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ABSTRACT OF THE DISSERTATION

Networked Adaptive Classification for Cyber-Physical Systems

Michael Gilberti

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

Cyber-physical Systems (CPS’s) are networks of embedded systems which operate
under tight power and timing constraints and with varying levels of precision. The
primary goal is to meet the above requirements for an application that is distributed
over a network.

Adaptive Classification is introduced in the context of a chemical gas cloud local-
ization application running over the CPS. Standard machine learning binary classifiers
are employed and optimized for implementation in reconfigurable hardware at varying
precisions, power requirements and speeds.

An exemplar set of classifiers contains one chemical species classifier and four
individual chemical classifiers such as, Alcohol versus the-rest (of the species) and
methyl alcohol versus the-rest(of the individual alcohols). Other sets classify addi-
tional species and chemicals.

The network is populated with these classifiers by assigning one set of chemical
classifiers per node and apply techniques from the field of evolutionary game theory
to allow the nodes to self-configure over time.
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Chapter 1

Introduction

Concentrations of volatile organic compounds (VOC’s) are dangerous to people and

a hazard to the environment. High concentrations of VOC’s can ignite and explode,

while smaller concentrations can cause respiratory and/or kidney failure. One popular

method to detect VOC’s is known as Ion Mobility Spectrometry (IMS). IMS sensors

allow real-time monitoring of VOC’s chemical warfare agents, explosives and narcotics

[1]. IMS sensors are currently used to monitor VOC’s on-board the international

space station, as well as, to detect subsurface VOC’s like MTBE, a gasoline additive,

in the soil between the surface and ground water. A network of adaptive classifiers

capable of detecting and localizing airborne VOC clouds within an area covered by

the network is described. Fast detection and localization of VOC clouds can lead to

quick evacuation of people, immediate shut-down of potential sources of ignition and

fast/accurate deployment of first responders (e.g. Fire and Rescue units). Thereby

making it possible to save lives and preserve infrastructure.

Five classes of VOC’s for detection, each containing four chemicals are identified.
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Figure 1.1: A Network of Adaptive Classifiers with Chemical Cloud

The network classifies and localizes VOC clouds by reconfiguring each of its nodes.

Each node consists of a miniature ion mobility spectrometer (IMS) for acquiring

chemical data from the environment, a microcontroller, a field-programmable gate

array device (FPGA), memory and a power source (battery). The microcontroller

communicates with other nodes; controls the FPGA and IMS; and monitors the

available power. Adaptive classifier(s) are contained within the reconfigurable logic

of the FPGA and used for classifying the data sensed by the IMS. Memory is used

to hold multiple adaptive classifier configurations. The IMS is a system, not just a

sensor. It has its’ own control system independent of the microcontroller, FPGA and

memory of the node architecture.

An Adaptive classifier is a machine learning algorithm implemented in hardware

optimized using a variable bit-width design flow. Each classifier is given a set of valid

bit lengths (widths) and a cost function. Simulated Annealing is used to reduce the

overall required hardware/power while maintaining a certain level of classification
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accuracy. This is done by exchanging a bit width at random, running the classifier,

computing the result and accepting, or rejecting, the change based on a function

of how many iterations of the algorithm are required for completion. Using this

technique it has been demonstrated that a 25 percent reduction in area/power can

be achieved.

Each node has a set of binary classifiers. One classifier that allows it to dis-

criminate between one chemical species (class) versus the-rest of the possible species

(classes) and a group of One-versus the-Rest classifiers that allow a node to identify

individual chemicals (analytes), with the condition that they belong to the same class

as the chemical species classifier . For example, if the node has a set of classifiers

that contain an Alcohol-versus-the-Rest classifier then it also contains the following

alcohol classifiers; methyl versus the-rest, ethyl versus the rest, propyl versus the-rest

and isopropyl versus the-rest. The number of analyte classifiers was restricted to

four, however, the number could be higher as there are many more alcohols within

the species.

Each classifier comes in three bit width configurations 12-bit max, 10-bit max

and 8-bit max. Each configuration corresponds to a mean-squared-error (MSE) that

defines the accuracy of the classifier. In addition, the number of multipliers within

these configurations may be varied to allow between 20 and 28. Varying the number

of multipliers in use at a given time has the effect of reducing the area used and

the power consumption over time, as well as, the speed of computation. The set of

possible configurations comprise a set of three Pareto-optimal design-point curves.

These Pareto curves define the customization options for the classifier. This works in
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combination with a set of reconfiguration rules designed to match the configuration

to the available computational resources at both the node and neighborhood levels.

Chapter 3 describes the adaptive classifier approach.

The principals of evolutionary game theory are applied with the goal of supplying

the correct classifiers to each local set of nodes, over the event time. It is shown that

by doing so enables the network to localize clouds of chemicals, if they are present,

in any of the local neighborhoods.

Since the network of nodes has a rigid grid structure a spatial game is employed.

A spatial game is one where nodes cannot meet randomly but are confined to play its

games with surrounding nodes. The surrounding nodes form a nodes neighborhood.

The game used for all of the experiments is the Prisoners’ Dilemma. It is widely

used by game theorists and evolutionary biologists, economists and political/social

scientists. In the context of a network of adaptive classifiers, it is used to propagate

the best classifiers to nodes that may need them, in order to track and localize the

chemical cloud(s). Chapter 4 is dedicated to the network of adaptive classifiers and

describes its operation in detail. Chapter 5 describes the experiments and provides a

discussion of the results.

Cyber-physical system (CPS) refers to the tight conjoining of and coordination

between computational and physical resources [2]. The National Science Foundation

believes it to be a key area of research and foresees that future cyber-physical sys-

tems will be more adaptable, autonomous, efficient and functional than present day

embedded systems. The Networked Adaptive Classifier approach to cyber-physical

systems presented herein aims to meet NSF’s vision for such systems.
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Chapter 2

Related Work

2.1 Evolutionary Game Theory

Game Theory was invented by John von Neumann and Oskar Morgenstern in 1944[3].

Evolutionary Game Theory first appeared in the early 1970’s [4][5]. The prisoner’s

dilemma, to be described later in this text was invented around 1950 by Merrill Flood

and Melvin Dresher [6]. Robert Axelrod [7], in his best selling The Evolution of Co-

operation describes the mechanisms behind how cooperation between two parties can

emerge in different situations and lead to a more beneficial outcome than competi-

tion alone. He conducted two computer prisoner’s dilemma tournaments in the early

1980’s to try and discover the best strategy to use in an iterative prisoner’s dilemma

game, if indeed one existed. His conclusion was that the strategy of Tit-for-Tat was

the best. The premise behind the strategy is to begin with cooperation but then do

what the opponent did on the last round of game play. This simple strategy promotes

cooperation while punishing non-cooperators, otherwise known as defectors.
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Nowak [8] uses evolutionary game theory to gain new insight into cancer and the

HIV virus. He describes a strategy that beats Tit-For-Tat, called Win-Stay-Lose-

Shift.

Nowak, Hauert and Langer [9] explore the prisoner’s dilemma when it is played

as a spatial game where players no longer meet randomly within a population, but

are constrained to play the game repeatedly with their nearest-neighbors. Through

experimentation they found a set of conditions in which cooperation can invade,

survive and thrive in a population of all defectors. They found that cooperator must

form compact clusters in order to survive, the minimum size of which is size a 3 x 3

cluster of cooperators. Moreover, they found when a small cost to benefit ratio (c/b

= 0.02) is used in an iterative prisoner’s dilemma, cooperators form a large densely

packed cluster, with few defectors remaining within. In addition, when c/b is closer

to the extinction threshold (c/b = 0.12) a much less dense cluster forms with many

large pockets of defectors.

Axelrod [10] and Mittal and Deb [11] use genetic algorithms to find optimal strate-

gies of the iterated prisoner’s dilemma. Axelrod searched for a strategy that maxi-

mizes its’ own score. Mittal and Deb take a multi-objective approach and try to find

a strategy that will maximize a players’ score while minimizing the opponents score.

Evolutionary game theory is also being applied to sensor networks and to smart

energy grids. In [12] cooperation is explored for routing communications in underwa-

ter sensor networks governed by two different central authorities. The sensor nodes

play the prisoner’s dilemma to decide whether or not to forward information packets

of the other networks’ nodes to communication buoys. Hines and Talukdar [13] de-
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scribe reciprocally altruistic agents for the mitigation of cascading failures in power

grids, an approach to avoiding massive blackouts of service. They sense the capacitive

load on power station to determine whether neighboring power stations will cooperate

to receive the excess load.

2.2 Binary Classification

Brooks and Iagnemma [14] describe a novelty detector that visually detects new

terrain from terrain for which a mobile robot has already been trained. It uses

the two-class, classification methodology and support vector machines to improve

navigation in a simulated Mars environment. Hill and Doucet [15], devise a geometric

construct that aides in applying the two-class support vector machine to multi-class

classification. Ayech and Trabelsi [16] show how to decompose a multi-class problem

into a series of two-class classification problems using neural networks. Evan-Zohar

and Roth [17] use their Sequential Model similar to a decision tree, to formulate the

multi-class classification problem for natural language processing in terms of two-class

classification. Their model sequentially restricts the set of possible classes to a small

set, in a data dependent way.

2.3 Gas Classification

Bermak and Belhouari [18] apply Bayesian Learning to the gas identification problem

and shows how it can outperform K-Nearest Neighbor and multilayer perceptron in
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this task. They combine the Gaussian process with principal component analysis and

use tin-oxide gas sensors in their work.

Shi and Bermak et al. [19] developed an electronic nose consisting of an array tin-

oxide micro-hotplates and a dynamically reconfigurable FPGA capable of identifying

five different combustible gases with two in various concentrations. They use a com-

mittee machine (CM) classifier, which combines the outputs of five other classifiers

to obtain a decision with improved performance over any single method.

Before input into the CM, confidence transform (CT) functions are first applied

to the results of both an MLP and Radial Basis Function neural network and likewise

to the Gaussian Mixture Model, k-nearest neighbor and Probabilistic Principle Com-

ponent Analysis classifiers. In addition, they propose using a weighted combination

rule to prevent any single poorly performing classifier from affecting the CM decision.

Principle Component Analysis (PCA) is used to preprocess the gas datasets in

order to project them onto a lower dimension. PCA is implemented in the first of

three hardware configuration stages after data acquisition. It is implemented as the

vector-matrix multiplication z = xT , where z, x and T are the transformed pattern,

the original pattern and the transform matrix, respectively. PCA is implemented in a

hardware circuit that is based on Distributed Arithmetic (DA) which is an algorithm

that performs this computation using pre-computed lookup (LUT’s) tables instead of

logic.

Average classification results were provided for principle components ranging from

2 through 8. The CM had the best classification rate (95.9%) with 8 principle compo-

nents and performed worst (82.7%) when the data was reduced to only 2. This is not
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surprising as one would expect performance to decline linearly with fewer principle

components. In all cases, the CM had a higher classification rate than any single

classifier.

The slow response of the gas sensors was exploited by allowing the system to

be partitioned into several stages of computation, i) sampling and preprocessing,

ii) CM, and iii) CT and decision, which were implemented sequentially using the

multiplexing capability of the Xilinx Virtex II FPGA. This device, along with the

present generation, can dynamically switch between a maximum of five configurations

all of which are stored in SRAM. This is useful if the hardware resources required

exceed those available on the chip.

In the first stage the sensor output is digitized using an analog MUX and 12-

bit serial ADC. At this point the FPGA is configured to implement four circuits for

the detection of a steady-state, normalization, PCA and control. The control circuit

generates signals to control the analog MUX and the other three circuits of the FPGA

along with generating clock signals for the ADC.

The second stage implements the five classifiers which execute in parallel. The

KNN consists of five each of ROM’s, subtraction and square units, and four adders.

Three comparators and three registers (for K=3) are used to find the nearest neighbor

in winner take all fashion. In the MLP, the dot product of weights and inputs is

implemented by means of DA and since there are six hidden nodes and 5 output nodes

the implementation uses eleven DA units and eleven adders, one for each node of the

network. The neuron’s activation function is implemented using a piecewise linear

function (LPF) approximation. The RBF neural network could not be implemented
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in DA as there are too many hidden nodes (13 nodes) for it to run in parallel therefore

a more conventional computational structure was chosen that uses a multiplier, six

accumulators, a subtraction unit, LPF and square units. Both GMM and PPCA are

implemented using a serial parallel vector matrix multiplier, a square and multiplier

units and LPF to approximate the exponential function. The differences between the

two are their parameters are stored in ROM.

The third stage applies the five CT’s and final decision function in a winner take

all circuit based on a weighted majority vote function. The CT for KNN provides

5 bit labels of the 3 nearest neighbors that control multiplexers to decide whether

or not to increase the confidence of each class. It consists of 5 accumulators and 5

multiplexers. The CT’s for the other four classifiers just normalize the output to a

value between 0 and 1 in order to approximate the probability of each class. The

final decision circuit is comprised of five multipliers an adder and the winner-take-all

comparison unit.

FPGA implementation results show that system ran at a clock speed of 50 MHz

and the circuits executed in 26 ms. The Data acquisition and signal processing

stage used the least amount of chip resources requiring only 3,812 4-input LUT’s

and 2,723 slices, 13% and 19% of those respective resources. On the other-hand,

the classifiers consumed the most resources, 20,115 4-input LUT’s and 12,145 slices,

accounting for 70% and 84% of those respective resources. CT and Decision circuits

were implemented in 4,236 (15%) LUT’s and 3,075 (21%) slices. These results show

that these circuits cannot all be mapped to a single FPGA at the same time and

therefore could not be implemented without using dynamic reconfiguration or moving
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the design to a larger device.

2.4 Classification of Mobility Spectra

Ion mobility spectrometry (IMS) and differential mobility spectrometry (DMS) are

two technologies in use today for the detection and classification of chemicals. IMS

measures the time it takes a chemical ion to move through a uniform, low DC electric

field, whereas DMS measures the velocity of an ion type in both low and high electric

fields [20][21]. Hartman, et.al [22] presents an embedded microcontroller for control

and signal processing for an IMS sensor.

Bell, et al. [23] developed a database of 1293 ion mobility spectra based on mV

intensity and applied a two-tiered (hierarchical) MLP approach to classify 195 chem-

icals of various concentrations, first into one of 10 classes, and then to identify the

specific chemical. After careful optimization of the database the system was able to

successfully identify 91% of the spectra of an independent test set consisting of 15%

of the spectra randomly selected from the database, but not used for training. Opti-

mization of the database was aided by the neural network response which identified

possible deficiencies with a spectrum such as low concentration or spectral distortion

due to the presence of impurities. The suspect spectra were pruned from the database

helping to improve the classification rate.

The first MLP used the back-propagation of error training algorithm and consisted

of 100 hidden nodes and 10 output nodes, one output node per chemical class.

The second MLP also used back-propagation and had 100 hidden nodes but used
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the number of output nodes corresponding to the number of chemicals assigned to

a particular class. For instance the alkanes class has 14 members so the MLP for

identifying alkanes has 14 output nodes. After first attempts using normalized input

data had failed to produce satisfactory results, the data for both neural networks was

pre-processed using a log transformation in order to conserve spectral information

(i.e. ion drift time and peak shape) while attenuating peak height. The authors

made no mention of which activation function was utilized to squash” the outputs of

the network nodes. The MLP was found to be able to extract several spectral features

and use them for classification. These included drift times, number and intensity of

peaks and peak shape. Not all networks used the same features but rather used

those that could be isolated and distinguished from other spectra in an opportunistic

manner.

Eiceman et al. [24] used a similar MLP approach to classify differential ion mo-

bility spectra of a number of chemicals classes such as alcohols, ketones, substituted

ketones and aromatics. Between 20 and 41 spectra from each class was used for

training the MLP. The performance of the neural network on trained (familiar) data

ranges between an average classification rate of 76% for ketones to 98.4% for substi-

tuted ketones.

When presented with unfamiliar data, which had not been used for training, the

network was able to successfully classify between 81% and 99.1% of the spectra, with

the overall average rate being 91.5%. In general, classification of DMS data is better

on most spectra than data acquired by IMS techniques, the reason for which is not

well conveyed.
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2.5 Bit-width Minimization

This section explores the various techniques that enable reconfigurable computing

devices to compute using fixed-point operation of variable precision.

2.5.1 BitSize

Gaffar, Mencer, Luk and Cheung [25] developed the BitSize tool for optimization of

both floating point and fixed point designs that explores a design’s accuracy, dynamic

range, area and speed. The Bitsize tool accepts a design description in either C/C++

or Xilinx System Generator code and outputs an annotated data flow graph. Fixed-

point designs are then verified and implemented using Xilinx System Generator while

floating-point designs are simulated and implemented using parameterized floating

point hardware library.

The problem of minimizing the bit-widths is divided into range and precision

analysis where range deals with the integer (exponent) bit-widths while precision

part minimizes the fraction (mantissa) of the fixed-point (floating-point) number.

A technique developed by the applied mathematics community known as auto-

matic differentiation [26] is employed to calculate the bit-widths. It is a way of

differentiating an algorithm and doing so during the algorithms execution with little

change to the original code. It is fast, requiring only one iteration and the method

allows for multiple bit-width formats as opposed to only uniform bit-widths. At each

operator node of a data flow graph automatic differentiation will calculate the gradi-

ents of the outputs with respect to the inputs then annotates the graph edges with the
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associated gradient. This describes a sensitivity relationship between the outputs and

inputs such that an output y is a function of an input x1. A change ∆x1 occurring

in the input x1 causes a change ∆y in the output y.

The BitSize algorithm begins with the user applying constraints based on error,

dynamic range, area and speed. Next, range analysis is accomplished by observing

the values passing though the nodes of the data flow graph of the un-optimized design

and determining the dynamic range at each node. Precision analysis uses automatic

differentiation to determine the maximum error tolerance at each node. Next, an area

estimator calculates the area usage of the bit-width optimized design based on an area

model. In addition there is a performance data model that contains area and speed

models for the operator blocks. Both the area estimator and performance model are

used to decide the most suitable data type for implementation, fixed or floating-point.

The tool provides several back-ends for targeting different implementations.

BitSize was used in four case studies including ray tracing, function approxima-

tion, finite impulse response (FIR) filtering and discrete cosine transform (DCT), all

of which were implemented using Xilinx Virtex 2 FPGA’s. In the case of ray tracing

the fixed-point implementation uses 40% fewer resources than a floating-point imple-

mentation when considering similar output error. The fixed-point design operates at

100MHz while the floating-point is slower at 80MHz. The method is used to indicate

the point at which to switch over to a floating-point design which in this case is when

a dynamic range of 107 is required. When considering function approximation the

resource reduction was between 15% and 20% sometime favoring floating-point over

fixed-point. Since FIR filtering requires a large dynamic range, up to 1016 it favors a
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floating-point implementation that uses 30% less area as compared to the fixed-point

design. Lastly, for the DCT case study fixed-point used only 10% of the LUT of the

FPGA than did the floating-point design, however the latter used far fewer embed-

ded multipliers (25%) so the user has to decide whether to optimize around LUT’s

or embedded multipliers.

2.5.2 MiniBit

MiniBit is an automated approach to fixed-point bit-width optimization proposed

by Lee, Gaffar, Mencer and Luk [27] that uses static analysis via Affine Arithmetic.

According to the authors they chose static analysis over dynamic analysis (where

stimuli input signals are applied as in Bitsize Tool) to avoid long simulation times

even though dynamic analysis may provide results that are closer to optimal. Static

analysis applies the characteristics of the input signals rather than exemplar signals.

Affine Arithmetic is used to optimize both the range and precision of the fixed-point

numbers.

Affine Arithmetic is considered to be an improvement over previous efforts that

made use of Interval Arithmetic which is a mathematical technique that seeks to

bound rounding errors. The difference between the two is that Affine Arithmetic uses

a separate uncertainty parameter for each signal. Whereas many bit-width optimiza-

tion techniques use signal-to-noise ratio (SNR) as a quantization error metric, MiniBit

uses an error metric called unit-in-the-last place (ulp) to analyze precision and results

are accurate to 1 ulp. While SNR is popular with DSP applications mainly because it
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is portable between modules of large designs it does not provide a maximum absolute

error bound as is the case with ulp. It is described as follows: if the fractional part

of the fixed-point number has 8 bits then the ulp would be 28 and if it has 10 bits

then the ulp would be 210, etc. This means that the maximum absolute error is

less than or equal to 28 and 210 respectively. In addition, MiniBit determines both

an analytically derived uniform fraction bit-width as well as a multiple fraction bit-

width found through adaptive simulated annealing, enabling the design of multiple

wordlength systems.

Range and precision optimization are performed separately again with the aim

of minimizing the number of bits for the integer part (range) and fractional part

(precision) of the fixed point numbers. MiniBit is built on the authors’ previous work

with the BitSize bit-width analysis system [28]. It takes as its’ input a high-level

description such as C/C++ or Xilinx System Generator code along with an error

requirement and outputs a cost function and an error function.

Range analysis is performed (via Affine Arithmetic) first and the results are passed

along for precision analysis which operates in two stages. The first uses the error

function generated by MiniBit to find the optimum uniform fraction bit-width which

serves as the initial starting point for adaptive simulated annealing which finds the

optimal multiple fraction bit-widths using the cost function and error constraints.

MiniBit was implemented on five case studies and multiple bit-width implemen-

tations were compared with their uniform bit-width counterparts. For degree four

polynomial approximation, RBG to YCbCr conversion, 2 x 2 Matrix Multiplier and

8 x 8 discrete cosine transform implementations, area and latency improved between
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2% and 10%. The B-spline implementation saw the greatest benefit with a nearly

20% improvement in area and 12% improvement in latency. In addition, both max-

imum and average ulp errors were below the target of one ulp and the SNR ranged

between 50 dB and 150 dB.

2.5.3 PowerBit

PowerBit, a power aware bit-width minimization technique by Gaffar, Clarke and

Constantinides [29] leverages off of both the BitSize tool and MiniBit technique but

seeks to minimize the bit-width through evaluation on a power cost function rather

than only relying on reducing power as a side effect of area reduction.

PowerBit uses the BitSize tool to generate the power cost function and error

function both of which are then used to find the optimal range of the fixed point

number by way of Affine Arithmetic. The results of the range optimization are then

used to analyze the precision (fractional bit-width) and to determine the uniform

fractional width (i.e. the single fraction-width that is best for the system). As in

MiniBit adaptive simulated annealing and the error function are used to find the

multiple fraction width, but this time the power cost function is employed as opposed

to one that includes only area and latency. The BitSize back-end stage converts the

optimized design description into a hardware implementation via VHDL.

Power consumption is calculated at the block level only after placement, routing

and simulation. Switching activity level obtained from simulation are then fed into

the Xilinx XPower tool to estimate the total power consumed.
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The authors present four example implementations. The first three; cascaded

addition, 2 x 2 matrix multiplication and uniform cubic B-spline, demonstrate over

a 10% reduction in logic power for multiple fraction bit-widths, while the fourth, an

8 x 8 discrete cosine transform exhibited a 20% percent reduction. They show that

area optimization alone can sometimes lead to an increase in power consumption as

was the case with the cascaded addition and 2 x 2 matrix multiplication examples,

where they exhibited a 2% and 8% increase in power consumption respectively.

Interestingly, PowerBit was able to optimize components of the same type indi-

vidually, based on location within the data flow graph, while area based optimization

could not, the reason for which is not entirely clear and one could speculate that it a

side effect of the modeling technique.

2.5.4 Word Length Conscious High Level Synthesis

Kum and Sung [30] introduced a combined fixed-point word-length optimization and

high-level synthesis design flow for designing digital signal processing systems. They

present a more accurate cost function by tracking the amount of hardware sharing of

the functional units (i.e. adders and multipliers) and through signal grouping. They

also reduce optimization time significantly.

First, minimum word-lengths are determined through simulations of a signal flow

graph and then grouped and assigned to hardware. A cost function is formulated and

minimized using both list scheduling and integer linear programming algorithms for

scheduling operations and binding to the hardware.
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In their list scheduler, ready lists are generated for hardware units having different

word-lengths. The one with the longest word-length gets the highest priority. Since

the list scheduler is close to, but not optimum, they use ILP as a secondary step.

ILP is implemented using a data flow graph G(V,E having n(|V |) operations and

n(|E|) data dependencies and minimizes a cost function that is the sum of the num-

ber of functional unit types multiplied by their cost under three constraints. These

constraints are related to the number of functional units of a given type and number

of operations allowed per control step as well as the order of operations. A modified

clique partitioning algorithm is used as the basis for register binding by iteratively

searching for and deleting the node with the maximum word-length of the graph until

the number of vertices is zero.

The design flow was used to generate several designs including a fourth order infi-

nite impulse response (IIR) filter with 15% hardware reduction, a fifth-order elliptic

filter with 7% hardware reduction and a 12th order adaptive least mean square (LMS)

filter which benefited from hardware sharing information that reduced from 15 to 6

the number of signal groups.
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Chapter 3

Adaptive Classifiers

3.1 Introduction

This chapter presents parallel implementations of the multilayer perceptron (MLP)

neural network classifier in fixed-point reconfigurable hardware with adaptive preci-

sion. The MLP was trained off-line to classify chemical species using the standard

back-propagation algorithm. The chemical data used for training was obtained from

a pre-existing database that relates chemical species to data collected from an ion

mobility spectrometry (IMS) sensing device.

IMS sensors allow real-time monitoring of volatile organic compounds (VOC’s),

chemical warfare agents, explosives and narcotics [1]. IMS systems are currently used

to monitor airborne VOC’s on board the International space station and to detect

subsurface VOC’s, e.g. MTBE in the soil between the surface and groundwater [31].

The final parallel implementations of the MLP employs computing blocks with

variable bit widths. They include 260 multipliers with bit widths ranging from 10-
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Figure 3.1: Design Flow

bits down to 6-bits and 260 adders with bit widths that are two times as long as

each multiplier bit width. The designs were generated as a result of optimizing two

initial configurations comprised of all 10-bit (8-bit) multipliers and 20-bit (16-bit)

adders. This is performed by means of simulated annealing (SA) which optimizes

a cost function that includes the number of hardware units required for the circuit

and the amount of error produced as a result of the MLP computations. Design flow

as described previously in [32] and shown in figure 3.1 is applied but changed from

floating-point to fixed-point hardware.

The hardware unit selected was the Xilinx slice which has a ratio of approximately

1:2 with a Xilinx Look-up Table (LUT). The error term used was the sum squared of

the error between the 64-bit MLP results and the reduced bit width results obtained
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after computation with the lower bit width hardware blocks.

Hardware Synthesis and Matlab simulation results show that the final implementa-

tion resulting from SA optimization uses considerably less hardware and provides the

same level of error as the initial configuration. In addition, the final implementation

also dissipates less power than the un-optimized initial design. It is also important to

note that no change was made in the number of computing blocks between the final

implementation and initial configuration. Only the bit width sizes were altered.

The reason for a parallel implementation, as opposed to one that is serial, is to

allow construction of a multi-species classifier from a two-species classifier by multi-

plexing each MLP’s weight set and comparing, and then accumulating the outputs.

For example, suppose that the task is to classify three species of chemicals species

A, B and C. In a parallel design all the weights of an MLP trained to classify species

A and B are multiplied during the same clock cycle. During the next clock cycle the

weights are multiplexed to form a species A and C classifier and multiplexed again

during the third clock cycle to form a species B and C classifier. The species whose

accumulated outputs total 2 is the class that best matches the input to the MLP.

Whereas previous research on classification focused on using one or two large MLP’s

having many nodes, this work focused on developing MLP’s with small numbers of

nodes with each MLP responsible for a small comparison (e.g., in this case only two

classes of VOC chemicals, alcohols and aldehydes are compared). The goal is to have

many small MLP’s, either pipelined or running in parallel, and then aggregate the

results for the classification task. This approach is expected to yield more robust

classifiers that are suitable for hardware implementation.

22



3.2 MLP Classification of Chemical Data

Due to the similar appearance between the signals of each class, the MLP were trained

to discriminate first between alcohols and aldehydes The similarity in appearance

(max. peak at 170 ms) suggested that the two classes would be more difficult to

classify over two sets of more dissimilar signals (ref. Figure 1). 4 of the 27 Alcohols

and 4 of the 18 Aldehydes contained within the database were randomly chosen for

inclusion in the training data. Eight signals from each individual chemical were used

in training for a total of 64 training vectors

The 64 vectors were broken-down into three sets. One set was used for training

the MLP, the second for testing the MLP and the third for validating the results.

The structure of the MLP consists of 128 inputs, 2 hidden nodes and two output

nodes. Each hidden node multiplies every input by a weight, sums the results and

adds a bias factor. The tanh sigmoid function is applied to the resulting summation.

These results, scaled between -1 and +1 by the tanh function, are multiplied by the

weights of each output node, summed, and a bias factor added. The tanh sigmoid

function is again applied resulting in the output of the MLP. A value of approxi-

mately +1 for node one and approximately -1 for node two signifies that the input

signal was classified as an alcohol while a value of approximately -1 for node one

and approximately +1 for node 2 signifies that the input signal was classified as an

Aldehyde.
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3.3 Parallel Hardware Implementation

Parallel hardware implementation implies that there exist two multiply-add trees, one

for each hidden node, running in parallel. This is followed by two smaller multiply-

add trees, one for each output node, that also run in parallel. The multiply-add trees

are comprised of 128 multipliers and eight levels of adders totaling, 128 adders for the

hidden nodes. The output multiply-add trees consist of 2 multipliers and 2 adders

with two levels of adders.

3.4 Single Bit Width Design

The hardware slice usage for the MLP described in section 3 was estimated using

only one bit width type of the N-bit multiplier and 2N-bit adder.

Table 3.1 shows the total number of hardware slices for each design. It also shows

the mean of the sum squared of the errors taken for all 64 training, test and validation

data vectors at a particular precision. The individual errors are the deviations from

the 64-bit double precision floating point outputs computed in Matlab. These were

the original results of training the MLP in Matlab. The last column lists the number

of misclassifications produced after running the complete set of 64 training, test and

validation vectors through the particular N-bit design. It shows that the configura-

tions using only 7 or 6-bit multipliers with 14 or 12-bit adders, misclassify some of

the data whereas higher bit width configurations do not. This is an indication of the

classification accuracy of a particular MLP.

Table 3.2 shows the post-synthesis results for the design using all 10-bit multipliers
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Table 3.1: size, error and accuracy by bit-width

Multipliers / Adders Total Slices Mean SSE Misclassifications

10/20-bits 17,420 0.016199 0

9/18-bits 16,900 0.0272 0

8/16-bits 11,700 0.094394 0

7/14-bits 10,920 0.226207 2

6/12-bits 7,020 0.742147 15

and 20-bit adders. Results include the added slices for the tanh activation functions,

weight and input registers.

Table 3.2: all 10-bit post-synthesis results

Slices LUT’s FF’s Power

19,470 34,635 6,564 1361 mw

3.5 Variable Bit Width Design

Simulated annealing was used to generate a variable bit width design that is optimized

around hardware slice usage and output error. Beginning with an initial configuration

comprised of all 10-bit multipliers and 20- bit adders, the algorithm used only two of

the 64 data vectors, one each for the chemical species alcohols and aldehydes.

Results are provided for three simulations in Table 3.3. The first uses 4,454 fewer

hardware slices than the all 10/20-bit design of Table 3.2 and yet has a slightly better

mean SSE with no misclassifications A plot of the error and hardware usage for the
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simulation run is shown in Figure 3.2. The error shown in the Figure is the mean

value of sum squared of the errors of the output nodes for data vectors D1 and D33.

In this case the best error occurred at iteration 878 when the error was 0.0014105

and the hardware usage was 12,966 slices.

Table 3.3: size, error and accuracy post-optimization

Multipliers Total Slices Mean SSE Misclassifications

10,9,8,7 & 6-bit (variable) 12,996 0.016116 0

8, 7 & 6 bit (variable) 11,312 0.080156 0

8, 7 & 6 bit (variable) 9,322 0.171723 0

Figure 3.2: simulation run for 10, 9, 8, 7 6-bit variable bit width design

Table 3.4 shows the responses to alcohol and aldehyde input spectra of one train-

ing, validation and test (TVT) vector selected out of the set of 64. The first and
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second group are the results with all 10 bit multipliers and 20 bit adders while the

third and fourth groups are post optimization results with 10, 9, 8, 7 and 6-bit mul-

tipliers and 20, 18, 16,14 and 12-bit adders.

Tables 3.5 and 3.6 show the number of multipliers and adders for given bit widths

before and after optimization. If a device is chosen that has embedded multipliers,

as most now do, this table can be used to choose which multipliers to move from a

logic implementation to embedded multiplier. This would further reduce the number

of slices required of all designs.

3.6 Power Dissipation Estimates

It should be noted that any reduction in the number of hardware slices reduces the

power consumed by the device. Table 3.7 provides estimated power dissipation based

on the slice usage estimates. Power dissipation was calculated using the Xilinx web-

based power calculator for Virtex II Pro devices.

3.7 Adaptive Reconfiguration

Device reconfiguration is performed through the selection of Pareto-optimal design

points from the design point curve of Figure 3.3. The curve contains design points

from both the single and variable bit width designs presented in section 4. Note

that the design point containing 11,700 slices is not a Pareto point and can be elim-

inated. Three scenarios are presented for which the ability to adapt the hardware is
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Table 3.4: 10-bit TVT data vector responses

Alcohol Node Aldehyde Node SSE

64-bit 10bit 64-bit 10-bit

Pre-Optimization Alcohol Responses

0.96391 0.96332 -0.98192 -0.999 0.001122

0.96198 0.93329 -0.98093 -0.999 0.002376

0.93258 0.78448 -0.96077 -0.82959 0.020561

Pre-Optimization Aldehyde Responses

-0.96101 -0.999 0.97645 0.999 0.001122

-0.94798 -0.999 0.96738 0.999 0.002376

-0.96047 -0.999 0.97671 0.999 0.020561

Post Optimization Alcohol Responses

0.96391 0.93988 -0.98192 -0.999 0.001411

0.96198 0.72968 -0.98093 -0.95032 0.029253

0.93258 0.99628 -0.96077 -0.999 0.00375

Post Optimization Aldehyde Responses

-0.96101 -0.999 0.97645 0.999 0.001411

-0.94798 -0.999 0.96738 0.999 0.029253

-0.96047 -0.999 0.97671 0.999 0.00375
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Table 3.5: number and bitwidth of multipliers after optimization

Mults 10-bit 10-bit & less 8-bit Only 8-bit & less #1 8-bit & less #2

Only

10-bit 260 57 0 0 0

9-bit 0 55 0 0 0

8-bit 0 52 260 47 232

7-bit 0 41 0 97 17

6-bit 0 55 0 116 11

Total 260 260 260 260 260

Table 3.6: number and bitwidth of adders after optimization

Adders 20-bit 20-bit & less 16-bit Only 16-bit & less #1 16-bit & less #2

Only

20-bit 260 69 0 0 0

18-bit 0 43 0 0 0

16-bit 0 53 260 36 138

14-bit 0 52 0 120 66

12-bit 0 43 0 104 56

Total 260 260 260 260 260
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Table 3.7: area and power dissipation of multipliers and adders

Multipliers / Adders Total Slices Estimated Power Dissipation

10/20-bits 17,420 1296 mw

9/18-bits 16,900 1272 mw

10/20, 9/18, 8/16, 7/14 & 6/12-bit (variable) 12,966 1091 mw

8/16-bits 11,700 1032 mw

8/16, 7/14 & 6/12 bit (variable) 11,312 1021 mw

7/14-bits 10,920 996 mw

8/16, 7/14 & 6/12 bit (variable) 9,322 922 mw

6/12-bits 7,020 816 mw

advantageous.

The device has the ability to dynamically switch between the loaded configuration

and any other that may reside in its, memory, otherwise known as its configuration

space. For this reason the three optimized classifiers are stored at unique addresses

in the configuration space and the device can multiplex between them. It takes 79

milliseconds for the device to switch between configurations. The old configuration

is erased from the device and the new configuration is loaded.

3.8 Synergistic Reconfiguration

Classifying IMS spectra into one of two chemical species is a small part of the overall

scheme. Periodically, it is desirable to identify the individual chemical and this re-

quires that an additional classifier be employed. One way to do this is to reconfigure

the device to add this functionality. In doing so, it would be advantageous to keep
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Figure 3.3: Design Points

the chemical species classifier in memory for the purpose of change detection, but

switch to a smaller design by selecting an appropriate design point. In this way, two

(or more) classifiers could operate simultaneously.

With this in mind one can imagine a scenario where the highest precision chemical

species classifier is loaded in configuration 1. This corresponds to design point with

17,420 slices of Figure 3.3, or perhaps to an optimized 12-bit, or higher precision clas-

sifier Upon positive classification of an alcohol compound the device is reconfigured

to load a high precision individual alcohol classifier selected from a comparable design

point curve (not shown). Next, if the alcohol classifier identifies the alcohol as being

isopropyl alcohol, this positive classification and identification allows the device to

be reconfigured to a third configuration were the chemical species classifier having

9,322 slices is selected from the set of Pareto points on the design curve of Figure

3.3. Similarly, an individual alcohol classifier is selected from a comparable design
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Figure 3.4: Synergistic Reconfiguration

point curve (not shown) and both are operated simultaneously. Figure 3.4 depicts

this sequence.

This is advantageous because the individual chemical classifier has no facility

for detecting if the IMS sensor begins sensing an aldehyde compound. If this were to

happen the output of the individual alcohol would become meaningless and the device

would switch back to configuration 1, then to a high precision aldehyde classifier, and

finally to a fifth configuration comprised of the reduced precision species classifier and

a reduced precision aldehyde classifier.

3.9 Fault Tolerance

A second scenario where reconfiguration may be useful is for fault tolerance. We could

run the larger single bit width design and if an area of the device becomes damaged

over the course of time, automatically switch to a smaller design. We can easily check
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Figure 3.5: Fault Tolerance

the results of our MLP against a reference signal to see if a fault has occurred. If

so, we simply reconfigure the device to a smaller design. For instance we could have

4 of the same design stored in memory with each design layout having employing a

unique keep-out area as shown in figure 3.5.

3.10 Low Power Dissipation

A third scenario where reconfiguration may be useful is when we wish to switch to a

configuration that dissipates less power while maintaining the sampling rate. In this

case we choose a Pareto point from Figure 3.4 that uses fewer slices and subsequently

wastes less power.
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Chapter 4

A Network of Adaptive Classifiers

4.1 Introduction

This chapter focuses on extending the concept of the adaptive classifier, introduced

in the previous chapter, to operation in a distributed computing network with de-

centralized control. In addition, One versus the-Rest binary classification is used as

opposed to the One versus One approach detailed in the previous chapter. The main

task of the network is to track and localize chemical clouds over the area covered

by the nodes. However, this is only one application and it is believed that the con-

cepts presented here are applicable to other tracking and localization problems using

different sensor modalities.
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4.2 Network Architecture

The network of adaptive classifiers is a spatial grid consisting of 256 nodes arranged

in a 16 x 16 node lattice, but in general can be any dimension. Each node is assigned

an address, using the numbers 1 through 256, and nodes are ordered sequentially.

Therefore, row number 1 of the network contains nodes with addresses 1 through 16

in sequence, while row number 2 nodes are ordered 17 through 32 etc as shown in

Table 4.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Table 4.1: a network of 256 nodes with address assignments

Nodes are arranged such that each node has four neighbor nodes. These are the

four adjacent nodes located on top and bottom and to the left and right, forming what

is known as a von Neumann neighborhood. Other neighborhood arrangements can be
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found in the literature including the Moore neighborhood consisting of a center node

and 8 neighbors, as well as hexagonal neighborhood of nodes having 6 neighbors. The

network of adaptive classifiers presented here can be easily adapted to use a Moore

neighborhood. However, this will be left for future study and only results of the von

Neumann arrangement of nodes will be discussed herein.

The network is populated with adaptive classifiers which are One-versus-the-Rest

binary classifiers trained to detect chemical species and individual chemicals belonging

to specific species. The classification output may be viewed as a binary decision (or

classification) tree where the root, or starting node, is a classifier trained to detect

any chemical gas from all other phenomena, a Chemical-versus-the-Rest classifier,

and the ending node would be the classified chemical. An example of an individual

chemical classifier is a hexanal-versus-the-Rest classifier where hexanal is the chemical

identified, and the-Rest refers to the remaining chemicals belonging to the same

species; in this case the species in an Aldehyde. Figure 4.2 depicts the binary decision

(classification) tree for this example. Figure 4.1 shows the chemical species and

individual chemicals included in the simulations.

The classifiers may be arranged in various ways which referred to here as struc-

tures. The majority of the experiments of the next chapter use the diagonal structure

shown at the end of chapter 5 where the classifiers, numbered 1 through 5, are loaded

into the network sequentially by node address, and form diagonal lines within the

network. These are the 5 chemical species classifiers which also contain 4 individual

chemical classifiers, all at varying bit precisions. It is important to note that only

the chemical species classifiers are initially loaded into the reconfigurable logic of the
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Figure 4.1: 5 Chemical Species/20 Chemicals

Figure 4.2: Binary Classification
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Figure 4.3: Prisoner’s Dilemma

FPGA. Switching the reconfigurable logic to other configurations is based on the

decision rules which will be described next.

4.3 The Prisoner’s Dilemma

The prisoner’s dilemma is a game popularized by game theorists and used by evolu-

tionary biologists, economists and social and political scientists to explore areas as

diverse as cellular mechanisms of cancer cells, to the spread of culture and the align-

ment of nations. Two players meet and each has a choice of cooperating or defecting.

If both cooperate then they both receive a reward, R. If they both defect, they receive

a punishment, P. If one defects while the other cooperates, then the defector gets a

temptation, T, and the cooperator gets a suckers payoff, S, which is usually zero.

These are called the payoffs and they are arranged with assigned values in a payoff

matrix as shown in Figure 4.3.
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In order for the game to be a prisoner’s dilemma the following two requirements

must be met: T > R > P > S and 2R > T + S. Therefore the payoffs that each

player receives don’t necessarily need to be the same. They can be different, provided

they meet the above two requirements. The dilemma is that it pays to defect if the

other player cooperates, but if both defect, they both do worse than if they had both

cooperated. The game is more interesting when played over several iterations and

becomes the iterative prisoner’s dilemma. It opens up the possibility to employ a

strategy to try to maximize ones score over time. The prisoner’s dilemma will mostly

be used in this way and the strategies that will be explored in this study are ALLC,

ALLD, TFT, GTFT, ALTDC and RANDD.

1. ALLC - Always cooperate no matter what done on the previous move(s).

2. ALLD - Always defect no matter what done on the previous move(s).

3. TFT (Tit-For-Tat) - Always cooperate first then do what the other player did

previously.

4. GTFT (Generous Tit-For-Tat) - Always cooperate first then cooperate if the

other player cooperated on the previous turn or if they previously defected then

defect with probability 2/3.

5. ALTDC - Alternate defection and cooperation.

6. RANDD - Randomly defect with probability p = 0.1.
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4.4 An Abundance of Classifiers, Growth Rate and

Reconfiguration Frequency

In order to assess the effectiveness of classification, tracking and localization a metric

is required. The metric used in this study is the percent of correct classifiers under

the target chemical cloud, averaged over the duration of the event. This is termed the

abundance of classifiers and denoted by, A. If A is high, then classification is deemed

successful, and conversely, unsuccessful, if it is low. At each sensing opportunity, the

total number of correct chemical classifiers that are at the same node locations as the

chemical cloud pattern are calculated. Next, the percentage of correct classifiers, in

relation to the total number in the cloud pattern is calculated, so as to normalize the

values, when comparing against cloud patterns of different sizes. The percentages are

then averaged over all sensing opportunities to form the abundance number, A.

Abundance alone does not tell the complete story. With respect to the present

task, it is best to form an abundance of classifiers early in the event timeline rather

than at the end and for this reason the second metric used is the growth rate of

correct classifiers, G. The growth rate is calculated by taking the ratio of the number

of correct classifiers at rounds rmax over r1 of the iterative prisoners’ dilemma for

each sensing opportunity. Therefore when G > 1 the population is growing between

sensing opportunities, whileG < 1 implies that the population is dwindling. When

G = 1, the population remains steady. The figure below shows the growth rate

exhibited when playing the strategy ALLD for pattern No. 2, using two sensing

cycles and four rounds of prisoner’s dilemma per Sensing opportunity (cycle). In this
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case the highest rate of growth does appear early enough for tracking and localization

to be successful. In this case the abundance number A = 85.2%

Figure 4.4: Growth Rate

The final metric used in the study is the reconfiguration frequency, F . Each node

has an associated value for F . Some strategies may produce higher values of F that

others. Higher values of F translate into increased numbers of reconfigurations and

communication which then requires more power to operate the network. Given a

choice between two strategies with similar A and G, but one with high F and the

other with low F , the strategy with low F would be selected.

4.5 Network Parameters

The success or failure of classification, tracking and localization is directly dependent

upon several network parameters, including number of sensing opportunities and

number of rounds of prisoner’s dilemma per sensing opportunity. In addition, the

distance between the nodes and/or the bit rate of communication must be matched

to the aforementioned parameters. Structure also plays a role, however as stated
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previously the focus is on diagonal-structure.

Today, high-speed gas chromatography and Ion Mobility spectrometers can cap-

ture and classify a chemical’s unique signature in the hundreds of milliseconds. The

length of time required for chemical ions to be present in the sensing drift-tube of an

IMS device is only 10-25 msec. The adaptive classifier in reconfigurable logic runs

most of computing elements in parallel leading to fast execution of the MLP, on the

order of milliseconds. Using this information, a sensing and classification time of 1000

ms is used.

In addition, each round of the prisoner’s dilemma requires execution of a state

machine running within the microcontroller and communication with neighbor nodes.

Communication associated with exchanging decisions, strategies and classifier weights

is on the order of 600 bytes per round of prisoner’s dilemma for 12-bit and 10-bit

precision, while 8-bit precision classifiers require only 300 bytes be communicated.

Table 4.2 shows achievable communication times under varying precisions using bit

rates of 4800 bps, 9600 bps and 19200. The execution time is used to establish a

minimum distance between the nodes. Specifically, it is used to match the execution

time to the current wind speeds since it is the wind speed that dictates the speed of

the chemical cloud. For purposes of this of study, wind speed has been grouped into

three categories; fast, medium and slow. Fast clouds travel at 10 m/s, while medium

and slow moving clouds travel at 5 m/s and 2.5 m/s, respectively.

As an example, if the target cloud is moving 10 m/s and the bit rate communica-

tion is 4800 bps, the nodes would be spaced at least 10m/s x 2 second intervals, or 20

meters apart in order to sense once and play one round of prisoner’s dilemma. Multi-
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Figure 4.5: Task schedule options at 20 meter node distance

ple rounds are often required to be played and most of the experiments of chapter 5

include at least two rounds per sensing opportunity. This requires that the nodes be

placed a minimum distance of 40 meters apart for the scenario given above. At this

distance medium and slower moving clouds are given more sensing and game playing

opportunities, 2X and 4X more, respectively.

Table 4.2: Exemplar Communication Rates and Times

Bit Rate of Communication 12 & 10 bit Precision 8-bit Precision

4800 bps 1000 ms 500 ms

9600 bps 500 ms 250 ms

19200 bps 250 ms 125 ms
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4.6 Networked Adaptive Classifiers

The adaptive classifiers presented in the previous chapter contain one species and

4 chemical classifiers each with 3 levels of precision that are optimized to reduce

area/power consumption. Operating them in a network requires that three additional

configurations be loaded in the configuration-space of the FPGA. These are full pre-

cision versions of the MLP in 12, 10 and 8-bits. These additional configurations allow

for execution of the non-native classifiers obtained from dissimilar classifiers through

the communication channel as a result of losing a round of the prisoner’s dilemma.

The weights and inputs of the optimized classifiers are tuned to various bit lengths

and it would be required that the weights as well as their associated bit length be

transmitted after every round of game play where at least one node lost. This doubles

the number of bit transmitted per round. Even if this extra information were sent each

FPGA would need to have the correct arrangement of multipliers and adders which

translates into extra configurations. In fact it would be necessary for each classifier to

have the configurations of every other classifier for a total of 75 configurations. Each

configuration is approximately 6 M-bits in size and having 75 configurations would

require a 64 Mbytes of memory whereas 18 configurations can be stored in a much

smaller 128 M-bit chip.

Configuration is performed in two general ways. One way is for the reconfigurable

logic of the device to be reconfigured from an native classifier to a generic bitwidth

classifier. The second way is to reconfigure only the MLP by using weights transmitted

from other classif
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4.7 Decentralized Control of the Network

While many networks operate under a central authority the evolutionary approach

described herein is inherently decentralized. The network is designed to in operate

in one of two ways. The first is to employ a single strategy for all nodes to use when

playing the prisoner’s dilemma. The second is for all nodes to start with the same

initial strategy, and then switch to a different one upon sensing a chemical. Both are

illustrated using the following example. Tables 4.3 and 4.4 below show a 5 x 5 grid

network of adaptive classifiers. The network starts with species classifiers A, B, C, D

and E and strategy ALLC, all cooperate. Let’s suppose that a chemical gas cloud of

species C enters the network at nodes (3, 1) and (4, 1) shown as shaded in the tables.

During the next sensing opportunity node (3, 1) detects the chemical species.

Table 4.3: Mode 1 Operation - Single Strategy

1 2 3 4 5 1 2 3 4 5

1 A B C D E 1 C C C C C

2 B C D E A 2 C C C C C

3 C D E A B 3 C C C C C

4 D E A B C 4 C C C C C

5 E A B C D 5 C C C C C

Table 4.4: Mode 2 Operation - Two Strategies

1 2 3 4 5 1 2 3 4 5

1 A B C D E 1 C C C C C

2 B C D E A 2 C C C C C

3 C D E A B 3 D C C C C

4 D E A B C 4 C C C C C

5 E A B C D 5 C C C C C
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In operating mode 1 the strategy of node (3, 1) remains the same, while operating

in mode 2, the strategy changes to ALLD, always defect. In addition the payoffs

for operating mode 1 are T = 6 > R = 4 > P = 2 > S = 0 for node (3, 1) and

T = 5 > R = 3 > P = 1 > S = 0, for all others. In operating mode 2 all nodes

including node (3, 1) receive the same payoffs of T = 5 > R = 3 > P = 1 > S = 0.

Table 4.5 shows the payoffs for each node after one round of the prisoner’s dilemma.

In operating mode 1, the positively sensing node (3, 1) receives cumulative payoff

of 16, because it cooperates once each with its’ four neighbors and receive 4 points

each time. Its’ neighbors have a cumulative payoff of only 12 each. Since they

do not sense the chemical they do not receive the extra payoff points allotted to

node (3, 1). Since nodes (2, 1), (3, 2) and (4, 1) are all neighbors of node (3, 1)

and it has a better payoff than any of their neighbors including themselves, they

reconfigure classifiers. Specifically, they switch to one of node (3, 1)’s individual

(analyte) chemical classifiers. The choice of which one is determined randomly by

node (3, 1) each one given probability 0.25.

Table 4.5: After First Detection
1 2 3 4 5 1 2 3 4 5

1 12 12 12 12 12 1 A B C D E

2 12 12 12 12 12 2 C4 C D E A

3 16 12 12 12 12 3 C C1 E A C3

4 12 12 12 12 12 4 C2 E A B C

5 12 12 12 12 12 5 E A B C D

Let’s suppose the chemical cloud contains chemical C2. Table 4.6 below shows the

payoffs after a second round of prisoner’s dilemma is played prior to the next sensing
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opportunity but using the data obtained from the prior sensing opportunity. If this

is not done then activity ceases and it makes no sense to play further rounds under

mode 1. Also here is only a small computational cost to re-compute an output for

the new classifiers. With this consideration, node (4, 1) will positively sense it and

receive the increased payoffs.

Table 4.6: Scores and Classifiers
1 2 3 4 5 1 2 3 4 5

1 12 12 12 12 12 1 A B C D E

2 12 12 12 12 12 2 C3 C D E A

3 16 12 12 12 12 3 C C2 E A C4

4 16 12 12 12 12 4 C2 C2 A B C2

5 12 12 12 12 12 5 C2 A B C D

Node (3, 1) again randomly chooses individual analyte configurations to send to

nodes (2, 1), (2, 3) and (3, 5) with probability 0.25 but does not transmit one to

node (4, 1) since that node now has an equal score. In addition, this time node (4,

1) transmits its’ C2 classifier to nodes (4, 2), (5, 1) and (4, 5). Table 4.7 shows the

chemical cloud location at the next time instance and sensing opportunity.

If the cloud contains chemical C2, then the network will correctly classify 2/3

of the cloud and the abundance, A = (50% + 66.7%)/2 = 58.4%. If however the

cloud contains chemical C3 then only 1/6 of the cloud is correctly classified and A

= 33.3%. If the chemical is C1 or C4 then A = 25%. Any classifier that is incorrect

after sensing is reset to its’ initial species classifier. So, if the cloud contains chemical

C2, then nodes (2, 1), (3, 5), and (4, 5) will be reset to their original, B, B and C

species classifiers, respectively.
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Table 4.7: Classifier Changes

1 2 3 4 5 1 2 3 4 5

1 A B C D E 1 A B C D E

2 C3 C D E A 2 B C D E A

3 C C2 E A C4 3 C C2 E A B

4 C2 C2 A B C2 4 C2 C2 A B C

5 C2 A B C D 5 C2 A B C D

Another round of prisoner’s dilemma is played and the scores are shown below

along with any new updates to the classifiers. It is assumed here that node (3, 1) once

again chose the incorrect classifier, C4 to transmit to node (2, 1). If it had chosen C2

instead, then there would be 5/6 correct classifiers under the cloud. Also, if a rule

was employed to over-rule the previous tie between parent and child classifier, then

node (4, 1) could have reconfigured node (3, 1) with classifier C2, further improving

A. Also, the growth rate, G = 1.5 under these considerations and G = 1 (no growth)

without them. Note, in the previous time instance G is undefined because the ratio

was 1/0. Reconfiguration frequency F = 22 thus far, without the two considerations

of correct selection at node (2, 1) and over-ruling ties between parent and child

classifiers.

Table 4.8: Updated scores and classifiers

1 2 3 4 5 1 2 3 4 5

1 12 12 12 12 12 1 C2 B C D E

2 12 12 12 12 12 2 C4 C2 D E A

3 16 16 12 12 12 3 C C2 C2 A C1

4 16 16 12 12 12 4 C2 C2 C2 B C2

5 16 12 12 12 12 5 C2 C2 B C C2

The mode 2 operation relies on selection of a different strategy upon positive
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classification of a species or individual, rather than an increase in payoffs and is

explained here.

Using the same cloud pattern at the first time instance node (3, 1) again positively

classifies chemical species C. However this time node (3, 1) changes its’ strategy from

ALLC to ALLD ensuring that it’s next decision will be to defect, as indicated in table

4.9. The payoffs after one round of prisoners’ dilemma are also given below.

Table 4.9: Mode 2 score, classifiers and decisions

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 12 12 12 12 12 1 A B C D E 1 C C C C C

2 9 12 12 12 12 2 C1 C D E A 2 D C C C C

3 20 9 12 12 9 3 C C2 E A C4 3 D D C C D

4 9 12 12 12 12 4 C3 E A B C 4 D C C C C

5 12 12 12 12 12 5 E A B C D 5 C C C C C

Node (2, 1), (3, 3), (3, 5) and (4, 1) each receive one of node (3, 1)’s individual

chemical classifiers with equal probability, and C1, C2, C4 and C3, respectively. A

second round of prisoner’s dilemma is played but this time without using the sensor

data stored in memory.

Table 4.10: After second round of PD
1 2 3 4 5 1 2 3 4 5

1 9 12 12 12 12 1 C1 B C D E

2 16 6 12 12 6 2 C1 C1 D E C4

3 4 16 9 9 16 3 C2 C2 C2 C4 C4

4 16 6 12 12 6 4 C3 A A B B

5 9 12 12 12 12 5 C3 A B C D

An examination of the ensuing node reconfigurations, reveal that node (1, 1)

changes to C1. Node (2, 2) is reconfigured to C1 or C2 with equal probability. Node
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(2, 5) can change to C4 or C1. Node (3, 1), the first node to defect, is reconfigured to

C1, C2, C3 or C4 with equal probability. Node (3, 3) and (3, 4) change to C2 or C4,

respectively. Node (4, 2) is reconfigured to C2 or C3, while node (4, 5) is reconfigured

into either C3 or C4. Node (5, 1) is reconfigured to classifier C3. All other nodes

keep their configurations for the next sensing opportunity. If on the next sensing

opportunity, a node does not identify the chemical as one belonging to its currently

loaded configuration, it resets to its’ initial configuration and initial strategy, ALLC,

resulting in the figures below.

Table 4.11: After Reset
1 2 3 4 5 1 2 3 4 5

1 A B C D E 1 C C C C C

2 B C D E A 2 C C C C C

3 C2 D E A B 3 D C C C C

4 D E A B C 4 C C C C C

5 E A B C D 5 C C C C C

After the next sensing opportunity and round of prisoners’ dilemma, classifier

C2 at node (3, 1) propagates to nodes (2, 1), (3, 2), (3, 5) and (4, 1). On round

two, these nodes will accumulate a score of 16, scoring higher than all other nodes,

including node (3, 1) which now has the lowest score of all nodes with a score of 4.

However, node (3, 1) does not reconfigure because it already has C2 loaded and is

already playing strategy ALLD. The nodes that do reconfigure to classifier C2 and

change to ALLD are nodes (1, 1), (2, 2), (2, 5), (3, 3), (3, 4), (4, 2), (4, 5) and (5,

1). Now all classifiers under the cloud are C2 resulting in A = (0/2+1/6+6/6) /2 =

38.% as long as the cloud remains in the current position. Even if move to right by
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one node there will still be 4 nodes under the cloud, and A = (0/2+1/6+4/6) /2 =

27.8%. Even though the abundance seems low, the growth rate G = 6, as the number

of classifiers under the cloud increased from 1 to 6, which is very good. The downside

is that the reconfiguration frequency, F = 35.

Table 4.12: Cloud Moves - updated scores/classifiers

1 2 3 4 5 1 2 3 4 5

1 A B C D E 1 9 12 12 12 12

2 C2 C D E A 2 16 6 12 12 6

3 C2 C2 E A C2 3 4 16 9 9 16

4 C2 E A B C 4 16 6 12 12 6

5 E A B C D 5 9 12 12 12 12

Table 4.13: Updated decisions and classifiers

1 2 3 4 5 1 2 3 4 5

1 C C C C C 1 C2 B C D E

2 D C C C C 2 C2 C2 D E C2

3 D D C C D 3 C2 C2 C2 C2 C2

4 D C C C C 4 C2 C2 A B C2

5 C C C C C 5 C2 A B C D

Chapter 5 details computer simulations used to assess the effectiveness of both of

the operating modes illustrated above but under varying parameters.
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Chapter 5

Methods, Experiments and

Discussion of Results

5.1 Description of Experiments

In order to test the validity of the approach described in the previous chapters a series

of experiments were conducted. Five basic test patterns were presented as input to a

computer simulated network of adaptive classifiers. The 5 basic test patterns repre-

sent different chemical clouds scenarios. Each test pattern was applied under different

network parameters. These parameters represent different ways to run the network

and include; number of sensing opportunities, number of iterations of the prisoner’s

dilemma run per sensing opportunity, different strategies, and classifier network struc-

ture. In addition, ion mobility spectra of different volatile organic compounds were

used to test the networks classification performance.
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5.2 Test Patterns

The following describes in detail the five test patterns used in the experiments. Table

5.1 and the Tables at the end of this chapter, depict each pattern in relation to the

256 node network of classifiers. Each of the numbers 1 through 256 in the figures

is the address of a node and also indicates the nodes position in the network. The

area over the network that the chemical cloud pattern covers is represented by the

shaded nodes. For example, in the case of test pattern number 1, the chemical cloud

is shown to extend over the twenty nodes with address numbers 89, 90, 104, 105, 106,

119 through 123, 135 through 139, 151 through 154 and 169. Each pattern moves

in a particular direction and manner. In the case of pattern number 1, it moves

from West to East, entering and first appearing to the network at nodes 113 and

129 and exiting and last appearing at nodes 128, 144 and 160. The remaining test

patterns are depicted in a similar manner as test pattern number 1. However, they

exhibit very different motion. Test pattern number 2 is derived from test pattern

number 1 and contains the same arrangement of 20 nodes. It is different in that it

attempts to simulate what may happen when a moving cloud reaches an obstruction,

such a building. This pattern separates into two diverging clouds after blowing into a

simulated building located at the nodes with addresses 121 and 137, midway through

the network. Test pattern number 3 also contains the same pattern as the separating

cloud of pattern number 2; however it contains a small cloud of a different chemical

of size 8 nodes moving parallel and in sync with the larger one. After the large cloud

separates, the diverging lower half merges with the smaller cloud at nodes in the lower
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right corner of the network. While the clouds are merging the sensor senses either of

the two chemicals with probability 0.5 therefore the assumption is that the chemicals

are not sufficiently mixed to create new spectra but either can still be classifier by

their individual ones.

Table 5.1: Cloud Pattern No. 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Test pattern number 4 is quite different in that it models an expanding chemical

plume. This type of pattern is typically the result of some type of accident like a

train derailment where the train was transporting chemical tanker cars, a pipeline

leak or an unintended release at a chemical processing facility. The plume begins at

node 61 and over time drifts down and to the left finally stopping at nodes 197 and

213 expanding and contracting slightly. The plume covers 46 nodes at its greatest

extent. Finally, test pattern number 5 simulates one large cloud moving from North

to South followed immediately by a smaller cloud of a different chemical. The motion

attempts to simulate a chemical attack whereby the attacker attempts to trick the
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network into reacting to the first and misclassify, or miss completely, the second one,

which would presumably be a more lethal substance.

5.3 Group 1 versus Group 2 Experiments

Experiments are grouped by the parameter settings applied during the simulation

run. In both groups sensing opportunities are varied between 1, 2 and 4, also the

number of iterations of the prisoners’ dilemma was usually run at 2 or 3 iterations

and occasionally more. Classifiers were arranged in 1 of three different ways. All of

the experiments presented use the diagonal structure shown in Appendix A, where

each species classifier is assigned sequentially to sequential node addresses 1 through

256. A number is assigned to each of the 25 classifier types. Classifiers were assigned

numbers 1 through 5 for the species and 11, 12, 13 and 14 for species 1, etc. The

two other classier arrangements were used periodically to test if node neighborhood

influenced the tracking and localization performance. Results from these trials are

not presented herein. The first of these is a random assignment of classifiers while

the second aligns the classifiers in columns while also eliminating one class entirely.

Group 1 experiments are characterized by the fact that they all use a single strat-

egy when playing the prisoners’ dilemma. All nodes of the network play only one

of the following strategies; ALLC, TFT, ALLD, ALTDC and RANDD and all nodes

play the same strategy. No switching of strategies is permitted. The driving force

behind the node reconfigurations is an imbalance in payoffs. Nodes that correctly

classify a chemical species or individual chemical receive an extra payoff point. In
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Group 2 experiments nodes play one of two strategies, including ALLC, ALLD, TFT,

GTFT, ALTDC, and RANDD with each strategy having equal payoffs. In this way

it is possible to test one strategy versus another.

5.3.1 Group 1, Experiment No. 1

These simulations use pattern number 2 and a single strategy to reconfigure the nodes.

Positive Sensing Node: T = 57 > R = 27 > P = 7 > S = 0

Negative Sensing Node: T = 56 > R = 26 > P = 6 > S = 0

The chemical spectra used: Methyl Alcohol (Alcohol Species)

Table 5.2: Group 1 Experiment No. 1 Results for TFT ALLC GTFT

TFT/ALLC/GTFT - Patten No. 2

Two Rounds PD Run# A

Sensor Cycles 1 2 3 4 5 Average

1 14.00% 33.60% 35.00% 29.40% 44.80% 31.30%

2 71.30% 83.10% 83.10% 82.40% 51.20% 74.20%

4 81.80% 85.00% 71.10% 87.00% 70.40% 79.10%

8 80.60% 87.60% 94.60% 94.70% 88.70% 89.30%

16 95.40% 88.60% 81.00% 95.30% 95.40% 91.10%

The results indicate that the ALTDC strategy is slightly better at classifying the

chemical cloud than TFT/ALLC/GTFT when sensing opportunities are 1, 2, 4 or 8.

TFT/ALLC/GTFT is slightly better when there are 16 sensing opportunities. ALLD

is better than either ALTDC or TFT/ALLC/GTFT when sensing opportunities are

1 or 4 but otherwise, considerably worse. RANDD was unacceptably bad with the
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Table 5.3: Group 1 Experiment No. 1 Results for ALTDC

ALTDC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 40.60% 39.20% 20.60% 41.60% 22.70% 32.90%

2 80.00% 79.40% 76.80% 81.40% 77.00% 78.90%

4 88.80% 86.70% 59.90% 88.30% 86.60% 82.10%

8 94.30% 87.40% 94.60% 87.40% 87.80% 90.30%

16 89.20% 95.40% 95.40% 95.50% 74.20% 89.90%

Table 5.4: Group 1 Experiment No. 1 Results for ALLD

ALLD

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 46.90% 34.30% 35.30% 25.90% 38.80% 36.20%

2 79.60% 6.30% 81.40% 83.10% 71.80% 64.40%

4 78.90% 86.80% 86.50% 85.80% 89.70% 85.50%

8 87.70% 94.60% 74.30% 75.40% 87.80% 84.00%

16 95.40% 81.50% 80.80% 89.60% 55.80% 80.60%

Table 5.5: Group 1 Experiment No. 1 Results for RANDD

RANDD

Two Rounds/SC Run No. A

Sensor Cycles 1 2 3 4 5 Average

4 3.50% 22.00% 5.50% 8.30% 12.10% 10.30%
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very low value of A at 10.3%. For very fast moving clouds the data shows it would

be best to run the ALLD strategy. If however the clouds are moving at a moderate

pace either ALTDC or ALLD should be used. For slow moving clouds a strategy of

TFT/ALLC/GTFT or ALTDC should be implemented.

5.3.2 Group 1, Experiment No. 2

These simulations use pattern number 3 where two gas clouds move at the same pace

parallel to each other for a time. The larger one separates into two clouds after striking

a simulated building. Results for the two best performing strategies are presented in

the tables below. Payoffs used are as follows:

Positive Sensing Node: T = 57 > R = 27 > P = 7 > S = 0 Negative Sensing Node:

T = 56 > R = 26 > P = 6 > S = 0

The chemical spectra used: Large Cloud: Methyl Alcohol (Alcohol Species) Small

Cloud: nOctane (Alkane Species)

Table 5.6: Group 1, Experiment No. 2 Results using TFT

TFT Alone

Sensing Rounds of Average Standard Abundance Abundance

Chemical Opportunities Prisoner’s Dilemma Abundance Deviation Max. Min.

methyl alcohol 1 3 29.2% 13.9% 51.3% 0.4%

nOctane 1 3 12.2% 21.1% 63.3% 0.0%

methyl alcohol 2 3 56.0% 14.5% 80.1% 19.5%

nOctane 2 3 32.8% 42.8% 95.9% 0.0%

methyl alcohol 4 3 61.6% 22.7% 84.9% 0.4%

nOctane 4 3 55.0% 45.7% 96.8% 0.0%
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Table 5.7: Group 1, Experiment No. 2 Results using ALLC

ALLC Alone

Sensing Rounds of Average Standard Abundance Abundance

Chemical Opportunities Prisoner’s Dilemma Abundance Deviation Max. Min.

methyl alcohol 1 3 30.4% 10.8% 47.8% 0.0%

nOctane 1 3 24.4% 25.4% 62.5% 0.0%

methyl alcohol 2 3 59.7% 18.4% 80.0% 0.0%

nOctane 2 3 29.2% 41.4% 95.4% 26.8%

methyl alcohol 4 3 65.0% 16.0% 87.6% 0.0%

nOctane 4 3 54.3% 46.2% 96.4% 1.8%

Results for TFT and ALLC are provided in the tables and indicate that at best

it can correctly classify between 55% and 65% of the two clouds. ALLC had slightly

better results than TFT.

5.3.3 Group 2, Experiment No. 1

These simulations use pattern number 1 where a single chemical clouds moves from

West to East. The chemical spectrum used was methyl alcohol (alcohol species).

In this experiment the element of randomness was reduced by allowing each species

classifier to have only one individual classifier instead of the usual four. This also

served to help establish the maximum value that could be expected for A.

Payoffs: T = 1.67 > R = 1 > P = 0.67 > S = 0

This experiment reveals that under the best circumstances an abundance averag-

ing in the low to middle 90 percentile can be expected. This infers that very good

classification can be expected if values of A range in the middle to high 80 percentile.

59



Table 5.8: Group 2, Experiment No. 1A Results using ALLD vs. ALLC

Cloud Pattern No. 1

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 91.80% 90.30% 91.50% 92.20% 91.50% 91.50%

2 86.80% 95.80% 95.10% 93.10% 92.30% 92.60%

4 82.70% 96.80% 96.50% 96.70% 96.70% 93.90%

Table 5.9: Group 2, Experiment No. 1A Results using ALLD vs. TFT

Cloud Pattern No. 1

ALLD versus TFT

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 91.50% 91.80% 90.60% 92.20% 92.20% 91.70%

2 95.80% 95.80% 92.50% 95.90% 87.10% 93.40%

4 96.30% 96.80% 96.70% 96.60% 96.80% 96.60%
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Next ALLD versus ALLC and ALLD versus TFT are compared. Here the species

classifiers have a one in four chance of forwarding the correct individual chemical

classifier on the first attempt. This represents the normal operation of the network.

Table 5.10: Group 2, Experiment No. 1B Results

Cloud Pattern No. 1

ALLD versus ALLC

Two Rounds PD Run No.

Sensor Cycles 1 2 3 4 5 A F

1 79.90% 88.70% 92.20% 63.90% 89.30% 82.80% 1273

2 61.60% 68.20% 92.90% 90.90% 92.30% 81.20% 2495

4 98.00% 56.00% 97.30% 98.00% 93.70% 88.80% 5464

ALLD versus TFT

1 92.80% 81.80% 89.30% 88.10% 81.20% 86.60% 1331

2 96.40% 87.30% 89.30% 95.30% 73.50% 88.40% 2655

4 93.70% 94.40% 98.00% 89.40% 92.50% 93.60% 5506

Here we see that TFT outperforms ALLC with only a very slight increase in

reconfiguration frequency.

5.3.4 Group 2, Experiment No. 2

These simulations use pattern number 2 where a single chemical cloud moves from

West to East then strikes a simulated building and separates into two diverging clouds.

Here again the species classifiers have a one in four chance of forwarding the correct

individual chemical classifier on the first attempt. This represents the normal opera-

tion of the network and all experiments that follow will be for the normal operating
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mode. To maintain consistency, methyl alcohol is once again the chemical used for

the simulation. In addition, the cyber-physical system is described in terms of the

network node distances and particular schedule of sensing opportunities and rounds

of the prisoner’s dilemma. The reader may wish to refer back to figure 4.4 to review

the schedule of tasks at 20 meter node distances.

Payoffs: T = 1.67 > R = 1 > P = 0.67 > S = 0

Table 5.11: Results for CPS with 40 meter node spacing ALLC vs. ALLD

ALLC versus ALLD

Cloud Sensing Rounds of Average Standard Average Standard

Velocity Opportunities Prisoner’s Dilemma Abundance Deviation Frequency Deviation

Fast 1 1 28.3% 11.8% 275 66

1 3 80.7% 19.0% 2575 158

2 1 68.1% 15.6% 921 148

Medium 1 7 77.8% 16.9% 10293 1582

2 3 89.2% 10.6% 5295 216

4 1 79.1% 11.2% 2023 216

Slow 1 15 73.7% 29.7% 39617 6159

2 7 78.6% 23.0% 21198 3170

4 3 90.7% 13.9% 10559 781

8 1 76.0% 11.7% 4032 329

Observation of the results indicates that the optimal number of rounds of the

prisoner’s dilemma is three. All three categories of cloud velocity responded best

when three rounds were played. They achieved scores of 80.7%, 89.7% and 90.7%

for fast, medium and slow moving clouds, respectively with only a moderate level

of reconfiguration frequency. It is important to note that while the table contains

classifier abundance values for an inter-node distance of 40 meters, the same results
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may be used for a network with 20 meter node distance. In the case of 20 meters,

only one sensing opportunity and one round of prisoner’s dilemma could be executed

for the fast cloud velocity. For a medium cloud velocity 1 and 3 or 2 and 1 of each

could be executed. Lastly, slow moving clouds have all three options of the medium

velocity clouds at 40 meter distance.

Table 5.12: Results for CPS with 40 meter node spacing TFT and GTFT

Cloud Sensing Rounds of Average Standard Average Standard

Velocity Opportunities Prisoner’s Dilemma Abundance Deviation Frequency Deviation

TFT vs. ALLD

Fast 1 3 87.4% 6.2% 2880 75

Med 2 3 87.6% 11.6% 5716 242

Slow 4 3 89.3% 14.6% 11540 453

GTFT vs. ALLD

Fast 1 3 81.9% 19.7% 2716 352

Med 2 3 81.1% 21.7% 5359 662

Slow 4 3 83.6% 22.7% 10918 1183

Guided by the previous results other strategies were used in simulations and the

table above shows results of TFT and GTFT when playing three rounds of pris-

oner’s dilemma. In this case TFT versus ALLD outperforms the previous strategy

of ALLC versus ALLD. It did particularly better when classifying the fast chemical

cloud. Next, other chemicals were used in simulations with TFT versus ALLD for

fast moving clouds. The results, shown below, indicate that TFT versus ALLD is

indeed a good strategy set to use as it successfully classified the amine, aldehyde

and alkane. However, the alkane (nOctane) was misclassified 5 times out of 25 runs.

Further classifier training may be helpful or perhaps introducing a one-versus-one

classifier would help (i.e. nOctane versus butanal), the misclassified chemical. This
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is left for further study.

Table 5.13: Other Chemicals using TFT versus ALLD and Fast Cloud Velocity

Sensing Rounds of Average Standard Abundance Abundance

Chemical Opportunities Prisoner’s Dilemma Abundance Deviation Max. Min.

MethylAmine 1 3 83.6% 17.9% 99.0% 24.8%

Butanal 1 3 74.9% 17.0% 87.4% 16.4%

nOctane 1 3 70.9% 40.0% 99.0% 0.0%

5.3.5 Group 2, Experiment No. 3

Experiment No. 3 uses cloud pattern number 3 with clouds moving parallel then

merging after the larger cloud strikes a simulated building. First methyl alcohol

and nOctane are used then nOctane is switched with hexanal. Simulations are also

conducted using different payoffs. The following are used first and results are compiled

in table 5.15.

Payoffs used: T = 1.67 > R = 1 > P = 0.67 > S = 0

Next, the following payoffs were used: T = 56 > R = 26 > P = 6 > S = 0 for

results in table 5.17.

Table 5.18 shows results using payoffs: T = 5 > R = 3 > P = 1 > S = 0

which are similar to the original payoffs but with a smaller proportional value for the

punishment.

Finally, a change is made to the chemical used for the large cloud. It is switched

from methyl alcohol to hexanal and the new chemical is simulated using the original

payoffs with much improved results. This implies that nOctane and methyl alcohol
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Table 5.14: Group 2, Experiment No. 3 Results using ALLD vs. TFT

Cloud Pattern No. 3

Large Chemical Cloud : Methyl Alcohol

ALLD versus TFT

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 67.00% 68.30% 64.90% 69.50% 73.50% 68.60%

2 49.10% 0.00% 65.30% 0.20% 45.20% 32.00%

4 18.40% 0.00% 0.00% 51.40% 86.00% 31.20%

Small Chemical Cloud: nOctane

ALLD versus TFT

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 79.80% 79.20% 92.40% 0.00% 0.00% 50.30%

2 0.00% 96.60% 72.00% 0.00% 94.60% 52.60%

4 97.20% 0.00% 0.00% 94.20% 0.00% 38.30%
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Table 5.15: Group 2, Experiment No. 3 Results using ALLD vs. ALLC

Cloud Pattern No. 3

Large Chemical Cloud : Methyl Alcohol

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 0.00% 64.40% 71.20% 75.00% 75.50% 57.20%

2 56.80% 0.00% 48.90% 51.80% 0.00% 31.50%

4 0.00% 4.60% 93.00% 49.70% 0.10% 29.50%

Small Chemical Cloud: nOctane

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 95.00% 94.00% 0.00% 0.00% 58.30% 49.50%

2 0.00% 96.60% 94.70% 94.10% 96.70% 76.40%

4 96.70% 96.80% 0.40% 94.60% 97.00% 77.10%
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Table 5.16: Results (above) and Cloud Map (below) for several time instances
1 2 3 4 1 2 3 4 1 2 3 4

1 1 2 3 4 1 1 2 3 4 1 1 2 3 4

2 2 3 4 5 2 2 3 4 5 2 2 3 4 5

3 3 4 5 1 3 3 4 5 1 3 3 4 5 1

4 4 5 1 2 4 4 5 1 2 4 4 5 1 2

5 11 1 2 3 5 5 1 2 3 5 5 1 2 3

6 1 2 3 4 6 1 2 3 4 6 1 2 3 4

7 2 3 4 5 7 2 3 4 5 7 2 3 4 5

8 3 4 5 1 8 3 4 5 1 8 31 4 5 1

9 4 5 1 2 9 31 5 1 2 9 31 31 1 2

10 5 1 2 3 10 31 31 2 3 10 31 31 2 3

11 31 2 3 4 11 31 2 3 4 11 31 2 3 4

12 31 31 4 5 12 31 31 4 5 12 2 31 4 5

13 31 31 31 1 13 31 31 31 1 13 23 31 31 1

14 31 31 31 2 14 31 31 31 2 14 31 31 31 2

15 31 31 2 3 15 31 31 2 3 15 5 31 2 3

16 31 2 3 4 16 31 2 3 4 16 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0

4 0 0 0 0 4 0 0 0 0 4 0 0 0 0

5 0 0 0 0 5 0 0 0 0 5 0 0 0 0

6 11 0 0 0 6 11 0 0 0 6 11 11 0 0

7 11 0 0 0 7 11 0 0 0 7 11 11 0 0

8 11 11 0 0 8 11 11 0 0 8 11 11 11 0

9 11 11 0 0 9 11 11 0 0 9 11 11 11 0

10 11 0 0 0 10 11 0 0 0 10 11 11 0 0

11 0 0 0 0 11 0 0 0 0 11 11 0 0 0

12 31 0 0 0 12 31 0 0 0 12 0 31 0 0

13 31 31 0 0 13 31 31 0 0 13 31 31 31 0

14 31 31 0 0 14 31 31 0 0 14 31 31 31 0

15 31 0 0 0 15 31 0 0 0 15 0 31 0 0

16 0 0 0 0 16 0 0 0 0 16 0 0 0 0
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Table 5.17: Group 2, Experiment No. 3 Results using Different Payoffs (1)

Cloud Pattern No. 3

Large Chemical Cloud : Methyl Alcohol

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 40.30% 66.20% 70.50% 69.10% 64.20% 62.00%

2 79.50% 0.00% 84.50% 40.90% 48.20% 50.60%

Small Chemical Cloud: nOctane

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 0.00% 92.50% 14.60% 0.00% 96.60% 40.80%

2 0.00% 30.80% 0.00% 0.00% 0.00% 6.20%
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Table 5.18: Group 2, Experiment No. 3 Results using Different payoffs (2)

Large Chemical Cloud : Methyl Alcohol

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 40.10% 11.90% 62.10% 33.00% 67.80% 43.00%

2 29.70% 0.00% 44.30% 19.80% 56.30% 30.00%

Small Chemical Cloud: nOctane

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 47.10% 14.90% 0.00% 19.20% 0.00% 16.20%

2 3.30% 24.40% 77.30% 2.00% 0.00% 21.40%

could benefit from more training or the use of some other technique. Payoffs: T =

1.67 > R = 1 > P = .67 > S = 0.

5.3.6 Group 2, Experiment No. 4

This experiment simulates a spreading plume the type exhibited by a pipeline leak,

train car derailment or leak at a chemical processing facility. Once again TFT versus

ALLD outperforms ALLC versus ALLD.

Payoffs: T = 1.67 > R = 1 > P = .67 > S = 0
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Table 5.19: Group 2, Experiment No. 3 Results using Hexanal

Large Chemical Cloud : Hexanal

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 88.10% 71.90% 49.10% 67.40% 54.50% 66.20%

2 89.10% 92.30% 89.50% 92.80% 91.90% 91.10%

Small Chemical Cloud: nOctane

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 90.90% 70.00% 95.80% 15.10% 14.30% 57.20%

2 94.60% 69.30% 94.50% 94.20% 0.00% 70.50%

Table 5.20: Group 2, Experiment No. 4 Results using ALLC vs. ALLD

Pattern No. 4, Plume : Hexanal No. 24

ALLD versus ALLC

Two Rounds PD Run No. A

Sensor Cycles 1 2 3 4 5 Average

1 89.10% 59.50% 68.30% 94.90% 72.40% 76.80%

2 97.00% 92.30% 95.40% 60.50% 53.10% 79.70%

4 58.80% 82.60% 44.20% 96.50% 38.60% 64.10%
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Figure 5.1: Results from Run No. 5 Sensor Cycle No. 4 (ALLC)

Table 5.21: Group 2, Experiment No. 4 Results using TFT vs. ALLD

Pattern No. 4, Plume : Hexanal No. 24

ALLD versus TFT

Two Rounds PD Run# A

Sensor Cycles 1 2 3 4 5 Average

1 86.70% 74.40% 88.20% 79.70% 87.70% 83.30%

2 63.50% 96.60% 95.70% 96.10% 95.20% 89.40%

4 68.80% 39.80% 32.70% 98.70% 98.70% 67.70%

71



Figure 5.2: Results from Run No. 5 Sensor Cycle No. 4 (TFT)

5.3.7 Group 2, Experiment No. 5

In this experiment one large cloud attempts to mask a second smaller cloud from the

network. Several simulations using ALLC versus ALLD and TFT versus ALLD were

tried, however the network was less successful than in previous experiments. It was

only able to classify the smaller cloud in 1 out of 4 attempts.
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5.4 Concluding Remarks

This dissertation presented Networked Adaptive Classification, a decentralized con-

trol strategy for a cyber-physical system using techniques developed for game theory.

Simulations show that the network can successfully classify, track and localize the ion

mobility spectra data for which it was trained. While the network was successful at

classifying some chemicals and scenarios better than others further tuning of param-

eters and training of the MLP’s would certainly improve results of this first attempt,

even further.
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Table 5.22: Diagonal structure for classifiers

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4

5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4

5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2

3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4

5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1
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Table 5.23: Cloud Pattern No. 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 21 22 123 124 125 126 127 128

129 130 131 132 133 134 135 136 37 38 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Table 5.24: Cloud Pattern No. 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 21 22 123 124 125 126 127 128

129 130 131 132 133 134 135 136 37 38 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
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Table 5.25: Cloud Pattern No. 4, Plume
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Table 5.26: Cloud Pattern No. 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
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