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Abstract of the Dissertation

Localization and Location Verification in Sensor Networks

by

Solomon Lederer

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Sensor networks are still in need of efficient algorithms to bootstrap and main-

tain network operation in order for them to become a practical technology. Lo-

calization continues to be a challenging problem for such networks. Typically sen-

sor networks consist of thousands of nodes disseminated haphazardly over some

area without location awareness. A localization algorithm is thus necessary to

locate the nodes for data integrity and network operation. We study what can

be achieved using connectivity information alone for localization, in particular, in

situations where the network shape is complex. We present our algorithm that ex-

ploits the global rigidity property of combinatorial Delaunay complex on selected

landmark nodes. The key insight is that the combinatorial Delaunay complex has

a unique realization in the plane. Thus an embedding of the landmarks by simply

gluing the Delaunay triangles properly recovers the faithful network layout. We

also demonstrate how this algorithm can be performed without any knowledge of

the network boundary by selecting landmarks according to an incremental De-

launay refinement method. In addition, we illustrate how the algorithm works

in 3D where nodes are equipped with altimeters to get altitude information. We

then tackle the related problem of location verification where the objective is to

correctly assess location claims of un-trusted (potentially compromised) nodes.

The mechanisms we introduce prevent a compromised node from generating illicit
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event reports for locations other than its own. To achieve this goal, in a process

we call location certification, data routed through the network is tagged by par-

ticipating nodes with belief ratings, collaboratively assessing the probability that

the claimed source location is indeed correct.
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Chapter 1

Introduction

1.1 Overview

Sensor networks are networks of hundreds or thousands of wireless sensing devices

used to monitor and classify our physical world. Various stimuli of our environ-

ment can be captured, recorded, processed and disseminated by such networks.

Forests may have sensors to alert of fires or unlawful hunting; animal habitats may

be studied using these devices; urban warfare environments may be littered with

sensors to watch enemy movements. Other applications may include detecting

trespassers crossing country borders, observing road traffic, capturing structural

faults in bridges or skyscrapers, and monitoring water and nutrients in arable soil.

We envision sensors being used in large quantities, collaborating in networks of

thousands or tens of thousands of nodes. In order to deploy such large networks,

they will typically be dispersed haphazardly over a particular region, perhaps by

air. Sensors will be cheap enough that they can be used in such high numbers.

New algorithms for the operation of such networks must be developed from

scratch as algorithms used in smaller ad-hoc networks are not portable to sensor

network because of their unique constants and objectives. Sensor networks suffer

from a limited power supply, weaker radios, and low computing power and stor-

age. And more importantly, certain problems such as localization—determining

the location of sensor nodes—are unique to these networks, since they are not
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equipped with GPS hardware.

Sensor networks also have an interesting property that as individual nodes

they are simple, weak devices in terms of computing power and memory. How-

ever, collectively, as a network of thousands working in unison they can be very

powerful. Certain problems that these networks face, such as localization, are too

difficult for individual nodes to solve on their own, therefore nearly all existing

algorithms employ special beacon or anchor nodes, that have more capabilities

and knowledge then ordinary nodes, to tackling these problems. However if we

recognize that collectively the network is quite intelligent and powerful, perhaps

solutions to these problems can be devised by involving the whole network. In-

deed, we present algorithms for localization and location verification that does not

use anchors nodes or special ranging hardware. For localization, through a struc-

tured hierarchical embedding process, nodes can elect certain opportune nodes to

be landmark nodes and embed them first. Then all nodes can embed themselves

with the use of nearby landmark nodes.

Moreover, since these networks are composed of thousands of immobile nodes,

we can view a sensor network as a collection of points in the plane placed about ar-

bitrarily, and its communication network can be viewed as a mathematical graph.

Therefore we can borrow ideas and algorithms from graph theory and computa-

tional geometry when approaching localization problems and others. Algorithms

from surface reconstruction, convex hull algorithms, can be applied to analyzing

and deconstructing the sensor network graph. This is immensely useful for design-

ing routing, data collection, or localization protocols. In addition, data structures

used in computational geometry such as quad trees and kd-trees are naturally

applicable to sensor networks where you may want to structure data according to

spacial correlations.

In this dissertation we tackle two overlapping problem areas in sensor networks,

localization and location certification. Localization is the challenge of determining

where the nodes are located, and location certification involves verifying a node’s

claimed location in an environment where the nodes may be falsifying its location

reports.
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1.2 Related Work

There is a strong research focus on algorithms for sensor networks. All soft-

ware and protocol challenges must be addressed practically for sensor networks

to become a realizable, ubiquitous technology. Many such areas of research in-

clude ways to minimize the strain on the limited hardware of such devices. This

includes designing databases with small memory footprints to account for the lim-

ited storage of these nodes, to battery-saving protocols involving wake and sleep

time regulation to maximize battery lifetime, to data aggregation techniques to

minimize the quantity of data routed through the network. For each of these

areas there are myriad approaches of how to deal with the stated problem. For

instance, with regard to data aggregation, one protocol might incorporate ideas

of network coding to transmit more information without increasing the size of the

data, or it may involve smartly dropping superfluous information as it is routed

through the network. Since there are so many solutions to the various problems,

each with there own advantages and handicaps, research must also be done into

comparing the different approaches to determine which are “best”, or which are

best for a particular scenario.

With regard to localization there are a number of approaches on how to deal

with this problem. The most obvious choice is to equip each node with a GPS

device. However this is a poor choice do to cost and other limitations such as

inability to work where access to satellites are not available. The next natural

approach is to equip some nodes with a GPS device or whose location is a priori

none somehow. This may mean having a percentage of anchor nodes or beacon

nodes that aid all other nodes in localizing their position. It may mean having

a mobile device such as an airplane which contacts each node and aids in its

localization. With regard to how a node measures its distance to some known

locations there are perhaps a dozen options on how this is done. This generally

involves the use of sensitive radios or clocks that can measure one of the following:

received signal strength (RSSI), the angle of arrival (AoA), or the time of arrival

(TOA), time difference of arrival (TDoA) [53,69]. An alternative to this approach
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is to only use the binary information of connectively to give some sort of distance

measurement. That it, since the communication radius is known, then if 2 nodes

can communicate we know they must lie within a particular range, and conversely

if they cannot communicate they most lie outside that range. If we take the

shortest path between 2 nodes, the path’s hop count gives a good estimate of the

relative distances between nodes.

Most localization algorithms are for sensors deployed on a flat plane. They can

be categorized by anchor-based or anchor-free algorithms, depending on whether

there are nodes with known locations (through GPS, for example). Or, they can

be grouped by range-based or range-free algorithms, depending on whether one

has distance measurements.

Anchor-based range-based algorithms are mostly variations of the basic trilat-

eration framework [69, 70]. When range information is not available, hop count

information is used as a substitute [61]. One can also use angle measurements for

anchor-based localization [62]. Real systems have also been developed for in-door

localization, see for example the Cricket system [64].

When there are no anchors in the network, one may use global optimization

techniques such as MDS or semi-definite programming [11] to solve for the network

relative locations. This now brings to attention the issue of graph rigidity [41]

which has been explored in the graph theory community. That is, given the

specified edge lengths of a graph, find an embedding of that graph in a particular

dimension, if one exists.

The pioneer work of using rigidity theory in network localization [6,12,26,38,

39,60,75] focuses on identifying special graphs that do admit efficient localization

algorithms. The first idea is to use trilateration graphs [26, 38, 39, 60]. A trilater-

ation graph is defined recursively. It is either a triangle or a trilateration graph

with a trilateration extension, defined as adding an additional vertex with three

edges to existing vertices. If the network contains a trilateration graph, one can

exhaustively search for the ‘seed’ triangle in the graph and greedily find the tri-

lateration extensions. Thus an incremental algorithm can be adopted to find the

realization of the network. A trilateration graph is globally rigid but it is strictly
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stronger (i.e., there are globally rigid graphs that are not trilateration graphs),

and thus may require more edges than necessary to uniquely embed the graph.

The second idea is to examine d-uniquely localizable graphs. A graph with

known edge lengths is called uniquely d-localizable if there is a unique realization

of the graph in Rd and there is no non-trivial realization in Rk with k > d.

For example, a generic simplex of d + 1 vertices is uniquely d-localizable, as its

embedding in any higher dimensional Euclidean space will not get any different.

For uniquely d-localizable graphs, So and Ye [12, 75] have shown that a semi-

definite program is able to find the realization. It is not known, however, whether

d-localizability is a generic graph property1 and it is not clear whether there is a

combinatorial characterization of graphs that are d-localizable. The only known

method to test uniquely d-localizability is to run the semidefinite program to see

whether it succeeds or not. Both approaches taken in prior work require that the

network has sufficiently many edges to be globally rigid. In addition, when we do

not have edge length values, as in the setting of this thesis, it is not clear how to

use these rigidity results.

Our work is different from previous work. We focus on the rigidity of the

combinatorial Delaunay complex and apply the algorithm in the more challenging

anchor-free, range-free setting. The only prior literature except our work in this

setting is to apply multi-dimensional scaling on the hop count values [73].

Notwithstanding the theoretical interest of localization from pure network con-

nectivity, the considered setting also reflects a number of practical application sce-

narios, in particular, for large scale networks of inexpensive sensor nodes. As the

state of the art, a few deployments of sensor networks are in the size of hundreds

or thousands of sensor nodes [1,59]. The target size is to achieve hundreds of thou-

sands of nodes in the next few years. As sensor networks scale in size, it is unlikely

that sensors are deployed in a uniform homogeneous environment. Terrain varia-

tions and obstacles may well prevent the deployment of sensor nodes, resulting in

networks with complex shapes respecting the underlying deployment environment.

In our model we do not assume distance measurements for the reasons above. We

1irrespective of the edge length values, intuitively.
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also do not assume anchor nodes (with fixed locations), as networks deployed in

remote, unaccessible environments may not have any fixed reference points. We

work on the localization problem with the minimalist approach with only connec-

tivity information. Partial distance estimations or anchor nodes, if available, can

be easily incorporated to our algorithm to improve localization performance.

1.3 Our Contribution

In our model we do not assume distance measurements for the reasons above. We

also do not assume anchor nodes (with fixed locations), as networks deployed in

remote, unaccessible environments may not have any fixed reference points. We

work on the localization problem with the minimalist approach with only connec-

tivity information. Partial distance estimations or anchor nodes, if available, can

be easily incorporated to our algorithm to improve localization performance.

In this work we approach the localization problem and location certification

from a theoretical perspective first in order to determine what is the best we

can hope for using only very weak assumptions. That is, instead of tackling

the problem by adding more hardware or restrictions to the problem setting, we

seek to capitalize on the geometric properties intrinsic to any network to design

algorithms that offer a solution. In stead of, for instance, assuming there are

anchor nodes or beacon nodes to help with localization, we first ask, “Is it strictly

necessary to have anchor nodes?” For each assumption found in the literature, we

ask, “What would happen if we do away with such assumption?” Once we remove

the assumptions we are forced to think along the lines of whether the problem

becomes impossible and, if not, what algorithm can we then design that utilizes

these properties. Thinking along these lines we can demonstrate the efficacy of

our algorithms not just through simulations but also prove theoretically that they

meet certain benchmarks and will not fail under various conditions.

While our foray into localization leads to the design of efficient algorithms to

solve practical problems, it also leads to interesting results for theoretical ideas in

computational geometry, rigidity theory, and topology.
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Once localization is achieved the next challenge is to ensure that the location

claims made by nodes are indeed correct. Since localization takes place in a

distributed manner, there is no base station that is privy to the location of all

nodes at the conclusion of the embedding process. Rather each node knows its

individual location and appends it to sensory reports passed on to the base station.

The concern here is that a node may be making a false location claim, either

accidentally or maliciously. It is not enough to simply corroborate a nodes location

based on the location of its one-hop neighbors as they too may be corrupted.

Rather we take into account the location of all nodes along the path from sensor

to base station (sink). Making this idea formal and efficient is the focus of Chapter

4.

With respect to location certification, existing work investigates secure local-

ization [55], i.e., how nodes determine their own location in a hostile environ-

ment, and secure location verification [68,79], determining the location of a node

in the face of liars. Typically these protocols involve special anchor nodes, or

nodes whose location is not corruptible. Based on the distance to these nodes,

the location of the remaining nodes is determined with certain assurances by de-

ploying distance-measuring RF or ultrasound-based mechanisms and performing

multi-way handshakes under synchronized clocks assumptions. These methods

are designed to be used when the network is first deployed, to establish the lo-

cation of all nodes during its initial setup. However, when operating in hostile

environments, it is essential to secure location information claims at runtime, in

the presence of compromised nodes, that could falsify location claims and inject

incorrect event reports into the information stream. False location information

may lead the data sink to take action in a location where none is warranted, and

vice versa, not take action in the area where a response is necessary.

This is the only work that I am aware of that does not make use of anchor

nodes or beacons for location verification, but instead uses a collaborative effort

to certify the location of nodes.
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1.4 Dissertation Organization

The dissertation is divided into two parts. Part I is a thorough investigation

into localization for sensor networks and how using a collaborative approach,

localization can be achieved using only connectivity information. We explore

both 2D and 3D versions of this problem. Part II is an investigation into location

verification and offers a collaborative approach to tackle this problem.

In the first part of this work we present an anchor-free, range-free localization

algorithm that uses the involvement of all nodes in a collective scheme to embed

the network. We incorporate ideas from rigidity theory, and simplicial complexes

to give theoretical guarantees and bounds on the effectiveness of our algorithm.

The basic idea is to select landmark nodes along the network boundaries (inner

and outer) according to a certain density and embed these landmarks first. we

prove that our landmark selection process will select a near optimal number of

landmarks, not too few to make the process impossible, and not much that will

negatively effect the final result. Once the basic layout is determined by the em-

bedded landmarks, it becomes straightforward to embed all nodes in the network.

We then expand the above algorithm to select landmarks incrementally. While

the above algorithm relies on first determining the network boundary, we here

show how we can actually achieve better results through a different approach.

While a number of algorithms exist to determine which nodes lie on the network

boundary, they perform poorly in networks of low average degree, so we replace

boundary detection with an alternative algorithm. Not knowing the network

boundary introduces a number of new challenges which we address theoretically,

algorithmically, and through simulations.

We then venture into performing localization in 3D, something which has

barely been previously explored. We expand our algorithm to work on a non-

planar surface. In real world environments the nodes will not normally land on

a flat surface but will cover hills and uneven terrain. We present the new chal-

lenges in such environments and demonstrate solutions to these problems with

theoretical guarantees.
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In Part II, we apply the philosophy of community intelligence to location ver-

ification. Location verification is determining that a node is indeed at its claimed

location. This is needed in hostile environments where you suspect that nodes

may be compromised and are issuing false location claims for destructive ends,

or in scenarios where the nodes are faulty and are mistaken about its location.

When a node sends a packet it must pass through a chain of other nodes along

the way before reaching its destination. This collection of nodes can be a powerful

judge in determining the honesty of a packet’s source. By collectively attaching

belief ratings to a packet, the network community can give assurances as to the

integrity of a sensor report.
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Part I

Beacon-free, Range-free,

Localization
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Chapter 2

Connectivity-based Localization

2.1 Introduction

The physical location of sensor nodes is critical for both network operation and

data interpretation. In this work we focus on anchor-free localization in which

none of the nodes know their location and the goal is to recover a relative coor-

dinate system up to global rotation and translation. This is motivated by sensor

network applications in remote areas or indoor/underwater environments in which

GPS or explicitly placed anchor nodes are not available or too costly. Philosoph-

ically, anchor-free localization addresses a very fundamental problem: can we

recover the network geometry, simply from the network connectivity information?

That is, with local knowledge (knowing which nodes are nearby), can we recon-

struct the global picture?

As sensor networks scale in size, retrieving the locations of the nodes becomes

even more challenging. The difficulty comes from the network scale, error ac-

cumulation, and the increase to both the communication and computation load.

Moreover, large deployments of sensor nodes are more likely to have irregular

shapes as obstacles and terrain variations inevitably come in to the picture. Our

emphasis here is to localize a large sensor network with a complex shape, by using

only the network connectivity.

Incorrect flips vs. graph rigidity. A major challenge in network localization
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is to figure out the correct global layout and resolve flip ambiguities. To give some

intuition, Figure 2.1 illustrates that with only network connectivity information

(or even with measurements of the edge lengths), one is unable to tell the “flip”

of triangle 4bcd relative to a neighboring triangle 4abc locally. Both are valid

embeddings.
b

a c

d c
a

b
d

Figure 2.1. A connectivity graph with two distinct embedding having the same set of edge
lengths.

Figure 2.2 shows a more severe error, a global flip, that may result from some

local flips. The right figure has almost all the nodes correctly localized but has

one corner folded over on itself. This is particularly devastating because a node

communicating with only its neighbors cannot realize this global error. Indeed,

it has been observed that localization algorithms by local optimization may get

stuck at one configuration far from the ground truth (see Figure 2 in [60]).

Figure 2.2. Left to right: the ground truth; one possible embedding; a more devastating
embedding with a global flip.

It thus represents a major difficulty to resolve flip ambiguities in anchor-free

localization. When we know the edge lengths, localization is closely related with

graph rigidity [41] in 2D. A graph is rigid if one cannot continuously deform

the graph embedding in the plane without changing the edge lengths. A graph

is globally rigid if there is a unique realization in the plane. Rigidity without

global rigidity may yield flip ambiguities. For example, Figure 2.1 is rigid but

not globally rigid. Thus in anchor-free localization, global rigidity is the desirable

property.

A number of localization algorithms deal with the problem of rigidity by ex-

ploring the graph structure [26, 38, 39, 60]. These algorithms either require that
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(i) (ii) (iii)

(iv) (v) (vi)
Figure 2.3. Anchor-free localization from network connectivity, on a double star shape. The
number of nodes is 2171. The connectivity follows a unit disk graph model with average node
degree 10. (i) The Voronoi cells of the landmarks (black nodes are on the Voronoi edges); (ii)
The Delaunay edges extracted from the Voronoi cells of the landmarks; (iii) Our embedding
result of the extracted Delaunay complex; (iv) Our localization result of the entire network.
(v) Embedding result by multi-dimensional scaling. (vi) Embedding result by the rubberband
representation with the outer boundary fixed along a square.
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the network is dense enough to guarantee the network is a tri-lateration graph1

(such that iterative trilateration method resolves the ambiguity of flips—an even

stronger notion than global rigidity) [26, 39, 60]; or, when the network is sparse,

record all possible configurations and prune incompatible ones whenever possible,

which, in the worst case, can result in an exponential space requirement [38]. All

these algorithms require that neighbors are able to estimate their inter-distances,

and they do not work with network connectivity alone. Estimating the inter-

distances from received signal strength can be quite noisy in a complex environ-

ment, and accurate distance estimation requires special ranging hardware.

An approach on anchor-free localization with only network connectivity is to

use global optimization such as multi-dimensional scaling (MDS) [74]. MDS takes

an inter-distance matrix on n nodes and extracts the node location in Rn. For 2D

embedding, the locations are taken as the largest 2D linear projection. Figure 2.3

(v) shows the result of (MDS) on figure 2.3 (vi). Intuitively, MDS tries to stretch

the network out in every direction. For a well-connected dense network it gives

an effective localization result. But it does not have any notion of rigidity and

may produce results with global flips. See more examples in Figure 2.8.

Discovery of global topology. Aside from localization algorithms, recently

there is a growing interest in the study of global topology of a sensor field, and

its applications in point-to-point routing and information discovery. The focus is

to identify high-order topological features (such as holes) from network connec-

tivity [29, 30, 32, 33, 52, 78] and construct virtual coordinate systems with which

one can route around holes [14, 27, 28, 34, 35]. These virtual coordinates are by

no means close to the real node coordinates — they are not meant to be close.

But one may ask the following question: can the identification of the network

geometric features (network boundaries, holes, etc.) help in recovering the true

node locations? In other words, with the understanding of the network global

topology such as where the holes are, does it allow us to infer some information

1A tri-lateration graph G in dimension d is one with an ordering of the vertices 1, . . . , d +
1, d + 2, . . . , n such that the complete graph on the initial d + 1 vertices is in G and from every
vertex j > d + 1, there are at least d + 1 edges to vertices earlier in the sequence. Tri-lateration
graph is globally rigid.
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on graph rigidity that can be used to prevent global flips?

One piece of work that uses network boundaries to generate topologically faith-

ful (i.e., no global folding) embeddings is to use the rubberband embedding, by

Rao et al. in [66] and by Funke and Milosavljevic in [35]. The idea is to fix the

network outer boundary on a rectangle and then each internal node iteratively

takes the center of gravity of its neighbors’ locations as its own location. The rub-

berband relaxation converges to what is called the rubberband representation [77].

With the identification of the network outer boundary, this method does give a

layout without incorrect folds, but unfortunately induces large distortion as holes

are typically embedded much larger than they are. An example is shown in Fig-

ure 2.3 (vi). In the literature [35,66] the rubberband representation is mainly used

in assigning virtual coordinates to the nodes for geographical routing purposes and

is not used to recover the true node location.

Our contribution. The key idea presented her is to derive a globally rigid

substructure from the extraction of high-order topological features of a sensor

field, that recovers the global network layout and provide a basis for a localization

algorithm.

We assume the sensor nodes are embedded in a geometric region or on a

terrain, possibly with holes. The nodes nearby can directly communicate with

each other but far away nodes cannot2. We do not use anything beyond the

network connectivity information and do not assume neighbors can measure their

inter-distances, although such information can be easily incorporated to further

improve the localization accuracy.

Briefly, the algorithm can be explained as follows (see Figure 2.3): Suppose the

network boundaries (both the outer boundary and inner hole boundaries) have

been discovered (say with any of the algorithms in [29, 30, 32, 33, 52, 78]). We

take samples on the network boundaries and call them landmarks. Each node

in the network records the closest landmark in terms of network hop distance.

The network is then partitioned into Voronoi cells, each of which consists of one

2Specifically, in our simulations we have adopted unit disk graph model, quasi-unit disk graph
model and probabilistic connectivity model.
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landmark and all the nodes closest to it (Figure 2.3(i)). The Delaunay graph

(Figure 2.3(ii)) as the dual of the Voronoi diagram, has two landmarks connected

by a Delaunay edge if their corresponding Voronoi cells are adjacent (or share

some common nodes).

Now, here is the key insight: given two Delaunay triangles sharing a common

edge, there is only one way to embed them. Thus there is no flip ambiguity!

This is because the Delaunay triangles are induced from the underlying Voronoi

partitioning so intuitively we can think them as ‘solid’ triangles, which, when

embedded, must keep their interiors disjoint (the case in Figure 2.1 left cannot

happen). In this chapter we make this intuition rigorous. We prove in the case

of a continuous geometric domain that when the landmarks are sufficiently dense

(with respect to the local geometric complexity), the induced Delaunay graph

is rigid. Moreover, the Delaunay complex (with high-order simplices such as

Delaunay triangles) is globally rigid, i.e., there is a unique way to embed these

‘solid’ Delaunay triangles in the plane.

The identification of the Delaunay triangles and, more importantly, how to

embed them relative to each other overcomes a major hurdle toward anchor-free

localization. We use an incremental algorithm to glue the triangles one by one.

Each Delaunay edge is given a length equal to the minimum hop count between

the two landmarks. Since the hop count is only a poor approximation of the

Euclidean distance, we use mass-spring relaxation to improve the quality of the

embedding and evenly distribute the error (Figure 2.3 (iii)).

Now with the landmarks localized and the network layout successfully re-

covered, the landmarks serve as ‘anchor’ nodes such that each additional node

localizes itself by using trilateration with its hop count distances to 3 or more

nearby landmarks (in Figure 2.3 (iv)).

In our algorithm the discovery of the sensor layout, i.e., landmark selection

and discovery of the Delaunay edges is done in a distributed way. The discovered

Delaunay complex is delivered to the base station where the embedding of the

landmarks is produced. This network layout is then disseminated to the remaining

nodes to localize themselves.
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The outline of the chapter is as follows. In Section 3.2 we prove the rigidity

of the Delaunay complex and describe the criterion for landmark selection, in the

case of a continuous domain. Readers can also choose to read Section 2.3 first, in

which we explain the algorithm for the discrete network. Simulation results are

presented in Section 2.4.

2.2 Theoretical Foundations

In this section we introduce notations and the theoretical foundation of our al-

gorithm ideas, in particular, the density requirement for landmarks to guarantee

the global rigidity of the combinatorial Delaunay complex. Some proofs are put

in the Appendix.

2.2.1 Medial axis, local feature size and r-sample

We consider a geometric region R with obstacles inside. The boundary ∂R con-

sists of the outer boundary and boundaries of inner holes. For any two points

p, q ∈ R, we denote by |pq| their Euclidean distance and d(p, q) the geodesic

distance between them inside R, i.e., the length of the shortest path avoiding

obstacles. In a discrete network we can use the minimum hop length between

two nodes as their distance, whose analog in the continuous case is the geodesic

distance. In this thesis paper all the distances are by default measured by the

geodesic distances unless specified otherwise. A ball centered at a point p of radius

r, denoted by Br(p), contains all the points within geodesic distance r from p.

Definition 2.2.1. The medial axis of R is the closure of the collection of points,

with at least two closest points on the boundary ∂R.

The medial axis of ∂R consists of two components, one part inside R, called

the inner medial axis, and the other part outside R, called the outer medial axis.

See Figure 2.4. In this chapter paper we only care about the inner medial axis.
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Now we are ready to explain how to measure the local geometric complexity

of R, which determines the sampling density. An example is shown in Figure 2.4.

ILFS(p)

∂R

p

Figure 2.4. The region R’s boundary is shown in dark curves. The medial axis and landmarks
selected on the boundaries. Point p ∈ ∂R has a landmark within distance ILFS(p).

Definition 2.2.2. The inner local feature size of a point p ∈ ∂R, denoted as

ILFS(p), is the distance from p to the closest point on the inner medial axis.

Definition 2.2.3. An r-sample of the boundary ∂R is a subset of points S on

∂R such that for any point p ∈ ∂R, the ball centered at p with radius r · ILFS(p)

has at least one sample point inside.

Landmark density criterion. Our algorithm selects the set of landmarks as an

r-sample, with r < 1 and selects at least 3 landmarks on each boundary cycle. We

will show that these landmarks capture important topological information about

the network layout and can be used to reconstruct the network layout.

2.2.2 Landmark Voronoi diagram and combinatorial De-

launay graph

We take some points in R and denote them as landmarks S. Construct the

landmark Voronoi diagram V (S) as in [27]. Essentially each point in R identifies
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the closest landmark in terms of geodesic distance. The Voronoi cell of a landmark

u, denoted as V (u), includes all the points that have u as a closest landmark:

V (u) = {p ∈ R | d(p, u) ≤ d(p, v),∀v ∈ S}.

Each Voronoi cell is a connected region inR. The union of Voronoi cells covers the

entire region R. A point is said to be on the Voronoi edge if it has equal distance

to its two closest landmarks. A point is called a Voronoi vertex if its distances to

three (or more) closest landmarks are the same. A Voronoi edge ends at either a

Voronoi vertex or a point on the region boundary ∂R. The Voronoi graph is the

collection of points on Voronoi edges. The combinatorial Delaunay graph D(S) is

defined as a graph on S such that two landmarks are connected by an edge if and

only if the corresponding Voronoi cells of these two landmarks share some common

points. See Figure 4.3 for some examples. We state some immediate observations

∂R

u

(i) (ii)

Figure 2.5. (i) The Voronoi graph (shown in dashed lines) and the Delaunay graph/complex
for a set of landmarks that form an r-sample with r < 1. (iii) When the set of landmarks is not
an r-sample (with r < 1), the combinatorial Delaunay graph may be non-rigid.

about the Voronoi diagram and the corresponding combinatorial Delaunay graph

below.

Observation 2.2.4. A point on the Voronoi edge of two landmarks u, v certifies

that there is a Delaunay edge between u, v in D(S). A Voronoi vertex of three

landmarks u, v, w certifies that there is a triangle between u, v, w in D(S).

In the case of a degeneracy, four landmarks or more may become cocircular and

thus share one Voronoi vertex. See the left top corner in Figure 4.3 (i). We will
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capture these high-order features by defining the Delaunay complex in the notion

of abstract simplicial complex [24]. The notion of abstract simplicial complex is

defined in a completely combinatorial manner and is described in terms of sets.

Formally, a set α is an (abstract) simplex with dimension dim α = card α−1, i.e.,

the number of elements in α minus 1. A finite system A of finite sets is an abstract

simplicial complex if α ∈ A and β ⊆ α implies β ∈ A. That is, each set α in A

has all its subsets in A as well. In our setting, we construct an abstract simplicial

complex from the Voronoi diagram, named the abstract Delaunay complex, by

taking the Cěch complex of the Voronoi cells, defined below.

Definition 2.2.5. The (abstract) Delaunay complex is the collection of sets

DC(S) = {α ⊆ S |
⋂
u∈α

V (u) 6= ∅}.

In other words, a set α ⊆ S is a Delaunay simplex if the intersection of the Voronoi

cells of landmarks of α is non-empty. The dimension of the Delaunay simplex α

is the cardinality of α minus 1.

Thus a landmark vertex is a Delaunay simplex of dimension 0. A Delaunay

edge is a simplex of dimension 1. A Delaunay triangle is a simplex of dimension

2 (intuitively, think of the triangle as a ‘solid’ triangle with its interior filled

up). In case of a degeneracy, k landmarks are co-circular and their Voronoi cells

have non-empty intersection. This corresponds to a simplex of dimension k − 1.

The rightmost 4 landmarks in Figure 4.3 (iii) form a dimension-3 simplex (again,

intuitively think the simplex as a solid object). We drew the Delaunay complex

as shaded regions.

The definition of an abstract simplicial complex is purely combinatorial, i.e.,

no geometry involved, thus the name of ‘abstract’ complex. We can talk about an

embedding or realization of an abstract simplicial complex (without geometry) in

a geometric space as a simplicial complex (with geometry). A simplicial complex

is geometric and is embedded in a Euclidean space. We give the definitions be-

low. In this chapter, we take the abstracted Delaunay complex from the network
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connectivity graph, and find the geometric realization of the abstract Delaunay

complex as a simplicial complex in the plane, thus recovering the global shape of

the sensor network.

A finite set of points is affinely independent if no affine space of dimension i

contains more than i + 1 of the points, for any i. A k-simplex is the convex hull

of a collection of k + 1 affinely independent points S, denoted as σ = conv S.

The dimension of σ is dim σ = k. Figure 2.6 shows 0, 1, 2, 3-simplex in R3.

The convex hull of any subset T ⊆ S is also a simplex. It is a subset of conv S

Figure 2.6. 0, 1, 2, 3-simplex in R3.

and called a face of σ. For example, take the convex hull of three points in a

3-simplex, it is a 2-simplex (a triangle). A simplicial complex is the collection of

faces of a finite number of simplices such that any two of them are either disjoint or

meet in a common face. A geometric realization of an abstract simplicial complex

A is a simplicial complex K together with a bijection ϕ of the vertex set of A

to the vertex set of K, such that α ∈ A if and only if conv ϕ(α) ∈ K [24]. Of

course the ambient space in which the simplicial complex is embedded has to have

dimension at least equivalent to the highest dimension of the simplex in A. In

our case, when there is degeneracy theoretically we will have to embed in a space

with dimension higher than 2. We will discuss how to get around this problem in

the next section after the discussion of rigidity. In the rest of the chapter, when

we say the Delaunay graph, we refer to the Delaunay edges and vertices. When

we say the Delaunay complex, we also include the higher order simplices such as

Delaunay triangles and tetrahedrons.

2.2.3 Global rigidity of combinatorial Delaunay complex

The property of the combinatorial Delaunay graph clearly depends on the selection

of landmarks. The goal of this section is to show that the Delaunay graph is rigid
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when there are at least 3 landmarks on each boundary cycle and they form an

r-sample of ∂R with r < 1. In addition, and the Delaunay complex is globally

rigid (i.e., it admits a unique 2D realization). An example when the combinatorial

Delaunay graph is not rigid due to insufficient sampling is shown in Figure 4.3

(ii). Now we prepare to prove the rigidity results by first showing that the Voronoi

graph (collection of points on Voronoi edges) is connected within R. In this

subsection we assume that the landmarks are selected according to the landmark

selection criterion mentioned above. The proofs of some of the following Lemmas

can be found in the Appendix.

Observation 2.2.6. Two Voronoi vertices connected by a Voronoi edge corre-

spond to two Delaunay triangles sharing an edge.

Lemma 2.2.7. For any two adjacent landmarks u, v on the same boundary cycle,

there must be a Voronoi vertex inside R whose closest landmarks include u, v.

Lemma 2.2.7 implies that the Delaunay graph has no node with degree 1 –

since every node is involved in 2 triangles with its adjacent 2 nodes on the same

boundary.

Lemma 2.2.8. If there is a continuous curve C that connects two points on the

boundary ∂R such that C does not contain any point on Voronoi edges, then C

cuts off a topological 1-disk3 of ∂R with at most one landmark inside.

Corollary 2.2.9. The Voronoi graph V (S) is connected.

Now we are able to show that the combinatorial Delaunay graph is rigid. In

other words, given a realization of D(S) in the plane, one cannot deform its

shape in the plane without changing the lengths of the edges. To prove this, we

use a seminal result about graph rigidity [by G. Laman in 1970], known as the

Laman condition. It states that generically rigid graphs in 2D can be classified

by a purely combinatorial condition. A graph is called a Laman graph if it has n

vertices, 2n− 3 edges and any subset of k vertices spans at most 2k − 3 edges.

3Intuitively, a topological 1-disk can be continuously deformed into a straight unit length
line segment, without any cutting or gluing operations.
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Theorem 2.2.10 (Laman condition [54]). A graph G with n vertices is gener-

ically rigid 4 in 2 dimensions if and only if it contains a Laman graph on n vertices.

Theorem 2.2.11. The combinatorial Delaunay graph D(S) is rigid, under our

sampling condition.

Proof: In this proof we assume without loss of generality that there is no de-

generacy, i.e., four or more landmarks are not co-circular. Indeed degeneracy will

only put more edges to the combinatorial Delaunay graph, which only helps with

graph rigidity.

From the Voronoi graph V (S), we extract a subgraph V ′ that contains all

Voronoi vertices and the Voronoi edges that connect these Voronoi vertices. Some

Voronoi edges end at points on the boundary ∂R and we ignore those. By Corol-

lary 2.2.9 this graph V ′ is connected. Now we find a spanning tree T in V ′ that

connects all Voronoi vertices. Take the corresponding subgraph D′ of the combi-

natorial Delaunay graph D(S) such that an edge exists between two landmarks in

D′ if and only if there is a point in T that certifies it. D′ is a subgraph of D(S).

Now we argue that D′ is a Laman graph.

First the number of landmarks is n. We argue that the number of edges in D′

is 2n − 3. Assuming the number of Voronoi vertices is m, T has m − 1 Voronoi

edges. We start from a leaf node on T and sweep along the edges on T . Each

time we add one new vertex that is connected to the piece that we have explored

through an edge. During the sweep we count the number of landmarks and the

number of Delaunay edges that we introduce. To start, we have T ′ initialized with

one Voronoi vertex, thus we have three landmarks and three Delaunay edges. The

new Voronoi vertex x we introduce is adjacent to one and only one vertex in T ′—if

x is adjacent to two vertices in T ′, then there is a cycle since T ′ is connected. This

will contradict with the fact that T is a tree. Thus in each additional step we will

introduce one Voronoi vertex that is connected to T ′ through one Voronoi edge.

4Intuitively, generic rigidity means that almost all (except some degenerate cases) realizations
of the graph in the plane are rigid. Generic rigidity is a graph property. However, a generically
rigid graph may have some degenerate assignment of edge lengths such that the realization is
not rigid.
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This will introduce one new landmark and two new Delaunay edges. When we

finish exploring all Voronoi vertices we have a total of 3 + (m − 1) = m + 2 = n

landmarks, and 3 + 2(m − 1) = 2n − 3 Delaunay edges between them. Thus D′

has n landmarks and 2n− 3 edges.

With the same argument we can show that any subgraph of D′ with k land-

marks, denoted by S ′, has at most 2k − 3 edges. This is because a Delaunay

edge is certified by a Voronoi edge. Thus we take the Voronoi edges of T whose

corresponding landmarks all fall inside S ′. These Voronoi edges span at most a

tree between Voronoi vertices involving only landmarks in S ′, because they are a

subset of a tree T . By the same argument there are at most 2k− 3 edges between

landmarks in S ′. Thus the graph D′ is a Laman graph. By the Laman condition

the combinatorial Delaunay graph D(S) is rigid. ¤

The above theorem shows the rigidity of the combinatorial Delaunay graph,

but not the global rigidity yet—there might be several different realizations of

the graph in the plane. Indeed for an arbitrary triangulation one may flip one

triangle against another adjacent triangle one way or the other to create different

embedding. However, this is no longer possible if we embed the combinatorial

Delaunay complex, induced from the Voronoi diagram V (S). The intuition is that

when the triangles are ‘solid’ and two triangles cannot share interior points there

is only one way to embed the Delaunay complex. Thus the recovered Delaunay

complex does reflect the true layout of the sensor field R.

Recall that we want to find an embedding of the abstract Delaunay complex

in 2D. That is, we want to find a mapping ϕ of the vertices in the plane such

that any abstract simplex σ ∈ DC(S) is mapped as a simplex conv ϕ(σ) ∈ R2.

Notice that in the case of degeneracy there are high-order k-simplices, k ≥ 3, for

which a geometric realization requires embedding into a space of dimension k or

higher. However, this is not really a problem if we force the dimension to be 2.

Indeed, look at all the edges of a k-simplex, k ≥ 3, they form a complete graph

of k + 1 ≥ 4 vertices. Thus it is a 3-connected graph and redundantly rigid (a

graph remains rigid upon removal of any single edge). Existing results in rigidity

theory [10,42] show that a graph is globally rigid (uniquely realizable) in 2D under
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edge lengths constraints if and only if it is tri-connected and is redundantly rigid.

Thus all high-order simplices have unique embedding in the plane (up to global

translation and rotation). In this work, we find a geometric realization of the

abstract Delaunay complex in the plane. For all the simplices with dimension 2 or

smaller, they are mapped to simplices in the plane. For simplices of dimension 3

or higher, the induced graph is globally rigid and subject to a unique embedding,

as explained above.

Now the Delaunay complex is composed of a set of Delaunay triangles (2-

simplices) and high-order simplices (and their sub-simplices, of course). We al-

ready know that the high-order simplices are embedded in the plane as globally

rigid components. The Delaunay 2-simplices/triangles are embedded as a geo-

metric complex, i.e., the geometric realization of the abstract Delaunay complex.

What is left is to show that given two Delaunay triangles4uvw and4uvp sharing

an edge, there is only one way to embed them in the plane as required by the def-

inition of simplicial complex—that is w and p are on opposite sides of the shared

edge uv, as in Figure 4.2(i). Otherwise, w and p are embedded on the same side of
p

w
v

u p

w

v

u

p
w

v

u

(i) (ii) (iii)
Figure 2.7. Two Delaunay triangles 4uvw and 4uvp sharing an edge. (i) is the only valid
embedding with the two triangles not sharing any interior points.

uv. Then either w is inside 4uvp (as in Figure 4.2 (iii)), or p is inside 4uvw, or

two edges intersect at a non-vertex point (as in Figure 4.2 (ii)). This will violate

the properties of a simplicial complex that any two simplices are either disjoint or

meet at a common face. If w is inside 4uvp, then the two simplices, a 0-simplex

w and a 2-simplex 4uvp intersect at a vertex w which is not a face of 4uvp. In

the other case, if two edges intersect at a non-vertex point, this intersection is not

a face of either edge.

Now we can conclude with the main theoretical result:
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Theorem 2.2.12. Under our landmark selection criterion, the combinatorial De-

launay complex DC(S) has a unique embedding in the plane up to a global trans-

lation and rotation.

2.3 Algorithm Description

We assume a large number of sensor nodes scattered in a geometric region. In

general nearby nodes can directly talk to each other and far away nodes can not

but the algorithm does not strictly enforce a unit disk graph model. The algorithm

basically realizes the landmark selection and embedding described in the previous

section. Thus we will not re-iterate many things said already and instead focus on

the implementation and robustness issues, for the geodesic distance is only poorly

approximated by the minimum hop count between two nodes.

We first outline the algorithm and explain each step in detail.

2.3.1 Select landmarks

We use a distributed boundary detection algorithm that identifies nodes on both

outer and inner boundaries and connects them into boundary cycles [78]. With

the boundary detected we can identify the medial axis of the sensor field, defined

as the set of nodes with at least two closest boundary nodes [14]. The boundary

nodes flood inward at roughly the same time [25, 36]. The flooding messages are

suppressed by the hop count to the boundary nodes to reduce message complexity.

Each node learns its closest boundary node. The nodes at which the flooding

frontiers collide are nodes on the inner medial axis.

In a discrete network, the medial axis may contain a lot of noises due to the

discrete hop count values. For example, a node that is a neighbor of adjacent two

boundary nodes is identified to be on the medial axis according to the definition,

and is clearly not what we want. There are a number of heuristic algorithms

in the past literature to ‘clean up’ the medial axis of a discrete network [14, 84].

The idea is to take the nodes with two or more closest intervals on the network
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boundary [84]. A node having its closest points on the boundary in a consecutive

interval is not identified as the medial axis node.

With the boundary and medial axis identified, we select landmarks from

boundary nodes such that for any node p on the boundary, there is a landmark

within distance ILFS(p), where ILFS(p) is the inner local feature size of p de-

fined as the hop count distance from p to its closest node on the inner medial axis.

In order to find the local feature size of each node on the boundary, nodes on

the medial axis flood the network at roughly the same time with proper message

suppression. Each boundary node learns its local feature size as the hop count to

its closest node on the medial axis.

Now, landmark selection can be performed by a message traversing along the

boundary cycles and select landmarks along the way in a greedy fashion to guar-

antee the sampling criterion. Alternatively, we can let each boundary node p

wait for a random period of time and select itself as a landmark. Then p sends

a suppression message with TTL as ILFS(p) to adjacent boundary nodes. A

boundary node receiving this suppression message will not further select itself as

landmarks. Thus landmarks are selected with the required density.

2.3.2 Compute Voronoi diagram and combinatorial Delau-

nay complex

The landmark Voronoi diagram is computed in a distributed way as in [27]. Essen-

tially all the landmarks flood the network simultaneously and each node records

the closest landmark(s). Again a node p will not forward the message if it carries

a hop count larger than the closest hop count p has seen. Thus the propagation of

messages from a landmark ` is confined within `’s Voronoi cell. All the nodes with

the same closest landmark are naturally classified to be in the same cell of the

Voronoi diagram. Nodes with more than one closest landmarks stay on Voronoi

edges or vertices.

Unlike the Euclidean case that there is always a point with equal distance to

any two or three landmarks, when we adopt the integer hop count measurement
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as the distance metric, there may not be a point with equal distance to two or

three landmarks. Thus we re-define Voronoi vertices in the discrete setting.

Definition 2.3.1. An interior node is a node p with distance to its closest land-

mark strictly smaller than its distances to all the other landmarks. A border node

is a node that is not an interior node.

Figure 2.3 (i) is an example of the landmark Voronoi diagram with different

Voronoi cells colored differently. Border nodes are colored black. We group these

border nodes into Voronoi edges and vertices, i.e., the k-witnesses of (k − 1)-

simplices.

Definition 2.3.2. A k-witness is a border node which is within 1-hop from inte-

rior nodes of k different Voronoi cells. The border nodes that witness the same

set of Voronoi cells are grouped into connected clusters.

One subtle robustness issue, due to the discreteness of sensor nodes, is that

there might not be a node that qualifies for the witness defined above (especially

for high-order simplices). Thus we propose a merge operation: For two clusters

A and B that are both k-witnesses, if there exists a node p in cluster A, or there

exists a node q in cluster B, and all nodes in cluster B are neighbors of p or

all nodes in cluster A are neighbors of q, then we merge cluster A and B into

one cluster that certifies the union of their corresponding landmarks. The benefit

of doing so is to generate high order Delaunay simplices even when there are

no corresponding witnesses due to the discrete resolution. The above algorithm

to identify the abstract Delaunay complex is a heuristic algorithm that uses the

intuition from the continuous case. Alternatively we can use the notion of the

witness complex [19,22]. This is explored in a paper by Gao and Guibas [37].

The witnesses certify the existence of Delaunay simplices and by definition

can be identified locally. A k-witness node w, after it identifies itself, reports to

the corresponding landmarks. Such a report contains the IDs of the landmarks

involved in this dimension k − 1 Delaunay simplex, together with the distance

vector from the witness node w to each of the k landmarks. Remember that
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nodes in a Voronoi cell store their minimum hop count distances to their home

landmark. Thus, the report just follows the natural shortest path pointer to the

landmarks involved (so routing is simple). It can happen that multiple witnesses

certify the same Delaunay simplex (say, in the case of a Delaunay edge) and

they individually report to the same landmark. These report messages are again

suppressed during routing. If a node sees a report about a previously received

Delaunay simplex, it will not forward it. Naturally the report from the witness

with the smallest hop count to its landmarks will arrive the earliest. With these

reports, a landmark learns the combinatorial Delaunay simplices it is involved

in, and in addition, an approximate hop count to the other landmarks in those

simplices through the distance vectors carried in the reports. In particular, a

landmark p estimates the hop count distance to landmark q as the minimum of

the sum of distances from the witness node to p and q, over all reports received with

q involved. This distance estimation can be directly used to embed the Delaunay

simplices. Alternatively, if the minimum hop count distances between neighboring

landmarks are desired, one can let the messages initiated by the landmarks travel

to the adjacent Voronoi cells. Thus each landmark learns the minimum hop count

to all neighboring landmarks.

We remark that in the protocol we aggressively use message suppression to

reduce the communication cost. With reasonable synchronization most of the

flood messages are pruned and the average number of messages transmitted by

each node is within a small constant. We also remark that local synchronization

(with possible global clock drifts) is sufficient as message suppression occurs mostly

among neighboring landmarks.

2.3.3 Embed Delaunay complex

Now we are ready to glue the simplices together to embed the landmarks and

generate the network layout. Since there is only one way to glue two adjacent

simplices (to keep their interiors disjoint, as shown by Theorem 3.2.2), the em-

bedding is unique. We first embed one simplex S1 arbitrarily. Then we can embed

29



its neighbor S2 as follows: Let `1 and `2 be the landmarks they share in common.

For each landmark `i in S2 not yet embedded, we compute the 2 points that are

with distance d(`1, `i) from `1 and d(`2, `i) from `2, where d(·, ·) is the hop-count

distance between landmarks, estimated in the previous section. Among the two

possible locations we take the one such that the orientation of points {`1, `2, `i}
is different from the orientation of {`1, `2, `r}, where `r is any landmark of S1,

other than `1 and `2. Thus `i and `r lie on opposite sides of edge `1`2.

In some cases one landmark may have two or more neighboring simplices that

are already embedded and is thus given multiple coordinate assignments. A nat-

ural solution is to take ` at the centroid of the different positions. After we

have a rough embedding of the entire Delaunay complex, we apply a mass-spring

algorithm [31,43,48,51,65] to “smooth out” the disfigurements caused by the con-

flicting node assignments. It is important to recognize however, that mass-spring

plays a minor role in our algorithm and its utility is only apparent here because we

initially start with topologically correct landmarks positions, i.e., no global flips.

Without this initial configuration with good layout a naive mass-spring algorithm

can easily gets stuck at local minima, as observed by many [51,65].

Briefly, the idea of mass-spring embedding is to think of the landmarks as

masses and each edge as a spring, whose length is equal to the estimated hop count

distance between two landmark nodes. The springs apply forces on the nodes and

make them move until the system stabilizes. The objective is to have the measured

distances (based on their current locations) between landmarks match as closely

as possible the expected distances (indicated by hop count values).

We remark that this heuristic embedding algorithm only guarantees that ad-

jacent Delaunay triangles are embedded ‘side-by-side’. It does not prevent two

chains of triangles from wrapping around and overlapping each other. In fact,

given a planar graph with specified edge lengths, it is a NP-hard problem to find

a planar embedding [9,15]. Our problem is more difficult as we only have approx-

imate edge lengths. It remains as future work to develop efficient approximation

algorithms to embed a planar graph with approximate edge lengths.

In a distributed environment the embedding of the Delaunay simplices can
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be done incrementally with message passing. Alternatively, the combinatorial

Delaunay complex can be collected at a central station where the embedding is

performed and disseminated to the remaining nodes. As the number of landmarks

is only dependent on the geometric complexity of the sensor field, it is much smaller

than the total number of nodes. Thus a centralized collection and dissemination

of the landmark positions is manageable.

2.3.4 Network localization

Since the locations of the landmarks are known, each non-landmark node just

runs a tri-lateration algorithm to find its location (e.g., the atomic trilateration

in [69]) by using the hop count estimation to 3 or more landmarks.

2.4 Simulations

We conducted simulations on various network topologies and node densities to

evaluate our algorithm and compare with existing solutions.

2.4.1 Simulation setup and models

In the simulations we use three different models for the network connectivity.

1. Unit disk graph model: two nodes are connected by an edge if and only if

the Euclidean distance between them is no greater than 1.

2. Quasi-unit disk graph model: two nodes are connected by an edge if the

Euclidean distance between them is no greater than a parameter α, α < 1,

and are not connected by an edge if the Euclidean distance is larger than 1.

If the Euclidean distance d is in the range (α, 1], there may or may not be an

edge between them. We include this edge with probability (1− d)/(1− α).

3. Probabilistic connectivity model: with unit disk graph model, we additionally

remove each edge with probability q.
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The nodes are distributed according to a perturbed grid distribution. Each

node is perturbed from the grid point with a uniform distribution. That is, for

any node p(x, y) on the grid, we created two random numbers rx and ry between

0 and the grid width. Then we use (x + rx, y + ry) as the node position. We then

control the communication range to vary the average node degree.

To vary the network “shape”, We tried different network topologies by includ-

ing single or multiple holes, convex or concave holes, and some difficult cases such

as a U-shape or a Spiral-shape. The network setup and parameters are shown in

the caption for each topology.

2.4.2 Algorithms in comparison

Since most localization algorithms assume node inter-distance measurements and/or

anchor nodes, to make a fair comparison we only compare with two algorithms

that also use network connectivity information only :

Multi-dimensional scaling (MDS). Multidimensional scaling has been used

by Shang et al. [74] for sensor network localization with connectivity information

only. It is also the only anchor-free localization algorithm so far using connectivity

information. For n nodes, the input to MDS is the pairwise distance estimation

of size O(n2). In this case, since only rough hop-count distances are known,

MDS has trouble capturing a twist within the graph, making a long narrow graph

not differentiable from a spiral-shaped graph. In addition, MDS is a centralized

algorithm and can not be executed in sensor nodes with limited resources. At the

heart of MDS is singular value decomposition (SVD) which has a time complexity

of O(n3). In our simulation we tested MDS in two cases, once on all the nodes

and once on the landmarks only. They produce similar layout results. MDS on all

nodes is very slow. For some experiments with 5000 nodes the matrix operation

involved in MDS requires more than 1GB memory. This computation is only

feasible on powerful nodes such as the base station.

.
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(i) (ii) (iii) (iv)

Figure 2.8. From left to right, we have: (i) the true sensor locations and extracted combinato-
rial Delaunay complex; (ii) embedding of the combinatorial Delaunay complex; (iii) localization
of all nodes by our algorithm; (iv) the results produced by MDS on all nodes in the network.
The connectivity network is generated with unit disk graph model on nodes placed at perturbed
grid points. First row: Cactus, 1692 nodes with average degree of 6.9. Second row: Ginger man,
2807 nodes with average degree of 10. Third row: Pretzel, 2993 nodes with average degree of
9.1. Fourth row: Smiley face, 2782 nodes with average degree of 9.5. Fifth row: Spiral in a box,
2910 nodes with average degree of 9.5. Sixth row: Square with a concave hole, 2161 nodes with
average degree of 10.4.
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(i) (ii) (iii) (iv)

Figure 2.9. Rubberband algorithm results for (i) face (ii) spiral in a box (iii) square with a
concave hole (iv) U shape.

2.4.3 Simulation results

The objective of the following simulations is to evaluate our algorithm and com-

pare with MDS or rubberband representations. In particular, we would like to

investigate how does the algorithm performance depend on different factors such

as the network shape, the node density, landmark density, and communication

models.

Influence of network shapes

We applied our algorithm to a number of networks with different layouts, or

“shapes”. We observed that the performance of our algorithm is fairly stable for

all kinds of shapes, but the performance of MDS depends a lot on the shape of

the sensor field. We thus include here a few representative pictures in Figure 2.8.

MDS gives reasonable results for some cases (the 1st and 2nd example) but

performs quite poorly when the real network has curved pieces (like spirals), and

may even introduce an incorrect global flip, as in the 5nd and 6th examples.

For a qualitative measure, We have computed the average distance error between

the true location and our localization result and that of MDS, scaled by the

communication range5. In all cases we are consistently better. In some cases

when MDS does not produce the correct network layout, we are 4 ∼ 7 times

better as shown in Table 2.1.

5For alignment, we take three arbitrary landmarks and compute a rotation matrix for both
results.
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Topology concave face man pretzel spiral cactus star
Our Alg 1.88 0.91 1.94 0.95 1.11 2.39 2.16

MDS 4.42 2.78 3.24 1.45 7.10 2.82 3.24

Table 2.1. Average location error, scaled by communication range.

Influence of network communication models

(i) (ii) (iii) (iv)

Figure 2.10. Embedding the landmarks under challenging network conditions. The first row
shows the ground truth; the second row our embedding of the landmark nodes. From left to
right the models depicted are (i) 3443 nodes, avg. degree 10.66. only keep α edges and delete
(1-α) edges randomly. α= 0.9. (ii) 3443 nodes, avg. degree 11.95. α = 0.8 (iii) 3443 nodes, avg.
degree 9.58. quasi-UDG model: We assume that for two nodes whose distance d is between α
and 1, there is an edge with probability (1-d)/(1-α). If d < α, there must be an edge between
them. α = 0.8 (iv) 3443 nodes, avg. degree 7.57. α = 0.6.

We tested our algorithm on different communication models. The observation

is that the embedding result heavily depends on the performance of the boundary

detection algorithm. If the boundary detection algorithm faithfully detected the

network boundary, the embedding result is satisfactory as well. If the boundaries

detected have local deficiencies, then the embedding may have local errors or flips.

We show some representative cases in Figure 2.10. Figure 2.10 (i) and (ii) show

what happens when a percentage of the links are broken. In (i) a fraction q of

the edges in the unit disk graph, randomly selected, are deleted, for q = 0.1 and
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(ii) q = 0.2. In (iii) a quasi-UDG model is used: for two nodes whose distance d

is between α and 1, there is an edge with probability (1-d)/(1-α). If d < α, there

must be an edge between them. α = 0.8 in this case. In (iv), we use a quasi-UDG

model with α = 0.6. As you can see (ii) and (iv) give poor results. The problem in

these cases is that the network boundary was not detected accurately. Whenever

the boundary deviates from the real network boundary, we discovered that the

embedding of the Delaunay triangles may incur local flips (such as the left top

corner in (ii) and the right bottom corner in (iv)), as the information carried by

the landmarks and the Delaunay triangles on these landmarks is now misleading.

Influence of node density

(i) (ii) (iii) (iv)

Figure 2.11. Effect of node density/average degree on the embedding, the node densities
increase from left to right and the communication ranges are the same for all networks. (i) 677
nodes, avg. degree 5.59 (ii) 840 nodes, avg. degree 6.56 (iii) 1162 nodes, avg. degree 9.2 (iv)
1740 nodes, avg. degree 14.57.

As node density goes higher, the performance of our algorithm improves. There

are two reasons for this. One is that the boundary detection algorithm works bet-

ter with higher node density. The second is that the hop-count distance between

nodes is a better approximation of the geodesic distance between them.

The simulations in Figure 2.11 show the results of networks having increasingly

36



denser nodes from left to right with the same communication range. Networks with

higher density normally perform better than lower density networks. Specially,

if the average degree is below 7, the boundary detection step fails to faithfully

recover the boundary causing the rest of the algorithm performs not good as well.

Influence of landmark density

(i) (ii) (iii) (iv)

Figure 2.12. Effect of landmark density. All figures with 3443 nodes and avg. degree 11.95.
(i) decrease the number of landmarks (ii) standard number of landmarks as we described in
algorithm section (iii) increase the number of landmarks (iv) increase the number of landmarks
more

The theoretical results in the previous section gives a lower bound on the land-

mark density to ensure the rigidity of the Delaunay complex. One can certainly

select much more landmarks than that. In general, a higher density of landmarks

may allow for a slightly better embedding of the network since bends and corners

of the network can be captured more accurately. With a very sparse set of land-

marks the distance between 2 neighboring landmarks can be grossly exaggerated

because the multi-hop path may need to get around a corner. But a denser set of

landmarks means that the mass spring embedding of the Delaunay complex runs

on a larger set, increasing the computation and communication cost of the algo-

rithm. As shown in Figure 2.12, the result of the algorithm is fairly stable with
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different landmark density. Thus the benefit of using a denser set of landmarks

may not outweigh the increased cost of doing so.

Error accumulation

(i) (ii) (iii)

Figure 2.13. Possible error accumulation in networks with an elongated shape. In column
(i) 3297 nodes, avg. degree 3297. We show a U-shaped graph properly embedded with minor
distortion due to the use of hop-count distances. In (ii), 5028 nodes, avg. degree 14.9. The
embedded network with a ‘C’ shape endures higher distortion. In (iii), 3910 nodes, avg. degree
15. Error accumulation causes the spiral to overlap on itself.

Recall that the algorithm uses the hop count distance between landmarks to

approximate their geodesic distance. Thus we may observe error accumulation in

the embedding when the network has an elongated shape as shown in Figure 2.13.

In these examples, the embedded shape is distorted and may have self-overlap (as

in example (iii)), due to error accumulation.
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2.4.4 Further discussion

MDS. Multidimensional scaling is a standard statistical approach that takes the

all pairs proximity and recovers a 2D embedding of the vertices with linear projec-

tion methods such as principle component analysis (PCA). To better understand

why MDS introduces incorrect flips, the intuition behind it is that the network

hole causes the hop count distances to be not necessarily a good estimation of the

Euclidean distance of the nodes. For example, the node at the tip of the spiral

has a fairly long network distance to the opposite node ‘across the lake’. MDS has

no way of distinguishing this imprecise and misleading measurements from other

good distance estimates. In fact, the misleading measurements seem to ‘outweigh’

the good measurements and MDS eventually chooses to flip the spiral over. Our

other examples also show that the MDS tends to enlarge the hole in the middle.

Another limitation is that MDS behaves more or less like a blackbox and it is not

easy to interpret the results and not to mention improving it.

On a different note, we remark that using multi-dimensional scaling on the

shortest path distance matrix in a unit-disk graph setting is essentially the same

algorithm as in Isomap [76], proposed by Tenenbaum, de Silva and Langford, for

non-linear dimension reduction for high-dimensional data embedded in a low di-

mensional manifold. The famous result tested in Isomap is a 2D swiss roll shape

manifold in 3D. With shortest path distance metric instead of the Euclidean met-

ric in the ambient space, Isomap is able to ‘flatten up’ the swiss roll and recover

the non-linear manifold. If the points are embedded on a 2D manifold but with

possibly holes, i.e., a slice of Swiss cheese rolled up in 3D, our algorithm will

recover a much more faithful representation of the unfolded 2D manifold. The

fundamental idea here of using carefully selected short distances and patching up

the local simplices suggests a generic rule of recovering the inherent topology and

geometry of data points in an ambient space. This is one direction we will explore

further. In a general setting, it requires both the understanding of topological fea-

tures inherent in the geodesic distances and rigidity results in higher dimensions,

both of which are not trivial.
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Graph rigidity. The theory of graph rigidity in 2D has been relatively well un-

derstood. For example, there is a combinatorial condition, the Laman condition,

to characterize graphs that are generically rigid. There is also an efficient algo-

rithm, the pebble game [47], to test whether a graph is generically rigid in time

O(n2). Similarly, both a combinatorial characterization of globally rigid graphs

and polynomial algorithms for testing such graphs are known [10,42]. It is however

not trivial to apply these rigidity results in the development of efficient localization

algorithms. Given a graph with the edge lengths specified, finding a valid graph

realization in Rd for a fixed dimension d is a NP-complete problem [7,8,72]. Even

if we know a graph is globally rigid in 2D, there is no known efficient algorithm

to find the realization of the graph in 2D with given edge lengths.

See section 4.6 for further discussion of previous work in rigidity theory.

Comparatively, we focus on the global rigidity of the combinatorial Delaunay

complex, that has high-order topological structures than graphs. The combina-

torial Delaunay complex is globally rigid but the combinatorial Delaunay graph

is not necessarily globally rigid. Different from the graph rigidity approach, this

algorithm does not require explicitly that the network to be embedded is globally

rigid. This sheds some light on solving the network localization problem when

the network is (uniformly) sparse but not rigid, such as a grid-like network with

punched holes. Our current algorithm does not work well in the case of extremely

low density networks because the boundary detection algorithm fails to find the

network boundary effectively. In future work we plan to remove the dependency

of boundary detection step in the algorithm and hope to apply it in localizing

low-density non-rigid networks.

2.5 Conclusion

The novelty of our localization scheme is to extract high-order topological in-

formation to solve the notoriously difficult problem of resolving flip ambiguities.

Geometric information of sensor nodes (e.g. node locations) has been recognized

as an important character in sensor networks. The global topology of the sensor
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field is shown here to be helpful in recovering the network geometry.

2.6 Appendix

2.6.1 Proofs in section 2.2.1

Observation 2.6.1. The inner medial axis of R measured in terms of Euclidean

distance is the same as that measured in terms of geodesic distance.

Proof: Take the maximum size ball centered at a point p on the medial axis

under Euclidean distance measure. This ball touches two or more points on the

boundary and has no boundary points in its interior. Thus the geodesic distances

from p to the tangent points are the same as the Euclidean distances. In other

words, a point p is on the medial axis under the Euclidean distance is also on the

medial axis under the geodesic measure.

On the other hand, take a maximum size ball centered at a point p on the

medial axis under the geodesic distance measure and its tangent points on ∂R.

We argue that the geodesic shortest path from p to its tangent point must be a

straight line. If otherwise it can only bend at a point q on the boundary ∂R. This

means q is a closer boundary point than the tangent point, which contradicts with

the assumption. Thus the point p is also on the medial axis under the geodesic

distance measure. ¤

Next we prove an important Lemma about the inner local feature size. This

Lemma and its proof are motivated by [4] and will be useful for the proofs in

Subsection 2.2.3.

Lemma 2.6.2. Given a disk B containing at least two points on ∂R, for each

connected component of B∩R, either it contains a point on the inner medial axis,

or its intersection with ∂R is connected.

Proof: We take one connected component C of B ∩ R and assume that it does

not contain a point on the inner medial axis and intersects ∂R in two or more
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connected pieces. Now we take a point u in C but u is not on ∂R. Now take

u’s closest point on C ∩ ∂R. If the closest point is not unique, then u is on the

inner medial axis and we have a contradiction. Now the closet point p stays on

one connected piece of C ∩ ∂R. We take u’s closest point on a different piece of

C ∩ ∂R, denoted as q. See Figure 2.14. Now as we move a point x from u to q

p
B

x q
u

Figure 2.14. Each connected component of B ∩R either contains a point on the inner medial
axis or its intersection with ∂R is connected.

along the geodesic path between u and q, x’s closest point on C ∩ ∂R starts with

p and eventually becomes q. So at some point x the closest point changes. That

point x is on the inner medial axis. This leads to a contradiction, and hence the

claim is true. ¤

2.6.2 Proofs in section 2.2.3

Observation 2.2.6. Two Voronoi vertices connected by a Voronoi edge corre-

spond to two Delaunay triangles sharing an edge.

Proof: Recall that each Voronoi vertex x certifies a Delaunay triangle of three

landmarks u, v, w. First we argue that the points on the Voronoi edge connecting

Voronoi vertices x and y must have their two closest landmarks among u, v, w.

Certainly if one point on the Voronoi edge has one of its closest landmark to

be p and p is not any of u, v, w, then this point is a Voronoi vertex. Without

loss of generality, we assume that y has three closest landmarks u, v, z. Thus the

corresponding Delaunay triangles of x, y are 4uvw and 4uvz sharing an edge

uv. ¤
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Observation 2.2.7. For any two adjacent landmarks u, v on the same boundary

cycle, there must be a Voronoi vertex inside R whose closest landmarks include

u, v.

Proof: We take two adjacent landmarks u, v and consider the set of points in R
with equal distance from u, v. The mid-point on the geodesic path connecting

u, v, denoted by x, is at an equal distance from u, v. We take a disk through u, v

centered at x and move the disk while keeping it through u, v. Its center will trace

a curve called C(u, v) with all the points on C(u, v) having equal distances from

u, v. C(u, v) has two endpoints p, q with q on the boundary segment in between

u, v and p also on the boundary. Take r = d(p, u) = d(p, v). See Figure 2.15.

C(u, v)

u v

p

q

p

u v
q

(i) (ii)

B′

u v

p

q

B′

u v

p

q

(iii) (iv)

Figure 2.15. u, v are two adjacent landmarks. The point p on the boundary has its closest
landmarks as u, v. (i)-(iv) four possible cases.

We claim that there must be a Voronoi vertex on C(u, v) that involves u, v

and we prove this claim by contradiction. Otherwise, p’s two closest landmarks

are u, v — the ball Br(p) centered at p with radius r contains no other landmark

inside. We take r− = r− ε with ε → 0. Thus Br−(p) contains no landmark. Now

we see that this will violate the sampling condition if we can show that there is a

point on the inner medial axis inside Br−(p) (meaning that r− ≥ ILFS(p)).
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We take the connected component of Br−(p) ∩ R that contains the curve

C(u, v), denoted by F . By Lemma 4.8.4, if F does not contain a point on the

inner medial axis, then its intersection with the boundary ∂R is connected. Now

we do a case analysis depending on how the boundary curve goes through u and

v. In Figure 2.15 (i) & (ii), the ε-neighborhood of the boundary at u, v also

intersects Br−(p) ∩ R. In (i), F ∩ ∂R has two connected pieces, thus leading

to a contradiction. In (ii), the boundary between u, v through p is completely

inside Br−(p), which has no other landmark inside. In this case there are only 2

landmarks, namely u, v, on the boundary cycle containing p. This contradicts our

sampling condition.

If the boundary at v (or u, or both) is only tangent to Br−(p) ∩ R (meaning

that Br−(p) does not contain any ε-neighborhood of v, see Figure 2.15 (iii) &

(iv)), we argue that F contains a point on the inner medial axis. To see that, we

take the ball Br(p) tangent at v with v’s ε-neighborhood outside the ball. Now

we shrink it while keeping it tangent to v until it is tangent to two points on the

boundary of F . Now the center of the small ball B′ is on the inner medial axis,

which is inside Br−(p). Thus we have the contradiction. The claim is true. ¤

Lemma 2.2.8. If there is a continuous curve C that connects two points on the

boundary ∂R such that C does not contain any point on Voronoi edges, then C

cuts off a topological 1-disk of ∂R with at most one landmark inside.

Proof: Without loss of generality we assume that C has no other boundary points

in its interior. Assume C connects two points p, q on the boundary. Since C does

not cut any Voronoi edges, C must stay completely inside the Voronoi cell of

one landmark say u. Without loss of generality assume that u is to the right of

boundary point q. See Figure 2.16(i). Now the boundary of Voronoi cell of u is

partitioned by the curve C, with one part completely to the left of C. Consider

one of the intersections between the Voronoi cell boundary of u with the region

boundary ∂R, say p′. We consider the ball Br(p
′) with r = d(p′, u). The point p′

has two closest landmark, with one of them as u and the other to the left of C,

denoted as w. Now, this ball cannot contain any other landmark besides u,w. We
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Figure 2.16. (i) C is inside the Voronoi cell of landmark u to the right of C. (ii) the curve C
cuts off a segment of ∂R with no other landmark inside.

argue by Lemma 4.8.4 that the component of Br(p
′) ∩ R containing p′ intersects

∂R in a connected piece. Otherwise Br(p
′) contains a point on the inner medial

axis, which means r > ILFS(p′). Thus by the sampling condition there must be

a landmark inside Br(p
′).

Now, since the component of Br(p
′) ∩ R containing p′ intersects ∂R in a

connected piece, this intersection is a continuous segment between u and w on

∂R, completely inside Br(p
′), by using the same argument as in the previous

lemma; see Figure 2.16 (ii). In this case, the curve C cuts off a segment of ∂R
with at most one landmark inside. The claim is true. ¤
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Chapter 3

Localization using Incremental

Delaunay Refinement Methods

3.1 Introduction

In this chapter we continue our investigation into the network localization prob-

lem for a large-scale sensor network with a complex shape but we. Here we design

an algorithm that does not rely on boundary detection as a precondition to lo-

calization. Again, we do not assume any anchor nodes with known locations and

use only network connectivity information to recover the relative positioning of

all the nodes. Thus we require no extra hardware supplements (e.g., for angle

or distance measurements) and investigate a same fundamental problem: can the

network geometry be reconstructed using network connectivity alone?

Challenge: graph rigidity. As mentioned above in section 2.4.4, a major

challenge in anchor-free localization is to handle possible flip ambiguities. For a

simple example, two triangles sharing an edge can be embedded in two possible

ways, with the two triangles on the same side, or on opposite sides of the common

edge. In general, whether a graph has a unique embedding or not is investigated

in graph rigidity theory [41]. Refer to section 2.4.4 for more details.

Our Approach. The work in this chapter is a follow-up to chapter 2 in which
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we proposed a framework for connectivity-based anchor-free localization with a

different approach. We select some sensor nodes as landmarks and compute the

Voronoi diagram with all the nodes closest to the same landmark grouped into

the same Voronoi cell. We extract the combinatorial Delaunay complex 1 as the

dual complex of the landmark Voronoi diagram – there is a Delaunay edge (or

in general a k-simplex) between two (or k) landmarks if their Voronoi cells share

some common nodes. In contrast with the previous rigidity work on graphs, we

focus on the global rigidity property of the combinatorial Delaunay complex, that

has high-order topological structures (such as Delaunay triangles) compared with

graphs that do not (having only vertices and edges). The combinatorial Delaunay

complex may be globally rigid when the combinatorial Delaunay graph is not.

See Figure 4.2 for an illustration. As opposed to the graph rigidity approaches

p

w
v

u p

w

v

u

p
w

v

u

Figure 3.1. Two Delaunay triangles 4uvw and 4uvp sharing an edge. The first figure is
the only valid embedding, because in a simplicial complex two simplices can only intersect at a
common face. The graph is not globally rigid.

discussed earlier, this approach does not explicitly require that the network to

be embedded is globally rigid. This sheds some light on providing reasonable

localization results when the network has low node density (even uniformly sparse

but non-rigid graphs such as a grid-like network with punched holes).

In chapter 2 we proposed an algorithm for landmark selection to guarantee

that the generated combinatorial Delaunay complex is globally rigid and admits

a unique realization in the plane. This leads to an algorithm to put together the

Delaunay triangles in an incremental manner to find the unique embedding of

the Delaunay complex. The Delaunay complex, once embedded, can be used to

localize the rest of the nodes in the network. The algorithm for selecting landmarks

1The Delaunay complex is defined in the notion of abstract simplicial complex [24]. A set α
is an (abstract) simplex with dimension dim α = card α − 1, i.e., the number of elements in α
minus 1. A finite system A of finite sets is an abstract simplicial complex if α ∈ A and β ⊆ α
implies β ∈ A.
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first uses a boundary detection algorithm (see [29,30,32,33,52,78]) to identify the

network boundary nodes and then selects the landmarks to be a γ-sample with

γ < 1. Specifically, every boundary node has a landmark within its inner local

feature size, defined as the distance to the closest node on the medial axis (which

is the collection of nodes with two or more closest nodes on the boundary). More

details on this algorithm and compared to the one above will be further explained

in the next section.

The dependency on the boundary detection algorithm puts limitations on the

applicability of the localization algorithm, in particular, in the case of extremely

low density networks, for which boundary detection algorithms do not work well.

Examples of some of these cases were shown above.

Our Contribution. The main contribution in this chapter is an incremental

landmark selection algorithm that does not assume knowledge of the network

boundary. In particular, we start with no knowledge of the network topology

(whether there are holes or how many there are, etc.) and develop local condi-

tions to test whether a node should be included as a new landmark. Landmarks

are included in a distributed manner until the global rigidity property and the

coverage property are satisfied. The global rigidity property is to guarantee that

the Delaunay complex is globally rigid and thus has a unique embedding. The

coverage property ensures that every node is not far from the embedded Delau-

nay complex. Thus the embedded Delaunay complex approximates the shape of

the original network. The landmarks selected naturally adapt to the local geom-

etry of the network, with a higher density of landmark nodes selected in regions

with more detailed and complex features. This new landmark selection algorithm

greatly enhances the robustness of our algorithm in cases of extremely sparse

or even non-rigid networks, or networks with very complicated shape that are

challenging for boundary detection algorithms.

Once the landmarks are selected, we build the combinatorial Delaunay com-

plex in the same way as in chapter 2. The combinatorial Delaunay complex is

embedded by gluing adjacent triangles side by side. The resulted embedding of the

landmarks are then used to embed all other nodes by using simple trilateration.
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We demonstrate the improved performance of our algorithm in various network

settings in the simulation section and compared with our previous algorithm. So

far, we are not aware of any other localization algorithms using only connectivity

information with comparable performance.

3.2 Incremental Delaunay Refinement: Theory

In this section we use a continuous setting to go though the framework of network

localization by the combinatorial Delaunay complex and provide the theoretical

foundation of the incremental Delaunay refinement algorithm. The algorithm

implementation in the network setting is elaborated on in the next section. The

sensor field is assumed to be a continuous domain R ∈ R2 with perhaps some

interior holes. For any two points p, q ∈ R, we denote by |pq| their Euclidean

distance and d(p, q) the geodesic distance (shortest path distance) between them

inside R. The geodesic distance is an analog of the minimum hop count distance

in the discrete setting. A ball centered at a point p of radius r, denoted by Br(p),

contains all the points within geodesic distance r from p.

The boundary of R is denoted as ∂R and may have multiple cycles. The inner

medial axis of R is the collection of points in R that have two or more closest

points on the boundary ∂R. The inner local feature size of a point p ∈ ∂R,

denoted by ILFS(p), is the distance from p to the inner medial axis of R. A set

of landmarks L on the boundary ∂R is called a γ-sample2 if for any point p ∈ ∂R,

there is at least one landmark within distance γ · ILFS(p) from p.

Suppose L is a set of landmarks on the domain boundary ∂R, the Voronoi cell

of a landmark u, denoted as V (u), includes all the points that have u as a closest

landmark:

V (u) = {p ∈ R | d(p, u) ≤ d(p, v),∀v ∈ L, v 6= u}.
2Notice that the definition of γ-sample is different from the typical definition in geometric

processing [4, 5] where the local feature size is used. The medial axis for a domain R has two
parts, one inside R and one outside R. For our setting we do not have access to the part of the
medial axis outside of R and we can only use the inner local feature size.
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The collection of Voronoi cells is denoted as the landmark Voronoi diagram V (L)

for the set L of landmarks. A point is called a Voronoi vertex if it has equal

distance to at least three landmarks. The Voronoi vertices inside R are called

the inner Voronoi vertices. A ball Br(p) centered at an inner Voronoi vertex p

with radius r equivalent to the distance from p to the closest landmarks is called

a Voronoi ball.

∂R

Figure 3.2. Left: The Voronoi graph (shown in dashed lines) and the Delaunay complex for
a set of landmarks on the boundary ∂R. The Delaunay simplices (vertices, edges, triangles,
tetrahedrons) are shaded. Right: The union of Voronoi balls approximately covers the domain
R.

The combinatorial Delaunay complex of the landmarks L, denoted by DC(L),

is the collection of sets

DC(L) = {α ⊆ L | ∩u∈α V (u) 6= ∅}.

In other words, a set α ⊆ S is a Delaunay simplex if the intersection of the

Voronoi cells of landmarks of α is non-empty. The Delaunay complex has natu-

rally 0-dimensional simplices such as the landmarks, 1-dimensional simplices such

as Delaunay edges, and 2-dimensional simplices such as Delaunay triangles, and

possibly higher order simplices such as tetrahedrons. See Figure 4.3 for an exam-

ple.

3.2.1 γ-sample, rigidity and coverage

In chapter 2, we showed a framework for network localization by embedding the

Delaunay complex DC(L) extracted from the network connectivity. We proved
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that when the landmarks are selected as a γ-sample of the domain R with γ < 1,

the Delaunay complex DC(L) is globally rigid and thus admits a unique realization

in the plane. This establishes the foundation of the localization algorithm as we

can now embed the Delaunay complex incrementally and then localize the entire

network with the Delaunay complex as a structural skeleton. See Figure 3.3 (i) for

an example when the rigidity condition is violated. In this case one does not know

how to embed the Delaunay triangles as the left part can rotate freely around the

right one.

u

Figure 3.3. Bad cases for localization. Left: the Voronoi edges of landmark u form two
connected components. The combinatorial Delaunay complex is not rigid. Right: The union of
Voronoi balls do not well cover the domain R. The problem is that the current combinatorial
Delaunay complex does not capture the shape of the sensor field that are not yet covered.

For localization, we also want that the Delaunay complex provides good ‘cov-

erage’ of the sensor field in the sense that every node is not very far from the

Delaunay complex, so that the Delaunay complex faithfully represents the net-

work shape. In particular, we take B to denote the union of all the Voronoi balls,

and U the shape of the union of these balls. As we will prove later, the γ-sample

condition guarantees that the union of Voronoi balls is a good approximation of

R and the approximation is improved as the density of landmarks increases. See

Figure 4.3 (ii) for an example of a good case and Figure 3.3 (ii) for an bad exam-

ple. Rigorously, we define that the Delaunay complex DC(L) δ-covers R if every

point x ∈ R is within distance (1+δ) ·r from the center p of a Voronoi ball Br(p),

where r is the radius of this Voronoi ball.

Using the union of the Voronoi balls to approximate the shape R was initially

proposed in geometric processing and computer graphics [5]. It has been shown

that the errors in the position and normal of the surface of U with R is bounded

everywhere, given sufficiently dense samples on the ∂R. However, we cannot
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directly apply the results in [5] as there are a couple of differences with our setting.

First, the metric we are working with is the geodesic shortest path metric, instead

of the Euclidean metric used in [5]. In addition, as we only have sensors in the

interior of R, we do not have access to the part of medial axis that is outside R
and we are only able to use the inner local feature size to define the γ-sample.

Before we prove the coverage theorem, let us first understand the boundary

of the union of balls U . The boundary of U contains some circular arcs from the

balls in B. We first characterize what arc can possibly stay on the boundary of U .

Each Voronoi edge in V (L) has two endpoints, being either a Voronoi vertex or

a point on the boundary ∂R. A Voronoi edge with two Voronoi vertex endpoints

is called an inner edge. A Voronoi edge with two endpoints on the boundary is

called an outer edge. A Voronoi edge with both a Voronoi vertex and a point on

the boundary is called a mixed edge. For each Voronoi ball B, the three landmarks

partition its boundary ∂B into three circular arcs. We label the arc between two

landmarks u, v with the label of the Voronoi edge of u, v as either inner, outer,

or mixed. We now claim that only mixed arcs can possibly appear on ∂U . First

realize that the interior points of an inner arc cannot stay on the boundary of U ,

since the arc is enclosed inside the union of the two Voronoi balls that go through

u, v. Second if we choose γ < 1, then the Voronoi diagram inside R is connected

as proved in Corollary 2.10 in chapter 2. Thus there cannot be an outer edge in

V (L), since this edge will be disconnected from the rest of the Voronoi diagram.

Now for a Voronoi ball Br(p) with a mixed edge between landmarks u, v we define

a pie as the set of points in R bounded by the boundary segment between u, v and

the shortest paths from p to u, v. Only the points inside a pie with a mixed arc can

possibly stay outside U . See Figure 3.13. Notice that in the case of degeneracy,

a Voronoi ball can have four or more landmarks. The classification of edges and

the proof later are the same in that case.

In the following theorem we show that the landmarks being a γ-sample not only

guarantees the global rigidity of the Delaunay complex (as shown in chapter 2)

but also the good coverage property (proof in the Appendix). In the next section

we describe a new algorithm to achieve both global rigidity and coverage, without
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using network boundary explicitly.

Theorem 3.2.1. For a connected region R ⊆ R2, we select landmarks L as a

γ-sample on the region boundary ∂R with γ < 1. Then the Delaunay complex

δ-covers R, with δ = 2γ/(1− γ).

3.2.2 Landmark selection for both rigidity and coverage

Based on the previous discussion, there are two desirable criteria, namely, global

rigidity and coverage, for the final Delaunay complex. Choosing the landmarks

as a γ-sample will lead to both properties. Nevertheless our previous algorithm

would require the knowledge of the network boundary. In this subsection we

investigate local conditions for landmark selection to guarantee both rigidity and

good coverage of the induced Delaunay complex:

1. Local Voronoi edge connectivity: The Voronoi edges for each landmark

u form a connected set.

2. Local Voronoi ball coverage: Each node x inside a Voronoi cell V (u) is

δ-covered by a Voronoi ball Br(p), where p is a Voronoi vertex with landmark

u.

We first show that if both conditions are satisfied for a set of landmarks L,

then the Delaunay complex DC(L) satisfies both the global rigidity and coverage

property. This is relatively straightforward. After this, we examine how to design

a landmark selection algorithm to meet these conditions.

Rigidity of the Delaunay complex

When the local Voronoi edge connectivity condition is met, we argue that the

Delaunay complex is globally rigid. To do that, we will make use of a theorem

proved in chapter 2:

Theorem 3.2.2. [Global Rigidity] If V (L) is connected inside R, the Delaunay

complex DC(L) is globally rigid.
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The local Voronoi edge connectivity immediately implies the global Voronoi edge

connectivity. If otherwise, there must be one landmark whose Voronoi edges have

two or more connected components, since the union of all the Voronoi cells is R.

Thus the local Voronoi edge connectivity condition implies the global rigidity of

DC(L).

Coverage of the Delaunay complex

If the local Voronoi ball coverage condition is met for every Voronoi cell, then the

coverage property of the Delaunay complex follows directly.

Incremental Delaunay refinement algorithm

Since both conditions can be tested locally, we naturally have the following incre-

mental landmark selection algorithm: for each Voronoi cell V (u),

1. If the first condition is not met, the Voronoi edges with u have two or more

connected components. Since each Voronoi edge has either a Voronoi vertex

or a point on ∂R as endpoints, we select, among all the endpoints of Voronoi

edges of u on ∂R, the one that is furthest from u as a new landmark.

2. If the first condition is met, we check the second condition. Among all the

points that violate the local Voronoi ball coverage condition, we select the

one that is least covered as a new landmark: arg maxx minBr(p){δ′ |d(x, p) =

(1 + δ′)r}. That is, for each such point x, we choose the Voronoi ball Br(p)

with p such that d(x, p) = (1 + δ′)r with smallest possible δ′. And we select

the point x with the largest such δ′.

This landmark selection algorithm always selects landmarks on the network

boundary3 but it does not require the detection of the network boundary, nor

does it require the knowledge of the medial axis and local feature size, whose

computation is sensitive to noise. New landmarks in different Voronoi cells can

3Landmarks added by condition 1 will be on ∂R for sure. For the landmarks added by the
2nd condition, by the same argument as in Theorem 3.2.1 the points outside the Voronoi balls
must be inside the pies. And the least uncovered point stays on the region boundary ∂R.
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be inserted in parallel as the algorithm executes locally inside each Voronoi cell.

Thus the new landmark selection method is more robust and practical compared

with the γ-sampling used in our previous algorithm. Next, we show the algorithm

terminates and the landmarks generated have bounded density.

Landmark density by incremental refinement

Here we show that every landmark q added by the incremental algorithm is not

sufficiently covered by existing landmarks, i.e., the distance to its closest landmark

is at least γ · ILFS(q) for an appropriate parameter γ < min(1
3
, δ

2+δ
). If a point

x ∈ ∂R is within γ · ILFS(x) from a landmark, we say x is γ-covered. The proofs

of the following results are shown in the Appendix.

Lemma 3.2.3. If a Voronoi cell V (u) violates the local Voronoi edge connectivity

condition, the new landmark q selected is not covered by any landmark within

γ · ILFS(q), for any γ < 1/3.

Lemma 3.2.4. If a Voronoi cell V (u) for a landmark u violates the local Voronoi

ball coverage condition, the new landmark q selected is not covered by any land-

mark within γ · ILFS(q), γ = δ/(2 + δ).

The above results show that our local conditions do identify points on the

boundary that need to be γ-covered for γ < min(1
3
, δ

2+δ
). If the inner local feature

size for any point x ∈ ∂R is at least ε for some fixed ε, then the incremental

Delaunay refinement algorithm will eventually terminate, as every new landmark

included covers at least an interval of length 2εγ centered at itself on ∂R. This

procedure cannot go on indefinitely.

We remark that the algorithm will certainly terminate when the landmark

set is a γ-sample for any γ < 1, but it may also terminate before that if both

the rigidity and coverage conditions are met, as shown in Figure 3.4. This can be

understood in terms of our algorithm picking up the major geometric features and

ignoring the noisy features of R. The rigidity and coverage properties guarantee

that the reconstructed Delaunay complex will approximate R and are what we
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Figure 3.4. The landmark set may not be a γ-sample of ∂R. The local feature size for points
on the segments between u, v is however much smaller than the distance to u or v. Unless we
really want to capture the wiggling features between u, v, the γ-sample is an overkill.

really care about in our localization algorithm. The γ-sample for R can be much

denser than what is needed in practice.

Last we show that the landmark set generated by the incremental algorithm

has bounded density.

Theorem 3.2.5. Suppose L is the generated landmark set by the incremental

algorithm. If any landmark from L is removed, then it is not a γ′-sample of ∂R,

with γ′ = γ/(1 + γ), γ < max(1/3, δ/(2 + δ)).

3.3 Incremental Delaunay Refinement: Distributed

Implementation

3.3.1 Algorithm description

Suppose a large number of sensor nodes are scattered in a geometric region, where

nearby nodes can directly communicate with each other. Similar to the setting in

chapter 2, we do not enforce that the communication graph follows the unit disk

graph model (in our simulations we use both a quasi-UDG model and a proba-

bilistic radio model), nor do we assume any knowledge of the node locations or

inter-distances. We select landmarks incrementally in the network until both the

global rigidity and the coverage property are satisfied as described in Section 3.2.

Next we will explain the distributed implementation of each algorithm step in de-

tail. Unless specified otherwise, all the distances, by default, refer to the geodesic

distance, which is measured by the minimum hop count between two nodes in a
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 3.5. A step by step illustration of the incremental Delaunay refinement method. The
total number of sensor nodes is 3887. The communication graph follows a unit disk graph
model with average node degree 7.5. (i-iv) Start with two landmarks on the boundary and
incrementally add more landmarks. (v) The final Voronoi diagram when the algorithm stops.
(vi) The Delaunay edges extracted from the Voronoi cells of the landmarks. (vii) The embedding
result of combinatorial Delaunay complex. (viii) The embedding result of all nodes.

discrete network.

Select initial landmarks

We start with two landmarks arbitrarily selected on the boundary. In order to

guarantee these two starting landmarks are definitely on the boundary, we flood

the network from a random node r and find the farthest node p from r, p must

be on the network boundary. Then we flood from p and find the farthest node

q from p. q will be on the boundary as well. We use p and q as our two initial

landmarks. See Figure 3.5(i).

Compute Voronoi diagram

Once we have some landmarks, we calculate the landmark Voronoi diagram in a

distributed way. Each landmark learns of its closest landmark(s) and all the nodes

with the same closest landmark are naturally classified to be in the same Voronoi
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cell. Recall that the landmarks are included incrementally. A new landmark

initiates a flood message which is propagated only inside its Voronoi cell—when a

node receiving this message sees that its hop count to some preexisting landmark

is equal or smaller, the message is dropped. As more landmarks are included,

the size of Voronoi cells decreases, and so does the communication cost of each

restricted flooding operation.

Nodes with more than one closest landmarks lie on a Voronoi edge or vertex.

Although the straightforward definition of Voronoi vertex is a node with equal

distance to at least three landmarks, one robustness concern is that there may

not be a node that qualifies for this definition by the discrete network hop count

measure. In chapter 2 we proposed a merging heuristic to get Voronoi vertices.

Here we refine this process with rigor and propose the following witness definition

to guarantee the existence of Voronoi vertices.

Definition 3.3.1. A node p is called a 2-witness for a pair of landmark {u, v}, if

d(p, u), d(p, v) are among the top m smallest hop count distances from landmarks

to p and these hop count distances differ at most by β2. β2 is called the relaxation

parameter for 2-witnesses.

In other words, we denote by `i(p) the set of landmarks with the i-th smallest

distance to p and di(p) the i-th smallest distance from landmarks to p. Then a

node p is the 2-witness for all pairs of landmarks in L2 = ∪m
i=1`i(p) such that

dm(p)− d1(p) ≤ β2 and dm+1(p)− d1(p) > β2. We call L2 the 2-witness landmark

set for p. p witnesses every pair in L2.

The boundary of a Voronoi cell of a landmark u is the collection of 2-witnesses

with u in their landmark set. With the 2-witnesses we will detect 3-witnesses for

triples of landmarks, a.k.a. the Voronoi vertices, by properly merging neighboring

2-witnesses with different landmark sets. In general we define a k-witness as

follows, for k ≥ 3.

Definition 3.3.2. A node p is called a k-witness for a tuple of k landmarks, if p

is a k− 1-witness and the k landmarks are among the top m closest landmark set
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Lk = ∪m
i=1`i(p) with dm(p) − d1(p) ≤ βk, dm+1(p) − d1(p) > βk. βk is called the

relaxation parameter for k-witnesses. Lk is called the k-witness landmark set for

p.

The parameters βk are appropriately chosen as explained below. By the analog

of the continuous case, the 2-witnesses correspond to the 1-dimensional Voronoi

edges. The k-witnesses for k ≥ 3 correspond to 0-dimensional Voronoi vertices.

Thus we hope that the collection of 2-witnesses for each landmark (i.e., its Voronoi

edges) is connected, and that the k-witnesses with k ≥ 3 for different k-tuples

form isolated connected components that separate 2-witness groups with different

landmark pairs.

To show this we first give a number of observations.

Lemma 3.3.3. If βk ≥ 1, there cannot be two neighboring k-witnesses p, q such

that the landmark sets they witness do not share any common landmark.

Now we examine what nodes among the 2-witnesses are selected to be 3-

witnesses. The Voronoi boundary of each landmark is required to be connected,

therefore, we group the 2-witnesses for each landmark u by the set of landmarks

they witness. Adjacent 2-witnesses that witness different landmark sets will be

selected as 3-witnesses with a properly selected relaxation parameter β3. We

choose β2 = 1.

Lemma 3.3.4. If there are two neighboring 2-witness nodes p, q that witness

different landmark set, i.e., L2(p) 6= L2(q), and β3 = 2β2 + 2, p, q are both 3-

witnesses of the landmarks in L2(p) ∪ L2(q).

Therefore, the Voronoi boundary of a landmark will have connected com-

ponents of 2-witnesses (with the same witness landmark set) connected by 3-

witnesses. Intuitively, this corresponds to Voronoi edges connected by Voronoi

vertices. We will perform this witness selection operation further so that among

the 3-witnesses, neighboring nodes with different witness landmark sets will be

identified as 4-witnesses, if β4 = 2β3+2. Each connected component of k-witnesses
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with the same landmark set will generate the corresponding Delaunay simplices.

The witness identification procedure continues until the groups of k-witnesses with

the same witness landmark set are isolated components.

The witness identification algorithm only uses local information. With the

witnesses identified, we can output the combinatorial Delaunay complex as we

will explain later.

Select more landmarks incrementally

With the Voronoi diagram from the initial 2 landmarks, we then select more

landmarks incrementally. Corresponding to Section 3.2, for each landmark u and

its Voronoi cell V (u), we check:

• If the 2-witnesses (a.k.a. Voronoi edges) of u are not connected (this can be

checked by having each connected component of the union of u’s Voronoi

edges send a message to u), we choose among all nodes that are endpoints

of Voronoi edges lying on the network boundary4 and select the one furthest

from u as a new landmark.

• If the 2-witnesses of u are connected, we check each point p in Voronoi cell

V (u) and any Voronoi vertex v associated with u. We select point p as the

new landmark if p is furthest away from any relaxed Voronoi ball B(1+δ)r(v)

among all points that are not yet δ-covered by Voronoi balls of u. Here r is

the hop-count distance between u and v.

As the conditions are local, new landmarks can be selected in different Voronoi

cells in parallel. The Voronoi diagram is then updated until no more landmarks

are selected.

Figure 3.5 (v) is the final Voronoi diagram when the landmark selection stops.

The Delaunay edges extracted from the final Voronoi diagram are shown in Figure

3.5 (vi). When the algorithm stops, both the global rigidity and good coverage

are guaranteed.

4Notice that we can discover such nodes as each Voronoi edge is a connected set of 2-witnesses
with the same landmark set, whose endpoints are either 3-witnesses or nodes on the network
boundary.
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Extract Delaunay complex

When all the landmarks are in place and the final Voronoi diagram is computed,

using the witnesses we identified earlier, each connected component of k-witnesses

with the same landmark set will generate a corresponding Delaunay simplex. In

particular, for each k-witness p, k ≥ 3, we output for each k-tuple in the witness

landmark set Lk(p) a k−1-dimensional simplex that implicitly includes all its faces.

These simplices are collected to be embedded in the next step. The embedding

of the Delaunay complex is the only centralized operation in the algorithm. Once

the Delaunay complex is embedded, its realization is disseminated to the entire

network to localize the rest of the nodes. Notice that since the Delaunay complex

is a compact structure whose size depends on the network geometric complexity,

and since only Voronoi nodes are involved in embedding it, the cost of collection

and dissemination is substantially smaller than the cost of collecting the entire

connectivity graph for any centralized localization algorithm.

Embed Delaunay complex

In brief, we choose one simplex, embed it as a starting point, and then embed

each neighboring simplex side-by-side to the one already embedded. As mentioned

earlier, two k-witnesses (k ≥ 3) with different landmark sets are connected through

m-witnesses with 2 ≤ m < k. Thus each simplex we extract must share an edge

with a neighboring simplex and the 2 simplices cannot overlap, so the embedding

is unambiguous. For example, suppose a simplex S is already embedded, and we

want to embed a neighboring simplex (triangle) S ′ that shares a common edge

with S. We use bilateration to find the 2 possible positions for the third landmark

of S ′ that has not yet been embedded and choose the one that does not cause S

and S ′ to overlap.

Since we ran our new algorithm on more complicated topologies than what

our original algorithm was capable of, we encountered many high dimensional

simplices (see for example the sun shape in Figure 3.9). In this case we embed

each high-dimensional simplex using multi-lateration to the other landmarks of
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the simplex that are already embedded, in order to take advantage of all known

distance measurements. Since we only have estimated distances, we solve the

optimization problem of minimizing the mean square error among the distances

as described in [70]. And as another optimization, we run a mass-spring relaxation

on the simplex in order to smooth out the distance errors.

We remark that our embedding algorithm only makes sure that adjacent Delau-

nay triangles are embedded ‘side-by-side’, thereby allowing us to get a very good

embedding of the network. However, it does not guarantee a planar embedding—

one part of the network can still curve around and intersect with another part of

the network. It is an NP-hard problem to find a planar embedding given a planar

graph with specified edge lengths. A particularly challenging scenario is when em-

bedding a network with a hole and we want to connect the loop of simplices cycling

back to itself. One approach we use to prevent one simplex from landing atop

another is by setting some boundary lines defined by the first embedded simplex

that no other simplex may cross. If a landmark goes over this line, it is embedded

to the line. If a landmark should receive more than one coordinate assignment

(arising from two simplices coming around the hole), we simply embed it at the

centroid of its different assignments. These steps work well in many cases, and are

what we used to get the result in Figure 3.8. Unfortunately they do not ensure

planarity, and can introduce flipped simplices, as can be seen in the flower and

music images of Figure 3.9, and elsewhere. We emphasize that our algorithm guar-

antees correct orientation of the simplices, but once other heuristics are applied,

the guarantees no longer hold. This problem is hard to get around by the NP

hardness result. It still remains for future work to develop efficient approximation

algorithms with theoretical guarantees for planar graph embedding.

Network localization

When the Delaunay complex is embedded and disseminated to all the nodes, each

non-landmark node uses its hop count estimation to 3 (or more) landmarks to

trilaterate its own location (as in the atomic trilateration in [69]).
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3.3.2 Discussion

We remark that when there are anchor nodes with known locations, we can select

them as initial landmarks. More landmarks can be included to ensure sufficient

density. Later when we embed the landmarks, the anchor nodes are fixed at

their known locations. When there are enough anchor nodes placed with proper

density, our algorithm deteriorates to simple trilateration algorithm (in [69]). Our

refinement algorithm can also be used to identify candidates for additional anchor

nodes.

Li and Liu [56] have observed that when the network has holes or complex

shape, the shortest path may bend on hole boundaries. Thus the network hop

count distance is a poor approximation to the straight line Euclidean distance.

They have also proposed ways to correct the biases of the distances and shown

improvement to the localization accuracy of simple trilateration algorithm. In

our algorithm, by partitioning the network into Voronoi cells, in some sense we

avoid the shortest paths that bend on holes. This also partially explains why our

algorithm performs better than multi-dimensional scaling5 [74] (as shown above),

when all shortest path lengths are dumped to a global optimization routine to gen-

erate the embedding as the best fit. The biased distance measurements necessarily

distort the embedding.

5MDS takes an inter-distance matrix on n nodes and extracts the node location in Rn.
Consider the matrix B, where each entry bij =

∑p
k=1 xik

xjk
= x>i xj , where p is the dimension,

each xi = (xi1 , . . . , xip)> is the coordinates for point i. It is possible to derive B from the
known squared distances dij alone, where dij is the shortest path between nodes i and j. Each
entry bij = − 1

2d2
ij − 1

n

∑n
j=1 aij − 1

n

∑n
i=1 aij + 1

n2

∑n
i=1

∑n
j=1 aij , where aij = − 1

2d2
ij . From B

we derive the unknown coordinates. Since B is symmetric, positive semi-definite we can write
B = V AV >, where A is the diagonal matrix of the eigenvalues of B, and V is the matrix of
corresponding eigenvectors. The coordinate matrix X = V A

1
2 , that is X = (x1, . . . , xn)>, an

(n × p) matrix of coordinates. If the inter-node Euclidean distances are known exactly, then
MDS would precisely determine the coordinates of the points (up to global transformations).
Taking the first 2 eigenvalues and eigenvectors yields the coordinates in 2D.
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3.4 Simulation

We conducted extensive simulations under various scenarios to evaluate how well

our algorithm extracts the network topology and how performance is affected by

different factors such as node density, different communication model (quasi-UDG,

probabilistic model, etc.) and node random failures. Typically our examples have

an average node degree of around 10, and we also tested on examples with average

degree as low as 6. We also demonstrate results for a special case where nodes

are aligned on a perfect grid having an average degree of 4. We evaluate the

communication cost of our algorithm at the end.

Influence of node density. Theoretically, our algorithm performs better un-

der higher node density since the hop-count distance between nodes is a better

approximation of the geodesic distance between them.

Figure 3.6 shows the results of networks with different densities but with the

same communication range. Notice that when the average degree is below 7, not

all selected landmarks are on the boundary, as Voronoi edges may be broken at

small holes in the network. The performance deteriorates when the average degree

drops below 6, when error accumulation by using hop-count distance becomes too

large for an accurate embedding.

Influence of network communication models. Unit disk graph model is nor-

mally too ideal in practical scenario. In real scenario, there could be noise, nodes

power off, network disconnection for any unknown reason, we also evaluate our

algorithm on connectivity models other than unit disk graph model, in particular,

quasi-unit disk graph model (quasi-UDG) and probabilistic connectivity model. In

quasi-UDG, two nodes are connected by an edge if the Euclidean distance between

them is no greater than a parameter α, α ≤ 1, and are not connected by an edge if

the Euclidean distance is larger than 1. If the Euclidean distance d is in the range

(α, 1], we include this edge with probability (1 − d)/(1 − α). In the probabilistic

connectivity model, we start with the unit disk graph model and remove each edge

with probability 1 − β. We remark that the probabilistic model also take into

account the random node/link failures.
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(i) (ii) (iii) (iv)

Figure 3.6. The embedding results for networks of different node densities. The communication
ranges are the same for all 4 networks. The first row shows the ground truth; the second row
shows our embedding of the landmark nodes. From left to right the models depicted have (i)
3887 nodes, avg. degree 10.28. (ii) 3044 nodes, avg. degree 7.6. (iii) 2680 nodes, avg. degree
6.3. (iv) 2320 nodes, avg. degree 5.7.

(i) (ii) (iii) (iv)

Figure 3.7. Effect of network communication models on the embedding. The first row shows
the ground truth; the second row is our embeddings of the landmark nodes. All the networks
have 3887 nodes and the same communication range. From left to right the models depicted are
(i) quasi-UDG model, avg. degree 6.4, α = 0.6 (ii) quasi-UDG model, avg. degree 5.6, α = 0.5
(iii) delete each edge with probability 1− β. β = 0.6, avg. degree 6.2 (iv) Same model as (iii),
β = 0.5, avg. degree 5.0.

65



We show some representative cases in Figure 3.7. (i) and (ii) use the quasi-

UDG model. (iii) and (iv) use the probabilistic model. We have good embedding

results even when α or β is at least 0.6 with an average degree of around 6. When

α or β goes below 0.5, the algorithm performance starts to deteriorate.

Comparison with Chapter 2 Since the new algorithm does not depend on

boundary detection, it not only avoids the computationally expensive operation

of detecting the network boundary, but can work under conditions where the

boundary detection would give poor results, causing an unsatisfactory outcome.

Figure 3.8 is a network with nodes laid out on a perfect grid with an average

degree of only around 4. This is an example that will not work using our previous

algorithm as boundary detection will fail. As far as we know, no known boundary

detection algorithm can work on networks with such low average degree. Fig-

ure 3.8(i)(ii) shows the ground truth and embedding result of the new algorithm.

Note the low degree does cause some locally inaccurately embedded pieces. At

two top corners, the triangles are degenerate as the hypotenuse has exactly the

same length as the other 2 sides measured by hop-count in the grid network. Nev-

ertheless we still capture the topology and the global geometry rather faithfully.

Figure 3.8(iii) is the boundary detection result using the method in [78], which

generates a Delaunay Complex that does not capture the network geometry (Fig-

ure 3.8(iv)).

(i) (ii) (iii) (iv)

Figure 3.8. A perfect grid network. 3388 nodes, avg. degree 3.87. (i) the Delaunay complex
extracted from the Voronoi cells of the landmarks using the new algorithm. (ii) the embedding
result. (iii) the boundary detection result. (iv) the Delaunay complex result using the previous
algorithm.

Different network topology. We show more results using our algorithm for a

number of networks with convoluted shapes in Figure 3.9. The reason we show
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(i) (ii) (iii)

Figure 3.9. Running our algorithm on different topologies. The first row shows a network of
windows shape, with 6495 nodes and avg. degree 9.97. The second row shows a network of sun
shape, with 5217 nodes and avg. degree 10.3. The third row shows a network of flower shape
with 8350 nodes and avg. degree 9.14. The fourth row shows a network of music shape, with
6176 nodes and avg. degree 10.2. Columns: (1) the ground truth. (2) the embedded landmark
nodes. (3) all the nodes embedded using multi-lateration to the closest landmark nodes.
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these interesting results is to prove the ability of our algorithms on complicated

shapes. Some shapes here can also find possible real scenarios corresponding to

practical sensor deployment. For example, remote unknown areas or underwater

environments could be any shapes, a window-like shape, sun-like shape and etc..

Communication cost of the algorithm. In the execution of the incremental

landmark selection algorithm, the new landmarks in different Voronoi cells are

selected in parallel and each new landmark only floods locally in its Voronoi

cell. In one iteration, many Voronoi cells can be refined and new landmarks are

selected. In Figure 3.10, we run our algorithm on a group of networks with the

same shape (similar to Figure 3.5), the same communication range and different

node densities. We calculate the average number of nodes in each Voronoi cell in

each iteration. It is shown that the refinement is very effective. The average size

of Voronoi cells drops dramatically and the algorithm typically stops after a small

constant number of iterations.

Figure 3.10. The average size of the Voronoi cell in each iteration until the algorithm stops.
The size of the network varies from 2600 to 4361. With the same communication range, the
average degree of the network varies from 6.29 to 10.68.

We also show the total communication cost for each iteration, in particular,

the number of messages involved in the establishment of the Voronoi cells of all

newly added landmarks in each iteration. When a new landmark is selected, it

only floods locally in its Voronoi cell, claiming these nodes from old landmarks

and properly setting up the Voronoi boundary. Recall that the landmark selection

rules are local and can be executed by each node on the Voronoi boundary locally,
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whose communication cost is negligible. The combinatorial Delaunay complex is

only extracted at the final step by a network wide flooding. Thus we evaluate

the communication cost for the landmark refinement step. In Figure 3.11, we

run our algorithm on the same setting as Figure 3.10. We use the broadcast

model, that is, one transmission is received by all neighbors. For each iteration,

we take the total communication cost as the number of transmissions during that

iteration. In Figure 3.12, we show the average number of transmissions per node,

for different network size. As the energy consumption of each node is mainly on

the communication cost. This figure shows how the algorithm scales in terms of

energy usage.

Figure 3.11. The total message cost in each iteration until the algorithm stops. The size of
the network varies from 2600 to 4361. With the same communication range, the average degree
of the network varies from 6.29 to 10.68.

3.5 Conclusion

This chapter is a follow-ups up to chapter 2 solving the localization problem using

connectivity information only. We develop a new landmark selection algorithm

using incremental Delaunay refinement method in a distributed manner. The

new algorithm keeps the good properties (global rigidity and coverage) needed

for localization, and yet is not dependent on network boundary detection. This

allows for a more robust algorithm, less sensitive to the noisy results of boundary

detection and avoids its high computation cost. Thus our new algorithm is more
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Figure 3.12. The average number of messages per node for different network size. The size of
the network varies from 2600 to 4361. With the same communication range, the average degree
of the network varies from 6.29 to 10.68.

applicable in practice, performing well in networks with low average degree and

complex shapes.

So far the framework only applies for the embedding in 2D. In our on-going

work, we are applying the algorithm for embedding of sensors deployed on a

non-flat terrain or in three dimensional space (e.g., for underwater deployment).

Boundary detection algorithms in dimensions higher than two are unavailable thus

the ideas presented in chapter 2 would have little hope on its own to be extended

to a more general setting. The incremental landmark refinement is a necessary

and critical improvement to make the technique more generic.

3.6 Appendix

We show that the inner local feature size function is 1-Lipschitz.

Lemma 3.6.1 (Lipschitz continuity). The inner local feature size of any shape R ⊆
R2 is 1-Lipschitz: ILFS(x) ≤ ILFS(y) + d(x, y) for any x, y ∈ R2.

Proof: The proof follows from triangle inequality. Suppose that point p is the closest

point of y on the inner medial axis of R. Then d(p, y) = ILFS(x). Thus, ILFS(x) ≤
d(p, x) ≤ d(p, y) + d(x, y) = ILFS(y) + d(x, y). ¤
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Theorem 3.2.1. For a connected region R ⊆ R2, we select landmarks L as a

γ-sample on the region boundary ∂R with γ < 1. Then the Delaunay complex

δ-covers R, with δ = 2γ/(1− γ).

Proof: We first prove the claim for points on ∂R. Consider a point x on ∂R in

u v

p

r

x

y

Figure 3.13. Any x is within distance δ · r from a Voronoi ball. A pie between a mixed arc ûv
is shown in shade.

between two landmarks u, v, as shown in Figure 3.13. Lemma 2.8 in chapter 2 says

that there is a Voronoi vertex p with u, v as two closest landmarks and the Voronoi

edge with respect to u, v is a mixed edge. Without loss of generality we assume

that x’s closest landmark is u. By the γ-sample property, d(u, x) ≤ γ · ILFS(x).

Now we assume by contradiction that d(p, x) > (1 + δ)r. Thus γ · ILFS(x) ≥
d(u, x) ≥ d(p, x) − d(p, u) > (1 + δ)r − r = δr by the triangle inequality. Thus

ILFS(x) > δr/γ.

We also know that the inner local feature size is a 1-Lipschitz function (by

triangle inequality, proof in the Appendix). That is, ILFS(x) ≤ ILFS(u) +

d(u, x). As we know that the Voronoi ball Br(p) touches three landmarks and

contains at least one point on the medial axis in R, ILFS(u) ≤ 2r. Thus we

have, ILFS(x) ≤ 2r + γ · ILFS(x). Combining the inequalities, we have δr/γ <

ILFS(x) ≤ 2r/(1− γ). That gives us δ < 2γ/(1− γ), a contradiction.

If the claim is true for all points on ∂R, it is true for all points in R. Suppose

otherwise, then there is a point y in the interior of R that is not δ-covered. y

can only possibly stay inside a pie, as shown in Figure 3.13. Then there must be

another point x ∈ ∂R such that y stays on the geodesic shortest path from p to

x. Thus y is covered by Br(p), the same Voronoi ball that covers x. ¤

We first restate a useful Lemma from chapter 2.
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Lemma 3.6.2. Given a disk B containing at least two points on ∂R, for each

connected component of B∩R, either it contains a point on the inner medial axis,

or its intersection with ∂R is connected.

Lemma 4.3.2. If a Voronoi cell V (u) violates the local Voronoi edge connectivity

condition, the new landmark q selected is not covered by any landmark within

γ · ILFS(q), for any γ < 1/3.

Proof: Since the boundary of the Voronoi cell V (u) is composed of segments on

∂R and the Voronoi edges of u, V (u) must have two or more connected components

on the domain boundary ∂R as well. Take a Voronoi edge endpoint p that stays

on a different boundary segment with u. d(u, p) ≤ d(u, q) since q is the furthest

such endpoint. See Figure 3.14. We take a ball Br(p) with r = d(u, p) − ε, for

ε → 0. We argue that Br(p) intersects the boundary ∂R in two or more connected

pieces. If otherwise, the ball Br(p) intersects ∂R in one component C that goes

from p to u (excluding u). Since p is on the Voronoi edge, p is equal distance

from u and another landmark w on C. That is, d(w, p) = d(u, p) > r. Thus

the segment C must leave the ball Br(p) at some point and come back in. This

shows that C ∪Br(p) must have 2 connected components. By Lemma 4.8.4 there

w r

u

p
q

Figure 3.14. The new landmark q is not γ-covered for γ < 1/3.

is a point on the inner medial axis inside Br(p). That means ILFS(p) < d(u, p).

Since ILFS is 1-Lipschitz, ILFS(u) ≤ ILFS(p) + d(u, p) < 2d(u, p) ≤ 2d(u, q).

Apply this again we get ILFS(q) ≤ ILFS(u)+d(u, q) < 3d(u, q). Thus the claim

is proved. ¤

Lemma 4.3.3. If a Voronoi cell V (u) for a landmark u violates the local Voronoi

ball coverage condition, the new landmark q selected is not covered by any landmark

within γ · ILFS(q), γ = δ/(2 + δ).
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Proof: If q is selected as the new landmark, d(q, p) > (1 + δ)r for any Voronoi

vertex p of the landmark u, where r = d(p, u) is the radius of the Voronoi ball at

p. Now we have by triangle inequality d(q, u) ≥ d(p, q) − d(p, u) > δr. That is,

r < d(q, u)/δ. Similar to the argument in Theorem 3.2.1, ILFS(q) ≤ d(q, u) +

ILFS(u) ≤ d(q, u) + 2r < (1 + 2/δ)d(q, u). Thus, d(q, u) > γ · ILFS(q) with

γ = δ/(2 + δ). ¤

Theorem 3.2.5. Suppose L is the generated landmark set by the incremental

algorithm. If any landmark from L is removed, then it is not a γ′-sample of ∂R,

with γ′ = γ/(1 + γ), γ < max(1/3, δ/(2 + δ)).

Proof: For the last landmark q inserted, by Lemma 4.3.2 and Lemma 4.3.3, it is

not within distance γ · ILFS(q) of any existing landmark. Since γ > γ′ the claim

is true for q.

For any landmark q′ added before q, we know d(q, q′) > γ · ILFS(q), since q

is added with q′ already present in the current landmark set. Since ILFS is 1-

Lipschitz, we have ILFS(q′) ≤ ILFS(q)+d(q, q′) < (1+1/γ) ·d(q, q′). Therefore,

d(q, q′) > γ′ ·ILFS(q). Notice that this argument is true for any pair of landmarks

q, q′ with q added after q′. Thus for q′, the distance to any landmark in L is at

least greater than γ′ · ILFS(q′). The claim is true. ¤

Lemma 3.3.3. If βk ≥ 1, there cannot be two neighboring k-witnesses p, q such

that the landmark sets they witness do not share any common landmark.

Proof: We will just prove this for β2 as the proof is the same for other k. Assume

by contradiction that the set of landmarks p witnesses L2(p) and the set L2(q)

that q witnesses do not share any common landmark. We take u1 ∈ `1(p) and

u2 ∈ `1(q). We have d(q, u2)+1 ≥ d(p, u2), since p, q are neighboring nodes. Also,

as u2 is not among L2(p), we have d(p, u2) > d(p, u1) + β2. Similarly, as u1 is not

among L2(q), we have d(q, u1) > d(q, u2) + β2. Now we have

d(q, u2) + 1 ≥ d(p, u2) > d(p, u1) + β2

≥ d(q, u1)− 1 + β2 > d(q, u2) + 2β2 − 1.

Thus β2 < 1. This shows a contradiction. ¤
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Lemma 3.3.4. If there are two neighboring 2-witness nodes p, q that witness

different landmark set, i.e., L2(p) 6= L2(q), and β3 = 2β2 + 2, p, q are both 3-

witnesses of the landmarks in L2(p) ∪ L2(q).

Proof: By Lemma 3.3.3, there is a landmark u1 such that u1 ∈ L2(p) ∩ L2(q).

Choose u2 ∈ L2(p) \ L2(q) and u3 ∈ L2(q) \ L2(p). Now we have,

d(p, u3) ≤ d(q, u3) + 1 ≤ d(q, u1) + β2 + 1

≤ d(p, u1) + β2 + 2 ≤ d1(p) + 2β2 + 2 = d1(p) + β3.

Thus u3 ∈ L3(p). With a symmetric argument u2 ∈ L3(q). Therefore both p and

q are 3-witnesses of the landmarks in L2(p) ∪ L2(q). ¤
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Chapter 4

Localization On A Manifold

4.1 Introduction

Up till now our discussion on localization focused on sensors deployed on a flat

surface, and indeed this the setting that has been explored in the related re-

search [11, 51, 60–62, 64, 65, 70, 71, 74]. However it is most likely that this will not

be the case in real world scenarios. Sensors may be dispersed over a terrain that

has hills and valleys. For example, a massive number of inexpensive sensors are

dropped from an airplane over an uneven terrain, ocean floor, buildings or other

structures. The previous research in localization that does address the 3D scenario

is very limited. Zhang et al. [82] extend their 2D Landscape algorithm to 3D; it

uses a location aware mobile device, such as an airplane, to repeatedly broadcast

beacons to sensors on the ground. Similarly Luo et al. [58] works with underwater

acoustic sensor networks and uses an autonomous underwater vehicle to act as a

beacon; the sensors determine there height information (i.e. depth) through the

use of a pressure sensor. AbdelSalam and Olariu [2] make use of anchor nodes that

have the ability to vary their height and by transmitting at different heights which

gives nodes the ability to first determine their own elevation. In this chapter we

extend our approach to the 3D setting and still do not resort to any anchors or

beacons.

We would model our sensors as samples of a two dimensional manifold surface
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S in 3D. In addition, we require that the surface S to be monotonic, i.e, any

vertical line intersects the surface in at most one point. The monotonicity of the

sensor field captures a natural constraint when sensors are dropped from above—

nodes will not lie directly above or below others, as, for instance, lie on the roof of

a building and also inside the building. See a picture on the vertical cross-section

of S in Figure 4.1 (i). The collection of sensors are not necessarily uniformly

placed on S. The shape of the network can be complex and may have holes.
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(i) (ii)
Figure 4.1. (i) Sensors dropped from an airplane stay on a monotonic surface; (ii) Without
height information, we can not differentiate a peak from a valley.

In our setting the sensors are inexpensive and tiny so as to be spread by an

airplane. No sensors have GPS, which is bulky and costly. We also do not use

range information. Obtaining accurate distance estimation between two nodes

would require special hardware such as ultrasound ranging hardware, which adds

extra cost. The sensors communicate with each other if they are within the

transmission range of each other, with the distance measured on the terrain (i.e.,

the geodesic distance on S). In our model each sensor has a height sensor (such as

a barometer) to measure its height. Our localization algorithm uses the network

connectivity to find the x, y coordinates of the sensors. We remark that the

height of the sensors is necessary to guarantee a unique solution of the localization

problem – without the height information we can not differentiate a peak from a

symmetric valley as sensors deployed on them may have the same connectivity.

For an example, see Figure 4.1 (ii).

Our problem is to develop a range-free, anchor-free localization algorithm for

sensors on a terrain with only network connectivity information. This is a very

challenging problem as we will need to discover sensor network geometry from

graph connectivity, and effectively stretch out the network correctly. Above we

have developed a framework for connectivity-based localization in a 2D plane. In

76



this chapter we extend it to the setting of a terrain. Next we will quickly review

the framework from the previous chapters. Then we explain the issues we have

for the case of a terrain and how we tackle these problems.

4.2 Overview of embedding combinatorial De-

launay complex

For a sensor network in the plane, the major challenge for anchor-free localization

is to avoid incorrect flips – a part of the network folds on top of another. We’ll

briefly review our algorithm that avoids such incorrect flips.

We select some sensor nodes as landmarks L and compute the Voronoi diagram

with all the nodes closest to the same landmark grouped into the same Voronoi

cell. The cell for landmark u is denoted as

V (u) = {p ∈ R | d(p, u) ≤ d(p, v),∀v ∈ L, v 6= u}.

A point is called a Voronoi vertex if it has equal distance to at least three

landmarks. A collection of points with equal distance to two landmarks u, v

is called the Voronoi edge for u, v. We extract the combinatorial Delaunay com-

plex 1 DC(L) as the dual complex of the landmark Voronoi diagram – there is a

Delaunay edge (or in general a k-simplex) between two (or k) landmarks if their

Voronoi cells share some common nodes.

DC(L) = {α ⊆ L | ∩u∈α V (u) 6= ∅}.

Now, two triangles sharing a common edge may have two valid embedding as one

can flip one triangle relative to the other. But two Delaunay triangles sharing

a common edge have only one valid embedding – as these triangles are certified

1The Delaunay complex is defined in the notion of abstract simplicial complex [24]. A set α
is an (abstract) simplex with dimension dim α = card α − 1, i.e., the number of elements in α
minus 1. A finite system A of finite sets is an abstract simplicial complex if α ∈ A and β ⊆ α
implies β ∈ A.
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by the underlying Voronoi cells and only the side-by-side embedding maintains

the property of a geometric simplicial complex. See Figure 4.2 for an illustration.

This critical observation implies that we can glue adjacent Delaunay triangles

incrementally to recover the network geometry.

p

w
v

u p

w

v

u

p
w

v

u

Figure 4.2. Two Delaunay triangles 4uvw and 4uvp sharing an edge. The first figure is
the only valid embedding, because in a simplicial complex two simplices can only intersect at a
common face. The graph is not globally rigid.

In chapter 2 and chapter 3, we complete the localization algorithm by properly

selecting landmarks L to guarantee two important properties of the combinatorial

Delaunay complex DC(L): (i) the rigidity of DC(L): one can not deform the

shape of the DC(L) without changing the edge length; (ii) the coverage of the

DC(L): every sensor node is close to DC(L) under some measure, i.e., DC(L) well

represents the network shape. Altogether the two properties imply that patching

the Delaunay triangles will recover the network shape. See Figure 4.3 for an

example. The length of a Delaunay edge is taken as the minimum hop count

between the two landmarks. With the Delaunay complex embedded in the plane

the rest of sensor nodes find their location through trilateration to three closest

landmarks.

∂R

u

Figure 4.3. Left: The Voronoi graph (shown in dashed lines) and the Delaunay complex for
a set of landmarks on the boundary ∂R. The Delaunay simplices (vertices, edges, triangles,
tetrahedrons) are shaded. Right: the Delaunay complex is not rigid.
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In chapter 2, we first detect the network hole boundary and then select land-

marks as a γ-sample with γ < 1. In this case, every boundary node has a land-

mark within its inner local feature size ILFS, defined as the distance to the

closest node on the medial axis (which is the collection of nodes with two or more

closest nodes on the boundary). Since the network boundary detection algorithms

(as in [29, 30, 32, 33, 52, 78]) are not robust in a sparse network, our approach in

chapter 3 selects landmarks such that both rigidity and coverage are guaranteed.

New challenges in 3D. In this chapter we extend the framework from chapter 2

and chapter 3 to sensors placed on a monotonic surface S in 3D. The connectivity

graph is based on the distance of sensors on the terrain. If a Delaunay triangle

4abc is embedded in 3D, an adjacent triangle4bcd can possibly have two positions

with a given height of node d. But only one of them is valid given the monotonicity

requirement of S. See Figure 4.4. Thus the main idea carries over. What is left

is to develop landmark selection scheme.

d′

a b

c d

Figure 4.4. A Delaunay triangle has only one valid embedding if an adjacent Delaunay triangle
has been embedded, to guarantee the monotonicity of S. In the figure the position d′ is not
valid.

Contrary to the intuition, going to 3D brings a lot of new issues. It is well

known in computational geometry that curve reconstruction (in 2D) is much easier

than surface reconstruction (in 3D). The rigidity and coverage properties for a

combinatorial Delaunay complex are not sufficient for good localization results.

Take a look at Figure 4.5. Imagine a sharp peak with a landmark u3 at the top,

and two landmarks u1, u2 at the bottom of the peak, on opposite side. There

can be two Voronoi vertices for landmark u1, u2, u3. Thus the peak is actually

represented by a single triangle 4u1u2u3 sticking out of the plane. A similar

setting can happen in 2D as well — imagine the Voronoi cell of u3 is a hole.

But in 2D the triangle 4u1u2u3 sticking out of the plane must be embedded in

the plane and we can decide on its correct embedding by the adjacency of the
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Voronoi cells. See chapter 2 for more discussions on this. In 3D this becomes a

real problem as important terrain features are missed due to insufficient sensor

density. You may also notice that there is a hole completely inside the Voronoi

cell of u4. Thus the hole is missed in the representation by the combinatorial

Delaunay complex. This is also bothering as trilateration of networks with holes

can given distorted localization results [56].
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Figure 4.5. An example when the combinatorial Delaunay complex DC(L) is not homotopy
equivalent to the surface S. The Voronoi cell of u4 has a hole inside. The Voronoi edge for
landmark u1, u2 has two components. There are two Voronoi vertices for u1, u2, u3.

The main issue is that we need to select landmarks to make sure that the

combinatorial Delaunay complex has the same topology as the sensor field S,

capturing all the spatial features (peaks and network holes). For this, we develop

new landmark selection rules. The landmark selection is achieved again by an

incremental refinement scheme. Tests are ran locally in each Voronoi cell and

its adjacent cells to check whether new landmarks need to be included. Multiple

Voronoi cells can be refined at the same time, which leads to inherent parallelism.

The same as above we do not assume the knowledge of network holes. Thus the

algorithm can be applied to sparse networks.

In the next section we focus on the new landmark selection algorithm, ex-

plained in a continuous setting for presentation simplicity and provable prop-

erties. The implementation and simulation of the new algorithm are presented

afterwards.
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4.3 Localization Algorithm and Analysis

4.3.1 Delaunay refinement algorithm

We assume the sensors P are samples of a monotonic surface S in 3D. S may have

boundaries denoted by ∂S. As discussed before, we will select landmarks such that

the combinatorial Delaunay complex is homotopy equivalent2 to the sensor field S.

Homotopy equivalence intuitively says that the way the simplices are connected

in the Delaunay complex are the same as the connectivity in S. Fortunately

the homotopy equivalence of the combinatorial Delaunay complex admits a local

condition: as long as the Voronoi edge/vertex set of any k landmarks is either

empty or contractible3, the homotopy equivalence is established. Thus we can

check locally whether the conditions are satisfied. The following theorem follows

immediately from the Cěch Theorem [13].

Theorem 4.3.1. If the intersection of the Voronoi cells of any k landmarks is

either empty or contractible, the Delaunay complex has the same homotopy type

as the region R.

In the case of landmark sampling a surface S, the homotopy equivalence condi-

tion means each Voronoi cell, edge, or vertex, if not empty, should be contractible.

Examples when this condition is violated are shown in Figure 4.5.

In the continuous setting, a Voronoi vertex is a node with equal distance to

at least three landmarks. When the distance is measured by network hop counts,

there may not be a node that has exactly the same hop counts to three landmarks.

In chapter 3 we proposed a relaxed definition. A node p is on the Voronoi edge

of two landmarks u, v if the distance to u, v differ by a relaxation parameter

2Two maps f and g from X to Y are homotopic if there exists a continuous map H :
X × [0, 1] 7→ Y with H(x, 0) = f(x) and H(x, 1) = g(x). Two spaces X and Y have the same
homotopy type if there are continuous maps f : X 7→ Y and g : Y 7→ X such that g ◦ f is
homotopic to the identity map of X and f ◦ g is homotopic to the identity map of Y . In other
words, the maps f and g define a one-to-one correspondence of the topological features such as
connected components, cycles, holes, tunnels, etc., and how these features are related.

3A set in Rd which can be reduced to one of its points by a continuous deformation is
contractible.
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δ2. p is also called a 2-witness. Similarly, a node p is on the Voronoi vertex of

three landmarks u, v, w if the distances differ by another relaxation parameter

δ3. p is called a 3-witness. The collection of 2-witnesses for the same pair of

landmarks u, v is called a Voronoi edge V E(u, v). The collection of 3-witnesses

for the same triple of landmarks u, v, w is called a Voronoi vertex V V (u, v, w).

By choosing the relaxation parameters carefully, we can ensure that (i) Only 2-

witnesses can possibly be 3-witnesses; (ii) Two neighboring 2-witnesses p, q must

witness a common landmark; (iii) If there is an edge between the nodes in V E(u, v)

and nodes in V E(u,w), both V E(u, v) and V E(u, w) are connected to a Voronoi

vertex V V (u, v, w). Notice that these correspond to the continuous case that two

Voronoi edges intersect at a Voronoi vertex, etc.

With these conditions in mind, we will check whether a Voronoi cell V (u)

violates one of the above conditions, and if so refine this cell by including more

landmarks.

Detect a hole in a Voronoi cell. We check whether V (u) has one or multiple

holes in its interior. This is done by checking whether there is a cut locus inside

V (u) in the shortest path tree rooted at u. A pair of neighboring nodes p, q ∈ V (u)

is on the cut locus, or denoted a cut pair, if the shortest paths from p, q to u have

different homotopy types. In other words, they enclose some hole in between. If

V (u) has some hole, there must be cut locus which can be detected by a local

algorithm. That is, each pair of neighboring nodes p, q following the shortest paths

to u check whether they are diverging apart. The details of detecting cut locus

can be found in our previous work [78].

We remark that as every node in V (u) records the minimum hop count to

u, the shortest path tree at u is implicitly stored in V (u). Thus the cut locus

detection is simply a local test at each pair of neighboring nodes and does not

require any flooding inside the Voronoi cell.

If a cell V (u) has one or more holes, we will detect a non-empty cut locus. The

point on the cut locus furthest from u is selected as a new landmark. Specifically,

a node on the cut locus can first check locally whether it is locally the furthest

node from u. The locally furthest candidates can report themselves to landmark
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u which is going select the furthest one.

Detect connectivity of a Voronoi edge. For two landmarks u, v that share a

Voronoi edge, we check whether the Voronoi edge V E(u, v) is disconnected. If so,

we will include the point on V E(u, v) furthest from u, v as a new landmark. The

procedure for finding this node is the same as before.

Detect connectivity of a Voronoi vertex For any three landmarks u, v, w,

their Voronoi vertex has one connected components. We check whether the 3-

witnesses for u, v, w form a connected set. If not, we take the node furthest from

u as a new landmark.

We remark that the homotopy equivalence condition is in addition to the

rigidity and coverage condition of DC(L), as shown below.

1. Local Voronoi edge connectivity: The Voronoi edges for each landmark

u form a connected set.

2. Local Voronoi ball coverage: Each node x inside a Voronoi cell V (u) is δ-

covered4 by a Voronoi ball Br(p), where p is a Voronoi vertex with landmark

u.

For a Voronoi cell V (u), if one of the above conditions is not satisfied, we refine

the cell as follows.

1. If the first condition is not met, the Voronoi edges with u have two or more

connected components. Since each Voronoi edge has either a Voronoi vertex

or a point on ∂R as endpoints, we select, among all the endpoints of Voronoi

edges of u on ∂R, the one that is furthest from u as a new landmark.

2. If the first condition is met, we check the second condition. Among all the

points that violate the local Voronoi ball coverage condition, we select the

one that is least covered as a new landmark: arg maxx minBr(p){δ′ |d(x, p) =

(1 + δ′)r}. That is, for each such point x, we choose the Voronoi ball Br(p)

4A ball Br(p) centered at an inner Voronoi vertex p with radius r equivalent to the distance
from p to the closest landmarks is called a Voronoi ball. We say x is δ-covered by a Voronoi ball
Br(p) if x is within distance (1 + δ) · r from the center p of Br(p).
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with p such that d(x, p) = (1 + δ′)r with smallest possible δ′. And we select

the point x with the largest such δ′.

Initially we flood the network from a random node r and find the farthest node

p from r. Then we flood from p and find the farthest node q from p. q will be on

the boundary as well. We use p and q as our two initial landmarks. We test the

Voronoi cell with the above conditions and refine the cells that violate these. The

refinement algorithm will stop when no new landmark is added.

4.3.2 Analysis of the Delaunay refinement algorithm

The main objective of this subsection is to show that the Delaunay refinement

algorithm will stop with a proper set of landmarks. For simplicity, we will prove

this for the continuous setting. Suppose S is a 2 dimensional smooth manifold with

boundary in R3. The boundary is denoted as ∂S. The Euclidean distance between

two points p, q in R3 is denoted by |pq|. The geodesic distance between two points

p, q ∈ S is denoted by d(p, q). In the following we will assume the distance

mentioned is measured as the geodesic distance, unless specified otherwise. Br(p)

contains the points of S with geodesic distance no greater than r from p. For a

path P or a cycle C, we note by |P | or |C| its length.

For a surface S, we denote the Euclidean medial axis as the collection of points

in R3 that has two or more closest points in S, with the distance measured by the

Euclidean distance. We also denote the geodesic medial axis as the collection of

points in S that has two or more closest points in ∂S, with the distance measured

by the geodesic distance on S. For example, a cylinder’s Euclidean medial axis

is its axis and its geodesic medial axis is the circle along the midpoint of two

boundary circles. See Figure 4.14. At any point p ∈ S, we define a number of

feature sizes, capturing the local geometric complexity:

• The Euclidean local feature size ELFS(p) as the Euclidean distance to the

Euclidean medial axis of S.

• The geodesic local feature size GLFS(p) as the geodesic distance to the

geodesic medial axis of S.
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• The homotopy feature size HFS(p) at a point p is defined as the maximum

radius r such that Bt(p) ∩ S is contractible for all t ≤ r.

We define the geometric feature size GFS(p) at a point p as the minimum of the

above three feature sizes min{ELFS(p), GLFS(p), HFS(p)}. We assume that

Geodesic

Euclidean medial axis

medial axis

Figure 4.6. A cylinder’s Euclidean medial axis is its axis (in red) and its geodesic medial axis
is the circle along the midpoint of two boundary circles (in blue).

S is smooth with the holes far apart such that the geometric feature size is at

least ε for some constant ε. We say a point p ∈ S γ-covered, if p has at least

one landmark within its geometric feature size. We call a set of landmarks L as a

γ-sample if every point of S is γ-covered.

In the following we will prove that if a new landmark is inserted, then there

must be a point p that has not yet been γ-covered, for some constant γ.

When a Voronoi cell V (u) violates the local connectivity and coverage condi-

tion, then some point is not γ covered. The proof of the following two lemmas is

the same as in 3.2.2.

Lemma 4.3.2. If a Voronoi cell V (u) violates the local Voronoi edge connectivity

condition, the new landmark q selected is not covered by any landmark within

γ ·GLFS(q), for any γ < 1/3.

Lemma 4.3.3. If a Voronoi cell V (u) for a landmark u violates the local Voronoi

ball coverage condition, the new landmark q selected is not covered by any land-

mark within γ ·GLFS(q), γ = δ/(2 + δ).

We only show that when a Voronoi cell violates the homotopy equivalence

condition, the new landmark selected is not yet γ-covered for a proper constant

γ.
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Lemma 4.3.4. If a Voronoi cell V (u) for a landmark u violates the homotopy

equivalence condition, the new landmark q selected is not covered by any landmark

within GFS(q).

Proof: We consider each case separately.

Case I. In the first case, V (u) contains a network hole H. The new landmark q

is on the cut locus of the shortest path map from u. Take r = d(q, u). There are

two shortest paths P1(q, u) and P2(q, u). Both have length r and they altogether

surround H. Thus, the cycle C formed by P1(q, u) and P2(u, q) is not contractible.

Clearly C is inside Br(q). Thus Br(q) ∩ S is not contractible. HFS(q) ≤ r. This

means that q is not yet 1-covered. See Figure 4.7 (i) for an example.
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P2(u, q)u
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P1(u, q)

V (u)

P2(u, q)u

q

P1(u, q)

V (u) v

Figure 4.7. Left: The Voronoi cell V (u) contains a hole. Right: The Voronoi cell V (u) has
another Voronoi cell V (v) inside.

Case II. In the second case, V (u) contains a Voronoi cell V (v) in its interior.

See Figure 4.7 (ii) for an example. We take the new landmark q as the furthest

point on the cut locus of the shortest path map from u. Take the ball Br(q)

with r = d(u, q). Now the landmark v is outside of Br(q) since d(q, v) > d(q, u).

Therefore Br(q) ∩ S is not contractible. This shows that HFS(q) ≤ r. q is not

1-covered.

Case III. In the third case, the Voronoi edge V E(u, v) for two landmarks u, v has

two or more connected components. Take two points p, q on different connected

components, with q as the new landmark. See Figure 4.8. Take the point x1 ∈
R3 on the midpoint of the Euclidean line segment pq. r = |pq|/2. Take the

Euclidean ball Br(p). Note that x1 in within Br(p). If p and q are the 2 closest

boundary points to x1, then x1 is a point on the medial axis and we are done.

Otherwise, there must be some other point a1 on the boundary that is closer to

x1. Take x2 to be on the midpoint of the Euclidean line segment pa1. Notice that
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d(p, x2) < d(p, x1), since d(p, a) = d(p, x1)+d(x1, a) < d(p, x1)+d(x1, q) = d(p, q).

Therefore d(p, x2) ≤ r so it is within Br(p). Now repeat the same process for x2.

Either x2 has p and a1 as its closest boundary nodes and therefore is a medial axis

point, or x2 has some other boundary point a2 which is closest. Keep repeating

the same process until the midpoint of line segment pan is a medial axis point.

Note that since d(pan) < d(pan−1) this process must terminate, and d(pxn) must

necessarily lie within Br(p). This means ELFS(p) ≤ r, ELFS(q) ≤ r. Clearly

|pq| ≤ d(p, q) ≤ d(p, u) + d(u, q). Therefore ELFS(p) + ELFS(q) ≤ |pq| ≤
d(p, u)+ d(q, u). This means either ELFS(p) ≤ d(p, u) or ELFS(q) ≤ d(q, u). In

either case one of the points p, q is not 1-covered.
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vV (u)
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Figure 4.8. Left: There are two segments of the Voronoi edge for u, v. Right: There are two
Voronoi vertices p, q for landmark u, v, w.

Case IV. In the last case, the Voronoi vertex V V (u, v, w) for three landmarks

u, v, w has two or more connected components. In this case the Voronoi edge

V E(u, v) has at least two or more connected components. This has been handled

in the previous paragraph. ¤

Theorem 4.3.5. The Delaunay refinement algorithm generates a finite set L of

landmarks. If any landmark from L is removed, then it is not a γ′-sample of ∂R,

with γ′ = γ/(1 + γ), γ < max(1/3, δ/(2 + δ)).

Proof: As the minimum geometric feature size for any point p in S is ε. Then

every landmark will cover the points in a ball Bε(p). Thus the Delaunay refinement

algorithm can not continue infinitely.

For the last landmark q inserted, by Lemma 4.3.2, Lemma 4.3.3 and Lemma 4.3.4,

it is not within distance γ · GFS(q) of any existing landmark. Since γ > γ′ the

claim is true for q.
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For any landmark q′ added before q, we know d(q, q′) > γ · GFS(q), since q

is added with q′ already present in the current landmark set. Since GFS is 1-

Lipschitz, we have GFS(q′) ≤ GFS(q) + d(q, q′) < (1 + 1/γ) · d(q, q′). Therefore,

d(q, q′) > γ′ ·GFS(q). Notice that this argument is true for any pair of landmarks

q, q′ with q added after q′. Thus for q′, the distance to any landmark in L is at

least greater than γ′ ·GFS(q′). The claim is true. ¤

4.4 Implementation

The step-by-step algorithm is presented in chapter 2 and 3. Here we will present

the additions made to account for the new cases that emerge in 3D. To review

there were previously 2 conditions checked for in the landmark selection phase:

1) If the voronoi cell is not simply connected then we select a new landmark to

be the voronoi node that is furthest from the landmark defining the current

cell.

2) If a node lies too far outside a voronoi ball as define by the target coverage

criteria, then select the furthest such node to be a new landmark.

We add here another 2 conditions to check.

3) As remarked above in Figure 4.5 and as detailed in Figure 4.10 we have to

deal with a new scenario of having 2 voronoi vertices for the same set of

landmarks. Therefore during the landmark selection phase we add the con-

dition that if there is a disconnected voronoi edge or disconnected voronoi

vertex then we select node furthest from all the landmarks it witnesses to

be a new landmark.

4) As discussed above in order to capture all holes in the network we must perform

the cut locus algorithm within each landmark cell. Otherwise, we may have

the situation illustrated in Figure 4.9 where without further refinement the

hill will be represented as a single delaunay edge sticking up from the plane.

If a hole is discovered, then the node on the cut furthest from the existing
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landmark is made into a new landmark. This condition is only checked once

all the 3 previous conditions have been satisfied.

Figure 4.9. l2 has a disconnected boundary

Figure 4.10. Two voronoi vertices witnessing the same landmark set

With regard to the embedding we also had to make changes to account for

the added information of knowing the z-coordinate of each node in addition to

the Delaunay complex and the hop count distance between each node and its

nearby landmarks. An extra step is needed to translate the units of hops into real

location units which the z-coordinate is represented in. In the real-world you may

assume you know the length of a hop as simply a function of the transmission

range of your radios. Alternatively when mapping the virtual coordinates given
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by our algorithm to 3 anchors with real coordinates we can adjust the embedding

accordingly.

In detail the embedding proceeds as follows: 1. We start with 3 pairwise

connected landmarks and embed them relative to each other assign virtual co-

ordinate consistent with the pairwise distance measurements. 2. A new land-

mark that neighbors 2 already embedded landmarks is selected (Some such node

must exist based on the rigidity guarantee of the Delaunay complex). Letting l1

and l2 refer to the 2 embedded landmarks, we know (x1, y1, z1) and (x2, y2, z2)

and z, the z-coordinate of the new landmark to embed. Given r1 and r2 and

goal is to recover x and y. Since ((x1 − x)2 + (y1 − y)2 + (z1 − z)2) = r1
2 and

((x2 − x)2 + (y2 − y)2 + (z2 − z)2) = r2
2 we have 2 equations with 2 unknowns

allowing us to solve for x and y.

Also as mentioned above we use a rubberbanding relaxation on all the nodes

to distribute the embedding evenly across the network. Here too we use rubber-

banding relaxation but we only allow freedom along the x,y plane while keeping

the z-coordinate fixed.

4.5 Simulations

In Part I and II we thoroughly demonstrate the robustness of our algorithm under

various conditions. We present results there for various network topologies, and

vary parameters such as node density and the communication model. While we

show that the algorithm works under low density conditions (with average node

degree as low as 4 in some cases) there is a direct correlation between the average

node degree (or density) and the accuracy of the final embedding. The reason

for this is obvious—the higher the density, the more closely hop count distance

matches the Euclidean distance, since routes can follow a straight line, and the

distance of a hop is more uniform across the network. Similarly as the communi-

cation model moves further away from a unit disk graph model, the less accurate

hop count distances become. Less accurate measurements leads to distortion in

the embedding. The reader is referred back to chapter 2 and chapter 3 for results

90



based on these variables.

Here our aim is to show that the algorithm works in 3D by showing different

topologies where we the algorithm was used to recover the ground-truth positions

of the nodes. We put less emphasis on achieving low node degree and operating

under poor communication models, and more of demonstrating the actual results

possible using our method.

Figures 4.11,4.12, and 4.13 show the results of our algorithm. The figures show

results with 0, 1 and 2 holes and variations in the number of hills and valleys at

different heights and depths. The first 2 images of each figure give 2 perspectives

on what the ground truth looks like. Image (iii) shows the embedding of the

delaunay complex flattened to 2D. Images (iv) and (v) give 2 perspectives on the

resulting embedding of all nodes. Finally image (vi) gives another view of the

result by draping a surface over the nodes to accentuate the contours (note: holes

don’t appear in this view).

4.6 Related Work

4.7 Conclusion

This part is concerned with how we can adapt localization algorithms to work in

real-world settings where nodes will not lie on a flat surface, but rather occupy

regions with hills and valleys. While the basic approach of the algorithm for 2D is

used here, there are a number of complex issues that must be addressed that only

arise or become significant in 3D. By handling these special cases we prove that

the algorithm keeps the good properties (global rigidity and coverage) needed

for localization. This presents one of the first works in offering a localization

algorithm for a 3D setting.

4.8 Appendix

We show that the geometric feature size function is 1-Lipschitz.
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.11. Mountain range scenario. (i) shows the ground truth flatted to the plane where
red denotes ‘high’ points and blue ‘low’ points (ii) shows the ground truth in 3D, (iii) shows the
Delaunay complex embedded (iv) shows all the nodes embedded projected onto the 2D plane
(v) shows all the nodes embedded in 3D (vi) shows a surface draped over the embedded nodes
giving a clear view of the result.
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.12. Road structure on hill. (i) shows the ground truth flatted to the plane where red
denotes ‘high’ points and blue ‘low’ points (ii) shows the ground truth in 3D, (iii) shows the
Delaunay complex embedded (iv) shows all the nodes embedded projected onto the 2D plane
(v) shows all the nodes embedded in 3D (vi) shows a surface draped over the embedded nodes
giving a clear view of the result.
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.13. Two holes with undulating surface. (i) shows the ground truth flatted to the
plane where red denotes ‘high’ points and blue ‘low’ points (ii) shows the ground truth in 3D,
(iii) shows the delaunay complex embedded (iv) shows all the nodes embedded projected onto
the 2D plane (v) shows all the nodes embedded in 3D (vi) shows a surface draped over the
embedded nodes giving a clear view of the result.
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Lemma 4.8.1 (Lipschitz continuity). The geometric feature size of any man-

ifold with boundary S ⊆ R3 is 1-Lipschitz: GFS(x) ≤ GFS(y) + d(x, y) for any

x, y ∈ R3.

Proof: We first show that the Euclidean local feature size is 1-Lipschitz. The

proof follows from triangle inequality. Suppose that point p is the closest point of y

on the Euclidean medial axis of S. Then d(p, y) = ELFS(x). Thus, ELFS(x) ≤
d(p, x) ≤ d(p, y) + d(x, y) = ELFS(y) + d(x, y). Similarly, the geodesic local

feature size is also 1-Lipschitz, with the same proof.

Now we show that the homotopy feature size is 1-Lipschitz. Suppose the

homotopy feature size for a point x is r. That is, for all t ≤ r the ball Bt(x)∩S is

contractible. Now, for a point y, if its homotopy feature size is r′ > r+d(x, y). We

take t = r′−d(x, y), t > r. Br′(y)∩S contains Bt(x)∩S. This means that any cycle

in Bt(x)∩S is contractible – if otherwise this non-contractible cycle is also inside

Br′(y) ∩ S, which will be a contradiction. Thus HFS(x) ≤ HFS(y) + d(x, y).

Putting everything together, GFS(x) = min{ELFS(x), GLFS(x), HFS(x)} ≤
min{ELFS(x), GLFS(x), HFS(x)}+ d(x, y) ≤ GFS(y) + d(x, y). ¤

In the following we will use two distance measures, the Euclidean distance and

the geodesic distance between any two points p, q ∈ S.

For a surface S, we denote the Euclidean medial axis as the collection of points

in R3 that has two or more closest points in S, with the distance measured by

the Euclidean distance. We also denote the geodesic medial axis as the collection

of points in S that has two or more closest points in ∂S, with the distance mea-

sured by the geodesic distance on S. For example, a cylinder’s Euclidean medial

axis is its axis and its geodesic medial axis is the circle along the midpoint of

two boundary circles. See Figure 4.14. At any point p ∈ S, we define its Eu-

clidean/geodesic local feature size ELFS(p)/GLFS(p) as the Euclidean/geodesic

distance to the Euclidean/geodesic medial axis of S. We also define homotopy

feature size HFS(p) at a point p as half of the length of shortest non-contractible

cycle (i.e., enclosing one or multiple holes). The generic feature size is defined
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as FS(p) = min{ELFS(p), GLFS(p), HFS(p)}. Intuitively, the Euclidean lo-

cal feature size captures how much a surface bends near p. The homotopy local

feature size captures how close p is to the hole boundaries.

Geodesic

Euclidean medial axis

medial axis

Figure 4.14. A cylinder’s Euclidean medial axis is its axis (in red) and its geodesic medial axis
is the circle along the midpoint of two boundary circles (in blue).

For any point p ∈ S, we denote its homotopy feature size HFS(p) as the

largest radius r such that Br(p) and Br(p) ∩ ∂S are both contractible.

From the above Lemma, for any point p, its homotopy feature size must be no

greater than its geodesic feature size.

Corollary 4.8.2. HFS(p) ≤ GFS(p), for any p ∈ S.

Proof: Assume otherwise. There is a point p ∈ S such that HFS(p) > GFS(p).

Take HFS(p) > r > GFS(p). The ball Br(p) contains a point on the medial axis.

Thus Br(p)∩∂S is not connected. This contradicts with the fact that r is smaller

than HFS(p). ¤

Proof: As the combinatorial Delaunay complex is the Cěch complex of the Voronoi

cells, the theorem follows immediately from the Cěch Theorem [13]. Recall the

definition of the Cěch complex. Given a collection of sets U = {V (u) , ∀u ∈ S},
the Cěch complex is the abstract simplicial complex whose k-simplices correspond

to nonempty intersections of k + 1 distinct elements of U . The Cěch Theorem

says that if the sets and all non-empty finite intersections are contractible, then

the union ∪uV (u) has the same homotopy type as the Cěch complex. In our case,

the Cěch complex is the Delaunay complex DS(S), the union of the Voronoi cells

is R. Thus the claim is true. ¤
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Theorem 4.8.3. A Voronoi edge V E(u, v) cannot form a loop with the two land-

marks u, v on the same side.

Proof: Assume otherwise that the Voronoi edge contains a loop L with u, v on

the outside. See Figure 4.15. We take u′ as the closest point on L to u and

v′

u

u′

v

Figure 4.15. Two landmarks on same side.

v′ the closest point on L to v. We argue that u′ = v′. If otherwise, we have

d(u′, u) < d(v′, u) as well as d(v′, v) < d(u′, v). Since L is part of the Voronoi

edge of u, v, d(u, p) = d(u, p) for any point p ∈ L. This implies that d(u′, u) <

d(v′, u) = d(v′, v) < d(u′, v) = d(u′, u). This implies a contradiction. ¤

In particular,

1. Any Voronoi cell does not have one or multiple holes (either a real network

hole or another Voronoi cell) in its interior. Remark that any Voronoi cell

V (u) must be connected as the nodes all have paths to u.

2. The Voronoi edge of any two landmarks is either empty or contractible.

3. There are at most one Voronoi vertex for any three landmarks.

The following claim is true for geodesic medial axis. The proof for a surface S
in the plane is given in chapter 2. Actually the same proof works for a surface S
in R3.

Lemma 4.8.4. Given a ball B containing at least two points on ∂S, for each

connected component of B∩S, either it contains a point on the inner medial axis,

or its intersection with ∂S is connected.

The following Lemma about Euclidean local feature size is useful in later

proofs.
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Lemma 4.8.5 ( [23]). Given a Euclidean ball B containing at least two points

on S, for each connected component of B ∩ S, either it contains a point on the

Euclidean medial axis, or one of the following is true: (i) B∩S is not a topological

disk; (ii) ∂(B ∩ S) is not a topological circle.

Proof: If B is not tangent to S we can shrink the ball until it is tangent to S
at some point x. Then we shrink the ball and keep it to be tangent to x, until

B is tangent to a point y and does not include any other points of S inside. We

denote this ball as B′. At this point the center of B′ is on the Euclidean medial

axis. Notice that B′ is included in B′. Thus B contains a point on the medial

axis. ¤
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Part II

Sensor Network Location

Certification
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Chapter 5

Collaborative Location

Certification

5.1 Overview

In many instances localization of the network is not enough, we must also ensure

that the location that a node reports itself to be ins in fact truthful. Thus,

a robust network must require such information be uncompromised, lest a few

faulty or malicious nodes will have a deleterious effect on the entire network.

We introduce a protocol that validates the truthfulness of location information

associated with event reports. The protocol relies on the collaborative interaction

of the network nodes to find compromised parties. Since each node is an active

participant in the network and spends a substantial amount of time and resources

relaying messages for others, it automatically has some knowledge of the activity

within the network. This knowledge can be put to good use in spotting anoma-

lous behavior. The workload and detection ability is thus distributed across the

network, to avoid a single point of failure and gracefully degrade with increasing

number of compromised nodes.

To achieve this purpose, at an overview level, nodes in the network (compactly)

record summaries of routing paths taken by packets through the network. Upon
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receiving a packet, nodes examine whether their route matches a historically ex-

pected behavior by packets from the same claimed location. A belief about the

correctness of this location claim of this packet is then created and propagated to

the data sink, either as part of this packet or later on, in an out of band fashion.

The attached beliefs will be used by the authorized packet evaluators PEs (sinks

or authorized intermediate relay nodes) to certify the truthfulness of the packets’

location information.

We show by simulations that the belief rating has a strong correlation with the

deviation of the source’s real location from its claimed location. Thus if a node

lies about its location, the farther away it claims to be from its real location, the

more likely the packets will be identified.

The memory limitations of sensor nodes require light-weight protocols both in

terms of memory and power usage. Accordingly, we developed a path metric and a

compact way to express path trajectories, by using locality-sensitive hashing [45].

This metric captures the fact that packets from sources with incorrectly claimed

locations are likely to have path trajectories deviating from previously observed

traffic paths.

The key advantage of our solution lies in its collaborative nature and the in-

volvement of the network in a community of trust. A single malicious or faulty

node will is unlikely to take over the entire network and cause significant dam-

age. To better understand the challenge of the problem and the rationale of our

approach, we also outline the following alternative straight-forward schemes.

• Immediate neighbor detection. An immediate neighbor (p) of the ma-

licious node could detect that it is not in the region it claims, because this

region is out of the communication range of p. This scheme is vulnerable to

multiple (two) adversarial colluding nodes; the adversary directly commu-

nicating with p would not actually be lying about its location. Moreover, in

general the problem is more significant, because an adversary can “create” a

whole set of fake nodes b1, b2, · · · , bk where the distance between any bi and

bj is within the communication radius R, and the distance between bk and

the true node is more than R. Even by looking at the distances between
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all the nodes on the path and ensuring that the distance between any two

consecutive nodes is short, an honest node cannot determine if there is a

node lying about its location.

• Distance from straight line trajectory. A simple idea for a scenario

where the sensor nodes are densely and evenly distributed throughout the

region is to compute how far the current node lies off the straight line trajec-

tory between the source node and the sink. Based on how far away from the

direct path this node lies should the belief rating be made. However, this

mechanism would fail in the case of irregularities in the network. Specifi-

cally, when there are holes in the network, or when routing paths do not

follow straight line paths, a node may well be placed far from the straight

line from source to destination — also observed in real experiments [83].

As shown later, our path metric is adaptive to these variations in traffic

patterns. We capture the case when a packet follows a path not “similar”

to the expected ones, in which case the packet will be tagged with a poor

belief rating.

This part is structured as follows. In section 5.2 we overview related work on

location certification and secure localization algorithms. We introduce the sensor

model and the adversary model in section 5.3. In section 5.4 we discuss collabora-

tive location certification, and the belief rating generation and propagation. Both

the metric and the detection ability are evaluated by simulations in section 5.8.

5.2 Related Work

Secure localization has been studied by a number of groups. For example, the

SeRLoc protocol [55] tackles secure localization by using specially equipped “lo-

cator” nodes that emit powerful beacon signals through the networks. Depending

on the beacons a node hears, it computes the “center of gravity” of the over-

lapping regions to determine its location. The locator devices are assumed to be

tamper proof. Elsewhere [57] robust statistics are used to improve the resilience of
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an anchor-based localization algorithm in a hostile environment where the nodes

may receive false information from the neighbors.

Even though the nodes can obtain their locations correctly by these secure

localization protocols or extra secure location support such as GPS, they do not

prevent a node from lying about its location and generating event reports with a

false location claim. A few existing protocols have tackled this problem for inter-

node settings, mainly using fine grained timing analysis of signal travel times,

under the assumption of high accuracy clocks available on sensors.

Capkun and Hubaux [17, 18] introduced Verifiable Multilateration (VM), to

prevent a node from lying about its own position, and Verifiable Time Difference

of Arrival (VTDOA), to stop an adversary from influencing the reported position

of a true node. VM uses 3 anchor nodes that surround the unknown node. Trans-

missions are with RF signals that travel at the speed of light, therefore claimant

can only pretend to be further away from any one anchor, but not closer (since it

can’t make its transmissions go faster than light). To claim a greater distance to

one anchor node, it must claim a small distance to another node, which is impos-

sible since trilateration is used. VTDOA compares the TDOA and ToF distance

estimations to prevent a malicious node from jamming the signal of a true node

and replaying it from another location. This technique requires that the anchor

nodes are synchronized with each other (and the claimant node). The Echo [68]

protocol uses a multi-part handshake between some “verifying” nodes and the

claimant using RF and ultrasound to guarantee that the node is in an asserted

area. It does not however pin-point the precise location of a node, it only verifies

that it is within a rough region, and it requires that the verifiers be within the

region in question. Waters and Felten [79] present a similar scheme which uses

tamper-resistant devices.

Timing analysis typically requires highly accurate clocks that may not be real-

istic in networks with inexpensive hardware, e.g., cheap sensor nodes. For exam-

ple, the VM scheme requires accurate synchronization (maximum clock difference

of 1ns) [17, 18]. The use of ultrasound relaxes a little the stringent requirement

on synchronization, but requires an additional hardware artifact. Moreover, these
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anchor-based schemes typically assume authorized and trustworthy anchor nodes

and often require a sufficient number of anchors that cover all the sensor nodes,

which may not be practical when the deployment and the operation of the sensor

network are in hostile territory.

The scheme we propose in this thesis does not assume any anchor nodes,

nor any special hardware such as ultrasound transmitters. We take a different

approach and establish, by the participation of all the sensor nodes, a collaborative

community that certifies the locations of packets routed through the network. We

can thus make use of the traffic pattern, brought by the message relaying, at little

or no extra cost.

5.3 Model

In this section we discuss the considered adversarial and deployment models.

5.3.1 Adversary

Of concern here is a malicious, powerful adversary with strong incentives to cap-

ture and compromise sensors for the purpose of altering the sensor data flow,

e.g., by inserting false data and event reports and eventually influencing decision

making process at the base station. For such an adversary, pure denial of service

(DOS) attacks that aim to disable sensors and parts of the network are only of

marginal interest and will not be considered here. For DOS attacks, [20, 80] offer

techniques to address these issues. Multi-path forwarding [49] alleviates the prob-

lem of malicious relay nodes dropping legitimate reports. Also, by using a cache

to store the signatures of recently forwarded reports we can prevent against the

same packet from being replayed [46,81].

In particular, the mechanisms introduced here provide correctness assurances

of node location claims in the process of event reporting. They prevent a compro-

mised node from generating illicit event reports for locations other than its own.

This is important because by compromising “easy target” sensors (say, sensors on
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the perimeter of the field that’s easier to access), the adversary should not be able

to impact data flows associated with other (“premium target”) regions of the net-

work. To achieve this goal, data routed through the network will be “tagged” by

participating nodes with “belief” ratings, collaboratively assessing the probability

that the claimed source location is indeed correct. We call this process location

certification.

To circumvent location certification (e.g., for the purpose of injecting fake event

reports referencing remote, out of reach locations) an adversary could attempt

to: (i) favorably modify certificates for its own fake data (e.g., by altering the

associated belief ratings), or (ii) unfavorably alter certificates of legitimate traffic.

The probability of success of such attempts is naturally related to the density of

compromised nodes in the network. The ability of success adapts gracefully to the

density of compromised nodes and the solution can operate even in the presence

of a large number of adversarial nodes, as validated through simulations.

For illustration purposes, we first consider an adversary that only attempts to

maliciously claim a different location in its event reports (but does not maliciously

alter belief ratings of other packets it routes). We then discuss additional security

issues in section 5.5.

5.3.2 Deployment and Routing

We focus in this thesis primarily on monitoring networks in which the sensors

collect information of interest and send data/event reports to a base station (data

sink) for post-processing and analysis. Immediately after deployment, for an initial

short period, the network is assumed free from any adversarial presence. Since our

location certification procedure is based on using past history of network routes,

we must assume that the original history is initially “clean”. The better the

history data is in terms of “cleanliness”, the better the location certification will

perform.

Since history data is used to predict future network behavior, we assume that

the network is to some degree consistent in its routing behavior. If strong routing
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patterns are exhibited, i.e., all packets from the same source are typically routed

along similar paths, then location certification will perform well. If the legitimate

routing behavior is completely random (say packets from the same source take

arbitrary routing paths) then our protocol won’t work well. Naturally, geometric

routing maintains a high degree of consistency in routing patterns, so we generally

will speak in terms of a geometric routing protocol, and this is the routing scheme

used in our simulations. However, geometric routing is not a prerequisite for the

protocol.

5.4 Certification Algorithm

In this section we detail the main components of the location certification protocol.

5.4.1 Solution Overview

At an overview level, the proposed solution unfolds as follows. Immediately after

deployment, network secure localization protocols [55] allow sensors to acquire

location information that is to be later used in event reports. Existing research

achieves this by assuming a largely un-compromised network for a short amount of

time after deployment. We believe this is reasonable, especially if we consider the

minimal time and resource requirements for corrupting even an individual sensor.

In other words, even in the presence of an adversary with immediate physical

access to a sensor node, some amount of time (e.g. minutes) will be required to

locate and compromise the sensor internals and software.

Once the network becomes fully operational, sensors will start generating event

reports associated with their respective location. A compromised sensor could

then attempt to generate illicit event reports for locations other than its own. To

defeat such an adversary, nodes along the path from the source to destination

will attach “belief” ratings to passing data packets, quantifying the correctness

probability of the claimed source locations. Informally, beliefs are a function of

observed past traffic patterns in conjunction with the claimed source location.
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Upon receiving packets with routing information deviating from expected traffic

patterns, nodes will have the opportunity to propagate negative belief ratings

associated with these packets. The negative beliefs reflect the appearance of an

anomaly in the routing pattern.

Thus this scheme is able to detect both the case in which the routing pattern

is altered by an adversary (a compromised node lies about its location, or other

routing attacks such as wormhole attacks [44,63,67]) and the case of node failures

— a large fraction of nodes run out of battery power or get physically destroyed

by adversaries causing significant routing pattern changes. A node which rarely

participated in the data collection operation will get a low confidence, which

is reasonable as the network collectively has little or no information to decide

whether it is a legitimate node.

We re-iterate that this solution assumes the network is initially free from ad-

versaries for a short period of time. If a large number of compromised nodes is

present at the start and they are able to generate arbitrary traffic patterns then

collaborative certification will be less effective. In a typical deployment there is

often a short period of time which is more than enough for our scheme to collect

enough history traffic data. With this limitation in mind, we believe that the

novelty in our scheme lies in the compact and efficient way of summarizing the

history traffic pattern and the ability of using the history to verify the correctness

of future packets.

5.4.2 Strawman’s Book-keeping.

Before proceeding, to illustrate, we first discuss an extremely simple book-keeping

mechanism, the understanding of which will motivate our final solution. As part

of the routing protocol, each sensor will maintain a history and normalized count

of each previously seen source-destination pair for routed packets. New incoming

packets from rarely seen sources will then be considered more suspicious and

associated with a low rating.
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While this scheme is extremely simple and scalable, it presents certain limi-

tations, in particular in its ability to detect deviations in full routes (as opposed

to endpoints). If a node does route information between the claimed origin and

destination, then the packet from an adversary claiming to be from a different lo-

cation will be considered fair game. To achieve a better detection accuracy, more

information about information flow is required in the belief rating construction.

5.4.3 Inter-Path Distance Metric

Accordingly, we explore first how to compare packet routes efficiently in a mean-

ingful way. Based on the sequence of nodes a packet has visited, we derive a

trajectory of a packet by the piece-wise linear curve connecting the intermediate

nodes in their visited order.

We define a distance metric that measures how far two trajectories are. The

distance is designed such that fake claimed locations for packets will result in large

distances between real and expected trajectories. There are many generic ways to

measure the distance between two curves in space, such as Hausdorff distance and

Frechét distance. Here we design a measure well suited to our problem at hand.

p′kP ′

Pp1

p′1

pk

Figure 5.1. The distance metric between two paths P,P ′. In this figure we adopt a uniform
parametrization and the samples are placed uniformly on the paths.

Given a trajectory P (a curve in the plane), we adopt a parametrization (e.g.,

uniform, but other parameterizations may also be used, as will be shown later)

and take k samples {p1, p2, · · · , pk}, on P . We define the distance between two

paths P ,P ′ as π(P ,P ′) =
∑k

i=1 ||pi − p′i||2, the sum of squared distance between

corresponding sample points. From a different viewpoint if a path P is considered

a point in 2k dimensional Euclidean space p = (p1, p2, · · · , pk) (each point pi

is a point on 2D), the distance between two paths is the squared `2 norm of
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their corresponding representative 2k-dim points. In the following we will see

this observation become very useful in the design of a succinct data structure

that summarizes the relative distances of a set of paths by a set of points on a

1-dimensional line.

Essentially each node will keep a compact structure (to be explained in section

5.6) that summarizes the trajectories of the packets that go through it. Once a

new packet arrives, the current trajectory is compared against past trajectories of

packets from the same source or nearby. See Figure 5.2 for an example where an

adversarial node s sends a message that goes through a node u, but claims it is at

location s′. The path taken by the packet, P , is different from the path it should

have taken if it is indeed generated from a node at s′ (shown as the dashed path

P ′). This is exactly the type of discrepancies are be captured by our path metric.

We use a parametrization scheme that samples uniformly in each hop. If a path

has m hops, then each hop is sampled uniformly k times to yield a total of m× k

sample points.

P ′

s

s′

uP

Figure 5.2. The real path P taken by a packet from s is different from the path P ′ it should
have taken if it were generated from the claimed location s′.

5.4.4 Locality Sensitive Hashing

The memory foot-print of full path history on sensors would be too large. Con-

sequently, we adopt locality sensitive hashing [45] a mechanism perfectly suited

to compress such data and represent each path by a single value. The distance

between two paths then becomes the distance between their compressed values.

In general, locality sensitive hashing takes points in high dimensional space and

maps them to 1D such that the Euclidean distances between them are roughly
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preserved. Recall that each path can be considered as a point in 2k-dimensional

space, which is then hashed to a point in 1D such that the distance between any

two paths is correlated to the distance between their corresponding 1D points.

Locality-sensitive hashing makes use of the properties of stable distributions.

A stable distribution [21] is a distribution where the random variable
∑

i viXi

has the same distribution as the variable (
∑

i |vi|p)1/pX, where X1 . . . Xn are i.i.d.

variables from that distribution. It is known that Gaussian distribution is stable

for `2 norm. This means that if we represent a path P in our network by a

vector in 2k-dimensional space v = (p1, p2, · · · , pk) and generate a random vector

a (with each element chosen uniformly randomly from a Gaussian distribution

σ(0, 1)), of the same dimension, then taking the dot product of the two vectors,

a · v, results in a scalar distributed as ||v||2X, where || · ||2 is the `2 norm, and X

is a random variable with Gaussian distribution σ(0, 1). It follows that for two

vectors (v1, v2) the distance between their hash values |a·v1−a·v2| is distributed as

||v1− v2||2X where X is a random variable of a Gaussian distribution. Therefore,

if we have a vector vi, which represents a path in our network, we can generate

a scalar value from it (by taking the dot product with a) that still maintains

the property that its distance from another scalar generated by another vector

v2 is correlated to the original “distance” between v1 and v2 as we previously

defined. A hash function that uses random variables of a stable distribution to

map high-dimensional vectors to 1D points satisfies the above definition of locality

sensitivity.

Upon receiving a packet with observed trajectory vector v, each sensor will

use locality sensitive hashing to store only the hashed value h(v) = a · v together

with the location where this packet was generated. For a new packet that claims

to be from the same region, the hashed value of the new packet is compared with

the hashed values in the past history. A belief rating directly proportional to the

difference of these two values is then generated.

In practice, to reduce overhead, a packet will only carry the position of the last

node visited and the hash value computed by that node. A new node will update

the packet with its own location and the new hash which is computed as the sum

110



of the old hash plus this node’s h(v) value. This yields similar results to the

method described above, while significantly reducing communication overhead.

In section 5.8.1 we show how the use of locality sensitive hashing in the design

of belief ratings results in a strong correlation between the distance a node is from

a claimed location and the resulting belief.

5.4.5 Belief Generation

By the property of locality sensitive hashing, packets taking paths similar or

identical to each other tend to cluster together on the real line, while packets

coming from unknown regions or following a highly irregular path map to different

points. To express a correctness belief about the claimed location of incoming

packets, their associated hash values are thus compared with the expected value

ranges of nodes originating from the same region. We explain in section 5.6 how

the hash values of different packets are stored and compared, and how we group

hash values based on the path’s origin.

Note that when the network is first deployed nodes do not have any history

about the network. We allow the beliefs to evolve gradually over the lifetime of the

network by having the belief rating be comprised of 2 values: one is the actual belief

rating, the second is the belief confidence. Intuitively, the rating captures how well

a new packet matches previous history data, while the confidence measures how

much history data a node has at its disposal. If the confidence is low than the belief

value is less useful. Initially, in a new network, the confidence values will be low,

and the beliefs ratings will be of limited value. But as nodes accumulate history,

belief ratings will be given with higher confidence. The interplay between belief

values and confidence values is complex and actual thresholds of what is considered

a “good” rating or “bad” rating would depend on the particular network and/or

application. These can be adjusted depending on the circumstances. The data

structure we use captures both components of the belief rating. See section 5.6.
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5.5 Security

We now describe the additional measures that must be taken to ensure that an

adversary, or a group of adversaries working together, does not tamper with the

belief ratings or hash values of packets passing through it. We want to ensure

that (i) individual belief values are not tampered with in transit, (ii) packets

containing incriminating ratings cannot be distinguished from other traffic, (iii)

new fake belief values are not added to bad-mouth a packet or improve its rating,

and (iv) existing belief ratings are not removed from packets.

5.5.1 Semantic Security

To ensure the above, we first require that each sensor be associated with a unique,

public identifier (e.g., MAC) and with a secret, unique symmetric encryption key,

known only to a very small set of authorized, un-compromised parties such as the

data sink or a few intermediary relays, called packet evaluators, PEs. This is a

reasonable, practical assumption to be found in existing research [16].

This key can then be used for communication between the sensor and the PEs.

Such communication however, we require to be deployed using any semantically

secure encryption cipher [40] (e.g., any cipher running in CTR mode). Semantic

security is necessary to prevent an adversary of correlating encrypted fields in

the current packet with fields of previously seen ones (e.g., if they represent the

same value). Our solution does not depend on the deployed encryption mecha-

nism. Symmetric key cryptography has been chosen over public key crypto, due to

the computation-limited platform assumed. While details are out of scope here,

we note that more powerful mechanisms can be devised using asymmetric key

primitives. Such mechanisms would allow optimized, in-network location claim

evaluation and packet filtering, effectively reducing overhead induced by compro-

mised traffic.
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5.5.2 Secure Belief Propagation

Upon generating a belief b (composed of a rating and confidence, see section 5.4.5)

and hash for the current packet, a sensor i will encrypt it using its shared symmet-

ric key with the sink ki and append the result Eki
(b) to the packet. Requirements

(i) and (ii) above are naturally handled. To ensure (iii) and (iv) we propose to use

a cryptographic digest1 chain constructs. Specifically, upon propagating a new

belief b with the current packet, a sensor i will perform two operations. First it

will encrypt the belief as above Eki
(b). Second, it will update the packet’s digest

chain value c as follows:

cnew ← H(cold|H(b)),

where H is a cryptographic digest, and ‘|’ denotes concatenation. At the PEs end,

each packet’s digest chain can be reconstructed and verified upon decrypting all

beliefs. To selectively remove a rating from the packet, a malicious adversary is

faced with having to correctly reconstruct a new digest chain for the remaining

beliefs. This, however, will require the decryption of those beliefs (using secrets

not in the possession of the adversary). Thus (iii) and (iv) are handled. An

adversary can still attach a bad belief rating, i.e., bad-mouth a packet. But this

is essentially denial of service attack in which the relay adversary can simply drop

the packet from the data stream. As message digests over small amounts of data

are extremely fast, the induced overhead is minimal.

To summarize, a node receiving a packet will append an encrypted belief rating,

update the digest chain as mentioned above and deliver the packet to the next

hop. The way that nodes attach belief ratings can be adaptive to the network

scenario and desired detection ability. We now introduce two belief generation

1We use “cryptographic digest” to denote a cryptographic hash function, so as to avoid any
confusion with the locality sensitive hash constructs. We note that the collision resistance of
such a hash function is not paramount here, given that the adversary would have a hard time
finding meaningful collisions within a few minutes (and for a large enough number of packets to
become meaningful), before the packet is due at the sink. We assume the hash function outputs
6 bytes.
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and propagation methods.

Stochastic Propagation. An immediate and natural extension to the above

propagation mechanism is the use of a stochastic behavior reducing communica-

tion requirements while gracefully degrading security assurance levels. Specifically,

sensors express beliefs only with a certain probability ps ∈ (0, 1]. Upon receiving

an incoming packet, a node will uniform randomly decide whether to generate and

propagate its current belief. Naturally, ps will now determine the efficiency of the

solution; lower values will result in less beliefs propagated but also lower commu-

nication overhead. Nevertheless, this will not immediately result in a beneficial

environment for a malicious adversary, as there is a certain favorable asymmetry

to be considered. An adversary will not be able to determine which sensors de-

cide to express beliefs about a given packet. Statistically, over a larger number of

packets, even small values for ps will result in the detection of consistent malicious

behavior. This is validated through simulations.

Out-of-Band Propagation (OOBP). Probabilistic, semantically secure en-

cryption was used to prevent adversaries from understanding and correlating

beliefs generated by the same party about different packets. Nevertheless, an

adversary can still selectively drop (a few) packets, just below the threshold of be-

ing detected by traditional denial of service prevention algorithms [80]. A simple

solution can be deployed to detect and prevent this behavior.

Informally this solution proceeds as follows. Each sensor maintains a window

W of yet-to-be-propagated beliefs. The belief generated for a new incoming packet

will not be propagated as part of the current packet, but instead will be placed

in W and its place will be taken by another (older) belief from W . To maximize

network usage and probabilities of arrival, the replacement choice will need to be

performed considering such things as its age in the window, its packet priority (if

any), its type (e.g., bad beliefs should be propagated faster) etc. At the receiving

side, the PE will maintain a similar window for each incoming packet for which not

all expected (or a sufficient number of) beliefs have been received. In the event

of network delays or corruptions, the PE may decide to timeout while waiting and
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accept or reject based on the currently received beliefs.

The benefits of such a belief propagation mechanism are multi-fold. To se-

lectively drop packets while remaining undetected, a malicious adversary would

need to eliminate all beliefs pertaining to these packets. The semantically secure

nature of encryption and the fact that they are propagated out of band, render

this a difficult problem. The adversary has little incentive to remove belief ratings

on a packet (i.e., attack (iv)) as those beliefs are not necessarily certifying this

packet. Its hardness increases naturally with larger sizes of the window |W | – due

to increasing un-predictability of the belief propagation process. For |W | = 1, the

mechanism gracefully converges to the above described protocol. Moreover, as

the window size is node-specific it can be set dynamically per-sensor, considering

memory constraints. Space constraints prevent further details here.

5.6 Storage

We now introduce the data structure used to store history data within each node,

namely a dynamic quadtree sub-dividing based on the amount of contained history

data — nodes with high densities of data will further subdivide to achieve finer

history “resolution”. Each sensor p organizes the paths observed in a quadtree

grouped by the sources of the paths, to exploit their spatial correlation. Intuitively

the paths taken by packets from nearby sources passing through p should be

similar. Thus even if p sees a packet for the first time from node x, p can test the

path against paths in its history originated from the neighborhood of x.

In effect, this divides the area of the network into regions, and use the history

of each region to form beliefs on individual nodes within. The sensor field is

recursively divided into quadrants as needed. For each quad, we store the mean

of all the hash values of paths originating from that region and their standard

deviation. The partitioning of the quad is controlled by the standard deviation

and the number of hashed values inside. When the standard deviation is larger

than a threshold, the quad is further partitioned.

The standard deviation of the hash values inside a quad measures how similar
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paths originating from a particular region are. Thus the standard deviation nat-

urally controls the granularity of the quadtree partitioning. We don’t maintain

the hashed values inside each quad, but only store their mean µ and standard

deviation σ. Specifically, suppose there are m hashed values x1, x2, · · · , xm inside

a quad, then

µm =
1

m

m∑
i=1

xi, σm =

√∑m
i=1(xi − µm)2

m− 1

This dramatically reduces the storage required, proportional to the diversity of

past traffic, relatively independent of the number of packets that go through p.

Whenever a new packet with trajectory v and old hash a arrives, the new hash

value h(v, a) is computed. The new packet is then compared with the mean µ and

standard deviation σ of the quad where the claimed source falls in. A belief rating

that the packet is from a source within that quad is computed as the probability

that h(v) is a sample from a Gaussian distribution with mean µ and variance σ. If

the belief rating is “good” (user defined), the hash value is included in the history

data. It is to be inserted into the appropriate quadtree node with the standard

deviation and mean of that quad node updated. Note that the mean and standard

deviation can be updated without requiring the original hash values. Suppose the

new hashed value is xm+1. Then the mean is updated as

µm+1 ← m · µm + xm+1

m + 1

and the standard deviation is updated as

σm+1 ←
√

1

m
[σ2

m(m− 1) + x2
m+1] + µ2

m − µ2
m+1

In the training phase of the protocol, the hash values are kept and the quadtree

node further sub-divides itself if its standard deviation becomes too large. After

the training phase the hash values are discarded and only the mean and standard

deviation of each quad are kept.

116



As we alluded to in section 5.4.5, the quad size (i.e. depth in the tree) de-

termines the confidence of a belief rating. A large quad size usually means we

have little data from a particular region. Therefore, we have less confidence in

the belief rating we assign. Conversely, a small size means that we have more

knowledge, and can assign a belief with greater confidence.

In our implementation, the belief rating itself is the number of standard de-

viations a new hash value differs from the mean of hash values previously seen.

Typically, a hash value 4 standard deviations from the mean results in a very

poor rating. The confidence value we use is the depth of the quad node used

in computing the belief. The deeper a node in the tree is the more fine-grained

information about the area in question we have, thus a higher confidence in our

beliefs. Of course, other strategies can be employed here.

To summarize, the data structure is a quadtree with each quad recording the

mean and standard deviation of the hashed values for a particular region of the

network. We do not keep the entire path observed in the history, not even the

hashed values. Once a new packet comes in, we compare it against the history,

generate a belief, and update the history.

5.7 Overhead Analysis

Communication. The number of belief ratings that is propagated with packets

is network specific, but in usual scenarios we estimate 5-6 such values (5-6 bytes

total). Other protocol-related information each packet carries is the location of

the previous node on the path (2 bytes), the cryptographic digest used to protect

the belief ratings (6 bytes) and the hash value computed by the previous node

on the path (2 bytes). This would yield a total of about 15 bytes. Given that

TinyOS packets in modern applications range anywhere from 36 to 100 bytes [3],

this is certainly acceptable, especially in hostile deployment scenarios where such

assurances are required.

In practice we further reduce the overhead by attaching beliefs in a probabilis-

tic way. Only an adaptively small fraction of packets are randomly selected to
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carry beliefs. Alternately, only a small fraction of relay nodes attach belief rat-

ings. Moreover, in a streaming application scenario, spanning multiple packets,

only the first (header) packet in a data stream will need to carry this additional

information—thus amortizing the overhead over the entire sequence.

Storage. The storage overhead is determined by the granularity of history

traffic patterns. As we do not explicitly store all the hashed values of packets that

visit a node, but rather only the mean and standard deviation of the values inside

each quad, this results in a limited overhead. The amount of data a particular

node stores is dependent on a its location within the network. A node near the

center might be involved with messages passing through from multiple directions,

while a node on the periphery will see data originating from only a few directions.

This impacts the degree to which a node is able to group hashes of similar areas

together.

For example, a maximum depth of the quadtree of 4 proved sufficient in our

simulations to provide a partition of 1/256th of the network, a very detailed

division of the sensor field. For a node at the center of the network potentially

a full quadtree of depth 4 will be needed, with 44 = 256 leaf nodes. A node on

the periphery with only detailed information on half of the network, and no detail

on the other half may have only 2 ∗ 43 = 128 leaf nodes. Similarly when nodes

only route data to and from a few (1 or 2) sinks, the quadtrees of all nodes won’t

have more than 128 partitions. Each leaf node requires 3 bytes to store the mean

(1 byte), standard deviation (1 byte), and the number of hashed values (1 byte).

For a quadtree with 128 leaves, this requires 386 bytes of memory. Moreover,

we can further reduce this overhead by adaptively considering lower depths in

(un-interesting sub-branches of) the quadtrees, depending on available memory.

5.8 Experimental Results

We validated our model by simulation with networks of various sizes, ranging

from 50 to 1000 nodes. We considered geographic routing (GPSR [50]) to route

messages between nodes and data sinks. We note however that our solution is not
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hard-coded to GPSR and works with other routing protocols. To model link and

node failures, links and nodes are set to go offline at various times – links were

active only 85% of the time and nodes 95% on average. Unless where otherwise

noted, we used a single sink located at the center of the network, at (xw/2, yw/2),

where w is the width of the network.

The network was first trained to understand the traffic pattern, by assuming

a short interval of uncompromised traffic. In this interval, nodes normally pass

messages to the sink, while observing routed traffic and building the hash history.

We were then able to test the effect of moving one node to another location, and

compare how the distance moved relates to our ability to detect it.

5.8.1 Model Validation

We first evaluated the path metric and the utility of locality sensitive hashing. As

we expect, the further away the claimed location of a node is from its true location,

the worst its belief rating. To this end, nodes’ claimed locations are varied with

respect to their true location and the behavior of the hash values is observed.

Figure 5.3 illustrates that the further away the claimed location of a node is, the

greater the change to its hash value. The figure plots the change in hash value with

respect to the change in path “distance”. The x-axis shows the difference between

the honest path and dishonest path by computing their “distance” as previously

defined — by summing the distances between all the sample points of the 2 paths.

For this simulation a network of 50 × 50 was used with a communication radius

of 10 and a sampling rate of 100. A node was randomly selected at distance at

least d from the sink, d being the width of the network. False locations were

acquired by randomly choosing a direction and calculating the coordinates of the

new claimed location, based on the magnitude of the claim. The strong linear

correlation shows that our distance measure between paths truthfully captures

the severity of the wrong location claim.

Using hash values, each node along the path forms a belief as to the honesty of

the packet that comes its way, by comparing its hash value with the hash values
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Figure 5.3. As the distance between claimed and true location increases so does the difference
between resulting hash values.

in the history for the region. The beliefs formed will be slightly different for all

nodes on the route. Normally the beliefs are stronger near the start of the path

because the change in the path is more significant at the earlier nodes than those

further away; in other words, since the start nodes are looking at a shorter path

the percentage of the claim is greater.

Figure 5.4 shows the actual belief ratings formed by each node along a 6 hop

path from source to sink. Values are shown for when the adversary claims to be

at positions from 0 to 35 units away away from its real location (or 0 to 4 hops as

the nodes have a radius of 10) in a network of 50× 50. As can be seen, the belief

quickly drops once the adversary makes a claim more than 1 hop away.

5.8.2 Parameter Fine-tuning

There are a number of parameters used in our protocol that interestingly have

little or no effect on the overall belief rating generated. The power of using

locality sensitive hashing with history data overwhelms other network factors.

We mentioned how the hash function requires a random vector of size 2k where

k is the degree of parametrization of the path (“sampling parameter”). Figure

5.5 shows that even a low sampling parameter will result in quite accurate belief

ratings. There is no clear distinction between a value k ranging from 20 to 2000,
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Figure 5.4. The beliefs generated by each node along the path, as the adversary claimed
distance increases.

only the sampling parameter of 10 appears insufficient. This is important, because,

by using a lower parametrization we reduce the overhead of the hash function

computation. This graph only gives a snapshot of what one node “believes”. A

node on the path from source to sink was arbitrarily selected (in this case the

node at hop 4) and it’s beliefs were plotted, this being the reason for the routing

irregularities seen in the figure.

In addition, we have found that network size and density do not noticeably

impact the efficacy of our certification system. Again, this is because the hash

values give overwhelmingly good indicators as to the honesty of a node, regardless

of network specifics. Figure 5.6 shows belief ratings for three typical network

topologies, namely (i) an area of 50 × 50, n = 100, R = 10, deg = 10, (ii)

100× 100, n = 500, R = 10, deg = 14, (iii) 500× 500, n = 1000, R = 40, deg = 17

— where n is the number of nodes, R the communication radius and deg the

average node degree.

The set of simulations indicate a number of interesting observations that are

useful for parameter tuning in practice.

• For sufficiently good belief ratings, only 5 nodes on the relay path are re-

quired to attach their beliefs. This substantially reduces communication
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overhead and validates the stochastic belief propagation as only a small

fraction of nodes need to participate.

• The number of samples (in hashing) for a path can be as low as 20.

• With the above parameters, the belief rating of a packet from a source node

that claimed to be at a location as close as a single hop away, decreases

quickly toward zero.

5.8.3 Detection of malicious claims

Figure 5.7 illustrates the percentage of packets accepted by the data sink after

examining their belief values and comparing them with a “threshold value” for

acceptance. Specifically, the sink will require the average of the lowest 3 beliefs

on the path to be above the threshold to be accepted. The graph also shows

the percentage of honest nodes accepted (the distance between claimed location

and the true location is 0). Having a high threshold of 80% is too strict, and

some honest packets are therefore incorrectly dropped. For this simulation we

incorporated variability into the routing pattern by having only 85% of the links

be active at any given time (thus the routes taken by the packets from the same

source vary).

The results show that having only a small percentage of nodes attach beliefs is

sufficient for a surprisingly strong detection ability. For example, by just having

5 beliefs attached, the detection accuracy is 95%.
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Part III

Conclusion and Future Work
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Chapter 6

Conclusion

We have presented here a couple of instances where effective solutions to tough

problems for sensors networks can be devised using the collective involvement

and intelligence of the network. We are aware that individually the sensors are

primitive entities, but as a whole the network is quite powerful and smart. When

designing solutions to tough problems we should not think in terms of how can

individual limited sensors accomplish the task at hand, but rather how can we

take advantage of the collective power and intelligence of the network. All to

often, with the former mindset, solutions rely on the use of some external entity

that has more capabilities than a typical node. But this approach is inelegant

and increases the complexities of the algorithm and, as a consequence, leads to

complications in network operation.

Often network-wide solutions are avoided because of the overhead cost of radio

transmissions among nodes. However, when such schemes are actually devised

we find the overhead is very reasonable, requiring only a constant number of

transmissions.

We demonstrate both for localization and for location verification that by insti-

tuting a hierarchical structure for collaboration we can design effective algorithms.

With localization we devise a scheme of performing the task iteratively. It is iter-

ative in that first a small subset of ‘landmark’ nodes are embedded and then the

entire network; and it is iterative in the actual selection of the landmark nodes,
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selecting 2 initially and then incrementally selecting more as deemed necessary.

Using such an approach leads to new ideas and results in the geometric properties

of such networks and offers guarantees on its performance.

Similarly, with regard to location certification, no special tamper-proof hard-

ware is used to ensure honesty in location reporting. Nor are special designated

nodes with long-range radios to monitor righteous network activity used. Rather

all nodes work together to detect malicious activity in their midst.

With this philosophy we can build better algorithms for the massively dis-

tributed computer systems of the future.
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Chapter 7

Future Work

In general the theme of this work is to consider the network as one large entity

and address challenges by using the collective knowledge and capabilities of the

network as a whole.

With regard to localization there a few possible directions to explore in a 3D

environment. In the 3D version we make the assumption that the nodes lie on

a monotonic surface; that is, any vertical line will intersect the terrain at most

once. This guarantees that by always embedding a component so that it does not

lie above or below another component we will stay true to the real representation.

However, in theory the algorithm can still be applied to non-monotonic surfaces,

by first dividing the network into monotonic segments. Then each segment can

be embedded independently and then finally the segments can be glues together.

There are multiple possibilities how to carry this out in practice. We may imagine

a scenario where nodes have a long-range line-of-sight detection abilities (perhaps)

by using radar and can thereby detect if it lies directly above or below other nodes

in the network.

Also for the 3D version we assume that each node knows its height information

using an altimeter. While such altitude sensor are cheap and can be equipped on

each node, it would be interesting to explore how to achieve similar results by

equipping a small subset of the nodes with altimeters. For instance we may only

require the landmark nodes to have altimeters thereby allowing us to construct an
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accurate frame with which to embed the rest of the network. In order to ensure

that each landmark has an altimeter, we can modify the algorithm that so that

when a candidate node is selected to be a landmark, the closest node to it with

an altimeter is designated to be a landmark.

As far as embedding is concerned there are many research problems left open.

While our work gives theoretical guarantees on bounding the landmark density and

proving that in they would result in a rigid delaunay complex to make embedding

possible, there are still practical issues that must be dealt with regard to how to

deal with the fact that the distance measurements are only approximations so they

distort the final result. How to deal with such distortions is not entirely clear.

Firstly, it is clear that distortions arise from a number of different parameters

such as the network density and the communication model. And for each of these

parameters there is an optimal density of landmarks which may or may not be

known when the localization algorithm is put into practice. Understanding the

interplay between all these factors is left for further study. Secondly, there are

various approaches on how to mitigate the effect of the rough hop-count estimates.

One idea may be to run the embedding algorithm from different starting points

and then overlaying the results. This circumvents the issue of very bad results from

the cumulative effect of mild distortions propagating through the network. Other

options may include incorporating various rubberbanding schemes to distribute

errors evenly throughout the graph.

With regard to landmark selection algorithm there is a great degree of vari-

ability in the order of the conditions to check for in making a new landmark.

Depending on which conditions are checked for first could effect the end result in

the number of landmarks selected. Also, how many nodes should be made into a

landmark simultaneously? This then leads into a number of practical issues when

running this algorithm on a real distributed network where a primal goal is to

minimize the number of transmissions. The question now is how to organize the

algorithm so that the number of transmissions is minimized while still keeping the

efficacy of the algorithm unharmed.
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