

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Analysis of Resource Scheduling Strategies in

Parallel, Distributed and Grid Computing

Systems

A Dissertation Presented

by

Kijeung Choi

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2009

Copyright by

Kijeung Choi

2009

Stony Brook University

The Graduate School

Kijeung Choi

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Thomas G. Robertazzi – Dissertation Advisor
Professor, Department of Electrical and Computer Engineering

Wendy Tang – Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

John Murray
Associate Professor, Department of Electrical and Computer Engineering

Hussein Badr
Associate Professor, Department of Computer Science

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Analysis of Resource Scheduling Strategies in Parallel,
Distributed and Grid Computing Systems

by

Kijeung Choi

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

Large-scale parallel and grid computing systems are becoming more mainstream
in order to achieve high performance. The handling of large volumes of compu-
tational load on distributed and parallel computing systems is becoming a more
and more challenging task. In this dissertation, we consider the problem of the
analysis of resource scheduling strategies in parallel, distributed and grid com-
puting systems. We employ a most promising algebraic means of determining
the optimal allocations of load fractions to processors and links in a given inter-
connection topology, Divisible Load Theory (DLT). We investigate scheduling
on a real-time networks with arbitrary processor release times. The theoretical
analysis shows that generated solutions based on a conjectured timing model
does not always admit a feasible solution. A heuristic algorithm for generat-
ing sufficient models for a feasible solution is developed. For the next topic,
scheduling scenarios in wireless sensor networks, which are dynamically grow-
ing and promising distributed computing systems, are examined based on DLT.
The performance of these scenarios is examined with respect to different sens-
ing speeds, communication speeds, and information utility constant parameters.
The special bounds for the ratio of speed parameters for the maintenance of the
minimum round time for certain scenarios are derived. Mathematical analysis
based on DLT contributes to interpret and evaluate performance of the wireless
sensor networks. For the next study, we consider a simulation of the adaptive
capacity utilization problem for data transfers between multiple source and des-
tination nodes interconnected by modern, high-performance, hybrid networks

iii

that support resource reservations. We account for a file transfer scenario using
node capacity, file size, file transfer start time, and the deadline of files when de-
termining the explicit capacity of Virtual Paths (VPs) across a backbone. Two
opposite heuristic algorithms are designed to react to file transfers according to
the temporal capacity of VPs for multiple sources and destinations networks. For
the next topic, a special type of parallel computing system, “Grid” computing
systems, has appeared as a promising trend for large-scale distributed parallel
processing systems. An optimal computing power allocation solution is adapted
to divisible load in a parallel computing grid is with an idealized two sources
and a single sink computing processor. For the last topic, one of the major chal-
lenges to all processor requirements for high performance network systems now
and in the future will be low cost. By applying DLT, we consider the problem
of monetary network cost on a homogeneous tree networks. Our objective is
to analyze quantitative and qualitative trends of monetary network cost against
ratio of network speed parameters and to determine relationships between the
network cost and the network environment. As going to Terascale / Petascale
high performance computing (HPC) systems and beyond means that the num-
ber of components (cores, interconnect, storage) within such a system will grow
enormously, it is obvious that these highly parallel systems will raise questions
about reliable information about resource management and scheduling. Thus, it
can be expected that adaptation of DLT is promising technique for a new era of
HPC especially for resource allocation, computing power adjusted according to
computing load, and network performance prediction in a parallel paradigm.

iv

Contents

List of Figures vii

List of Tables x

Acknowledgements xi

1 Introduction 1
1.1 Related Studies . 2
1.2 Major Contribution . 3

2 An Exhaustive Approach to Release Time Aware Divisible Load Schedul-
ing 6
2.1 Problem Formulation and Preliminary Remarks 7
2.2 A bus network with arbitrary release times 10

2.2.1 Constraint I : ri+1 − si ≤ αizTcm 12
2.2.2 Constraint II : ri+1 − si > αizTcm 14
2.2.3 Exhaustive search algorithm . 18

2.3 Performance evaluation . 23
2.4 Concluding remarks . 27

3 Divisible Load Scheduling in Clustered Wireless Sensor Networks 28
3.1 Problem Formulation and Preliminary Remarks 30
3.2 Single Cluster based hierarchical WSN scheduling 32

3.2.1 Single Channel with no front-end processor, SCnP 32
3.2.2 Multi Channel with no front-end processor, MCnP 39
3.2.3 Single Channel with front-end processor, SCP 44
3.2.4 Multi Channel with front-end processor, MCP 48

3.3 Multi-Cluster based hierarchical wireless sensor network scheduling 51
3.3.1 Single Channel with no front-end processor 52
3.3.2 Multi Channel with no front-end processor 53
3.3.3 Single Channel with front-end processor 55
3.3.4 Multi Channel with front-end processor 57

3.4 Performance evaluation . 59
3.4.1 Feasible measurement instruction assignment time 59
3.4.2 Minimum round time . 60
3.4.3 Speedup . 63

v

3.4.4 Energy Dissipation . 64
3.4.5 3D Cluster Model . 71

3.5 Concluding remarks . 73

4 Resource Scheduling Heuristics for Data Intensive Networks 76
4.1 Problem Formulation and Preliminary Remarks 78
4.2 Time varying Capacity analysis . 80
4.3 Capacity scheduling heuristic . 83

4.3.1 Most Conservative (MC) heuristic algorithm 85
4.3.2 Load Balancing (LB) heuristic algorithm 87

4.4 Performance comparison of the heuristics . 87
4.4.1 Nodal capacity comparison . 87
4.4.2 File size variation . 92
4.4.3 File transfer time variation . 94
4.4.4 File transfer start time variation . 96

4.5 Concluding remarks . 96

5 Grid Scheduling Divisible Load with Load Adaptive Computing Power 99
5.1 Problem Formulation and Preliminary Remarks 100
5.2 Analysis of Adaptive Computing Speed . 102
5.3 Performance evaluation . 109
5.4 Concluding remarks . 112

6 Cost Performance Analysis in Parallel Computing Networks with Divisible
Load Scheduling 113
6.1 Problem Formulation and Preliminary Remarks 114
6.2 Cost analysis of homogeneous single level tree networks 115

6.2.1 Sequential load distribution . 116
6.2.2 Simultaneous load distribution . 122

6.3 Cost Performance Evaluation . 128
6.4 Concluding remarks . 132

7 Cost Performance Analysis in Multi-Level Tree Networks 133
7.1 Problem Formulation and Preliminary Remarks 134
7.2 Cost analysis of homogeneous tree networks 136

7.2.1 Single Level Tree . 136
7.2.2 Multilevel Tree . 141

7.3 Cost Performance Evaluation . 150
7.4 Concluding remarks . 152

8 Future Work 155

Bibliography 157

Appendix 165

A Discretization of Continuous Integration 166

vi

List of Figures

2.1 Bus network architecture. 8
2.2 Sequential Distribution and Staggered Start, ri+1 − si ≤ αizTcm 11
2.3 Sequential Distribution and Staggered Start, ri+1 − si > αizTcm 15
2.4 An example of a timing model, one of 2n−1 cases 17
2.5 Exhaustive Search Algorithm . 20
2.6 Average number of utilized processors vs. average release time 24
2.7 Average minimized finish time vs. average release time 24
2.8 Trend of the Constraint I and II . 25

3.1 Three tier hierarchical wireless sensor network topology. 32
3.2 Timing diagram for single channel hierarchical wireless sensor network with

no front-end processors. 34
3.3 Timing diagram for multi channel hierarchical wireless sensor network with

no front-end processors. 39
3.4 Timing diagram for single channel hierarchical wireless sensor network with

front-end processors. 43
3.5 Timing diagram for multi channel hierarchical wireless sensor network with

front-end processors. 47
3.6 The equivalent flat wireless sensor network topology with intelligent sensor

nodes . 50
3.7 Timing diagram for single channel flat wireless sensor network with homoge-

neous intelligent sensors with no front-end processors. 51
3.8 Timing diagram for multi channel flat wireless sensor network with homoge-

neous intelligent sensors with no front-end processor. 54
3.9 Timing diagram for single channel flat wireless sensor network with homoge-

neous intelligent sensors with front-end processor. 56
3.10 Timing diagram for multi channel flat wireless sensor network with homoge-

neous intelligent sensors with front-end processor. 58
3.11 Total round time versus the number of senor nodes for the fully homogeneous

cluster with variable y. 61
3.12 Total round time versus the number of sensor nodes for the fully homogeneous

cluster with variable z. 62
3.13 Total round time versus the number of sensor nodes for the fully homogeneous

cluster with variable ρ. 63
3.14 Speedup for the fully homogeneous cluster with variable ρ and y. 65
3.15 Speedup for the fully homogeneous cluster with variable ρ and z. 66

vii

3.16 Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable y. 67

3.17 Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable z. 68

3.18 Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable ρ. 69

3.19 MCnP scheduling for 3D Cluster model . 73
3.20 Energy dissipation versus Target location MCnP scheduling. 74

4.1 Virtual connections between multiple source nodes and destination nodes . . 78
4.2 Example of reserved capacity temporal variation, C(t) on V P(i,j). Here, T is

current time . 81
4.3 Example of capacity temporal variation of a VP connecting the ith source

node and the jth destination node. Here, C1 and C2 are two different levels
of reserved capacity. 81

4.4 MC heuristic modules. (a) VP selection module, (b) Time-slice search mod-
ule, (c) Time-slice selection module. 86

4.5 State of the capacity reservation over 20 file transfer requests with 1 rejection 88
4.6 Average node utilization vs. file size, (a) BE-MC. (b) BE-LB. 90
4.7 Average node utilization vs. file size, (a) MC. (b) LB. 91
4.8 (a) Average rejection rate vs. file size, f . (b) Average time-slice modification

rate vs. file size, f . 93
4.9 (a) Average rejection rate vs. file transfer time, TD − TS. (b) Average time-

slice modification rate vs. file transfer time, TD − TS. 95
4.10 (a) Average rejection rate vs. file transfer start time, TS. (b) Average time-

slice modification rate vs. file transfer start time, TS. 97

5.1 Grid network with two load sources and a load computing sink. 100
5.2 Generalized load distribution with two sources and a multiprogrammed sink. 103
5.3 Adaptive computing speed against C, t = 0, (a) α1 < α2, (b) α1 = α2, (c)

α1 > α2. 108
5.4 Adaptive computing speed against C, t = 0.25, (a) α1 < α2, (b) α1 = α2, (c)

α1 > α2. 108
5.5 Adaptive computing speed against C, t = 0.41, (a) α1 < α2, (b) α1 = α2, (c)

α1 > α2. 109
5.6 QP optimal load solution against t. 110
5.7 Minimum average load weighted computing finish time against t. 111

6.1 Timing diagram of N children processors with a root processor with sequential
load distribution. 116

6.2 Timing diagram of N children processors with a root processor with simulta-
neous load distribution. 122

6.3 Total cost, Ctotal against the number of processors, N and speed ratio, σ. . . 127
6.4 Sequential Distribution. Isocost lines with variable, the number of processors,

N and speed ratio, σ. 129

viii

6.5 Simultaneous Distribution. Isocost lines with variable, the number of proces-
sors, N and speed ratio, σ. 130

6.6 Cost efficiency, EC against the number of processors, N and speed ratio, σ. . 130

7.1 M level tree with root (parent) processors with N children processors. 135
7.2 Timing diagram of N children processors with a root processor with sequential

load distribution. 136
7.3 ∆T n

f and ∆Cn
total vs. n with σ = 0.5, 0.1, and 0.05. 150

7.4 ρm vs. the number of processors, N and m. 151
7.5 Total cost, CM

total,N vs. the number of processors, N and level of tree, M . . . 152
7.6 Speedup, SM

N vs. the number of processors, N and level of tree, M 153
7.7 Cost efficiency, EC vs. the number of processors, N and level of tree, M . . . 153

ix

List of Tables

3.1 Example of the condition for the feasible measurement instruction assignment
time. 59

3.2 Simulation speed parameters. 60

4.1 Simulation parameters for the comparison of the heuristics 87

5.1 Analytic optimal solutions. 110

x

Acknowledgements

Foremost, I would like to express my deep and sincere gratitude to my advisor, Profes-
sor Thomas G. Robertazzi, Ph.D, Electrical and Computer Engineering Department, Stony
Brook University. His wide knowledge and his logical way of thinking have been of great
value for me. His understanding, encouraging and personal guidance have had a remarkable
influence on my entire career in the field of parallel and distributed systems.

I owe my most sincere gratitude to Distinguished Professor, Gregory Belenky, Ph.D, who
gave me important guidance during my first step into Master studies and gave me untiring
help during my difficult moments.

I am also deeply grateful to Professor Petar M. Djurić, Ph.D, who gave me the oppor-
tunity to study particle filter. His kind support and guidance have been of great value in
my research.

I wish to sincere thank Dr. Dimitrios Katramatos, Ph.D and Dr. Dantong Yu, Ph.D,
Terapaths research team in Brookhaven National Laboratory, for their guidance and inter-
esting discussions on network resource scheduling.

I also wish to specially thank Dr. Marcus M. Edvall, Tomlab Optimization Inc, for his
kind assistance and guidance in utilizing nonlinear programming.

Last but not the least, my love goes to my families for the emotional support and en-
couragement underlying this dissertation. Thanks to my father, Taeyoung Choi, Professor,
Ajou University., my mother, Jinja Kim, Pharmacist, Incheon International Airport, and
my lovely younger sister, Youlan Choi for being a source of pride to me.

The financial support of Stony Brook University is gratefully acknowledged.

Chapter 1

Introduction

Future increases in computing network performance have been shown to be achieved through

increases in system scale using a larger number of components, utilizing large computing

resources for a single problem. Thus, the handling (scheduling) of large volumes of com-

putational load on such large parallel and distributed computing networks is becoming a

more and more challenging task. To fulfill an emerging need for the efficient scheduling of

computing load, a new mathematical tool, called divisible load theory (DLT) [1],[2],[3], has

been created to allow tractable and realistic performance analysis of systems incorporating

communication and computation issues, as in parallel and distributed processing. In DLT,

it is assumed that computation and communication loads can be arbitrarily partitioned into

infinitesimally small fractions (arbitrarily divisible) and distributed among processors and

links in the network. DLT basically adopts a load property that there are no precedence

relations among the load fractions. A key feature of this divisible load scheduling theory is

that it uses a linear mathematical model of the computation (processor) speed and commu-

nication (link) speed parameters in devising efficient load scheduling strategies. Basically,

in DLT, the communication time is assumed to be linearly proportional to the amount of

load that is transferred over the link, and the computation time is linearly proportional

to the amount of load assigned to the processor to be computed. Considerable attention

was focused on minimizing the total processing time of the entire load in a large amount

1

of studies. Based on the linear system modeling, a recursive deterministic mathematical

formulation is often used to find the optimal fractions of the entire load such that the to-

tal processing finish time is a minimum. The optimal solution for a set of linear recursive

equations characterizing time delay in communication and computation is imposed by the

optimality principle [1], and is the key to DLT. Load scheduling strategies can be categorized

according to the equipment of front-ends to processors and to possibility of simultaneous

load distribution from root (originator) to processors. In the without front-end case, a pro-

cessor can compute or communicate, but not do both at the same time (staggered start).

On the other hand, in the with front-end case, a processor can begin computation as soon

as it begins to receive load (simultaneous start). Simultaneous load distribution is possible

as long as the speed of the CPU is fast enough to continually load buffers for each of its

output ports.

1.1 Related Studies

DLT is a powerful concept for the performance analysis of networks of processors and links.

The creation of DLT is motivated by modeling of a linear sensor network of communicating

processors [4]. Because the theory’s linearity and continuous mathematics framework, the

tractability of DLT became apparent through early work. It has been examined for net-

work topologies including linear daisy chain, bus network, and tree networks using a set

of recursive equations [4],[5],[6],[7],[8],[9]. Load distribution strategies for multi-dimensional

mesh networks was presented [10],[11],[12],[13],[14],[15]. In [16] the concept of time varying

computational and communication environment was introduced. Optimal conditions were

found which determine which processors have to be utilized in order to minimize the finish

time [17]. The computational complexity in DLT is considered in [18],[19]. Systems with

memory size limitations are analyzed based on DLT in [20],[21],[22]. DLT has been applied

in various research areas such as computational biological [23], theoretical matrix-vector

computation [24], and image processing techniques [25],[26].

2

1.2 Major Contribution

My research begins with scheduling on a real-time homogeneous single-level tree network

(bus network) with arbitrary release times. A scheduling policy with sequential distribution

and staggered start is considered. The theoretical analysis shows that generated solutions

based on a conjectured timing model does not always admit a feasible solution. I suggest a

heuristic algorithm for generating sufficient models for a feasible solution to be found. The

proposed heuristic algorithm is quite promising as a starting point for generating appropri-

ate timing models for networks composed of processors with arbitrary release times. It also

seems of interest to extend the conjecture based approach to other network models based on

a simultaneous distribution and the simultaneous start scheduling strategy. This optimiza-

tion problem has a rich structure and open challenges includes developing scalable, rather

than exhaustive, algorithms for load allocation optimization and a better understanding

of the problems feasibility conditions. I believe that this work is significant for showing a

method to take into account load scheduling with processors with arbitrary release times.

The second research area involves several scheduling scenarios of homogeneous single cluster

wireless sensor networks (WSNs). The performance of these scenarios is examined with re-

spect to the different sensing speed, communication speed, and information utility constant

parameters. I derive the condition for the feasible measurement instruction assignment time

constant. The special bounds for the ratio of speed parameters for the maintenance of the

minimum round time for certain scenarios are also derived. As an extension to the work, an

analysis of a multi-cluster based wireless sensor network topology with a speedup analysis

for possible scenarios and a corresponding comprehensive interpretation with mathematical

derivation are performed.

Another interesting research effort was performed with several research engineers at Brookhaven

National Laboratory (BNL), handling large volumes of computational load on distributed

and parallel high performance networks. In this work, we consider the adaptive capac-

ity utilization problem for data transfers between multiple source and destination nodes

3

interconnected by modern, high-performance, hybrid networks that support resource reser-

vations. We account for a file transfer scenario using node capacity, file size, file transfer

start time, and the deadline of files when determining the explicit capacity of Virtual Paths

(VPs) across a backbone. Our work is the first attempt to systematically investigate the

nature of capacity reservation on VPs. We propose two heuristic algorithms referred to as

the Most Conservative (MC) algorithm and the Load Balancing (LB) algorithm using a

newly introduced parameter, capacity utilization. These two opposite heuristic algorithms

are designed to react to file transfers according to the temporal capacity of VPs for multiple

sources and destinations networks. The proposed heuristic algorithms are quite promising

as a starting point for studying the scheduling of file transfers through modern hybrid high-

performance networks.

Future increases in computing network performance have been shown to be achieved through

increases in system scale using a larger number of components, utilizing large computing

resources for a single problem. A promising trend in this regard is Grid scheduling. A

special type of parallel computing system, ”Grid” computing systems, have appeared as a

promising trend for large-scale distributed parallel processing systems. Grid computing is

applying the resources of many computers in a network to a single task at the same time. For

collaborative grid computing across many computers, each computer is multiprogrammed.

Multiprogramming is the technique of running several programs at a time using timesharing.

It allows a computer to do several tasks at the same time. Thus, multiprogramming creates

logical parallelism. In this dissertation, an optimal computing power allocation solution is

adapted to divisible loads in a parallel computing grid with an idealized two source and

a single sink processor model. We note that the analysis of the optimal computing power

allocation is provided for the first time. A more comprehensive approach with more precise

Grid models is worth addressing in future works.

One of the major challenges to all processor requirements for high performance network

systems now and in the future will be low cost. By applying DLT, we consider the problem

of monetary network cost on a homogeneous tree networks. Our objective is to analyze

4

trends of monetary network cost against ratio of network speed parameters and to deter-

mine relationships between the network cost and the network environment. To be specific,

two strategies regarding load distribution (sequential load distribution and simultaneous

load distribution) are discussed. The cost trends in various networks conditions are studied

for the both cases of load distribution. It is apparent that quantitative monetary cost is

important to scale cost demand and perform parallel processing under a limited monetary

budget. Further, the quality of monetary usage is worth taking into account for the both

cases of load distribution. In other words, how efficiently the monetary cost is spent for the

parallel processing indicates the value of the unit cost. It is found that cost efficiency is a

good indicator of the quality of cost consumption in high performance parallel processing.

New enhanced metrics for cost analysis are worth being developed for evaluating new trends

in cost performance.

5

Chapter 2

An Exhaustive Approach to Release

Time Aware Divisible Load

Scheduling

Most of the previous studies adopting different load distribution strategies so far had as-

sumed a network in which there are no time constraints. In other words, it was assumed

that all the processors in the system are available from the time instant at which the root

processor starts the divisible load distribution. In practical scenarios, this is not always

the case. We refer to the time instance at which a processor is available for processing

the divisible load as release time. Some recent studies [27],[28] present real-time scheduling

strategies involving the release time of processors and processing deadlines based on the

classic DLT analysis. Load scheduling adopting multi-installment techniques [29] in bus

networks with release times is analyzed in [30]. Release time aware load scheduling with

buffer size constraints is considered [31]. A heuristic strategy is proposed for scheduling in

linear daisy chain networks with release times [32].

The analysis of these preceding studies are implicitly restricted to the scenario that all dis-

tributions of load fractions from a root processor are completed before the earliest release

time is reached. In this chapter, we release this restriction in that the distribution of the

6

load fractions starts once the first child processor is released. We assume that processors in

the network are not equipped with front end processors. Hence, computation occurs only

after communication ends (i.e., staggered start). The load distribution occurs in a sequential

manner. With the sequential distribution and staggered start scenario, many possible mod-

els with associated timing diagrams restricted with two constraints need to be considered

to obtain an optimal solution in terms of minimum processing finish time.

The intriguing fact here is that the developed closed form solutions from the possible timing

models with two constraints may give us multiple feasible solutions, but not an optimal

solution. In other words, the solutions may not follow the timing models of analysis. Put

another way, optimal load allocations depend on release times but the timing of release

times depends on the optimal load allocation solution. Then, we may be caught in a vicious

circle. To resolve the circular reasoning problem, we propose an exhaustive search algorithm

to search a timing model for an optimal solution. Several important aspects regarding the

scheduling behavior of the exhaustive search algorithm are demonstrated through a simula-

tion study.

The remainder of this chapter is organized as follows. Section 2.1 presents the types of

notations and analytic background. Section 2.2 analyzes the diagrams based on the two

timing constraints and demonstrates the exhaustive search algorithm. Simulation results

showing the behavior of the exhaustive search algorithm are discussed in Section 2.3.

2.1 Problem Formulation and Preliminary Remarks

Consider the case where a bus network model consists of a root processor and n children pro-

cessors. The children processors p1, p2, . . . , pn are connected to the root processor through

a bus. The root processor divides the total load into n parts, namely, α1, α2, . . . , αn. Then,

the root processor distributes the load fractions to the children processors, respectively (see

Fig. 2.1).

In this chapter, the following assumptions are initially made:

7

Root (BCU)
p1 p2 pnw, r1 w, r2 w, rn...

z1 2 n
Figure 2.1: Bus network architecture.

1. The root processor (BCU) does not participate in load computation.

2. The root processor (BCU) distributes load fractions to all the children processors in se-

quential manner.

3. The children processors are not equipped with front-end processors. If a processor does

not has a front-end processor, it can compute or communicate, but not do both at the same

time (i.e., staggered start scenario). The load distribution from the root processor to a

children processor can not take place before the children processor is released.

4. Each of the children processors have a capability to start processing as soon as the pro-

cessor becomes available at release time ri, where i = 1, 2, . . . , n.

5. Each of the children processors stops computing at the same time. Intuitively, this is

because otherwise some processors would be idle while others were still busy. A rigorous

proof for this argument in the case of linear, bus, and tree network parameters, is given

in [1].

6. The root processor (BCU) knows the release times of the processors.

7. Without loss of generality, the order of the children processors follows the order in which

their release times increase, that is r1 ≤ r2 ≤ . . . ≤ rn. In other words, the sequence

of load distribution by the root processor (BCU) follows this order and let this order be

8

p1, p2, . . . , pn.

8. Compared to the size of the data, the time to report solutions back to the root processor

(BCU) is negligible.

The following notation is used in this chapter.

αi : The load fraction assigned to the ith children processor (where i = 1, 2, . . . , n).

w : The inverse computing speed of the processors.

z : The inverse communication speed of the links.

Tcp : Computing intensity constant. The entire load can be processed on the ith processor

in time wTcp.

Tcm : Communication intensity constant. The entire load can be transmitted over the ith

link in time zTcm.

Tf,n : The finish time. Time at which n children processors complete computation.

Ti : The total time that elapses between the beginning of the process at t = 0 and the time

when ith processor completes its computation (where i = 1, 2, . . . , n).

ri : The release time. Time at which the ith processor becomes ready for receiving assigned

load from the root processor (BCU) (where i = 1, 2, . . . , n).

si : The start time. Time at which the ith processor actually starts receiving the assigned

load from the root processor (BCU) (where i = 1, 2, . . . , n). Here, si ≥ ri.

d : The absolute deadline. Time by which the load must complete.

Di : The relative deadline. Time difference between the absolute deadline and the release

time: Di = d− ri (where i = 1, 2, . . . , n).

Γi : The pair of ith processor and (i + 1)th processor, (pi, pi+1) (where i = 1, 2, . . . , n− 1).

9

2.2 A bus network with arbitrary release times

Consider a cluster with a bus network architecture where loads are distributed sequentially

to the children processors as soon as the processor become available (i.e., sequential distribu-

tion). As mentioned earlier, processors are not equipped with front-end processors, so that

processors start computing only after they receive the whole of the load assigned to them

(i.e., staggered start), and initial communication starts at r1 (i.e., s1=r1), the time when

the whole load is assumed to be present at the root processor. Note that it is assumed that

the release times of the processors, ri (where i = 1, 2, . . . , n) are given and fixed arbitrary

constants. Accordingly, timing models with two rigid constraints are considered:

• ri+1 − si ≤ αizTcm : The case that the release time of the (i + 1)th processor, ri+1,

occurs before the (i + 1)th load assignment from the root processor (BCU) starts or occurs

during the middle of the communication time for the load assignment. Given the sequential

load distribution and staggered start scenario, this timing constraint has no impact on the

load scheduling. Here, i = 1, 2, . . . , n− 1.

• ri+1 − si > αizTcm : The case that the release time of the (i + 1)th processor, ri+1,

occurs after the (i + 1)th load assignment from the root processor (BCU) ends so that the

(i+ 1)th processor needs to wait until its own release time, ri+1, occurs to start communica-

tion with the root processor (BCU) to be assigned its own load. Hence, we can rewrite the

constraint as ri+1 − ri > αizTcm. Here, i = 1, 2, . . . , n− 1.

These constraints can exist for each pair of processors. The corresponding timing dia-

grams are as shown in Fig. 2.2 and Fig. 2.3.

The important condition for an optimal solution is that the minimum finish time Tf,n oc-

curs when all processors stop at the same time as we mentioned before. In other words,

the identical finish time (i.e., T1 = T2 = . . . = Tn) is the necessary condition to obtain the

10

BCUP1P2
Pns1 s2 snD1 dTf,n

commcommcommcompcomp
r1 rnr2

1 zTcm . ..1 zTcm 2 zTcm 1wTcp2 zTcm 2wTcpP3 comm3zTcm 3wTcp commnzTcm nwTcp

3zTcm nzTcm

s3r3

T1
T3T2
Tn compcomp

Figure 2.2: Sequential Distribution and Staggered Start, ri+1 − si ≤ αizTcm

optimal solutions for the minimum finish time.

Before we take into account the two inequality constraints, it is worth mentioning that the

two constraints are assumed in that we do not have information about the values of αi

beforehand. The optimal solution for αi can be obtained based on timing diagrams satis-

fying a certain scheduling strategy. Once the optimal solutions are achieved, it seems to

be reasonable to mention the two constraints. Indeed, initially we assume that the timing

model of given processors follows a certain constraint among the two constraints for each

consecutive pair of processors over the following two subsections. From the timing diagrams

(Fig. 2.2 and 2.3), the corresponding recursive load distribution equations so that all of the

processors stop computing at the same time (i.e., T1 = T2 = . . . = Tn) can be obtained as

follows

si + αizTcm + αiwTcp = si+1 + αi+1zTcm + αi+1wTcp i = 1, 2, . . . , n− 1 (2.1)

11

2.2.1 Constraint I : ri+1 − si ≤ αizTcm

In this subsection, we derive closed form solutions for an evaluation of the performance of a

particular case. The sufficient condition for the feasible release times for the optimal solution

is also derived. Initially we assume that the optimal scheduling scenario of n processors

(p1, . . . , pn) satisfies Constraint I (see Fig. 2.2). Without this assumption, the derivation

of the optimal solutions and corresponding performance evaluations is not possible. From

Fig. 2.2, we can express the start times in terms of αi as

si = r1 +

(
i−1∑

l=1

αl

)
zTcm i = 2, 3, . . . , n (2.2)

By substituting (3.2) into Constraint I, we observe that the feasible release times must

satisfy the following condition:

ri+1 ≤ r1 +

(
i∑

l=1

αl

)
zTcm i = 1, 2, . . . , n− 1 (2.3)

Intuitively, the inequality (2.3) is recognizable from Fig. 2.2.

Using equation (2.1) and (2.2), we can obtain the value of αi as

αi = qi−1α1 i = 2, 3, . . . , n (2.4)

Here, q = wTcp

zTcm+wTcp
. The fractions of the total load should sum to one (normalization)

n∑
i=1

αi = 1 (2.5)

Then the normalization equation (2.5) becomes

α1

n∑
i=1

qi−1 = 1, α1 =
1− q

1− qn
(2.6)

12

From equation (2.6), the minimum finish time is given by

Tf,n = T1 = r1 + α1zTcm + α1wTcp

= r1 +
1− q

1− qn
(wTcp + zTcm) (2.7)

The preceding derivation of the optimal solution has been already appeared in [7] intro-

ducing the load scheduling scenario with sequential distribution and staggered start. The

derivational similarity occurs because the timing diagram of sequential distribution and

staggered start does not vary according to the release time under Constraint I as we men-

tioned previously.

The minimum number of processors, nmin that the whole load needs at start time s1(= r1)

to meet the absolute deadline, d can be derived as follow

Tf,n ≤ r1 + D1 (2.8)

This implies that

r1 +
1− q

1− qn
(wTcp + zTcm) ≤ r1 + D1 (2.9)

since 1− qn > 0

1− qn ≥ (1− q) (wTcp + zTcm)

D1

qn ≤ 1− (1− q) (wTcp + zTcm)

D1

qn ≤ 1− zTcm

D1

(2.10)

Note that 0 < q < 1. Thus, we have

n ≥ ln η

ln q
, where η = 1− zTcm

D1

(2.11)

13

Here, 0 < η < 1 otherwise the distribution of the partitioned load can not meet the deadline

and even can not have enough time for computing (see Fig. 2.2). Therefore, the minimum

number of children processors that the load needs at time s1(= r1) to meet its deadline is

nmin = d ln η

ln q
e (2.12)

2.2.2 Constraint II : ri+1 − si > αizTcm

In this subsection, we derive closed form solutions for an evaluation of the performance of

a different case by following a similar procedure described in the earlier case. Note that

the release time ri is the same as the start time si for i = 1, 2, . . . , n under Constraint II

as shown in Fig. 2.3. Under this constraint, it is quite possible that some processors have

too large a release time so that the processors can not be assigned any fraction of the load

from the root processor (BCU). The criteria for the feasible release times is also derived in

this section. We assume that n processors participating in distributed computing satisfy

Constraint II initially. As in the previous subsection, load distribution equations in this

subsection will not be reasonable without the assumption. Rewriting (2.1) based on the

timing diagram (see Fig. 2.3) as

αi = α1 +
r1 − ri

wTcp + zTcm

i = 2, 3, . . . , n (2.13)

Also, the fractions of the total load should sum to one (normalization). This gives n linear

equations with n unknowns. Then the normalization (2.5) becomes

nα1 +
(n− 1) r1 −

∑n
i=2 ri

wTcp + zTcm

= 1

α1 =
1

n

(
1− (n− 1) r1 −

∑n
i=2 ri

wTcp + zTcm

)
=

1

n

(
1 +

−nr1 +
∑n

i=1 ri

wTcp + zTcm

)
(2.14)

14

BCUP1P2
Pns1 s2 snD1 dTf,n

commcommcommcompcomp

r1 rnr2

1 zTcm . ..1 zTcm 2 zTcm 1wTcp2 zTcm 2wTcpP3 comm3zTcm 3wTcp commnzTcm nwTcp

3zTcm nzTcm

s3r3

T1
T3T2
Tn compcomp

Figure 2.3: Sequential Distribution and Staggered Start, ri+1 − si > αizTcm

Substituting (2.15) into (2.14) yields

αi =
1

n

(
1 +

−nr1 +
∑n

i=1 ri

wTcp + zTcm

)
+

r1 − ri

wTcp + zTcm

=
1

n

(
1 +

−nri +
∑n

i=1 ri

wTcp + zTcm

)
i = 2, 3, . . . , n (2.15)

From (2.15), we can see that the αi just depends on the prior values of release time and

the number of the processors as comparing to (2.4) given in the case of Constraint I. This

speciality for the case of Constraint II opens the possibility that a condition for the normal-

ized solution, 0 < αi ≤ 1, is violated. To generate the condition for the feasible processor’s

release times, we can use the necessary condition 0 < αi ≤ 1 for i = 1, 2, . . . , n. This leads

to the following important criterion for the feasible release times

0 <
1

n

(
1 +

−nri +
∑n

i=1 ri

wTcp + zTcm

)
≤ 1 (2.16)

15

We can rewrite above inequality as follows

C1 ≤ ri < C2 (2.17)

where

C1 =
wTcp + zTcm +

∑n
i=1 ri

n
− (wTcp + zTcm)

C2 =
wTcp + zTcm +

∑n
i=1 ri

n
(2.18)

In order to obtain the feasible release times, it is required to apply the condition (2.17)

iteratively by reducing the number of processors, n until all release times satisfy the neces-

sary condition (2.17). Note that for the optimal solutions, the release times should admit

Constraint II, which is the sufficient condition for the optimal solutions.

From (2.14), the minimum finish time is given by

Tf,n = T1 = r1 + α1zTcm + α1wTcp

= r1 +
1

n

(
1 +

−nr1 +
∑n

i=1 ri

wTcp + zTcm

)
(wTcp + zTcm)

=
1

n

(
wTcp + zTcm +

n∑
i=1

ri

)
=

1

n
(wTcp + zTcm) + µ (2.19)

Here, let µ = 1
n

∑n
i=1 ri, which is an average value of n release time points.

Using the similar method shown in the previous section, the minimum number of processors,

nmin that the load needs at start time s1(= r1) to meet the absolute deadline, d can be

derived as follows

Tf,n ≤ r1 + D1 (2.20)

This implies that

1

n
(wTcp + zTcm) + µ ≤ r1 + D1 (2.21)

16

...

......

{

{
{

{

Figure 2.4: An example of a timing model, one of 2n−1 cases

Thus, we have

n ≥ wTcp + zTcm

r1 + D1 − µ
(2.22)

Here, it is obvious that r1 + D1, which is the absolute deadline, d is larger than µ. This is

because all release times ri of the eligible processors are surely less than d. Therefore, the

minimum number of children processors that the load needs at time s1(= r1) to meet its

deadline is

nmin = dwTcp + zTcm

r1 + D1 − µ
e (2.23)

17

2.2.3 Exhaustive search algorithm

One may recognize that a schedule will not necessarily involve only one of the two constraints

(i.e., Constraint I and Constraint II). An actual scheduling may consist of a mixture of both

constraints. In this section, we focus on scheduling divisible loads with arbitrary release

time with no prior knowledge of constraints. In case that n processors get involved in the

distributed computing, 2(n−1) possible models should be taken into account. Fig. 2.4 shows

an example of a timing diagram among 2(n−1) possible cases which the exhaustive search

algorithm takes into account. Note that the diagram shows one of the possible cases that

the load distribution follows the decreasing order of the release time. From the Fig. 2.4, one

can see that the example diagram is composed of Γ1(I) . . . Γk−1(I), Γk(II) . . . Γk+m−1(II),

and Γk+m(I) . . . Γn−1(I). Here, we denote the ith pair of processors, Γi, satisfying Constraint

I and Constraint II as Γi(I) and Γi(II) respectively. From the timing diagram (Fig. 2.4),

one can write the following set of deterministic equations in the system

T1 = r1 + α1 (zTcm + wTcp)

T2 = s2 + α2 (zTcm + wTcp)

...

Tk = sk + αk (zTcm + wTcp)

Tk+1 = rk+1 + αk+1 (zTcm + wTcp)

Tk+2 = rk+2 + αk+2 (zTcm + wTcp)

...

Tk+m = rk+m + αk+m (zTcm + wTcp)

Tk+m+1 = sk+m+1 + αk+m+1 (zTcm + wTcp)

...

Tn = sn + αn (zTcm + wTcp) (2.24)

18

In order to achieve the optimal solutions for the minimum finish time, all processors stop

processing at the same time as we mentioned earlier (i.e., T1 = T2 = T3 = . . . = Tn).

Based on the above set of equations, one can write the following set of n− 1 equations

α2 = qα1

α3 = qα2

...

αk = qαk−1

αk+1 = α1 + r1−rk+1

wTcp+zTcm

αk+2 = α1 + r1−rk+2

wTcp+zTcm

...

αk+m = α1 + r1−rk+m

wTcp+zTcm

αk+m+1 = qαk+m

...

αn−1 = qαn−2

αn = qαn−1 (2.25)

The pattern of the series of equations under assumption of either Constraint I or Constraint

II can be also seen as shown in section 2.2.1 and 2.2.2. As we mentioned earlier, the fractions

of the total load should sum to one
n∑

i=1

αi = 1 (2.26)

Based on the above total n equations (i.e., (2.25) and (2.26)), we can obtain the solutions

for the fraction of load to be assigned to n processors. By using this analytical method,

we can obtain solutions for all 2(n−1) possible cases. Then, we can find an optimal case

based on the obtained values of α′s. The sets of deterministic equations obtained from

2n−1 possible cases are solved via linear programming (LP) technique. In the manner of

19

while (n > 1)Initialization= The total number of candidate processors= Release time of the ith processor, wherefor all possible timing models do Find feasible timing models with feasible solutions using LPendif The feasible solutions follows the timing model with a mixture of Constraint I and II A unique optimal timing model existsbreakelsedo Eliminate the candidacy of the processor withend end \ nR R r=

1, ,i n= L
1

{ , , }R r rn= L
-12n

ir

nr

1n n= −

n

1 nr r≤ ≤L
Figure 2.5: Exhaustive Search Algorithm

20

the required computing power, linear programming is a quite useful method for drastically

improved computing speed to find the optimal solution. For the linear programming, (2.25)

can be expressed in canonical form as

A · α = b (2.27)

α represents the n× 1 vector of solution variables to be determined. From (2.25), the n×n

known coefficient matrix, A and the n× 1 vector of known coefficient, A can be written as

A =




−q 1 0 · · · 0

0 −q 1 0 · · · 0

...
. · · ·

...

0 · · · 0 −q 1 0 · · · 0

−1 0 · · · 0 1 0 · · · 0

−1 0 · · · 0 1 0 · · · 0

...
... · · · · · · ...

−1 0 · · · 0 1 0 · · · 0

0 0 · · · 0 −q 1 0 · · · 0

...
...

. · · ·
...

0 · · · 0 −q 1 0

0 0 · · · 0 0 · · · 0 0 · · · 0 −q 1

1 1 · · · 1 1 · · · 1 1




b =




0

0

...

0

r1−rk+1

wTcp+zTcm

r1−rk+2

wTcp+zTcm

...

r1−rk+m

wTcp+zTcm

0

...

0

0

1




Similarly, other candidates of the timing model can be expressed in the canonical form.

The linear programming problem can be defined as the problem of minimizing the objective

function, the finish time, Tf,n subject to linear constraints. Here, the objective function is

Tf,n = r1 + α1(zTcm + wTcp) (2.28)

21

The constraints are n equalities (2.25) and (2.26) and the bounded nonnegative constraints

0 ≤ αi ≤ 1 i = 1, 2, . . . , n (2.29)

From Fig. 2.4, additional n− 1 inequality constraints for the release times

ri ≤ Tf,n − αi(zTcm + wTcp) i = 2, 3, . . . , n (2.30)

is derived in order to check the feasibility of the release times for the case that mixture of

Constraint I and Constraint II happens. Using (2.28), the inequality constraints, (2.30)

can be reformulated as

αi − α1 ≤ r1 − ri

zTcm + wTcp

i = 2, 3, . . . , n (2.31)

Another inequality constraint can be obtained from the time consumption for the total load

distribution from BCU to all participating processors as

r1 + zTcm

n∑
i=1

αi ≤ Tf,n − αnwTcp (2.32)

Using (2.28), the inequality constraints, (2.32) can be reformulated as

αnwTcp − α1(zTcm + wTcp) ≤ −zTcm (2.33)

Based on the n equality constraints (i.e., (2.25) and (2.26) and inequality constraints (i.e.,

(2.31) and (2.33), the feasibility of the solutions based on the candidates of the timing

model can be checked. One critical point here is the feasible solutions obtained by LP

based on its own timing model may not satisfy the timing model, ironically. This is because

the issue of the release time’s feasibility studied in the section of Constraint II implicitly

arises. To deal with this issue, an exhaustive search algorithm (see Fig. 2.5) to obtain an

22

optimal timing diagram for a certain network with arbitrary release time is proposed. To

clarify the feasible release time issue, it is required to check if the feasible solution obtained

by LP satisfies with the timing model for its own solution. If there exists no feasible

solutions satisfying own timing model, the algorithm concludes that there is no optimal

timing model for the given release times. Then, the candidacy of the nth processor with

the largest candidate release time, rn is rejected. The largest release time, rn, is regarded

as an infeasible release time. Then, the new loop of the algorithm with n − 1 candidate

processors without nth processor will be considered. The algorithm continues running until

finding an unique optimal solution. The obtained unique timing model is the optimized

model for the minimum finish time with the generalized scenario containing both cases of

Constraint I and Constraint II. Note that the number of candidate processors, n is chosen

implicitly based on the n processors’s load finish time within the absolute deadline (i.e.,

Tf,n ≤ d). Naturally this is not a scalable solution-something that awaits further research.

One critical drawback of the algorithm is that the algorithm requires high-computational

power to consider the possible cases, especially as the number of processors increases and

the number of investigated loops increases. Our contribution is that the analysis of the

generalized case will provide the flexibility for studying various scenarios with arbitrary

release times.

2.3 Performance evaluation

To investigate the behavior of the algorithm, we assume 10 candidate processors are initially

given with 10 release times (i.e., r1, r2, . . . , r10) generated by the exponential distribution.

Simulation is performed 100 times with inverse speed parameters, wTcp = 1.2 and zTcm = 0.8

sec/load. The sets of deterministic equations obtained from 29 possible timing models

are solved via MATLAB linear programming function, linprog(). Fig. 2.6 describes the

average number of processors actually utilized in the processing. From Fig. 2.6, we can

observe that the average number of processors participating in the processing decreases as

23

Figure 2.6: Average number of utilized processors vs. average release time

Figure 2.7: Average minimized finish time vs. average release time

24

Figure 2.8: Trend of the Constraint I and II

25

the average release time increases. For the exhaustive search algorithm, the number of

candidate processors decreases by one per loop in case that no optimal timing diagram is

found. This corresponds the rejection of the candidacy of the largest release time as we

mentioned before. It can be expected that the possibility that the release time is infeasible

increases as the average release time increases. Thus, intuitively the number of rejected

processors increases as the average release time increases.

Fig. 2.7 shows the average finish time performance against the average release time. As the

time until the candidate processors are available to receive their own divisible load takes

longer, the average time to finish a whole load increases. Also, the decreasing participated

processors as the release time increases (see Fig. 2.6) contributes to the longer time spend

to end the processing of the whole load.

The occurrence trend of the processor pair satisfying the Constraint I, Γ(I) and satisfying

the Constraint II, Γ(II) is illustrated in Fig. 2.8. The values on the upper side and lower side

show the normalized average occurrence frequency of the Γ(I) and Γ(II) respectively over

the z-axis. It is shown that processor pairs having smaller release time are likely to satisfy the

Constraint I. That is, the smaller the release time, the more Constraint I dominates. It can

be expected that the probability that the root processor waits until processors are available

to distribute the optimally divided loads to the children processors (i.e., the probability

of Γ(II)) decreases as the release times of the children processors become smaller. The

lower index of the processor pair implies the smaller release time as the distribution order

of processor (i.e., r1 ≤ r2 ≤ . . . ≤ rn). By similar intuition, it seems reasonable that the

network with the higher indexed processor pairs with larger release times experiences the

delay shown in the case of the Constraint II. From the simulation results, we can observe

that the exhaustive search algorithm behaves in a reasonable manner over the generalized

models which are a mixture of Constraint I and Constraint II.

26

2.4 Concluding remarks

In this chapter, the divisible load distribution problem for a bus network adopting sequential

distribution and a staggered start strategy is examined. An analysis was provided based

on the real-time assumption that processers in the network have arbitrary release times.

Unlike the previous literature, where a distinct scenario of the divisible load distribution is

taken into account, we can see that the scenario here involving arbitrary release times can

be restricted in two ways. The performance analysis of the network following each of the

two constraints exclusively is derived. Based on the analysis of the case of two constraints,

we showed an analysis for one of the possible models, mixed two constraints, in a realistic

situation. Based on the analysis of a realistic case, we proposed an exhaustive search algo-

rithm for obtaining an optimal solution of the scheduling of divisible loads.

The approach showed in this chapter can initiate a way for solving the divisible load schedul-

ing problem under actual circumstances. It also seems of interest to extend this constraint-

based approach to the other network models based on the simultaneous distribution and

simultaneous start strategy. One of the most intriguing problems is to develop a computa-

tionally efficient heuristic algorithm, which is unlike the one here and scalable, to deal with

the exponentially growing possible timing models.

27

Chapter 3

Divisible Load Scheduling in

Clustered Wireless Sensor Networks

In recent years, wireless sensor networks (WSNs) have been a dynamically growing and

promising research area due to the great technological progress in the field of wireless com-

munication protocols [33]. Miniaturized low power wireless sensor devices have been used in

various potential applications such as for military / aerospace communications and track-

ing, environmental monitoring, and avionics controls, etc. These sensors, capable of sens-

ing, processing (aggregating) data, and short range communication, form WSNs to report

aggregated data across platforms on or above geographically diverse terrain with highly

constrained resources.

The applications of sensors in aerospace applications are quite diverse such as pressure sen-

sors, speed sensors, surface temperature sensors, proximity sensors and remote sensors, etc.

Such sensor applications operate as a network with various sized independent sensor clusters

feeding information to a sink. In sensing, it is inevitable to obtain redundant information

such as overlapped data and noninformative data. Considering that an extremely fast re-

sponse is generally required in aerospace applications, data aggregation in the clusterhead is

highly desired for reducing unnecessary load under data communication and computation.

As a WSN configuration, a WSN can be flat or hierarchical [34]. In flat networks, every

28

sensor has the same functionality. On the other hand, in hierarchical networks, there are

two types of sensor: a cluster head and a non clusterhead sensor. The clusterhead is usually

an optimally elected high energy sensor which has a larger role than other sensors [35].

Clusterheads play an important role in data aggregation (data fusion) [36].

As compared with earlier work when most deployed WSNs involved relatively small numbers

of sensors, nowadays, WSNs are considered as large scale randomly and densely distributed

sensor networks, which do not need infrastructure. Due to the nature of distributed sensing,

it is expected that Divisible Load Theory (DLT) could play an important role in providing

an optimal solution for load distribution under WSN environments, especially those having

various energy and computational constraints.

Recently, studies about DLT based WSN scheduling for data reporting have been pub-

lished [37],[38]. To our knowledge, the naive data collected by clusterhead from non-

clusterhead nodes would not contain the most critical information. For this reason, we

introduce a parameter, the information utility constant, showing the accuracy of the col-

lected data from each sensor. From a mathematical point of view, the information utility

constant is required to be a deterministic a priori known variable to be applied to DLT. This

is feasible by using a technique of information accuracy estimation [39] with a crucial as-

sumption that the clusterhead has an accurate knowledge of position of each sensor nodes in

the cluster [40]. By eliminating the noninformative part of the collected data, unexpected

communication and processing delays can be reduced. We assume that the aggregation

scheme perfectly filters the most critical information so that a clusterhead reports the most

critical information to the sink.

The remainder of this chapter is organized as follows. Section 3.1 present the types of nota-

tions and analytic background. In section 3.2, four different single cluster WSN scheduling

models are analyzed. Muti-cluster WSN scheduling scheme is examined in Section 3.3. Sec-

tion 3.4 presents performance evaluation curves. Section 3.5 is a conclusion and a discussion

of open questions.

29

3.1 Problem Formulation and Preliminary Remarks

In a hierarchical WSN, the network sensor nodes are partitioned into groups called clusters.

A cluster is composed of a single clusterhead and sensor nodes (non-clusterhead nodes) in

the lowest tier as shown in Fig. 3.1(a). Once a cluster is created, the clusterhead distributes

measurement instructions to the sensor nodes deployed in its cluster region. Sensory data

from each sensor node is reported to the clusterhead in the higher tier for data aggregation

(data fusion). The idea of data aggregation is to gather the data reported from different

sensor nodes while eliminating redundancy, minimizing the amount of reporting, and thus

achieving energy efficiency [36]. The aggregated data is then transmitted to the high power

sink (Base Station, BS) in the highest tier. The BS usually routes the received data via wired

infrastructure connected to Internet-based user applications. However, the networking via

the wired interface between the BS and end-user is beyond our scope. Thus, the structure

of WSN topology discussed in this chapter is a three tier hierarchical WSN.

In this chapter, we ignore the capability of sensing of clusterheads in spite of the fact

that a clusterhead is an optimally elected sensor in the cluster region as we mentioned

before. Here, there is no direct communication between sensor nodes. In other words,

sensor nodes can communicates only through the clusterhead. We will not discuss the case

of communication between node sensors in this chapter. However, this important point

gives us an idea that the network topology of a cluster can be considered as a centralized

single level tree (star) network as shown in Fig. 3.1(a). The communication delay caused

by the initial deployment of the measurement instruction from the sink to the clusterhead

is ignored in the analysis in this chapter. This is the based on the assumption that channel

speed between sink and clusterhead is much faster than channel speed in the cluster and also

the amount of instruction data is much smaller compared to the amount of sensory data.

In this chapter, we ignore possible limitations subject to various sources of unreliability and

other issues related with wireless data transmission such as channel noise and interference

during wireless transmission, etc.

30

The following notation is used in this chapter.

t : Constant time for the instruction assignment from clusterhead to sensor nodes.

αsi : The sensory load fraction that the ith sensor node collects.

αti : The informative load fraction (which is the critical data in response to the instruction)

in the sensory load fraction that the ith sensor node collects.

ρi : The information utility constant of the ith sensor node: ρi = αti

αsi
, the transmit to sense

ratio. The parameter shows the accuracy of the data provided by the ith sensor.

yi : The inverse sensing speed of the ith sensor node.

zi : The inverse communication (reporting) speed of the link (channel) between the ith sensor

node and the clusterhead. We use index 0 for the clusterhead.

w0 : The inverse computing speed of the clusterhead.

Tso(cp,cm) : Sensing operation intensity (Computing intensity, Communication intensity) con-

stant. The entire load can be sensed (processed, transmitted) over the ith channel in time

yiTso (w0Tcp, ziTcm).

wk
0 : The inverse computing (data aggregation) speed of the kth clusterhead (where k =

1, 2, . . . , n). Note that we use w0 for analyzing a single cluster topology in this chapter.

zk
0 : The inverse communication (reporting) speed of the link (channel) between the kth

clusterhead and a sink. Note that we use z0 for analyzing a single cluster topology in this

chapter.

Ti : The total time that elapses between the beginning of the process at t = 0 and the time

when the ith sensor node completes the report of its own sensing data to the clusterhead

(where i = 1, 2, . . . , n). We use index 0 for the clusterhead.

Tr,n : The round time. Time at which the clusterhead for n sensors finishes transmitting the

aggregated data to the sink (=T0).

Tr,1 : The round time. Time at which the clusterhead in a cluster with a single sensor node

finishes transmitting the aggregated data to the sink.

We will distinguish in the following sections between different channel characteristic (Single,

Multi) and whether either is equipped with front-end processor (Simultaneous reporting)

31

.1
0z

1
0z

2
0z 3

0z

0
mz

1z

2z

3z

nz

1
0w 1

0w

2
0w

1y

2y

3y

ny

3
0w

0
mw

Figure 3.1: Three tier hierarchical wireless sensor network topology.

or not (Sequential reporting). There are thus four scheduling scenarios with these two sets

of possible features.

3.2 Single Cluster based hierarchical WSN scheduling

3.2.1 Single Channel with no front-end processor, SCnP

Consider a single channel cluster composed of single clusterhead and n sensor nodes in the

wireless network (star topology). This is a simple network scenario where the n sensor

nodes S1, S2, . . ., Sn can report their own sensory data directly to the clusterhead, S0 via

a single channel. Conversely, the clusterhead can assign measurement instructions directly

to the n sensor nodes via a single channel. Since all of the data flows through the single

channel, sensing instruction assignment and reporting are performed sequentially as shown

in Fig. 3.2. In this section, the clusterhead and sensor nodes are not equipped with front-end

processors for communication off-loading. That is, nodes can either communicate (report)

or sense but not do both at the same time (i.e., staggered start). In the same manner, the

data aggregation is performed only after the last report from the sensors terminates, and the

data aggregation and its reporting to the sink are also performed sequentially. Each sensor

node has a capability to start sensing as soon as the sensor receives its sensing instructions

from the sink node. The placement of nodes S0, S1, S2, . . .,and Sn is unconstrained. Initially,

32

we consider that the position of the clusterhead is optimized.

From the timing diagram (Fig. 3.2), one can set up the following corresponding recursive

load distribution equations

αsiyiTso = t + αsi+1(yi+1Tso + zi+1Tcm)

i = 1, 2, . . . , n− 1 (3.1)

Rewriting the above set of equations as

αsi+1 = fiαsi − gi i = 1, 2, . . . , n− 1 (3.2)

where

fi =
yiTso

yi+1Tso + zi+1Tcm

, gi =
t

yi+1Tso + zi+1Tcm

i = 1, 2, . . . , n− 1 (3.3)

These equations can be solved as follows:

αs2 = f1αs1 − g1

αs3 = f2αs2 − g2 = f1f2αs1 − g1f2 − g2

αs4 = f3αs3 − g3 = f1f2f3αs1 − g1f2f3 − g2f3 − g3

...

αsn = fn−1αsn−1 − gn−1

= f1f2. . .fn−1αs1 − g1f2f3. . .fn−1 − g2f3f4. . .fn−1 − . . .− gn−2fn−1 − gn−1 (3.4)

alternatively,

αsi = αs1

i−1∏

k=1

fk −
i−1∑

k=1

gk

fk

i−1∏

l=k

fl i = 2, 3, . . . , n (3.5)

33

...
1i

n

=
∑

Figure 3.2: Timing diagram for single channel hierarchical wireless sensor network with no
front-end processors.

or by definition of the information utility constant

αti = ρiαsi = αs1ρi

i−1∏

k=1

fk − ρi

i−1∑

k=1

gk

fk

i−1∏

l=k

fl i = 2, 3, . . . , n (3.6)

Since the fractions of total informative data, αts should sum to one (normalization),

1 =
n∑

i=1

αti =
n∑

i=1

ρiαsi = αs1

(
ρ1 +

n∑
i=2

ρi

i−1∏

k=1

fk

)
−

n∑
i=2

ρi

i−1∑

k=1

gk

fk

i−1∏

l=k

fl (3.7)

Therefore,

αt1 = ρ1αs1 = ρ1
1 + C1

ρ1 + C2

(3.8)

where

C1 =
n∑

i=2

ρi

(i−1∑

k=1

gk

fk

i−1∏

l=k

fl

)
, C2 =

n∑
i=2

ρi

i−1∏

k=1

fk (3.9)

34

From the (3.6) and (3.8), the optimal values of αt’s, which is certain fraction of informative

data collected during measurement time can be obtained. Here, we say that the network

completes a round when the clusterhead finishes reporting the aggregated data to the sink

node. Referring the Fig. 3.2, the minimum round time of the network can be achieved using

(3.5) as follows

Tr,n = T0 = T1 +
n∑

i=1

αsiw0Tcp + 1 · z0Tcm

= t + αs1(y1Tso + z1Tcm) +

{
αs1

(
1 +

n∑
i=2

i−1∏

k=1

fk

)
−

n∑
i=2

i−1∑

k=1

gk

fk

i−1∏

l=k

fl

}
w0Tcp + z0Tcm

(3.10)

From (3.8), Tr,n can be rewritten as follow

Tr,n = t +
1 + C1

ρ1 + C2

(y1Tso + z1Tcm) + C3w0Tcp + z0Tcm (3.11)

Here,

C3 =
(1 + C1)(1 + C

′
2)

ρ1 + C2

− C
′
1 (3.12)

where,

C
′
1 =

n∑
i=2

i−1∑

k=1

gk

fk

i−1∏

l=k

fl, C
′
2 =

n∑
i=2

i−1∏

k=1

fk (3.13)

As a special case, consider the situation of a homogeneous cluster where all sensor nodes

have same inverse sensing speed and inverse communication speed (i.e., yi = y, zi = z for

i = 1, 2, . . . , n). Note here that the inverse communication speed of the clusterhead, z0 can

be different. Consequently,

f =
yTso

yTso + zTcm

, g =
t

yTso + zTcm

(3.14)

35

Here, 0 < f < 1. Then, the (3.9) can be modified as

C1 =
g

1− f

n∑
i=2

ρi(1− f i−1), C2 =
n∑

i=2

ρif
i−1 (3.15)

Hence, under the homogeneous condition, Tr,n can be obtained as follow

Tr,n = t +
1 + C1

ρ1 + C2

(yTso + zTcm) + C3w0Tcp + z0Tcm (3.16)

Here, C3 is identical form with (3.12), where

C
′
1 =

g

f

n∑
i=2

(i−1∑

k=1

i−1∏

l=k

f

)
=

g

f

n∑
i=2

i−1∑

k=1

f i−1−k =
g

1− f

{
(n− 1)− f − fn

1− f

}

C
′
2 =

n∑
i=2

i−1∏

k=1

f =
n−1∑
i=1

f i =

(
f − fn

1− f

)
(3.17)

For the further simplification, here we add another special condition, ρi = ρ for i =

1, 2, . . . , n, the homogeneous information utility constant. Since C1 = ρC
′
1, C2 = ρC

′
2

(i.e., C3 = 1
ρ

from (3.12)) under the special case of the homogeneous (fully homogeneous,

i.e. yi = y, zi = z, ρs = ρ and ρi = ρ for i = 1, 2, . . . , n) condition one can solve for αs1 as

αs1 =

1
ρ

+ C
′
1

1 + C
′
2

(3.18)

Hence, Tr,n can be obtained as follow

Tr,n = t +

1
ρ

+ C
′
1

1 + C
′
2

yTso +

1
ρ

+ C
′
1

1 + C
′
2

zTcm +
1

ρ
w0Tcp + z0Tcm (3.19)

From the above equation, under the fully homogeneous condition, we can readily see the

minimum round time can be achieved when information utility constant equals to unity

which is an ideal case. This makes intuitive sense as no redundant data is generated, time

delays for sensing, reporting, and data aggregation can be reduced.

36

Since the minimum round time on a single sensor node under the homogeneous condition is

Tr,1 = t +
1

ρ
yTso +

1

ρ
zTcm +

1

ρ
w0Tcp + z0Tcm (3.20)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
yTso + 1

ρ
zTcm + 1

ρ
w0Tcp + z0Tcm

t +
1
ρ
+C

′
1

1+C
′
2

yTso +
1
ρ
+C

′
1

1+C
′
2

zTcm + 1
ρ
w0Tcp + z0Tcm

(3.21)

Under the fully homogeneous condition, the condition for a feasible instruction assignment

time, t can be described. From the Fig. 2, under the case of the sequential distribution under

the single channel scenario, it can be possible some sensors cannot be assigned the instruction

under the certain condition that the instruction assignment time is large. Referring to (3.5),

the upper bound of a feasible instruction assignment time constant can be obtained according

to the intuitive condition as

0 < αsi < 1 i = 2, 3, . . . , n

< αs1f
i−1 − g

f

(
f − f i−1

1− f

)
< 1

<

1
ρ

+ C
′
1

1 + C
′
2

f i−1 − g

f

(
f − f i−1

1− f

)
< 1

<

1
ρ

1 + C
′
2

f i−1 +

{
C
′′
1

1 + C
′
2

f i−1 +
1

yTso

(
f − f i−1

1− f

)}
t < 1 (3.22)

where, C
′′
1 = C

′
1/t (refer to (3.17)).

Thus, we have

0 < ηi + γit < 1 i = 2, 3, . . . , n (3.23)

37

where,

ηi =

1
ρ

1 + C
′
2

f i−1, γi =
C
′′
1

1 + C
′
2

f i−1 +
1

yTso

(
f − f i−1

1− f

)
(3.24)

Since, ηi > 0 , if γi < 0, the (3.23) can be rewritten as follows

0 ≤ t <
ηk

γk

(3.25)

Here, k is the index of the sensor node number where γi < 0. If γi > 0, the (3.23) can be

rewritten as follows

0 ≤ t <
1− ηl

γl

(3.26)

Here, l is the index of the sensor node number where γi > 0. From the (3.25) and (3.26),

the condition for the feasible instruction assignment time, tfeas can be written as

0 ≤ tfeas < min(
ηk

γk

,
1− ηl

γl

) (3.27)

Here, if one let n →∞, we can superficially recognize that Tr,n →∞, which is not reasonable

since the factor, C
′
1 is a the first order function of n (see (3.17)). However, as referring the

bound for feasible t (see (3.25) and (3.26)), we would also see t → 0 (i.e., C
′′
1 → ∞ or

γi →∞) as one is adding more sensor nodes in the cluster.

Hence, using the fact C
′
1 → 0 and C

′
2 → yTso

zTcm
, one can obtain the asymptotic minimum

round time, Tr,∞ as

Tr,∞ =
σ

ρ(σ + 1)
yTso +

σ

ρ(σ + 1)
zTcm +

1

ρ
w0Tcp + z0Tcm

=
1

ρ
zTcm +

1

ρ
w0Tcp + z0Tcm (3.28)

38

...
1i

n

=
∑

Figure 3.3: Timing diagram for multi channel hierarchical wireless sensor network with no
front-end processors.

where σ = zTcm

yTso

From (3.21), we can obtain asymptotic speedup as follows

Speedupn→∞ = 1 +
yTso

zTcm + w0Tcp + ρz0Tcm

(3.29)

3.2.2 Multi Channel with no front-end processor, MCnP

The network model that is discussed in this subsection is similar to that discussed in the

previous one except for the fact that the communication between the clusterhead and sensor

nodes takes place under multiple independent channels. Therefore, multiple access to the

clusterhead from the sensor nodes can take place at the same time. Conversely, concur-

rent instruction assignment is feasible as described in Fig. 3.3. As a reminder, the single

channel case gives rises to considerable idle time for almost all of the sensor nodes due to

the sequential communication (instruction assignment and reporting) involved in communi-

cating data from each sensor node to the clusterhead. On the other hand, communication

39

delay is reduced through simultaneous instruction assignment and mainly simultaneous re-

porting termination over all sensor nodes through multiple channels. It has been known

on a intuitive basis that network elements should be kept constantly busy for good per-

formance [17]. Thus it can be expected that multi channel communication contributes to

better performance than the single channel scenario in that each sensor finish the reporting

simultaneously.

The timing diagram of the network is plotted in Fig. 3.3. The fundamental recursive equa-

tion of the network can be formulated as follows

t + αsi(yiTso + ziTcm) = t + αsi+1(yi+1Tso + zi+1Tcm)

i = 1, 2, . . . , n− 1 (3.30)

Rewriting the above set of equations as

αsi+1 = fiαsi i = 1, 2, . . . , n− 1 (3.31)

where

fi =
yiTso + ziTcm

yi+1Tso + zi+1Tcm

i = 1, 2, . . . , n− 1 (3.32)

These equations can be solved as follows

αsi = αs1

i−1∏

k=1

fk i = 2, 3, . . . , n (3.33)

Alternatively, by definition of information the utility constant

αti = ρiαsi = αs1ρi

i−1∏

k=1

fk i = 2, 3, . . . , n (3.34)

40

As mentioned earlier, the fractions of the total informative data should sum to one

1 =
n∑

i=1

αti =
n∑

i=1

ρiαsi = αs1

(
ρ1 +

n∑
i=2

ρi

i−1∏

k=1

fk

)
(3.35)

Therefore,

αt1 = ρ1αs1 = ρ1
1

ρ1 + C1

(3.36)

where

C1 =
n∑

i=2

ρi

i−1∏

k=1

fk (3.37)

From (3.34) and (3.36), the optimal values of αt’s, which is the fraction of informative data

collected during measurement time can be obtained.

Knowing the optimal value of αs1, the minimum round time can be calculated as

Tr,n = T0 = T1 +
n∑

i=1

αsiw0Tcp + 1 · z0Tcm

= t + αs1(y1Tso + z1Tcm) + αs1

(
1 +

n∑
i=2

i−1∏

k=1

fk

)
w0Tcp + z0Tcm (3.38)

From αs1 = 1
ρ1+C1

(see (3.36)), Tr,n can be rewritten as follow

Tr,n = t +
1

ρ1 + C1

(y1Tso + z1Tcm) + C3w0Tcp + z0Tcm (3.39)

where

C
′
1 =

n∑
i=2

i−1∏

k=1

fk, C3 =
1 + C

′
1

ρ1 + C1

(3.40)

As a special case, consider the situation of a homogeneous cluster where all sensor nodes

have same inverse sensing speed and inverse communication speed (i.e., yi = y, zi = z for

41

i = 1, 2, . . . , n). Note here that the inverse communication speed of the clusterhead, z0 can

be different. Consequently, f = 1 (i.e., C1 =
∑n

i=2 ρi and C
′
1 = n− 1).

In this case, one can solve for αs1 as

αs1 =
1∑n

i=1 ρi

(3.41)

The minimum round time is then given by

Tr,n = t +
1∑n

i=1 ρi

(yTso + zTcm + nw0Tcp) + z0Tcm (3.42)

For further simplification, consider the situation of a fully homogeneous network (i.e. yi = y,

zi = z, and ρi = ρ for i = 1, 2, . . . , n). Consequently, f = 1 (i.e., C1 = ρ(n − 1) and

C
′
1 = n− 1).

In this case, one can solve for αs1 as

αs1 =
1

ρn
(3.43)

Intuitively, the equal amount of informative (sensed) data (i.e., 1
n
) is reasonable due to the

simultaneous measurement start time and reporting finish time under the fully homogeneous

condition.

The minimum round time is then given by

Tr,n = t +
1

ρn
yTso +

1

ρn
zTcm +

1

ρ
w0Tcp + z0Tcm (3.44)

From the above equation, under the fully homogeneous condition, we can also see the min-

imum round time can be achieved when information utility constant equals to unity which

is an ideal case. This also follows intuition as no redundant data is generated, time delays

for sensing, reporting, and data aggregation can be reduced.

42

...
1i

n

=
∑

Figure 3.4: Timing diagram for single channel hierarchical wireless sensor network with
front-end processors.

Since the minimum round time on a single sensor node under the homogeneous condition is

Tr,1 = t +
1

ρ
yTso +

1

ρ
zTcm +

1

ρ
w0Tcp + z0Tcm (3.45)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
yTso + 1

ρ
zTcm + 1

ρ
w0Tcp + z0Tcm

t + 1
ρn

yTso + 1
ρn

zTcm + 1
ρ
w0Tcp + z0Tcm

(3.46)

The asymptotic minimum round time, Tr,∞ can be simply written as

Tr,∞ = t +
1

ρ
w0Tcp + z0Tcm (3.47)

The asymptotic speedup can be obtain as follows

Speedupn→∞ = 1 +
yTso + zTcm

ρt + w0Tcp + ρz0Tcm

(3.48)

43

3.2.3 Single Channel with front-end processor, SCP

The network model that is discussed in this subsection is similar to that discussed in subsec-

tion 3.2.1 except for the fact that each of n sensor nodes and clusterhead are equipped with a

front-end processor for communicating off-loading. That is, the sensor nodes can communi-

cate (report) and sense at the same time. The clusterhead can perform the data aggregation

as it gathers sensory data from each sensor node. We assume here, the data aggregation is

started immediately after the first sensory data is reported as shown in Fig. 3.4. Intuitively,

the reporting time lasts at least when sensing operation terminates. In this subsection, we

assume that ziTcm < yiTso, so that reporting of sensory data at each sensor node can end

with sensing operation at the same instant even though the ith reporting starts when the

(i + 1)th sensor nodes terminates its own reporting (Fig. 3.4). Surely, each report can be

started only after the sensing operation is started. For the clusterhead, we can conjecture
∑n

i=1 αsiw0Tcp− z0Tcm ≤ ∑n
i=1 αsiziTcm to meet the minimum round time. Here, we can see

that the conjecture also implies z0Tcm ≤ ∑n
i=1 αsiw0Tcp so that reporting to sink (BS) and

data aggregation end at the same time.

According to Fig. 3.4, the fundamental recursive equation of the network can be obtained

as follows:

αsiyiTso = t + αsi+1yi+1Tso + αsiziTcm i = 1, 2, . . . , n− 1 (3.49)

One can rewriting the above set of equations as

αsi+1 = fiαsi − gi i = 1, 2, . . . , n− 1 (3.50)

Here, the above equation has the same formation with (3.2), but

fi =
yiTso − ziTcm

yi+1Tso

, gi =
t

yi+1Tso

i = 1, 2, . . . , n− 1 (3.51)

44

As we mentioned previously, ziTcm < yiTso. That is, communication speed must be faster

than sensing speed. The optimal values of αts can be obtained using eq (3.6) and (3.8).

Referring the Fig. 3.4, the minimum round time, Tr,n can be then obtained as follows

Tr,n = min(T0) = T1 + z0Tcm = t + αs1y1Tso + z0Tcm (3.52)

Note that min(T0) is derived according to the condition,
∑n

i=1 αsiw0Tcp−z0Tcm =
∑n

i=1 αsiziTcm

as we mentioned previously.

Using eq (3.8) and (3.9), Tr,n can be rewritten as follow

Tr,n = t +
1 + C1

ρ1 + C2

y1Tso + z0Tcm (3.53)

As a special case, consider the situation of a fully homogeneous network (i.e. yi = y, zi = z,

and ρi = ρ for i = 1, 2, . . . , n). Note here that the inverse communication speed of the

clusterhead, z0 can be different.

Consequently,

f = 1− zTcm

yTso

, g =
t

yTso

(3.54)

Here, yTso > zTcm. Thus 0 < f < 1.

Also, under the fully homogeneous condition the initial two conjectures we mentioned pre-

viously,
∑n

i=1 αsiw0Tcp − z0Tcm ≤ ∑n
i=1 αsiziTcm and z0Tcm ≤ ∑n

i=1 αsiw0Tcp, can be combined as

follows

ρ ≤ w0Tcp

z0Tcm

≤ ρ +
zTcm

z0Tcm

(3.55)

The above inequality gives an information of the feasible range of the ratio of w0Tcp

z0Tcm
to meet

the minimum round time.

45

Following similar procedures showed previous subsections, αs1 can be obtained as a identical

form with (3.18).

The minimum round time is then given by

Tr,n = t +

1
ρ

+ C
′
1

1 + C
′
2

yTso + z0Tcm (3.56)

From the above equation, under a fully homogeneous condition, we can also see the mini-

mum round time can be achieved when information utility constant equals to unity which

is an ideal case.

Under the fully homogeneous condition, a closed form of the condition for a feasible in-

struction assignment time, tfeas can be derived as the similar manner shown in subsection

3.2.1.

0 ≤ tfeas < min(
ηk

γk

,
1− ηl

γl

) (3.57)

where,

ηi =

1
ρ

1 + C
′
2

f i−1, γi =
C
′′
1

1 + C
′
2

f i−1 +
1

yTso − zTcm

(
f − f i−1

1− f

)
(3.58)

Here, k and l are the index of the sensor node number where γi < 0 and γi > 0, respectively.

From the above equation, under fully homogeneous condition, we can also see the minimum

round time can be achieved when information utility constant equals to unity which is an

ideal case.

Since the minimum round time on a single sensor node under the fully homogeneous condi-

tion is

Tr,1 = t +
1

ρ
yTso + z0Tcm (3.59)

46

...
1i

n

=
∑

Figure 3.5: Timing diagram for multi channel hierarchical wireless sensor network with
front-end processors.

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
yTso + z0Tcm

t +
1
ρ
+C

′
1

1+C
′
2

yTso + z0Tcm

(3.60)

From the (3.56), using the fact, C
′
1 → 0 (i.e., t → 0) and C

′
2 → yTso

zTcm
− 1 as n → ∞, the

asymptotic minimum round time, Tr,∞ can be simply written as

Tr,∞ =
σ

ρ
yTso + z0Tcm =

1

ρ
zTcm + z0Tcm (3.61)

Here, σ = zTcm

yTso
.

The asymptotic speedup can be then obtained as follows

Speedupn→∞ =
yTso + ρz0Tcm

zTcm + ρz0Tcm

(3.62)

47

3.2.4 Multi Channel with front-end processor, MCP

This subsection is similar to the previous one except for the fact that now the communica-

tion between sink node and sensor nodes takes place under multiple independent channels

as described in subsection 3.2.2, so that simultaneous reporting is possible. It was shown

that the simultaneous sensing operation start and simultaneous reporting termination over

all sensor nodes provided through multiple independent channels contribute improved per-

formance in subsection 3.2.1. Furthermore, more improvement in performance would be

achieved from the simultaneous reporting termination over all nodes include the clusterhead

with front-end processor. The timing diagram of the network is plotted in Fig. 3.5. We

assume here that ziTcm > yiTso, so that the speed of sensing operation is faster than the

speed of reporting. In other words, by intuitive sense, the sensing operation is required to

be ceased before or exactly when the reporting terminates. For the clusterhead, we can

conjecture
∑n

i=1 αsiw0Tcp ≤ αsiziTcm to meet the minimum round time from in Fig. 3.5.

Also, we can conjecture that z0Tcm ≤ ∑n
i=1 αsiw0Tcp so that reporting to sink (BS) and data

aggregation end at the same time. From the conjecture, we can expect that the minimum

T0 can be obtained under a certain condition,
∑n

i=1 αsiw0Tcp = αsiziTcm.

The fundamental recursive equation which is independent of the information utility, ρ can

be formulated as follows:

αsiziTcm = αsi+1zi+1Tcm i = 1, 2, . . . , n− 1 (3.63)

One can rewriting the above set of equations as

αsi+1 = fiαsi i = 1, 2, . . . , n− 1 (3.64)

Here, the above equation has the same formation with (3.31), but

fi =
ziTcm

zi+1Tcm

i = 1, 2, . . . , n− 1 (3.65)

48

Thus, the optimal values of αts can be obtained as (3.34) using the identical equation, (3.36).

Referring Fig. 3.5, the minimum round time, Tr,n can be obtained as follows

Tr,n = min(T0) = T1 = t + αs1z1Tcm (3.66)

Using the (3.36), Tr,n can be rewritten as follow

Tr,n = t +
1

ρ1 + C1

z1Tcm (3.67)

As a special case, consider the situation of a fully homogeneous network (i.e. yi = y, zi = z,

and ρi = ρ for i = 1, 2, . . . , n). Note here that the inverse communication speed of the

clusterhead, z0 can be different.

Since f = 1 (i.e., C1 = ρ(n − 1)), αs1 can be obtained as the equal amount of sensed data

shown as (3.43).

From the two initial conjecture,
∑n

i=1 αsiw0Tcp ≤ αsiziTcm and z0Tcm ≤ ∑n
i=1 αsiw0Tcp, the

following combined inequality can be obtained

ρ ≤ w0Tcp

z0Tcm

≤ zTcm

nz0Tcp

(3.68)

The above inequality shows that as the number of sensor nodes increases the required upper

bound of the ratio w0Tcp

z0Tcm
reduced. Also, from the condition, ρ ≤ zTcm

nz0Tcp
, we can see that

minimum required value of the ratio zTcm

z0Tcp
is the number of sensor nodes in the cluster, n.

This is expected as all the sensing operations of sensor nodes are performed simultaneously

and are also the corresponding reporting performed simultaneously, for the effective data

aggregation at clusterhead, the processing speed is needed increased. The minimum round

time is then given by

Tr,n = t +
1

ρn
zTcm (3.69)

49

..
1
0z

2
0z 3

0z

0
nz

1
0w1 ,eqy

0
nw

2
0w2 ,eqy

.
3
0w3 ,eqy

,m
eqy

Figure 3.6: The equivalent flat wireless sensor network topology with intelligent sensor nodes

Since the minimum round time on a single sensor node under the fully homogeneous condi-

tion is

Tr,1 = t +
1

ρ
zTcm (3.70)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
zTcm

t + 1
ρn

zTcm

(3.71)

Note that if one consider the case that the instruction assignment time, t is negligible (i.e.,

t → 0), speedup can be achieved as n, which is a linear function to the number of sensor

nodes, that is speedup is scalable in this case.

From (3.69) and (3.71), the asymptotic minimum round time and the asymptotic speedup

are given respectively as

Tr,∞ = t, Speedupn→∞ = 1 +
1

ρt
zTcm (3.72)

50

s1 yeqTso t1 z0Tcmt2 z0Tcms2 yeqTso t3 z0Tcms3 yeqTso z0.
t 2t 3t

T1T2T3
Tn

Instruction assignment timeSensing time Report times1 w0TcpData aggregation times2w0Tcps3w0Tcp
Figure 3.7: Timing diagram for single channel flat wireless sensor network with homogeneous
intelligent sensors with no front-end processors.

3.3 Multi-Cluster based hierarchical wireless sensor net-

work scheduling

In this section, we will discuss multi-cluster three tier hierarchical WSN model based on

the four scenarios we analyzed in the previous section (see Fig. 3.1(b)). The homogeneous

network (i.e.,zi
0 = z0, wi

0 = w0, and ρi = ρ for i = 1, 2, . . . , n) is assumed for finding

a closed form equation. The methodology used to analyze the multi-cluster model is to

collapse a group of nodes (a clusterhead + sensor nodes) composing a cluster into a single

equivalent sensor node. This methodology is similar with the one applied in several previous

studies [7],[41],[42]. Based on the equivalent node element, we can collapse a cluster into a

single “intelligent” sensor node. The terminology, ”intelligent” is used for denoting a sensor

node which performs its own data aggregation, a significant role of clusterhead. Hence, the

final equivalent WSN topology would be flat, not hierarchical as shown in Fig. 3.6. As we

mentioned previously, the four scenarios we will discuss in this section is similar to that

analyzed in the previous one except for the fact that all sensors equally participate in the

sensing operation.

51

3.3.1 Single Channel with no front-end processor

On the way of collapsing, n clusters will be replaced by n equivalent intelligent sensor nodes.

Referring (3.20), the round time on a single equivalent intelligent sensor node can be written

as follows

t +
1

ρ
yeqTso +

1

ρ
zTcm +

1

ρ
w0Tcp + z0Tcm (3.73)

By equating the above equation and (3.19), we can obtain yeq as

yeq =
1

Tso

{
1 + ρC

′
1

1 + C
′
2

yTso +

(
1 + ρC

′
1

1 + C
′
2

− 1

)
zTcm

}
(3.74)

where, C
′
1 and C

′
2 are as described in (3.17).

The timing diagram of the flat WSN with the n homogeneous intelligent sensor nodes is

illustrated in Fig. 3.7. From the timing diagram (Fig. 3.7), one can set up the following

corresponding recursive load distribution equations

αsi(yeqTso + w0Tcp) = t + αsi+1(yeqTso + w0Tcp) + αti+1z0Tcm i = 1, 2, . . . , n− 1 (3.75)

The above set of equations can be further expressed using the information utility constant,

ρ as

αsi(yeqTso + w0Tcp) = t + αsi+1(yeqTso + w0Tcp) + ραsi+1z0Tcm

= t + αsi+1(yeqTso + w0Tcp + ρz0Tcm) i = 1, 2, . . . , n− 1 (3.76)

Rewriting the above set of equations as

αsi+1 = fαsi − g i = 1, 2, . . . , n− 1 (3.77)

52

where

f =
yeqTso + w0Tcp

yeqTso + w0Tcp + ρz0Tcm

, g =
t

yeqTso + w0Tcp + ρz0Tcm

(3.78)

From the derivational similarity with subsection 3.2.1, we can solve for αs1 as (3.18). Hence,

the minimum round time using n homogeneous intelligent sensor nodes, Tr,n can be achieved

as follows

Tr,n = T1 = t + αs1(yeqTso + w0Tcp + ρz0Tcm)

= t +

1
ρ

+ C
′
1

1 + C
′
2

(yeqTso + w0Tcp + ρz0Tcm) (3.79)

Since the minimum round time on a single intelligent sensor node is

Tr,1 = t +
1

ρ
(yeqTso + w0Tcp + ρz0Tcm) (3.80)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
(yeqTso + w0Tcp + ρz0Tcm)

t +
1
ρ
+C

′
1

1+C
′
2

(yeqTso + w0Tcp + ρz0Tcm)
(3.81)

3.3.2 Multi Channel with no front-end processor

On the way of collapsing, n clusters will be replaced by n equivalent intelligent sensor nodes

as we showed in the previous subsection. Referring (3.45), the round time on a single

equivalent intelligent sensor node can be written as follows

t +
1

ρ
yeqTso +

1

ρ
zTcm +

1

ρ
w0Tcp + z0Tcm (3.82)

53

...
Figure 3.8: Timing diagram for multi channel flat wireless sensor network with homogeneous
intelligent sensors with no front-end processor.

By equating the above equation and (3.44), we can obtain yeq as

yeq =
1

Tso

{
1

n
yTso +

(
1

n
− 1

)
zTcm

}
(3.83)

The timing diagram of the flat WSN with the n homogeneous intelligent sensor nodes is

illustrated in Fig. 3.8. From the timing diagram (Fig. 3.8), one can set up the following

corresponding recursive load distribution equations

t + αsi(yeqTso + w0Tcp) + αtiz0Tcm = t + αsi+1(yeqTso + w0Tcp) + αti+1z0Tcm

i = 1, 2, . . . , n− 1 (3.84)

The above set of equations can be further expressed using the information utility constant,

ρ as

t + αsi(yeqTso + w0Tcp + ρz0Tcm) = t + αsi+1(yeqTso + w0Tcp + ρz0Tcm)

i = 1, 2, . . . , n− 1 (3.85)

54

Rewriting the above set of equations simply as

αsi+1 = αsi i = 1, 2, . . . , n− 1 (3.86)

From the intuitive similarity with III −B, we can solve for αs1 as (3.43).

Hence, the minimum round time using n homogeneous intelligent sensor nodes, Tr,n can be

achieved as follows

Tr,n = T1 = t + αs1(yeqTso + w0Tcp + ρz0Tcm)

= t +
1

ρn
(yeqTso + w0Tcp + ρz0Tcm) (3.87)

Since the minimum round time on a single intelligent sensor node is

Tr,1 = t +
1

ρ
(yeqTso + w0Tcp + ρz0Tcm) (3.88)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
(yeqTso + w0Tcp + ρz0Tcm)

t + 1
ρn

(yeqTso + w0Tcp + ρz0Tcm)
(3.89)

3.3.3 Single Channel with front-end processor

By following a similar step of collapsing showed in the previous subsections, referring (3.59),

the round time on a single equivalent intelligent sensor node can be written as follows

t +
1

ρ
yeqTso + z0Tcm (3.90)

55

...
Figure 3.9: Timing diagram for single channel flat wireless sensor network with homogeneous
intelligent sensors with front-end processor.

By equating the above equation and (3.56), we can obtain yeq as

yeq =
1

Tso

(
1 + ρC

′
1

1 + C
′
2

)
yTso (3.91)

The timing diagram of the flat WSN with the n homogeneous intelligent sensor nodes is

illustrated in Fig. 3.9. Here, we assume that z0Tcm < w0Tcp so that reporting of sensory

data at each sensor node can end with own data aggregation at the same instant even though

the ith reporting starts when the (i + 1)th equivalent intelligent sensor nodes terminates its

own reporting (Fig. 3.9). From the timing diagram (Fig. 3.9), one can set up the following

corresponding recursive load distribution equations

αsiyeqTso = t + αsi+1yeqTso + αtiz0Tcm i = 1, 2, . . . , n− 1 (3.92)

The above set of equations can be further expressed using the information utility constant,

ρ as

αsi(yeqTso − ρz0Tcm) = t + αsi+1yeqTso i = 1, 2, . . . , n− 1 (3.93)

56

Rewriting the above set of equations as

αsi+1 = fαsi − g i = 1, 2, . . . , n− 1 (3.94)

where

f =
yeqTso − ρz0Tcm

yeqTso

, g =
t

yeqTso

(3.95)

Here, yeqTso > ρz0Tcm.

From the derivational similarity with III − A, we can solve for αs1 as (3.18). Hence, the

minimum round time using n homogeneous intelligent sensor nodes, Tr,n can be achieved as

follows

Tr,n = T1 = t + αs1yeqTso = t +

1
ρ

+ C
′
1

1 + C
′
2

yeqTso (3.96)

Since the minimum round time on a single intelligent sensor node is

Tr,1 = t +
1

ρ
yeqTso (3.97)

the speedup is then

Speedup =
Tr,1

Tr,n

=
t + 1

ρ
yeqTso

t +
1
ρ
+C

′
1

1+C
′
2

yeqTso

(3.98)

3.3.4 Multi Channel with front-end processor

The timing diagram of the flat WSN with the n homogeneous intelligent sensor nodes is

illustrated in Fig. 3.10. We assume here that z0Tcm > w0Tso, so that the speed data

57

...
Figure 3.10: Timing diagram for multi channel flat wireless sensor network with homoge-
neous intelligent sensors with front-end processor.

aggregation is faster than the speed of reporting. In other words, by intuitive sense, the

data aggregation is needed to be ceased before or exactly when the reporting terminates.

From the timing diagram (Fig. 3.10), one can set up the following corresponding recursive

load distribution equations without considering the equivalent sensing speed, yeq.

αtiz0Tcm = αti+1z0Tcm i = 1, 2, . . . , n− 1 (3.99)

From the intuitive similarity with subsection 3.2.4, we can solve for αt1 as 1
n
.

Hence, the minimum round time using n homogeneous intelligent sensor nodes, Tr,n can be

achieved as follows

Tr,n = T1 = t +
1

n
z0Tcm (3.100)

Since the minimum round time on a single intelligent sensor node is

Tr,1 = t + z0Tcm (3.101)

58

iγ
iη

/k kη γ
(1) /l lη γ−

()si optα
(inf)si easα

Table 3.1: Example of the condition for the feasible measurement instruction assignment
time.

the speedup is then

Speedup =
t + z0Tcm

t + 1
n
z0Tcm

(3.102)

3.4 Performance evaluation

3.4.1 Feasible measurement instruction assignment time

Now we demonstrate the usage of the condition for the feasible measurement instruction

assignment time constant by means of an illustrative example. We consider the scenario of

SCnP with parameters, n = 10, ρ = 1.0, Tso = 1.0, Tcm = 1.0, and Tcp = 1.0. The speed

parameters are set as y = 1.0, z = 1.0, z0 = 0.1, and w0 = 0.1. Based on the (3.24), ηi and

γi for i = 2, 3, . . . , 10 are given as Table 3.1. From the polarity of γi, k = 4, 5, . . . , 10 and

l = 2, 3. According to the condition (see (3.27)), the minimum value over the fourth and fifth

rows of the Table 3.1 is given as 0.00099. Thus, the condition for the feasible measurement

instruction assignment time constant is 0 ≤ t < 0.00099. For the check of feasibility of

t, the sixth row of the Table 3.1 shows the optimal values of αsi for i = 2, 3, . . . , 10 when

t = 0.0009 sec, which is the feasible time value in the boundary. On the other hand, αs10 is

given as a negative value which is obviously not a reasonable value for the αs when t = 0.001

sec, which is an infeasible time value for the upper bound, 0.00099.

59

z00.1(SCnP,MCnP,SCP,MCP)ρ 0.1(SCnP,MCnP,SCP,MCP)0.1(SCnP,MCnP,SCP,MCP) 0.2 (SCP)w00.1(SCnP,MCnP,MCP)0.1(SCnP,MCnP,SCP,MCP)0.1(SCnP,MCnP,SCP,MCP) z1.0(SCnP,MCnP)Variable yVariable2.0 (MCP)0.1 (SCP)1.0(SCnP,MCnP,SCP,MCP)Variable1.0(SCnP,MCnP,SCP,MCP) 1.0(SCnP,MCnP)0.1 (MCP)1.2 (SCP)2.0 (MCP)1.0(SCnP,MCnP,SCP) 1.2 (SCP)1.0(SCnP,MCnP,MCP)vs.yvs.vs.z
ρ

t=0, Tso=1.0, Tcm=1.0, Tcp=1.0
Table 3.2: Simulation speed parameters.

3.4.2 Minimum round time

With common parameters t = 0, Tso = 1.0, Tcm = 1.0, and Tcp = 1.0, the minimum total

round time of the four scenarios of SCnP, MCnP, SCP, and MCP are plotted against the

number of sensor nodes in the fully homogeneous cluster for different sensing speeds, y, for

different communication speeds, z, and for different information utility constants, ρ, using

the speed parameters shown in the Table 3.2. Speed parameters for the scenarios of SCP and

MCP are set according to the assumptions perviously mentioned for the minimum round

time, zTcm < yTso, (3.55) and zTcm > yTso, (3.68) respectively.

In Fig. 11, the five performance curves are obtained with y = 0.2, 0.4, 0.6, 0.8, and 1.0,

respectively for the 4 scenarios. As shown in the subfigures, the longer the sensing delay,

the longer the total round time, and the round time for the five cases saturates and converges

to the value, Tr,∞ which is independent of the sensing speed parameter, y as the number

of sensor nodes increases. But the reduction is not too significant after just a few sensor

nodes. Several similar intuitive curves have been shown in [37],[38]. Specifically, for the

MCP scenario, the round time curves for 5 different values of sensing speed are exactly

identical since round time is given as a function independent to the sensing speed parameter

as shown (3.69). Similarly, in Fig. 12, the minimum total round time of the each scenario

with z = 0.2, 0.4, 0.6, 0.8, and 1.0, is plotted respectively except MCP scenario with z =

2.2, 2.4, 2.6, 2.8, and 3.0. The subfigures show better total round time is obtained as the

communication speed increases. The subfigures show better total round time is obtained

as the communication speed increases. For all of the scenarios, the saturation of the total

60

2 4 6 8 10 12 14 16 18 2000.5
11.52

2.5

Number of sensor nodes
The minimum round time

y=0.2y=0.4y=0.6y=0.8y=1.0

(a) SCnP

2 4 6 8 10 12 14 16 18 2000.5
11.52

2.5

Number of sensor nodes
The minimum round time

y=0.2y=0.4y=0.6y=0.8y=1.0

(b) MCnP

2 4 6 8 10 12 14 16 18 2000.51
1.5

Number of sensor nodes
The minimum round time

y=0.2y=0.4y=0.6y=0.8y=1.0

(c) SCP

2 4 6 8 10 12 14 16 18 2000.51
1.52

Number of sensor nodes
The minimum round time

y=0.2y=0.4y=0.6y=0.8y=1.0

(d) MCP

Figure 3.11: Total round time versus the number of senor nodes for the fully homogeneous
cluster with variable y.

61

2 4 6 8 10 12 14 16 18 2000.5
11.52

2.5

Number of sensor nodes
The minimum round time

z=0.2z=0.4z=0.6z=0.8z=1.0

(a) SCnP

2 4 6 8 10 12 14 16 18 2000.51
1.52
2.5

Number of sensor nodes
The minimum round time

z=0.2z=0.4z=0.6z=0.8z=1.0

(b) MCnP

2 4 6 8 10 12 14 16 18 2000.5
11.5

Number of sensor nodes
The minimum round time

z=0.2z=0.4z=0.6z=0.8z=1.0

(c) SCP

2 4 6 8 10 12 14 16 18 2000.51
1.52
2.53

Number of sensor nodes
The minimum round time

z=2.2z=2.4z=2.6z=2.8z=3.0

(d) MCP

Figure 3.12: Total round time versus the number of sensor nodes for the fully homogeneous
cluster with variable z.

round time with respect to different values of z is shown as the number of sensor nodes

increases. The convergence of the total round time for five different communication speeds

is shown in Fig. 3.12(b) and Fig. 3.12(d) since Tr,∞ is independent to the communication

speed parameter, z ((3.47) and (3.72)). In Fig. 13, the five performance curves are obtained

with ρ = 0.2, 0.4, 0.6, 0.8, and 1.0, respectively for each scenario. In all subgraphs in Fig.

13, we can also see that the saturation of the total round time for five different information

utility constants, ρ, as the number of sensor nodes increases. As we expect intuitively

when the information utility gets higher (i.e., ρ → 1), the total round time reduces. This

is expected as the higher information utility constant decreases not only the sensing and

62

2 4 6 8 10 12 14 16 18 200123
4567
891011

Number of sensor nodes
The minimum round time

=0.2=0.4=0.6=0.8=1.0

(a) SCnP

2 4 6 8 10 12 14 16 18 200123
4567
891011

Number of sensor nodes
The minimum round time

=0.2=0.4=0.6=0.8=1.0

(b) MCnP

2 4 6 8 10 12 14 16 18 20012
345
6

Number of sensor nodes
The minimum round time

=0.2=0.4=0.6=0.8=1.0

(c) SCP

2 4 6 8 10 12 14 16 18 200123
4567
8910

Number of sensor nodes
The minimum round time

=0.2=0.4=0.6=0.8=1.0

(d) MCP

Figure 3.13: Total round time versus the number of sensor nodes for the fully homogeneous
cluster with variable ρ.

reporting time at sensor nodes but also the data aggregation and reporting time at the

clusterhead.

3.4.3 Speedup

In Fig. 14 and 15, the speedup of the the 4 scenarios (SCnP, MCnP, SCP,and MCP)

are described against the number of sensor nodes and the information utility constant in

the fully homogeneous cluster for different sensing speeds, y and communication speeds, z,

respectively. The same speed parameters used in previous subsection are applied. A better

speedup characteristic can be seen as a result of the multiple channel comparing Fig. 3.14(a)

63

to (b) (Fig. 3.15(a) to (b)) and Fig. 3.14(c) to (d) (Fig. 3.15(c) to (d)). It also can be seen

that the front-end processors contribute to the better speedup comparing Fig. 3.14(a) to (c)

(Fig. 3.15(a) to (c)) and Fig. 3.14(b) to (d) (Fig. 3.15(b) to (d)). All of the plots except

for the MCP scenario show the speedup saturation as the number of sensor nodes increases.

Especially, Fig. 3.14(d) and Fig. 3.15(d) show speedup given as a linearly increasing curve

of first order n. As we previously mentioned, in the case that the instruction assignment

time, t is negligible, speedup is achieved as a scalable function by n, which is independent

of the speed parameter y and z (see (3.71)). As a reminder, the value of speedup saturation

of the 4 scenarios are given as (3.29), (3.48), (3.62), and (3.72). Interestingly, a smaller

increment in the speedup according to the variation of the information utility is shown

relative to the case of the variation of the number of sensor nodes. The smaller sensitivity

of the information utility constant in the speedup can be mathematically analyzed in that

the information utility constant, ρ appearing in both numerator and denominator seems to

largely cancel out. A modestly better speedup characteristic as information utility decreases

implies that relatively more performance enhancement in round time can be achieved by

additional sensor nodes when the accuracy of collected data is low.

3.4.4 Energy Dissipation

Power usage in wireless sensor nodes has been studied for finite amounts of non renewable

energy in sensor networks. A radio model has been developed to model the energy dissipated

by a sensor node when transmitting and receiving data [43]. To transmit a k bit data a

distance d, the energy dissipated is

Etx(k, d) = Eelec · k + εamp · k · d2 (3.103)

and to receive the k bit data, the radio expends

Erx(k) = Eelec · k (3.104)

64

Speedup
(a) SCnP

Speedup
(b) MCnP

Speedup
(c) SCP

Speedup
(d) MCP

Figure 3.14: Speedup for the fully homogeneous cluster with variable ρ and y.

65

Speedup
(a) SCnP

Speedup
(b) MCnP

Speedup
(c) SCP

Speedup
(d) MCP

Figure 3.15: Speedup for the fully homogeneous cluster with variable ρ and z.

66

1 2 3 4 5 6 7 8 9 10050100150200250300
Energy dissipation (nJ)

Sensor 0 (Clusterhead) energy dissipation,1077nJ y=0.2y=0.4y=0.6y=0.8y=1.0
Sensor i number

(a) SCnP

1 2 3 4 5 6 7 8 9 1028.529
29.530
30.531

Energy dissipation (nJ)
Sensor 0 (Clusterhead) energy dissipation,1077nJ y=0.2y=0.4y=0.6y=0.8y=1.0

Sensor i number
(b) MCnP

1 2 3 4 5 6 7 8 9 1002040
6080100120140160

Energy dissipation (nJ)
Sensor 0 (Clusterhead) energy dissipation,1077nJ y=0.2y=0.4y=0.6y=0.8y=1.0

Sensor i number
(c) SCP

1 2 3 4 5 6 7 8 9 1028.529
29.530
30.531

Energy dissipation (nJ)
Sensor 0 (Clusterhead) energy dissipation,1077nJ y=0.2y=0.4y=0.6y=0.8y=1.0

Sensor i number
(d) MCP

Figure 3.16: Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable y.

67

1 2 3 4 5 6 7 8 9 1002040
6080100120140160

Sensor number
Energy dissipation (nJ)

Sensor 0 (Clusterhead) energy dissipation,1077nJ z=0.2z=0.4z=0.6z=0.8z=1.0

(a) SCnP

1 2 3 4 5 6 7 8 9 1028.529
29.530
30.531

Energy dissipation (nJ)
Sensor 0 (Clusterhead) energy dissipation,1077nJ z=0.2z=0.4z=0.6z=0.8z=1.0

Sensor i number
(b) MCnP

1 2 3 4 5 6 7 8 9 10050100150200250300
Energy dissipation (nJ)

Sensor 0 (Clusterhead) energy dissipation,1077nJ z=0.2z=0.4z=0.6z=0.8z=1.0
Sensor i number

(c) SCP

1 2 3 4 5 6 7 8 9 1028.529
29.530
30.531

Energy dissipation (nJ)
Sensor 0 (Clusterhead) energy dissipation,1077nJ z=2.2z=2.4z=2.6z=2.8z=3.0

Sensor i number
(d) MCP

Figure 3.17: Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable z.

Here, the parameter, k can be substituted with the normalized fraction of data, αs, com-

puted by DLT. The DLT based analysis of the wireless sensor energy dissipation has been

studied using the first order radio model [37]. For this work, we assume that the radio

model also follows the first order radio model. Also, we consider an energy dissipation other

than the radio, mainly in the processors in the sensor nodes. It is well known that the

radio energy dissipation overwhelms the other losses such as processing energy dissipation.

However, energy dissipation in processing and data aggregation at the clusterhead seems

important to be considered in the meaning of DLT since clusterhead deals with relatively

large amount of collected data from each sensor node.

68

0 1 2 3 4 5 6 7 8 9 10020040060080010001200
Energy dissipation (nJ)

=0.2=0.4=0.6=0.8=1.0
Sensor i number

(a) SCnP

0 1 2 3 4 5 6 7 8 9 10020040060080010001200
Energy dissipation (nJ)

=0.2=0.4=0.6=0.8=1.0
Sensor i number

(b) MCnP

0 1 2 3 4 5 6 7 8 9 10020040060080010001200
Energy dissipation (nJ)

=0.2=0.4=0.6=0.8=1.0
Sensor i number

(c) SCP

0 1 2 3 4 5 6 7 8 9 10020040060080010001200
Energy dissipation (nJ)

=0.2=0.4=0.6=0.8=1.0
Sensor i number

(d) MCP

Figure 3.18: Energy dissipation versus sensor id number for the fully homogeneous cluster
with variable ρ.

69

The following notation and the corresponding value are used for our simulation.

d : distance from each sensor node to clusterhead 50m. (distance from clusterhead to sink,

100m).

Eelec : 50 nJ/b.

εamp : 100 pJ/b/m2.

For the analysis of the processing energy dissipation, we use the experimental parameters

used in [44]. From [44] a Mica2 sensor mote is specified as a 38.4Kbps radio that operates

at 3V (2xAA Batteries), or 27nJ/b (27W · s/b) processing cost.

Based on the first order radio model and the computed processing energy dissipation by

using Mica2 specifications, the total energy dissipation of the 4 scenarios (SCnP, MCnP,

SCP, and MCP) are plotted in Fig. 16 against 10 sensors including the clusterhead in the

homogeneous cluster for different sensing speeds, y, with the same values of the parameters

used in the previous simulation for the total round time for different sensing speeds. As

shown in Fig. 4.5(a) and 4.5(c), the energy dissipation at each sensor node unevenly de-

creases as the sensor node number increase. It is because the energy dissipation is mainly

related to the amount of collected and reported data. As the sensing speed is faster, the

first few sensor nodes would have more data to be processed so that more energy dissipation

is highly concentrated on the first few sensor nodes as shown in Fig. 4.5(a) and 4.5(c). The

energy dissipation at a clusterhead is computed as an identical amount, 1077nJ for the

four scenarios. This is expected as the clusterhead processes all the reported data which

depends on only the information utility constant and reports the perfectly aggregated data

(unit amount) to a sink. Specially, for the MCnP and MCP scenario, the energy dissipation

curves for 5 different values of sensing speed are exactly identical to a constant value since

the total data is equally distributed to each sensor node due to the simultaneous sensing

and reporting enabled by muti-channels under the fully homogeneous cluster case as shown

(3.43).

Similarly, in Fig. 17, the total energy dissipation of the 4 scenarios is plotted against the

number of sensor nodes in the homogeneous cluster for different communication speeds, z,

70

with the values of the parameters used in the previous simulation for the total round time for

different z. The plots show intuitively similar results with the result in the case of different

sensing speed.

In Fig. 18, the total energy dissipation of the 4 scenarios are plotted against the number of

sensor nodes in the homogeneous cluster for different information utility constant, ρ with

the values of the parameters used in the previous simulation for the total round time for

different ρ. Here, sensor number 0 denotes the clusterhead. Intuitively, the smaller the

information utility constant (that is more redundant data), the more energy dissipation as

shown in Fig. 18. As we mentioned before, the clusterhead processes all the reported data

which depends on the information utility constant so that the energy dissipation at the

clusterhead varies according to the information utility constant.

3.4.5 3D Cluster Model

Simulation is carried out to illustrate the relationship between different information utility

constants according to the variation of a target location model involving the minimum

round time. We consider a three dimensional tetrahedron cluster with 50m edges, three

sensor nodes (S1,S2, and S3) positioned on the vertices of a base triangle and a clusterhead

(S0) positioned on the other vertice as illustrated in Fig. 3.19(a). The three sensor nodes

could be ground based sensing stations and the clusterhead is airborne. The target location

can be varied on the 2D square target space as shown in Fig. 3.19(a). In this simulation,

we use the estimation technique introduce in [39] so that each sensor node has a value of

information utility constant, 0.7, especially when the target lies at the center of the base

triangle. That is the heterogeneous information utility constants are generated as the target

location varies. Here, the multi channel with no front end processor (MCnP) scheduling

scenario is applied for the simulation with the same values of the speed parameters used

in the previous simulation for the total round time for different ρ. The information utility

constant is illustrated when the target is moving in the square 2D target space as shown

in Fig. 3.19(b), 3.19(c), and 3.19(d). As we expect, the figures show a convex peak at the

71

Z-coordinate (m)
50 m

50 m 50 m

50 m

50 m

50 m

3S
2S

1S

0 ,S Clusterhead

(a) 3D Cluster model with varying target
location.

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X-coordinate (m)Y-coordinate (m)

In
fo

rm
at

io
n

ut
ili

ty
 c

on
st

an
t o

f S
1, ρ

1

(b) Information utility constant, ρ1 vs
Target location

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

25

30

35

40

45

50

0.4

0.5

0.6

0.7

0.8

0.9

1

X-coordinate (m)Y-coordinate (m)

In
fo

rm
at

io
n

ut
ili

ty
 c

on
st

an
t o

f S
2, ρ

2

(c) Information utility constant, ρ2 vs
Target location

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15
20

25
30

35

40

45
50

0.4

0.5

0.6

0.7

0.8

0.9

1

X-coordinate (m)Y-coordinate (m)

In
fo

rm
at

io
n

ut
ili

ty
 c

on
st

an
t o

f S
3, ρ

3

(d) Information utility constant, ρ3 vs
Target location

location of the each sensor. In other words, the corresponding information utility constant

increases as the target moves toward each of the sensor nodes as expected. As we derived

in (3.42), the minimum round time for MCnP scheduling scenario inversely depends on the

value of the summation of the information utility constants of each sensor node. Fig. 3.19(e)

shows the convex distribution of the value of
∑3

i=1 ρi over the region of the target space.

As we expect, a concave result for the minimum round time is shown in Fig. 3.19(f) as a

vertical flipped version of Fig. 3.19(e). Fig. 20 shows the energy dissipation of each sensor

(S0, S1, S2, and S3) over the region of the target space. From Fig. 20 we can recognize all

plots are depicted as a similar shape by each other with Fig. 3.19(f). This is because the

amount of reported data from each sensor node and total amount of the collected data at

clusterhead also inversely depends on the sum of the information utility constants of each

sensor node (see (3.41)). Similarly, in MCnP scenario, we can also expect identical result

72

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

25
30

35
40

45

50

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

X-coordinate (m)Y-coordinate (m)

Σ i=
1

3
 ρ

i

(e) Total information utility constant vs
Target location

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

25

30

35
40

45
50

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

X-coordinate (m)Y-coordinate (m)

T
he

 m
in

im
um

 r
ou

nd
 ti

m
e

(f) Minimum round time vs Target loca-
tion.

Figure 3.19: MCnP scheduling for 3D Cluster model

for the energy dissipation at the sensor nodes, S1, S2, and S3 as shown in Fig. 19.

3.5 Concluding remarks

In this chapter, closed form solutions for the minimum round time for several scenarios

of single cluster wireless sensor networks are derived. The performance of these scenarios

are examined according to different sensing speeds, communication speeds, and information

utility constants. The condition for feasible measurement instruction assignment time is

derived and a numerical example is presented to describe the importance of DLT feasibility

by demonstrating the operation of the condition. The special bounds for the ratio of speed

parameters for the maintenance of the minimum round time are also derived. By using an

equivalent speed parameter, it is shown that a multi-cluster based WSN can be analyzed

as a flat wireless sensor network without clusters. The performance of clustered WSN net-

works is shown by using a deterministic analysis method, divisible load theory. By direct

deterministic approaches, our work gives a general idea of the performance of WSN.

For extensions to our work, the analysis of a multi-cluster WSN topology would be interest-

ing. A more comprehensive study concerning the relationship between the speed parameters

and the information utility constant and the corresponding performance including speedup

and asymptotic performance is worth addressing for future work. As for the more rigorous

73

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

25

30

35
40

45
50

1088

1090

1092

1094

1096

1098

1100

1102

1104

X-coordinate (m)Y-coordinate (m)

E
ne

rg
y

di
ss

ip
at

io
n

at
 S

0
 (

nJ
)

(a) Energy dissipation at
S0(clusterhead) vs Target location.

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

25
30

35
40

45

50

140

150

160

170

180

190

200

X-coordinate (m)Y-coordinate (m)

E
ne

rg
y

di
ss

ip
at

io
n

at
 S

1 (
nJ

)

(b) Energy dissipation at S1 vs Target
location.

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15
20

25
30

35

40

45
50

140

150

160

170

180

190

200

X-coordinate (m)Y-coordinate (m)

E
ne

rg
y

di
ss

ip
at

io
n

at
 S

2 (
nJ

)

(c) Energy dissipation at S2 vs Target
location.

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15
20

25
30

35

40

45
50

140

150

160

170

180

190

200

X-coordinate (m)Y-coordinate (m)

E
ne

rg
y

di
ss

ip
at

io
n

at
 S

3 (
nJ

)

(d) Energy dissipation at S3 vs Target
location.

Figure 3.20: Energy dissipation versus Target location MCnP scheduling.

74

analytic results, the study of the following issues are also expected to extend our study:

• The analytical model for a WSN with direct communication between sensor nodes (Ad

hoc WSN).

• The analysis of performance variation according to the quality of data aggregation.

• The effect of the heterogeneous speed parameters including the information utility.

• The analysis of special bounds for the related parameters (i.e., speed parameters, instruc-

tion assignment time, and information utility) under a heterogenous WSN.

75

Chapter 4

Resource Scheduling Heuristics for

Data Intensive Networks

The unprecedented volume of data generated by modern physics experiments such as those

taking place at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Labo-

ratory (BNL) and the Large Hadron Collider (LHC) at CERN, is demanding new strategies

for data collection, sharing, management, and transfer over networks [45]. For example, the

STAR experiment [46] is already collecting data at the rate of over one terabyte per day. The

volume of data will increase by a factor of ten in the next five years. As another example,

the BNL ATLAS Computing Facility needs to provide a Grid-based storage system capable

of sustaining data rates of one gigabyte per second for incoming and outgoing data between

BNL and ATLAS Tier 0, Tier 1 and Tier 2 sites, to support thousands of reconstruction

and/or analysis jobs [47].

Experimental and analysis data need to transferred over the network within specific time

frames to be shared among various institutions for processing and interpretation. Transfer-

ring such vast amounts of data and meeting arrival deadlines raises a significant scheduling

problem. Networks are shared mediums with default behavior to treat all data flows equally,

lacking the capability to dynamically reserve resources along the full path between sources

and destinations. Such resource reservations, however, have been made possible through a

76

number of recent networking projects [48],[49],[50],[51],[52].

The TeraPaths project at BNL [53],[54],[55] is a DOE-funded project aimed at guarantee-

ing network resources to specific data flows. The TeraPaths software establishes end-to-end

virtual network paths with guaranteed resources by acting both as an end site LAN con-

troller and as a client to WAN-supported resource reservation service. TeraPaths utilizes

DiffServ-based Quality of Service (QoS) and Policy-Based Routing (PBR) techniques to

prioritize, protect, and regulate individual data flows. Furthermore, TeraPaths reserves and

manages dedicated WAN paths indirectly, through OSCARS services. OSCARS [51] is a

joint ESnet [56] and Internet2 [57] project. The OSCARS software establishes dedicated

network paths within the ESnet backbone (layer 2 and layer 3) and the Internet2 backbone

(layer 2 only). Layer 2 paths (dynamic circuits) can be established across both backbones,

enabling this form of connectivity between universities and DOE laboratories. TeraPaths-

controlled end-sites establish circuit connectivity between their border routers. Authorized

flows are prioritized and regulated through DiffServ and directed into these circuits with

PBR. The end result is that selected flows follow a resource-guaranteed path extending

between their source and destination nodes.

The idea behind the work presented in this chapter is to utilize the new capabilities

provided by TeraPaths not only to schedule the utilization of network resources for the

benefit of data transfers, but also to minimize resource waste and increase the numbers of

data transfers that can be accommodated simultaneously.

The establishment of virtual paths between source and destination node pairs simplifies

the network topology into a set of virtual end-to-end connections between those nodes.

In this chapter, we examine policies for assigning file transfers onto a set of source and

destination node pairs interconnected by this simplified virtual topology. We consider two

opposite policies. The first one minimizes the number of active source-destination node pairs

by aggregating flows onto the same node pairs until the network connection capacity limit is

reached. The second policy spreads the load (load balancing) amongst the node pairs. Many

policy variations are possible, however, these two policies are at the two extremes of the

77

Switch

Border
Router

M MM M Virtual Circuit

Source Destination
 Virtual Path

Figure 4.1: Virtual connections between multiple source nodes and destination nodes

problem space, and serve as a starting point for studying file transfer assignment problems

when network resource scheduling is supported. As a data transfer model, we use a simple

topology with four nodes at both source and destination sites so that the trend of capacity

reservations of each node at both sites can be investigated tractably for both policies.

In the following section, we present the notation and analytic background used in this

chapter. Section 4.2 describes the idea of time varying capacity analysis with an example. In

Section 4.3 we introduce heuristic scheduling modules and present two resource reservation

heuristics we developed, while we evaluate the performance of these heuristics in section 4.4.

Finally, we present our conclusions in section 4.5.

4.1 Problem Formulation and Preliminary Remarks

Consider the case of a heterogeneous network model consisting of N source nodes (source

cluster) and M destination nodes (destination cluster). Each cluster belongs to an end site.

Virtual circuits (VCs) are established through the WAN between the border routers of the

two end sites (layer 2 or 3). A virtual source to destination connection with specific, guar-

anteed capacity - called a virtual path (VP) - is established for each individual file transfer

(see Fig. 4.1). Each VC can accommodate one or more VPs depending on its own capacity.

There are three identifiable phases in a VP’s lifetime:

1. VP setup: During the setup phase, the source node contacts (lookups) the database in

78

the switch which has the information of files and the current capacity state and specifies the

destination node(s), and waits for the network to set up the VP.

2. File transfer: Once the VP has been established, files can begin to be forwarded along

the VP.

3. VP teardown: This is initiated when the deadline of the file transfer times out. Either

destination node may close the connection (VP).

The following assumptions are initially made:

1. Nodes can be considered to be hosts, routers, Ethernet switches, or any other device

where the input and output links can have different characteristics.

2. File transfers are generally independent of each other except in terms of interacting

through capacity constraints.

3. The file transmission is uni-directional. (e.q., a file can only be transferred from a source

node to destination node(s)).

4. A node can establish and terminate multiple VPs concurrently and do this for the mul-

tiple nodes at the destination sites.

5. The connection requests arrivals are a stationary Poisson process. The assumption is used

for this initial study. Other assumptions could be the subject of future work.

6. Each of the nodes has a capability to start a file transfer as soon as it receives the file

transfer request.

7. Each of the datasets is composed of several files that can be distributed to multiple nodes,

but each file is indivisible.

8. Compared to the size of the data, the time to setup a VP is negligible.

9. Once a file transfer request (FTR) is ready, all nodes at both source site and the desti-

nation site share the file profile information. The file profile is composed of three elements,

F (file size, file transfer start time, file transfer deadline).

The following notation is used in this chapter:

N, (M) : Total number of nodes at the source, (destination) site in the network.

V P(i,j) : Virtual Path (VP) that is established between ith source node and jth destination

79

node (where i ∈ 1, 2, . . . , N , and j ∈ 1, 2, . . . , M).

CSi, (CDj) : Capacity upper bound of the ith, (jth) node at the source, (destination) site

(NIC capacity).

CV P (i,j) : Capacity upper bound of the established V P(i,j).

CV C : Capacity upper bound of the VC over the WAN.

CSi(t), (CDj(t)) : Reserved capacity temporal variation at the ith, (jth) node on the source,

(destination) site.

C(i,j)(t) : Reserved capacity temporal variation on V P(i,j).

f, (fk) : Size of the file, (kth file) involved in the file transfer.

TS, (TD) : The file transfer start (i.e., request arrival) time, (file transfer deadline).

ts, (td) : The modified file transfer start (i.e., request arrival) time, (file transfer deadline),

where TS ≤ ts < TD and TS < td ≤ TD.

T k
S , (T k

D) : The kth file transfer start (i.e., request arrival) time, (the kth file transfer dead-

line).

CF , (Ck
F) : Least required capacity (i.e., data rate) of the VP to transfer the file, (kth file)

with size f , (fk), where CF = f
TD−TS

, (Ck
F = fk

T k
D−T k

S
). Here, f , (fk) is the maximum file size

that can be transmitted from the source and correctly received by the destination over a

VP during the interval [TS, TD], ([T k
S , T k

D]).

4.2 Time varying Capacity analysis

The network may have some background file transfers through established VPs. The back-

ground file transfers represent both the on-going file transfers utilizing the capacity of the

VP and the reserved (i.e., capacity guaranteed) file transfer requests (FTRs) that have not

yet begun transmission. Here, we call a VP node (pair) which has a background file transfer

a “busy” node (pair). The background file transfers will have a varying effect on capacity. In

other words, the capacity can be considered as a time-varying parameter, C(t). An example

diagram for the reserved capacity temporal variation of a VP, C(i,j)(t) is depicted in Fig. 4.2.

80

1C 2C

4C

6C3C
()C T

5C

1t T5t4t3t2t 6t0 LL t

()C t

(,) , VP i jCapacity upper bound of VP C

1D

4D

3D
5D

6D

R
es

er
ve

d
C

ap
ac

it
y

Figure 4.2: Example of reserved capacity temporal variation, C(t) on V P(i,j). Here, T is
current time

(,)VP i jC

SiC

DjC

()SiC t ()DjC t (,) ()i jC t

t t t

1C

2C 2C

1C 1C

1t 2t 1t 2t 1t 2t

Figure 4.3: Example of capacity temporal variation of a VP connecting the ith source node
and the jth destination node. Here, C1 and C2 are two different levels of reserved capacity.

The temporal variation of the aggregate reserved capacity of VPs established between the

ith source node and the jth destination node can be investigated using the information of

the reserved capacity temporal variation at both the source node and the destination node,

CSi(t) and CDj(t). Here, C(i,j)(t) is limited by the maximum reserved capacity at either

source node or destination node value at each time instant.

C(i,j)(t) = max[CSi(t), CDj(t)] (4.1)

With similar reasoning, the capacity upper bound of the established V P(i,j) between the ith

source node and the jth destination node is limited by the minimum value of the capacity

81

upper bound among the capacity upper bound of ith source node and jth destination node,

CSi and CDj as a bottleneck.

CV P (i,j) = min[CSi, CDj] (4.2)

For clarification, an example of capacity temporal variation of the ith source node, the jth

destination node, and the VP is illustrated in that order in Fig. 4.3.

From the timing diagram, Fig. 4.2, the corresponding equation for reserved capacity tem-

poral variation in a VP, C(t) can be formulated as

C(t) =
∑

i

Ci

{
U(t− ti)− U(t− ti+1)

}
(4.3)

where index i denotes every instance of T k
S and T k

D. Here, U(t) is the unit step function.

Constant Ci is the sum of the allocated capacities of each existing flow at time ti. Constant

Ci can be defined as

Ci =
∑

x

Cx
F (4.4)

where the integer value, x is the index k satisfying T k
S ≤ ti < T k

D. Now, we define a

parameter, ρ (0 ≤ ρ ≤ 1), capacity utilization, along a time slice [T −W, T] (i.e., a time

slice with size W) as

ρ =
C(t)

CV P (i,j)

(4.5)

where

C(t) =

∫ T

T−W
C(t)dt

W
, (4.6)

82

which is the time average of the reserved capacity of the VP in the time slice [T −W, T].

Generally, the utility constant, ρ implies the capacity utilization of a VP within a time

slice with a certain size that one is interested in. We can use ρ as an indicator of the node

information utility which describes the utilization trend of the capacity at a certain node.

Here, W is set as the farthest deadline of the reserved FTRs (file transfer requests) or the

background file transfer flow. Thus, the utilization constant, ρ, represents the fraction of the

capacity that is being used and is a value between zero (meaning nothing is used) and one

(meaning the VP is fully saturated). Multiplying the utilization by 100 yields the percent

utilization of the VP.

To find the utilization along W , it is necessary to find,
∫ T

T−W
C(t)dt. The part of the

integration can be modified as an appropriate arithmetic form for a computer simulation

involving discrete time.

∫ T

T−W

C(t)dt = T · C(T)− (T −W) · C(T −W)−
m∑

i=n+1

ti

(
C(Ti)− C(Ti−1)

)
(4.7)

See Appendix A for details. Finally, from eq (4.7) one can obtain the VP utilization, ρ

with deterministic analysis. This is feasible due to the fact that VC network maintains

state information for its ongoing file transfer connection. The connection-state information

including C(t), T k
S , and T k

D is being stored by tracking and updating the switch’s translation

table, containing each VP’s connection information.

4.3 Capacity scheduling heuristic

The heuristic algorithm is basically composed of three modules as follows

1. VP Selection module: The FTRs (file transfer requests) are mapped to a busy node

pair which is eligible to accommodate the FTR in a least instantaneous capacity demand

manner to meet the deadline. In case that there exists no busy node pair, the initial VP

node pair is selected randomly. The VP selection module chooses an efficient VP, which can

83

accommodate the least capacity demand, CF based on the following conditions

CF ≤ CV P (i,j) −max(C(i,j)(t)) (4.8)

Here, the value of max(C(i,j)(t)) is the maximum reserved capacity over the time slice

[TS, TD] on the temporal capacity domain of V P(i,j). In a similar manner, the candidacy of

the VP is also required to be taken into account under the consideration of the capacity

upper bound of the VC.

CF ≤ CV C −max(C(i,j)(t)) (4.9)

To search for the maximum reserved capacity and reduce the algorithmic computational

complexity, the searching scheme is performed only at the capacity stepping times (for in-

stance, tk from Fig. 4.2), not at all unit time granularity. It can be expected that the

algorithm running time is significantly reduced by using this searching scheme. Note that

the maximum possible number of VPs is M ·N , that is the maximum number of VPs taken

into account in the module.

2. Time-slice Search module: If it is found that there is no node pair candidate having

enough capacity that can accommodate CF at the VP Selection module, feasible modi-

fied time slices, [ts, td], which can accommodate a modified (increased) capacity demand,

C
′
F (= f

td−ts
) within the time slice, [TS, TD], are investigated in this module. The range of

the the modified time slices, [ts, td], is formed within the original time slice, [TS, TD], so that

the modified capacity demand is larger than the original capacity demand over the modified

time slice. A similar searching scheme utilized in the VP selection module is also applied

for searching for the modified time slice candidates. Here, if there is no feasible modified

time slice, the initial file transfer request is rejected in the end. Here, we call the heuristic

that does not consider the time slice modification as “best effort, BE”. In other words, the

BE heuristic rejects the FTR if there is no eligible VP candidate.

84

3. Time-slice Selection module: Once modified time slice candidates are obtained, an ef-

ficient modified time slice is chosen by the module. According to the criteria for choosing

an efficient modified time slice, two heuristic algorithms are introduced in the following

sections.

It is worth mentioning here that the processes in all three modules are performed based on

the VP capacity temporal domain, C(i,j)(t), not on the source capacity temporal domain

nor on the destination capacity temporal domain.

4.3.1 Most Conservative (MC) heuristic algorithm

The objective of the most conservative (MC) heuristic algorithm is to provide capacity-

guaranteed file transfers which maximizes the utilization of busy VP node pairs as much as

possible. Since the MC heuristic algorithm runs in the context of utilizing the busiest node

pairs (i.e., node pair having max ρ), each file transfer is likely to highly utilize a relatively

small number of node pairs. We can intuitively expect that the MC heuristic provides a

better reservation performance under high capacity demand circumstances. It should be

emphasized here that we know information about the temporal capacity state of the net-

work based on the analysis shown in the previous section.

The MC heuristic algorithm basically follows the three modules we briefly introduced pre-

viously. Once multiple node pair candidates satisfy the condition, eq (4.8) and eq (4.9),

the algorithm gives the busiest node pair (i.e., having max ρ) a preference. Therefore, the

reserved capacity tends to be concentrated in “busy” time periods where capacity utiliza-

tion, ρ, is maximized. This makes available more conserved capacity during “non-busy”

time periods. The details of the modules consisting of the MC heuristic are described in

Fig. 4.4. In Fig. 4.4(b), CPEAK denotes the value of the maximum reserved capacity along

the time slice [ts, td]. An insufficient capacity region (i.e, time region demanding capacity

beyond the upper bound of VP (or VC)) truncation in advance of the grid-like searching of

feasible time slices contributes to reducing unnecessary time consumption for the modified

time-slice search by reducing the possible modification time region. In Fig. 4.4(c), min C
′
F

85

()c

MC Time-slice Search module

Input (Desired and)

Do Insufficient capacity region truncation

if

Truncate out time region with
else

Feasible time slices region
end

for all feasible time slices region
if Available Capacity ((8) and (9))

Modified time slice candidate
else

Do FTR Rejection
end

end
if Multiple modified slice candidates

Do Time-slice selection
end

sT dT

PEAKC

()a

()b

MC VP Selection module

Input (New FTR,)

for all (NxM) possible VPs
if Available Capacity((8) and (9))

VP candidate
else

Do Time-slice search
end

end
if Multiple VP candidates

Choose VP with over
else

Do VP reservation
end
if Multiple VP candidates

Choose VP with
else

Do VP reservation
end
if Multiple VP candidates

Random VP selection
else

Do VP reservation
end

maxρ

min VPC

(, ,)S DF f T T

[,]S DT T

MC Time-slice Selection module

Input (Set of Slice Candidate,)

for all m feasible modified time slices
Choose modified time slice with

end
if Multiple modified time slice candidates

Choose modified time slice with over
if Multiple modified time slice candidates

Choose modified time slice with
if Multiple modified time slice candidates

Random selection
end

end
end

1 1{[,], [,]} s d sm dmS t t t t= L
'min FC

min sit

'
(,)>

PEAKF VP i jC C C−

maxρ [,]s dt t

Figure 4.4: MC heuristic modules. (a) VP selection module, (b) Time-slice search module,
(c) Time-slice selection module.

86

File size, f 100 FTRs, 100 IterationsM, N = 4, CVP = 10 GB/m, CVC = 40 GB/mStart time, TS Transfer time, TD-TS Ave file size2 ~ 202 GB ~ U(1,20) minAve TS ≈ 10 min ~ U(1,120) minAve TD-TS ≈ 60 min~ P(20,2)Ave f ≈ 40 GB ~ U(1,20) minAve TS ≈ 10 min Ave transfer time1 ~ 145 min~ P(20,2)Ave f ≈ 40 GB Ave start time1 ~ 49 min ~ U (1,120) minAve TD-TS ≈ 60 min
Table 4.1: Simulation parameters for the comparison of the heuristics

denotes for the least required capacity to transfer a file within a modified time slice.

4.3.2 Load Balancing (LB) heuristic algorithm

In contrast to the MC heuristic, the load balancing (LB) heuristic algorithm provides

capacity-guaranteed file transfer while minimizing the utilization of busy node pairs as much

as possible. In other words, the only difference with respect to the algorithm for the MC

heuristic is the substitution min ρ for max ρ. The LB scenario is advantageous under lower

capacity demand conditions. This is because each file transfer is likely to utilize various

VP node pairs satisfying min ρ. The LB heuristic contributes to allowing balanced capacity

reservation by using multiple VP node pairs as compared with the MC heuristic (see Fig.

4.5).

4.4 Performance comparison of the heuristics

4.4.1 Nodal capacity comparison

In Fig. 4.5, the capacity temporal reservation state over 4 nodes on the source and desti-

nation site respectively with CSi and CDj=10 GB/m, and CV C=40 GB/m is plotted. The

file size is generated by one of the heavy tailed distributions [58], the Pareto distribution,

P (k, α) with shape parameter, k=10 and scale parameter, α=2. The file transfer start time,

TS and the file transfer time, TD−TS is generated by a uniform distribution on the interval

[1, 20], U(1, 20) (i.e., TD= TS+U(1, 20)). For the simulation, 20 sample FTRs are gener-

87

0 5 10 15 20 25 30 35 40 450246810

Capacity, C(t), GB/m

Node 1, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 2, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 3, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node capacity upperbound time, minNode 4, Current time:0.9sec
(a) Capacity reservation state of 4 source
nodes, MC

0 5 10 15 20 25 30 35 40 450246810 Node 1, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 2, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 3, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node capacity upperboundCapacity, C(t), GB/m time, minNode 4, Current time:0.9sec
(b) Capacity reservation state of 4 desti-
nation nodes, MC

0 5 10 15 20 25 30 35 40 450246810 Node 1, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 2, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 3, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node capacity upperboundCapacity, C(t), GB/m time, minNode 4, Current time:0.9sec
(c) Capacity reservation state of 4 source
nodes, LB

0 5 10 15 20 25 30 35 40 450246810 Node 1, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 2, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node 3, Current time:0.9sec
0 5 10 15 20 25 30 35 40 450246810 Node capacity upperboundCapacity, C(t), GB/m time, minNode 4, Current time:0.9sec
(d) Capacity reservation state of 4 desti-
nation nodes, LB

Figure 4.5: State of the capacity reservation over 20 file transfer requests with 1 rejection

88

ated, and one rejected FTR is seen. From Fig. 4.5(a) and 4.5(b), it can be seen that the

V P(4,1) is relatively highly utilized than other possible node pairs so that V P(3,4) becomes

a strong potential candidate especially for the future FTRs demanding high capacity. This

corresponds with the intent of the MC heuristic. Compared with the MC heuristic, ca-

pacity reservation using the LB heuristic tends to be made over all possible VPs as shown

Fig. 4.5(c) and 4.5(d). It can be seen that the capacity reservations are made more evenly

through all VPs through all possible node pairs relative to the MC heuristic case. As a

result, biased capacity reservation on a certain node pair illustrated in the case of the MC

heuristic is not generated by using the LB heuristic, and a balanced capacity reservation is

accomplished. To see clearly the different characteristic in terms of the capacity reservation,

we introduce the node utilization trend, which is the frequency that each node is involved

in the established VPs. The average node utilization trend is obtained as

∑
run

Total frequency of node particapation of V P setup
Total number of the established V P

Total number of simulation runs
(4.10)

Fig. 4.6(a) and 4.6(b) describe the average node utilization trend for BE(best effort)-

MC and BE(best effort)-LB, respectively. Fig. 4.7(a) and 4.7(b) describe the average node

utilization trend for MC heuristic and LB heuristic, respectively. The simulation parameters

including the file profile are given in Table 4.1. The four bars at each grid shows the value

of the highest node utilization rate to the lowest one among the 4 nodes on the source site.

As comparing Fig. 4.6(a) to 6(b), and Fig. 4.7(a) to 4.7(b), we can observe that the average

node utilization rate is similar with each other for the LB heuristic. It shows the balanced

capacity reservation trend. On the other hand, the average node utilization rate for the MC

heuristic shows a distinct gap between the node with the highest node utilization rate and

the node with the lowest one. It clearly shows the different reservation trends of the MC

heuristic and the LB heuristic as we described before. We can see that the different trends

are more distinguishable especially at relatively small size file reservations. Intuitively, this

is because the probability of the random VP selection increases as the file size increases

89

Figure 4.6: Average node utilization vs. file size, (a) BE-MC. (b) BE-LB.

90

Figure 4.7: Average node utilization vs. file size, (a) MC. (b) LB.

91

according to the heuristic modules we introduced. As compared to Fig. 4.6, the overall

higher node utilization rate in Fig. 4.7 shows that the time slice modification contributes

to more VP establishment.

4.4.2 File size variation

The simulation parameters including the file profile are given in Table 4.1. The average

rejection rate and average time slice modification rate against the file size varying from

2 GB to 202 GB for the four heuristic, BE-MC, BE-LB, MC, and LB are plotted in Fig.

4.8(a) and 4.8(b) respectively. The average rejection rate is obtained as

∑
run

Total number of the rejected FTR
Total number of the investigated FTR

Total number of simulation runs
(4.11)

From Fig. 4.8(a), we can observe that LB heuristic has a slightly smaller rejection rate than

the MC heuristic in the case that there is no modification, best effort scenario. With the

process of the time slice modification, the overall rejection rate decreases as compared with

the best effort scenarios. Interestingly, the rejection rate of the LB heuristic is about the

same as the one of the MC heuristic. Intuitively, the reservations based on the MC heuristic

without the time-slice modification tend to stack the reservations on the busiest VP in which

the reserved capacity stack reaches the highest point. Hence, the available capacity will run

out faster relative to the case of the LB heuristic during busy time periods. On the other

hand, with the time-slice modification process, the reserved capacity tends to be squeezed

more densely in time rather than stacked in an appropriate capacity available area. As we

expect, the rejection rate becomes higher as the file size increases. The average time-slice

modification rate shown in Fig. 4.8(b) is obtained as

∑
run

Total number of the time−slice modifications
Total number of the investigated FTR

Total number of simulation runs
(4.12)

92

0 20 40 60 80 100 120 140 160 180 20001020304050
60708090100

Average rejection rate (%) Average file size, GB
BE-MCBE-LBMCLB

051015
20253035Average time-slice modification ra

te (%)
Average file size, GB

BE-MCBE-LBMCLB
0 20 40 60 80 100 120 140 160 180 200

()a

()b

Figure 4.8: (a) Average rejection rate vs. file size, f . (b) Average time-slice modification
rate vs. file size, f .

93

As we expect, the time-slice modification rate of the two BE heuristics is zero because the

BE heuristic has no modification. For the MC and the LB heuristics the modification rate

curves are in a convex shape. Intuitively, the initial increase is due to the increasing need

for time slice modification as the file size increases, and the trend of the decreasing rejection

rate can be interpreted as the case that the FTR rejection rate becomes dominant. The

reason that MC heuristic has a somewhat higher time-slice modification rate than the LB

heuristic can be obtained from the reasoning on the rejection rate. Based on the same

probability of the time-slice modification demand, the MC heuristic tends to have a higher

probability to make a reservation via the time-slice modification. This corresponds the less

rejection rate as compared with the LB heuristic. From Fig. 4.8(b), it can be reasoned that

FTRs with approximately 0.75 GB/m (≈ 45GB / 60min) capacity demand are most likely

to be reserved after the time-slice modification than FTRs with other amounts of capacity

demand.

4.4.3 File transfer time variation

Based on the parameters in Table 4.1, the average rejection rate and average time slice

modification rate against the file transfer time varying from 1 min to 145 min for the four

heuristic are plotted in Fig. 4.9(a) and Fig. 4.9(b) respectively. As we can expect, the re-

jection rate decreases due to the fact that the capacity demand decreases as the file transfer

time duration increases with a given file size are illustrated in Fig. 4.9(a). The idea that

the process of the time-slice modification enhances the performance in terms of the rejection

rate also can be seen as in the previous experiment. The explanation for the details about

the curves between the MC heuristic and the LB heuristic is based on similar reasoning as

mentioned in the previous section.

The curves of average time-slice modification rate shown in Fig. 4.9(b) are also convex

in shape. In this case, the initial increase is due to the increasing demand for time-slice

modifications caused by decreasing FTR capacity demand as file transfer time increases for

a given file size. The trend of decreasing rejection rate appears because a capacity reserva-

94

0 50 100 15001020304050
60708090100

File transfer time, min
BE-MCBE-LBMCLB

Average rejection rate (%)

0 50 100 150051015
202530Average time-slice modification ra

te (%)
File transfer time, min

BE-MCBE-LBMCLB()a

()b

Figure 4.9: (a) Average rejection rate vs. file transfer time, TD−TS. (b) Average time-slice
modification rate vs. file transfer time, TD − TS.

95

tion is likely to be accomplished without time-slice modification as demand for capacity is

dramatically reduced with longer file transfer times. From Fig. 4.9(b), it is also seen that

FTRs with approximately 0.75 GB/m (≈ 40GB / 55min) capacity demand are most likely

to be reserved after the time-slice modification than FTRs with other amounts of capacity

demand for the parameters of the simulation.

4.4.4 File transfer start time variation

Based on the parameters in Table 4.1, the average rejection rate and average time slice

modification rate is obtained against the file transfer time varying from 1 min to 49 min

for the four heuristic in Fig. 4.10(a) and Fig. 4.10(b) respectively. It can be seen that the

rejection rate for all heuristics tend to decreases as the file transfer start time, Ts increases.

This is because the later the value of Ts, the higher the chance to reserve capacity on the less

busy time slice. The reasoning about the rejection rate curves between the BE-MC heuristic

and the BE-LB heuristic is based on the similar reasoning mentioned in the previous section.

However, the information of Ts is insufficient for the performance comparison in terms of

the rejection rate of the MC and LB heuristics as shown in Fig. 4.10(a). Fig. 4.10(b)

gives us an information that the MC heuristic tends to accomplish the capacity reservation

by utilizing the time-slice modification module as compared with the LB heuristic. The

decreasing trend of the time-slice modification rate as the file transfer start time increases

reflects the fact that the capacity reservation of the FTRs with the later TS is likely made

without the time-slice modification.

4.5 Concluding remarks

An initial study of two heuristic methods for optimizing network resource reservations for

virtual paths carrying file transfers between end-site node clusters has been presented. The

MC heuristic, which maximizes the utilization of network resources of the cluster intercon-

necting network, and the LB heuristic, which spreads transfer load evenly among source and

96

0 5 10 15 20 25 30 35 40 45 500102030
40506070Average rejection rate (%) Average file transfer start time, min

BE-MCBE-LBMCLB

0 5 10 15 20 25 30 35 40 45 5005101520
25303540Average time-slice modification

rate (%)
Average file transfer start time, min

BE-MCBE-LBMCLB()a

()b

Figure 4.10: (a) Average rejection rate vs. file transfer start time, TS. (b) Average time-slice
modification rate vs. file transfer start time, TS.

97

destination cluster nodes, were shown to be effective to reduce file transfer request rejection

rate when used with a time slice modification algorithm. This study indicates that the use

of time slice modification has a bigger impact on performance than the choice of either the

MC or LB heuristic. The proposed heuristic algorithms are promising as a starting point for

studying the scheduling of file transfers through modern hybrid high-performance networks.

Potential extensions to this starting point include:

• Improving the computational efficiency of the scheduling algorithm.

• Simulating larger networks.

• Simulating networks with different statistical assumptions on file transfer request ar-

rival processes and file size.

• The MC and LB heuristics are at two extremes of possible algorithms. Blended algo-

rithms or algorithms with a different basis would be of interest for further study.

Collaborations of researchers sharing the results of large scale experiments are leading

the way in massive file sharing (in file quantity and file size) through networks. This research

is a step in engineering such large file transfer capable networks.

98

Chapter 5

Grid Scheduling Divisible Load with

Load Adaptive Computing Power

A special type of parallel computing system, “Grid” computing systems, has appeared as

a promising trend for distributed parallel processing systems. Grid computing is apply-

ing the resources of many computers in a network to a single task at the same time. For

collaborative grid computing across many computers, each computer is multiprogrammed.

Multiprogramming is the technique of running several programs at a time using timesharing.

It allows a computer to do several tasks at the same time. Thus, multiprogramming creates

logical parallelism.

In recent years, there have been several interesting studies in divisible load grid schedul-

ing. Environments of multiple job submissions are investigated through stochastic queuing

models in [59]. Grid load scheduling algorithms under buffer resource space constraint are

examined in [60],[61]. In [62], divisible load scheduling strategies in grid networks is studied

via linear programming. Under a certain constraint, optimal load solution is analyzed in [63].

Flow cost analysis is performed for the case of multi-source load distribution in linear daisy

chain topologies [64]. Divisible load scheduling is introduced to design grid systems [65].

To this end, in this chapter optimal computing power allocation solution adapted to divis-

ible load the parallel computing grid is developed in a fundamental grid with two sources

99

wad(1)z1 z2Load source1s1 Load source2s2
Load computing sink, p w wad(2)

Figure 5.1: Grid network with two load sources and a load computing sink.

and a single sink computing processor. We note that the analysis of the optimal computing

power allocation is provided for the first time.

The organization of this chapter is follows. Section 5.1 presents the types of notations and

analytic backgrounds, Section 5.2 analyzes the optimal adaptive computing power based on

the divisible load theory. Performance simulation results appear are discussed in Section

5.3. Finally, this chapter concludes with Section 5.4.

5.1 Problem Formulation and Preliminary Remarks

The grid network discussed in this chapter is a grid network consisting of two workload

sources and a single sink (Fig. 5.1). The sink p is connected to the sources through 2 com-

munication links. Each of the sources has role as a workload distributor with no computing

itself. The two sources distribute optimally calculated load fractions to the sink. The sink is

involved in computing its own load assigned from the sources via the direct links. The sink is

a processor which does workload processing. The sink is a multiprogrammed (multitasking)

processor. Multiprogrammed processor allows simultaneous computing of multiple loads

distributed from sources (i.e., parallel computing). Simultaneous multiple load computing

has background loads being computed (i.e., sharing the computing power (speed) at the

100

same time. Thus, the entire computing power (speed) of the sink is differentially consumed

for the each of the parallel computing loads. The objective of this study is the optimal load

scheduling through sharing adaptive computing power (speed) of the sink.

The following notation is used in this chapter.

i : The index of source, where i = 1, 2.

si : The ith source (load distributor).

p : The sink (load computing processor).

w : The inverse maximum computing speed (power) of the sink.

zi : The inverse communication speed of the link connecting the ith source and the sink.

Tcp : Computing intensity constant. The entire load can be computed on the sink in time

wTcp.

Tcm : Communication intensity constant. The entire load can be transmitted over the ith

link in time zTcm.

αi : The load fraction assigned to the sink from the ith source.

∆αi : The fraction of αi which is processed with the inverse computing speed wad(i). Here,

0 ≤ ∆αi ≤ αi.

wad(i) : The adaptive inverse computing speed (power) for the αi. Here, wad(i) > w

t : Parallel computing start time at which the computation of the load fractions assigned

from the both sources starts simultaneously at the sink.

C : Parallel computing time region at which the adaptive computing speed (power) is ap-

plied.

Tf : The total time that elapses between the beginning of the process at t = 0 and the time

when the sink completes its entire computation.

Ti : The total computing finish time of the αi. Here, Ti ≤ Tf .

Tave : The average of load weighted computing finish time at the sink

Tave =
2∑

i=1

αiTi (5.1)

101

In this chapter, the following assumptions are initially made:

1. The sources are capable to distribute their own loads to the sink simultaneously (i.e.,

simultaneous distribution, t = 0). This is possible as long as a source is fast enough to

continually load buffers for each of its output links. The load allocation time instant of each

load can differ.

2. Without loss of generality, the load distribution from the two sources initiates by s1 at

t = 0. The computing process of the loads from s2, α2 is undertaken basically under the

circumstance that the α1 is currently being computed.

3. The second load, α2 allocation must be undertaken before the computing of the first load,

α1 ends (i.e., t ≤ α1wTcp).

4. The sink begins computing as soon as it begins to receive load from the either of two

sources.

5. The speed of communication in a link is faster than the speed of computation of the sink,

which is connected to the link (i.e., zi ¿ w).

6. At the sink, the computing of the first assigned load, α1 can not extend beyond the time

at which computing of the subsequent load, α2 terminates at least.

5.2 Analysis of Adaptive Computing Speed

Consider a simple scenario of a grid networking with two sources (s1 and s2) and a single

sink, p. Initially the load α1 is distributed to the sink p from the source s1. As the s1

begins to distribute the load α1, the sink p starts computing α1. At time t, sink p begins

to compute the second load α2 as it receives the second load from s2 while the first load

is still being computed (parallel computing). The parallel computing is possible in that p

is a multiprogrammed processor. Now, the background computing process of the load α1

affects the computing power allocation for simultaneous parallel computing of the α2. The

corresponding timing diagram of the scenario is shown in Fig. 5.2. The shaded time area in

102

s1s2
p

commcomm1 z1Tcm
1 1 wTcp

2 z2Tcm
comp1wad(1)Tcpt 2wad(2)Tcp 2 2 wTcp TfC

time

1wTcp
t

2wTcpT1
T2(Parallel computing region)

Figure 5.2: Generalized load distribution with two sources and a multiprogrammed sink.

Fig. 5.2 demonstrates the time at which the simultaneous parallel computing is performed

through the adaptive computing speed (power) allocation.

From the timing diagram, we can see that,

(α1 −∆α1)wTcp = t (5.2)

By rewriting eq (5.2), ∆α1 can be expressed as

∆α1 =
α1wTcp − t

wTcp

(5.3)

Since 0 ≤ ∆α1 ≤ α1, the bound of feasible t is given from eq (5.3) as

0 ≤ t ≤ α1wTcp (5.4)

which implies that idle time during which the sink waits for being fed with a subsequent

load is not allowed (assumption 3). The simultaneous start of load computing (i.e., t = 0)

103

involves the entire load α1 being computed with wad(1) (i.e., ∆α1 = α1) . The case t = α1wTcp

involves that the second load α2 being assigned when the computing of the load α1 with

the full computing power ends (i.e., ∆α1 = ∆α2 = 0) so that the full computing power is

guaranteed for the second load α2 (i.e., sequential load computing).

The next step is to find an expression for the adaptive inverse computing speed (power) for

the α1, wad(1). As it can be seen from Fig. 5.2, the shaded time area in which the adaptive

computing speed is applied has a constant time value, C. Thus,

∆α1wad(1)Tcp = ∆α2wad(2)Tcp = C (5.5)

Here, C = 0 if and only if t = α1wTcp.

By substituting eq (5.3) into eq (5.5), wad(1) can be expressed as w proportional to a time

ratio (see Fig. 5.2)

wad(1) =
C

∆α1Tcp

=

(
C

α1wTcp − t

)
w (5.6)

From the reasoning that the sum of the adaptive computing power dedicated to the α1 and

α2 is the maximum computing power of the sink, we obtain

1

wad(1)

+
1

wad(2)

=
1

w
(5.7)

By substituting eq (5.6) into eq (5.7), wad(2) can be obtained as the w proportional to a time

ratio (see Fig. 5.2) as similar to the wad(1)

wad(2) =

(
C

C −∆α1wTcp

)
w =

(
C

C − (α1wTcp − t)

)
w (5.8)

Since ∆α2wad(2)Tcp = C (the shaded time area in Fig. 5.2), from eq (5.8), ∆α2 can be

achieved as

∆α2 =
C − (α1wTcp − t)

wTcp

(5.9)

104

Further, from 0 ≤ ∆α2 ≤ α2, the boundary condition for the feasible C can be achieved as

α1wTcp − t ≤ C ≤ (α1 + α2)wTcp − t (5.10)

Intuitively, the boundary information of the C seems reasonable due to the assumption that

the computing time of the α1 can not extend beyond the time at which computing of the

subsequent load, α2 terminates as was mentioned previously.

From eq (5.3) and eq (5.9), the ratio of the load fractions sharing the computing power

(speed) can be expressed as a time ratio

∆α2

∆α1

=
C − (α1wTcp − t)

α1wTcp − t
(5.11)

Also, from eq (5.5), we have

wad(1)

wad(2)

=
∆α2

∆α1

=
C − (α1wTcp − t)

α1wTcp − t
(5.12)

By intuition, it can be reasoned that the adaptive computing speed is commensurate with

the amount of the load fraction to be computed. Here, interestingly it can be seen that the

adaptive inverse computing speed, wad(1) and wad(2) can be written as a function of w that

linearly depends on the ratio of ∆α1 and ∆α2. From eq (5.3), eq (5.6), eq (5.8), and eq

(5.9)

wad(1) =

(
∆α1 + ∆α2

∆α1

)
w, wad(2) =

(
∆α1 + ∆α2

∆α2

)
w (5.13)

The eq (5.13) shows that the adaptive computing speed (power) linearly depends on the

fractions of load to be parallel computed.

From Fig. 5.2, the entire load processing (computing) finish time, Tf is given by

Tf = t + C + (α2 −∆α2)wTcp (5.14)

105

From eq (5.9), eq (5.14) can be rewritten as

Tf = (α1 + α2)wTcp (5.15)

The above eq (5.15) gives the intuition that the entire load processing time, Tf equals to

that of the case of the full computing power, wTcp dedicated to the entire load α1 + α2,

which is the optimal case. In other words, the eq (5.6) and eq (5.8) yield the adaptive

inverse computing speed for the loads ∆α1 and ∆α2.

Now, from Fig. 5.2, the average load weighted computing finish time, Tave defined as eq

(5.1) can be expressed as

Tave =
2∑

i=1

αiTi = α1(t + C) + α2Tf (5.16)

Here, our objective is to determine the optimal fractions αi satisfying the minimum average

load weighted computing finish time. An equality constraint, α1 + α2 = L, where L is the

total amount of the load at the sources, is essential for a unique solution. Using the equality

constraint and eq (5.15), eq (5.16) can be rewritten as

Tave = α1(t + C) + (L− α1)LwTcp (5.17)

From eq (5.17), it is clear that the lower bound of C strictly contributes to the minimization

of Tave. The condition C = α1wTcp − t (see eq (5.10)) implies that the sink devote its full

inverse computing speed (power), w to process the entire α1 (i.e, wad(1) = w from eq (5.6)).

In other words, the computing of the α2 is delayed until the computing of α1 ends even

though the α2 arrives at time instant t (i.e, wad(2) = ∞ from eq (5.8)). In a nutshell, the

minimum average load weighted computing finish time can be achieved through sequential

computing scenario regardless of t.

Substituting C with α1wTcp−t, the Tave can be reformulated as a downward concave function

106

of a variable α1

Tave = α2
1wTcp − α1LwTcp + L2wTcp (5.18)

As special cases, consider the case in which the computing power is evenly allocated for the

each of the loads that is wad(1) = wad(2) = 2w (leading ∆α1 = ∆α2). From the condition eq

(5.12)

C = 2(α1wTcp − t) (5.19)

By substituting eq (5.19) into eq (5.17), Tave can be written as

Tave = 2α2
1wTcp − α1(t + LwTcp) + L2wTcp (5.20)

So far, the analysis of the minimum average load weighted computing finish time has im-

plied, t is a known priori. To generalize the analysis without the assumption, a special type

of mathematical optimization model, Quadratic programming (QP) can be adopted. In our

case, it is the problem of optimizing (minimizing) a quadratic objective function, eq (5.17)

of four variables, [α1, α2, t, C] subject to linear constraints on these variables :

Equality constraint :

α1 + α2 = L (5.21)

Linear Inequality Constraints :

0 < α1 < L

0 < α2 < L

0 ≤ t ≤ α1wTcp

α1wTcp − t ≤ C ≤ (α1 + α2)wTcp − t (5.22)

107

Figure 5.3: Adaptive computing speed against C, t = 0, (a) α1 < α2, (b) α1 = α2, (c)
α1 > α2.

Figure 5.4: Adaptive computing speed against C, t = 0.25, (a) α1 < α2, (b) α1 = α2, (c)
α1 > α2.

108

Figure 5.5: Adaptive computing speed against C, t = 0.41, (a) α1 < α2, (b) α1 = α2, (c)
α1 > α2.

5.3 Performance evaluation

A simulation is performed in the case where there are two sources and a single sink with

parameters w = 1.4, Tcp = 1, a1 = 0.3, 0.5, and 0.7, the corresponding a2 = 0.7, 0.5, and

0.3, and the t = 0, 0.25, and 0.41, respectively. Thus, the minimum computing finish time,

Tf = 1.4. Fig. 5.3, Fig. 5.4, and Fig. 5.5 show the dependence of the adaptive computing

speed (power) on the parallel computing time region, C against different parallel comput-

ing start times, t. Note that the range of C is different with each subplot from eq (5.10).

The subfigures are presented against different load conditions (i,e., a1 < a2, a1 = a2, and

a1 > a2). The initial superior adaptive computing speed (power) is due to the fact that

the computing of the α1 load already exists in the background while the application of

full computing power 1/w is being assumed. In other words, the α1 load has a priority

in utilizing the full computing power of the sink, p. The increasing trend of the adaptive

computing power for α2 (or decreasing trend of adaptive computing power for α1) against C

is reasonable in that the relatively more adaptive computing speed (power) for the α2 than

the α1 is required to meet the Tf within the bigger parallel computing time region C. As

109

1α 2α

2
cpLwT

t <

2
cpLwT

t ≥

min
aveT

4
cp

cp

t LwT
wT

+

2
L

cp

t
wT

cp

t
wT

3
cpLwT

t <

3
cpLwT

t ≥

1L α−
2

2 7
8 4 8

cp

cp

L wTt Lt
wT

− − +

2 2
cp

cp

t Lt L wTwT − +

23
4

cpL wT

2 2
cp

cp

t Lt L wTwT − +

Table 5.1: Analytic optimal solutions.

Optimal fraction of and

Figure 5.6: QP optimal load solution against t.

it was explained, the sum of the adaptive computing powers is 1/w. It can be seen in the

subplots with the same load conditions in Fig. 5.3, Fig. 5.4, and Fig. 5.5 against different

t that the latter parallel computing starts, the more adaptive computing power α2 needs.

Intuitively, this is because the larger faction of the α1 is likely to be computed utilizing the

full computing power, as the α2 requests the computing power allocation later. In Fig. 5.3,

Fig. 5.4, and Fig. 5.5, given t and C, it can be seen that the amount of the adaptive power

dedicated to either load is bigger when the load size of one is bigger than or equal to one of

the other.

Table 5.1 contains the analytical solutions of optimal fraction of load to attain the min-

110

Figure 5.7: Minimum average load weighted computing finish time against t.

imum average load weighted computing finish time, Tmin
ave for the both cases (i.e, adaptive

computing power allocation, eq (5.18) and even computing power allocation, eq (5.20)). The

optimal solution, α1 satisfying the Tmin
ave , can be achieved by the first derivative test. By

substituting the optimal solutions for the both cases into eq (5.18) and eq (5.20), the Tmin
ave

can be obtained as shown in Table 5.1. The analytical point here is to take into account

the boundary condition formulated from the constraint, t ≤ α1wTcp based on the initial

assumption 3. The value t out of the constraint leads to the sequential load computing

scenario. Thus, the solution of α1 has upper bound, t/wTcp. By equalizing the optimal load

solution to the upper bound of α1, the condition of the boundary time can be obtained as

the second column of Table 5.1.

Fig. 5.6 shows the optimal load fraction for the case that the adaptive computing speed is

utilized with parameters L = 1, w = 1.4, Tcp = 1, and known priori t varying 0 to 1.4. The

optimal load solutions are obtained via QP with the objective functions eq (5.18) and eq

(5.20) with two variables [α1, α2]. Clearly, the optimal solutions are distributed as corre-

sponding to the analytical solutions described in Table 5.1. The solutions exist beyond the

bound satisfying the constraint t ≤ α1wTcp (i.e., sequential computing region), the optimal

solutions are restricted to the value t/wTcp (see Fig. 5.6).

111

Fig. 5.7 depicts the minimum average load weighted computing finish time of the both cases

(i.e, adaptive computing power allocation and even computing power allocation). Interest-

ingly, we can observe that the Tmin
ave is achieved until the boundary (i.e., LwTcp/2) in the case

of adaptive computing power. This implies multiple solutions for Tmin
ave exist in QP. Based

on Fig. 5.6, the fact that the same optimal solution, α1,Adap = 0.5 regardless t (i.e, t ≤ 0.7,

the boundary, LwTcp/2) implicitly shows that the full adaptive computing speed (power) is

dedicated to compute α1 until the entire α1 is being computed (i.e., 1/wad(1) = 1/w) in spite

of the fact that α2 arrives to be computed at t (i.e., sequential computing). This corresponds

to the QP solution region over t = [0, LwTcp/2] as shown in Fig. 5.7. In the case using even

computing power, we can see that a unique solution, α1,Even = 0.5 exists at the boundary

LwTcp/2 (i.e., t = 0.7) which is involved in the region of the sequential computing scenario

of the even computing power case. The outperformed performance of the adaptive com-

puting power case is intuitive because the adaptive computing speed (power) contributes to

utilizing full computing power. The identical performance in t ≥ LwTcp/2 is due to the fact

that the sequential computing scenario without idle time between two computing processes

is applied. As shown in Fig. 5.6, the sequential computing scenarios confines the solutions,

α1,Adap and α1,Even to t/wTcp. The identical performance can be also clarified from Table

5.1.

5.4 Concluding remarks

In this chapter, a mathematical analysis to obtain the adaptive computing power scheduling

of a sink in a grid with two sources is performed in first time. An optimization problem

to minimize the average load weighted computing finish time is developed via Quadratic

Programming (QP). The performance evaluation of the adaptive computing power and the

even computing power are provided. The theoretical findings demonstrate that the optimal

solutions is obtained via QP.

112

Chapter 6

Cost Performance Analysis in Parallel

Computing Networks with Divisible

Load Scheduling

With the emergence of massive parallel processing networks, commercial network service

providers must maintain a balance between the requirements for parallel computing effi-

ciency and the deployment of new differentiated services. To achieve this balance between

an existing network service and deploying new network services, monetary network cost

inevitably needs to be considered. Because the demand for maintaining efficient paral-

lel computing network service, one much have information about monetary network cost

trends corresponding to network environmental changes.

There have been several attempts to give insight into monetary network cost using divisible

load models [66],[67],[68]. In a bus oriented networks, optimal load distribution sequences

and associate numerical algorithms in minimizing total computing cost are investigated

in [66]. As extended works, by considering communication cost besides of the computing

cost, heuristics for the optimal load sharing sequence is examined and studied in [67],[68].

As an extended approach of parallel network performance evaluation using DLT, the effi-

ciency of parallel systems and the concept of isomaps is studied [70], [71] using the concept

113

of an isoefficiency function [72].

In this chapter, by applying DLT, we consider the problem of monetary network cost on

a homogeneous single-level tree network. Our objective is to analyze trends of the mone-

tary network cost against ratio of network speed parameters and to determine relationships

between the network cost and the network environment. To be specific, two strategies re-

garding load distribution (sequential load distribution and simultaneous load distribution)

are discussed. The cost trends for various network conditions are studied for the both cases

of load distribution. It is apparent that quantitative monetary cost is important to scale

cost demand to perform parallel processing under a limited monetary budget. Further, the

quality of monetary usage is worth taking into account for the both cases of load distribu-

tion. In other words, how efficiently the monetary cost is spent for the parallel processing

indicates the value of the unit cost. In accordance, the cost efficiency contributes as a good

indicator of the quality of cost consumption in the parallel processing.

This chapter is organized as follows. Section 6.1 presents the type of notation and analytic

background that are used throughout the chapter. The analysis of monetary cost and cost

efficiency for different load distribution strategies is constructed based on the DLT in sec-

tion 6.2. Trends of network cost and cost efficiency for both load distribution strategies are

investigated and compared through simulation results in Section 6.3. Finally, this chapter

concludes with some possible extensions in Section 6.4.

6.1 Problem Formulation and Preliminary Remarks

The distributed computing network model to be considered in this chapter is a single-level

tree network (bus network) with homogeneous speed parameters and cost coefficients. The

single-level tree network consists of children processors connected to a root processor via

direct communication links. The root processor has a role as a load distributor and also

for computing itself. The children processors are involved in computing their own load

assigned from the root processor via the direct links. Monetary “cost” involving processors’

114

computing and communicating linearly depends on the speed of processors and links and

the amount of work load.

The following notation is used in this chapter.

αi : The load fraction assigned to the ith children processor (where i = 1, 2, . . . , N). Index

i = 0 is for root processor.

w : The inverse computing speed of the processors. [sec/load].

z : The inverse communication speed of the links. [sec/load].

Tcp : Computing intensity constant. [Dimensionless]. The entire load (amount of unity) can

be processed on a processor in time wTcp sec.

Tcm : Communication intensity constant. [Dimensionless]. The entire load (amount of unity)

can be transmitted over a link in time zTcm sec.

cp : Static computing cost coefficient. [cost/sec]. The computing cost for the entire load

(amount of unity) is cpwTcp cost.

cl : Static communication cost coefficient. [cost/sec]. The communication cost for the entire

load (amount of unity) is clzTcm cost.

Tf,N : The total processing finish time. Time at which a single root processor and N children

processors complete their computation.

Ti : The total time that elapses between the beginning of the process at t = 0 and the time

when ith processor completes its own computation (where i = 0, 1, . . . , N).

6.2 Cost analysis of homogeneous single level tree net-

works

Consider a single level tree network architecture with N children processors, P1, P2, . . . , PN

interconnected through N links to a root processor, P0. The root processor distributes loads

among the N children processors through the N direct links.

115

P0P1P2
PN

N zTcm

NwTcp.
.

.

T0 communication

t
1 zTcm

N zTcm

0wTcp1 zTcm 2 zTcm
2 zTcm 1 wTcp2 wTcp

.. .

.
.

.

T1T2
TN...

computationcommunicationcomputationcommunicationcomputationcommunicationcomputation

.. .

Figure 6.1: Timing diagram of N children processors with a root processor with sequential
load distribution.

6.2.1 Sequential load distribution

In this subsection, we consider the case where the load distribution to the N children pro-

cessors is performed in sequential fashion (i.e., sequential distribution). In other words, the

sequence of load distribution by the root processor follows the order and let this order be

P1, P2, . . . , PN . It is assumed that the root processor is equipped with a front-end proces-

sor, so that the root processor can compute and communicate at the same time. On the

other hands, the children processors are not equipped with front-end processors, so that the

children processors start computing only after they receive the whole of the processing load

assigned to them (i.e., staggered start). The timing diagram for this distributed computing

system is depicted in Fig. 6.1. In advance to the analysis of the network cost, the optimal

amount of load fraction traversing the network needs to be achieved in a sense of linear

dependency to the network cost. The time optimality of the load fraction is guaranteed by

sustaining a minimum processing finish time. Intuitively, the minimum processing finish

time can be achieved when all processors finish their own processing at the same instant

116

(i.e., T0 = T1 = . . . = TN). This is because otherwise some processors would be idle while

others were still busy [1]. Regarding this condition for the optimality, it has been known on a

intuitive basis that network elements should be kept constantly busy for good performance.

Considering the instant of processing termination at the each processor from the Fig. 6.1,

the N equations can be set as

T0 = α0wTcp

T1 = α1zTcm + α1wTcp

T2 = (α1 + α2)zTcm + α2wTcp

...

TN =
N∑

i=1

αizTcm + αNwTcp (6.1)

By the optimality condition (i.e., T0 = T1 = . . . = TN), the N corresponding recursive time

equations can be formulated as

αiwTcp = αi+1(zTcm + wTcp) i = 0, 1, . . . , N − 1 (6.2)

The N recursive equations can be reformulated as

αi =

(
1

σ + 1

)i

α0 i = 1, 2, . . . , N (6.3)

where, σ = zTcm

wTcp
. Here, σ < 1 because the communication speed is generally faster than the

computing speed.

To obtain N + 1 unknown α’s, a normalization equation which states that the fractions of

the total load should sum to one is applied :

N∑
i=0

αi = 1 (6.4)

117

By applying N + 1 equations ((6.3) and (6.4)), one can obtain the optimal amount of load

fraction, α0 as

α0 =
σ(σ + 1)N

(σ + 1)N+1 − 1
(6.5)

By substituting α0 into (6.3), the other N solutions for the optimal load fraction, α1, α2, . . .,

and αN can be obtained.

Once the amount of optimal load fractions is obtained from deterministic recursive equations,

the monetary cost consumed in the load communication process and the load computing

process can be analyzed by adopting the static cost coefficients, cl and cp, communication

cost coefficient and computing cost coefficient, respectively. As was mentioned in the pre-

vious section, the cost coefficients, cl and cp are not time varying. Thus, the monetary cost

consumption can be formulated as a linear multiplication of the constant cost coefficients

and the amount of load fractions. The total monetary cost demand, Ctotal for both commu-

nication via the individual links and computing in each of the processors can be expressed

as a summation of individual processing costs :

Ctotal = clzTcm

N∑
i=1

αi + cpwTcp

N∑
i=0

αi (6.6)

By substituting the optimal load fraction achieved through (6.3) and (6.4) into αs in (6.6),

(6.6) can be rewritten as

Ctotal = clzTcm

(
(σ + 1)N − 1

(σ + 1)N+1 − 1

)
+ cpwTcp (6.7a)

= wTcp

(
clσ

(
(σ + 1)N − 1

(σ + 1)N+1 − 1

)
+ cp

)
(6.7b)

118

If N →∞, then the Ctotal asymptotically approaches to

Ctotal,∞ = wTcp

(
clσ

(
1

σ + 1

)
+ cp

)
= clzTcm

(
1

σ + 1

)
+ cpwTcp (6.8)

From (6.7b), by expanding the fraction having N th power of sum in the numerator and (N +

1)th power of sum in the denominator by the binomial theorem, (6.7b) can be reformulated

as

Ctotal = wTcp

(
clσ

(∑N−1
k=0

(
N
k

)
σN−k

∑N
k=0

(
N+1

k

)
σN+1−k

)
+ cp

)
(6.9)

As a special case, where σ ¿ 1, the ratio of the communication speed to the computing speed

is very small (i.e., the communication speed is much faster than the computing speed.), the

polynomial found from the binomial expansion can be approximated by leaving out all but

the largest term. Thus, (6.9) can be rewritten as a closed form :

Ctotal ≈ wTcp

(
clσ

(
Nσ

(N + 1)σ

)
+ cp

)
≈ clzTcm

(
N

N + 1

)
+ cpwTcp (6.10)

With an extreme condition that σ → 0, Ctotal = cpwTcp from (6.9). The cost for computing

per unit load is relatively much higher than the communication cost especially when the

communication speed is much faster than the computing speed. In this sense, the cost for

the computing represents the larger part of the total cost, Ctotal.

By using the approximated closed form solution (6.10), the condition of the speed ratio, σ

under the limitation of the monetary cost budget, K can be derived as

Ctotal ≤ K (6.11a)

wTcp

(
clσ

(
Nσ

(N + 1)σ

)
+ cp

)
≤ K (6.11b)

119

clσ

(
N

N + 1

)
≤ K

wTcp

− cp (6.11c)

σ ≤ γ (6.11d)

where, the constant, γ =
(

K
wTcp

− cp

)
N+1
clN

. Here, the fact that right-hand side of (6.11c) is

positive is guaranteed by the condition of (6.11a).

So far, the quantitative analysis with regard to total monetary cost has been performed.

Now, it is an ideal point to ask the quality of the consumed monetary cost. In other words,

how much efficiency in parallel processing can be achieved by consuming available monetary

funds is worth being studied.

As a metric for evaluating performance of parallel computing systems, speedup, S, indicat-

ing the degree of improvement in total processing finish time as increasing the number of

processors participating in the parallel computing is used. The speedup is the ratio of the

total processing finish time on a single processor, Tf,0 to the total processing finish time on

N+1 processors (i.e., a single root processor and N children processors). From the Fig. 6.1,

the processing finish time on a single (root) processor, Tf,0 is given as

Tf,0 = wTcp (6.12)

The total processing finish time on N + 1 processors can be obtain by employing the opti-

mality condition for the minimum processing finish time (i.e., T0 = T1 = . . . = TN) as

Tf,N = T0 = α0wTcp =

(
σ(σ + 1)N

(σ + 1)N+1 − 1

)
wTcp (6.13)

Hence, the speedup, S is given as

S =
Tf,0

Tf,N

=
1

α0

=
(σ + 1)N+1 − 1

σ(σ + 1)N
= 1 +

1

σ

(
1−

(
1

σ + 1

)N
)

(6.14)

120

It can be seen that the speedup for N → ∞ is asymptotically saturated to S∞ = 1 + 1
σ
.

As the communication speed becomes relatively faster than the computing speed (i.e., as

σ decreases), the asymptotic speedup, S∞ increases. Intuitively, this shows faster load

distribution contributes to give better speedup performance in the sense of increasing the

parallelism on the computing.

Now, we propose a new metric, cost efficiency, EC . The efficiency of the parallel processing

analyzed previously can be further analyzed in terms of the cost efficiency, EC as an indicator

showing how cost effectively the parallel processors can be used to process particular tasks.

The cost efficiency, EC is defined as

EC =
S

Ctotal

(6.15)

The EC indicates the amount of improvement in the parallel processing finish time by a unit

cost.

From (6.7a) and (6.14), the cost efficiency, EC can be written as

EC =

(
1

σ(σ+1)N

)(
(σ + 1)N+1 − 1

)2

clzTcm

(
(σ + 1)N − 1

)
+ cpwTcp

(
(σ + 1)N+1 − 1

)

=

(
(σ + 1)− 1

(σ+1)N

)2

σ

{
clzTcm

(
1− 1

(σ+1)N

)
+ cpwTcp

(
(σ + 1)− 1

(σ+1)N

)} (6.16)

From (6.16), if N →∞, then the EC is asymptotically saturated to

EC,∞ =
(σ + 1)2

σ
(
clzTcm + cpwTcp(σ + 1)

) =
S∞

Ctotal,∞
(6.17)

Especially, for the case where σ ¿ 1, (6.16) can be rewritten by using approximation of the

binomial series (i.e., (σ + 1)N ≈ 1 + Nσ, (σ + 1)N+1 ≈ 1 + (N + 1)σ) shown in the previous

121

P0P1P2
PN .

.
.

T0 communication

t
1 zTcm
N zTcm

0wTcp1 zTcm
2 zTcm 1 wTcp2 wTcp

.
.

.

T1T2
TN...

computationcommunicationcomputationcommunicationcomputationcommunicationcomputationNwTcp

2 zTcm...N zTcm

Figure 6.2: Timing diagram of N children processors with a root processor with simultaneous
load distribution.

subsection :

EC ≈ (N + 1)2

(Nσ + 1)
(
clzTcmN + cpwTcp(N + 1)

) (6.18)

6.2.2 Simultaneous load distribution

Consider now the case where the root processor is able to communicate concurrently (si-

multaneously) with all the children processors. The simultaneous communication strategy

can be implemented by utilizing multiple output buffers of the root processors for each com-

munication link. Networking via wireless media or multi-carrier wireless networking using

multiple wireless channels also makes the simultaneous communication strategy feasible [69].

The timing diagram shown in Fig. 6.2, shows the simultaneous load distribution strategy.

122

From the Fig. 6.2, the corresponding N equations can be set as

T0 = α0wTcp

T1 = α1zTcm + α1wTcp

T2 = α2zTcm + α2wTcp

...

TN = αNzTcm + αNwTcp (6.19)

By the optimality condition (i.e., T0 = T1 = . . . = TN), the N corresponding recursive time

equations can be formulated as

α0wTcp = α1(zTcm + wTcp)

αi(zTcm + wTcp) = αi+1(zTcm + wTcp) i = 1, 2, . . . , N − 1 (6.20)

The N recursive equations, (6.20) can be reformulated as

αi =

(
1

σ + 1

)
α0 i = 1, 2, . . . , N (6.21)

where, σ = zTcm

wTcp
. Here, it can be seen that the load fractions assigned to each of the children

processor are identical (i.e., α1 = α2 = . . . = αN). This can be intuitively expected from

the identical load distribution start time and identical computing finish time.

By using the normalization equation, (6.4) and (6.21), one can obtain the optimal amount

of load fraction, α0 as

α0 =
σ + 1

σ + 1 + N
(6.22)

By substituting α0 into (6.21), other N solutions for the optimal load fraction, α1, α2, . . .,

and αN can be obtained.

123

By employing (6.3), the total monetary cost can be obtained as

Ctotal = clzTcm

N∑
i=1

αi + cpwTcp

N∑
i=0

αi (6.23a)

= clzTcm

(
N

σ + 1 + N

)
+ cpwTcp (6.23b)

= wTcp

(
clσ

(
N

σ + 1 + N

)
+ cp

)
(6.23c)

If N →∞, then the Ctotal asymptotically approaches to

Ctotal,∞ = wTcp(clσ + cp) = clzTcm + cpwTcp (6.24)

From (6.24), as compared to (6.23a), it can be seen that the factor
∑N

i=1 αi in (6.23a) goes

to 1. Intuitively, this phenomena can be explained in that the amount of load fractions to be

transferred through links increases as the communication speed increases according to the

DLT so that the amount of load fraction assigned to the root processor only for computing

relatively decreases. Accordingly, the amount of sum of the load fractions (i.e.,
∑N

i=1 αi)

transmitting through the N links becomes to close to the unity. Also, the increment of

the number of processors participating the parallel processing contributes to decreasing the

overall amount of load fractions for each processors.

As a special case, where σ ¿ 1 (when the communication speed is much faster than the

computing speed), (6.23c) can be rewritten as follows

Ctotal = wTcp

(
clσ

(
N

1 + N

)
+ cp

)
= clzTcm

(
N

1 + N

)
+ cpwTcp (6.25)

Interestingly, (6.25) is an identical form with (6.10) in the sequential distribution case.

The significantly smaller time consumption for the communication than for the computing

124

renders a small difference in the load communication time so that the difference in the

strategies of load distribution becomes negligible.

With an extreme condition that σ → 0, Ctotal = cpwTcp from (6.23c). This is also an

identical result with the sequential distribution case. In a similar intuitive sense in the case

of sequential load distribution, the computing cost per unit load is relatively higher so that

the computing cost is the majority part of the total cost.

From (6.23c), the condition of the speed ratio, σ under limitation of the monetary cost

budget, K can be derived as

Ctotal ≤ K (6.26a)

wTcp

(
clσ

(
N

σ + 1 + N

)
+ cp

)
≤ K (6.26b)

clσ

(
N

σ + 1 + N

)
≤ K

wTcp

− cp (6.26c)

σN

σ + 1 + N
≤ β (6.26d)

σ(N − β) ≤ β(1 + N) (6.26e)

where, β =
(

K
wTcp

− cp

)
1
cl
. Here, the fact that right-hand side of (6.26c) is positive is

guaranteed by the condition of (6.26a). From (6.26e), according to the polarity of the factor

N − β, two possible inequalities arise as below:

125

Case I : N > β

σ ≤ γ (6.27)

Case II : N < β

σ ≥ γ (6.28)

where, γ = β(1+N)
N−β

. For the Case II, there is no restriction on the σ due to the fact that the

right-hand side of (6.28), γ, is negative. Hence, the restriction on the σ exists only for the

Case I as (6.27). Here, N 6= β. This can be clarified by using (6.23b).

To evaluate the cost efficiency, EC , speedup, S is needed to be obtained as shown in the

previous subsection. From the Fig. 6.2, the processing finish time on a single (root) processor,

Tf,0 is given as

Tf,0 = wTcp (6.29)

From the optimality condition, T0 = T1 = . . . = TN , the total processing finish time on

N + 1 processors can be obtain as

Tf,N = T0 = α0wTcp =

(
σ + 1

σ + 1 + N

)
wTcp (6.30)

Hence, the speedup, S is written as

S =
Tf,0

Tf,N

= 1 +
N

σ + 1
(6.31)

It can be seen that the speedup is scalable against N (i.e., S∞ = ∞) as long as the root

processor can simultaneously distribute load to the children processors. Hence, it seems rea-

sonable to expect a better speedup performance than the case of the sequential distribution

126

0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 14 16 18 2011.11.21.31.41.51.61.71.81.92
The number of processors, N

Total Cost, Ctotal
Sequential DistSimultaneous Dist

Figure 6.3: Total cost, Ctotal against the number of processors, N and speed ratio, σ.

whose asymptotic speedup is not scalable but saturated.

Now, from (6.23b) and (6.31) the cost efficiency, EC is obtained as

EC =
S

Ctotal

=
1 + N

σ+1

clzTcm

(
N

σ+1+N

)
+ cpwTcp

(6.32)

From (6.32), it can be observed that the EC is scalable against N which means EC,∞ →∞
as N →∞ :

EC,∞ =
∞

clzTcm + cpwTcp

=
S∞

Ctotal,∞
(6.33)

Especially, for the case where σ ¿ 1, (6.32) can be rewritten as

EC ≈ (N + 1)2

clzTcmN + cpwTcp(N + 1)
(6.34)

Comparing to (6.18) in the case of the sequential distribution, the EC in (6.34) is improved

by a factor of Nσ + 1.

127

6.3 Cost Performance Evaluation

Based on the previous analytical result, cost performance comparisons between two load

distribution strategies (sequential distribution and simultaneous distribution) are performed.

All simulations are performed with specified network parameters, w = 1, Tcp = 1, cp = 1,

cl = 1. According to the variable, speed ratio, σ, the value of zTcm is decided. For the

generality, it is assumed that the communication speed is faster than the computing speed

(i.e., wTcp > zTcm). Thus, the upper bound of the variable, σ is 1.

In Fig. 6.3, total cost, Ctotal of parallel processing adopting the sequential load distribution

and the simultaneous load distribution is shown. The 3D plot illustrates Ctotal as a function

of two variables, the number of processors, N and speed ratio, σ. As we analyzed in the

previous section, it can be seen that the Ctotal for an extremely small σ is identical in the

both load distribution strategies as cpwTcp. Here, Ctotal changes as σ increases. As can

be clearly seen, the Ctotal for the both load distribution strategies tends to increase as σ

increases. The degree of the increment Ctotal in case of the simultaneous strategy is higher

than the sequential distribution case. This trend can be explained by an intuitive sense

from the DLT. Comparing (6.7a) and (6.23b), it can be seen that difference between the

strategies in the Ctotal is caused by total amount of load to be transmitted to the children

processors. When relatively slow communication speed (σ → 1) is available in parallel

processing, the root processor employing the simultaneous load distribution strategy tends

to consume more communication cost in that a relatively larger amount of load is assigned

to the children processors than in the sequential load distribution case. In other words, the

root processor employing simultaneous load distribution keeps a relatively smaller amount

of load for its own computing in order to maximizing the advantage of parallelism. On the

other hand, a root processor employing sequential load distribution strategy tends keep as

much load as possible to compensate for possible delay in sequential distribution. Regarding

the variable N , the saturation in Ctotal can be seen as we analyzed in the previous section.

The increment in Ctotal of the simultaneous distribution against the N is higher than the

128

1.011.011.011.011.01
1.021.021.021.021.02

1.031.031.031.031.03
1.041.041.041.04 1.051.051.051.05 1.061.061.06 1.071.071.07 1.081.081.08

Speed ratio,
The number of processors, N0 2 4 6 8 10 12 14 16 18 200.010.020.030.040.050.060.070.080.090.1

Figure 6.4: Sequential Distribution. Isocost lines with variable, the number of processors,
N and speed ratio, σ.

sequential distribution case. Intuitively, this is because a relatively larger amount of load

is distributed as more children processors are occupied in the case of the simultaneous load

distribution case. Analytically, in the sequential distribution case (see (6.5)), α0 → σ
σ+1

as

N → ∞. On the other hand, in the simultaneous distribution case (see (6.22)), α0 → 0 as

N → ∞. In other words, the root processor employing the simultaneous load distribution

strategy tends to increase the amount load to be computed in the children processors as the

number of children processors increases. Hence, it can be expected that more communication

cost is consumed in the simultaneous distribution case.

In Fig. 6.4, the upper bound of speed ratio, σ for the sequential load distribution case

to meet a certain monetary cost budget limit analyzed previously in (6.11d) is depicted.

Isomaps for isoefficiency were first developed by Drozdowski in [71]. Isocost lines which

connect points having same value of the total cost are used to clarify the upper bound of

the σ. Here, we set the monetary cost budget, K as 1.035 with variable the speed ratio, σ

and the number of processors, N . The asterisks show the upper bound of the σ to meet the

monetary cost budget, 1.035. As can be expected, the asterisks follow the isocost line for the

Ctotal = 1.035. From the Fig. 6.4, it also can be observed that Ctotal has more dependency

129

1.11.11.11.11.1
1.21.21.21.21.2

1.31.31.31.31.3
1.41.41.41.4 1.51.51.51.5 1.61.61.6 1.71.71.7 1.81.8 1.9

Speed ratio,
The number of processors, N0 2 4 6 8 10 12 14 16 18 200.10.20.30.40.50.60.70.80.91

Figure 6.5: Simultaneous Distribution. Isocost lines with variable, the number of processors,
N and speed ratio, σ.

00.10.20.30.40.50.60.70.80.91 051015200510
152025

The number of processors, NCost Efficiency, EC
Sequential DistSimultaneous Dist

Figure 6.6: Cost efficiency, EC against the number of processors, N and speed ratio, σ.

130

on the variable, σ than on N in general. This trend also can be seen from the Fig. 6.3.

Likewise, isocost lines for the simultaneous load distribution case is depicted in Fig. 6.5.

The simulation is based on the analytical result from (6.27). Here, we set the monetary

cost budget, K as 1.25 with variable the speed ratio, σ and the number of processors, N .

The value of the β defined as
(

K
wTcp

− cp

)
1
cl

is 0.25. Thus, all of the variable N satisfy the

condition, N > β for Case I so that upper bounds (asterisk points) of σ exist for all N as

shown in the Fig. 6.5. Surely, it can be seen that the asterisks follow for the Ctotal = 1.25.

Similar to the sequential distribution case shown in the Fig. 6.4, Ctotal has more dependency

to the variable, σ than N in general.

In Fig. 6.6, the cost efficiency, EC indicating achieved speedup per unit cost. As we analyzed

in the previous section, the speedup, S in the simultaneous load distribution case has a

scalable characteristic against the number of processors, N (see (6.31)). Hence, it can be

expected that the EC performance of the simultaneous load distribution case is better in spite

of the fact that Ctotal is higher than the sequential load distribution case, but asymptotically

saturated (see (6.8) and (6.24)). In the case of the simultaneous load distribution strategy,

overall better performance in the cost efficiency can be observed in the Fig. 6.6. With a

relatively small speed ratio, σ and the large number of processors, N , a larger improvement

in the cost efficiency, EC is observed. This phenomena implies that the speedup, S rapidly

increases with relatively small σ and large N . It seems reasonable due to the fact that

the total cost for the small σ is saturated regardless of N as shown in the Fig. 6.3. In

an intuitive sense, this is because faster communication speed makes processors contribute

more time on load computing as processors spend less time receiving the assigned load from

root processor. Thus, improvement in speedup can be expected. The sharper improvement

of the EC in sequential load distribution case implicitly shows that a faster communication

speed has more impact on load distribution in sequential distribution. This can be expected

in that the load communication delay in the sequential load distribution increases as the

number of processors waiting their own load increases. Thus, it would seem reasonable that

the faster communication speed seriously contributes to release the delay caused from the

131

sequential distribution.

6.4 Concluding remarks

In this chapter, monetary network cost trends for sequential and simultaneous load dis-

tribution cases are investigated in a homogeneous single-level tree network. From the cost

performance comparison between the two load distribution strategies, the effect of the speed

of networks, including communication speed and computing speed, on the monetary net-

work cost is investigated. Taking into consideration that monetary network cost is limited,

conditions for the network speed ratio to meet the limited network cost are derived. By

defining a new parameter, cost efficiency, the performance improvement in parallel process-

ing networks can be analyzed in the sense of the cost of efficient parallel processing. The

network requirements to maintain cost efficient parallel processing are studied. Cost effi-

ciency provides explicit integrated information on relationships between monetary network

cost and network performance. We believe that this study is a key to achieve cost efficient

parallel process networking. This monetary network cost investigation leads to plausible

challenges including monetary network cost analysis under time-varying cost coefficients in

various network environments and the scalability of cost efficiency.

132

Chapter 7

Cost Performance Analysis in

Multi-Level Tree Networks

As the size of parallel and distributed computing systems becomes larger, the efficiency in

terms of monetary cost in parallel computing systems becomes of significant interest. To

maintain cost efficient parallel and distributed computing network service, one needs to have

insight into the network monetary cost trends against agile network environmental changes.

There have been several algorithmic attempts to minimize total network cost with optimal

load distribution sequences [66],[67],[68]. To investigate how effectively the monetary cost is

spent for improvements in network performance, a parameter, cost efficiency is defined and

examined via isocost lines [73]. The problem of monetary network cost on a homogeneous

single-level tree network is considered regarding two load distribution strategies (sequential

load distribution and simultaneous load distribution) [74]. Monetary network cost discussed

in the previous works linearly depends on network speed parameters and the amount of

work load. The time optimal amount of load to be distributed and computed in computing

components in networks is obtained from divisible load theory (DLT) [1],[2],[3].

In this chapter, the monetary cost in multi-level tree networks is considered. Optimal

load scheduling in multi-level tree networks has been taken into account in some previous

studies [9],[10]. Based on the time optimal load scheduling techniques for multi-level trees,

133

the closed form solution for optimal monetary network cost is analyzed. Through analytical

investigation of network cost trends, tractable relationship between monetary network cost

and optimal processing finish time are achieved.

The rest of the chapter is organized as follows. Section 7.1 discusses the network model

and notations used in this chapter. In section 7.2, the mathematical analysis of monetary

network cost of multi-level tree networks is conducted based on the DLT. Cost performance

and evaluation results for a multi-level tree analyzed in this chapter are presented in Section

7.3. Finally, this chapter concludes with some possible extensions in Section 7.4.

7.1 Problem Formulation and Preliminary Remarks

The distributed computing network model to be considered in this chapter is a multi-level

tree network (bus network) with homogeneous speed parameters and cost coefficients. Each

subtree network consists of children processors connected to a parent processor via direct

communication links. The parent (root) processor has role as a load distributor while

also computing itself. The children processors are involved in computing their own load

assigned from the root processor via the direct links. Monetary “cost” involving processors’

computing and communicating linearly depends on the speed of processors and links and

the amount of work load.

The following notation is used in this chapter.

αi : The load fraction assigned to the ith children processor (where i = 1, 2, . . . , N). Index

i = 0 is for the root processor.

w : The inverse computing speed of a processor. [sec/load].

z : The inverse communication speed of a link. [sec/load].

Tcp : Computing intensity constant. [Dimensionless]. The entire load (amount of unity) can

be processed on a processor in time wTcp sec.

Tcm : Communication intensity constant. [Dimensionless]. The entire load (amount of unity)

can be transmitted over a link in time zTcm sec.

134

......
...Terminal

Parent ...Single Level TreeLevel M-1Level M-2
Level M-3 Level 1 Level 0

...Parent Rootwww
w

w wweq,M-2weq,M-2 weq,M-2weq,M-1
weq,1 weq,0

z
.

.
. zzzz

zz z

w w w w w w w w wz z
z

zzzzzz
z z

ParentChild2Child1 ChildN
Figure 7.1: M level tree with root (parent) processors with N children processors.

cp : Static computing cost coefficient. [cost/sec]. The computing cost for the entire load

(amount of unity) is cpwTcp cost.

cl : Static communication cost coefficient. [cost/sec]. The communication cost for the entire

load (amount of unity) is clzTcm cost.

TN
f : The total processing finish time. Time at which a single root processor and N children

processors complete their computation. Note that TN,M
f is for M level tree network.

CN
total : The total monetary network cost of a single level tree network with a single root

processor and N children processors. Note that CN,M
total is for M level tree network.

Ti : The total time that elapses between the beginning of the process at t = 0 and the time

when ith processor completes its own computation (where i = 0, 1, . . . , N).

135

Root(Parent)Child1 N zTcm

.
.
.

T0 communication1 zTcm
N zTcm

0wTcp1 zTcm 2 zTcm
2 zTcm 1 wTcp2 wTcp

.. .

.
.
.

T1T2TN...
communicationcommunicationcommunication

.. .

NwTcp
Child2ChildN

computationcomputationcomputationcomputation

Time, sec

Figure 7.2: Timing diagram of N children processors with a root processor with sequential
load distribution.

7.2 Cost analysis of homogeneous tree networks

7.2.1 Single Level Tree

Consider a single level tree network with N children processors (terminal processors at the

bottom level M − 1) interconnected through N links to a root (which is parent processor

at level M − 2, see Fig. 7.1). The root processor distributes loads among the N children

processors through the N direct links. We consider the case where the load distribution to

the N children processors is performed in sequential fashion (i.e., sequential distribution).

It is assumed that the root processor is equipped with front-end processor, so that the root

processor can compute and communicate at the same time. On the other hand, the children

processors are not equipped with front-end processors, so that the children processors start

computing only after they receive the whole of the processing load assigned to them (i.e.,

staggered start). The timing diagram for this single level tree distributed computing system

is depicted in Fig. 7.2. In advance of the analysis of the network cost, the optimal amount

of load traversing the network needs to be found. The optimality of the load fraction

136

is guaranteed by sustaining a minimum processing finish time. Intuitively, the minimum

processing finish time can be achieved when all processors finish their own processing at the

same instant (i.e., T0 = T1 = . . . = TN). This is because otherwise some processors would

be idle while others were still busy [1]. Regarding this condition for the optimality, it has

been known on a intuitive basis that network elements should be kept constantly busy for

good performance.

Considering the instant of processing termination at the each processor composing the single

level tree from the Fig. 7.2, the N equations can be set as

T0 = α0wTcp

T1 = α1zTcm + α1wTcp

T2 = (α1 + α2)zTcm + α2wTcp

...

TN =
N∑

i=1

αizTcm + αNwTcp (7.1)

By the optimality condition (i.e., T0 = T1 = . . . = TN), the N corresponding recursive time

equations can be formulated as

αiwTcp = αi+1(zTcm + wTcp) i = 0, 1, . . . , N − 1 (7.2)

The N recursive equations can be reformulated as

αi = qiα0 i = 1, 2, . . . , N (7.3)

where, q = wTcp

zTcm+wTcp
, 0 < q < 1.

To obtain N + 1 unknown α0,1,...,N , an additional normalization equation which states that

137

the fractions of the total load should sum to one is applied :

N∑
i=0

αi = 1 (7.4)

By applying N + 1 equations ((7.3) and (7.4)), one can obtain the optimal amount of load

fraction, α0 as

α0 =
1− q

1− qN+1
(7.5)

By substituting α0 into (7.3), the other N solutions for the optimal load fractions, α1,2,...,N

can be obtained.

From (7.5), the total minimum processing finish time with N children processors can be

obtained based on the optimality condition (T0 = T1 = . . . = TN)

TN
f = T0 = α0wTcp =

(
1− q

1− qN+1

)
wTcp (7.6)

With the information about the amount of optimal load fractions, the monetary cost con-

sumed for the communication process and load computing process can be analyzed by em-

ploying the time invariant cost coefficients, cl and cp, communication cost coefficient and

computing cost coefficient, respectively. The monetary cost model can be formulated as a

linear multiplication of the cost coefficients and time duration regarding load processing .

The total monetary cost demand, CN
total for both communication via the individual links and

computing in each of the N children processors and a root processor can be expressed as a

summation of individual processing costs :

CN
total = clzTcm

N∑
i=1

αi + cpwTcp

N∑
i=0

αi (7.7)

138

From (7.7), using (7.3), (7.4), and (7.5), the total cost consumption at the single level tree

can be rewritten as

CN
total = clzTcm

(
q − qN+1

1− qN+1

)
+ cpwTcp (7.8)

At this moment, it seems natural to ask if a trade-off exists between the total cost and the

processing finish time according to the change of the number of children processors involving

parallel processing, N . As a metric to indicate the trend of the trade-off, let ρn be the ratio

the amount of variation in total processing finish time to the amount of variation in the

total cost as the number of children processor is shifted by n :

ρn =
∆T n

f

∆Cn
total

=
|TN

f − TN−n
f |

CN
total − CN−n

total

(7.9)

Here, the total minimum processing finish time with N −n (where n = 1, 2, . . . , N) children

processors can be given as a function of TN
f :

TN−1
f =

(
1− qN+1

1− qN

)
TN

f

TN−2
f =

(
1− qN+1

1− qN−1

)
TN

f =

(
1− qN

1− qN−1

)
TN−1

f

...

TN−n
f =

(
1− qN+1

1− qN−n+1

)
TN

f =

(
1− qN−n+2

1− qN−n+1

)
TN−n+1

f

n = 0, 1, . . . , N − 1 (7.10)

139

Similarly, total cost consumption in which N − n children processors are involved can be

obtained as

CN−1
total = clzTcm

(
q − qN

1− qN

)
+ cpwTcp

CN−2
total = clzTcm

(
q − qN−1

1− qN−1

)
+ cpwTcp

...

CN−n
total = clzTcm

(
q − qN−n+1

1− qN−n+1

)
+ cpwTcp

n = 0, 1, . . . , N − 1 (7.11)

From (7.10), we can reformulate the equations for total monetary cost for networks involving

N − n children processors as

CN−1
total = β

(
TN−1

f

TN−2
f

)
+ cpwTcp

CN−2
total = β

(
TN−2

f

TN−3
f

)
+ cpwTcp

...

CN−n
total = β

(
TN−n

f

TN−n−1
f

)
+ cpwTcp

n = 0, 1, . . . , N − 1 (7.12)

where, β = qclzTcm.

Using (7.10) and (7.12), (7.9) can be rewritten as

ρn =
|TN

f − TN−n
f |

β

(
T N

f

T N−1
f

− T N−n
f

T N−n−1
f

) (7.13)

140

From (7.10), (7.13) can be simplified as

ρn =

(
|1− 1−qN+1

1−qN−n+1 |
)

TN
f

β

(
1−qN

1−qN+1 − 1−qN−n

1−qN−n+1

)

=

(
|1− 1−qN+1

1−qN−n+1 |
)(

1−q
1−qN+1

)
wTcp

β

(
1−qN

1−qN+1 − 1−qN−n

1−qN−n+1

)

=
wTcp

β

(
(|qN+1 − qN−n+1|)(1− q)

(1− qN)(1− qN−n+1)− (1− qN−n)(1− qN+1)

)

=
wTcp

β

(
qN−n+1 − qN+1

qN−n − qN

)
=

wTcp

β
q

=
1

σcl

(7.14)

where, σ = zTcm

wTcp
. In a common sense, σ < 1 because the communication speed is generally

faster than the computing speed. From (7.14), the ratio ρn inversely commensurate with

the amount of σ. In other words, ρn increases as the link speed becomes faster than the

computing speed (i.e., σ → 0).

7.2.2 Multilevel Tree

As depicted in Fig. 7.1, multi-level tree (M level tree) is composed of a single root processor

at level 0, intermediate parent processors with their own N children processors (subtrees).

The intermediate parent processors can be considered as children processors of upper level

parent processors. We call the children processors at the bottom level M − 1 terminal

processors. The M level tree with N children processors has total NM terminal processors.

As we mentioned in the previous section, the load distribution in a subtree follows sequential

distribution and staggered start. The load distribution among inter-levels employs virtual

cut through switching techniques. The virtual cut through switching technique allows relay

of load distribution among inter-levels without store and forward delays. Analysis of multi-

level tree for closed form solution for the optimal amount of load fraction is feasible by

141

collapsing a subtree into an equivalent processor [7]. The equivalent processor preserves the

same characteristics of the original tree in senses of minimum processing finish time and

total cost.

By equating the processing finish time on a single equivalent processor and the minimum

processing finish time on the single level tree (a subtree) analyzed in the previous section

(see (7.6))

1 · weqTcp = TN
f (7.15)

we can obtain inverse computing speed of the equivalent processor replacing the single level

tree as

weq = α0w =

(
1− q

1− qN+1

)
w (7.16)

On the way of collapsing single level tree into an equivalent processor, we can also obtain

an expression for cp,eq. Here, cp,eq is a constant that is computing cost coefficient of an

equivalent processor that aggregates a subtree. By equating the total cost on a single

equivalent processor with weq and (7.8)

1 · cp,eqweqTcp = CN
total (7.17)

From (7.17), using (7.16) and (7.8), one can find cp,eq as

cp,eq = cl
zTcm

wTcp

(q − qN+1

1− q

)
+ cp

(1− qN+1

1− q

)
(7.18)

Likewise, staring at the bottom level (level M−1), subtrees can be collapsed into equivalent

processors with equivalent inverse computing speed, weq and with equivalent computing cost

coefficient, cp,eq. For example, if one collapses the entire M level tree depicted in Fig. 7.1

into an M − 1 level tree, then the terminal processors in the collapsed M − 1 level tree

142

will be NM−1 equivalent processors. This collapsing procedure will continue until the root

processor at level 0 and its children processors (which will be N equivalent processors) are

replaced by a single equivalent processor.

The timing diagram for each subtree with (equivalent) children processors is identical with

Fig. 7.2 except for the fact that the inverse computing speed of the N children processors

is collapsed into wM
eq,k. Here, k indicates the level of (equivalent) children processors being

considered (i.e., k = 1, 2, . . . , M − 2). The superscript M denotes equivalent processing

speed regarding M level tree. Note that in our case, wM
eq,M−2 = weq, where weq is given as

(7.16). Thus, similarly, we can formulate N corresponding equations from a subtree with

a parent processor with w at the level k − 1 and N children processors with wM
eq,k at the

bottom level k.

T0 = α0wTcp

T1 = α1zTcm + α1w
M
eq,kTcp

T2 = (α1 + α2)zTcm + α2w
M
eq,kTcp

...

TN =
N∑

i=1

αizTcm + αNwM
eq,kTcp (7.19)

Note that we use same symbol α for the fraction of load as we used in analyzing the single

level tree. Surely, each α for different k has different value.

By the optimality condition (i.e., T0 = T1 = . . . = TN), the N corresponding recursive time

143

equations can be formulated as

α1 = rkα0

α2 = qkα1

α3 = qkα2

...

αN = qkαN−1 (7.20)

The above N equations can be rewritten as

α1 = rkα0

αi = qi−1
k α1 i = 2, 3, . . . , N (7.21)

where rk = wTcp

zTcm+wM
eq,kTcp

and qk =
wM

eq,kTcp

zTcm+wM
eq,kTcp

.

Using the normalization equation (7.4), α0 can be found as

α0 =
1

1 + rk

(∑N−1
i=0 qi

k

) (7.22)

By substituting α0 into (7.21), N solutions for the optimal fraction of load can be achieved

as

αi = qi−1
k rk

(
1

1 + rk

(∑N−1
i=0 qi

k

)
)

i = 1, 2, . . . , N (7.23)

Following a similar step shown in the previous section, by equating the processing finish

time on a single equivalent processor with wM
eq,k−1 to the optimal finish time of a subtree at

144

the level k, α0wTcp, one has :

1 · wM
eq,k−1Tcp = α0wTcp =

(
1

1 + rk

(∑N−1
i=0 qi

k

)
)

wTcp (7.24)

Now, the inverse computing speed of the equivalent processor (which replaces the subtree

with children processors with wM
eq,k) at level k − 1 can be obtained as follows:

wM
eq,k−1 =

(
1

1 + rk

(∑N−1
i=0 qi

k

)
)

w (7.25)

This collapsing process will continue until the root processor at level 0 and its children

processors with wM
eq,1 are collapsed to a single equivalent processor with wM

eq,0. Thus, the

total processing finish time on the whole M level tree in which each subtree has its N

children processors can be written as follows:

TN,M
f = 1 · wM

eq,0Tcp (7.26)

At this moment, it seems nature to ask how much speedup improvement can be achieved by

adding a level of tree. To analyze wM
eq,0 is inverse computing speed of an equivalent processor

that replaces the whole M level tree. From (7.25), wM
eq,0 can be written as

wM
eq,0 =

(
1

1 + r1

(∑N−1
i=0 qi

1

)
)

w =

(
1

1 + r1

(
1−qN

1

1−q1

)
)

w

=
w

1 +
(

1−qN
1

σ

) (7.27)

Here, q1 =
wM

eq,1Tcp

zTcm+wM
eq,1Tcp

and σ = zTcm

wTcp
.

Based on the pattern of tree collapsing sequence, following equality condition can be ob-

145

tained:

wk
eq,1 = wk−1

eq,0 k = 3, 4, . . . , M (7.28)

Applying (7.28), q1 can be rewritten as
wM−1

eq,0 Tcp

zTcm+wM−1
eq,0 Tcp

.

Assuming that zTcm

wM−1
eq,0 Tcp

¿ 1, qN
1 ≈ 1

1+N zTcm

wM−1
eq,0 Tcp

. Thus, (7.27) can be reformulated as a

function of wM−1
eq,0 as :

wM
eq,0 =

(
σ(wM−1

eq,0 Tcp + NzTcm)

σwM−1
eq,0 Tcp + (σ + 1)NzTcm

)
w =

(
wM−1

eq,0 Tcp + NzTcm

wM−1
eq,0 Tcp + N(zTcm + wTcp)

)
w

=

(
1− NwTcp

wM−1
eq,0 Tcp + N(zTcm + wTcp)

)
w (7.29)

Here, (7.29) gives us an general idea that an equivalent inverse computing speed aggregating

whole M level tree, wM
eq,0 can be calculated from information of an equivalent inverse comput-

ing speed aggregating whole M − 1 level tree, wM−1
eq,0 based on the assumption, zTcm

wM−1
eq,0 Tcp

¿ 1.

In a recursive manner, wM
eq,0 can be obtained from wM−m

eq,0 where m = 1, 2, . . . , M − 1.

From (7.7), the total cost consumption in a subtree with a parent processors at level k − 1

with w and N children processors at level k with wM
eq,k can be obtained as

Ck
total,N = clzTcm

N∑
i=1

αi + cpα0wTcp + cM
p,eq,kw

M
eq,kTcp

N∑
i=1

αi

= (clzTcm + cM
p,eq,kw

M
eq,kTcp)

N∑
i=1

αi + cpα0wTcp

= (clzTcm + cM
p,eq,kw

M
eq,kTcp)rkα0

(N−1∑
i=0

qi
k

)
+ cpα0wTcp (7.30)

Here, cM
p,eq,k indicates equivalent computing cost efficient at level k (where, k = 1, 2, . . . , M−

2). The superscript M denotes equivalent computing cost coefficient regarding M level tree.

Uniquely, cM
p,eq,M−2 = cp,eq, where cp,eq is (7.18).

146

Using (7.24), (7.30) can be rewritten as

Ck
total,N = (clzTcm + cM

p,eq,kw
M
eq,kTcp)rk

wM
eq,k−1

w

(N−1∑
i=0

qi
k

)
+ cpw

M
eq,k−1Tcp

=

((clσ + cM
p,eq,kβk

σ + βk

)(N−1∑
i=0

qi
k

)
+ cp

)
wM

eq,k−1Tcp (7.31)

where σ = zTcm

wTcp
and βk =

wM
eq,k

w
.

By equating the total cost on a single equivalent processor at level k − 1 and Ck
total,N , we

can obtain

1 · cM
p,eq,k−1w

M
eq,k−1Tcp = Ck

total,N (7.32)

From (7.32), using (7.31), the equivalent computing cost coefficient of the equivalent children

processors at level k − 1 can be found as

cM
p,eq,k−1 =

(clσ + cM
p,eq,kβk

σ + βk

)(N−1∑
i=0

qi
k

)
+ cp =

(clσ + cM
p,eq,kβk

σ + βk

)(1− qN
k

1− qk

)
+ cp (7.33)

Here, qk can be rewritten as βk

σ+βk
. Assuming that that σ

βk
¿ 1 (i.e, zTcm

wM
eq,kTcp

¿ 1), qN
k ≈

1
1+N σ

βk

. Thus, (7.33) can be rewritten as

cM
p,eq,k−1 =

(clγk + cM
p,eq,k

γk + 1

)(γk + 1

γk + 1
N

)
+ cp (7.34)

where, γk = σ
βk

.

The total cost on the whole M level tree in which each subtree has N children processors

can be written as follows:

CM
total,N = 1 · cM

p,eq,0w
M
eq,0Tcp (7.35)

147

From (7.34), cM
p,eq,0 is given as

cM
p,eq,0 =

(clγ1 + cM
p,eq,1

γ1 + 1

)(γ1 + 1

γ1 + 1
N

)
+ cp (7.36)

Using a similar intuition employed in (7.28), following equality condition can be also ob-

tained:

ck
p,eq,1 = ck−1

p,eq,0 k = 3, 4, . . . ,M (7.37)

By applying (7.37), (7.36) can be reformulated as

cM
p,eq,0 =

(clγ1 + cM−1
p,eq,0

γ1 + 1

)(γ1 + 1

γ1 + 1
N

)
+ cp (7.38)

Here, γ1 = σ
β1

= zTcm

wM
eq,1Tcp

= zTcm

wM−1
eq,0 Tcp

from (7.28). The equivalent computing cost coefficient

replacing the whole M level tree, cM
p,eq,0 can be calculated from information of equivalent

computing speed, wM−1
eq,0 and equivalent computing cost coefficient, cM−1

p,eq,0 of M − 1 level tree

based on the assumption, zTcm

wM
eq,kTcp

¿ 1. In a recursive manner, cM
p,eq,0 can be obtained from

cM−m
p,eq,0 where m = 1, 2, . . . ,M − 1.

At this moment, it seems nature to ask trade-off between total cost and processing finish

time according to the change of the entire level of tree, M .

The total cost decrement according to the decrease in the number of levels of the tree by m

(from level M to level M −m) is given as

∆CM
total,N = CM

total,N − CM−m
total,N = cM

p,eq,0w
M
eq,0Tcp − cM−m

p,eq,0 wM−m
eq,0 Tcp (7.39)

Likewise, the variation in the minimum processing finish time can be expected as the level of

tree is changed. It seems reasonable that longer processing time is needed to terminate entire

processing as the level of tree involving in parallel processing decreases. The increment in

the total processing finish time as decreasing the level of tree by m (from level M to level

148

M −m) is given as

∆TN,M
f = |TN,M

f − TN,M−m
f | = |wM

eq,0Tcp − wM−m
eq,0 Tcp| (7.40)

Now, let ρm be the ratio the amount of increase in total processing finish time to the amount

of decrease in the total cost. ρm shows trend in the trade-off in total cost and processing

finish time.

ρm =
∆TN,M

f

∆CM
total,N

=
|TN,M

f − TN,M−m
f |

CM
total,N − CM−m

total,N

=
|wM

eq,0Tcp − wM−m
eq,0 Tcp|

cM
p,eq,0w

M
eq,0Tcp − cM−m

p,eq,0 wM−m
eq,0 Tcp

(7.41)

As reminding that wM
eq,0 and cM

p,eq,0 can be expressed as a function of wM−m
eq,0 and cM−m

p,eq,0

respectively in a recursive way (see (7.29) and (7.38)), (7.41) can be reformulated as a

function of variables, wM−m
eq,0 and cM−m

p,eq,0 at the M −m level tree as

ρm =
|f(wM−m

eq,0)− wM−m
eq,0 |

g(wM−m
eq,0 , cM−m

p,eq,0)f(wM−m
eq,0)− cM−m

p,eq,0 wM−m
eq,0

(7.42)

Here, f(wM−m
eq,0) and g(wM−m

eq,0 , cM−m
p,eq,0) denote recursive functions of (7.29) and (7.38) respec-

tively. In a similar manner, ρm can be express as a function of variables wM
eq,0 and cM

p,eq,0 at

the M level tree. The derivation regarding this is not considered due to the similarity.

The speedup, S indicating the degree of improvement in total processing finish time as em-

ploying parallel computing can be formulated as the ratio of the total processing finish time

on a single processor (root processor) to the total processing finish time on whole M level

tree. Thus, the speedup, SM
N can be given as

SM
N =

T 0,0
f

TN,M
f

=
1 · wTcp

1 · wM
eq,0Tcp

=
w

wM
eq,0

(7.43)

149

Figure 7.3: ∆T n
f and ∆Cn

total vs. n with σ = 0.5, 0.1, and 0.05.

Cost efficiency, EC , indicating how cost effectively the parallel processors can be used to

process particular tasks, defined in [74] as

EC =
S

Ctotal

=
SM

N

CM
total,N

(7.44)

can be obtained by using (7.35) and (7.43).

7.3 Cost Performance Evaluation

In a homogeneous single level tree, the trend of the amount of variation in total processing

finish time, ∆T n
f and the amount of variation in the total monetary cost, ∆Cn

total as the

number of children processors is reduced by n is depicted in Fig. 7.3. Simulation is performed

with network parameters, w = 1, Tcp = 1, Tcm = 1, cp = 1, and cl = 1 according to three

different values of z = 0.5, 0.1, and 0.05. Thus, three different speed ratios σ = 0.5, 0.1, and

0.05 can be reasoned. Initially the tree has 20 children processors. The number of children

processors is reduced by 1 until only 1 child processor is left. From the Fig. 7.3, it can be

seen that the curves for ∆T n
f and ∆Cn

total with identical value of σ are more sparse when

150

Figure 7.4: ρm vs. the number of processors, N and m.

the value of σ is small. This corresponds to the analytical result in (7.14) that the ratio ρn

is inversely proportional to σ. The simulation data from the Fig. 7.3 clearly shows that the

ratio ρn has a constant value according to the three different values of σ (i.e., ρn = 2, 10,

and 20).

Also, ρm, the ratio the amount of variation in total processing finish time, ∆TN,m
f to the

amount of variation in the total monetary cost, ∆CN,m
total as the total number of levels of the

tree is reduced by m is depicted in Fig. 7.4. A homogeneous multi-level tree with M = 15,

N = 10, w = 1, z = 0.1, Tcp = 1, Tcm = 1, cp = 1, and cl = 1 is modeled. The degree of

the ratio ρm increases more rapidly as the number of tree levels decrement increases and the

number of children processors, N decrease.

CM
total,N depicted in Fig. 7.5 clarifies the trend of ρm in the Fig. 7.4. It can be seen that the

degree of the increment of the total cost increases as the tree becomes smaller in the number

of levels (see Fig. 7.5). Hence, ∆CN,m
total has a large value especially when the amount of tree

level decrement in m increases, and the number of children processors, N decreases as shown

in the Fig. 7.4. The saturation phenomenon, in [7], [41], [42] of the total processing finish

time, TN,M
f as N and M increases confirms the observation in the Fig. 7.4.

Fig. 7.6 shows speedup of the multi-level tree. The speedup characteristic of the multi-

151

Figure 7.5: Total cost, CM
total,N vs. the number of processors, N and level of tree, M .

level tree was studied in [41]. Combining information of both Fig. 7.5 and Fig. 7.6, the cost

efficiency, EC , defined as (7.44), indicating achievable speedup per unit cost can be plotted

as Fig. 7.7. Interestingly, it can be seen that the cost efficiency increases at initial point

with low level of tree (moving along the lines for M). Then, the overall cost efficiency has a

trend of a smooth decrease as the number of tree levels increase. This phenomenon can be

explained as a large degree of increment of the speedup for a small level tree results in the

sharp increments of the cost efficiency against total cost consumption showing a relatively

smooth increment as shown in the Fig. 7.5. On the other hand, the saturation trend of the

speedup shown in the Fig. 7.6 against increasing total cost along the axis for M contributes

to the decreasing trend of the cost efficiency as M increases. As seen along the axis for N in

Fig. 7.5 and Fig. 7.6, both speedup and total cost have a distinct increase for small number

of children processors. Thus, the saturated cost efficiency for large numbers of children

processors along the axis for N is reasonable.

7.4 Concluding remarks

In this chapter, monetary network cost trends for homogeneous multi-level tree networks

are investigated. Closed form solution and computational techniques are presented for the

152

NM
Figure 7.6: Speedup, SM

N vs. the number of processors, N and level of tree, M .

Figure 7.7: Cost efficiency, EC vs. the number of processors, N and level of tree, M .

153

determination of optimal network cost in a multi-level tree network. By analyzing the

trade-off between total monetary network cost and total processing finish time according

to the change of network variables, trends for the monetary cost for multi-level tree can be

investigated. Information on network conditions to maintain cost efficient parallel processing

is obtained through simulation. By investigating the cost efficiency of a multi-level tree,

relationships between monetary network cost and network performance can be understood.

We believe that this study is a key to achieve optimal monetary network cost for other

complex networks of processors and links.

154

Chapter 8

Future Work

Large-scale parallel processing that focuses on computer systems that utilize thousands of

processors and beyond is a very active research area. It is given the goal of many re-

searchers world-wide to enhance science-by-simulation through installing large-scale multi-

petaflop systems at the start of the next decade. Large-scale systems, referred to by some

as extreme-scale and ultra-scale, have many important research aspects that need detailed

examination in order for their effective design, deployment, and utilization to take place.

These include handling the substantial increase in multi-core on a chip, the ensuing inter-

connection hierarchy and communication.

In this dissertation I have been applying DLT to various network topologies and their net-

work performance evaluation. DLT has been proven that its mathematical tractability is

very powerful and can provide evaluations and predictions of network performance. Fur-

ther, I see DLT as one of the outstanding means of network scheduling for the ongoing

development of various high performance network architectures of increasing system scale.

Going to Terascale / petascale high performance computing (HPC) systems and beyond

means that the number of components (cores, interconnect, storage) within such a system

will grow enormously. It is natural that these highly parallel systems will raise questions

about reliable information about resource management and scheduling. Thus, it can be ex-

pected that adaptation of DLT is a promising technique for a new era of HPC, especially for

155

resource allocation, computing power adjusted according to computing load, and network

performance prediction in a parallel paradigm.

As an initial extended work, parallel processing based on algorithms of nonlinear computa-

tional complexity is being studied. I believe that this work is significant for being a break

through of the traditional idea underlying DLT, a linear relationship between temporal con-

cept and the amount of load. A mathematical treatment of the concepts of computation

time as a measure of complexity in distributed computation corresponds to the basic pur-

pose of DLT.

Further, based on the theoretical framework of DLT, research can extended to experimental

studies with real grid and clustered computing environments to create a more realistic and

general DLT paradigm [65],[75].

156

Bibliography

[1] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling Divisible Loads

in Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos CA,

1996.

[2] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “A New Paradigm for Load Scheduling

in Distributed Systems,” Special Issue of Cluster Computing on Divisible Load Schedul-

ing, Vol. 6, No. 1, 2003, pp. 7-18.

[3] T. G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Computer, Vol 36, No.

5, 2003, pp. 63-68.

[4] Y. C. Cheng and T. G. Robertazzi, “Distributed Computation with Communication

Delays,” IEEE Trans. Aerospace and Electronic Systems, Vol. 24, No. 6, 1988, pp.

700-712.

[5] Y. C. Cheng and T. G. Robertazzi, “Distributed Computation for a Tree Network with

Communication Delays,” IEEE Trans. Aerospace and Electronic Systems, Vol. 26, No.

3, 1990, pp. 511-516.

[6] S. Bataineh and T. G. Robertazzi, “Bus Oriented Load Sharing for a Network of Sensor

Driven Processors,” IEEE Trans. Systems, Man, and Cybernetics, Vol. 21, No. 5, 1991,

pp. 1202-1205.

[7] S. Bataineh, T. Y. Hsiung, and T. G. Robertazzi, “Closed Form Solutions for Bus and

157

Tree Networks of Processors Load Sharing a Divisible Job,” IEEE Trans. Computers,

Vol. 43, No. 10, 1994, pp. 1184-1196.

[8] H. J. Kim, G. I. Jee, and J. G. Lee, “Optimal Load Distribution for Tree Network

Processors,” IEEE Trans. Aerospace and Electronic Systems, Vol. 32, No. 2, 1996, pp.

607-612.

[9] J. Sohn and T. G. Robertazzi, “Optimal Divisible Job Load Sharing on Bus Networks,”

IEEE Trans. Aerospace and Electronic Systems, Vol. 32, No. 1, 1996, pp. 34-40.

[10] J. Blazewicz and M. Drozdowski, “The Performance Limits of a Two-dimensional Net-

work of Load Sharing Processors,” Foundations of Computing and Information Sci-

ences, Vol. 21, No. 1, 1996, pp. 3-15.

[11] J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on hypercubes,” Parallel

Computing, Vol. 21, No. 12, 1995, pp. 1945-1956.

[12] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystram, “Scheduling a Divisible

Task in a Two-dimensional Toroidal Mesh,” Discrete Applied Mathematics, Vol. 94, No.

1, 1999, pp. 35-50.

[13] M. Drozdowski and W. Glazek, “Scheduling Divisible Loads in a Three-Dimensional

Mesh of Processors”, Parallel Computing, Vol. 25, No. 4, 1999, pp. 381-404.

[14] K. Li, “Speedup of Parallel Processing of Divisible Loads on k-Dimensional Meshes and

Tori,” The Computer Journal, Vol. 46, No. 6, 2003, pp. 625-631.

[15] K. Li, “Improved Methods for Divisible Load Distribution on k-Dimensional Meshes

using Pipelined Communications,” IEEE Trans. Parallel and Distributed Systems, Vol.

14, No. 12, 2003, pp. 1250-1261.

[16] J. Sohn and T. G. Robertazzi, “Optimal Time-varying Load Sharing for Divisible

Loads,” IEEE Trans. Aerospace and Electronic Systems, Vol. 34, No. 3, 1998, pp.

907-922.

158

[17] V. Bharadwaj, D. Ghose, and V. Mani, “Optimal Sequencing and Arrangement in

Distributed Single-Level Networks with Communication Delays,” IEEE Trans. Parallel

and Distributed Systems, Vol. 5, No. 9, 1994, pp. 968-976.

[18] M. Drozdowski and M. Lawenda, “The Combinatorics in Divisible Load Scheduling,”

Foundations of Computing and Decision Sciences, Vol. 30, No. 4, 2005, pp. 297-308.

[19] M. Drozdowski and M. Lawenda, “Scheduling Multiple Divisible Loads,” The Int’l J.

High Performance Computing Applications, Vol. 20, No. 1, 2006, pp. 19-30.

[20] M. Drozdowski and P. Wolniewicz, “Divisible Load Scheduling in Systems with Limited

Memory,” Cluster Computing, Vol. 6, No. 1, 2003, pp. 19-29.

[21] X. Li, V. Bharadwaj, and C. C. Ko, “Optimal Divisible Task Scheduling on Single-

Level Tree Networks with Buffer Constraints,” IEEE Trans. Aerospace and Electronic

Systems, Vol. 36, No. 4, 2000, pp. 1298-1308.

[22] M. Drozdowski and P. Wolniewicz, “Optimum Divisible Load Scheduling on Hetero-

geneous Stars with Limited Memory,” European Journal of Operational Research, Vol.

172, No. 2, 2006, pp. 545-559.

[23] H. P. L. Diana, V. Bharadwaj, and B. A. David, “On the Design of High-Performance

Algorithms for Aligning Multiple Protein Sequences in Mesh-Based Multiprocessor Ar-

chitectures,” Journal of Parallel and Distributed Computing, Vol. 67, No. 9, 2007, pp.

1007-1017.

[24] D. Ghose and H. J. Kim, “Load Partitioning and Trade-Off Study for Large Matrix

Vector Computations in Multicast Bus Networks with Communication Delays,” Journal

of Parallel and Distributed Computing, Vol. 55, No. 1, 1998, pp. 32-59

[25] V. Bharadwaj and S. Ranganath, “Theoretical and Experimental Study of Large Size

Image Processing Applications using Divisible Load on Distributed Bus Networks”,

Image and Vision Computing, 2002.

159

[26] C. T. Teo, V. Bharadwaj, and J. Jingxi, “Handling Large-Size Discrete Wavelet

Transform on Network-Based Computing Systems: Parallelization via Divisible Load

Paradigm,” to appear in the Journal of Parallel and Distributed Computing, 2009.

[27] X. Lin, L. Ying, J. Deogun, and S. Goddard, “Real-Time Divisible Load Scheduling

for Cluster Computing,” The 13th IEEE Real-Time/Embedded Technology and Appli-

cations Symposium (RTAS), 2007.

[28] X. Lin, L. Ying, J. Deogun, and S. Goddard, “Real-Time Divisible Load Scheduling

with Different Processor Available Times,” The Int’l Conf. Parallel Processing (ICPP),

2007.

[29] V. Bharadwaj, D. Ghose, and V. Mani, “Multi-installment Load Distribution in Tree

Networks With Delays,” IEEE Trans. Aerospace and Electronic Systems, Vol. 31, No.

2, 1995, pp. 555-567.

[30] V. Bharadwaj, H. F. Li, and T. Radhakrishnan, “Scheduling Divisible Loads in Bus

Networks with Arbitrary Processor Release Time,” Computer Math. Applic, Vol. 32,

No. 7, 1996, pp. 57-77.

[31] V. Bharadwaj and G. Barlas, “Scheduling Divisible Loads with Processor Release Times

and Finite Size Buffer Capacity Constraints in Bus Networks,” Cluster Computing, Vol.

6, No. 1, 2003, pp. 63-74.

[32] V. Bharadwaj and H. M. Wong, “Scheduling Divisible Loads on Heterogeneous Linear

Daisy Chain Networks with Arbitrary Processor Release Times,” IEEE Trans. Parallel

and Distributed Systems, Vol. 15, No. 3, 2004, pp. 273-288.

[33] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Net-

works: A Survey,” IEEE Computer, Vol. 38, No. 4, 2002, pp. 393-422.

[34] Z. J. Haas and S. Tabrizi, “On Some Challenges and Design Choices in Ad-hoc Com-

munications,” IEEE MILCOM ’98, 1998.

160

[35] W. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An Application-Specific

Protocol Architecture for Wireless Microsensor Networks,” IEEE Trans. Wireless Com-

munications, Vol. 1, No. 4, 2002, pp. 660-670.

[36] S. Lindsey and C. S. Raghavendra, “Pegasis: Power-Efficient Gathering in Sensor In-

formation System,” Proc. of IEEE Aerospace Conference, 2002, pp. 924-935.

[37] M. Moges and T. G. Robertazzi, “Wireless Sensor Networks: Scheduling for Measure-

ment and Data Reporting,” IEEE Trans. Aerospace and Electronic Systems, Vol. 42,

No. 1, 2006, pp. 327-340.

[38] C. F. Gamboa and T. G. Robertazzi, “Efficient Scheduling for Sensing and Data Re-

porting in Wireless Sensor Networks,” 2006 Conf. Information Sciences and Systems,

2006.

[39] H. Li, S. Jiang, and G. Wei, “Information-Accuracy-Aware Jointly Sensing Nodes Se-

lection in Wireless Sensor Networks,” Mobile Sensor Network Conference, 2006, pp.

736-747.

[40] J. Hightower and G. Borriello, “Location Systems for Ubiquitous Computing,” Com-

puter, Vol. 34, No. 8, 2001, pp. 57-66.

[41] J. T. Hung and T. G. Robertazzi, “Scalable Scheduling for Clusters and Grids using

Cut Through Switching,” Int’l J. Computers and Applications, Vol. 26, No. 3, 2004,

pp. 147-156.

[42] J. T. Hung and T. G. Robertazzi, “Divisible Load Cut Through Switching in Sequential

Tree Networks,” IEEE Trans. Aerospace and Electronic Systems, Vol. 40, No. 3, 2004,

pp. 968-982.

[43] W. R. Heinzelman, Chandrakasan, and H. Balakrishnan, “Energy-Efficient Communi-

cation Protocol for Wireless Microsensor Networks,” Proc. of 33rd IEEE Annual Hawaii

International Conference on Systems Sciences, 2000.

161

[44] O. Younis and S. Fahmy, “An Experimental Study of Routing and Data Aggregation

in Sensor Networks,” Proc. IEEE Int’l Workshop on Localized Communication and

Topology Protocols for Ad Hoc Networks (LOCAN), 2005.

[45] Relativistic Heavy Ion Collider (RHIC): http://www.bnl.gov/rhic/.

[46] The STAR Experiment at RHIC: http://www.star.bnl.gov/.

[47] ATLAS Computing Technical Design Report, ATLAS-TDR-017, 2005:

http://cdsweb.cern.ch/record/837738.

[48] The TeraPaths End-to-End QoS Networking Project: http://www.terapaths.org.

[49] The Lambda Station project: http://www.lambdastation.org.

[50] The Phoebus Project: http://e2epi.internet2.edu/phoebus.html.

[51] On-demand Secure Circuits and Advance Reservation System (OSCARS):

http://www.es.net/oscars/.

[52] T. Lehman, X. Yang, C. P. Guok, N. S. V. Rao, A. Lake, J. Vollbrecht, and N. Ghani,

“Control Plane Architecture and Design Considerations for Multi-Service Multi-Layer,

Multi-Domain Hybrid Networks,” INFOCOM 2007 High Speed Networks Workshop,

2007, pp. 67-71.

[53] S. Bradley, F. Burstein, L. Cottrell, B. Gibbard, D. Katramatos, Y. Li, S. McKee,

R. Popescu, D. Stampf, and D. Yu, “TeraPaths: A QoS-enabled Collaborative Data

Sharing Infrastructure for Peta-scale Computing Research,” Proc. of Computing in High

Energy and Nuclear Physics, 2006, pp. 13-17.

[54] D. Katramatos, B. Gibbard, D. Yu, and S. McKee, “TeraPaths: End-to-End Network

Path QoS Configuration using Cross-Domain Reservation Negotiation,” Proc. of the

3rd Int’l Conf. Broadband Communications, Networks, and Systems, 2006, pp. 1-5.

162

[55] D. Katramatos, B. Gibbard, D. Yu, and S. McKee, “The TeraPaths Testbed: Ex-

ploring End-to-End Network QoS,” Proc. of the 3rd Int’l Conf. Testbeds and Research

Infrastructure for the Development of Networks and Communities and Workshops (Tri-

dentCom 2007), 2007, pp. 21-23.

[56] ESnet: http://www.es.net.

[57] Internet2: http://www.internet2.edu/network/dc/.

[58] K. Park, G. Kim, and M. Crovella, “On the Relationship Between File Sizes, Transport

Protocols, and Self-Similar Network Traffic,” Proc. the Int’l Conf. Network Protocols,

1996, pp. 171-180.

[59] K. Ko and T. G. Robertazzi, “Scheduling in an Environment of Multiple Job Submis-

sions,” Proc. of the 2002 Conf. Information Sciences and Systems, 2002.

[60] H. M. Wong, D. Yu, V. Bharadwaj, and T. G. Robertazzi,“Data Intensive Grid Schedul-

ing: Multiple Sources with Capacity Constraints,” Proc. of the IASTED International

Conference on Parallel and Distributed Computing and Systems, 2003.

[61] S. Viswanathan, V. Bharadwaj, and T. G. Robertazzi,“Resource Aware Distributed

Scheduling Strategies for Large-Scale Computational Cluster/Grid Systems,” IEEE

Trans. Parallel and Distributed Systems, Vol. 18, No. 10, 2007, pp. 1450-1461.

[62] M. Moges, D. Yu, and T. G. Robertazzi,“Grid Scheduling Divisible Loads from Multiple

Sources via Linear Programming,” 16th IASTED Int’l Conf. Parallel and Distributed

Computing and Systems, 2004.

[63] M. Moges, D. Yu and T. G. Robertazzi,“Divisible Load Scheduling with Multiple Mul-

tiple Sources: Closed Form Solutions,” 2005 Conf. Information Sciences and Systems,

2005.

[64] T. G. Robertazzi and D. Yu,“Multi-Source Grid Scheduling for Divisible Loads,” 2006

Conf. Information Sciences and Systems, 2006.

163

[65] D. Yu and T. G. Robertazzi,“Divisible Load Scheduling for Grid Computing,” Proc. of

the IASTED Int’l Conf. Paralle and Distributed Computing and Systems, 2003.

[66] J. Sohn, T. G. Robertazzi, and S. Luryi, “Optimizing Computing Costs Using Divisible

Load Analysis,” IEEE Trans. Parallel and Distributed Systems, Vol. 9, No. 3, 1998, pp.

225-234.

[67] S. Charcranoon, T. G. Robertazzi, and S. Luryi, “Parallel Processor Configuration

Design with Processing/Transmission Costs,” IEEE Trans. Computers, Vol. 49, No. 9,

2000, pp. 987-991.

[68] S. Charcranoon, T. G. Robertazzi, and S. Luryi, “Load Sequencing for a Parallel Pro-

cessing Utility,” Journal of Parallel and Distributed Computing, Vol. 64, No. 1, 2004,

pp. 29-35.

[69] K. Choi and T. G. Robertazzi, “Divisible Load Scheduling in Wireless Sensor Net-

work with Information Utility,” Proc. of IEEE Int’l Performance Conf. Computers and

Communication (IPCCC ’08), 2008, pp. 9-17.

[70] M. Drozdowski and L. Wielebski, “Efficiency of Divisible Load Processing,” Parallel

Processing and Applied Mathematics, Vol. 3019, 2004, pp. 175-180.

[71] M. Drozdowski and L. Wielebski, “Isoefficiency Maps for Divisible Computations,” to

appear IEEE Trans. Parallel and Distributed Systems.

[72] A. Gupta and V. Kumar, “Performance Properties of Large Scale Parallel Systems,”

Journal of Parallel and Distributed Computing, Vol. 19, No. 3, 1993, pp. 234-244.

[73] K. Choi and T. G. Robertazzi, “Isocost Performance Evaluation Using Parallel Divisi-

ble Load Scheduling,” submitted to the 29th Conf. Computer Communications (INFO-

COMM 2010), 2009.

164

[74] K. Choi and T. G. Robertazzi, “Cost Performance Analysis in Parallel Computing

Networks with Divisible Load Scheduling,” to appear in the 21st IASTED Int’l Conf.

Parallel and Distributed Computing and Systems, 2009.

[75] M. Drozdowski and P. Wolniewicz, “Experiments with Scheduling Divisible Tasks in

Clusters of Workstations,” EURO-Par-2000, LNCS 1900, Springer-Verlag, 2000, pp.

311-319.

165

Appendix A

Discretization of Continuous

Integration

With the special characteristic that the status of the capacity reservation can be described

as a function composed with step functions, one can derive a discrete expression for an

integration process within a continuous domain. We can rewrite eq (4.3) based on Fig. 4.2

as

C(t) =
∑
i=1

(i∑

k=1

Dk

){
U(t− ti)− U(t− ti+1)

}
(A.1)

where

Dk =





negative real for VP setup at tk

positive real for VP teardown at tk

0 for simultaneous VP setup and VP teardown at tk

In our example, D2 equals 0 based on the assumption that VP setup and VP teardown

occur at the same time, t2 (see Fig. 4.2). By substituting eq (A.1) into
∫ T

T−W
C(t)dt from

166

(4.6), we have

∫ T

T−W

C(t)dt =
∑
i=1

(i∑

k=1

Dk

) ∫ T

T−W

{
U(t− ti)− U(t− ti+1)

}
dt (A.2)

Here,

∫ T

T−W

U(t− ti)dt =





W if ti ≤ T −W

T − ti if T −W < ti ≤ T

0 otherwise

∫ T

T−W

U(t− ti+1)dt =





W if ti+1 ≤ T −W

T − ti+1 if T −W < ti+1 ≤ T

0 otherwise

Thus,

∫ T

T−W

C(t)dt =
{ n∑

i=1

(i∑

k=1

Dk

)
−

n−1∑
i=1

(i∑

k=1

Dk

)}
W +

{ m∑
i=n+1

(i∑

k=1

Dk

)
(T − ti)−

m−1∑
i=n

(i∑

k=1

Dk

)
(T − ti+1)

}

= W

n∑

k=1

Dk + T ·
(m∑

i=n+1

i∑

k=1

Dk −
m−1∑
i=n

i−1∑

k=1

Dk

)
−

m∑
i=n+1

ti

(i∑

k=1

Dk −
i−1∑

k=1

Dk

)

= W

n∑

k=1

Dk + T ·
(m∑

k=1

Dk −
n∑

k=1

Dk

)
−

m∑
i=n+1

ti

(i∑

k=1

Dk −
i−1∑

k=1

Dk

)
(A.3)

where the integer value, n is the index i satisfying

ti ≤ T −W < ti+1 and m is the index i satisfying

ti ≤ T < ti+1.

167

Using the fact that,

n∑

k=1

Dk = C((T −W))

m∑

k=1

Dk = C((T))

i∑

k=1

Dk = C(ti)

i−1∑

k=1

Dk = C(ti−1) (A.4)

finally, we can simplify (A.3) further to a form independent of variable Dk as

∫ T

T−W

C(t)dt = T · C(T)− (T −W) · C(T −W)−
m∑

i=n+1

ti

(
C(ti)− C(ti−1)

)
(A.5)

168

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Related Studies
	1.2 Major Contribution

	2 An Exhaustive Approach to Release Time Aware Divisible Load Scheduling
	2.1 Problem Formulation and Preliminary Remarks
	2.2 A bus network with arbitrary release times
	2.2.1 Constraint I : ri+1 - si izTcm
	2.2.2 Constraint II : ri+1 - si > izTcm
	2.2.3 Exhaustive search algorithm

	2.3 Performance evaluation
	2.4 Concluding remarks

	3 Divisible Load Scheduling in Clustered Wireless Sensor Networks
	3.1 Problem Formulation and Preliminary Remarks
	3.2 Single Cluster based hierarchical WSN scheduling
	3.2.1 Single Channel with no front-end processor, SCnP
	3.2.2 Multi Channel with no front-end processor, MCnP
	3.2.3 Single Channel with front-end processor, SCP
	3.2.4 Multi Channel with front-end processor, MCP

	3.3 Multi-Cluster based hierarchical wireless sensor network scheduling
	3.3.1 Single Channel with no front-end processor
	3.3.2 Multi Channel with no front-end processor
	3.3.3 Single Channel with front-end processor
	3.3.4 Multi Channel with front-end processor

	3.4 Performance evaluation
	3.4.1 Feasible measurement instruction assignment time
	3.4.2 Minimum round time
	3.4.3 Speedup
	3.4.4 Energy Dissipation
	3.4.5 3D Cluster Model

	3.5 Concluding remarks

	4 Resource Scheduling Heuristics for Data Intensive Networks
	4.1 Problem Formulation and Preliminary Remarks
	4.2 Time varying Capacity analysis
	4.3 Capacity scheduling heuristic
	4.3.1 Most Conservative (MC) heuristic algorithm
	4.3.2 Load Balancing (LB) heuristic algorithm

	4.4 Performance comparison of the heuristics
	4.4.1 Nodal capacity comparison
	4.4.2 File size variation
	4.4.3 File transfer time variation
	4.4.4 File transfer start time variation

	4.5 Concluding remarks

	5 Grid Scheduling Divisible Load with Load Adaptive Computing Power
	5.1 Problem Formulation and Preliminary Remarks
	5.2 Analysis of Adaptive Computing Speed
	5.3 Performance evaluation
	5.4 Concluding remarks

	6 Cost Performance Analysis in Parallel Computing Networks with Divisible Load Scheduling
	6.1 Problem Formulation and Preliminary Remarks
	6.2 Cost analysis of homogeneous single level tree networks
	6.2.1 Sequential load distribution
	6.2.2 Simultaneous load distribution

	6.3 Cost Performance Evaluation
	6.4 Concluding remarks

	7 Cost Performance Analysis in Multi-Level Tree Networks
	7.1 Problem Formulation and Preliminary Remarks
	7.2 Cost analysis of homogeneous tree networks
	7.2.1 Single Level Tree
	7.2.2 Multilevel Tree

	7.3 Cost Performance Evaluation
	7.4 Concluding remarks

	8 Future Work
	Bibliography
	Appendix
	A Discretization of Continuous Integration

