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Abstract of the Thesis 

Cavitation Phenomena in Hyperelastic Solids: A 

Finite-Element Approach 
by  

Yu Chen 

Master of Science 

in  

Mechanical Engineering 

Stony Brook University 

2009 

 

Physical evidence has shown that sufficiently large tensile loads can induce 

the sudden appearance of internal cavities in soft solids (i.e., solids that are able to 

undergo large reversible deformations). The occurrence of such instabilities, 

commonly referred to as cavitation, can be attributed to the growth of pre-existing 

defects into finite sizes. Because of its close connection with material failure initiation, 

the phenomenon of cavitation has received much attention from the materials and 

mechanics communities. Cavitation has also been a subject of interest in the 

mathematical community because its modeling has prompted the development of 

techniques to deal with a broad class of nonconvex variational problems. While in 

recent years considerable progress has been made via energy minimization methods to 

establish existence results, fundamental problems regarding the quantitative 

prediction of the occurrence of cavitation in real material systems remain largely 

unresolved. 
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The main objective of this thesis is to make use of the finite element method 

(FEM) to investigate the onset of cavitation in nonlinear elastic materials that are 

subjected to generally nonsymmetric loading conditions. To this end, we first cast the 

phenomenon of cavitation as the boundary value problem of a nonlinear elastic 

material, which contains a single infinitesimally small vacuous cavity (i.e., a vacuous 

defect), that is subjected to uniform displacement boundary conditions. By means of 

FEM, we then generate numerical solutions for such a problem. These include 

solutions for the change in size of the underlying cavity as a function of the applied 

loading conditions, from which we are able to determine the onset of cavitation 

corresponding to the event when the (initially infinitesimal) cavity suddenly grows 

into finite sizes. The focus is on 2D compressible isotropic materials, but some 3D 

problems are also explored. Comparisons with cavitation criteria recently developed 

in the literature are also included. 
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1 Introduction 

Under tensile loading conditions, solids—much like fluid—may exhibit 

cavitation. In elastomers, the occurrence of this phenomenon was first reported by 

Busse [3], Yerzley [4], and Gent and Lindley [5]. In particular, these authors 

conducted tension experiments on thin disks of rubber bonded to plane metal 

end-pieces in such a way that the stress at the center of their specimens was 

approximately hydrostatic. They observed that flaws in the form of roughly spherical 

cavities consistently appeared in the rubber disks at well defined values of the applied 

tensile load. Similar observations were later reported by Lindsey [6]. More recently, 

the occurrence of cavitation has also been observed in the vicinity of inclusions in 

particle–reinforced elastomers [7, 8], as well as in the rubber phase of 

rubber–toughened glassy polymers (see, e.g., [9, 11]).  

In a pioneering contribution, Gent and Lindley [6] proposed a criterion for the 

onset of cavitation in rubber. In essence—making use of the work of Green and Zerna 

[12] for thick spherical shells—they considered the problem of a spherical cavity of 

finite size embedded in an infinite matrix subjected to uniform hydrostatic pressure on 

its boundary, i.e., at infinity. Assuming the matrix to be made out of incompressible 

Neo-Hookean material, they found that as the applied pressure approaches the critical 

value 5 2critP μ= —with μ denoting the classical shear modulus of the matrix 

material—the size of the cavity becomes unbounded. In view of this result, they 

effectively proposed that cavitation occurs at any place in a rubbery solid where the 

hydrostatic part of the stress reaches the critical value 5 2critP μ= . Quite remarkably, 

this criterion turned out to be in very good agreement with their experimental 

observations. 

In a different effort, Ball [13] examined a class of non-smooth bifurcation 

problems for the equations of nonlinear elastostatics which model the creation of a 

cavity in the interior of a nonlinearly elastic solid once a critical external load is 
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attained. Specifically, he considered the problem of a unit ball (in n dimensions), 

made out of isotropic hyperelastic material, that is subjected to radially symmetric 

uniform tensile load on its boundary. For certain materials, he found that when the 

applied load is small, the ball remains a solid ball, but that when the load is 

sufficiently large, it is energetically more favorable for the material to open up a 

spherical (or, if n = 2, circular) cavity at the center of the ball. 

When specialized to a unit sphere of incompressible Neo-Hookean material, 

Ball's analysis leads to 5 2critP μ=  for the critical applied pressure at which a cavity 

forms at the origin of the sphere. This is exactly the same value obtained by Gent and 

Lindley [5] for the critical applied pressure at which a pre–existing spherical cavity 

embedded in an infinite Neo-Hookean medium grows unbounded. The reason for this 

agreement, as already noticed by Ball [13], is twofold: (i) because of the scaling laws 

of nonlinear elastostatics, an infinitesimal hole in a finite medium behaves like a finite 

hole in an infinite medium; and (ii) the solution for the problem of a spherical shell is 

expected to tend to the solution for the problem of a solid sphere in the limit when the 

size of the cavity in the shell tends to zero. This connection between the approach of 

Gent and Lindley [5] and that of Ball [13] reveals that the phenomenon of cavitation 

in hyperelastic solids can be viewed rather equivalently as: (i) the sudden rapid 

growth of an imperfection or (ii) a (non-smooth) bifurcation problem in an initially 

perfect material. 

For incompressible materials, the cavitation results put forward by Ball [12] 

are complete and explicit. For compressible materials, on the other hand, Ball's results 

are relatively limited. This is because for compressible (unlike for incompressible) 

solids, it is necessary to solve the underlying nonlinear differential equation of 

equilibrium. Extensions of Ball's work—yet within the context of radially symmetric 

cavitation in compressible isotropic materials—have been provided by Stuart [14], 

Sivaloganathan [15, 16], Horgan and Abeyaratne [17], Horgan [18], and Meynard 

[19] among others. Radially symmetric cavitation problems in anisotropic materials 

have been studied, for instance, by Antman and Negron-Marrero [20] and by 
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Polignone and Horgan [21]. Extensions considering dynamic and surface-energy 

effects have also been examined by other researchers (see, e.g., [22, 11]). For a review 

on radially symmetric cavitation, the interested reader is referred to [23].  

All of the above-cited efforts address the problem of radially symmetric 

cavitation. However, the majority of practical situations do not posses radially 

symmetry. One of the first (and few) studies on non-symmetric cavitation is that of 

James and Spector [24]. These authors provided a qualitative analysis for the 

formation of non-spherical cavities in a class of compressible isotropic materials 

subjected to radially deformations. Furthermore, they showed that non-radially 

cavities are energetically more favorable than radially ones for certain materials. Later, 

Hou and Abeyaratne [25] derived an approximate criterion for the onset of cavitation 

in incompressible isotropic solids subjected to non-symmetric loading. Specifically, 

these authors examined the boundary value problem of a sphere, containing an 

infinitesimal spherical cavity at its origin, subjected to uniform Cauchy traction on its 

boundary. After casting the problem in a variational form, they proposed a particular 

kinematically admissible trial field as an approximate solution. Making use of this 

approximation, they then derived an analytical expression for the loci of critical 

applied stresses (or cavitation surface) at which the initially infinitesimal cavity 

suddenly becomes of finite size. For the special case of hydrostatic loading, the results 

of Hou and Abeyaratne [25] have the merit that they recover the exact results of Ball 

[13] for incompressible materials. For more general loading conditions, on the other 

hand, their results are expected (by construction) to be conservative. Finally, it should 

be mentioned that the problem of non-symmetric cavitation has also been studied 

numerically by some authors (see, e.g., [26]), but mostly in the different context of 

elastoplasticity (see, e.g., [27, 28]). 

The work of this thesis is devoted to a finite-element approach to study of 

cavitation in compressible, isotropic hyperelastic solids, such as Neo-Hookean 

material and Blatz-Ko material, under general deformations. We work out the 

numerical cavitation and compare the FEM results with approximately analytical 
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solution of 2D problem for Neo-Hookean material on the deformation space and 

corresponding Cauchy stress space. We also find surface instability for the Blatz-Ko 

material. The present work on the 3D problem is focused on the study of compressible, 

isotropic Neo-Hookean material under hydrostatic. 
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2 Problem Setting 
Consider a material made of a vacuous inhomogeneity embedded in an 

otherwise homogenous matrix. We assume this material has a volume oΩ , with 

boundary o∂Ω , in the undeformed configuration. Moreover the initial size of the 

cavity is considered to be much smaller than the size of the specimen, i.e., the cavity 

is considered to be a small imperfection. 

For two-dimension (2D) problem, as mentioned above, we assume that the 

vacuous inhomogeneity is cylindrical and has initially circular cross section. For 

convenience, we set the long axis of the void to be parallel to the fixed laboratory 

basis vector 3e . Further, we take 0Ω to be infinite in extent (see Figure. 1). The 

analysis is thus relevant to the sudden growth of a void into an elongated shape. 

For three-dimension (3D) problem, we assume that the vacuous 

inhomogeneity is spherical void in the center of a large cube. Further, we take 0Ω to 

be infinite in extent (see Figure. 2). The analysis is thus relevant to the sudden growth 

of a void into an elongated shape. 

Material points in the solid are identified by their initial position vector X in 

the undeformed configuration 0Ω , while the current position vector of the same point 

in the deformed configuration Ω is given by x (X)χ= . Motivated by physical 

arguments, the mapping χ is required to be continuous (i.e., the material is not 

allowed to fracture) and one-to-one on 0Ω  (i.e., the material is not allowed to 

interpenetrate itself). In addition, we also assume that χ  is twice continuously 

differentiable, except possibly on the infomogeneity/matrix boundary. The 

deformation gradient F at X, a quantity that measures the deformation in the 

neighborhood of X, is defined by 

             F=Gradχ   in  0Ω                                (1)  

and is required to satisfy the local material impenetrability constraint det F 0J = > . 
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The constitutive behavior of the matrix phase—which occupies the subdomain 

(1)
0Ω  in the undeformed configuration—is characterized by a stored-energy function 

(1)W  that is an objective, non-convex function of the deformation gradient tensor F. 

On the other hand, the constitutive behavior of the void-which occupies the 

subdomain (2) (1)
0 0 0Ω = Ω −Ω —is taken to be characterized by (2)W . Note that this 

prescription directly implies that the cavity is traction-free. It then follows that the 

local stored-energy function of this two-phase system may be conveniently written as    

(1) (2) (1)
0 0 0(X,F) (1 (X)) (F) (X) (F) (1 (X)) (F)W W W Wχ χ χ= − + = − ;       (2) 

where 0 (X)χ  is the characteristic function defined as: 

(2)
0

0 (1)
0

1 X
(X)

0 X
χ

⎧ ∈Ω
= ⎨

∈Ω⎩
                                         (3) 

In this connection, it is noted that the initial volume fraction of the void (or initial 

porosity) is given by (2)
0 0 0 0| | | |f χΩ Ω = 〈 〉 , where the triangular brackets 

0
0 Ω

(1 | |) •dX〈 〉 = Ω ∫i , which have been defined as the volume average over the 

specimen in the undeformed configuration. According to compressible isotropic 

materials, together with that of objectivity, the stored-energy function (1)W  can be 

expressed as function of the principal invariants of the right Cauchy-Green 

Deformation tensor TC=F F : 

      

2 2 2
1 1 2 3

2 2 2 2 2 2 2 2
2 1 2 1 2 2 3

2 2 2
3 1 2 3

=trC
1= [(trC) -trC ]
2

=detC

I

I

I

λ λ λ

λ λ λ λ λ λ

λ λ λ

= + +

= + +

=

                            (4) 

or, as a symmetric function of the principle stretch 1 2 3, ,λ λ λ  associated with F. 

Namely,  (1)W  may be written as  

(1)
1 2 3 1 2 3(F) ( , , ) ( , , )W g I I I h λ λ λ= = ;                                 (5) 

where h  is symmetric. 
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The local constitutive relation for the material can then be expressed as 

(1)

0
(F)S (X,F) (1 (X))

F
W W
F

χ∂ ∂
= = −
∂ ∂

;                              (6) 

Here, S denotes the first Piola-Kirchhoff stress tensor and sufficient 

smoothness has been assumed for (1)W on F.  

We suppose now that the body is subjected to the homogeneous displacement 

boundary condition 

x=FX   on  o∂Ω ;                                 (7) 

where the second-order tensor F  is a prescribed, constant quantity. In the absence of 

body forces, it follows that the total elastic energy (per unit undeformed volume) 

stored in the material is given by 

 
_ _

(1) (1)
0

(F) (F)
(F) min (X,F) min (1 ) (F)

F F
E W f W

κ κ∈ ∈

= 〈 〉 = − 〈 〉                       (8) 

where (1)〈•〉  indicates the volume average over the matrix phase (1)
0Ω and κ stands 

for the set of kinematically admissible deformation gradient fields: 

 
_

0 0( ) F | x (X) with F=Grad , 0 in , x= FX onF Jκ χ χ
⎧ ⎫⎪ ⎪= ∃ = > Ω ∂Ω⎨ ⎬
⎪ ⎪⎩ ⎭

     (9) 

Furthermore, the equilibrium equations-the Euler-Lagrange equations 

associated with the variational problem (8)-take the form: 

 Div (X,F) 0
F
W∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

 in oΩ ;                                   (10) 

The main idea to the study of the solution of equation (10), subject to the 

stored-energy function (8) and affine boundary condition (12), in the limit as 0 0f → +  

(in the limit when the initial size of the cavity is infinitesimally small). In particular, 

we are going to determine in this limit the critical values of the applied deformation 

F  at which the actual size of the deformed cavity and define the cavitation criterion 

by measuring the current porosity in the deformed configuration:  
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(2) (2)

0
det F det F
det F det F

f f〈 〉 〈 〉
= =

〈 〉
                                     (11)  

suddenly starts growing and becomes finite. 

In 2D problem, we will concern on the plane-strain deformations in the 1 2e e−  

plane, so that the out-of-plane components of F  are given by: 

 1 2( , )F diagαβ λ λ=                                            (12) 

In 3D problem, we do the similar way: 

1 2 3( , , )F diagαβ λ λ λ=                                          (13) 
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3 Approximately Analytical Solution for 2D Problem 

3.1 Analytical Cavitation Criterion 

To get the cavitation criterion is to solve the system of nonlinear partial 

differential equations (10) for the above-specified geometry (Figure. 1 and 2), 

compressible stored-energy function (8), and the general loading conditions (12) is 

focused on solving the following stationary variational principle instead of solving 

minimization problem (8)[1]: 
(1) (1)

0( ) ( )
(F) stat (X,F) stat (1 ) (F)

F F F F
E W f W

κ κ∈ ∈
= 〈 〉 = − 〈 〉                      (14) 

where it is emphasized that the stat(ionary) operation means that the total elastic 

energy E  is evaluated at the above-described “principle” solution of the 

Eular-Lagrange equations (10). 

The proposal to solve approximately problem (14) is to make use of the 

“linear–comparison” variational procedure of Lopez-Pamies and Ponte Castaneda [2]. 

Specifically, with the help of this approach, we will generate analytical estimates for 

the total elastic energy (14) and the associated current porosity (11); as explained in 

the sequel, knowledge of E  and f  suffices to determine the onset of cavitation in 

the hyperelastic solid. The key idea of this technique consists in devising an optimally 

chosen linear comparison medium (LCM) with the same microstructure as the actual 

hyperelastic material (i.e., the same 0χ ) which can then be used to convert available 

exact results for linear materials into estimates for the hyperelastic material. In the 

present context (of a single inhomogeneity embedded in an infinite matrix) we will 

exploit a generalized version of the exact Eshelby solution [30] for linear materials in 

order to generate an approximate closed-form solution for the actual nonlinear 

problem (14). 

The main procedure of this method is organized as follows. First, we introduce 

a linear comparison medium (LCM) with the same microstructure as the actual 

hyperelastic material (i.e., the same 0χ ) and with local stored-energy function 
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(1)
0(X,F) (1 (X)) (F)T TW Wχ= −                                    (15) 

where the quadratic potential (1)
TW  is given by the second-order Taylor expansion of 

the nonlinear stored-energy function (1)W  about 
_

F : 
_

(1) (1) (1) 1(F) (F) (F) (F-F) (F-F) L(F-F)
2TW W S= + ⋅ + ⋅                    (16) 

where (1) (1)( ) ( ) FS W• = ∂ • ∂  and L is a fourth-order tensor with matrix 

representation: 

1 3

3 2

4 1 4 2 4 3

1 4 2 4 3 4

( )( )

( )( )

l l
l l

L
l l l l l l

l l l l l l

αβγδ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥− − −
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

            (17) 

where Il (I=1,2,3,4) are independent variables can be determined by the way in the 

paper [1] and [31]. With above LCM, we can get an estimate for the total elastic 

energy (14) for small (but finite) values of initial porosity 0f : 

(1) (1) (1)(1) (1)
0(F) (1 ) ( ) (F) ( F )E f W E S E⎡ ⎤= − − ⋅ −⎢ ⎥⎣ ⎦

                     (18) 

where 
(1) (1)F F〈 〉  is the average deformation gradient in the matrix phase of the 

LCM. Then making use of these results, we then construct an estimate for the 

associated porosity (11) in the deformed configuration: 

(2)

0
det F
det F

f f=                                                 (19) 

After that, we consider the limit 0 0f +→ of the expressions generated in equation (18) 

and (19) for E  and f , respectively. With loading condition (12), they can be 

rewritten: 

1 2

1 2 3 2 2 3

2 1 2
1 2 0 02 2

(F) ( , ) ( , ) ( ( , )

(4 3 ) 12
) ( )

4

I I J I J J

I J

E I J I J

f f

ε λ λ

λ λ
λ λ

λ λ

= = Ψ − Ψ +

⎛ ⎞
+ Ψ + Ψ Ψ + Ψ Ψ +Ψ⎜ ⎟

⎝ ⎠ +Ο
Ψ −Ψ

     (20) 
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where ( , ) , ( , )I JI J I I J JΨ = ∂Ψ ∂ Ψ = ∂Ψ ∂  with 
2 2

1 2 1 2,I Jλ λ λ λ= + = . 

2
2 1 1 2 2

0 02 2
1 2

16 (2 )(2 )
( )

(4 )
I I J I J

I J

f f f
λ λ λ λ

λ λ
Ψ Ψ + Ψ Ψ + Ψ

= +Ο
Ψ −Ψ

                (21) 

For hydrostatic loading, i.e. 1 2λ λ λ= = : 

2
2

0 02

16
( )

(2 )
I

I J

f f f
Ψ

= +Ο
Ψ −Ψ

                                    (22)    

Finally, Focusing on equation (21), it is observed that the current porosity f (which, 

again, serves to measure the actual size of the cavity in the deformed configuration) 

becomes arbitrarily large at applied deformations approaching the curve 

2 24 0I JΨ −Ψ = . This means that 2 24 0I JΨ −Ψ =  may actually correspond to the loci of 

critical deformations at which cavitation occurs. Of course, this is a somewhat naive 

interpretation of the result given that the asymptotic expression (21) ceases to be valid 

precisely at deformations satisfying 2 24 0I JΨ −Ψ = . Nevertheless, with the help of the 

full numerical solution for finite values of 0f , it can be verified that the condition 

2 24 0I JΨ −Ψ = does indeed define the loci of critical points in deformation space at 

which f suddenly begins to grow, and therefore at which cavitation takes place. In 

this regard, it is expedient to recognize from (22) that 2 0I JΨ −Ψ = , not 

2 0I JΨ +Ψ = , is the relevant cavitation condition for the case of hydrostatic loading. 

Then, given that for physically reasonable stored-energy functions Ψ the curve 

2 0I JΨ −Ψ =  and 2 0I JΨ +Ψ =  are not expected to cross, a simple continuity 

argument finally leads to the following criterion: inside a homogeneous, compressible, 

isotropic, hyperelastic material with stored-energy function 

(F) ( , ) ( , )W I J I J= Ψ = Φ , cavitation will occur at a material point P whenever along 

a given loading path the deformation at that point first satisfies the condition: 

2 ( , ) ( , ) 0I J I J
I J

∂Ψ ∂Ψ
− =

∂ ∂
                             (23) 
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or            
1 2 1 2

1 2

1 2

( , ) ( , )
0

λ λ λ λ
λ λ

λ λ

∂Φ ∂Φ−
∂ ∂

=
−

;                            (24) 

For the special case 1 2λ λ λ= = , a formal calculation shows that (24) reduces 

to 

2 2

1 1 2 2

( , ) ( , ) 0λ λ λ λ
λ λ λ λ
∂ Φ ∂ Φ

− =
∂ ∂ ∂ ∂

;                          (25) 

3.2 Remarks about Cavitation Criterion 

First, it is noted that if the function Ψ is such that there is no pair of positive 

real numbers (I, J) that satisfies condition (23), cavitation does not occur. In the event 

that cavitation does occur, the set of (real and positive) points satisfying condition (25) 

defines a curve ( , ) 0C I J =  in the (I, J)-deformation space. Similarly, (26) defines a 

curve 1 2( , ) 0C λ λ =  in 1 2( , )λ λ –deformation space. Henceforth, we refer to such 

curves as cavitation curves. 

It is also important to remark from (23)-or, equivalently, from (24)-that 

cavitation does not occur within the context of classical linear elasticity. This 

expected result is a direct consequence of the fact that 2 2 0I J μ∂Ψ ∂ −∂Ψ ∂ → >  in 

the limit of small deformations (i.e., as 2I →  and 1J → ), whereμ  is the shear 

modulus in the ground state. 

Moreover, the stretch-based form (23) of the criterion is seen to be intimately 

related to the inequality: 1 2 1 2( ) ( ) 0λ λ λ λ∂Φ ∂ −∂Φ ∂ − > , which is known to be a 

necessary condition for the positive definiteness of the incremental modulus tensor 

2 2L W F= ∂ ∂ . In this regard, it is recognized that the critical deformations defined by 

condition (24) happen to correspond-rather interestingly-to deformations that are not 

incrementally stable.  
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In addition, condition (24) is seen to be reminiscent of the Baker-Ericksen 

(B-E) inequality: 1 1 2 2 1 2( ) ( ) 0λ λ λ λ λ λ∂Φ ∂ − ∂Φ ∂ − > . In this connection, it is 

relevant to point out that while strong ellipticity (or strict rank-one convexity) implies 

the B-E inequality, it does not imply that condition (24) will not be satisfied at some 

critical finite deformation. In other words—in agreement with the findings of Ball 

[12]—strong ellipticity does not preclude cavitation. 

The corresponding critical (principal) Cauchy stresses, 1t  and 2t , at which 

cavitation occurs are given by 

        * *
1 1 2*

2 1

1 ( , )t λ λ
λ λ

∂Φ
=

∂
 and * *

2 1 2*
1 2

1 ( , )t λ λ
λ λ

∂Φ
=

∂
                     (26) 

where, for clarity of notation, *
1λ and *

2λ  have been introduced to denote the critical 

stretches that satisfy condition (24). The set of points generated by evaluating 

expressions (25) at all pairs of critical stretches * *
1 2( , )λ λ  constitutes a cavitation 

curve 1 2( , ) 0S t t =  in 1 2( , )t t –stress space. 

The criterion (23)—or, equivalently, (24)—is a local criterion. However, it is 

known from the work of Ball [12] that cavitation depends in general on the global 

character of W. Thus, while (23) may be exact for some classes of materials, it cannot 

possibly be exact in general because of its local nature. In any case—as illustrated in 

the next section—the simple criterion (23) appears to constitute a remarkably accurate 

approximation for the onset of cavitation in large classes of compressible, isotropic, 

hyperelastic materials. 

Finally, it should be emphasized that the above-proposed criterion is built 

around the problem of the sudden rapid growth of a vanishingly small cavity with 

initially circular cross section. It is plausible that different initial cavity shapes may 

lead to significantly different cavitation criteria. This important issue will be studied 

elsewhere, but here we note that the methods presented in this work are equally 

applicable to material systems with non-circular cavities. 
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4 Finite-Element Approach for 2D Problem 

4.1 Mesh Geometry 

The finite-element approach model of a cylindrical vacuous inhomogeneity, 

with initially circular cross section, in an infinite matrix phase is generated in 

commercial code ABAQUS of performed hyperelastic-mechanical analysis by 2D 

plane strain method. It is very difficult to generate the infinite matrix in ABAQUS, 

thus we generate the model of an infinitesimally cylindrical vacuous inhomogeneity, 

with initially circular cross section, in a finite matrix phase in the ABAQUS.  

4.1.1 Shell Mesh for Hydrostatic Deformations 

We develop a cirque structured mesh which we call shell mesh with initial 

porosity of 210−  and 410−  in ABAQUS CAE, and place 120 elements per layer in 

the circumferential direction (see Figure 3 (a)). In order to get the near square element 

size, we set up bias in the radial direction and the details of bias and element number 

are depend on the initial porosity. To apply the hydrostatic deformations, 

1 2λ λ λ= = , it is better to transfer the nodes on boundary into cylindrical coordinate 

system (axis z is perpendicular to the plane), so r-direction is 1-direction in the 

cylindrical coordinate system and it is very convenience to apply the hydrostatic 

loading by applying the displacement boundary condition in 1-direction (see Figure 3 

(b)). Figure 4 shows the contour on the deformed and undeformed configuration from 

ABAQUS, i.e. compressible Neo-Hookean material at initial porosity 2
0 10f −=  and 

compressibility ratio ' 10μ μ =  as an example. 

 4.1.2 Wedge Mesh for Hydrostatic Deformations 

According to radially symmetric geometry and hydrostatic deformations, the 

above shell mesh model can be simplified to one layer mesh with hydrostatic 
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deformation, which we called wedge mesh (see Figure 5). The purpose of doing this is 

to cut computational cost.  

The wedge mesh with 3oθ = , which is the same as the shell mesh, can also be 

easily generated in the ABAQUS CAE (see Figure 6(a)). We fix the bottom line in 

Y-direction and use command EQUATION to let the upper line deform in the radial 

direction. And we also apply the radial displacement loading condition on both point 

P1 and P2. We show the deformed and undeformed configuration from ABAQUS, i.e. 

compressible Neo-Hookean material at initial porosity 2
0 10f −=  and compressibility 

ratio ' 10μ μ =  as an example (see Figure 6(b)).  

4.1.3 Generally Non-symmetric Deformations Mesh 

According to generally non-symmetric deformations, 1 2λ λ≠ , we cannot use 

wedge mesh to simulate cavitation phenomenon in hyperelastic solids under this kind 

of deformation. We just can simplify the model a cylindrical vacuous inhomogeneity, 

with initially circular cross section, in an infinite matrix phase, into the 2D model of 

an infinitesimal circle in a finite square. Since this model is symmetric, we just 

generate one quarter of the model.  

We generate this generally non-symmetric deformations mesh in MATLAB, 

which we call rectangular mesh. From the hydrostatic deformations result, there will 

be a high stress concentration on the region near the void, thus we place more nodes 

and radially symmetric mesh in this region (see Figure 8). For the rest part, it is 

almost homogenous and we just place structured transition mesh in this area. During 

the analysis of hydrostatic deformations result, we also monitor the size of the 

elements. The reason of this step is that quadrilateral rectangular elements perform 

best if their shape is approximately square. We generate approximate square element 

near the void in wedge mesh. When the cavitation occurs, we find that the length of 

the element, 1l  which is in X-direction, is much less than the width of the element, 
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2l  which is in Y-direction and the ratio is approximately: 2 1 50l l  (see Figure 7). 

To get the more accurate result when cavitation occurs, we generate a rectangular 

element with 2 1 2l l =  in the initial. 

The procedure of making this mesh is organized as following. For the radially 

symmetric mesh region, we generate rectangular elements with 2 1 2l l =  in the initial 

and place 30 elements on the edge of the circle, in order to keep the same 3oθ =  as 

above two meshes, and 30 layers of elements in this region as following (see Figure 

8): 

1 1

1

2 1 30

1 2

i i i

i
i

r r r r i
rr

θ

θ

+ +

+

Δ = − = = →

=
−

i
                               (27) 

where ir  is the radius of No. i layer and it starts from 1 1r = . Because there are 30 

elements on the edge of the circle, thus 3oθ = . For the transition mesh region (see 

Figure 8), which means changing the arc to the straight line, we use the following 

transition formula and place 15 layers of element in this region to generate the mesh: 

i ia l
a l
Δ Δ

=  and 1 * 1 15i il l iδ+Δ = Δ = →                         (28) 

where l  is the total length from the arc to the end edge of square in the bottom line, 

a  is the total length from the arc to the end edge of the square in an arbitrary line in 

the middle of the square, ilΔ  is the increment of No. i layer in the bottom line and it 

starts from 1 2lΔ =  in the case of initial porosity 6
0 10f −= ,  iaΔ  is the related 

increment of No. i layer in the above arbitrary line in the middle of square, δ  is the 

increment parameter of the ilΔ  and we choose 1.1δ =  in the case of initial porosity 

6
0 10f −= . 
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For different initial porosity, take the case of changing initial porosity 

6
0 10f −=  general loading mesh into initial porosity 7

0 10f −= general loading mesh as 

example (see Figure 9), we use following method to change the elements’ size, but 

not increase the number of elements: For the first 5 layer elements, we don’t change 

the size, because there is a high stress concentration in this region. For the left 

elements in the radially symmetric mesh region, we use following increment way to 

change the size of elements: 

2
61.3 1.1

2.6
ii

i i
rR r −= + − ×                                         (29)             

where ir  is the radius of No. i layer in the mesh of initial porosity 6
0 10f −= ,  iR  is 

the radius of No. i layer in the mesh of initial porosity 7
0 10f −= . For the gradual 

mesh region, we still use the formula (28) to generate the mesh, but we choose the 

right δ  for the mesh of initial porosity 7
0 10f −= . 

The detail of the loading condition in generally non-symmetric deformation 

will be discussed in the subsection 4.1.3.1. 

4.1.3.1 Loading Condition 

For convenience, we use the following formula to transfer the 

1 2( , )λ λ –deformation space into the related 1 2( , )e e –deformation space: 

1 1

2 2

ln
ln

e
e

λ
λ

=
=

                                                    (30) 

For the incompressible Neo-Hookean material, 1 2 1J λ λ= = , in the related 

1 2( , )e e –deformation space, the material behavior is a solid straight line through the 

origin (see the solid line in the Figure 10) and we can see that there will be no 

cavitation for incompressible Neo-Hookean material in the 2D problem. For the 

compressible Neo-Hookean material, 1 2 1J λ λ= > , and the transformation (30), the 
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material behavior should be in the right side space from the above the incompressible 

Neo-Hookean material behavior and parallel with the incompressible Neo-Hookean 

material behavior (see the dash line in the Figure 10).  

If we apply the loading condition along the line 2 1tane eφ= , (see the red line 

in the Figure 10), when this loading hit the compressible Neo-Hookean material 

behavior (see the dash line in Figure 10), there will occur cavitation for the 

compressible Neo-Hookean material. Thus there is a related point for the critical 

stretch in the 1 2( , )λ λ –deformation space. Thus we can apply the displacement 

loading condition as following: 

tan
1 2

φλ λ=  and 1 1

2 2

( 1)*
( 1)*

u l
u l

λ
λ

= −
= −

                                   (31) 

where φ  is the loading angle, which is the angle in the related 1 2( , )e e –deformation 

space and l  is the length of the square cell.  

In the ABAQUS, we use the command AMPLITUDE at the time interval 0.1 

(or maybe smaller in some special cases) to simulate this kind of displacement 

boundary condition. So there will be 11 interval points (even more in some special 

cases) in the loading and between every related 2 points ABAQUS use linear 

displacement boundary condition to get the approximate loading. From the Figure 10, 

we can see that all the material behavior is symmetric to the line 1 2e e= , thus if we 

do the loading angle 45 45o oφ = − → , we can get the entire 1 2( , )λ λ –deformation 

space.  

Finally, We show the deformed and undeformed configuration from ABAQUS, 

i.e. compressible Neo-Hookean material at initial porosity 7
0 10f −=  and 

compressibility ratio ' 10μ μ =  with loading angle 35oθ =  (see Figure 11 (a)) and 

15oθ = −  (see Figure 11 (b)) as examples. 
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4.2 ABAQUS Element Type 

The elements used in the wedge mesh and rectangular mesh were solid 

(continuum) elements. The solid elements in ABAQUS are suitable for linear analysis 

and also for complex non-linear analyses involving hyperelastic and large 

deformations. There are a number of continuum elements available within the 

ABAQUS element library. A brief description of the attributes of the elements used 

for the cavitation of hyperelastic analysis is given below. 

Quadrilateral elements were chosen over rectangular elements as the 

quadrilateral elements have a better convergence rate and sensitivity to mesh 

orientation in regular meshes is not an issue. Quadrilateral elements perform best if 

their shape is approximately rectangular or square. The elements become much less 

accurate when they are initially distorted. 

The second order form of the quadrilateral elements was used as this provides 

higher accuracy than first order elements for ‘smooth’ problems that do not involve 

complex contact conditions or impact. Second order elements have more nodes per 

element than first order elements (i.e. they have a midsize node). They capture stress 

concentrations more effectively and are better for modeling geometric features. 

Reduced integration is available for quadratic elements and was utilized in the 

cavitation of hyperelastic analysis. It uses a lower-order integration to form the 

element stiffness. Reduced integration reduced the running time of an analysis. 

Second order reduced integration elements generally yield more accurate results that 

the corresponding first order fully integrated elements. 

A further element option is the hybrid element. Hybrid elements are intended 

mainly for use with incompressible and almost incompressible materials. For a near 

incompressible material a very small change in displacement produces extremely 

large changes in pressure. Therefore, a purely displacement-based solution is too 

sensitive to be useful numerically. This singular behavior is removed by treating the 

pressure stress as an independently interpolated basic solution variable, coupled to the 
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displacement. This independent interpolation of pressure stress is the basis of the 

hybrid elements. Hybrid elements have more internal variables than non-hybrid 

elements and this increases running time. Hybrid elements are recommended for 

hyperelastic materials. 

For structural applications, the ABAQUS element library includes plane stress, 

plane strain and generalized plane strain elements. Plane stress elements can be used 

when the thickness of a body is small relative to its lateral (in-plane) dimensions. 

Modeling with this element generally applies to thin, flat bodies. In contrast, plane 

strain elements are generally used for modeling bodies that are very thick relative to 

their lateral dimensions. In these elements it is assumed that the strains in the loaded 

body are functions of the planar coordinates only and out-of-plane normal and shear 

strains are equal to zero. An alternative type of plane strain element is the generalized 

plane strain element.  

In this case, the formulation places the model indicates that cavitation of 

hyperelastic solids is a highly non-linear problem and the geometry shows that there 

will be a high stress concentration near the void. Thus, if the edge mesh and general 

loading mesh use quadrilateral elements, they would have the ability to respond to 

Poisson’s contractions and cavitation. It is assumed that the deformation of the model 

is independent of the axial position so the relative motion of the two planes causes a 

direct strain in the axial direction only. There are no transverse shear strains. Both 

plane strain and generalized plane strain elements have been considered in the 

analysis of cavitation of hyperelastic. Finally, we choose CPE8R as the element type 

for compressible material and CPE8RH as the element type for incompressible 

material. 

4.3 Define Material in ABAQUS 

We first introduce some definitions in ABAQUS: in ABAQUS, for simplicity, 

it define 1/3F det(F)J −=  as the deformation gradient with the volume change 
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eliminated, thus the deviatoric stretch matrix (the left Cauchy-Green strain tensor) of 

F  as
T

B=F Fi so that the related first train invariant is traceBI = . 

For compressible hyperelastic material, ABAQUS already build the package 

in itself. For example, for compressible Neo-Hookean material: 

2
110

1

1( 3) ( 1)U C I J
D

= − + −                                      (32) 

We can use command HYPERELASTIC, NEO HOOKE and define the parameter 

10C  and 1D  in the next line to define the compressible Neo-Hookean like (32). For 

compressible Blatz-Ko material, ABAQUS use hyperfoam potential to define: 

1 2 32
1

2 13 ( 1)i i i i i

N
i

i i i

U Jα α α α βμ λ λ λ
α β

−

=

⎡ ⎤
= + + − + −⎢ ⎥

⎣ ⎦
∑                       (33) 

We can use command HYPERFOAM and input the parameter i, iμ , iα , iβ  in the 

next line to define the compressible Blatz-Ko like (35) 

For the incompressible material, we can use subroutine HYPER with 

stored-energy function and related 15 derivatives, and program in FORTRAN to 

define the material. 
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5 Results and Discussion on 2D Problem 

In this sequel, we make use of the finite-element approach put forward in 

Section 4 to explicitly determine and discuss the onset of cavitation in variety of 

compressible, isotropic, hyperelastic material. The objective is to gain more physical 

insight into the cavitation phenomenon in these hyperelastic solid, as well as to 

compare the FEM result with approximately analytical solution. 

5.1 Compressible Neo-Hookean Material 

Now we are in the position to discuss about the compressible Neo-Hookean 

material and use the following compressible Neo-Hookean material (see, e.g., Chapter 

7.4 in [29]): 

1

2 2
2 2

1 2 1 22/3
1 2

1 '( , ) [ 3] ( 1)
2 ( ) 2

λ λμ μλ λ λ λ
λ λ
+ +

Φ = − + −                       (34) 

where 0μ >  and ' 0μ >  are material parameters. The stored-energy function (34) 

is a generalization-capable to account for finite compressibility-of the standard 

incompressible Neo-Hookean material. Indeed, in the limit as the compressibility ratio 

'μ μ →∞ , (34) reduces identically to  

1

2 2
1 2 2( , ) ( 2)

2
μλ λ λ λΦ = + −                                       (35) 

together with the incompressibility constraint 1 2 1J λ λ= = . 

Ball [13] showed that radially symmetric cavitation does not occur in 

incompressible Neo-Hookean materials (35) subject to hydrostatic pressure. He also 

examined the occurrence of cavitation in a particular class of compressible 

Neo-Hookean materials, but his results do not apply to (34). Accordingly, in order to 

work out the numerical cativitation for compressible Neo-Hookean material and 

compare with the approximately analytical solution in this case, we carried out a finite 

element (FEM) simulation of the problem using the commercial code ABAQUS. 



 23

5.1.1 Result and Discussion on Hydrostatic Deformations 

The structure of this section is organized as following. In subsection 5.1.1.1, 

we will check finite-element approach model by analytical solution on incompressible 

Neo-Hookean material, including shell mesh and wedge mesh. Then, in subsection 

5.1.1.2, we show the result and discussion on numerical cavitation criterion for 

compressible Neo-Hookean material and how small the void represents to 0 0f → +  

by hydrostatic deformations result. 

5.1.1.1 Check Finite-Element Approach Model. 

With regard to porous elastomers subjected to finite deformations, there are 

very few exact results available. For the special case of hydrostatic loading, Hashin 

[32] obtained the exact equilibrium solution by making use of the idea of the 

composite spheres assemblage. Following that work, it is straightforward to show that 

the exact stored-energy function for the in-plane hydrostatic deformation of a porous 

rubber with incompressible isotropic matrix 1 2(F) ( , )W λ λ= Φ  may be written as: 

0

1
12 ( , ) d

I

f

W R Rλ λ−= Φ∫                                         (36)  

where  

2

2

11
R

λλ −
= +                                                (37)  

In general, the integral in (36) cannot be computed analytically; however, for 

the particular case of a porous elastomer with incompressible Neo-Hookean matrix 

phase (35), Thus the exact stored-energy function may be expressed as 

2
2 20

0

1( 1) ln( ) ln( )
2

f
f

λμ λ λ
⎡ ⎤+ −

Φ = − −⎢ ⎥
⎢ ⎥⎣ ⎦

                           (38)  

According to (26), we can see the corresponding Cauchy stress in deformation 

can be written as: 
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_ _

_
2 _ _

2 20
_ _
2 20

0

1

2

11 1 1ln( ) ln( ) ( 1)
2 1

t

f
f f

μ λμ λ

λ λ λ
λ λ

∂Φ
=

∂

⎧ ⎫⎡ ⎤ ⎡ ⎤
+ −⎪ ⎪⎢ ⎥ ⎢ ⎥= − + − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪+ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭

          (39) 

For incompressible matrix phase materials, a simple conservation of mass 

argument (for the matrix phase) allows for the determination of the evolution of the 

porosity f  as a function of deformation. The result is: 

0 0
2

1 11 1f ff
J λ

− −
= − = −                                         (40) 

We develop the shell mesh and edge mesh on the initial porosity 210−  and 

410−  with the same geometry, 3oθ = . We use UHYPER to define the incompressible 

Neo-Hookean material (35) and apply the hydrostatic deformations. Figure 12 shows 

the good agreement on current porosity check among the FEM shell mesh result, FEM 

wedge mesh result and analytical solution (40). To check the Cauchy stress, we output 

the CENTROID stress from ABAQUS, which is stress from the center of element and 

more accurate. Figure 13 shows the good agreement on Cauchy stress check among 

the FEM shell mesh result, FEM wedge mesh result and analytical solution (40). Thus 

we can see that our FEM models with material definition and loading condition are 

right. 

For compressible Neo-Hookean material, we just need to change the material 

and compressible Neo-Hookean material is the package in ABAQUS, thus if our 

models work for incompressible Neo-Hookean material, it will also work for 

compressible Neo-Hookean material. To study hydrostatic deformation, we prefer to 

use wedge mesh, because it will cut the computation cost. 
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5.1.1.2 Result and Discussion on Hydrostatic Deformation 

Now we are in the position to use wedge mesh to study the compressible 

Neo-Hookean material under hydrostatic deformations. It is very difficult to generate 

infinitesimally small void in ABAUQS, thus the first problem we need to solve is to 

examine how small the void can simulate an “infinitesimal” circle and represent 

0 0f → + . Specifically, we considered a cylindrical shell with different small initial 

porosity of 4 5 6 7 8 9
0 10 ,10 ,10 ,10 ,10 ,10f − − − − − −= subjected to radially symmetric 

deformation 1 2λ λ λ= = , on its boundary using the wedge mesh, and monitored the 

increase in porosity and the resulting surface tractions. Because it is the hydrostatic 

loading condition, we expect the inside and outside edge of the circle shell can remain 

arc during the deformation. However it is very difficult to keep that, especially in 

smaller initial porosity, because the computer use small line to get the approximate 

arc and we cannot place too many nodes to get a good approximate arc. But for the 

cases of 4 5 6 7 8 9
0 10 ,10 ,10 ,10 ,10 ,10f − − − − − −= , we use two ways to calculate the current 

porosity: one is add all volume of the elements together, the other is assume the inside 

and outside edge of the circle shell can remain circle and use the ratio of area of void 

over that of total circle. From the result, we find the difference is not too much, but if 

we do the case of 11
0 10f −= , the difference will be too large. That is why we only do 

cases of 4 5 6 7 8 9
0 10 ,10 ,10 ,10 ,10 ,10f − − − − − −= , but the result also shows that it is small 

enough to represent 0 0f → + . 

For all the examined cases, we print out the relationship between current 

porosity f  and principle stretch λ  (see Figure 14) and the relationship between 

porosity ratio 0f f  and principle stretch λ  (see Figure 15). We can see that if the 

initial porosity is smaller than 6
0 10f −= , the deformations of current porosity f  and 

porosity ratio 0f f are very close and similar. From above result we can see that the 
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initial porosity 7
0 10f −=  is a sufficiently small initial porosity that is representative 

of 0 0f → + . 

Because cavitation is detected as the phenomenon of the sudden growth of the 

void, we need to work out the numerical caviation criterion for compressible 

Neo-Hookean material to signal the cavitation. We monitor the increase in the current 

porosity of above cases. For all the examined cases, during deformation we find that 

the current porosity f  remained in the order of initial porosity up to some critical 

value of the applied stretch after which f  increased very rapidly with increasing 

deformation (see Figure 14 and 15 for the representative results). These numerically 

exact results thus indicate that compressible Neo-Hookean materials of the form (34) 

do cavitate. Thus we work out the relationship between the initial porosity 0f  and 

the critical principle stretch critλ , where the critical principle stretch critλ , for 

definiteness, is the principle stretch whenever the current porosity reached the critical 

value one-order-of-magnitude increase 010critf f= × , two-orders-of-magnitude 

increase 0100critf f= ×  and three-orders-of-magnitude increase 01000critf f= × (see 

Figure 16). To get results based on these three criterions, we use Cubic Spline Curve 

Interpolation and program in MATLAB to gain the data. Based on critical principle 

stretch critλ , we also work out the relationship between the initial porosity 0f  and 

the corresponding critical Cauchy stress critt μ , where the corresponding critical 

Cauchy stress critt μ , for definiteness, is generated by 

11 ( ) ( , )crit crit crit critt μ μλ λ λ λ= ∂Φ ∂  (see Figure 17). 

From the figure 16 and 17, we can see that the difference on both principle 

stretch critλ  and corresponding Cauchy stress critt μ between values of 

one-order-of-magnitude increase 010critf f= ×  and two-orders-of-magnitude 
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increase 0100critf f= ×  is very large, however the difference between values of 

two-orders-of-magnitude increase 0100critf f= × and three-orders-of-magnitude 

increase 01000critf f= × is almost zero, especially in smaller initial porosity. Thus we 

can take this two-orders-of-magnitude increase 0100critf f= ×  to signal the onset of 

cavitation. They also show that 710−  is small enough to represent 0 0f → + , because 

the difference in principle stretch critλ  and corresponding critical Cauchy stress 

critt μ  among the cases of 6 7 8 910 ,10 ,10 ,10− − − −  is very small. 

It should be noted, however, that using different criteria such as 

one-order-of-magnitude increase 010critf f= × or three-orders-of-magnitude increase 

01000critf f= × may lead to somewhat different values for the critical stretch critλ at 

which cavitation occurs, but the qualitative character of the results remains of course 

unchanged.  

From above discussion, The FEM results in the following section generated in 

this manner (i.e., using 0100critf f= × as cavitation criterion) for the critical stretch 

critλ  and corresponding critical Cauchy stress 11 ( ) ( , )crit crit crit critt μ μλ λ λ λ= ∂Φ ∂  at 

which cavitation occurs on the initial porosity 7
0 10f −= . 

To study the material parameter compressibility ratio 'μ μ , we develop the 

models of compressibility ratios 'μ μ  in the range of 0.1 ' 100μ μ≤ ≤  on initial 

porosity 7
0 10f −=  subject to hydrostatic deformations. First we work out 

relationships of current porosity f  (see Figure 18), porosity ratio 0f f  (see Figure 

19), corresponding Cauchy stress t μ  (see Figure 20) as a function of principle 

stretch λ  for the representative cases of ' 1,10,50μ μ = . The result shows that in 

deformation space with decrease in compressibility ratio 'μ μ  which means the 
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material is more compressible, the compressible Neo-Hookean material is more stable 

means cavitation occurs at large deformations. In stress space, with increase in 

compressibility ratio 'μ μ , corresponding Cauchy stress t μ  increase which means 

material is more stable in incompressibility. 

We also apply the approximately analytical cavitation criterion (25) for 

hydrostatic deformation and the numerical cavitation criterion and compare the result 

together on the deformation space and stress space in hydrostatic deformation. 

Now we use the approximately analytical cavitation criterion (25) to work the 

deformation space for compressible Neo-Hookean material (34) under hydrostatic 

deformations. There now follows the specialization of the cavitation criterion (25) to 

compressible Neo-Hookean materials of the form (34): 

' '
2 10/ 3 16 /3( , ) 1 5 3( ) 0C μ μλ λ λ λ

μ μ
= + + − =                           (41) 

Note that this condition depends on the parameters μ  and 'μ  only through the 

ratio 'μ μ , which, again, serves to measure the compressibility of the material; the 

larger the value of 'μ μ , the smaller the compressibility of the Neo-Hookean solid 

(34). 

Figure 21 illustrates various results for the onset of cavitation in compressible 

Neo-Hookean materials (34), as determined by condition (41) and by finite element 

simulations. It provides results for the critical stretch critλ  at which cavitation ensues 

under hydrostatic loading 1 2λ λ λ= = , as a function of the compressibility ratio 

'μ μ . In line with the accuracy of the criterion (25) for the two preceding classes of 

materials, Figure 21 shows that the critical stretch critλ  determined from (34) is in 

very good agreement with the FEM calculations for all values of the compressibility 

ratio 'μ μ . Moreover, note from this figure that 1critλ ≥  and that it decreases 
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monotonically with increasing 'μ μ . That is, compressible Neo-Hookean materials 

(34) are more stable in deformation space—in the sense that cavitation occurs at 

larger deformations—when they are more compressible. In this regard, it is 

straightforward to verify from (41) that critλ →∞ in the limit as ' 0μ μ → , so that 

cavitation does not occur in this extreme case. This asymptotic behavior is also 

exhibited by the FEM results. On the other hand, in the limit as 'μ μ →∞ , 1critλ →  

according to the approximate criterion (41) as well as to the FEM calculations. This 

limiting behavior indicates that cavitation may take place at zero applied strain in 

compressible Neo-Hookean solids (34) when they are taken to be incompressible. In 

order to corroborate that cavitation does indeed take place in this limit, however, we 

need to check whether the corresponding critical stress remains finite. The reason for 

this extra step is that incompressible solids behave as rigid materials when subjected 

to non-isochoric deformations, such as hydrostatic loading. As a result, the critical 

stretch reduces trivially to 1critλ =  and the relevant question is then whether the 

corresponding critical hydrostatic stress is of finite value. In the event that the critical 

pressure is not finite, cavitation does not, of course, occur. The critical stresses are 

discussed further below, but here we anticipate that, according to the criterion (41), 

they do remain finite in the limit as 'μ μ →∞ . The FEM simulations also appear to 

support that the stresses do remain finite in this limit. Further comment on this 

controversial result is deferred to the discussion of Figure 22. 

We now turn to examine the onset of cavitation in compressible Neo-Hookean 

materials (34) in stress space. To this end, it is expedient first to recognize that the 

cavitation condition (25) in deformation space takes the explicit form 

' 3/ 2 7 / 2 5/ 2 4 '

3/ 2 3/ 2 5/ 2 4

2 2 2 2, 1 3 0
( ) ( ) ( ) ( )

tS t t t t
μ μ

μ μ μ
μ μ μ μ

⎡ ⎤
⎢ ⎥⎛ ⎞

= + + + − =⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

             (42) 

in stress space. Note also that depends only on compressibility ratio 'μ μ , 
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Figure 22 presents results for the critical Cauchy stress 

11 ( ) ( , )crit crit crit critt μ μλ λ λ λ= ∂Φ ∂ at which cavitation ensues in compressible 

Neo-Hookean materials (34) under hydrostatic loading 1 2λ λ λ= = . The results, 

which correspond to the approximate criterion (42) (solid line) and to finite element 

calculations (points), are shown as a function of the compressibility ratio 'μ μ . It is 

interesting to notice that the quantitative agreement between the approximate stress 

criterion (42) and the FEM results is not as good as that exhibited in deformation 

space (see Figure 21). This is because small discrepancies in deformation space get 

amplified by a factor of 'μ μ  in stress space. Another interesting observation from 

Figure 22 is that /critt μ is a monotonically increasing function of the compressibility 

ratio 'μ μ . Physically, this means that compressible Neo-Hookean materials (34) are 

more stable in stress space—in the sense that cavitation occurs at larger 

stresses—when they are more incompressible, which is in direct contrast to the 

behavior exhibited in deformation space (see Figure 21). In particular, note that 

0critt →  as ' 0μ μ → , according to both, the criterion (42) and the FEM 

calculations. On the other hand, in the limit as 'μ μ →∞ , condition (42) renders 

2critt μ= , while the FEM results lead approximately to 2.6critt μ= . Thus, in the case 

when the material is most compressible ( ' 0μ μ = ) cavitation does not occur. By 

contrast, in the case when the material is taken to be incompressible ( 'μ μ = ∞ ), 

cavitation does occur. This latter result is in contradiction with the exact result of Ball 

[12] for incompressible Neo-Hookean materials (35), which are known not to undergo 

radially symmetric cavitation under hydrostatic pressure. An explanation for this 

discrepancy is quite simply that, in the strongly nonlinear limit of incompressibility, 

the approximate criterion (42) is inaccurate and the FEM results for 7
0 10f −= are not 

representative of those for 0 0f = + . While possible, this explanation is not supported 
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by our parametric FEM study of the results for decreasing values of 0f . A more 

interesting explanation—which is supported by our parametric study—is that 

computing the onset of cavitation first and then taking the limit of incompressibility 

(as done here) leads to different results than taking the limit of incompressibility first 

and then computing the onset of cavitation (as done by Ball [12]). In other words, the 

limits of dilute porosity ( 0 0f → + ) and incompressibility ( 'μ μ →∞ ) do not 

commute in general. From a theoretical perspective, this is a very interesting result 

worth of further study by analytical means in order to prove or disprove its verity. 

Moreover, from a practical point of view, it is also worth remarking that initial 

porosities in the order of 7
0 10f −=  (and smaller) are likely to be present in the form 

of defects in real materials. Thus, the proposed criterion (41)—which, again, is in 

agreement with the numerically exact FEM results for small initial porosities in the 

order of 7
0 10f −= —can be used as an efficient tool to estimate the critical loads at 

which defects of realistically small size may rapidly grow to finite size in 

incompressible Neo-Hookean materials. 

5.1.2 Result and Discussion on Generally Non-symmetric 

Deformations 

The structure of this section is organized as following. In subsection 5.1.2.1, 

we will check finite-element approach model by repeating hydrostatic deformation 

result. Then, in subsection 5.1.2.2, we show the result and discussion on numerical 

cavitation criterion for compressible Neo-Hookean material and how small the void 

represents to 0 0f → +  by hydrostatic deformations result. 

5.1.2.1 Check Finite-Element Approach Model. 

As discussed above, 7
0 10f −= is a sufficiently small initial porosity that is 

representative of 0 0f → + , thus we working on generally non-symmetric 
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deformation on cases of 7
0 10f −= . To check the generally non-symmetric 

deformations mesh, we do hydrostatic deformations on compressible Neo-Hookean 

material with compressibility ratio ' 10μ μ =  and check whether this result can 

repeat the previous one.  

Figure 23 presents the result on the current porosity check and Figure 24 

presents the results on the corresponding Cauchy stress check. There are good 

agreements in both procedures. Thus we say our generally non-symmetric mesh is 

safe. 

5.1.2.2 Result and Discussion on Generally Non-symmetric 

Deformations 

To study generally non-symmetric deformations, we consider to generally 

non-symmetric deformations mesh with compressibility ratio ' 1,10,50μ μ = . First to 

solve the problem how to calculate the volume of inside void, from the deformed 

shape, it is very close to eclipse, thus we use eclipse’s volume to get the approximate 

volume of the inside void in the deformation. 

There now follows the specialization of the cavitation criterion (26) to 

compressible Neo-Hookean materials of the form (34): 

'
2 2 5/ 3 8/ 3

1 2 1 2 1 2 1 2 1 2( , ) 1 3 3[( ) ( ) ) 0C μλ λ λ λ λ λ λ λ λ λ
μ

= + + + + − =            (43) 

Note that this condition depends on the parameters μ  and 'μ  only through the 

ratio 'μ μ , which, again, serves to measure the compressibility of the material; the 

larger the value of 'μ μ , the smaller the compressibility of the Neo-Hookean solid 

(34). 

For generally non-symmetric deformation, Figure 25 shows that cavitation 

curves in 1 2( , )λ λ –deformation space for ' 1,10,50μ μ = and cavitation occurs only 
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for volume-increasing deformations (i.e., 1 2 1J λ λ= > ), as it may be physically 

expected. Moreover, this figure shows that cavitation is more prone to occur along 

deformation paths with larger triaxialities, as it may also be physically expected. In 

addition, similar to the results presented in Figure 25 for the special case 1 2λ λ= , 

Figure 25 illustrates that decreasing the compressibility ratio 'μ μ  consistently 

improves the stability of the material—in the sense that cavitation occurs at larger 

deformations—for all applied deformations. In this regard, it is appropriate to remark 

from (43) that, irrespectively of the applied stretches 1λ  and 2λ , cavitation does not 

occur in the limit as ' 0μ μ → . On the other hand, the cavitation curve approaches 

the isochoric curve: 

1 2 1 2( , ) 1 0C λ λ λ λ= − =    as   'μ μ →∞                         (44)  

Again, this is a direct consequence of the fact that as 'μ μ →∞ , the material becomes 

rigid for non-isochoric deformations. In order to conclude whether cavitation takes 

place or not in this degenerate case needs to be investigated in stress space. 

Now we are in the position to examine the onset of cavitation in compressible 

Neo-Hookean materials (34) in stress space. To this end, it is expedient first to 

recognize that the cavitation condition (43) in 1 2( , )λ λ –deformation space takes the 

explicit form 

3/ 2 7 / 21 2 1 2

1 2

3/ 2 5/ 21 2 1 2
2 2

( ) ( )
, 1

( ) ( )

t t t t
t tS t t t t

μ μ μ μ
μ μ

μ μ

+ +
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

  

5/ 2 41 2 1 2
'

5/ 2 41 2 1 2
2 2

( ) ( )
3 0

( ) ( )

t t t t

t t t t
μμ μ μ μ
μ

μ μ

⎡ ⎤+ +⎢ ⎥
− =⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

      (45) 
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in ( )1 2,t tμ μ –stress space. Here, it is recalled that 1t  and 2t  stand for the 

principal Cauchy stresses, as given by expressions (28), where * *
1 2,λ λ  are to denote 

the critical stretches that satisfy condition (27) and numerical cavitation criterion. 

Note also that relation (45)—much like (44)—depends on the parameters μ  and 'μ  

only through the compressibility ratio 'μ μ . 

We conclude this subsection with the discussion of Figure 26, which shows 

cavitation curves in 1 2( , )t tμ μ –stress space for general loading conditions for 

values of ' 1,10,50,μ μ = ∞ , as determined by condition (45). It is interesting to 

remark from this figure that cavitation occurs only in the first quadrant, where both 

components of the stress are tensile 1 2( 0, 0)t tμ μ≥ ≥ . This is in contrast to the 

corresponding results in deformation space (see Figure 25) where cavitation may 

occur even when one of the principal stretches is compressive, namely, when either 

1 1λ ≤  or 2 1λ ≤ . Akin to the results in deformation space, Figure 26 also illustrates 

that cavitation is more prone to occur along loading paths with larger ratios of 

dilatational to distortional stress, as expected on physical grounds. Finally, similar to 

the results for the special case of hydrostatic loading displayed in Figure 26, it is 

worth remarking that compressible Neo-Hookean materials (34) improve their 

stability in stress space—in the sense that cavitation takes place at larger 

stresses—with decreasing compressibility; note in particular that no cavitation takes 

place for ' 0μ μ = and for 'μ μ = ∞  that cavitation occurs at : 

1 2 1 2( , ) ( 1)( 1) 1 0S t t t tμ μ μ μ= − − − =                           (46) 

Interestingly, this behavior is in direct contrast with the corresponding results in 

deformation space (see Figure 25) where decreasing compressibility leads to smaller 

critical stretches at which cavitation occurs. 
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5.2 Blatz-Ko Material 

Another important class of compressible isotropic solids (see, e.g., Section 

II.C in [33] and [34]) are those with stored-energy function 

1 2 1 2 1 2( , ) ( 2 ( 1))k k k
k
μλ λ λ λ λ λ− −Φ = + − + −                           (47) 

where 0μ >  and 0k >  are material constants. When 2k = , (50) reduces to the 

well-known Blatz-Ko material-a phenomenological model for foam rubber [35].  

For hydrostatic deformation, Horgan and Abeyaratne [17] determined the 

exact value for the critical stretch critλ  at which radially symmetric cavitation occurs 

in a Blatz-Ko material ( 2k = ). The result, which is independent of μ , reads as 

1.25954critλ =                                                 (48) 

We develop hydrostatic model by edge mesh on cases of 

4 5 6 7
0 10 ,10 ,10 ,10f − − − −= . The result presented in Figure 27 shows that Blatz-Ko 

material behavior likes Neo-Hookean material: the current porosity f  remained in 

the order of initial porosity up to some critical value of the applied stretch after which 

f  increased very rapidly with increasing deformation (see Figure 27). We also 

calculate the critical principle stretch critλ  for all examined cases based on all three 

numerical cavitation criterions mentioned before and find the critical principle stretch 

critλ  of cases of 7
0 10f −=  based on two-orders-of-magnitude increase 

0100critf f= × and three-orders-of-magnitude increase 01000critf f= ×  is the most 

close to analytical result: 

0

0

1.26009 100
1.26010 1000

crit
crit

crit

f f
f f

λ
= ×⎧

= ⎨ = ×⎩
                               (49) 
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When we want to apply hydrostatic deformations on generally non-symmetric 

deformation mesh, it doesn’t work when cavitation occurs. The reason of this 

phenomenon is the surface instability. The surface instability of the voids is a relevant 

constraint only for periodic microstructures, since it signals—at finite macroscopic 

strains—the onset of local instabilities at the unit cell level, instabilities which are 

detected by the more accurate FEM-based calculations. For random microstructures, 

surface instability of the voids exists even for infinitesimally small macroscopic 

strains, due to strain concentration in the surface of the smallest pores. 
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6 Finite-Element Approach for 3D Problem 

The finite-element approach model of vacuous inhomogeneity is 

infinitesimally small spherical void in the center of a large cube phase is also 

generated in ABAQUS of performed hyperelastic-mechanical analysis by 3D plane 

stress method. According to symmetric geometry, we just generate one eighth of the 

whole model to analyze. 

We develop the mesh of this model with element type C3D8, 3D plane stress 

with 8 nodes per element which located in the vertex, in MATLAB. The procedure of 

making this mesh is organized as following: 

First of all, we develop one layer spherical mesh with nearly cubic elements 

and nearly square cross-section. As we discuss in section 3, when cavitation occurs, 

the length in radial direction 2l  is much larger than those 1l  in other two directions, 

thus we generate the cubic element with initial length ratio 2 1 2l l  (see Figure 28) 

is the same as 2D mesh. We also place 30 elements on the each arc. The difficulty to 

generate this one layer spherical mesh is to make the region A, B and C symmetric to 

the vector (1, 1, 1) and the elements should be distributed even both on the edge and 

inside (see Figure 28). As we know, (x, y, z) in spherical coordinate system is 

cos cos
cos sin
sin

x r
y r
z r

ϕ φ
ϕ φ
ϕ

=
=
=

                                              (50) 

Because the nodes of the elements on the 2 spherical surface and in order to meet the 

requirement initial length ratio 2 1 2l l , we can use following formula 

1 / 60
1 2

i
i

rr θ π
θ+ = =

−
                                       (51) 

easily to control the parameter r  of all nodes on two spherical surface. Now our 

work turns to determine the parameter ϕ  and φ  so that we can make the region A, 

B and C symmetric to the vector (1, 1, 1) and the elements distributed even both on 
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the edge and inside. Our idea is to make the good mesh on three surface of the cube at 

first (see Figure 29 (a)) and then mapping elements on these three surface of cube 

back to the spherical surface. If we place symmetric mesh on these three surface of 

cube symmetric according to vertex V (L, L, L), thus we can get symmetric mesh on 

the region A, B and C of the spherical surface symmetric to the vector (1, 1, 1) after 

mapping. In order to get the distributed even nodes both on the edge and inside, we 

first place the distributed even nodes on the edge. We take the mesh on surface x=L 

for example. We place the nodes like following way:  

tan( *( 1)) / 60x Lz L iθ θ π= = − =                                (52) 

where i  is the place number of the nodes in z-direction. Because there are 30 

elements on the arc, there are 15 elements on the line x=L, y=0 and there are 16 nodes 

on this line which means 1 16i = → . On the line x=L, z=0, we do the similar way: 

tan( *( 1)) / 60x Ly L jθ θ π= = − =                               (53) 

where j  is the place number of the nodes in y-direction and 1 16j = → . Based on 

these nodes, we make straight line from each node to get the perfect rectangular 

elements on the surface x=L (see Figure 29 (a)) and we can see that the coordinates of 

place number ( , )i j  on the surface x=L is: 

tan( *( 1))
tan( *( 1))

x L

x L

x L

x L
z L i
y L j

θ
θ

=

=

=

=

= −
= −

                                         (54) 

Then we do the same thing on surface y=L and z=L. Finally we get the symmetric 

mesh on these three surfaces of cube symmetric according to vertex V (L, L, L) and 

distributed even mesh (see Figure 29(a)). Now we are in the position to mapping back 

to the spherical surface. We take mapping of one node N  on the surface x=L for 

example (see Figure 29 (b)). Our work is to mapping the node N  on the surface x=L 

back to the node 'N  on the spherical. What we need to do is determine the angles  
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ϕ  and φ  because parameter r  can be easily determined by (51), otherwise we also 

make the point N , 'N  and original point O  in the line so that it is very easy to 

determine the angles  ϕ  and φ  of 'N  by the angles  ϕ  and φ  of N  because 

they are the same. The procedure is following and takes N  for example (see Figure 

29 (b)): 

2 2

2 2 2

arcsin( )

arcsin( )

x L

x L x L

x L

x L x L x L

y
x y

z
x y z

φ

ϕ

=

= =

=

= = =

=
+

=
+ +

                                  (55) 

We do the similar way on the other two surface and finally get symmetric spherical 

one layer mesh on the region A, B and C of the spherical surface symmetric to the 

vector (1, 1, 1) and distributed even mesh (see Figure 28). 

From 2D result, we know that there is high stress concentration in the region 

near the void, thus we place the radially symmetric mesh on that region. We use 

formula (51) to determine the radius of 5 layers like the above one layer spherical 

mesh (see Figure 30 (a)). In transition region, we use following formula to determine 

the radius in the edge: 

1
1 *1.05

(1 2 )
iIni

i i

rr
θ

−
+ =

−
                                          (56) 

where Inir  is the last radius of the radially symmetric mesh, i  is the layer number 

(see Figure 30 (b)). For the nodes inside, in transition region, they are not on the 

spherical surface. Taking nodes mapping from surface x=L for example, we use 

following way to determine the location of nodes inside: 
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2 2 2

2 2 2
1 1 1

1

/ cos( ) / ( )

i

i i i

i i i

i i

l L r

OR x y z

NR x y z
DR L cos OR
r r NR OR

l DR

φ ϕ
+ + +

+

Δ = −

= + +

= + +

= −
− −

=
Δ

                                    (57) 

where ir  and 1ir+  are the radius on the edge of layer i  and 1i + , ( , , )i i ix y z  and 

1 1 1( , , )i i ix y z+ + +  are the coordinates of the nodes inside of layer  i  and 1i + . The 

number i  depends on the initial porosity. We also do the similar way on the other 

nodes. Finally we get the good 3D mesh with element type C3D8 (see Figure 30 (b)). 

The way to define the material is the same as what we do in 2D problem.  

The figure 31 represents the stress contour on the case of initial porosity 

4
0 10f −=  and compressibility ratio ' 10μ μ = . 
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7 Results and Discussion on 3D Problem 

In this sequel, we make use of the finite-element approach put forward in 

Section 6 to explicitly determine and discuss the onset of cavitation in variety of 

compressible, isotropic, hyperelastic material under hydrostatic deformation. 

7.1 Compressible Neo-Hookean Material in 3D Problem 

Now we turn to discuss about the compressible Neo-Hookean material in 3D 

problem and use the following compressible Neo-Hookean material (see, e.g., Chapter 

7.4 in [29]): 

1

2 2 2 '
2 3 2

1 2 1 2 32 /3
1 2 3

( , ) [ 3] ( 1)
2 ( ) 2

λ λ λμ μλ λ λ λ λ
λ λ λ
+ +

Φ = − + −                    (58) 

where 0μ >  and ' 0μ >  are material parameters. The stored-energy function (58) 

is a generalization-capable to account for finite compressibility of the standard 

incompressible Neo-Hookean material. Indeed, in the limit as the compressibility ratio 

'μ μ →∞ , (58) reduces identically to  

  
1

2 2 2
1 2 2 3( , ) ( 3)

2
μλ λ λ λ λΦ = + + −                                 (59) 

together with the incompressibility constraint 1 2 3 1J λ λ λ= = . 

We carried out a finite element (FEM) simulation of the problem using the 

commercial code ABAQUS. 

7.2 Check Finite-Element Approach Model. 

The same as 2D problem, we also use incompressible Neo-Hookean material 

(59) to check our 3D model.  

There is only analytical solution on current porosity check. For incompressible 

matrix phase materials, a simple conservation of mass argument (for the matrix phase) 
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allows for the determination of the evolution of the porosity f  as a function of 

deformation. The result in 3D problem is: 

0 0
3

1 11 1f ff
J λ

− −
= − = −                                         (60) 

We develop 3D mesh on the initial porosity 410− , use UHYPER to define the 

incompressible Neo-Hookean material (59) and apply the hydrostatic deformations. 

Figure 32 shows the good match on current porosity check between the FEM result 

and analytical solution (60), thus we can say that our 3D model is suitable to study the 

cavitation in 3D problem. 

7.3 Result and Discussion 

Following 2D problem, in 3D problem we also need to solve is to examine 

how small the void can simulate an “infinitesimal” spherical void and represent 

0 0f → +  for the compressible Neo-Hookean material (58). Specifically, we 

considered 3D model with different small initial porosity of 

4 5 6 7 8 9
0 10 ,10 ,10 ,10 ,10 ,10f − − − − − −= subjected to hydrostatic deformations on its 

boundary and monitored the increase in porosity and the resulting surface tractions. 

Because it is the hydrostatic loading condition, we expect the spherical void can 

remain spherical surface during the deformation. However it is very difficult to keep 

that, especially in smaller initial porosity, because the computer use small line to get 

the approximate arc and we cannot place too many nodes to get a good approximate 

arc. But for the cases of 4 5 6 7 8 9
0 10 ,10 ,10 ,10 ,10 ,10f − − − − − −= , our expectation still 

works.  

For all the examined cases, we print out the relationship between current 

porosity f  and principle stretch λ  (see Figure 33) and the relationship between 

porosity ratio 0f f  and principle stretch λ  (see Figure 34). These two figures also 



 43

show that during deformation the current porosity f  remained in the order of initial 

porosity up to some critical value of the applied stretch after which f  increased very 

rapidly with increasing deformation. We can see that if the initial porosity is smaller 

than 6
0 10f −= , the deformations of current porosity f  and especially of porosity 

ratio 0f f are very close and similar. From above result we can see that the initial 

porosity 7
0 10f −=  is a sufficiently small initial porosity that is representative of 

0 0f → +  for 3D problem. 

We also use three critical value, 010critf f= × , 0100critf f= ×  and 

01000critf f= × , to detect the cavitation as the phenomenon of the sudden growth of 

the void. Based on these three critical value, we work out critical principle stretch 

critλ  (see Figure 35), corresponding critical Cauchy stress critt μ  (see Figure 36) 

according to initial porosity 0f .  

From the figure 35 and 36, we find the difference between critical values from 

0100critf f= ×  and 01000critf f= ×  is smaller than the one between critical values 

from 010critf f= ×  and 0100critf f= × . Otherwise with decreasing in the initial 

porosity, the difference in critical value becomes smaller, especially in cases of initial 

porosity smaller than 6
0 10f −= . Thus we also take this two-orders-of-magnitude 

increase 0100critf f= ×  to signal the onset of cavitation. From above discussion, The 

FEM results in the following section generated in this manner (i.e., using 

0100critf f= × as cavitation criterion) for the critical stretch critλ  and corresponding 

critical Cauchy stress critt μ  at which cavitation occurs on the initial porosity 

7
0 10f −= . 
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To study the material parameter compressibility ratio 'μ μ , we also develop 

the models of compressibility ratios 'μ μ  in the range of 0.1 ' 100μ μ≤ ≤  on 

initial porosity 7
0 10f −=  subject to hydrostatic deformations. First we work out 

relationships of current porosity f  (see Figure 37), porosity ratio 0f f  (see Figure 

38), corresponding Cauchy stress t μ  (see Figure 39) according to principle stretch 

λ for the representative cases of ' 1,10,100μ μ = . The result shows that in 

deformation space with decrease in compressibility ratio 'μ μ  which means the 

material is more compressible, the compressible Neo-Hookean material is more stable 

means cavitation occurs at large deformations. In stress space, with increase in 

compressibility ratio 'μ μ , corresponding Cauchy stress t μ  increase which means 

material is more stable in incompressibility. 

Figure 40 illustrates various results for the onset of cavitation in compressible 

Neo-Hookean materials (58) on the critical stretch critλ  at which cavitation ensues 

under hydrostatic loading by finite element simulations. Note from this figure that 

1critλ ≥  and that it decreases monotonically with increasing 'μ μ . That is, 

compressible Neo-Hookean materials (58) are more stable in deformation space—in 

the sense that cavitation occurs at larger deformations—when they are more 

compressible. In this regard, if critλ →∞ in the limit as ' 0μ μ → , so that cavitation 

does not occur in this extreme case. This asymptotic behavior is exhibited by the FEM 

results. On the other hand, in the limit as 'μ μ →∞ , 1critλ →  as well as to the 

FEM calculations. This limiting behavior indicates that cavitation may take place at 

zero applied strain in compressible Neo-Hookean solids (58) when they are taken to 

be incompressible. In order to corroborate that cavitation does indeed take place in 

this limit, however, we need to check whether the corresponding critical stress 

remains finite.  
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Now we turn to examine the onset of cavitation in compressible Neo-Hookean 

materials (58) in stress space. Figure 41 presents results for the critical Cauchy stress 

critt μ  at which cavitation ensues in compressible Neo-Hookean materials (58) under 

hydrostatic loading 1 2λ λ λ= = . It is also interesting to observe from Figure 41 that 

/critt μ is a monotonically increasing function of the compressibility ratio 'μ μ . 

Physically, this means that compressible Neo-Hookean materials (58) are more stable 

in stress space—in the sense that cavitation occurs at larger stresses—when they are 

more incompressible, which is in direct contrast to the behavior exhibited in 

deformation space (see Figure 40). In particular, note that 0critt →  as ' 0μ μ → , 

according to the FEM calculations. On the other hand, in the limit as 'μ μ →∞ ,  

the FEM results lead approximately to 2.6critt μ= . Thus, in the case when the 

material is most compressible ( ' 0μ μ = ) cavitation does not occur. By contrast, in 

the case when the material is taken to be incompressible ( 'μ μ = ∞ ), cavitation does 

occur.  
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8 Concluding Remarks 

In this thesis, we made use of the finite element method (FEM) to investigate 

the onset of cavitation in nonlinear elastic materials that are subjected to generally 

nonsymmetric loading conditions. The focus was on 2D compressible, isotropic 

materials including the Neo-Hookean and Blatz-Ko materials. We developed a wedge 

mesh to study the response of these materials under hydrostatic loading conditions, 

and tested the results with available analytical solutions for the incompressible 

Neo-Hookean material and the compressible Blatz-ko solid. The wedge mesh was 

then utilized to generate results for a wide range of initial porosities in the range 

f [ , ]− −∈ 12 3
0 10 10  with the objective of understanding how small the initially porosity 

needs to be in order to study cavitation numerically. For 2D compressible isotropic 

materials, we concluded that the case with f −= 7
0 10 was representative of the case 

with f → +0 0 .  

By making use of a square mesh, we generated results for general in-plane 

loading conditions. For the case of compressible Neo-Hookean materials, our results 

indicated that the onset of cavitation depends very strongly on the entire state of stress 

and not just on the amount of hydrostatic stress. In addition, an increase in the 

compressibility of these materials resulted in cavitation occurring at larger critical 

stretches but smaller critical stresses. The results exhibited also very good agreement 

with the theoretical cavitation criterion recently put forward by Lopez-Pamies. 

Some 3D problems were also investigated. Attention was restricted to 

compressible Neo-Hookean materials under hydrostatic loading. We managed to 

develop a robust and structured 3D mesh. The results from this mesh were tested with 

analytical solutions available for incompressible materials subjected to hydrostatic 

loading. In general, the 3D results exhibited the same behavior as those found in the 

2D cases. Namely, the onset of cavitation depends very strongly on the entire state of 
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stress and not just on the amount of hydrostatic stress and larger compressibility 

results in cavitation occurring at larger critical stretches but smaller critical stresses. 
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Figure 1. Schematic representation—in the undeformed configuration—of a 

cylindrical vacuous inhomogeneity, with initially circular cross section, in an infinite 

matrix phase subjected to in-plane principal stretches 1λ  and 2λ  Note that the long 

axis of the void has been aligned with the laboratory basis vector 3e . 
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Figure 2. Schematic representation-in the undeformed configuration-of a spherical 

vacuous inhomogeneity in the center of a large matrix phase subjected to principal 

stretches 1λ , 2λ  and 3λ . 
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(a) 

 

 
 

(b) 
 

Figure 3. (a) Schematic representation of the shell mesh model and (b) shows the 

hydrostatic loading condition applied on the boundary. 

3oθ =

Transfer the nodes on boundary into cylindrical coordinate system to apply the 
hydrostatic loading condition 
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Figure 4. Schematic representation of underformed and deformed configuration of 

the shell mesh model of the compressible Neo-Hookean materials with initial porosity 

210−  and compressibility ratio ' 10μ μ = . 
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Figure 5. Schematic simplifications of procedure of the 2D model of an infinitesimal 

circle in a finite circle into the one layer mesh based on symmetric geometry and 

loading condition. 
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(a) 
 
 
 

 
(b) 

 
 

Figure 6. (a) Schematic representation of the wedge mesh subject to hydrostatic 

loading (b) The undeformed and deformed configuration of wedge mesh model for 

compressible Neo-Hookean materials at initial porosity 2
0 10f −=  and 

compressibility ratio ' 10μ μ = . 
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Figure 7. Schematic representations of the deformation of monitored element located 

near the void when cavitation occurs. 
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Figure 8. Schematic representations of procedure to make rectangular mesh 
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(a) 
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Figure 9. (a) The rectangular mesh at initial porosity 6
0 10f −=  (b) the rectangular 

mesh at initial porosity 7
0 10f −= after changing. 
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Figure 10. Schematic representations of applied loading condition for generally 

non-symmetric deformation in related 1 2( , )e e  deformation space 
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(a) 

 

(b) 

Figure 11. (a) Undeformed and deformed configuration of rectangular mesh for 

compressible Noe-Hookean material at initial porosity 7
0 10f −=  and compressibility 

ratio ' 10μ μ = under loading angle 35oθ = , (b) Undeformed and deformed 

configuration under loading angle 15oθ = −  
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Figure 12. FEM and analytical solution results for current porosity f  check among 

the models of analytical solution, wedge mesh and shell mesh for incompressible 

Neo-Hookean material (37) at initial porosity 210−  and 410− . 
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Figure 13. FEM and analytical solution results for corresponding Cauchy stress t μ  

check among the models of analytical solution, wedge mesh and shell mesh for 

incompressible Neo-Hookean material (37) at initial porosity 210−  and 410− . 
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Figure 14. The FEM results of current porosity f  on wedge mesh models of 

different initial porosity for compressible Neo-Hookean materials (36) with 

compressibility ratio ' 10μ μ =  under hydrostatic deformation. 
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Figure 15. The FEM results of porosity ratio 0f f  on wedge mesh models of 

different initial porosity for compressible Neo-Hookean materials (36) with 

compressibility ratio ' 10μ μ =  under hydrostatic deformation. 
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Figure 16. The FEM results of critical principle stretch critλ  , which are generated by 

three criterions, on wedge mesh models of different initial porosity for compressible 

Neo-Hookean materials (36) with compressibility ratio ' 10μ μ =  under hydrostatic 

deformation 
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Figure 17. The FEM results of critical corresponding Cauchy stress critt μ  , which 

are generated by three criterions, on wedge mesh models of different initial porosity 

for compressible Neo-Hookean materials (36) with compressibility ratio ' 10μ μ =  

under hydrostatic deformation. 
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Figure 18. FEM results for absolute current porosity f  on wedge mesh models of 

initial porosity 7
0 10f −=  for compressible Neo-Hookean materials (36) with 

different compressibility ratio ' 1,10,50μ μ =  under hydrostatic deformations. 
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Figure 19. FEM results for porosity ratio 0f f  on wedge mesh models of initial 

porosity 7
0 10f −=  for compressible Neo-Hookean materials (36) with different 

compressibility ratio ' 1,10,50μ μ =  under hydrostatic deformations. 
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Figure 20. FEM results for corresponding Cauchy stress t μ  on wedge mesh 

models of initial porosity 7
0 10f −=  for compressible Neo-Hookean materials (36) 

with different compressibility ratio ' 1,10,50μ μ =  under hydrostatic deformations. 
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Figure 21. The critical stretch critλ  at which cavitation occurs in compressible 

Neo-Hookean materials subjected to hydrostatic deformation, as a function of the 

compressibility ratio 'μ μ . The solid line corresponds to the variational 

approximation (41), and the points correspond to FEM calculations. 
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Figure 22. The critical corresponding Cauchy stress critt μ  at which cavitation 

occurs in compressible Neo-Hookean materials subjected to hydrostatic deformation, 

as a function of the compressibility ratio 'μ μ . The solid line corresponds to the 

variational approximation (42), and the points correspond to FEM calculations. 
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Figure 23. FEM result in current porosity f  check on the wedge mesh and 

rectangular mesh of initial porosity 7
0 10f −=  for compressible Neo-Hookean 

materials (36) with compressibility ratio ' 10μ μ =  under hydrostatic deformation. 
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Figure 24. FEM result in corresponding Cauchy stress t μ  check on the wedge 

mesh and rectangular mesh of initial porosity 7
0 10f −=  for compressible 

Neo-Hookean materials (36) with compressibility ratio ' 10μ μ =  under hydrostatic 

deformation.. 
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Figure 25. Cavitation curves on FEM results and theory in 1 2( , )λ λ –deformation 

space for compressible Neo-Hookean materials (36) with ' 1,10,50μ μ = , as 

determined by the criterion (46). 
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Figure 26. Cavitation curves of FEM and theory in 1 2( , )t tμ μ –stress space for 

compressible Neo-Hookean materials (36) with ' 1,10,50μ μ = , as determined by the 

criterion (48). 
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Figure 27. Representative FEM results on wedge mesh models of Blatz-Ko material 

(50) with initial porosity 4 5 6 7
0 10 ,10 ,10 ,10f − − − −=  under hydrostatic deformations. 
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Figure 28. Schematic geometry of one layer spherical mesh with near cube element 

and nearly square cross-section 
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(a) 

 
(b) 

Figure 29. Schematic representation of procedure to make the symmetric and 

distributed even element spherical surface 

( , )i j
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V (L,L,L) 
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(a) 

 

 
(b) 

Figure 30. Schematic representation of procedure to make the whole mesh in radially 

symmetric region and transition region 

Radially Symmetric Region 

The first 5 layers keep initial length ratio 2 1 2l l =

ir
1ir+

lΔ

DR( , , )i i ix y z 1 1 1( , , )i i ix y z+ + +
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Figure 31. Schematic representation in the stress contour on 3D mesh models for 

compressible Neo-Hookean materials (58) with initial porosity 4
0 10f −=  and 

compressibility ratio ' 10μ μ = . 
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Figure 32. FEM result in current porosity f  check on the 3D mesh models and 

analytical solution of initial porosity 410−  with incompressible Neo-Hookean 

material (59). 
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Figure 33. The FEM results of current porosity f  on 3D mesh models of different 

initial porosity for compressible Neo-Hookean materials (59) with compressibility 

ratio ' 10μ μ =  under hydrostatic deformation. 
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Figure 34. The FEM results of porosity ratio 0f f  on 3D mesh models of different 

initial porosity for compressible Neo-Hookean materials (58) with compressibility 

ratio ' 10μ μ =  under hydrostatic deformation. 
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Figure 35. The FEM results of critical principle stretch critλ , which are generated by 

three criterions, on 3D mesh models of different initial porosity for compressible 

Neo-Hookean materials (58) with compressibility ratio ' 10μ μ =  under hydrostatic 

deformation. 
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Figure 36. The FEM results of critical corresponding Cauchy stress critt μ , which 

are generated by three criterions, on 3D mesh models of different initial porosity for 

compressible Neo-Hookean materials (58) with compressibility ratio ' 10μ μ =  

under hydrostatic deformation. 
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Figure 37. FEM results for absolute current porosity f  on 3D mesh models of 

initial porosity 7
0 10f −=  for compressible Neo-Hookean materials (58) with 

different compressibility ratio ' 1,10,100μ μ =  under hydrostatic deformations. 
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Figure 38. FEM results for porosity ratio 0f f  on 3D mesh models of initial 

porosity 7
0 10f −=  for compressible Neo-Hookean materials (58) with different 

compressibility ratio ' 1,10,100μ μ =  under hydrostatic deformations. 
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Figure 39. FEM results for corresponding Cauchy stress t μ  on 3D mesh models of 

initial porosity 7
0 10f −=  for compressible Neo-Hookean materials (58) with 

different compressibility ratio ' 1,10,100μ μ =  under hydrostatic deformations. 
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Figure 40. The critical stretch critλ  at which cavitation occurs in compressible 

Neo-Hookean materials (58) subjected to hydrostatic deformation, as a function of the 

compressibility ratio 'μ μ  from FEM calculations. 
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Figure 41. The critical corresponding Cauchy stress critt μ  at which cavitation 

occurs in compressible Neo-Hookean materials (61) subjected to hydrostatic 

deformation, as a function of the compressibility ratio from FEM calculations. 
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Appendix 

Asymptotic expansion in the initial porosity limit f0→0+ 

In this appendix, we sketch out the asymptotic analysis associated with the 

limit 0 0f →  in the estimates (20) and (21) for the total elastic energy E  and 

current porosity f . The analysis is a bit unusual in the sense that as 0 0f →  the 

asymptotic behavior of the underlying variables is different depending of the applied 

loading 1 2F diag( , )λ λ= . In particular, for non-symmetric loading conditions 

1 2( )λ λ≠ —as opposed to hydrostatic loading 1 2( )λ λ= —the asymptotic behavior for 

small deformations of up to order 
2

F I− is different from the behavior for 

deformations larger than order 
2

F I− . In this appendix, we present details only for 

the large-deformation case, which is the relevant case for our purposes since 

cavitation does not occur in the small-deformation regime. It is noted that the 

asymptotic solution resulting from the heuristic derivation that follows has been 

checked to be in agreement with the full numerical solution. 

Motivated by numerical evidence from the results for small values of 0f , we 

start out by assuming that the 4 relevant unknowns in this problem (i.e. 1 2 3 4, , ,l l l l ) are 

of the form 

2 2
1 1 2 0 0 2 1 2 0 0( ), ( )l a a f O f l b b f O f= + + = + +  

2 2
3 1 2 0 0 4 1 2 0 0( ), ( )l c c f O f l d d f O f= + + = + +                     (A.1) 

in the limit as 0 0f → . Here, 1 2 1 2 1 2 1 2, , , , , , ,a a b b c c d d  unknown coefficients that need 

to be determined from the asymptotic analysis that follows. Having introduced the 

ansatz (A.1), it proves now helpful to spell out the corresponding expansions for the 
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components of 
(1)

F and 
(1)

F -quantities needed in the eventual computation of the 

estimate (20) for E . Thus, substituting expressions (A.1) in following relation: 

 
1(1)(1) 1 (1)

0F(X) F F P L (F)f S
−−⎡ ⎤= = − −⎣ ⎦                         (A.2) 

leads to 

(1)(1) 2
11 111 0 0

(1)(1) 2
22 222 0 0

( )

( )

F F f O f

F F f O f

λ

λ

= + +

= + +
                                     (A.3) 

and, 
(1) (1)
12 21 0F F= = , where use has been made of the specific diagonal form 

(12) for the applied loading F . The explicit form of the coefficients 
(1)
11F  and 

(1)
22F  

in these last expressions is too cumbersome to be included here. In any case, at this 

stage it suffices to remark that they are known in terms of the coefficients 1 1 1, ,a b c , 

and 1d  introduced in (A.1). Moreover, substituting (A.1) in following relations: 

( )( )
( ) ( ) ( )( )

(1)
1 3 1

11 1
2
1 2 1 3 1

(1)
1 3 1

22 2
2
1 2 1 3 1

(1) (1) (1) (1)
11 22 11 221 2 3

2 2(1) (1) (1) (1)
11 22 11 221 24 4 3 4

( 1)
4 4

4( 1)
2 4 4

2

2

q k kF sign J
q k q k k

q k kF sign J
q k q k k

F F F F k

F F k q k q F F

λ

λ

λ λ

λ λ

+
= − −

+ +

+
= − −

+ +

= − − −

+ = + − − −

               (A.4) 

leads to 

( ) ( )

(1) 1/ 2 3/ 2 5/ 2
11 1 1 0 2 0 0

(1) 1/ 2 3/ 2 5/ 2
22 2 1 0 2 0 0
(1) (1) 2 3
11 22 1 0 2 0 0

2 2(1) (1) 2 3
11 22 1 0 2 0 0

( )

( )

( )

( )

F x f x f O f

F y f y f O f

F F p f p f O f

F F s f s f O f

λ

λ

= + + +

= + + +

= + +

+ = + +

                            (A.5) 

where, similar to (A.2), the coefficients in these expressions are (known functions of 

the coefficients defined in (A.1)) too cumbersome to be given explicitly. In passing, it 
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is instructive to note from (A.5) that the “invariants” 
(1) (1) (1)

I F F= i and 
(1) (1)

det FJ =  

take the asymptotic form 
(1) (1) (2)1/ 2 3/ 2

1 20 0 0

(1) (1) (2)1/ 2 3/ 2
1 20 0 0

( )

( )

I I I f I f O f

J J J f J f O f

= + + +

= + + +
                              (A.6) 

Here, it is recalled that 
2 2
1 2F FI λ λ= = +i , 1 2det FJ λ λ= = , and 

(1)
1 1 21 22 2I x yλ λ= + , 

(1) 2 2
2 1 1 1I x y s= + + , 

(1)
1 2 11 2J x xλ λ= +  and 

(1)
2 1 1 1J x y p= − . 

Next, by making use of expressions (A.1), (A.3), (A.5) and (A.6) in following 

equation,  

(1) (1)(1) (1)(F ) (F) (F F)S S L− = −                                   (A.7) 

A hierarchical system of equations is obtained for the unknown coefficients 

introduced in (A.1). The first set of equations, of order 0
0( )O f , can be shown to yield 

the following two non-trivial relations: 

1 2 Id = Ψ  and 1 1 1( 2 )( )I I Jc a b= − Ψ −Ψ +Ψ                      (A.8) 

where it is recalled that ( , )I I J IΨ = ∂Ψ ∂  and ( , )J I J JΨ = ∂Ψ ∂ . The 

second set of equations, of order 1/ 2
0( )O f , renders 

2 2 2
2 11

1 2 2 2
1 2

( 2 )(4 (4 ))
2

(4 (4 )
I I J I J

I
I J I J

a
b

λ λ
λ λ

− Ψ Ψ Ψ + Ψ +Ψ
= Ψ +

Ψ Ψ + Ψ +Ψ
                 (A.9) 

Note that expressions (A.8) and (A.9) completely define the leading order behavior of 

the unknown moduli 1 2 3 4, , ,l l l l  in (A.1) up to the coefficient 1a . More importantly, 

expressions (A.8) and (A.9) turn out to be sufficient—in spite of the fact that a1 is not 

known at this stage—to fully determine the first correcting terms of all components of 

(1)
F and 

(1)
F . The results read as follows: 
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2 2
(1) 2 1
11 2 2

2 2
(1) 1 2
22 2 2

4 (4 )
4

4 (4 )
4

I J I J

I J

I J I J

I J

F

F

λ λ

λ λ

Ψ Ψ + Ψ +Ψ
= −

Ψ −Ψ

Ψ Ψ + Ψ +Ψ
= −

Ψ −Ψ

                             (A.10) 

and 1 1 0x y= = , 

2 2 2 2
2 1 1 2

1 2 2 2

4 3 2 2 3 4

1 2 2 2

(4 (4 ))(4 (4 ))
(4 )

16 64 24 16
(4 )

I J I J I J I J

I J

I I J I J I J J

I J

p

I J I J I
s

λ λ λ λΨ Ψ + Ψ +Ψ Ψ Ψ + Ψ +Ψ
=

Ψ −Ψ

Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ
=

Ψ −Ψ

        (A.11) 

Making use now of the explicit relations (A.10) and (A.11), together with the 

asymptotic expressions (A.3) and (A.5) for
(1)

F and 
(1)

F , it is straightforward to show 

that in the limit as 0 0f →  the estimate (20) for the total elastic energy E  reduces 

identically to equation (22) in the main body of the text. 

Moreover, after having computed the correcting terms (A.10) for 
(1)

F , it is 

trivial to deduce (with the help of the global average condition 
(1) (2)

0 0F (1 )F Ff f= − + ) that the average deformation gradient 
(2)

F  in the cavity of 

the LCM—a quantity needed in the computation of the estimate (21) for the porosity 

f —is of the form 

(2) 1 2
11 02 2

(2) 2 1
22 02 2

4 (2 )
( )

4

4 (2 )
( )

4

I I J

I J

I I J

I J

F O f

F O f

λ λ

λ λ

Ψ Ψ + Ψ
= +

Ψ −Ψ

Ψ Ψ + Ψ
= +

Ψ −Ψ

                            (A.12) 

(2) (2)
12 21 0F F= = , in the limit as 0 0f → . It then follows immediately that 

2
(2) 1 2 2 1

02 2 2

16 (2 )(2 )
detF ( )

(4 )
I I J I J

I J

O f
λ λ λ λΨ Ψ + Ψ Ψ + Ψ

= +
Ψ −Ψ

            (A.13) 
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and hence that in the limit as 0 0f →  the estimate (21) for the current porosity f  

reduces to equation (23), as given in the main body of the text. 

For completeness, we record here that expressions (22) and (23) may be 

alternatively written in terms of the stretch-based form of the stored-energy function 

Φ  as 

1 1 2 1 2 2

1 2

1 20

3 3
1 2 1 2

02 2

(F) (1 ) ( , )

3 ( )
( )

2( )

E f

O fλ λ λ λ λ λ

λ λ

λ λ

λ λ λ λ

= − Φ −

Φ − Φ Φ Φ − Φ − Φ
+

Φ −Φ

        (A.14) 

and 

1 2 1 2

1 2

2
1 2

02 2
1 2

4 ( )
( )

( )
f O fλ λ λ λ

λ λ

λ λ

λ λ

Φ Φ Φ − Φ
= +

Φ −Φ
                          (A.15) 

where, similar to the notation employed in (A.14) and (A.15), 

1
1 2 1( , )λ λ λ λΨ = ∂Ψ ∂  and 

2
1 2 2( , )λ λ λ λΨ = ∂Ψ ∂ .  

 


