger binding and unbinding rates would
mean each protein would likely be bound many times before it decays. We
observe that it takes a longer time to reach the steady state in the small bind-
ing and unbinding rate limit, which would be expected from non-stochastic
calculations as well. The binding and unbinding in this case is essentially a
rate-limiting step because it is so slow compared to decay and synthesis, the
only other processes involved in bringing the system to the steady state.

Fig. 3.4 is the time evolution of the Fano factors. This shows that the
system is often more noisy with larger statistical fluctuations during the course
to a steady state than at the steady state, which agrees with results from [6].
After peaking, the statistical fluctuations tend to decay with time to reach the
steady state value. Smaller Fano factors might imply more stability, which
would explain why the Fano factors would tend to jump immediately after
the system is changed and gradually decrease as it moved towards stability.
Furthermore, the Fano factors in time show the same trends as shown in Tables
3.1 and 3.2: both proteins in both genetic states have smaller Fano factors at
ω = 5 (Fig. 3.4(a)), and the dominant “on” state Fano factor (A,on) peaks
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Figure 3.4: Time evolution of the Fano factor(toggle switch) F for different
unbinding rate of protein to DNA at given protein synthesis rate g, protein
degradation rate k and binding rate of protein to DNA h (time is in units of
the inverse of rate coefficients): kA = kB = 1,gA1 = 200, gB1 = 100, gA0 = 10,
gB0 = 5, hA = fA

500
, hB = fB

250
. (a) fA = 5 (b) fA = 0.5 (c) fA = 0.05.

at ω ≈ 0.5 while the dominant “off” state Fano factor (B,off) peaks closer to
ω ≈ 0.05.

Fig. 3.5 is a different approach to Fano factors, this time exploring the
steady state values in the symmetric toggle switch (fA = fB = f , etc.) for a
large range of ω, Xeq = h/f , and Xad = g1+g0

2
. For the sake of avoiding very

small numbers and precision problems in division, we chose g0 = g1

20
instead of

g0 = 0, which would otherwise be more convenient for overall comparison with
[33]. In (a) and (b) we give the Fano factor only for the off-state: (a) shows Xeq

versus ω with Xad held constant at 50, and (b) shows Xad versus ω with Xeq

held constant at 1000. As in Table 3.1, around ω = 1 and somewhat lower the
Fano factor grows significantly, suggesting significantly non-Poisson behavior.
At high ω, however, it is approximately 1 because of the high rate of mixing
between on- and off-states. Also, at very low ω, the system starts having
some properties of adiabatiticity again; each genetic state (“on” or “off”)
can now behave almost independently of the other, as Poisson distributions
with their respective generation rates, but with very slight perturbations from
mixing. Note that low Xad generally reduces the Fano factor, since fewer
proteins imply less binding (and hence both that the “on” state dominates
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Figure 3.5: Fano factors in a symmetric toggle switch (hA = hB = h, etc). (a)
and (b) show the off-state: (a) shows Xeq versus ω and (b) shows Xad versus
ω. (c) and (d) show the total Fano factor: (c) shows Xeq versus ω and (d)
shows Xad versus ω.
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and that there is less switching), which means smaller perturbations to each
individual state’s Poisson behavior. Very low Xeq, however, yields greatly
increased binding, which should mean that the state is almost always in the
“off” state. Therefore, as Xeq decreases the “off” state tends towards Poisson-
like behavior with Fano factor near 1. However, even with a very small Xeq,
some mixing is inevitable because unbinding is a constant process. (c) and
(d) show the total Fano factor, obtained by combining the on- and off-states:
(c) shows Xeq versus ω and (d) shows Xad versus ω. Again, at high ω rapid
switching gives essentially a single Poisson distribution, and therefore a Fano
factor of approximately 1. The factor again increases near ω = 1, but does not
decrease at low ω. This is because, while both on and off states are close to
Poisson distributions individually, when added together they become a two-
peaked system which has significant non-Poisson behaviors. Low Xad again
tends to decrease the Fano factor, since less binding means the “on” state
dominates, and it is Poisson-like for reasons explained previously. Decreasing
Xeq again means that the “off” state dominates more and therefore decreases
the Fano factor.

In Fig. 3.6 (a) and (b), a characteristic time value given by
∫

t|C(t) −
C(∞)|dt is plotted with ω versus Xeq and Xad respectively, also in the sym-
metric toggle switch. There are two notable behaviors in the graphs: the
overall trend and the spiked line running through the middle. The overall
trend is that slow binding and unbinding lead to longer times to equilibrium,
which is unsurprising given that even non-stochastic equations would respond
in the same way due to the rate limiting effect of slow switching. The extremely
high peaks in lines through the two graphs correspond well to the boundaries
suggested by the crude phase diagrams in Fig. 3.6 (c) and (d), designed to
distinguish unimodal probability distributions from multimodal distributions
based on the behavior of moment equations. Though the methods we used
were poorly suited to reconstructing actual probability distributions, the rel-
evant transition line in the ω versus Xad graph also seems to agree with the
line between bistable and other kinds of systems using very similar parame-
ters in [37]. We therefore suggest that these extremely unusual values are due
to a second relaxation time scale, as demonstrated by Fig. 3.7, for which we
propose an interpretation.

Our suggested explanation is based on Fig. 3.8 and the known phenomenon
of transition between probability peaks in the bistable case. We assume the
system begins with a probability distribution centered at point A. The shorter
time scale, labelled (1), would be the time necessary to enter the probability
peak centered at B, one of the two stable points of the bistable system. The
longer time scale, (2), would be the time necessary for transition of half of
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Figure 3.6: (a) and (b) give a measure of the amount of time the system
takes to settle into its final state, with ω versus Xeq and Xad respectively. (c)
and (d) are crude phase diagrams based on the structure of the solutions and
the possibility of obtaining a second (generally identical but mirror-imaged)
solution.
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Figure 3.7: The same system (ω = 0.044, Xad = 100, Xeq = 103), near the
phase transition demonstrated in Fig. 3.6, shown with two different time scales.
If the apparent long-time limit from (a) were assumed to be the steady state,
this would be incorrect, because there is a second and slower settling process
shown in (b).

the probability in that peak to the other, at point C. This effect should be
observable when the peaks are close to each other, but when the two states B
and C are far enough away it should die off (time scale 2 approaches infinity
and is not observable). When the two states have completely separated, the
Hartree approximation’s limitations should make it unobservable. This whould
explain the bistable-monostable line; the bistable-tristable line, considerably
wider than the bistable-monostable line, may actually be a slightly distorted
view of the entire tristable area, with the second time scale representing the
transition time between peaks at g0A, g0B and either g0A, g1B or g1A, g0B.

Alternatively, one may interpret the idea through the language of trajecto-
ries. Any individual system would follow the probability distributions shown
in Fig. 3.8; it would start at A, quickly work its way to B, and possibly even-
tually work its way to C. In order to pass from B to C, it would first have
to enter the lower-probability states between the two peaks, which essentially
should serve as a bottleneck (larger distances between B and C would serve
as long bottlenecks, and lower probabilities between B and C would give thin
bottlenecks). When B and C are close to each other, the bottleneck should be
both short and wide, giving a smaller time scale; when they are far apart, the
bottleneck should be longer and thinner, giving a larger time scale. As B and
C separate more, they should eventually approach infinity and become unob-
servable. While this does not truly account for all possible dynamics of the
system (which should include a flux within probability peaks, even at steady
state), we suggest it may be a reasonable approximate explanation.

The single molecule toggle switch shows bistability, and we can discuss the
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Figure 3.8: One-dimensional representation of a bistable system, with stable
points B and C. If the system begins at A, the time necessary to go to peak
B, labelled (1), should be small; the time necessary to go from B to C, (2),
should be larger.

transition between two attractors. Gardner et al constructed a synthetic tog-
gle switch and showed bi-stability [34], where they used chemical or thermal
inducers. We can take into account this experimental inducer effect by consid-
ering the reaction probabilities as a function of time. The experimental set-up
resembles step functions and we can implement it by using two hyperbolic
tangent functions. Fig. 3.9 is one example of the transition between two fixed
points. The first gray shading indicates the inducer effect on gene A (increased
unbinding of protein B from gene A), and the second indicates the inducing
on gene B (increased unbinding of protein A). We set the initial conditions
such that, by t = 100, the system is at the one fixed point where protein B
is abundant. If we induce production of protein A at t = 100, a transition
to the other fixed point (A dominant) occurs. When we change the binding
back to its previous value at t = 150, the state shifts position but still keeps
A dominant. This means that there are (at least) two stable states which can
exist in the same physical system. The same thing happens when we apply a
second temporary induction, increasing unbinding of protein A from gene B
and therefore increasing protein B production, from t = 250 to t = 300. The
graph of interval (100 ≤ t ≤ 400) in Fig.3.9 qualitatively explains the ear-
lier experimental findings (Figure 5 in [34]). This shows clearly the intrinsic
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Figure 3.9: The transition between two fixed points (the number of proteins X
versus time, and the Fano factor versus time) at given unbinding rate of protein
to DNA, protein synthesis rate g, protein degradation rate k and binding
rate of protein to DNA h (time is in units of the inverse of rate coefficients):
kA = kB = 1, gA0 = bB0 = 0, gA1 = 150, gB1 = 100, fA = 0.2, or = 0.8(100 ≤
t ≤ 150), fB = 0.2, or = 0.8(250 ≤ t ≤ 300), hA = 0.2

500
, hB = 0.2

1000
.

bi-stability of the toggle switch.

3.4 Conclusions

We studied the toggle switch gene regulatory network using the master equa-
tion. The Hartree approximation of the master equation makes it unneces-
sary to solve the linear coupled differential equations with a huge number
(exponential) of state variables to nonlinear coupled differential equations,
replacing them with a small number (multiples) of parameters. Without self-
interactions, the moment equations may be used for more accurate solutions.

By exploring the intrinsic statistical fluctuations of the toggle switch due
to the finite of molecules in the cell, we provide a bridge to connect the theo-
retical investigations and single molecule measurements [38, 39]. Explicit time
dependent Fano factors describe noise evolution and show a noisy state when
the system is not in equilibrium.

Our studies of Fano factors showed two regimes in which the system was
well-approximated by Poisson distributions. In the adiabatic limit, when bind-
ing and unbinding are slow compared to decay, “on” and “off” states each
individually had Poisson- like distributions with different means, with small
perturbations due to mixing. In the opposite limit, switching occurs so quickly
that the two states are essentially interchangeable and Poisson.

We identify interesting effects on system time scales at the transition be-
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tween bistability and other kinds of stability. Specifically, at this transition a
second relaxation time scale becomes important and considerably longer than
other time scales for similar systems. While the shorter time scale can be as-
sociated with climbing to a nearby probability peak, the longer time scale may
be more related to the time necessary to transition from one probability peak
to another. This would mean that, near phase transitions, it may be difficult
to determine the exact value of the steady state observables such as protein
number. Further work will be necessary to examine the associated ideas more
closely.

We demonstrate time evolution dynamics in the toggle switch, and show
the effects of inducing switching between its bistable states. Probabilistic
switching between the two states is also of interest. One way to attack this
problem is to use an “effective potential.” [32, 40]. However, this is justi-
fied in some approximation limit and is not easily calculated in multi-variable
systems..
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Chapter 4

Repressilator

4.1 Introduction

Biological oscillation and its mechanisms have recently become a subject of
intense study by a number of experimental and theoretical groups1. Its study
is still in the early stages, and while the phenomenon itself is believed to be
of great importance, knowledge of mechanisms by which it can occur is quite
incomplete.

Oscillation is used in a number of biological systems, most notably in the
circadian rhythms responsible for keeping organisms’ biochemical processes in
line with the day-night schedule of the Earth. In addition to 24-hour clocks,
researchers have discovered genetic oscillators being used to determine timing
of ovulation, and other important systems of this type are likely given that
the tools for detailed study of the general phenomenon are still new. Malfunc-
tion of these oscillators is implicated in common conditions such as insomnia
or jetlag [42], and more serious conditions such as bipolar disorder [43, 44].
Understanding biological oscillation and conditions which may interfere with
it, then, are of great importance.

Repressilators, three-gene systems in which the genes cyclically repress
each other, are interesting oscillating networks that are potentially important
to synthetic biology[2, 4, 45, 46]. While undeniably artificial, they are easy
to understand. Fig. 4.1 shows the system, one of the first synthetic networks
shown to be capable of reliable oscillation behavior.

There are two aims of this chapter. The first is to show that the repressi-
lator can exhibit monostable, spiral and limit-cycle oscillating behavior. The

1The data and many ideas from this chapter, and some of the language in this chapter,
were originally co-authored with Keun-Young Kim and Jin Wang. Reproduced in part from
[41]. Copyright 2007 American Institute of Physics.
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BC

Figure 4.1: Network-style depiction of a repressilator, with three genes (A, B,
C) cyclically repressing each other.

second is to quantitatively characterize the intrinsic noise of the system, as
well as the correlations with order, amplitude and period of the repressilator
oscillations.

4.2 Methods

We now use the time-dependent Hartree approximation scheme demonstrated
in the previous chapter to reduce the dimensionality and solve the associated
master equations to follow the evolution dynamics of the repressilator.

Our model is based on the following biochemical reaction picture for this
gene network[4, 45]. Proteins of species A are synthesized from gene A and
degraded at certain rates (g and k respectively). The synthesis rate gA depends
on the state of the gene A. Proteins of species A can bind to gene C and repress
its synthesis of C species proteins. C proteins can bind to and repress gene
B. B proteins, in turn, can bind to and repress gene A. This forms a network
cycle (See Fig.4.1).

The corresponding Hartree-approximated master equation for the repres-
silator is then given by

dPA1

dt
=

−h
2
nB(nB − 1)PA1(nA) + fPA0(nA)

+k(nA + 1)PA1(nA + 1) − k(nA)PA1(nA) + gPA1(nA − 1) − gPA1(nA),
(4.1)

dPA0

dt
=

h
2
nB(nB − 1)PA1(nA) − fPA0(nA)

+k(nA + 1)PA0(nA + 1) − k(nA)PA0(nA),
(4.2)

with Equations 4.1 and 4.2 permuted cyclically (A → C and B → A, and
A → B and B → C).

With dimer protein repressors, the Poisson approximations reduce these
six sets of infinite equations to nine equations:

˙CA1 = −hACA1{CB1X
2
B1 + (1 − CB1)X

2
B0} + fA(1 − CA1) (4.3)
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˙XA1 = −fA
1 − CA1

CA1

(XA1 − XA0) + gA1 − kAXA1 (4.4)

˙XA0 = fA(XA1 − XA0) + gA0 − kAXA0 −
XA1 − XA0

1 − CA1

˙CA1 (4.5)

three equations (A → C,B → A) (4.6)

three equations (A → B,B → C) (4.7)

where we eliminated three variables by the probability conservation (Cα1 +
Cα0 = 1), and recollected terms.

We can also solve the corresponding moment equations exactly instead of
using the Poisson approximation.

d

dt
CA1 =

−hACA1(CB1(< n2
B1 > − < nB1 >)

+CB0(< n2
B0 > − < nB0 >)) + fACA0

, (4.8)

d

dt
(CA1 < nA1 >) =

gA1CA1 − kACA1 < nA1 >
−hACA1 < nA1 > (CB1(< n2

B1 > − < nB1 >)
+CB0(< n2

B0 > − < nB0 >)) + fACA0 < nA0 >
, (4.9)

d

dt
(CA0 < nA0 >) =

gA0CA0 − kACA0 < nA0 >
+hACA1 < nA1 > (CB1(< n2

B1 > − < nB1 >)
+CB0(< n2

B0 > − < nB0 >)) − fACA0 < nA0 >
,

(4.10)

d

dt
(CA1 < n2

A1 >) =

gA1CA1(2 < nA1 > +1)
+kACA1(−2 < n2

A1 > + < nA1 >)
−hACA1 < n2

A1 > (CB1(< n2
B1 > − < nB1 >)

+CB0(< n2
B0 > − < nB0 >)) + fACA0 < n2

A0 >

,

(4.11)

d

dt
(CA0 < n2

A0 >) =

gA0CA0(2 < nA0 > +1)
+kACA0(−2 < n2

A0 > + < nA0 >)
+hACA1 < n2

A1 > (CB1(< n2
B1 > − < nB1 >)

+CB0(< n2
B0 > − < nB0 >)) − fACA0 < n2

A0 >

(4.12)

five equations (A → C,B → A) (4.13)

five equations (A → B,B → C) (4.14)

The moment equations, Eq.(4.8)-Eq.(4.9), reduce to Eq(4.3)-Eq.(4.5), if we
assume Poisson relationships between the mean and the standard deviation of
numbers of proteins.
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4.3 Results and Discussion

We show that the repressilator exhibits mono-stable, spiral, and limit cycle
oscillating behavior, and we characterize quantitatively the statistical fluctu-
ations of the network.

Figure 4.2: Number of proteins X versus time, using the Poisson approx-
imation: k = 1, g0 = 0, h = f

500
, (a) stable node (g1 = 30, f = 0.1).

(b) stable spiral.(g1 = 100, f = 0.2). (c) limit cycle.(g1 = 300, f = 0.5).
< XA >= CA1XA1 + CA0XA0, etc.

Fig.4.2(a)-(c) show the time dependent mean number of proteins and the
probability of the three types of proteins produced by the corresponding three
genes with Poisson Ansatz. We can see that when the protein synthesis rate
and the unbinding rate of proteins from the gene are low relative to the protein
self-degradation rate, the system is mono-stable as shown in Fig. 4.2 (a). With
increased protein synthesis rate and unbinding rate, the system approaches its
mono-stable state in a spiral fashion, shown in Fig. 4.2 (b). A further increase
in the protein synthesis rate and the unbinding rate of proteins from the gene
results in limit cycle behavior, with each type of protein number oscillating
with a phase difference of 120 degrees to the others, as shown in Fig. 4.2 (c).
This is the repressilator behavior observed in experiments [4].

So far, we have used only the Poisson approximation. However, Poisson
distributions can only be truly accurate in systems which are in stable equi-
librium states. Since the repressilator is a dynamically fluctuating system, we
do not expect the Poisson approximation to be exact. Furthermore, statistical
fluctuations beyond those expected from the Poisson approximation can be
significant and need to be quantitatively addressed. Fig. 4.3, Fig. 4.4, and
Fig. 4.5 were made using moment equations with the same parameters as
Fig. 4.2, and show different period and amplitude from Fig. 4.2. We use the
Fano factor to describe quantitatively the statistical fluctuations beyond the
Poisson distribution.
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Figure 4.3: Time evolution of probability C, protein number X and Fano
factor F with small protein synthesis rate g and unbinding rate f relative to
self degradation rate k.

Figure 4.4: Time evolution of probability C, protein number X and Fano
factor F with medium protein synthesis rate g and unbinding rate f relative
to self degradation k rate.

Figure 4.5: Time evolution of probability C, protein number X and Fano
factor F with large protein synthesis rate g and unbinding rate f relative to
self degradation rate k
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We can see that the when the protein synthesis rate and the unbinding rate
of proteins from the genes are low, the system is again mono-stable (Fig. 4.3).
This is qualitatively similar to, but quantitatively different from, the results
of the Poisson approximation. The Fano factor is approximately 2 (close to
Poisson) in the “on” genetic state or 14 in the “off” state, as shown in Fig.
4.3(c).

As rates of protein synthesis and unbinding from the gene increase relative
to the protein degradation rate, the system again transforms into a spiral
approaching a mono-stable state, shown in Fig. 4.4. Again, however, while
qualitatively similar to the Poisson approximation results, this is quantitatively
different. The Fano factor, Fig. 4.4(c), is around 10 (“on”) to 30 (“off”),
meaning much larger statistical fluctuations than in the Poisson case.

When we further increase the rates of protein synthesis and unbinding
from the gene, the system again becomes oscillatory, as shown in Fig. 4.5.
There is a significant quantitative difference from Poisson approximation re-
sults, though again the behavior is qualitatively similar. Furthermore, the
Fano factor, Fig.4.5 (c), oscillates with an amplitude on the order of tens
with average around 40 (in the “on” genetic state) or 60 (in the “off” state).
This means that it has much larger fluctuations and is very different from the
Poisson distribution. The statistical distribution of the fluctuations in protein
concentrations, as characterized by the higher-order moments, are therefore
significant. This implies that the inherent distribution of protein concentra-
tions must decay much more slowly than Poisson exponential; it has a long,
or fat, tail.

The long tail of the distribution implies that, while large statistical fluc-
tuations may happen rarely, they make a significant difference to the system.
Such a phenomenon, called intermittency [47], can be seen as analogous to
earthquakes, in which small frequent events cause little damage, but rare large
earthquakes can cause a great deal of damage.

In Fig. 4.6(a), we plot the average protein concentrations versus the ratio
of the protein unbinding rate f to the self-degradation rate k, ω = f/k, and
the ratio of protein synthesis rate g to self degradation rate k, Xad = g/k. In
this graph, we keep the ratio of the protein unbinding rate f to the binding
rate h, Xeq = f/h, constant. We find that as ω and Xad increase, the average
protein number increases. When unbinding is significant (ω large), the genes
are less repressed; this promotes protein production. Higher synthesis rates
also enhance protein production, making the average protein concentration
higher.

In Fig. 4.6(b), we plot the average protein concentrations versus the ratio
of protein unbinding (to the gene) rate to self degradation rate ω = f/k and

41



Figure 4.6: a: Average protein numbers versus ratio of protein unbinding rate
f to self degradation rate k, ω, and ratio of protein synthesis rate g to self-
degradation rate k, Xad. b: Average protein numbers versus ratio of protein
unbinding rate f to self-degradation rate k, ω, and ratio of unbinding rate to
binding rate h, Xeq.

the ratio of unbinding to binding Xeq = f/h, keeping the ratio of protein
synthesis rate to self degradation rate, Xad = g/k, as constant. We find that
as ω and Xeq increase, the average protein number increases. When unbinding
is significant (ω large), the repression of the gene is less; this promotes the
protein production. When unbinding is more significant than the binding, the
repression through binding is less effective. This also enhances the protein
production. Therefore the average protein concentration is also higher.

In Fig. 4.7, we can see the interrelationships among order, statistical fluc-
tuations, amplitude and period of oscillations, versus ω and Xad, keeping Xeq

constant.
In Fig. 4.7(a) and (b), we can explore the phase diagram and the cor-

responding statistical fluctuations in the space of unbinding ω and protein
synthesis Xad. In the low ω and Xad region, the system tends to be mono-
stable (region III, deep blue). In the low unbinding ω and medium to high
protein synthesis Xad region (region II, light green), the system tends towards
spirals. We found that the corresponding averaged Fano factors of statistical
fluctuations of the protein numbers are high. In this region, the unbinding rate
is small, and the proteins suppressing the gene do not stop that suppression
quickly. Further, as suggested in the chapter on the toggle switch, at low ω
the protein distribution is more spread out and may even be bimodal, with the
mode at higher protein number corresponding to the unrepressed gene. Higher
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Figure 4.7: The relationships among order and stability, fluctuations, ampli-
tude and period of oscillations of the repressilators versus ω and Xad. a: Phase
diagram of oscillation (I, yellow), spiral (II, light green), and stable (III, deep
blue) dynamic behavior versus ω and Xad. b: Average Fano factors versus
ω and Xad. c: Amplitude of repressilator oscillations versus ω and Xad. d:
Period of repressilator oscillations versus ω and Xad.

protein numbers in the “on” state are more likely to cause repression sooner.
Therefore, the corresponding protein production rate is small, any change in
protein numbers can cause significant fluctuations due to the limited num-
ber of the proteins available (and the inherent noise one finds in a bimodal
system is added in cases of low ω). Enhancing the synthesis rate Xad of the
proteins can suppress more of the genes and therefore lead to more bimodal-
ity or less protein production. This can also enhance the fluctuation (As Xad

increases, the average fano factors increase). The network experiences large
fluctuations in this region. Monostable behavior emerges with less fluctuations
than spirals. Although the unbinding ω is small favoring large fluctuations,
the corresponding protein synthesis Xad is small favoring less suppression of
production. With small unbinding ω and medium to large Xad, spirals emerge
from large fluctuations. When unbinding ω increases, the average fano fac-
tors decrease. More significant unbinding will suppress genes less and produce
more proteins. The intrinsic fluctuations is smaller when the number of the
proteins is larger. The oscillatory repressilators emerge in this region with
medium ω and medium to large Xad.

In Fig. 4.7(c) and Fig. 4.7(d), we can explore the amplitude and period of
the repressilators in the space of unbinding ω and protein synthesis Xad. We
find that the amplitude increases as the unbinding ω increases. This is be-
cause unbinding leads to more protein production and less fluctuations. Also,
with less fluctuations, the amplitude of the oscillations can be larger without
destroying the coherence. The system can sustain a larger amplitude of oscil-
lations with less statistical fluctuations. When protein synthesis Xad increases,
the amplitude of oscillation increases because the number of proteins we would
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Figure 4.8: The relationships among order and stability, fluctuations, am-
plitude, and period of oscillations of repressilators versus the ratio of protein
unbinding rate f to self-degradation rate k, ω, and the ratio of protein unbind-
ing rate f to binding rate h, Xeq. a: Phase diagram of oscillation (I, yellow),
spiral (II, light green), and stable (III, deep blue) dynamic behavior versus ω
and Xeq . b: Average fluctuation Fano factor versus ω and Xeq. c: Ampli-
tude of repressilator oscillations versus ω and Xeq. d: Period of repressilator
oscillations versus ω and Xeq.

normally expect in the system is larger, and with no other considerations an
oscillation over some percentage of a larger number is a larger oscillation.

In Fig. 4.7(d), we see that the period of repressilators decreases as un-
binding ω increases. This is also because the less noise allows faster oscillation
with less probability of destroying coherence, and also because faster binding
and unbinding simply make one of the more important steps in the system
less time-intensive. As the protein synthesis Xad increases, the period slightly
decreases. With increased protein production, there are smaller relative fluc-
tuations and the period of oscillations can “afford” to be faster.

In Fig. 4.8, we can see the interrelationships among order, statistical fluctu-
ations, amplitude, and period of oscillations, in the space of the ratio of protein
unbinding to self-degradation, ω, and the ratio of unbinding to binding, Xeq,
keeping the ratio of protein synthesis to self degradation, Xad, constant.

In Fig. 4.8(a) and (b), we explore the phase diagram and the corresponding
statistical fluctuations in the space of unbinding relative to self-degradation ω
and unbinding relative to binding Xeq. In the very low ω region, the system
tends to be mono-stable (region III, deep blue). In the small ω and low to
high Xeq region (region II, light green), the system tends towards spirals. We
find that the average fano factors of the protein numbers are high. In this
region, the unbinding rate is small, so the system is likely represented by
two more or less distinct states as mentioned in the chapter on the toggle
switch. Smaller unbinding relative to binding Xeq can suppress the genes
more and therefore lead to less protein production, enhancing fluctuations
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(as Xeq decreases, average Fano factors increase). The network experiences
large fluctuations in this region, and both mono-stable and spiral behavior
emerge. When ω and Xeq increase, the average fano factors decrease. More
significant unbinding will cause more mixing between the “on” and “off” states,
decreasing the noise of the combined state. Again, the oscillatory repressilator
emerges in the region where statistical fluctuations are comparatively smaller
than the nearby mono-stable and spiral regions.

In Fig. 4.8(c) and (d), we examine the amplitude and period of the system
versus unbinding relative to protein degradation ω, and unbinding relative to
binding Xeq. We see that the amplitude increases as unbinding increases. This
is because unbinding leads to more protein production and less fluctuation.
Also, with less fluctuations, the amplitude of the oscillations can be larger
without destroying coherence. However, in both Fig. 4.7 and Fig. 4.8 we
note that in regions with very small fluctuation (Fano factor ∼ 1), there is
no oscillation; simple network topology and a lack of fluctuations are clearly
insufficient for oscillation.

In Fig. 4.8(d), we find that the period of repressilators decreases as un-
binding ω increases. This is also because smaller fluctuations allow more rapid
oscillations without destroying the coherence through errors. As the unbinding
relative to binding rate Xeq increases, the period decreases. As more unbind-
ing leads to more proteins produced, there are less fluctuations and period of
oscillations can “afford” to be a little faster.

4.4 Conclusions

We studied the repressilator gene network using the master equation formal-
ism with the Hartree approximation demonstrated in the previous chapter.
This system shows three kinds of distinct and important behavior: mono-
stability, spirals, and limit cycle oscillation. Explicit time-dependent Fano
factors describe noise evolution, and show large statistical fluctuations out of
equilibrium, implying that the protein distributions are very far from Poisson.
This is very relevant to the experimental studies of single molecule gene regu-
lation dynamics [38, 39] as well as experimental studies on synthetic networks
[2, 4]. We explored the phase space and the interrelationships among fluctu-
ations, order, amplitude and period of oscillations of the repressilators. We
found that repressilators follow ordered limit cycle orbits and are more likely
to appear in regions of low but not extremely low flucuation. The amplitude of
the repressilators increases as the suppression of the genes decreases and pro-
duction of proteins increases. Oscillation periods decrease as the suppression
of the genes decreases and protein production proteins increases.
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Chapter 5

Self-Repressor

5.1 Introduction

Repressilators are not the only genetic oscillators1. A number of mecha-
nisms can be used by organisms to give a reasonably coherent oscillation,
including self-repressors with maturation times or other explicit, deterministic
time delays (as opposed to chemical equation-type intermediate steps)[48–
51], combined repression and activation loops[52]; highly non-linear protein
degradation[53]; very large numbers (hundreds) of intermediate steps[54]; and
self-repressors whose production and gene repression involve diffusion through
the nuclear membrane[55, 56]. A self-activator with one stable and one semi-
stable state, and stochastic switching between the two, can cause what may be
called incoherent oscillation[57]. Additionally, certain kinds of self-repression
can cause behavior which is not coherent oscillation when one considers the
deterministic average protein and mRNA concentrations, but which still ap-
pear quite oscillatory and reasonably coherent when one considers any given
system’s stochastic trajectory through protein and mRNA concentration space
over time[58].

This last example is of particular interest because in part of its simplicity;
it is an uncomplicated system, easily modelled using straightforward Markov
chain Monte Carlo methods. (Deterministic time delays of the type t − τ,
the main method used to get a simple self-repressor to oscillate, require non-
Markov simulation can be difficult to justify or interpret.) There is, however,
another reason for interest in the work. The binding mechanism suggested
by the mathematics presented by McKane and Newman in [58] is in fact a
combination of multiple n-mer bindings of regulatory proteins to the gene,

1The data and ideas from this chapter, and much of the language in this chapter, have
been submitted for publication, co-authored with Haidong Feng and Jin Wang.
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where the primary n here depends on the parameter chosen and the average
number of proteins present in the system. While this in itself may be non-
physical, it inherently suggests that the number of bound proteins may be
able to change the system from non-oscillatory to oscillatory with noise to
(possibly) oscillatory even without noise.

We note that the simplest possible version of this last suggestion, a deter-
ministic model with mRNA and with n regulatory proteins binding directly
and instantaneously to the gene, cannot be oscillatory (though the stochas-
tic version of the system can be at least to some extent, and we explore this
briefly).

5.2 Methods

We performed both determinisic and stochastic calculations. The following
were constant for all calculations: the degradation rate of mRNA km = 1
(hence, τm = 1); the degradation rate of monomer protein kp = 1 (hence,
τp ≥ 1); the rates of gene binding and unbinding ω ≫ 1 (and so the system is
very adiabatic); the ratio of the n-mer dissolution constant f to the formation

constant h is f
h

=
(

g1gp

kmkp

)n

; the rate of n-mer dissolution f ≫ 1 in the simplest

case, Fig. 5.1, and f = 1 in all other calculations; the number of complete n-
mers which will cause the gene to be repressed by a factor of 1/e, Xeq = 10;
the protein synthesis rate from a single strand of mRNA gp = 3; and the
ratio of mRNA synthesis in the repressed versus the unrepressed gene state
g0 = g1/100. It should be noted that gp and Xeq can be rescaled in systems
without internal noise; only when the actual number becomes important, as
opposed to relative concentrations, do these quantities have any significant
effect other than a rescaling. It should also be noted that the ratio τp/τm is in
rough agreement with the average for this sort of gene in yeast [59].

Deterministic calculations (involving the average numbers of mRNA, pro-
teins, and protein aggregates) used the simple set of equations

dm

dt
= −kmm + g0Poff + g1Pon = −kmm + g0 +

g1 − g0

1 − c/Xeq

,

dp

dt
= −kpp + gpm − hnpn + fnc,

dc

dt
= hpn − fc,

where m is the number of mRNA molecules, p is the number of monomer
proteins, and c is the number of n-mer proteins in the system at time t. Simple
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modifications made additional intermediate steps possible (c becoming c1, n
becoming n1, additional terms in the last equation for the n2c1 → c2 step, the
extra equations for c2 in terms of c1 and c3, etc.).

As an aside, we should mention that we assume all binding steps involved
are fast compared to the other processes involved in the system, though binding
events are relatively rare, and binding is highly cooperative. Slower binding,
or binding that is less cooperative, can introduce very different elements to a
system, as shown by [60].

The authors used time-series data to determine the oscillatory nature of
the systems. A general, analytical solution to the linear stability analysis
of the system would be infeasible, and even numerical solutions alone could
have glossed over complex behavior less useful to an organism than regular
oscillation. However, individual points in different regions identified by the
time-series data have been checked numerically using linear stability analysis.

Stochastic calculations were straightforward, using the following equations:

RmRNA synthesis = g0 +
g1 − g0

1 − c/Xeq

,

RmRNA degradation = kmm,

Rprotein synthesis = gpm,

Rmonomer protein degradation = kpp.

In the calculations for Fig. 5.1 (in which binding to the gene is coupled with
n-mer formation), we used

c =
h

f
p(p − 1) . . . (p − n + 1).

For other stochastic calculations, in which the proteins bind to each other
before binding to the gene, we used instead

Rn−mer formation = hp(p − 1) . . . (p − n + 1),

Rn−mer breaking = fc.

A time-step dt was then calculated using these rates, ensuring that events
generally occurred one at a time by using dt ∼ 0.01/

√
∑

R2. (This is subtly
different from the traditional Gillespie simulation in that multiple events were
in theory allowed, if quite unlikely; however, the difference is very small and
may reasonably be considered to be an advantage of our algorithm.) For
practicality’s sake, at very high levels of synthesis, multiple synthesis and
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Figure 5.1: a: Stochastic calculation of coherence in a system which has
mRNA and proteins cooperatively binding to the gene, with coherence given
by 2

P

Θ(dφ)
P |dφ| − 1 where dφ is the difference in angle in mRNA-protein space.

b: Stochastic calculation of the standard deviation of the period distribution
divided by its mean. Both colormaps are on the same scale as Fig. 5.3.

decay events were allowed and occurred in the background of other events,
but were kept to at most a 0.01% mean change in the number of molecules.

Each process was then treated as a Poisson process using the same dt, with

the probability of a events of type b occurring being e−Rbdt(Rbdt)a

a!
.

The programs used were written in C, and run using Fedora 10 Linux on
a Dell desktop computer.

5.3 Results

We begin with the stochastic system described first, in which binding to the
gene is coupled with n-mer formation. (This could be either because the
binding to the gene is itself cooperative or because it is very fast once the
n-mer is formed.) In the described regime, whose deterministic solutions yield
at best decaying oscillation, we now explore the possibility of noise-induced
oscillation. We note that the system in this case is between truly oscillatory
and simply two-state with reasonably frequent switching. Simple two-state
switching would lead to a “period distribution” (time between maxima) with
a normalized standard deviation of that period σt

t̄
of 1√

2
. Fig. 5.1(b) shows σt

t̄
,

and Fig. 5.1(a) shows the coherence (generalized from the definition used by
[46]). Both the coherence and σt

t̄
strongly imply that increased cooperativity

yields a steadier oscillatory behavior, but that in the regions explored there
is no coherent oscillation (which would require a coherence close to 1 and a
value of σt

t̄
significantly less than 1).

So far, the only pieces of the puzzle considered have been multimer binding
of proteins to genes, mRNA, and noise. We now add the final piece, the possi-
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Figure 5.2: Left graph: oscillation due to an intermediate step with a co-
operativity of 16 and noise. Right graph: period distribution for the same
system.

bility of proteins binding together before they bind to the gene. The number
of steps involved here keeps oscillation from occurring at a cooperativity of 1,
but increased n causes oscillatory behavior when combined with the rest of
the system.

Specifically, Fig. 5.2 shows a stochastic system with n = 16 and the dis-
tribution of periods, defined here as time between local maxima in protein
number which are at least 0.4 · τmRNA (in order to remove less significant
fluctuations from consideration). This system is clearly oscillatory, with a
reasonably sharp period distribution.

It should be noted that 16 is at best a marginally reasonable value for
cooperativity in a simple genetic system. However, it is clear now that sim-
ple intermediate steps can interact with cooperativity, and between them can
produce oscillations in which neither is the primary factor in the behavior.
Furthermore, examining the parameter space in more detail, we find telling
behavior in both deterministic and stochastic cases. Fig. 5.3a shows the de-
terministic phase diagram of the system, made using time-series calculations.
Region I is oscillatory, region II displays decaying oscillation, and region III
is non-oscillatory. High cooperativity and synthesis rate are both clearly nec-
essary for this; also, it should be noted that the presence of oscillation at all
means that the additional intermediate step as compared with the system from
Fig. 5.1 is necessary for oscillation.

In Fig. 5.3b, we see, in the same region, a graph of the coherence. This
corresponds well with the deterministic calculations, as we would expect coher-
ence in a truly oscillatory system. Fig. 5.3c shows σt

t̄
, which again corresponds

well, although not perfectly; some loss of specificity in period at very high
cooperativity and synthesis implies that the oscillation may be imperfect or
require that other parameters be very specific at some level. However, the
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Figure 5.3: a: Deterministic calculation of oscillatory features in a system
with mRNA, cooperative binding of proteins to each other, and a separate
step binding to the gene; region I is oscillatory, region II has decaying oscil-
lations, and region III is non-oscillatory. Due to difficulties distinguishing II
from III, there is some overlap. b: Stochastic calculation of coherence, given
by 2

P

Θ(dφ)
P

|dφ| − 1 where dφ is the difference in angle in mRNA-protein space.
c: Stochastic calculation of the standard deviation of the period distribution
divided by its mean.

increase in σt

t̄
at these points is slight.

From these figures, it is apparent that coherence is possible with higher
rates of synthesis, and that there is a tendency towards higher coherence with
higher cooperativity. Additionally, we note that in the stochastic case there
is no jump in coherence or σt

t̄
as we would find if the system exhibited the

phase-transition behavior from Fig. 5.3a; in the stochastic case, the line be-
tween oscillatory and non-oscillatory is blurred. It is important to note that
noise alone is not sufficient for reliable or even semi-reliable oscillation. The
deterministically oscillating region clearly has more stable oscillation in the
stochastic regime, and systems close to it are more capable of reliable behav-
ior than those far away from it.

For comparison, we now choose a point in the region of deterministic de-
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Figure 5.4: Left graph: behavior with small oscillatory tendencies due to an
intermediate step with a cooperativity of 8 and noise. Right graph: period
distribution for the same system.

caying oscillations, and make plots comparable to Fig. 5.2. In Fig. 5.4 we see a
system whose behavior seems similar in many ways; the main difference in this
case is a slightly widened period distribution. While this system is definitely
in region II of Fig 5.3a (with a cooperativity of 8), and the period distribution
may be too wide for a truly accurate clock, it is obvious that the line between
coherent oscillation and incoherent oscillation-like behavior is blurred in this
case by noise.

We see in these figures that the optimal cooperativity for this number of
intermediate steps in binding is still, at best, at the very high end of coop-
erativity in reasonable biological systems. Therefore, we have attempted a
less complete search of parameters considering additional steps (instead of
monomer to n-mer, monomer to dimer to tetramer, etc.). While our searches
were not exhaustive, we found at least one region in which such a system can
oscillate at quite reasonable values for n, as low as 8 (octomer).

5.4 Conclusions

Our data show that oscillation occurs when cooperativity and intermediate
steps are both present, when neither cooperativity nor intermediates would
otherwise be sufficient. More, it implies that, with many intermediate steps,
lower cooperativity can yield oscillation, while with higher cooperativity fewer
intermediate steps are necessary. Oscillation behavior in deterministic calcu-
lations gives rise to more stable oscillation in the stochastic case.

Additionally, it should be noted that, even though we found no coherent os-
cillation for lower values of cooperativity, moderate coherence in an oscillation-
like behavior may not necessarily be fatal or possibly even very detrimental
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to a biological system which relies on it as a clock for less important func-
tions. Many biological clocks receive input of some kind from outside sources,
whether light and food for 24-hour clocks or some other form[61, 62]. These
inputs can reset a biological clock, and one may argue that they might be
able to do so more easily in a fundamentally inexact clock than, for instance,
a single-mode one such as a repressilator. However, for time-sensitive vital
functions, it would seem likely that higher coherence, which occurs when the
deterministic equations also show oscillating behavior, is necessary.

In summary, we have discovered a relationship between generally realistic
intermediate steps (as opposed to set-time time delays of the form t−τ , which
are realistic for a limited set of systems), cooperativity, and oscillation. Inter-
mediate steps resulting from slow cooperative binding can cause oscillation at
biologically relevant cooperativity. We have also explored the noise effect, in
which the line between oscillatory and non-oscillatory (relatively clear in the
deterministic case) is blurred in the stochastic case.
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Chapter 6

Overall Conclusions and

Discussion

We have shown some of the roles of intrinsic noise in simple genetic networks,
and explored its effects on the behavior of those networks. In addition, we
have explored oscillation behavior, and the interplay between it, cooperative
binding, and noise.

Noise is an interesting contrast in these systems. For the most part, noise
has a detrimental role; in order for a system to have reliable responses, noise
must be accounted for and even overcome by a correct “choice” of network
parameters. This is apparent in the case of Bicoid, in which the intrinsic noise
interferes with the basic function of the protein (marking of position within
the embryo for development purposes). It is also clear in the case of the
repressilator, where increased noise interferes with coherence. However, in the
case of the self-repressor it becomes clear that noise can serve a purpose. While
noise-induced oscillation in deterministically non-oscillatory systems has been
seen before, the interpretation we offer in the chapter on the self-repressor
provides some explanation of the phenomenon. Noise makes the transition
in phase space from oscillatory to non-oscillatory slow and blurred, and so
regions which are non-oscillatory but close to oscillatory regions will have
some coherence.

This might seem obvious in some sense. However, it has not been consid-
ered in the context before. Phase space contains a large number of parameters
which in any realistic system cannot be changed. Specifically, the number
of proteins in a complete n-mer which binds to a gene is unlikely to change
without major changes to other parameters. It is therefore likely that the n in
question is not generally considered part of “parameter space.” The inclusion
of cooperativity as a parameter and the understanding that noisy somewhat-
oscillatory behavior can occur because of proximity to oscillatory behavior is
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an important step forward in our understanding of these systems.
Nevertheless, it is also clear that noise-induced oscillation is less reliable

or coherent than even noisy oscillation in regimes which would still oscillate
deterministically. Again, this may be unsurprising, but it is important to keep
in mind when one considers the utility of the system; a single noise-induced
oscillator may serve as a clock for a minor biological function, but one which is
especially important and time-sensitive must have an accurate clock system.

In addition to seeing noise’s role, it is useful to understand the quantity
of noise and the ways in which it can be affected. Having multiple interfering
processes occurring at the same time scale, or non-adiabaticity, can be a factor
in increasing noise and distorting probability functions which are otherwise
relatively neat and clean (as shown in the chapter on toggle switches). Fano
factors are a simple way to measure this sort of noise, since a Fano factor of 1
implies the smallest possible amount of noise this sort of system can normally
have. The Fano factors we calculate for these systems bear out the idea of
non-adiabaticity increasing noise.

At the same time, it is clear from our work on the repressilator and self-
repressor that multiple processes having similar time scales can be useful for
behavior which is more interesting than simple switching. In the first case,
multiple genes have the same time scales for all their processes; each gene and
its proteins therefore are essentially non-adiabatic with respect to each other.
Further, though the original proposed repressilator used a slightly different
method, the oscillatory regime we found was around ω = 1, where the time
scales of binding and unbinding are close to that of protein degradation. (In
the original repressilator, mRNA degradation and protein degradation were
on the same time scale instead [4].) In the second case, the self-repressor, the
intermediate steps mentioned in the chapter must be on the same time scale as
protein degradation to have a useful impact on behavior. Thus, in spite of cre-
ating additional and potentially problematic noise (as seen in the Fano factor
figures in the repressilator chapter when additional non-adiabaticity is intro-
duced), similar time scales can also be useful or necessary for function. For
this reason, many systems which have usefully complex behavior may be in-
herently noisy. As life itself is a complex phenomenon which comes from these
kinds of networks, we can easily argue that a more thorough understanding of
these issues is potentially extremely important.

In addition, the observations we discussed bring up a few important ques-
tions. First, is the apparent correlation between noise and complex behav-
ior more widespread than these few systems? Is noise a byproduct of non-
adiabaticity as mentioned, or is it somehow necessary for complex behavior?
If it is a byproduct, are there ways to reduce it, and what are the costs to
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the organism associated with the noise? What could be the costs of reducing
noise (energy cost of increased protein synthesis if the system needs a simple
1/
√

protein number noise reduction, or of protein synthesis and gene replica-
tion if another regulatory gene is necessary, or other similar costs)? When is
it energetically favorable to reduce noise, and is there more to consider than
only energy in the matter?

Answering such questions would lead to a great deal of understanding of
life in general, especially questions involving evolution of complex organisms.
That understanding would also doubtless be beneficial to the field of medicine
because it would help to correct situations in which genetic and epigenetic
factors are responsible for network malfunction. These questions, however,
are quite large in scope, and could easily provide several lifetimes’ worth of
both theoretical and experimental scientific research.
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