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Abstract of the Dissertation

On Variance Minimization for Constrained
Discounted Continuous-Time MDPs

by

Jun Fei

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2009

We discuss the minimization of variances of the total discounted re-
wards for constrained continuous-time Markov Decision Processes
(MDPs) with countable state spaces and its application in dynamic
power management for portable electronic devices. The rewards
consist of cumulative rewards earned between jumps and instant
rewards earned at jump epochs. According to the existing theory,
for the expected total discounted rewards optimal policies exist
in the forms of randomized stationary and switching stationary
strategies. While the former is typically unique, the latter forms a
finite set whose number of elements grows exponentially with the
number of constraints.

There are two natural definitions of total discounted rewards: (i)by
interpreting discounting as a coefficient in front of the future re-
ward rates (multiplicative discount), and (ii) by interpreting dis-
counting as stopping times (probabilistic discounting). We show
through conditional variance that the variance under the multi-
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plicative discounting is less than or equal to the variance under
the probabilistic discounting. For the second interpretation of dis-
counting and for rewards up to the first jump we provide an index
for selection of actions by switching stationary strategies and show
that an index policy achieves the smaller variance than the ran-
domized stationary policy. In particular, for problems with zero
instant rewards, the index policy achieves the minimum variance
of rewards up to the first jump among all the equivalent switch-
ing strategies. For rewards beyond the first jump, we provide an
example for which the index strategy is not the best among switch-
ing stationary strategies. We also give an example that under the
multiplicative discounting the best switching strategy may not out-
perform the randomized policy even for problems with rewards up
to the first jump.

We also discuss an application of the results to dynamic power
management for portable electronic devices. We propose an op-
timal switching strategy that has two advantages over the ”best”
nonrandomized stationary policy suggested in the power manage-
ment literature. First, our approach yields better performance in
saving energy consuption. Second, while computing the ”best”
nonrandomized policy is NP-hard finding the optimal switching
strategy is a P-hard problem.
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Chapter 1

Introduction

Since the introduction by Markowitz in his Nobel-Prize winning paper [39],
variance has played an important role in stochastic optimization. With the
risk of a portfolio measured by the variance of its return Markowitz showed
how to formulate the problem of minimizing a portfolio’s variance subject to
the constraint that its expected return equals a prescribed level as a quadratic
programming problem. Such an optimal portfolio is said to be variance mini-
mizing and if it also achieves the maximum expected return among all portfo-
lios having the same variance of return then it is said to be efficient. The set of
all points in the two dimensional plane of variance or standard deviation and
expected return that are produced by efficient portfolios is called the efficient
frontier.

Owing to its practical importance, especially in portfolio management in
finance, the mean-variance problem has drawn continuing attention; see for
example, [2, 8, 9, 19, 21, 22, 35, 42, 44, 51, 58, 61, 62] among others.

In the area of Markov Decision Processes the usual optimization criteria
have been the expected total rewards over a finite horizon, the expected dis-
count total rewards over a finite or infinite horizon, or the limiting average
reward per unit time over an infinite horizon as long as the limit exists. These
standard criteria may be quite insufficient to fully capture the various aspects
considered by the decision maker. The biggest weakness lies in the fact that
they fail to take into account the risk - an important characteristic decision
makers may weigh more than the expectation. The risk can be characterized
by probabilities of upper or lower tails, e.g., minimizing the ruin probability
in insurance problem, maximizing the one percentile of profits or minimiz-
ing the 99 percentile of costs. There have been some papers devoted to the
probability criteria for various rewards. Filar [16] and Filar et al. [17] stud-
ied the percentile performance criteria for the limiting average return. Zhang
et al. [60] and White [56] considered the threshold probability criteria for
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discounted MDPs and focused on the properties of the optimality equations
without discussing the existence and properties of the optimal policies.

More often the risk is characterized by the variance or standard deviation.
As far as we know variance of MDPs has been studied primarily for discrete
time models; see the review paper by White [55] and references therein.

The study of variances of MDPs was initiated by Mandl [37, 38] where the
asymptotic behavior of the variance of the sum of costs under the policy which
minimizes the mean cost per unit time was first investigated. Jaquette [26]
studied the variance of finite state and action discrete time MDPs with small
discount rate and the asymptotic behavior as the discount rate approaches
zero. Jaquette [27] further studied the moment optimality of finite state and
action discrete time MDPs by examining the negative of the Laplace transform
of the total return random variable. The results were extended to the continu-
ous time case in Jaquette [28] where the author showed that a moment optimal
policy can always be found among the class of piecewise constant policies. In
Jaquette [29] the author formulated an explicit utility function to combine
both mean and variance into one function and developed the so-called utility
optimality with constant aversion to risk. It was shown that optimal policies
exist but are not necessarily stationary for an infinite horizon stationary MDP
with finite state and action spaces. Benito [5] presented formulas to calculate
the expected value and the variance of the reward in discrete time MDPs. So-
bel [48] derived formulas for the variance and higher moments of the present
value of single-stage rewards for a finite MDP and for a semi-Markov Decision
Process. Sobel [49] and Chung [6] studied the problem by maximizing the
mean/standard deviation ratio in an undiscounted setting. Kawai [31] tries to
find an optimal randomized policy that minimizes the variance of the reward
among the policies that give the mean not less than a specified value by intro-
ducing a parametric Markov Decision Process with an average cost criterion.
It was shown that there exists an optimal policy which is a mixture of at most
two pure policies.

Filar et al. [18] consider variance-penalized models. Kadota [30] stud-
ied the average variance of Markov Decision Processes with countable states
and finite actions and developed sufficient conditions to assure that there is a
stationary deterministic policy that minimizes the average-variance in a class
of mean-optimal policies. Altman and Shwartz [1] and Baykal-Gursoy and
Ross [3] provided further results on variance-penalized models. In particular
Baykal-Gursoy and Ross [3] introduced two definitions of variability, namely,
the expected time-average variability and time-average expected variability.
Sobel [50] and Puterman [45] considered mean-variance tradeoffs and consid-
ered the problem of finding Pareto-optimal policies in the sense of having high

2



means and low variances. White [57] investigated some algorithms to solve
the mean-variance problem. Chung [7] discussed the computation of a Pareto-
optimal policy in the sense of having high means and low variances of the
stationary distribution under the unichain condition. Liu and Zhao [36] in-
vestigated the average reward semi-Markov Decision Processes with a general
multichain structure using a data-transformation method.

For continuous-time Markov Decision Processes, the research is relative
less. In addition to Jaquette [28], Van Dijk and Sladky [54] investigated the
variance of the undiscounted total rewards for continuous-time Markov chains
with finite state spaces and showed that the variance growth rate is asymp-
totically linear in time. Baykal-Gürsoy and Gürsoy [4] defined the expected
time-average variability criterion for communicating Semi-Markov Decision
Processes and showed that under certain assumptions an ϵ−optimal (random-
ized) stationary policy exists for this criterion when the state space is finite
and the action sets are compact.

As an important application of Markov Decision Processes in engineering,
Dynamic Power Management (DPM) of portable electronic systems, such as
laptops, PDAs, and cellular phones, has drawn increasing attention. The goal
of dynamic power management is to extend the battery life while meeting
the performance requirements. The term “dynamic” is contrasted to “static”
where a constant power scheme is used regardless of the variation in requests
for services. High power consumption not only reduces the battery life, but also
results in increased packaging and cooling costs as well as potential reliability
problems.

The problem of finding a power management scheme (or policy) that min-
imizes power dissipation under performance constraints is of great interest to
system designers. A simple power management system includes four compo-
nents: Service Provider (SP), Service Requestor (SR), Service Queue (SQ),
and Power Manager (PM). The SR generates service requests. The SQ buffers
the service requests. The SP provides service in a top-down manner.

The working modes of the SP can be modelled into three states: “busy”,
“idle” and “sleep”. In busy states, the SP is fully powered and fully opera-
tional. For convenience of modelling it is assumed that the SP cannot switch
to any other state when it has working on some request. The transition from
busy state to other states only occurs when the SP finishes one service request.
For each busy state, there exists a corresponding idle state. In the idle states,
the SP is fully powered, but it is not working on any request. An idle state
is the only state that connects to its corresponding busy state. When the
SP finishes a service, it will automatically switch from the busy state to its
corresponding idle state. Conversely, when the SP wants to switch from some
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other state to a busy state, it first switches to the corresponding idle state and
then goes to the busy state. When the SP is in an idle state, it is in the same
power mode as when it is in the corresponding busy state. We remark that
the idle states are not physical states of the SP but merely for the convenience
of modelling. In power-down (“sleep”) states the SP is partially or completely
shut down and is not operational.

Throughout the time the PMmonitors the states of the SR, SQ, and SP and
issues state-transition commands to the SP. A simple and well-known heuristic
policy is the “time-out” policy, which shuts down the SP after it has been idle
for a certain amount of time. This “time-out” policy is widely used in today’s
portable computers. A predictive system shutdown approach was proposed in
[53] and [24]. The approach tries to predict the “on” and “off” time of each
component using a regression model based on the component’s previous “on”
and “off” times such that the Service Provider (SP) can be turned on just
before the request comes. This method works best for the special cases where
the requests are highly correlated and highly predictable.

A power management approach based on a Markov decision process has
been proposed in [24] where the system is modeled as a discrete-time Markov
decision process by combining the stochastic models of each component. Once
the model and its parameters are determined, an optimal power management
policy for achieving the best power-delay trade-off in the system is generated.
This approach offers significant improvements over previous power manage-
ment techniques in terms of its theoretical framework for modeling and op-
timizing the system. There are, however, some shortcomings; see Qiu et al.
[46]. In [46] power management problem was formulated as a constrained con-
tinuous time Markov Decision Process. A linear programming approach that
minimizes the average cost was proposed, and optimal randomized policies are
found by solving the LP. Since in practice it is hard to implement the random-
ized policy they tried to search for the “best” nonrandomized stationary policy
using either nonlinear programming approach or a heuristic policy iteration.
Finding such a policy is an NP-hard problem; see Feinberg [11]. In addition,
it typically has worse performance than the optimal randomized policy or may
not exist even for some feasible problems [12].

In this dissertation we study constrained Continuous-Time Markov Deci-
sion Processes (MDPs) with countable state spaces. According to the existing
theory, see Feinberg [13], for a feasible problem with compact action sets,
optimal policies for the expected total discounted rewards can be found in
several forms. The most natural forms are randomized stationary policies and
switching stationary strategies. Randomized stationary policies select actions
at jump epochs and the selected action is used until the next jump. Switching
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stationary strategies do not utilize randomization procedure and may change
actions between jumps. For each randomized stationary policy, the finite set
of equivalent switching stationary strategies can be defined. These policies are
equivalent in the sense that the total discounted expected rewards for them are
equal for any reward function. Once an order of actions used between jumps
at each state is fixed, a particular equivalent switching stationary strategy can
be computed.

If the number of constraints is K, the optimal policies exist in the forms
of K-randomized stationary policies and K-switching stationary strategies.
The former means that the total number of randomization procedures at all
states is bounded by K, while the latter means that the total number of
switching epoches between jumps at all states is limited by K. If a randomized
policy uses m actions at one state, different permutations of these actions
define m! switching stationary strategies. According to Feinberg [13, Theorem
4.5], their expected total discounted rewards are equal. Thus, in terms of the
expected total rewards these two classes of policies are equivalent. However,
their variances may be different. In this paper we are interested in finding a
policy that has the smallest variance of total discounted rewards among the
equivalent randomized stationary and switching stationary policies.

There are two natural definitions of total discounted rewards: (i) by inter-
preting discounting as a coefficient in front of the future reward rates (mul-
tiplicative discount), and (ii) by interpreting discounting as stopping times
(probabilistic discounting). Each of these interpretations defines the total dis-
counted reward as a random variable. The two random variables are different,
but they have the same expectations. However, their second moments are
different and hence their variances are different too.

Our first research topic is naturally to see whether there is any relation
(equality or inequality) between the two definitions of variances. We show
through conditional variance that the variance under the multiplicative dis-
counting is less than or equal to the variance under the probabilistic discount-
ing. The results are accepted for publication by Journal of Applied Probability
and will appear in December 2009 [14].

Both K-randomized stationary policies and K-switching stationary strate-
gies use no more than K +1 actions at any state. Therefore, it is sufficient to
limit action sets to the finite subsets. In this paper we define an index such
that an index K-switching stationary strategy achieves a smaller variance of
total discounted rewards than the equivalent K-randomized stationary pol-
icy. In particular, if there are no instant rewards, we show that the index
K-switching stationary strategy has the smallest variance among all the K-
switching stationary strategies and the K-randomized stationary policy.
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In the end we examined the application of switching strategies to the Dy-
namic Power Management problem studied in [46]. Instead of finding the
“best” nonrandomized stationary policies as suggested by [46] we compute the
best switching strategies by fixing the order of actions available at each state.
We will further compare the performance of our proposed approach and the
suggested approach in [46].
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Chapter 2

Model Definition and Known
Results

2.1 Model definition

A continuous-time MDP is defined by a set {S,A,A(·), q,K, rk, Rk, k = 0, . . . , K},
where

S = {1, 2, 3, . . . , } is a countable state space;
A is an action space, which is assumed to be a complete separable metric

space, and A(i), ∈ S, are action sets available at states i ∈ S, which are
assumed to be compact subsets of A;

q(i, j, a) is the transition rate from state i to state j, i ̸= j, when action
a is selected. Let q(i, a) := −q(i, i, a) =

∑n
j=1,j ̸=i q(i, j, a) ≤ C for some

0 < C <∞;
K = {0, 1, . . .} is the number of constraints;
rk(i, a) is the reward rate for criterion k, k = 0, 1, . . . , K, at state i when

action a is selected, i ∈ S, a ∈ A(i);
Rk(i, j, a) is the instant reward for criterion k, k = 0, 1, . . . , K, earned when

transiting from state i to state j and action a is selected. The functions rk(i, a)
and Rk(i, j, a) are assumed to be upper semi-continuous in a and uniformly
bounded above, k = 0, 1, . . . , K.

The definitions of strategies and explanations on how strategies define the
corresponding multivariate point processes {Tn, Xn : n ≥ 0}, where Tn is
the nth jump epoch, and Xn is the state after nth jump, 0 = T0 ≤ T1 ≤
. . . ≤ Tn ≤ . . ., Xn ∈ S, is given in Appendix A. Here we repeat the main
definitions, give definitions of some important subclasses of strategies including
K-switching stationary strategies and K-randomized stationary policies, and
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introduce the objective criteria. Since T0 is always 0, the history up to time
t is i0, t1, x1, . . . , tn, in, t, where n is the number of jumps up to time t, i0
is the observed initial state, and ti and ii are ith jump epochs and states
immediately after them, i = 1, . . . , n. We write ti and ii instead of Ti and
Xi to indicate that they are given observed values rather than random values.
Let Ω∗ = ∪n≥0(S × [0,∞))n and let F∗ be the Borel σ-field on Ω∗ induced
by the Borel σ-field on [0,∞). Consider the set of all finite histories Ω =
{(i0, t1, i1, t2 . . . , in, t) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t < ∞, n = 0, 1, . . .}. Then
Ω is a measurable subset of Ω∗. We denote by F = {B ∈ F∗|B ⊂ Ω} the
restriction of F∗ to Ω.

A (nonrandomized) strategy ψ is a Borel mapping from Ω to A such that
ψ(i0, t1, . . . , in−1, tn, in, t) ∈ A(in) for each (i0, t1, . . . , in−1, tn, in, t) ∈ Ω. For
a strategy ψ and given the history ωn = i0, t1 . . . tn, in, t, the joint probability
distribution that the jump happens during the interval [t, t+ dt) and in+1 = j
is q(i, j, ψ(i0, t1, . . . , tn, in, t))dt. Each probability distribution µ of the initial
state X0 and each randomized strategy π define the unique multivariate point
process on the probability space (Ω∞,F∞), where Ω∞ = (S × [0,∞])∞ and
F∞ is the Borel σ-field on Ω∞ induced by the Borel σ-fields on [0,∞]. We
denote by Pψ

µ and Eψ
µ the probabilities and expectations for this process. We

also write Pψ
i and Eψ

i instead of Pψ
µ and Pψ

µ when µ(i) = 1 for some i ∈ S.;
see Remark in the appendix for details.

The condition q(i, a) ≤ C < ∞ implies that Pψ
µ (T∞ = ∞) = 1; see

Ross [47]. For a multivariate point process {Tn, Xn : n ≥ 0} defined by a
strategy ψ and by some initial distribution, we define X(t) = Xn and a(t) =
ψ(X0, T1, . . . , Xn, t) for Tn ≤ t < Tn+1. Let an = ψ(X0, T1, . . . , Xn, Tn+1), if
Tn+1 < ∞, and an be an arbitrary element from A(Xn), if Tn+1 = ∞, where
n = 0, 1, . . . . The values of an define transition probabilities from Xn to Xn+1

at jump epoches.
Let Vk(i, ψ) be the expected total discounted rewards for criterion k, k =

0, 1, . . . , K, when i ∈ S is the initial state and the strategy ψ is selected,

Vk(i, ψ) = Eψ
i

[ ∞∑
n=0

e−αTnRk(Xn, Xn+1, an) +

∫ ∞

0

e−αtrk(X(t), a(t)) dt

]
,

(2.1.1)
where α > 0 is the discount rate.

It is also possible to consider randomized strategies; see Appendix A. These
strategies can be defined as (nonrandomized) strategies when actions are re-
placed with probability distributions on the action set A. Then the action sets
A and A(i) are replaced with the sets Ã and Ã(i) of probability measures on
A and A(i) respectively. In addition, the transition intensities q and reward
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functions rk and Rk, k = 1, . . . , K, are replaced respectively with q̃, r̃k, and
R̃k defined in (A.0.1), (A.0.2) and (A.0.3) in the appedix. Then the expected
total discounted rewards Vk(i, π) for the new model are the expected total
discounted rewards for randomized policies in the original model.

Let Π be the set of strategies and RΠ be the set of randomized strategies.
Then Π ⊆ RΠ.

Now consider a situation when a decision maker can make decisions only at
jump epochs and the selected actions remain unchanged until the next jump.
We also consider the simplest situation when the decisions depend only on
current states. We shall call such decision rules randomized stationary policies.

A randomized stationary policy is defined by probabilities σ(da|i) on A
such that σ(A(i)|i) = 1. In each state in the decision an is selected according
to the probability distribution σ(da|in) and this action controls the process
until the next jump. Ionescu Tulchea theorem in Jacod [25] implies that any
initial distribution µ and any randomized stationary policy σ define a unique
multivariate point process on the probability space (Ω∞,F∞).

At first glance, the definition of a randomized stationary policy is not
relevant to the definition of a randomized strategy. In fact, any randomized
stationary policy can be represented as a randomized strategy. Indeed, for a
randomized stationary policy σ, the distribution of the sojourn time until the
next jump is the mixture of exponential distributions with intensities q(i, a)
and taken with probabilities π(da|i). Let θn = Tn+1 − Tn be the time spent
until the next jump. Then

P{t < θn ≤ t+ dt, in+1 = j|Sn > t, in = i} =

∫
A
e−q(i,a)tq(i, j, a)σ(da|i)∫
A(i)

e−q(i,a)tσ(da|i)
dt.

It is easy to see that any randomized stationary policy σ can be presented as
a randomized strategy π for which the selection of actions depend only on the
current state i and time t passed since the last jump. This representation is
defined by the formula

π(B|i, t) =
∫
B
e−q(i,a)tσ(da|i)∫

A(i)
e−q(i,a)tσ(da|i)

for each measurable sunset B of A(i). Thus, any randomized stationary policy
can be defined as a randomized strategy.

For a given initial state i and for given constants Ck, k = 1, . . . , K, consider
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the following problem:

MaximizeV0(i, π),
s.t. π ∈ RΠ
Vk(i, π) ≥ Ck, k = 1, . . . , K.

(2.1.2)

A randomized stationary policy is called K-randomized stationary, K =
0, 1, . . . , if the number of additional actions used by randomization procedures
is limited by K. This means that for each i ∈ S there exists a finite subset
Aπ(i) ofA(i) such that π(Aπ(i)|i) = 1 for all i ∈ S and

∑
i∈S
∑

a∈Aπ(i)[I{π(a|i) >
0} − 1] ≤ K.

A (nonrandomized) strategy is called switching stationary if the action
selection depends only on the current state, and time passed since the last
jump. Thus, a switching stationary strategy ϕ is defined as a function ϕ(i, t)
such that i ∈ S, t ∈ [0,∞), and function ϕ(i, t) is measurable in t.

Similar to K-randomized stationary policies we consider K-switching sta-
tionary strategies in which the number of switching points is not greater than
K. This means that function ϕ(i, t) is discontinuous in t at most at K points
(i, t).

2.2 Existing results

Theorem 6.1 and A.9 in Feinberg [13] provide various structures of optimal
policies for problem (2.1.2). In particular, Theorem 6.1(ii) and Theorem A.9(ii)
imply the following statement.

Theorem 2.2.1 If problem (2.1.2) is feasible, then (i) there exists an optimal

K-randomized stationary policy, and (ii) there exists an optimal K-switching

stationary strategy.

In addition the results of sections 4 and 5 in Feinberg (2004) explain how
to link optimal K-randomized policies and K-switching stationary strategies.
Let σ be an arbitrary K-randomized stationary policy. For example, σ can be
an optimal K-randomized policy.

Let Aσ(i) = {a ∈ A(i) : σ(a|i) > 0} be the set of actions used by the
policy σ at state i ∈ S. We denote by S∗ the set of states i ∈ S, for which
Aσ(i) consists of more than one point. For each i ∈ S, fix an arbitrary order
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in which these elements are ordered, Aσ(i) = {a1(i), a2(i), . . . , am(i)(i)}, where∑
i∈S[m(i) − 1] =

∑
i∈S∗ [m(i) − 1] ≤ K. For each state i ∈ S there are m(i)!

possible orders. Therefore, there are
∏

i∈S∗ m(i)! possibilities to fix such orders
at all states. When all these orders are fixed, a policy σ define a K-switching
stationary strategy ϕ defined as follows

ϕ(i, t) = ak(i) when Sk−1(i) ≤ t < Sk(i), k = 1, . . . ,m(i), i ∈ S, (2.2.1)

where
S0(i) = 0, Sk(i) = Sk−1(i) + sk(i), k = 1, 2, . . . ,m(i),

and

sk(i) = − 1

α+ q(i, ak(i))
ln
(
1− σ(ak(i)|i)∑m

l=k σ(al(i)|i)
)
.

In the above formulas sk(i) are the lengths of time intervals between switching
epoches Sk−1(i) and Sk(i). Note that Sm(i)(i) = sm(i)(i) = +∞.

We use an ordered sequence < a1(i), a2(i) . . . , am(i)(i) > to represent a
K-switching randomized strategy ϕ at state i. Then the set of orders <
a1(i), a2(i) . . . , am(i)(i) >i∈S∗ and formula (2.2.1) define a K-switching strategy
ϕ.

Thus formula (2.2.1) definesN =
∏

i∈S∗ m(i)! differentK-switching policies
ϕ for the K-randomized stationary policy σ. We introduce the notation M =∑

i∈S[m(i) − 1]. Since σ is a K-randomized stationary policy, M ≤ K. We
observe that 2M ≤ N ≤ (M + 1)!. In particular, N = 2M when S consists of
M points and each set Aσ(i), i ∈ S∗, consists of two points, and N = (M +1)!
when S∗ is a singleton and A(i∗) consists of (M+1) points, where A(i∗) = {i∗}.

According to [13, Corollary 5.3], the policies ϕ satisfy the following prop-
erty.

Theorem 2.2.2 Given a K-randomized stationary policy σ, for any K-switching

strategy ϕ defined by (2.2.1), the equalities Vk(i, ϕ) = Vk(i, σ), k = 0, 1, . . . , K,

hold for all i ∈ S.

Theorem 2.2.3 implies that if σ is an optimal policy for problem (2.1.2)
then ϕ is also optimal for this problem. In fact, in Feinberg [13, Corollary
5.3] implies that Vk(i, σ) = Vk(i, ϕ) for any reward functions R and r. We re-
mark that [13, Corollary 5.3] is formulated for a fixed initial state distribution.
However the definition of ϕ does not depend on the initial state distribution;

11



see (2.2.1). Thus, the equality of the expected total discounted rewards in [13,
Corollary 5.3] and Theorem 2.2.3 in holds for any initial measure.

For each K-randomized stationary strategy ϕ defined by a described order
and (2.2.1) for i ∈ S and k = 1, . . . ,m(i)

Eϕ
i e

−αT1I{a0 = ak(i)} = Eσ
i e

−αT1I{a0 = ak(i)} =
σ(ak(i)|i)q(i, ak(i))
α+ q(i, ak(i))

,

(2.2.2)
The second equality follows from the fact that Ee−αξ = q/(α+ q) for an expo-
nential random variable with an intensity q and T1 is a mixture of exponential
random variables with the intensities q(i, ak(i)) and each ak(i) is selected with
the probability σ(ak(i)|i). The first equality follows from [13, (5.10)]. Since at
jump epoch T1 the transition probabilities are equal to q(i, a0)/(α + q(i, a0))
for the both policies σ and ϕ, equalities (2.2.2) imply

Eϕ
i e

−αT1I{a0 = ak(i), X1 = j} = Eσ
i e

−αT1I{a0 = ak(i), X1 = j} =
σ(ak(i)|j)q(i, j, ak(i))

α+ q(i, ak(i))
.

(2.2.3)
In addition,

Eσ
i

∫ T1

0

e−αtI{a(t) = ak(i)}dt = Eϕ
i

∫ T1

0

e−αtI{a(t) = ak(i)}dt =
σ(ak(i)|j)

α+ q(i, ak(i))
,

(2.2.4)

where the second equation follows from the fact that E
∫ ξ
0
e−αtdt = 1/(α + q)

for an exponential random variable with an intensity q and T1 is a mixture of
exponential random variables with the intensities q(i, ak(i)) and each ak(i) is
selected with the probability σ(ak(i)|i). The first equation follows from (2.2.2)
and [13, Lemma 4.3] or from [10, Theorem 1].

According to [13, Corollary 5.3], the policies ϕ satisfy the following prop-
erty. This property can also be proved by using (2.2.2-2.2.4).

Theorem 2.2.3 Given a K-randomized stationary policy σ, for any K-switching

strategy ϕ defined by (2.2.1), the equalities Vk(i, ϕ) = Vk(i, σ), k = 0, 1, . . . , K,

hold for all i ∈ S.

Theorem 2.2.3 implies that if σ is an optimal policy for problem (2.1.2)
then ϕ is also optimal for this problem. In fact, in Feinberg [13, Corollary
5.3] implies that Vk(i, σ) = Vk(i, ϕ) for any reward functions R and r. We re-
mark that [13, Corollary 5.3] is formulated for a fixed initial state distribution.

12



However the definition of ϕ does not depend on the initial state distribution;
see (2.2.1). Thus, the equality of the expected total discounted rewards in [13,
Corollary 5.3] and Theorem 2.2.3 in holds for any initial measure.

2.3 Problem formulation

We are interested in comparing the variances of the total discounted rewards
corresponding to the objective criterion V0 for a K-randomized stationary
policy and the corresponding K-switching strategies. The aim is to select an
optimal strategy with the smallest possible variance of the objective function.
In the rest of this paper we deal only with objective criterion and omit every-
where index k = 0. For example, we shall write V , r, and R instead of V0, r0,
and R0.

Consider a K-randomized stationary policy σ. Since at each state it uses
a finite number of actions Aσ(i) and the corresponding switching stationary
strategies use the same actions we can limit the action sets to finite sets Aσ(i).
Therefore, without loss of generality, in the rest of this paper we consider only
finite action set A(i), i ∈ S. In fact, since |Aσ(i)| ≤ K for all i ∈ S, we can
assume that A is finite. So, consider an MDP with a finite action set A.

Unlike the expectation V , the second moments of the total discounted
reward depends on the particular definition of discounting. There are two
natural ways to interpret discounting. One way is to interpret discounting as
the coefficient in front of the future reward rates. One unit of reward earned at
a future time t is worth only e−αt at time 0 if the compounding is continuous.
The discounted reward earned under this interpretation is

J [1](ω∞) =
∞∑
n=0

e−αTn+1R(Xn, an, Xn+1) +

∫ ∞

0

e−αtr(X(t), a(t)) dt,

where ω∞ = X1, T1, X2, T2, . . . and an = a(Tn−).
Another way is to interpret discounting as a stopping intensity. Let the

time horizon of the process, T be an exponentially distributed random variable
independent of the stochastic sequence X0, T1, X1, . . . for any initial state i and
for any strategy σ ∈ RΠ. The random variable T is defined on its probability
space and with a slight abuse notations we shall use P σ

i for the probability
on the product of this space and (Ω∞,F∞). In particular, P σ

i (T ≤ t, A) =
e−αtP σ

i (A) for any t ∈ [0,∞] and for any A ∈ F∞. We shall also keep the
notation Eσ

i for this extended probability space.

13



The discounted reward earned under this interpretation is

J [2](ω∞) =

n(T )−1∑
n=0

R(Xn, an, Xn+1) +

∫ T

0

r(X(t), a(t)) dt,

where n(T ) = sup{n : Tn ≤ T}.
In this paper we primarily follow the second interpretation of discounting

and, for a given K-randomized stationary policy σ we consider a finite collec-
tion of strategies Ψ consisting of this policy σ and all equivalent K-switching
stationary strategies ϕ defined by (2.2.1). The aim is to select a natural op-
timal policy with minimal variance. In other words we are to solve such an
optimization problem.

min{Eπ
i (J

[ℓ](ω∞))
2
: π ∈ Ψ}, ℓ = 1, 2

We comment that discounting as a stopping intensity is equivalent to
adding an absorbing state to the model. Each other state jumps to the ab-
sorbing state with an intensity α, where α is the discount rate.
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Chapter 3

Inequality for Variances of the
Discounted Rewards

3.1 Introduction

As we mentioned in the previous chapter there are two natural definitions of
total discounted rewards: (i) by interpreting discounting as a coefficient in
front of the future reward rates (multiplicative discount), and (ii) by inter-
preting discounting as the probability that the process has not been stopped if
the stopping time has an exponential distribution independent of the process
(probabilistic discounting). It is well-known that the expected total discounted
rewards corresponding to these definitions are the same. In this chapter we
show that for the first definition the variance of the total discounted rewards
is smaller than for the second one. Instead of restriction within the settings
of Markov Decision Processes we consider a general probability space. We
remark that the inequality relation discussed in this chapter is true for general
probability space endowed with reward processes.

3.2 Results in general stochastic process

Let (Ω,F , P ) be a probability space with a filtration Ft, t ∈ [0,∞), where
Fs ⊆ Ft ⊆ F for all 0 ≤ s < t < ∞. Consider a nondecreasing sequence of
stopping times Tn, n = 1, 2, . . . . Let F∞ =

∪
t∈[0,∞)Ft.

We consider an Ft-adapted stochastic process rt, t ∈ [0,∞), and an FTn-
adapted stochastic sequence Rn, n = 1, 2, . . . . The process rt can be inter-
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preted as the reward rate at time t. In addition, a lump sum Rn is collected
at time Tn.

There are two natural ways to define the total discounted rewards. One
way is to interpret discounting as the coefficient in front of the reward rate.
In this case, the total discounted rewards are defined as

J1 =

∫ ∞

0

e−αtrt dt+
∞∑
n=1

e−αTnRn, (3.2.1)

where α > 0 is the discount rate.
Another way is to define the total discounted rewards as the total rewards

until a stopping time T that has an exponential distribution with rate α. Let
T be independent of F∞ and P{T > t} = e−αt. Then the total discounted
reward can be defined as

J2 =

∫ T

0

rt dt+

N(T )∑
n=1

Rn, (3.2.2)

where N(t) = sup{n : Tn ≤ t}, t ≥ 0.
It is well known that

E
[
J1
]
= E

[
J2
]
, (3.2.3)

if at least one side of this equation is well-defined (a random variable has a
well-defined expectation if either the expectation of its positive part is finite
or the expectation of its negative part is finite).

Indeed,

E

N(T )∑
n=1

Rn =
∞∑
n=1

E RnI{T ≥ Tn} =
∞∑
n=1

E E[RnI{T ≥ Tn}|FTn ]

= E

∞∑
n=1

RnE[I{T ≥ Tn}|FTn ] = E

∞∑
n=1

RnP{T ≥ Tn|FTn} = E

∞∑
n=1

Rne
−αTn

and
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E

∫ T

0

rt dt = E [

∫ ∞

0

rtI{T ≥ t} dt] =
∫ ∞

0

E [rtI{T ≥ t}] dt

=

∫ ∞

0

E [rt] · E[I{T ≥ t}] dt =
∫ ∞

0

E rtP{T ≥ t} dt = E

∫ ∞

0

e−αtrt dt.

In particular, (3.2.3 ) holds for deterministic functions r and R and there-
fore

E
[
J1|F∞

]
= E

[
J2|F∞

]
P − a.s., (3.2.4)

if either E
[
|J1| |F∞

]
<∞ or E

[
|J2| |F∞

]
<∞ P -a.s.

However, the second moments can be different. Indeed, we have the fol-
lowing statement.

Theorem 3.2.1 If either E
[
|J1| |F∞

]
<∞ or E

[
|J2| |F∞

]
<∞ P -a.s. then

Var(J1) ≤ Var(J2),

and the equality holds if and only if Var(J2|F∞) = 0 P -a.s.

Proof. By the total variance formula [52, p. 83] or [20, p. 454] for i = 1, 2

Var(Ji) = E[Var(Ji|F∞)] + Var(E[Ji|F∞]).

Therefore, because of (3.2.4),

Var(E[J1|F∞]) = Var(E[J2|F∞]).

In addition, E[Var(J1|F∞)] = 0 and E[Var(J2|F∞)] ≥ 0. Hence, Var(J2) −
Var(J1) = E[Var(J2|F∞)] ≥ 0, i.e., Var(J1) ≤ Var(J2).
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3.3 Results in a Semi-Markov Process

A semi-Markov process is a stochastic process {X(t), t ≥ 0} with a finite or
countable set of states N = {1, 2, . . .}, having stepwise trajectories with jumps
at time 0 < T1 < T2 < . . . and such that values X(Tn) at its jumps form a
Markov chain with transition probabilities

pij = P{X(Tn) = j)|X(Tn−1) = i}.

The distribution of the jump times Tn are described in terms of the distribution
functions Fij(t) as follows

P{Tn − Tn−1 ≤ t,X(Tn) = j|X(Tn−1) = i} = pijFij(t)

and moreover, they are independent of the states of the process at earlier
moments of time.

Consider a reward structure specified by {r, R} where r(x) is the reward
rate at state x and R(i, j) is the instant reward earned when transiting from
state i to state j.

Under the multiplicative discounting the total discounted rewards are de-
fined in (3.2.1). Under the probabilistic discounting the total discounted re-
wards are defined in (3.2.2).

In the sequel we will present and prove results specific to semi-Markov
process though they are proved in section 3.2.

Corollary 3.3.1 Consider a semi-Markov process {X(t)} endowed with a re-

ward structure {r, R}. In terms of the first moment, the two definitions of

discounting are equivalent, i.e. E[J [1]] = E[J [2]].

Proof. We will show

E

∞∑
n=0

e−αTn+1R(Xn, Xn+1) = E

n(T )−1∑
n=0

R(Xn, Xn+1),

and

E

∫ ∞

0

e−αtr(X(t)) dt = E

∫ T

0

r(X(t)) dt.
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Indeed,
E
∑n(T )−1

n=0 R(Xn, Xn+1) =
∑∞

n=0 E R(Xn, Xn+1)I{T > Tn+1}
=
∑∞

n=0 E E[R(Xn, Xn+1)I{T > Tn+1}|Xn, an, Xn+1, Tn+1]
=
∑∞

n=0 E R(Xn, Xn+1)E[I{T > Tn+1}|Xn, an, Xn+1, Tn+1]
=
∑∞

n=0 E R(Xn, Xn+1)P{T > Tn+1|Tn+1}
=
∑∞

n=0 E R(Xn, Xn+1)e
−αTn+1 = E

∑∞
n=0 e

−αTn+1R(Xn, Xn+1),
where we use that, given Tn+1, the event {T > Tn+1} and the random vector
(Xn, Xn+1) are independent, and

E [
∫∞
0

r(X(t))I{T > t} dt] =
∫∞
0

E [r(X(t))I{T > t}] dt =∫∞
0

E [r(X(t))] · E[I{T > t}] dt =
∫∞
0

E r(X(t))P{T > t} dt
=
∫∞
0

E r(X(t))e−αt dt = E
∫∞
0

e−αtr(X(t)),
where the third equality follows from the independence of r(X(t)) and T .

As to the inequality of variances we will show the proof for two special
cases: one with cumulative rewards r only and the other with instant rewards
R only.

Corollary 3.3.2 Consider a semi-Markov process {X(t)} endowed with a re-

ward structure {r, R}. When r = 0 or R = 0, variance of total discounted

rewards under the multiplicative discounting is less than or equal to that under

the probabilistic discounting, i.e., V arπi [J
[1]] ≤ V arπi [J

[2]].

Proof. For simplicity we simplify the notation as follows: R(Xn, Xn+1) , Rn

and r(X(t)) , rt.
We repeat the definition of J [1] and J [2] here:

J [1] =
∞∑
n=0

e−αTn+1Rn +

∫ ∞

0

e−αtrt dt,

J [2] =

n(T )−1∑
n=0

Rn +

∫ T

0

rt dt,

When R = 0 we need to show

E

(∫ ∞

0

e−αtrt dt

)2

≤ E

(∫ T

0

rt dt

)2

(3.3.1)
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When r = 0 we need to show

E

( ∞∑
n=0

e−αTn+1Rn

)2

≤ E

( n(T )−1∑
n=0

Rn

)2

(3.3.2)

Proof of inequality (3.3.1) is as follows:

E

(∫ T

0

rt dt

)2

= EE

[
(

∫ t

0

rt dt)
2

|T = t

]
=

∫ ∞

0

αe−αtE(

∫ t

0

rs ds)
2

dt

∫ ∞

0

e−αtrt dt =

∫ ∞

0

e−αtd

∫ t

0

rsds

= e−αt
∫ t

0

rsds |∞0 −
∫ ∞

0

(

∫ t

0

rsds) de
−αt

= 0 +

∫ ∞

0

αe−αt(

∫ t

0

rsds) dt

=

∫ ∞

0

αe−αt (

∫ t

0

rsds) dt

Now we want to use the inequity (
∫
fg)

2 ≤ (
∫
f2)(

∫
g2). Set f =

√
αe−αt

and g =
√
αe−αt

∫ t
0
rsds. Then we have

(

∫ ∞

0

αe−αt
∫ t

0

rsds dt)
2

≤
∫ ∞

0

αe−αtdt

∫ ∞

0

αe−αt(

∫ t

0

rsds)
2

dt

=

∫ ∞

0

αe−αt(

∫ t

0

rsds)
2

dt

This proves (3.3.1).
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For inequality (3.3.2), we proceed as follows:

Eπ
i

( n(T )−1∑
n=0

Rn

)2
= Eπ

i

( ∞∑
n=0

RnI{n(T ) ≥ n+ 1}
)2

= Eπ
i

( ∞∑
n=0

RnI{T ≥ Tn+1}
)2

= Eπ
i

∞∑
n=0

R2
n I{T ≥ Tn+1}+ 2Eπ

i

∞∑
n=1

n−1∑
m=0

RnRmI{T ≥ Tn+1}

= Eπ
i

∞∑
n=0

e−αTn+1R2
n + 2Eπ

i

∞∑
n=1

n−1∑
m=0

e−αTn+1RnRm

On the other hand,

Eπ
i

( ∞∑
n=0

e−αTn+1Rn

)2
= Eπ

i

∞∑
n=0

e−2αTn+1R2
n + 2Eπ

i

∞∑
n=1

n−1∑
m=0

e−α(Tn+1+Tm+1)RnRm

≤ Eπ
i

∞∑
n=0

e−αTn+1R2
n + 2Eπ

i

∞∑
n=1

n−1∑
m=0

e−αTn+1RnRm = Eπ
i

( n(T )−1∑
n=0

Rn

)2

This completes the proof of (3.3.2).

We remark that when both r and R are present in the reward structure
the above traditional method of proof has difficulty due to the “cross-product”
terms between the cumulative rewards and instant rewards.

3.4 Results in a Continuous-time Markov Chain

In the semi-Markov process if

F ′
i j(t) = e−qijt, t ≥ 0

for all i, j ∈ N , then the semi-Markov process {X(t)} is a continuous-time
Markov chain. In particular if all the distributions degenerate to a constant
(unit inter-arrival times) the process is further reduced to a discrete-time
Markov chain.

In the sequel we give two examples that illustrate the inequality presented
in theorem (3.2.1).
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Example 3.4.1 Consider a Markov process with two states: 1 and 0, where

0 is an absorbing state. Let state 1 be the initial state. The process spends an

exponential time T1 ∼ exp(λ) at state 1 and then jumps to state 0. At state

1 the reward rate is 1 and at the jump epoch there is no lump-sum reward.

At state 0 the process collects no rewards. Let the discount factor be α and

T ∼ exp(α).

The total discounted rewards under the two definitions are

J1 =

∫ T1

0

e−αt dt =
1

α
(1− e−αT1),

J2 =

∫ T∧T1

0

dt = T ∧ T1.

For the first definition,

Var(J1) =
1

α2
Var(e−αT1) =

1

α2
(MT1(−2α)−(MT1(−α))2) =

λ

(λ+ α)2(λ+ 2α)
,

where MX(s) is the moment generating function of a random variable X. In

particular, MT1(s) = λ/(λ− s).

Since T ∧ T1 is an exponential random variable with intensity λ+ α,

Var(J2) =
1

(λ+ α)2
.

Thus, Var(J1) < Var(J2).

Example 3.4.2 Consider a discrete time Markov chain where at each jump

the process receives a lump sum reward of 1. Let the time interval between

jumps be 1 unit of time. The discount factor is α and T ∼ exp(α).
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The total discounted rewards under the two definitions are respectively

J1 =
∞∑
n=1

e−αn =
e−α

1− e−α
,

J2 =

N(T )∑
n=1

1 = N(T ).

Note that J1 is a deterministic number and J2 is a random variable de-

pending on T . Thus, Var(J1) = 0 < Var(J2). In fact, since the inter-arrival

time is 1 N(T ) = [T ] where [x] is the integer part of x ∈ R+. We have

E[J2] =
∞∑
n=0

∫ n+1

n

nαe−αtdt =
∞∑
n=0

(1− e−α)ne−αn

= (1− e−α)
∞∑
n=0

ne−αn = (1− e−α)
e−α

(1− e−α)2
=

e−α

1− e−α

E[J2
2 ] =

∞∑
n=0

∫ n+1

n

n2αe−αtdt =
∞∑
n=0

(1− e−α)n2e−αn

= (1− e−α)
∞∑
n=0

n2e−αn = (1− e−α)
e−α(1 + e−α)

(1− e−α)3
=
e−α(1 + e−α)

(1− e−α)2

Var(J2) = E[J2
2 ]− E2[J2] =

e−α(1 + e−α)

(1− e−α)2
− e−2α

(1− e−α)2
=

e−α

(1− e−α)2
.
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Chapter 4

Variance under probabilistic
discounting

4.1 Formulas for the moments for the model

up to the first jump

In this section we derive formulas for the first and second moments of the
model up to the first jump. Consider a K−randomized stationary policy σ.
Assume there are m actions available at state i, namely {a1, a2, . . . , am}. For
convenience let pk = σ(ak), qk = q(i, ak), rk = r(i, ak), k = 1, 2, . . . ,m.

When policy π, which could be a randomized stationary policy or a switch-
ing stationary strategy, is adopted we define the first and second moment of
the instant reward earned at the first jump as follows

ma = Eπ
i [R(X0, a0, X1)|a0 = a],

wa = Eπ
i [R

2(X0, a0, X1)|a0 = a].

We first consider a switching strategy ϕ defined by (2.2.1). Assume the
order is fixed as < a1, a2, . . . , am >. During the time interval [Sk−1, Sk], action
ak is taken and the jump intensity is qk. In this interval the process may jump
to the next state before reaching the changing epoch Sk, or go to the next time
interval [Sk, Sk+1) and take action ak+1. Let Uk be the total rewards earned
starting Sk−1 up to the first jump given that the process does not jump before
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Sk−1. That is,

Uk =

∫ T1

Sk−1

r(X0, a(t))dt+R(X0, a0, X1)I{T1 > Sk−1}

Note that U1 is the total rewards earned starting t = 0 up to the first jump.
Let Mk and Wk be the first and second moment of Uk.

Let ζk be the exponential random variable with intensity qk. There are two
cases for each interval:

Case 1: If ζk < sk: the process jumps before Sk. The rewards earned
starting Sk−1 consists only of the reward earned between Sk−1 and Sk−1 + ζk.

Case 2: If ζk > sk: the process continues and selects the next action ak+1.
The rewards earned starting Sk−1 consists of two parts: reward earned between
Sk−1 and Sk, and the rewards earned starting Sk.

Backward from the last interval, we derive formulas to compute the mo-
ments of total reward up to the first jump.

Theorem 4.1.1 For a switching strategy ϕ =< a1, . . . , am >, the first and

second moment of the total reward earned up to the first jump can be computed

recursively as follows,

Mm =
rm
qm

+mam ,

Mk = (1− e−qksk)
(rk
qk

+mak

)
+ e−qksk Mk+1,

Wm =
2rm

2

qm2
+ 2

rm
qm
mam + wam ,

Wk =
2rk
qk

(1− e−qksk − qkske
−qksk)

(rk
qk

+mak

)
+

e−qksk(Wk+1 + 2rkskMk+1) + wak , k = 1, 2, . . . ,m− 1.

Proof. First, if T1 > Sm−1, action am will be taken. The process will continue
until the first jump. Before its jump the sojourn time is an exponential random
variable with rate qm. Thus,

Mm =
rm
qm

+ E[R(X0, am, X1)] =
rm
qm

+mam ,
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and

Wm = E
[(
rmTm +R(X0, am, X1)

)2]
= E[r2mT

2
m] + 2rmE[Tm]mam + wam

=
2rm

2

qm2
+ 2

rm
qm
mam + wam .

To find Mk we condition it on ζk. From formula of iterated expectation,
we have

Mk = EE[Uk|T1 > Sk−1, ζk]

=

∫ sk

0

(
rkζk +mak

)
f(ζk)dζk +

∫ +∞

sk

f(ζk) dζk (rksk + E[Uk+1|T1 > Sk])

=

∫ sk

0

rkζkf(ζk) dζk +mak

∫ sk

0

f(ζk) dζk +

∫ +∞

sk

f(ζk) dζk (rksk +Mk+1)

= (1− e−qksk − e−qkskqksk)
rk
qk

+mak(1− e−qksk) + e−qksk(rksk +Mk+1)

= (1− e−qksk)
(rk
qk

+mak

)
+ e−qksk Mk+1

To find Wk, we also condition it on ζk:

Wk = EE[Uk
2|T1 > Sk−1, ζk]

=

∫ sk

0

rk
2ζk

2f(ζk)dζk + 2mak

∫ sk

0

rkζkf(ζk)dζk +

∫ sk

0

f(ζk)dζkWak

+

∫ +∞

sk

f(ζk)dζk (rk
2sk

2 + 2rkskE[Uk+1|T1 > Sk] + E[U2
k+1|T1 > Sk])

= [2− e−qksk(2 + 2qksk + q2ks
2
k)]
r2k
q2k

+ 2α(1− e−qksk − e−qkskqksk)
rk
qk
mak

+(1− e−qksk)wak + e−qksk(rk
2sk

2 + 2rkskMk+1 +Wk+1)

=
2r2k
q2k

(1− e−qksk − qkske
−qksk) + e−qksk(Wk+1 + 2rkskMk+1)

+2(1− e−qksk − e−qkskqksk)
rk
qk
mak + (1− e−qksk)wak

=
2rk
qk

(1− e−qksk − qkske
−qksk)

(rk
qk

+mak

)
+ e−qksk(Wk+1 + 2rkskMk+1 + wak
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The formulas for the randomized policy are much simpler. They are simply
weighted average of each pure Markov process when a single action is played.

Theorem 4.1.2 For a randomized policy σ = {a1, . . . , am}, the first and sec-

ond moment of the total reward earned up to the first jump can be computed

using the following formula,

M =
∑m

k=1 pk

(
rk
qk

+mak),

W =
∑m

k=1 pk

(
2rk

2

qk2 + 2 rk
qk
mak + wak

)
.

4.2 “Action index” for switching strategies

We first consider the simplest case where the action set contains only two
actions a and b. We have the following result:

Lemma 4.2.1 For a two-action set, A(i) = {a, b}, if ra/qa+ma > rb/qb+mb,

then W<a,b> < W{a,b} < W<b,a>.

Proof. Using formula in Theorem (4.1.1), for the switching strategy< a, b >:

Mb =
rb
qb

+mb,

Wb = 2
rb
qb
(
rb
qb

+mb) + wb.

The first and second moment of the total reward up to the first jump is
then

M<a,b> =
(ra
qa

+ma

)
pa +

(rb
qb

+mb

)
pb,

W<a,b> =
(
2
rb
qb

(rb
qb

+mb

)
− 2

ra
qa

(rb
qb

+mb

)
ln(pb)pb +

2
ra
qa

(ra
qa

+ 2ma

)(
pa + pb ln(pb)

)
+ wbpb + wapa.
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To get W<b,a> we just need to swap a and b in W<a,b>.

W{a,b} =

[
2 ra
qa
( ra
qa

+ma) + wa

]
pa +

[
2 rb
qb
( rb
qb
+mb) + wb

]
pb

To compare we take the differences:

W<a,b> −W{a,b} =
2ra
qa
pb ln(pb)

[(ra
qa

+ma

)
−
(rb
qb

+mb

)]
,

W<b,a> −W{a,b} =
2rb
qb
pa ln(pa)

[(rb
qb

+mb

)
−
(ra
qa

+ma

)]
,

W<a,b> −W<b,a> = 2

[
ra
qa
pb ln(pb) +

rb
qb
pa ln(pa)

][(ra
qa

+ma

)
−
(rb
qb

+mb

)]
.

Apparently, if ra/qa + ma > rb/qb + mb, then W<a,b> − W{a,b} < 0, i.e.,
W<a,b> < W{a,b}. Similarly, W<b,a> > W{a,b} and W<a,b> < W<b,a>.

It seems that the quantity ra/qa+ma works as an index. If we sort the ac-
tions in the descending order of this index we will obtain an indexed switching
strategy. For the case of two actions the indexed switching strategy is better
than the randomized policy and is better than the other switching strategy too.
Thus, the indexed switching strategy is the best for the case of two actions.

4.3 Interchanging of two neighboring actions

Next we compare two switching strategies obtained by interchanging two
neighboring actions where action set has more than two actions. We use
< A, a, b, B > and < A, b, a, B > to denote two switching strategies that differ
only in the order of action a and b, where A and B are action sequences and
there are m− k actions in B. The following theorem shows that it suffices to
compare the variances of subsequences of actions < a, b, B > and < b, a,B >
in order to compare the variances of < A, a, b, B > and < A, b, a, B >.

Lemma 4.3.1 If W<a,b,B> > W<b,a,B>, then W<A,a,b,B> > W<A,b,a,B>.

Proof. Let A = {a1, . . . , ak−2}. Using the formula in Theorem (4.1.1), we
obtained the second moment of the subsequence < ak−2, . . . > as

Wk−2 =
2rk−2

qk−2
(1− e−qk−2sk−2 − qk−2sk−2e

−qk−2sk−2)
( rk−2

qk−2
+mak−2

)
+

e−qk−2sk−2(Wk−1 + 2rk−2sk−2Mk−1) + wak−2
.
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From the definition of switching strategy in (2.2.1) we know that

sk−2 = − 1

α+ qk−2

ln
(
1− pk−2∑m

l=k−2 pl

)
.

Notice that for < ak−2, a, b, B > and < ak−2, b, a, B >, sk−2 are the same.
Also, rk−2, qk−2,mak−2

and wak−2
are the same. Hence, the larger Wk−1 is, the

larger Wk−2 is. By principle of induction, we can deduce that if W<a,b,B> >
W<b,a,B>, W<A,a,b,B> > W<A,b,a,B>.

Theorem 4.3.1 The difference between W<a,b,B> and W<b,a,B> is as follows,

W<a,b,B> −W<b,a,B> =
2r2b/q

2
b

[H1(0,ρ)−H1(pa,ρ)
1−P + 1−K

(1−P )2
(H2(0, ρ)−H2(pb, ρ))

]
pB + pa + pb

.

where

H1(u, ρ) = ((1−Q)pB − u(ρ− 1)) ln(1− pb
pB + pb + u

),

H2(u, ρ) = ((QpB + u)ρ− (pB + u)ρ2) ln(1− pa
pB + pa + u

),

ρ =
ra/qa +ma

rb/qb +mb

, Q =
Mk+1

rb/qb +mb

, K =
ma

ra/qa +ma

, P =
mb

rb/qb +mb

, pB =
∑
j∈B

pj

Proof. For the subsequence < b,B >

Mk =
(rb
qb

+mb

) pb
pb + pB

+Mk+1

(
1− pb

pb + pB

)
,

Wk =
(
2 ln

(
1− pb

pb + pB

)rb
qb

(rb
qb

+mb −Mk+1

)
+Wk+1

)
(1− pb

pb + pB
)

+
(
2
rb
qb

(
mb +

rb
qb

)
+ wb

) pb
pb + pB

.

29



First and second moment of the subsequence < a, b, B > are

M<a,b,B> =
pB

pa + pb + pB
Mk+1 +

pa
pa + pb + pB

(ra
qa

+ma

)
+

pb
pa + pb + pB

(rb
qb

+mb

)
,

W<a,b,B> =
1

pB + pa + pb

{
2 ln

(
1− pa

pB + pa + pb

)
ra
qa

(((ra
qa

+ma

)
−
(rb
qb

+mb

))
pb +

(ra
qa

+ma −Mk+1

)
pB
)
+

2 ln
( pB
pB + pb

)rb
qb

(rb
qb

+mb −Mk+1

)
pB +

(
wa + 2

ra
qa

(ra
qa

+ma

))
pa +

(
wb + 2

rb
qb

(rb
qb

+mb

))
pb +Wk+1pB

}
.

To get W<b,a,B> we only need to swap a and b in W<a,b,B>.

The difference between the two is: W<a,b,B> −W<b,a,B> = 2
q2aq

2
bpB

(
ln
(
1 −

pa
pB+pa+pb

)
ra
qa

[((
ra
qa

+ma

)
−
(
rb
qb
+mb

))
pb +

(
ra
qa

+ma −Mk+1

)
pB
]
+ ln(

pB
pB+pb

)
rb
qb

(
rb
qb
+mb −Mk+1

)
pB − ln

(
1− pb

pB+pa+pb

)
rb
qb

[((
rb
qb
+mb

)
−
(
ra
qa

+ma

))
pa +

(
rb
qb
+mb −Mk+1

)
pB
]
−

ln
(

pB
pB+pa

)
ra
qa

(
ra
qa

+ma −Mk+1

)
pB

)
Outside the big parenthesis is positive. So we only need to consider the

expression inside the parenthesis, i.e.,

ln
(
1− pa

pB + pa + pb

)ra
qa

[((ra
qa

+ma

)
−
(rb
qb

+mb

))
pb +

(ra
qa

+ma −Mk+1

)
pB
]

+ ln
( pB
pB + pb

)rb
qb

(rb
qb

+mb −Mk+1

)
pB − ln

(
1− pb

pB + pa + pb

)rb
qb

[((rb
qb

+mb

)
(4.3.1)

−
(ra
qa

+ma

))
pa +

(rb
qb

+mb −Mk+1

)
pB
]
− ln

( pB
pB + pa

)ra
qa

(ra
qa

+ma −Mk+1

)
pB.

Dividing the above equation by q2ar
2
b and substituting the variables, we get

(1−Q)pB
1−P ln(1− pb

pB+pb
)− ((1−Q)pB−pa(ρ−1))

1−P ln(1− pb
pB+pb+pa

) +
1−K

(1−P )2
(QpBρ− pBρ

2) ln( pB
pB+pa

)− 1−K
(1−P )2

((QpB + pb)ρ− (pB + pb)ρ
2) ln(1−

pa
pB+pa+pb

)
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Further let

H1(u, ρ) = ((1−Q)pB − u(ρ− 1)) ln(1− pb
pB + pb + u

), (4.3.2)

H2(u, ρ) = ((QpB + u)ρ− (pB + u)ρ2) ln(1− pa
pB + pa + u

). (4.3.3)

We get

W<a,b,B> −W<b,a,B> =
2r2b/q

2
b

[H1(0,ρ)−H1(pa,ρ)
1−P + 1−K

(1−P )2
(H2(0, ρ)−H2(pb, ρ))

]
pB + pa + pb

.

Among the policies we are interested in the following three special poli-
cies: randomized policy, indexed switching strategy and the minimum-variance
policy.

We comment that unlike the two-action case where the indexed switching
strategy has the smallest variance, for general cases the indexed switching
strategy may not have the smallest variance. A counterexample is given below:

Example 4.3.1 Consider a continuous-time MDP. At the initial state there

are three actions a1, a2 and a3. The corresponding reward rates are 1, 5 and

9. Jump intensities are all 1. The expected total instant rewards are 10, 3,

and 8. The second moment of the instant rewards are 150, 10 and 100. The

indices are:

a1 : 1/1 + 10 = 11

a2 : 5/1 + 3 = 8

a3 : 9/1 + 8 = 17

So the indexed switching strategy is < a3, a1, a2 >. However, the calculated

variance for this switching strategy is 173.90, while for the policy < a2, a1, a3 >,

the variance is 147.45. This example shows that the indexed switching strategy

may not be the best among all the policies.
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However, the the indexed switching strategy does outperform the random-
ized policy. In other words, the indexed switching strategy has a smaller
variance than the randomized policy.

4.4 Indexed switching strategy outperform ran-

domized policy

Theorem 4.4.1 The indexed switching strategy has a smaller variance than

the randomized policy.

Proof. We will show by induction over the number of actions in the action
set. Consider adding actions one by one in the descending order of rk

qk
+mk,

to the front of the existing action sequence. In other words, the first action
(a1) to be added has the smallest value of rk

qk
+mk.

Step 1: When m = 2, from Theorem (4.2.1), the descending-ordered
switching strategy has smaller variance than the randomized policy.

Step 2: Suppose when m = k, the descending-ordered switching strategy
has a smaller variance than the randomized policy. Consider m = k + 1. We
add a new action a to the front of the action sequence. Note that action a has
the largest value of rk/qk +mk among the k + 1 actions.

Let pΣ =
∑k

j=1 pj. Let Ms(k) and Ws(k) be the first and second moment
of the ordered switching strategy with k actions, then from Theorem (4.1.1),
we have

Ms(k+1) =
(
ma +

ra
qa

) pa
pΣ + pa

+Ms(k)
(
1− pa

pΣ + pa

)
,

Ws(k+1) = 2 ln
(
1− pa

pΣ + pa

)ra
qa

(ra
qa

+ma −Ms(k)
)(
1− pa

pΣ + pa

)
+

2
ra
qa

(ra
qa

+ma

) pa
pΣ + pa

+Ws(k)
(
1− pa

pΣ + pa

)
+ wa

pa
pΣ + pa

.

Let Mr(k) and Wr(k) be the first and second moment of the randomized
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policy with k actions, then:

Mr(k+1) = Mr(k)
pΣ

pΣ + pa
+
(
ma +

ra
qa

) pa
pΣ + pa

,

Wr(k+1) = Wrk
pΣ

pΣ + pa
+
(2mara

qa
+

2r2a
q2a

+ wa
) pa
pΣ + pa

.

From Feinberg [13] we know that a switching strategy has the same first
moment of discounted rewards as the randomized policy. Now we consider the
difference between Ws(k+1) and Wr(k+1):

Ws(k+1) −Wr(k+1) =
pΣ

(pΣ + pa)
2

(
2 ln

( pΣ
pΣ + pa

)ra
qa

(ra
qa

+ma −Ms(k)
)
(pΣ + pa) +

(Ws(k) −Wr(k))(pΣ + pa) +

2(Mr(k) −Ms(k))qaxa
(ra
qa

+Ma −Mr(k) −Ms(k)
))

=
pΣ

pΣ + pa

(
2
ra
qa

(ra
qa

+ma −Ms(k)
)
ln
( pΣ
pΣ + pa

)
+ (Ws(k) −Wr(k))

)
.

It is easy to see that ra
qa
+ma > Ms(k). On the other hand, ln

(
pΣ

pΣ+pa

)
< 0,

so the first term is negative. By assumption of induction, Ws(k) < Wr(k),
so, the second term is also negative. Therefore, the whole equation evaluates
negative, and we have Ws(k) < Wr(k) for all k.

4.5 Results when instant rewards are zero

In this section we consider a special case where the instant rewards are zero.

Theorem 4.5.1 When the instant rewards are zero, the indexed switching

strategy has the smallest variance among all the switching strategies and thus

is the best switching strategy.

Proof. In equation (4.3.1), let ma = mb = wa = wb = 0. ρ is reduced to
ra/qa
rb/qb

= raqb
rbqa

. Divide the equation by (qarb)
2, we get:
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G(ρ) = (ρ−1)
(
ρpb ln

[
1− pa

pa+pb+pB

]
+qaxa ln

[
1− pb

pa+pb+pB

])
+pB

(
ρ2
(Mk+1

ra/qa
−

1
)
ln
[
1− pa

pa+pB

]
−
(
ρMk+1

ra/qa
−1
)
ln
[
1− pb

pb+pB

]
−ρ2

(Mk+1

ra/qa
−1
)
ln
[
1− pa

pa+pb+pB

]
+(

ρMk+1

ra/qa
− 1
)
ln
[
1− pb

pa+pb+pB

])
.

For convenience, we make the following substitutions:
A0 = pb ln

[
1− pa

pa+pb+pB

]
, B0 = pa ln

[
1− pb

pa+pb+pB

]
,

C0 = ln
[
1− pa

pa+pB

]
, D0 = ln

[
1− pb

pb+pB

]
,

E0 = ln
[
1− pa

pa+pb+pB

]
, F0 = ln

[
1− pb

pa+pb+pB

]
, Q0 =

Mk+1

ra/qa

A1 = (A0 + pB(C0 − E0)(Q0 − 1))
B1 = −(A0 −B0 −Q0(F0 −D0)pB)
C1 = pB(D0 − F0)−B0

Then G(ρ) can be reduced to a quadratic form:
G(ρ) = A1ρ

2 +B1ρ+ C1

Notice that A1 + B1 + C1 = 0, so ρ =1 is one of G’s zeros. Before we
continue with the proof of Theorem 4.5.1, we first prove the following two
results about the coefficients C1 and A1.

Lemma 4.5.1 C1 > 0, where C1 = pB(D0 − F0)−B0, is defined above.

Proof. We rewrite C1 as:
C1 = ln

[
1− pb

pb+pB

]
pB − ln

[
1− pb

pa+pb+pB

]
(pa + pB)

Consider the following function f(x):
f(x) = ln

[
1− pb

x+pb+pB

]
(x+ pB),

f ′(x) =

(
1+ln

[
x+pB

x+pb+pB

])
pb+ln

[
x+pB

x+pb+pB

]
(x+pB)

x+pb+pB
,

f ′′(x) =
p2b

(x+pB)(x+pb+pB)2
.

It is seen that f ′′ is always positive, so f ′ is increasing. At the same time,
the limit of f ′ is 0 as t goes to infinity. So f ′ is negative for all x. So f is
decreasing. We know that when x= 0, C1 = f(0) − f(0) = 0. So for pa > 0,
C1 = f(0)− f(pa) > 0.

Lemma 4.5.2 A1 < 0, where A1 = (A0 + pB(C0 − E0)(Q0 − 1)), is defined

above.

Proof. We rewrite A1 as:
A1 = (−1 +Q0)pB ln

[
1− pa

pa+pB

]
− ln

[
1− pa

pa+pb+pB

]
((−1 +Q0)pB − pb)

Let Z = Q0 − 1 and consider the following function g(x):
g(x) = ln

[
1− pa

x+pa+pB

]
(−x+ ZpB),
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g′(x) = − ln
[

x+pB
x+pa+pB

]
− pa(x−ZpB)

(x+pB)(x+pa+pB)
,

g′′(x) = −pa(2(1+Z)pB(x+pB)+pa(x+(2+Z)pB))

(x+pB)2(x+pa+pB)2
.

It is seen that g′′ is always negative, so g′ is decreasing. At the same time,
the limit of g′ at infinity is 0. So g′ is positive for all x. So g is increasing.
We know that when x = 0, A1 = g(0) − g(0) = 0. So for pb > 0, A1 =
g(0)− g(pb) < 0.

Now let’s go back to the proof of Theorem 4.5.1. From Lemma 4.5.1 and
4.5.2 we know that G0 is a quadratic function concave downwards and one
of its zeros is 1 and the other is negative. So it is straightforward that when
0 < ρ < 1, G(ρ) > 0, and when ρ > 1, G(ρ) < 0. In other words, if ra

qa
> rb

qb
,

W<a,b,B> < W<b,a,B>, and executing actions with a larger “action index” first
will reduce the variance of rewards up to the first jump.

We remark that for rewards beyond the first jump the index type switching
policy may not have a smaller variance. A counterexample is given below.

Example 4.5.1 Consider an MDP with four states: states {1, 2, 3} are regu-

lar states and state 0 is an absorbing state; see Figure 2.

At state 1, two actions, a and b, are available. The probability to take action

a and b are pa and pb respectively. If a is taken, the process earns rewards at

a rate of ra, transits to state 2 deterministically and earn an instant reward of

Ra after an exponential sojourn time with the intensity qa.

If b is taken, the process earns rewards at a rate of rb, transits to state 3

deterministically and earn an instant reward of Rb after an exponential sojourn

time with the intensity qb.

At state 2 and 3 only one action is available. At state 2 the reward rate is

r2 and the process transits to the absorbing state after an exponential sojourn

time with the intensity q2.

At state 3, the reward rate is r3 and the process transits to the absorbing

state after an exponential sojourn time with the intensity q3. Once in the

absorbing state, the process stops. The discount factor α = 0.
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We consider a switching policy ϕ =< a, b > and a randomized policy σ =

{a, b}. For the switching policy ϕ, the switching epoch Sa is

Sa = − ln(1− pa)/qa

Let Ta be the exponential random variable with intensity qa. Conditioning

on whether Ta < Sa or not the second moment of the total reward is

Wϕ =
∫ Sa

0
qae

−qaTa
[
(raTa +Ra +

r2
q2
)2 + ( r2

q2
)2
]
dTa

+ P{Ta > Sa}
[
(raSa +

rb
qb
+Rb +

r3
q3
)2 + ( rb

qb
)2 + ( r3

q3
)2)

]
For the randomized policy σ, the second moment is

Wσ = pa

[
( ra
qa
)2 + ( r2

q2
)2 + ( ra

qa
+Ra +

r2
q2
)2)

]
+ (1− pa)

[
( rb
qb
)2 + ( r3

q3
)2 + ( rb

qb
+

Rb +
r3
q3
)2
]

The difference of the two is

Wϕ −Wσ = −2(1− pa)(
ra
qa
)

[
( rb
qb
+Rb +

r3
q3
)− ( ra

qa
+Ra +

r2
q2
)

)
ln(1− pa)

Note that −2(1− pa)(
ra
qa
) < 0 and ln(1− pa) < 0. Therefore the difference

of Wϕ and Wσ depends only on ( rb
qb
+Rb+

r3
q3
)− ( ra

qa
+Ra+

r2
q2
), which depends

not only on the index defined above but also on the value of r3
q3

and r2
q2
.

By appropriately choosing r3
q3

and r2
q2

we can make the indexed switching

strategy arbitrarily worse than the randomized policy.

4.6 Counterexamples for infinite horizon

We have shown in Theorem 4.4.1 that the indexed switching strategy has a
smaller variance than the randomized policy, for rewards up to the first jump.
However, for rewards beyond the first jump, in particular for infinite horizon,
the randomized policy may outperform any switching strategy. In this section
we give an example to illustrate this fact.

Example 4.6.1 Consider a simple MDP with two states: 1 and 2. At state

36



1, it either takes action a with probability pa or actions b with probability pb. If

action a is taken, the reward rate is ra, the instant reward at jump is Ra and

the jump intensity is qa. If action b is taken, the reward rate is rb, the instant

reward at jump is Rb and the jump intensity is qb. At state 2, both the reward

rate and instant reward at jump are zero and the jump intensity is q2.

Consider

ra = 0.1, qa = 0.9, pa = 0.75, Ra = 0

rb = 0.9, qb = 0.7, pb = 0.25, Rb = 0

Discount factor α = 0.05

Consider the randomized policy {a, b} and two switching strategies < a, b >
and < b, a >. Due to the difficulty in computing the variances analytically
we compute the variances (standard deviations) of the three policies through
numerical simulation.

For a switching policy either < a, b > or < b, a > we compute the changing
epoch using the formula defined in (2.2.1). As the matter of fact since there
are only two actions the formulas can be simplified into

sa =
−1

qa + α
ln(1− pa),

sb =
−1

qb + α
ln(1− pb).

We need to generate an exponential random variable T ∼ exp(α), which
represents the life time of the process. We keep tracking the time elapsed
since t = 0, denoted as t. If t > T the process stops. Otherwise the simulation
continues.

Let U represent the total discounted rewards earned for the infinite hori-
zon under the probabilistic discounting. The following algorithm outlines the
simulation steps described above:

Simulation scheme of switching policy < a, b >
Step 0: t = 0, U = 0, generate T ∼ exp(α), compute sa.
Step 1: Generate ta ∼ exp(qa).
Case 1: If ta < sa:
Case 1.1: If t+ ta < T , compute U = U + rata +Ra, t = t+ ta.
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Case 1.2: If t+ ta > T , compute U = U + ra(T − t) and stop.
Case 2: If ta > sa, generate tb ∼ exp(qb):
Case 2.1: If t + sa + tb < T , compute U = U + rasa + rbtb + Rb and

t = t+ sa + tb.
Case 2.2: If t + sa + tb > T , compute U = U + rasa + rb(T − t − sa) and

stop.
Generate z ∼ exp(q2), update t = t+ z and goto step 1.
Simulation scheme of randomized policy {a, b}
Step 0: t0 = 0, U = 0, generate T ∼ exp(α), compute sa.
Step 1: Generate a uniform random number u:
Case 1: If u < pa, generate ta ∼ exp(qa):
Case 1.1: If t+ ta < T , compute U = U + rata +Ra, t = t+ ta.
Case 1.2: If t+ ta > T , compute U = U + ra(T − t) and stop.
Case 2: If u > pa, generate tb ∼ exp(qb):
Case 2.1: If t+ tb < T , compute U = U + rbtb +Rb, t = t+ tb.
Case 2.2: If t+ tb > T , compute U = U + rb(T − t) and stop.
Generate z ∼ exp(q2), update t = t+ z and goto step 1.
Simulation results
We perform 10,000 trials in each simulation and for each trial the dis-

counted total rewards obtained from applying the three policies are recorded.
We then compute the sample standard deviations from the 10,000 samples. To
see how good the simulated variances are close from simulation to simulation
we ran the simulation 10 times and the results are shown in the table below:

Table 3.1 Simulated Standard Deviations

switching < a, b > switching < b, a > randomized {a, b}
7.2946 7.2168 6.5688
7.1553 6.9924 6.3554
7.3725 7.2798 6.6238
7.2775 7.2490 6.5315
7.3648 7.1746 6.5520
7.4409 7.2929 6.6385
7.2925 7.2515 6.5354
7.3518 7.1738 6.5701
7.3849 7.2655 6.6130
7.4354 7.2759 6.6596
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We can see that the numerical simulation has exhibited quite good stability.
The standard deviation from applying the randomized policy {a, b} is less than
either of the switching policies. This example shows that for problems beyond
the first jump and in particular for the infinite horizon problems even the best
switching policy may not outperform the randomized policy.
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Chapter 5

Variance under multiplicative

discounting

In this chapter we briefly discuss the variance under the multiplicative dis-
counting. When the continuously compound rate is α, one unit of reward at
time t is worth e−αt at t = 0.

The computation of variances under the multiplicative discount is much
more complicated than under the probabilistic discounting. In Appendix B
we derive the simultaneous equations that can be used to solve for the first
and second moments and therefore compute the variances.

Unlike the probabilistic discounting where the indexed policy has a smaller
variance than the randomized policy under the multiplicative discounting even
the best switching strategy may not have a smaller variance than the random-
ized policy. We give a counterexample below to illustrate this.

Example 5.0.2 Consider two actions {a, b} at state 0:

Reward rates: ra = 8, rb = 4.

Instant rewards: Ra = Rb = 0.

Transition rates: qa = 1, qb = 1.

Probabilities of taking action a and b at state 0: pa = 0.1, pb = 0.4.

Consider the discount rewards up to the first jump. Direct calculation using
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(B.2.1) shows that when α ≤ 0.02, the switching strategy < a, b > has a smaller

variance than the randomized policy and the other switching strategy < b, a >.

However, when α ≥ 0.045, the randomized policy outperforms both switching

strategies. For example, when α = 0.05, the variances of switching strategy

< a, b >,< b, a > and the randomized policy {a, b} are 24.543, 29.978, and

22.165, respectively.
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Chapter 6

Application to dynamic power

management

6.1 Introduction

In [46] Dynamic Power Management (DPM) for portable electronic systems
was formulated as a constrained continuous-time MDP problem. A linear pro-
gramming approach that minimizes the average cost was proposed. By solving
the LP the authors obtained an optimal randomized policy. However, in prac-
tice it is hard to implement a randomized policy so they tried to search for the
“best” nonrandomized stationary policy using either a nonlinear programming
approach or a heuristic policy iteration. Finding such a policy is an NP-hard
problem; see [11]. In addition, it typically has worse performance than the
optimal randomized policy or may not exist even for some feasible problems
[12, 13].

In [12, 13], another form of optimal policy was proposed – the so-called
switching stationary strategy. The proposed strategy has two advantages com-
pared with the “best” nonrandomized policies generated by the NLP proce-
dure or iterative algorithm in [46]. First, it yields better performance than the
“best” nonrandomized policy. This makes sense because the switching sta-
tionary strategy has the same performance as the optimal randomized policy
while the “best” nonrandomized policies were at most at good as the opti-
mal randomized policy. Second, the computation of the switching stationary
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strategy is much simpler than finding the “best” nonrandomized policy. The
former is P-hard while the latter is NP-hard.

The rest of this chapter is organized as follows. In section 2 we give a
brief review of the continuous-time MDP model proposed in [46]. Section 3
describes how to construct the optimal switching stationary policy. Section 4
gives some numerical results compared with results obtained in [46].

6.2 Model review

Typically in a dynamic power management system there are four components:
service provider (SP), high-priority service queue (HSQ), low-priority service
queue (LSQ), and service requester (SR). The SR generates service requests
for the SP. The SQ buffers the service requests. The SP provides service to
the requests in a top-down manner. The PM monitors the states of the SR,
SQ, and SP and issues state-transition commands to the SP.

The relationships between the HSQ and LSQ are:
1. Requests in the HSQ have a smaller waiting time than those in the LSQ.
2. The SP will not start serving the requests in the LSQ until it finishes all

the requests in the HSQ. Therefore, the service rate of the LSQ is a function
not only of the state of SP but also of the state of HSQ.

There are three states for the SP: busy, idle and sleep. As a simple example,
the capacity of HSQ and LSQ are 2 and 3, respectively. By defining the
number of requests in the service queue as the state, there are 3 states for
HSQ: 0, 1 and 2 requests. Similarly, there are 4 states for LSQ: 0, 1, 2 and
3 requests. There are two types of requests generated by SR: high priority
request or low priority request. The former demands shorter response time.
Each component is modelled as a separate continuous-time Markov Decision
Process. By combining the four components we have a joint process with 72
(= 3× 3× 4× 2) states.

In [46] the HSQ and LSQ processes are modelled together as a SQ model.
The state set of the SQ is given by Q = QLSQ × QHSQ, and the generator
matrix is given by GSQ(s, r) = GLSQ(s, r)

⊕
GHSQ(s, r, hq), where s is the

state of SP, r is the state of SR, and the
⊕

operator is the tensor sum defined
in [46, Definition 4.1].

The processes of SP and SQ are modelled into one joint process as well.
The generator matrix is denoted as GSP−SQ. The generator matrix of the
system is then

GSY S(a) = GSP−SQ(a, r)
⊕

GSR
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where a is a action taken by SP.
In a power-managed system the trade-off between operational performance

and power consumption is the key. The goal is always to achieve as little power
consumption as possible while keeping the delay of processing the requests
under some tolerable level. In terms of a controlled MDP, this becomes a con-
strained Markov Decision Process, in which we have three criteria: minimizing
the overall average power consumption, minimizing the delay for high-priority
queue, and minimizing the delay for low-priority queue. A typical method
to deal with it is to target one criterion by restricting the rest within certain
levels. The model is reflected in LP2 in [46] and is restated as follows

Min
∑

i∈S
∑

a∈A(i) c powiaxia,

s.t.
∑

a∈A(i) xia −
∑

j∈S
∑

a∈A(j) p(i, j, a)xja = 0, for anyi ∈ S∑
i∈S
∑

a∈A(i) xia = 1∑
i∈S
∑

a∈A(i) c hsqiaxia ≤ DH∑
i∈S
∑

a∈A(i) c lsqiaxia ≤ DL

xia ≥ 0for all i ∈ S, a ∈ A(i)

(6.2.1)

where c powia, c hsqia, c lsqia are the power consumption of the system, the
delay cost of the high-priority request, and the delay cost of the low-priority
request during the time the system stays in state i and action a is taken. The
formulas to calculate them are as follows:

c powia = powiτia +
∑
j

eneijp(i, j, a) (6.2.2)

c hsqia = hqiτia (6.2.3)

c lsqia = lqiτia (6.2.4)

where:
powi is the power at state i in W;
eneij is the switching energy from state i to state j, in Joule;
p(i, j, a) is the transition probability from state i to state j when action a

is taken;
hqi is the number of requests in HSQ;
lqi is the number of requests in LSQ;
τia is the expectation of the time that the system will be in state i if action

a is chosen in this state.
We remark that xia in the LP model represents the long-run fraction of
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time that the system spends in state i and when action a is taken. They are
state-action probabilities defined in [12].

6.3 Switching stationary strategy

In the formulated problem there are no absorbing states, and the modelling
guarantees the ergodicity of the Markov chain. [12, Theorem 2.1] guarantees
the existence of the optimal switching stationary policy if the above LP is
feasible.

Let X = {xia : i ∈ S, a ∈ A(i)} be a feasible solution to the above LP. The
associated randomized stationary policy σ is defined as follows

σ(a′|i) =
q(i, a′)xia′∑
a∈A(i) q(i, a)xia

, if
∑
a∈A(i)

q(i, a)xia > 0 (6.3.1)

= a, otherwise

where a is an arbitrary element of A(i).
Fixing any order of the action set at state i and applying formula (2.2.1)

we will obtain the switching stationary strategy.
In the power management system utilizing the switching strategy the PM

knows exactly when to switch to a different action, and the policy is deter-
ministic. Compared with the randomized policy, it is easier to implement.
Its performance in terms of expected power consumption and expected delay
costs on HSQ and LSQ is as good as the optimal randomized policy.

6.4 Numerical results

Using exactly the same parameters in [46, Table IV], we compute the average
power consumption satisfying the delay constraints for HSQ and LSQ. The
results are summarized in Table 5.1. Note that the results under the column
“LP-based CTMDP policy Power (mW)” were obtained through simulation
and reported in [46]. The results under the column “Switching Stationary
Strategy Power (mW)” are our theoretic results.

Table 5.1 Theoretical results using switching strategies
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Delay Delay Policy from Switching Reduction
for LSQ for HSQ [46] Stationary Strategy of Power
DL (sec) DH (sec) Power (mW) Power (mW) ∆P (%)
0.399 0.143 0.942 0.927 1.59
0.232 0.118 1.156 0.995 13.93
0.183 0.104 1.865 1.107 45.47
0.151 0.255 1.067 0.989 7.31

In addition to the theoretical results we conducted simulation using our
switching strategies. The results are shown in Table 5.2.

Table 5.2 Simulation results using switching strategies

Delay Delay Policy from Switching Reduction
for LSQ for HSQ [46] Stationary Strategy of Power
DL (sec) DH (sec) Power (mW) Power (mW) ∆P (%)
0.399 0.143 0.942 0.913 3.08
0.232 0.118 1.156 0.984 14.88
0.183 0.104 1.865 1.235 33.78
0.151 0.255 1.067 0.976 8.53

Table 5.1 and Table 5.2 show that use of switching stationary strategy may
significantly reduce the power consumption.
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Chapter 7

Concluding remarks and future

work

In this dissertation we deal with two definitions of discounting: multiplicative
discount and probabilistic discounting through stopping times. We have shown
in the chapter that the variances under the multiplicative discounting is at
most as large as that under the probabilistic discounting. We also give a
condition for the equality to hold: if and only if Var(J2|F∞) = 0 P -a.s. This
is a very general condition. We feel that we can make it more specific and
expressed in terms of rt and Rn. We conjecture that the more specific condition
for the equality to hold is rt = 0 almost everywhere P -a.s. and Rn = 0 P -a.s.
We will further investigate this question.

In the dissertation we primarily focus on the probabilistic discounting
mainly and only give very brief discussion of multiplicative discounting. The
major reason is due to the complexity with multiplicative discounting. If time
permits it is possible to investigate the multiplicative discounting in more de-
tails. Although there is not an optimal switching strategy that has a smaller
variance than the randomized policy uniformly for any α it is possible to show
that there exists an optimal switching strategy that has a smaller variance
than the randomized policy for sufficiently small α and this critical α depends
on the primitive parameters of the MDP.

We focus on the discounted total rewards. In literature there has been a
lot of research on average reward per unit time. It should be very interesting
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and important to study the variance of the average reward per unit time. We
will ask the same question: whether there is any difference in the randomized
policy and the equivalent switching strategies and if so how we can find a
policy that has the smaller variance of average reward per unit time.

In the literature people also consider some other nontraditional criteria
such as probability criteria. This is especially important in the situation where
system performance is controlled on single trial basis and high reliability is a
must, e.g., the launch of spaceship. There have been some papers devoted to
the probability criteria for various rewards, see [16, 17, 56, 60].

Another important direction of future work is to investigate the application
of the results in business, finance, engineering and other applicable fields. For
example, we can try to expand the sizes of HSQ and LSQ in the dynamic
power management to see how it is suitable for practical power management in
portable electronic devices. We can also investigate the application in revenue
management and inventory control.

In the dissertation we limit our policy space to randomized stationary pol-
icy and its equivalent switching stationary strategies. It is possible to in-
vestigate the variance minimization problem under the general mean-variance
framework for MDPs and search for optimal policies in the space of all sta-
tionary policies.
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Appendix A

Definition of strategies

In this appendix, we define strategies and various classes of strategies for
Continuous-Time MDPs. Staring fromMiller [40, 41], the literature on Continuous-
Time MDPs usually deals only with Markov strategies. For these strategies
decisions depend only on the current time and state. Markov strategies define
the corresponding stochastic processes via Kolmogorov’s backward equation.
Yushkevich [59], Kitaev [32] Kitaev and Rykov [33], and Feinberg [10] consid-
ered past-dependent strategies.

In this paper we follow definitions from Feinberg [13], where a general
control rule, for which the choice of actions depend on past states, past jump
epoches, and the current state and time, was called a strategy, and a particular
case of a strategy, for which the choice of actions depend only on the past
states and the current state was called a policy. While strategies can change
actions between jumps, policies cannot. The simplest subclass of policies is
stationary policies, for which decisions depend only on the current state. It is
also possible to consider randomized strategies defined below and randomized
policies defined in Section 2.1.

We recall that a multivariate (also called marked) point process with the
state space S is a stochastic sequence {Tn, Xn : n ≥ 0} such that 0 = T0 ≤
T1 ≤ . . . ≤ Tn ≤ . . ., Xn ∈ S, n ≥ 0, and there is a special state x∞ ∈ S such
thatXn = x∞ if Tn = ∞. The times T1, T2, . . . are jump epoches andX0, X1, . . .
are the states at epoches t ∈ [Tn, Tn+1), n = 0, 1, . . . . Let ξn = Tn − Tn−1 for
n ≥ 1 and T∞ = limn→∞ Tn. Then X0, T1, . . . , Xn−1, Tn, Xn, T is the history
up to time T < Tn+1.

Strategies (or, equivalently, nonrandomized strategies).
Let Ω∗ = ∪n≥0(S × [0,∞))n and let F∗ be the Borel σ-field on Ω∗ induced

by the Borel σ-field on [0,∞)). Consider the set of all finite histories Ω =
{(i0, t1, i1, t2 . . . , in, t) : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t < ∞, n = 0, 1, . . .}. Then
Ω is a measurable subset of Ω∗. We denote by F = {B ∈ F∗| b ⊂ Ω} the
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constriction of F∗ to Ω.
A (nonrandomized) strategy ψ is a Borel mapping from Ω to A such that

ψ(i0, t1, . . . , in−1, tn, in, t) ∈ A(in) for each (i0, t1, . . . , in−1, tn, in, t) ∈ Ω. For a
strategy ψ and given the history ωn = i0, t1 . . . tn, in, t, the joint probability
distribution that the jump happens during the interval [t, t+ dt) and in+1 = j
is q(i, j, ψ(i0, t1, . . . , tn, in, t)dt. However, if tn = ∞ then tn+k = ∞ for all
k > 0 and xn+k = x∞ for all k ≥ 0.

Let Ω∞ = (S× [0,∞])∞ and F∞ be the Borel σ-field induced by the Borel
σ-fields on [0,∞]. According to Jacod [25, Lemma 3.3], each strategy ψ and
each initial distribution µ of the initial state i0 define a unique multivariate
point process on (Ω∞,F∞). We denote by Pψ

µ and Eψ
µ the probabilities and

expectations for this process. We also write Pψ
i and Eψ

i instead of Pψ
µ and Pψ

µ

when µ(i) = 1 for some i ∈ S.
Randomized strategies. It is also possible to consider randomized strate-

gies. These more general objects can be defined as (nonrandomized) strategies
when actions are replaced with probability distributions on the action set A.

Let P(A) be the set of probability measures on the Borel space A. Consider
the topology of weak convergence on P(A). Since A is a Polish (i.e., complete
separable metric) space then P(A) is a Polish space; see Parthasarathy [43,
Theorem 6.4, Chapter II]. Since A(i) are compact subsets of the Polish space
A, P(A(i)) are compact subsets of P(A); [43, Theorem 6.4, Chapter II].

Consider a Continuous-Time MDP {S, Ã, Ã(·), q̃, K, r̃k, R̃k}, k = 0, . . . , K},
where Ã = P(A), Ã(i) = P(A(i)), and for i ∈ S and ã ∈ Ã(i)

q̃(i, ã, j) =

∫
A(i)

q(i, a, j)ã(da), (A.0.1)

r̃k(i, ã) =

∫
A(i)

rk(i, a)ã(da), k = 0, 1, . . . , K, (A.0.2)

R̃k(i, ã, j) =

∫
A(i)

R(i, a, j)q(i, a, j)ã(da)

q̃(i, ã, j)
, k = 0, 1, . . . , K, (A.0.3)

where (A.0.1) means that jump intensities for the control ã are convex combi-
nations of the jump intensities for the corresponding controls a and formulas
(A.0.2) and (A.0.3) mean that the reward rates for the control ã are convex
combinations of the reward rates for the corresponding controls a.

A strategy in a new model is called a randomized strategy. In other words,
a randomized strategy is a measurable mapping π from Ω to P(A) such that
π(A(in)|i0, t1, . . . , tn, in, t) = 1 for any (i0, t1, . . . , tn−1, in, t) ∈ Ω, n = 0, 1, . . ..
Since a randomized strategy is defined as nonrandomized strategy in the cor-

55



responding model, it also defines a unique multivariate point process for any
given initial distribution µ.

So, we can extend the notations P π
µ and Eπ

µ and the definition of the
expected total discounted rewards (2.1.1) from (nonrandomized) strategies to
randomized strategies. So, formula (2.1.1) applied to the new model with
ψ = π defines the expected total discounted rewards Vk(i, π) for a randomized
strategy π, where an and a(t) elements of Ã = P(A). We shall follow the
agreement that a ∈ A and a probability measure on A concentrated on a are
the same objects. Then P π

i = Pψ
i and Vk(i, π) = Vk(i, ψ) when the randomized

policy π is nonrandomized, i.e. π(ψ(ω)|ω) = 1 for any ω ∈ Ω, where ψ is a
(nonrandomized) strategy for the original Continuous-Time MDP.

Of course, the question whether randomized strategies can be implemented
in a particular application depends on the applications. However, random-
ized strategies are convenient for mathematical considerations, they do not
change the objective function, and optimal nonrandomized strategies are op-
timal within the class of all nonrandomized strategies.

Remark. In the above form randomized policies were defined in Fein-
berg [13]. This definition is equivalent to the definition in Kitaev [32] and
Kitaev and Rykov [33], where, for the case of the sample space (Ω∞,F∞), a ran-
domized strategy is defined as a regular transition probability from (Ω,F) to A
such that π(A(in)|i0, t1, . . . , in−1, tn, in, t) = 1 for each (i0, t1, . . . , in−1, tn, in, t) ∈
Ω. The assumption that π is a regular transition probability means that
π(·|i0, t1, . . . , in−1, tn, in, t) is a probability measure onA for each (i0, t1, . . . , in−1,
tn, in, t) ∈ Ω and π(B|·) is a measurable function on (Ω,F) for any measurable
subset B of A. For a strategy ψ and a given finite history ωn = i0, t1, . . . , tn, int,
the joint probability distribution that the jump happens during the interval
[t, t+ dt) and in+1 = j is dt

∫
q(i, j, a)π(da|i0, t1, . . . , tn, in, t). Formula (A.0.3)

for instant rewards at jump epochs was not explicitly presented in [13], were
it was shown that for the expected discounted rewards it is possible to adjust
rk and set Rk = 0. References [32] and [33] did not consider instant rewards.
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Appendix B

Derivation of variances

Consider a randomized stationary policy that has m actions to choose at state
i, σ = {a1, a2, . . . , am}, and one of the equivalent switching strategies defined
by (2.2.1), ϕ =< a1, a2, . . . , am >.

U(i) - total discounted reward earned when the initial state is i, i ∈ S.
ζk - exponential RV with intensity equal to qk - the jump intensity when

action ak is taken.
X1 - the next state after the jump.

Since the first moments for the randomized policy and for the switching
stationary policy are the same we use M(i) = E[U(i)], i ∈ S to represent the
first moments. To differentiate between the randomized and switching policies
we use Wr to represent the second moment for a randomized policy and Ws

to represent the second moment for a switching policy.
In the sequel we will derive two sets of simultaneous equations, one in-

volving the first moments and the other involving both the first and the sec-
ond moments. We can solve the first set of simultaneous equations to obtain
M(i) first, which are the same for the switching policy and for the multi-
plicative discounting. With that we can solve the second set of simultaneous
equations to obtain Wr(i) or Ws(i). The variances can then be computed as
Var(i) =Wr(i)−M2(i).
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B.1 Variances under probabilistic discounting

For the randomized policy, the derivation is easy. Conditioning on action a we
have

M(i) = E[U(i)] = EE[U(i)|a]

=
m∑
k=1

pkE

[
rkζk +R(i,X1, ak) + U(X1)

]
=

m∑
k=1

pkEE

[
rkζk +R(i,X1, ak) + U(X1)|X1

]
=

m∑
k=1

pk
∑
j

p(i, j, ak)E

[
rkζk +R(i, j, ak) + U(j)

]

=
m∑
k=1

pk
∑
j

p(i, j, ak)

[
rk
qk

+R(i, j, ak) +M(j)

]

=
m∑
k=1

pk

[
rk
qk

+
∑
j

p(i, j, ak)

(
R(i, j, ak) +M(j)

)]
.

Wr(i) = E[U2(i)] = EE[U2(i)|a]

=
m∑
k=1

pkE

[(
rkζk +R(i,X1, ak) + U(X1)

)2]
=

m∑
k=1

pkEE

[(
rkζk +R(i,X1, ak) + U(X1)

)2

|X1

]
=

m∑
k=1

pk
∑
j

p(i, j, ak)E

[(
rkζk +R(i, j, ak) + U(j)

)2]

=
m∑
k=1

pk
∑
j

p(i, j, ak)

[
r2k
q2k

+R2(i, j, ak) +Wr(j) +
2rk
qk

[R(i, j, ak) +M(j)] + 2R(i, j, ak)M(j)

]

=
m∑
k=1

pk

[
r2k
q2k

+
∑
j

p(i, j, ak)

(
R2(i, j, ak) +Wr(j) +

2rk
qk

[R(i, j, ak) +M(j)]

+2R(i, j, ak)M(j)

)]
.

For the switching policy, the first moments are the same as the randomized
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policy, so we simply use M(i) for M(i) for i ∈ S. For the second moments,
conditioning on T1, the time of the first jump, we have

Ws(i) = E[U2(i)] = EE[U2(i)|T1]

=
m∑
k=1

P{Sk − 1 < T1 < Sk}E
[( k−1∑

ℓ=1

rℓsℓ + rkζk +R(i,X1, ak) + U(X1)

)2]

=
m∑
k=1

pkEE

[( k−1∑
ℓ=1

rℓsℓ + rkζk +R(i,X1, ak) + U(X1)

)2

|X1

]

=
m∑
k=1

pk
∑
j

p(i, j, ak)E

[( k−1∑
ℓ=1

rℓsℓ + rkζk +R(i, j, ak) + U(j)

)2]

=
m∑
k=1

pk
∑
j

p(i, j, ak)

[
(
k−1∑
ℓ=1

rℓsℓ)

2

+
2r2k
q2k

+R2(i, j, ak) +Ws(j)

+2[
rk
qk

+R(i, j, ak) +M(j)]
k−1∑
ℓ=1

rℓsℓ +
2rk
qk

[R(i, j, ak) +M(j)] +R(i, j, ak)M(j)

)]

=
m∑
k=1

pk

[
(
k−1∑
ℓ=1

rℓsℓ)

2

+
2r2k
q2k

+
2rk
qk

k−1∑
ℓ=1

rℓsℓ +
∑
j

p(i, j, ak)

(
R2(i, j, ak) +Ws(j)

+2[R(i, j, ak) +M(j)]
k−1∑
ℓ=1

rℓsℓ +
2rk
qk

[R(i, j, ak) +M(j)] +R(i, j, ak)M(j)

)]
.

The results are summarized in the following theorem:

Theorem B.1.1 Under the probabilistic discounting the variances for the dis-
counted total rewards of a randomized policy σ = {a1, a2, . . . , am}, and an
equivalent switching strategies defined by (2.2.1), ϕ =< a1, a2, . . . , am >, can
be computed by solving the following simultaneous equations:
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M(i) =
m∑
k=1

pk

[
rk
qk

+
∑
j

p(i, j, ak)

(
R(i, j, ak) +M(j)

)]
,

Wr(i) =
m∑
k=1

pk

[
r2k
q2k

+
∑
j

p(i, j, ak)

(
R2(i, j, ak) +Wr(j) +

2rk
qk

[R(i, j, ak) +M(j)]

+2R(i, j, ak)M(j)

)]
,

Ws(i) =
m∑
k=1

pk

[
(
k−1∑
ℓ=1

rℓsℓ)

2

+
2r2k
q2k

+
2rk
qk

k−1∑
ℓ=1

rℓsℓ +
∑
j

p(i, j, ak)

(
R2(i, j, ak) +Ws(j)

+2[R(i, j, ak) +M(j)]
k−1∑
ℓ=1

rℓsℓ +
2rk
qk

[R(i, j, ak) +M(j)] +R(i, j, ak)M(j)

)]
,

for any i ∈ S.

B.2 Derivation of variance under multiplica-

tive discounting

Since the first moments are the same under the two definitions of discounting
we skip the derivation for the first moments.

When the continuously discount rate is α, one unit of reward at time t is
worth e−αt unit at t = 0. When the reward rate is r, the total discounted
reward earned during [0, t] and discounted back to t = 0 is:

Uα(r, t) =

∫ t

0

r exp(−αt)dt = r(1− e−αt)

α
(B.2.1)
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We first derive for the randomized policy by conditioning on a:

Wr(i) = E[U2(i)] = EE[U2(i)|a]

=
m∑
k=1

pkE

[(
rk(1− eαζk)

α
+ e−αζk [R(i,X1, ak) + U(X1)]

)2]

=
m∑
k=1

pkEE

[(
rk(1− eαζk)

α
+ e−αζk [R(i,X1, ak) + U(X1)]

)2

|X1

]

=
m∑
k=1

pk
∑
j

p(i, j, ak)E

[(
rk(1− eαζk)

α
+ e−αζk [R(i, j, ak) + U(j)]

)2]

=
m∑
k=1

pk
∑
j

p(i, j, ak)

[
2r2k

(α+ qk)(2α+ qk)
+

qk
2α+ qk

[R2(i, j, ak) +Wr(j)] +

2rkqk
(α+ qk)(2α+ qk)

[R(i, j, ak) +M(j)] +
2qk

(2α+ qk)
R(i, j, ak)M(j)

]
=

m∑
k=1

pk

[
2r2k

(α+ qk)(2α+ qk)
+
∑
j

p(i, j, ak)

(
qk

2α+ qk
[R2(i, j, ak) +Wr(j)] +

2rkqk
(α+ qk)(2α+ qk)

[R(i, j, ak) +M(j)] +
2qk

(2α+ qk)
R(i, j, ak)M(j)

]
.
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For the second moments we still condition on T1:

Ws(i) = E[U2(i)] = EE[U2(i)|T1]

=
m∑
k=1

P{Sk − 1 < T1 < Sk}E
[( k−1∑

ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+ e−αSk−1

rk(1− e−αζk)

α

+e−αSk−1e−αζk [R(i,X1, ak) + U(X1)]

)2]
=

m∑
k=1

pkEE

[( k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+ e−αSk−1

rk(1− e−αζk)

α

+e−αSk−1e−αζk [R(i,X1, ak) + U(X1)]

)2

|X1

]
=

m∑
k=1

pk
∑
j

p(i, j, ak)E

[( k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+ e−αSk−1

rk(1− e−αζk)

α

+e−αSk−1e−αζk [R(i, j, ak) + U(j)]

)2]
=

m∑
k=1

pk
∑
j

p(i, j, ak)

[( k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α

)2

+
2r2ke

−2αSk−1

(α+ qk)(2α+ qk)
+

qke
−2αSk−1

2α+ qk
[R2(i, j, ak) +Ws(j)] + 2e−αSk−1 [

rk
α+ qk

+
qk

α+ qk
R(i, j, ak)

+
qk

α+ qk
M(j)]

k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+

2rke
−2αSk−1

qk
[

qk
α+ qk

R(i, j, ak) +
qk

α+ qk
M(j)]

+e−2αSk−1
qk

2α+ qk
R(i, j, ak)M(j)

)]
=

m∑
k=1

pk

[( k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α

)2

+
2r2ke

−2αSk−1

(α+ qk)(2α+ qk)

+
2rke

−αSk−1

α+ qk

k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+
∑
j

p(i, j, ak)

(
qke

−2αSk−1

2α+ qk
[R2(i, j, ak)

+Ws(j)] +
2qke

−αSk−1

α+ qk
[R(i, j, ak) +M(j)]

k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+

2rke
−2αSk−1

α+ qk
[R(i, j, ak) +M(j)] + e−2αSk−1

qk
2α+ qk

R(i, j, ak)M(j)

)]
.
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The results are summarized in the following theorem:

Theorem B.2.1 Under the multiplicative discounting the variances for the
discounted total rewards of a randomized policy σ = {a1, a2, . . . , am}, and an
equivalent switching strategies defined by (2.2.1), ϕ =< a1, a2, . . . , am >, can
be computed by solving the following simultaneous equations:

M(i) =
m∑
k=1

pk

[
rk
qk

+
∑
j

p(i, j, ak)

(
R(i, j, ak) +M(j)

)]
,

Wr(i) =
m∑
k=1

pk

[
2r2k

(α+ qk)(2α+ qk)
+
∑
j

p(i, j, ak)

(
qk

2α+ qk
[R2(i, j, ak) +Wr(j)] +

2rkqk
(α+ qk)(2α+ qk)

[R(i, j, ak) +M(j)] +
2qk

(2α+ qk)
R(i, j, ak)M(j)

]
,

Ws(i) =
m∑
k=1

pk

[( k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α

)2

+
2r2ke

−2αSk−1

(α+ qk)(2α+ qk)

+
2rke

−αSk−1

α+ qk

k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α
+
∑
j

p(i, j, ak)

(
qke

−2αSk−1

2α+ qk
[R2(i, j, ak)

+Ws(j)] +
2qke

−αSk−1

α+ qk
[R(i, j, ak) +M(j)]

k−1∑
ℓ=1

e−αSℓ−1
rℓ(1− e−αsℓ)

α

+
2rke

−2αSk−1

α+ qk
[R(i, j, ak) +M(j)] + e−2αSk−1

qk
2α+ qk

R(i, j, ak)M(j)

)]
,

for any i ∈ S.
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