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Abstract of the Dissertation 

Compound and Constrained Regression Analyses 

by 

Ling Leng 

Doctor of Philosophy  

in 

Applied Mathematics and Statistics 

Stony Brook University 

2009 

In linear regression analysis, randomness often exists in both the dependent and the 

independent variables and the resulting model is referred to as the error in variable (EIV) 

model. Estimation of the regression parameters using the current EIV structural model 

approach is dependent upon the ratio of the error variances, which is usually unknown. 

Furthermore, the current structural model approach is a parametric approach assuming 

normal distributions for all random variables involved. To overcome these impasses, we 

introduce two alternative frameworks, the compound regression analysis and the 

constrained regression analysis methods. It is shown that these approaches are equivalent 

to each other and, to the parametric structural model approach when the random variables 

involved are normally distributed. The advantages of the new regression approaches lie in 

their intuitive geometric representations, their distribution free non-parametric nature 
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being a direct generalization of the ordinary least squares method, and their operational 

independence to the ratio of the error variances. Examples and simulations are provided 

to motivate and to illustrate these new approaches.  
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1. Introduction 

 

     The classical ordinary least squares regression theory relies on the assumption that 

the explanatory variables are measured without error which is often untrue in climate 

modelling and other scientific research. In gauging the relationship between the 

concentrations of organic aerosols and anthropogenic carbon monoxide (CO) (Jobson et 

al. 1999; and Kleinman et al. 2007), we found that both quantities, measured by the mass 

spectrometer and the UV fluorescence analyzer respectively, contain measurement errors 

and possibly other volatilities due to air dynamics as well. Two commonly used 

regression methods for simple linear regression with a random regressor, the orthogonal 

regression and the geometric mean regression, yielded different regression equations, as 

expected, for our dataset. The immediate question confronting the scientist is which one 

to adopt for his/her study. This is a typical example of the error in variable (EIV) 

regression, also known as the measurement error model, where both the dependent and 

the independent variables contain unknown errors. In the Frequentist context, this is still 

an outstanding problem. As E. T. Jaynes pointed out in his celebrated monograph 

Probability Theory – The logic of science: 

     “As science progressed to more and more complicated problems of inference, the 

shortcoming of the orthodox methods became more and more troublesome. Fisher would 

have been nearly helpless, and Neyman completely helpless, in a problem with many 
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nuisance parameters but no sufficient or ancillary statistics. Accordingly, neither ever 

attempted to deal with what is actually the most common problem of inference faced by 

experimental scientists: linear regression with both variables subject to unknown error.” 

(Jaynes 2004; page 497)   

     To date, the general frequentist approach to EIV modeling is through the maximum 

likelihood estimation method (Lindley 1947; Wong 1989). However, this method depends 

on the multivariate normality assumptions and furthermore, to make the matter worse, the 

solution depends on the ratio of the error variances, which is usually unknown.    

     To overcome these impasses for EIV regression, I have developed two novel 

general regression approaches -- the compound and the constrained regression analysis 

methods that will provide intuitive and practical solutions for all EIV regression problems 

including our own. My approach is non-parametric and includes both the orthogonal 

regression and the geometric mean regression as special cases. When the multivariate 

normality assumption holds, our methods will produce identical solutions as the 

traditional MLE method. However, an added advantage of our approaches is that we can 

circumvent the unknown variance ratio problem and yield optimal or near optimal 

solutions in the absence of such knowledge. This thesis is organized as follows. The new 

methods are introduced in Section 3 and illustrated, through three examples and one 

simulation study, in Section 4. Discussion and future work directions are presented in 

Section 5. In the following, we begin by a brief review of the current approaches. 
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2. EXISTING METHOD 

      A general structural model approach for simple linear regression when both 

variables are random, that is, the error in variable (EIV) model, is as follows (Sprent 1969; 

Wong 1989).  

 

 

2

2

0 1

~ 0,

~ 0,

X N

Y N





   

   

   

 

 

 

     

     Here and are independent random errors. There are two analysis approaches 

concerning this model: the functional and the structural. Their basic difference is whether 

to consider   as a non-random variable or a random variable following normal 

distribution with mean   and variance 2 , and independent to both random errors. 

Since the latter approach is more general, in the discussion below, we will follow the 

structural model approach where X and Y follow a bivariate normal distribution: 

2 2 2

1

2 2 2 2
0 1 1 1

~ ,
X

N
Y





    

       

    
             

 

     Given a random sample of observed X’s and Y’s, the maximum likelihood 

estimator (MLE) of the regression slope is given by  

2 2

1

( ) 4ˆ
2

YY XX YY XX XY

XY

S S S S S

S

  


   
  

Its value depends on the ratio of the two error variances 2 2

    , which is generally 

unknown and unable to be estimated from the data alone (Lindley 1947).  
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     It has been shown that the ordinary least squares regressions (OLS) and the two 

most commonly used regression methods when both X and Y are random, the orthogonal 

regression (OR) and the geometric mean regression (GMR), can be considered special 

cases in this structural model approach, with the distinction that these specific methods 

do not rely on the bivariate normal assumption.  

     The OLS slope estimator with Y or X as the dependent variable will minimize the 

squared vertical or horizontal distances from the points to the regression line, and 

corresponds to the MLE of the slope in the structural model approach when   or 

0  . The OLS is suitable when only one of the two variables is random.  

     When both variables are random, the orthogonal regression takes the middle 

ground by minimizing the sum of squared orthogonal distances from the observed data 

points to the regression line. The resulting estimator of the slope is (Jackson and Dunlevy 

1988): 

2 2

1

( ) 4ˆ
2

YY XX YY XX XY

XY

S S S S S

S


   
  

It is the same as the MLE in the structural model approach when 1  . This means that 

the OR is suitable when the error variances are equal.  

     The geometric mean regression, on the other hand, took the middle ground by 

taking the geometric mean of the slope of y on x, and the reciprocal of the slope of x on y 

OLS regression lines resulting in the estimated slope  
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1

1 , Y on X , X on Y
ˆ ˆ ˆ( ) *( ) ( ) YY

XY OLS OLS XY

XX

S
sign S sign S

S
      

The GMR can also be obtained by minimizing the sum of the triangular areas bounded by 

the vertical and the horizontal projections from the data points to the regression line and 

the regression line itself (Barker et al. 1988).  

     Comparing to the structural model approach, the GMR estimator is equal to the 

MLE when YY XXS S  (Sprent and Dolby 1980). This means that the GMR approach is 

suitable when the randomness from X and Y are from the random errors only. That is, 

when we take the functional analysis approach by assuming that ξ is not random. 

     When the ratio of error variances is known, the MLE of the slope parameter can be 

extended to multivariate case. Consider the multivariate linear relationship  

1

p

j j

j

  


             (1) 

between p variables 1 2, ,..., p   where observations 
1 2, ,..., px x x are made with 

independent normally distributed errors. Hence 

i j jx     

while
j are independent of each other and follow a normal distribution with variance 

equal to 
p and 

1 2( , ,..., )p   follows a p-variate normal distribution ( , )s sN   . 

Therefore, the observations x    have the distribution 
2( , )p s sN     . 

     The maximum likelihood estimate of parameter can be obtained by 

1 1

1 2 2
1 1 1

ˆ ˆ ˆ ˆ( ' )   
 

     (2) 
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where 1̂ is the eigenvector corresponding to the smallest eigenvalue of 
1 1

2 2S
 

   

and S is the sample variance-covariance matrix of X (W.M. Patefield 1981). 

     Orthogonal regression also has an extension to the higher dimension case. The 

distance from a point 0 0 0( , , )x y z to a regression plane 1 2 3X Y Z c     is: 

2

1 0 2 0 3 0

2 2 2

1 2 3

( )x y z c  

  

  

 
 

Hence, the orthogonal regression will minimize the following formula: 

2

1 2 3

2 2 2
1 1 2 3

( )n
i i i

i

x y z c  

  

  

 
  

Then there is a formula for k-dimensions: 

2

1 1 2 2

2 2 2
1 1 2

( ... )

...

n
i i k ki

i k

X X X c  

  

  

  
  

     We can prove that orthogonal regression is a special case of GLS when all  s are 

equal to 1(see Appendix A theorem1). 

 

3. COMPOUND AND CONSTRAINED REGRESSION ANALYSES 

      The structural model approach has two fundamental difficulties for real life 

applications. First, it requires the variables to follow a joint bivariate normal distribution. 

Second, it require knowledge of --the ratio of the error variances, which is usually 

unknown and cannot be estimated from the data statistically (Lindley 1947; Wong 1989). 

In addition to these impediments, the structural model approach has also lost the intuitive 

geometric interpretations enjoyed by the other, albeit more specialized methods such as 
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OLS, OR or GMR.  

     In this section, we present the novel compound regression analysis and the 

constrained regression analysis methods. Both approaches enjoy clear geometric 

interpretations. Furthermore, we prove that they are equivalent to each other, and to the 

structural model approach when the joint distribution is bivariate normal. The added 

benefits are that, firstly, the estimators from these new approaches can be derived using 

the ordinary least squares method without the normality assumption. Secondly, users can 

choose their desirable compound/constrained regression line without the knowledge of , 

the usually unknown and un-estimable ratio of the error variances.   

 

3.1 Compound Regression Analysis 

      The idea of compound regression analysis came from our experience with 

multiple-objective optimal designs (Biedermann et al. 2006; Dette et al. 2005; Zhu 1996; 

Zhu and Wong 1998). When we have only one objective in an experiment, the optimal 

design ξ, defined as a probability mass function that places total mass on a finite 

collection of k points in the design region Х, is derived by minimizing a convex function 

of the Fisher Information matrix corresponding to this objective. When we have two 

objectives in mind represented by the convex functions Φ1 and Φ2 respectively, a standard 

and intuitive approach is to find a compound optimal design (Läuter 1974, 1976) that will 

minimize a linear combination of these objective functions
1 2(1 )        , 
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0 1  . The value of   is determined using the concept of design efficiency, 

* /i i ie    - where *

i  is the optimum (minimum) value for the i
th

 objective alone

 1,2i  . The design efficiency gauges how efficient the given design is for estimating 

each objective. A user can plot both efficiencies for all possible values of  , 0 1  , to 

decide the  value corresponding to the desirable efficiency values. Such a plot is called 

an efficiency plot.        

     This idea of molding two objectives in a design setting through a compound 

criterion can be readily applied to the scenario of simple linear regression when both 

variables are random. For the OLS on Y and X separately, variation exists in the Y or X 

direction only and thus one would minimize the sum of squared distances along the 

vertical or horizontal axis only to obtain the best regression line for each scenario. When 

both Y and X are random, one would naturally wish to find a regression line 

0 1Y X    that will minimize variations in both directions.  
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Figure 1. Illustration of the Ordinary Least Squares Regressions, Orthogonal Regression, 

Geometric Mean Regression, Compound Regression and Constraint Regression Analyses.  

 

     This can be accomplished by minimizing a weighted average of the squared 

vertical and horizontal distances, as illustrated in Figure 1, as follows:       

2 2

1 1

2 20
0 1

1 1 1

( ) (1 ) ( )

( ) (1 ) ( ) , 0 1.

n n

i i i i

i i

n n
i

i i i

i i

SS Y Y X X

Y
Y X X

  


    



 

 

    


       

 

 
 

     At the two extreme values of 1  and 0  , we obtain the OLS on Y or X 

respectively. For each , we can obtain the least squares estimators of the regression 

parameters by solving 
0

0rSS







 and 

1

0rSS







 simultaneously. Straight-forward 

derivation shows that the resulting compound regression model estimators 0̂  and 1̂  

would satisfy 

     0 1Y X    and  4 3

1 1 1 0
1 1

XX XY XY YYS S S S
 

  
 

   
 

  (3) 

Solutions can be obtained using any standard numerical software such as MATLAB. 

     For the higher dimension case, the process can be carried out in the same way. The 

compound regression takes account of all the prediction errors with different weight and 

gets the slope estimate by minimizing the following sum function 

2 2 2

1 2 1 1

1 1 1

ˆ ˆ ˆ( ) ( ) ( )
n n n

i i i i k ki ki

i i i

SS y y x x x x   
  

          
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In order to do this, we simplify the above sum function 

2 2 2

1 2 2 2
1 1 11

22
1 1 1 1 22 2

11

2
1 2 2

1 1 11

1 1
( ) ( ) ( )

( ) ( ( ) ( ))

( )( 2 )

n n n

i i i i k i i

i i ik

n
k

i k k

ik

k k k
k

i j i j i i

i j ik

SS y y y y y y

y y x x x x

SYY SX X SX Y

   
 


  

 


   

 

  



  

     

        

     

  



 

 

And set derivatives: 

2
1 2 2

1 11

3
1 1 1

( )( 2 2 )

2
( 2 ) 0

k k
k

j i j i i i i

j ii k
j i

k k k
i

i j i j i i

i j ii

SS
SX X SX Y SX X

SYY SX X SX Y

 
  

  


  



 


  


     



   

 

 

   (4) 

to obtain the slope estimates. 

 

3.2 Equivalence between Compound Regression and Structural Model  

     In this section, we prove that there is a one-to-one correspondence between the 

MLE in the structural model approach (under different ) and the least squares estimator 

in compound regression analysis (under different ) for the slope parameter  , and thus 

for the corresponding regression line/plane. 

Theorem 2. The compound regression analysis and the structural model approach are 

equivalent to each other.  

  Proof:  

a) From formula (2) above, we can obtain ̂  from variances ratio , then we can plug it 

into equations (4) to get the corresponding 1 and 2 .  
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b) We can get the slope estimator ̂  from compound regression. We define   using the 

formula 1 ˆ ˆS   , and define 
1

2
1

ˆ̂ 


  . We will have the following equivalence.  

1 1 1 1

1 12 2 2 2
1 1 1 1

ˆ ˆˆ ˆ ˆ ˆS S S      
   

           

We can see this is the same with MLE of GLS (actually does not matter here, what we 

concern is only the ratio of  s to each other, not the actual number). Hence, thewe 

define here can yield the same slope estimate of compound regression. Therefore, we 

have proven the existence of . That is, we have proven the equivalence.  

 

     Now that we have shown the equivalence between the structural model and the 

compound regression approaches, our problem transfers from finding the desirable 

regression line/space from a class of unknown 's to a class of unknown 's . The 

constrained regression analysis method will further elucidate the path to the solution.   

 

3.3. Constrained Regression Analysis 

     In experimental design, besides the compound optimal design approach, the other 

way to derive the best design satisfying multiple research objectives is through the 

constrained optimal design approach (Lee 1987, 1988). Intrigued by the similarity 

between the multiple-objective design and the random regressor scenarios, we have 

devised the compound regression analysis approach as shown in the previous sections. 

Here we derive the constrained regression analysis, the regression counterpart of the 

constrained optimal design. And, just as the two approaches are shown to be equivalent to 
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each other in the optimal design scenario (Cook and Wong 1994; and Clyde and Chaloner 

1996), we find them equivalent in the regression scenario as well.    

     We define the constrained regression as follows. Given the constraint of 

2

1

( )
n

i i

i

Y Y c


   where c is a user selected non-negative constant, the compound 

regression line will minimize 2

1

( )
n

i i

i

X X


 .  

Theorem 3.  The constrained regression is equivalent to the compound regression in 

that there is a 1-1 correspondence between c  0c  and  0 1  . For a given c we 

have 1

4 3

1 1 1

ˆ

ˆ ˆ ˆ
YY XY

YY XY XX XY

S S

S S S S




  




  
 and 

2

1

( ) ( )ˆ XY XY XY XX YY

XX

S sign S S S S c

S


  
 . 

     Proof of this theorem is provided in the Appendix A. 

 

     The advantage of the constrained regression analysis approach lies in its intuitive 

interpretation.  The constrained regression can be stated equivalently in terms of the 

regression efficiencies for Y and X defined as  

2 ( ) 2

1 1
1

2 2

1 1

ˆmin ( ) ( )

( ) ( )

n n
OLS Y

i i i i

i i

n n

i i i i

i i

Y Y Y Y

e

Y Y Y Y

 

 

 

 

 

 

 

 and 

2 ( ) 2

1 1
2

2 2

1 1

ˆmin ( ) ( )

( ) ( )

n n
OLS X

i i i i

i i

n n

i i i

i i

X X X X

e

X X X X

 

 

 

 

 

 

 

 

respectively.  For a given c
*

 0,1 , the constrained regression line will maximize 
2e  

subject to *

1e c .  

     With the equivalence of the constrained and the compound regression approaches, 

we can first calculate all the compound regression lines given that they are 
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computationally more efficient than their constrained regression counterparts. Then we 

plot the efficiency curves for all possible  0 1  , and select, from which, the value 

of *  corresponding to a desired c
*
 (and thus a desirable constrained regression line 

with intuitive interpretations). The intersection of the line *   and the curve of 
2e  in 

the efficiency plot would yield the best efficiency we can achieve for the estimation of X.  

 

     Here we point out that both new regression approaches are symmetric for the 

estimations of X and Y and thus, one can reverse the order of the importance for X and Y 

and obtain the best regression line for Y subject to **

2e c . Now that we have successfully 

circumvented the dilemma of the unknown error variance ratio λ, we will demonstrate 

our approaches with examples in the following section.       

 

     For higher dimensional case, constrained regression will follow the same form. We 

can give the constraint on 2 2

0

1 1

( ) , ( ) , 1,.., 1, 1,..,
n n

i i ji ji j

i i

Y Y c X X c j k k p
 

         

and calculate the slope estimates that will minimize 2

1

( )
n

ki ki

i

X X


 . Or alternatively, we 

can define the efficiency of regression:  
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1 1
0

2 2

1 1

ˆmin ( ) ( )

( ) ( )

n n
OLS Y

i i i i

i i

n n

i i i i

i i

Y Y Y Y

e

Y Y Y Y

 

 

 

 

 

 

 
  



14 

 

( )2 2

1 1

2 2

1 1

ˆmin ( ) ( )

, 1,.., 1, 1,..,
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j
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OLS X

ji ji ji ji

i i
j n n

ji ji ji ji

i i

X X X X

e j k k p
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 

 

 

    

 

 

 

 

     And under the constraints
0 0 , , 1,.., 1, 1,..,j je c e c j k k p     , we calculate the 

slope estimates that will maximize the efficiency of regression of kx .  

     Although we have proven the equivalence in two-dimensional case, the theoretical 

proof of extension to higher dimension seems difficult to obtain. However, we did some 

simulation to find the numerical solution of constrained regression in examples. 

 

 

 

 

 

 

 

4. EXAMPLES 

     Our first example is classic; our second example is from the atmospheric science 

that has motivated this work and the third example is from a gene microarray study that 

serves to illustrate EIV model in higher dimension. That is, when we deal with multiple 

regressions with more than one random regressors. 

4.1 Example 1 

     Error in both variables problem has been noticed for a long time. Casella and 

Berger (2001, pages 542, 579) introduced this classic example where randomness exists 

in both directions. Figure 2 shows the scatter plot of the data together with some typical 
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regression lines. From the previous discussion, we know that the entire class of 

compound regression lines would range from OLS(X) to OLS(Y). The question is which 

regression line to choose among this diversified class of regression models.  

 

 

Figure 2. Span of Regression Lines for Example 1. 

 

Table 1. Selected Compound Regression Analysis Results for Example 1. 

 

  
1̂  0̂  

2

1

( )
n

i i

i

Y Y


  2

1

( )
n

i i

i

X X


  
1e  2e    

0 (OLS_X) 2.82 -2.31 137.53 17.33 0.24 1.00 0.00 

0.07(OR) 1.88 -0.48 65.87 18.71 0.50 0.93 1.00 

0.10 1.79 -0.30 61.09 19.16 0.54 0.90 1.13 

0.20 1.57 0.13 51.06 20.84 0.65 0.83 1.50 

0.30 1.43 0.39 46.00 22.50 0.72 0.77 1.79 

0.34(GMR) 1.39 0.48 44.43 23.24 0.75 0.75 1.91 

0.40 1.33 0.59 42.72 24.25 0.78 0.71 2.07 

0.50 1.24 0.76 40.31 26.22 0.82 0.66 2.36 

0.60 1.16 0.92 38.40 28.56 0.86 0.61 2.71 
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0.70 1.08 1.08 36.79 31.56 0.90 0.55 3.17 

0.80 0.99 1.24 35.39 35.84 0.94 0.48 3.90 

0.90 0.89 1.45 34.11 43.35 0.97 0.40 5.57 

1 (OLS_Y) 0.68 1.86 33.12 71.94 1.00 0.24   

 

     Table 1 above tabulates selected compound regression lines including OLS(X), 

OLS(Y), OR and GMR. The efficiencies for estimating X and Y ranging from 0.24 to 1 in 

opposite directions as  goes from 0 to 1. The OR line is more efficient in reducing 

variations in the X direction than the Y direction with efficiencies for X and Y being 0.93 

and 0.50 respectively. The GMR, however, provides a nice balance between the two 

estimations yielding equal efficiencies (0.75) for both X and Y. Such is not a mere 

coincidence; in fact, it is universally true as stated in the following theorem with proof 

provided in the Appendix.  

Theorem 4. (a) The Geometric Mean Regression would always yield equal 

efficiencies for the estimations of X and Y respectively. (b) The Ordinary Least Squares 

Regressions for X and Y have the same efficiencies, albeit in reverse order, for X and Y.   

 

     For each given data set, users can select the desired regression line from the entire 

class of all compound regression lines using the efficiency plot as shown in Figure 3. The 

estimated regression line can be easily computed using Equation (1) in Section 3.1. Our 

estimations of   and 
2e  are highly accurate because of the explicit analytical formula 

in Theorem 2. Suppose that the user want the desired line to be at least 95% efficient for 

the estimation of Y. From this plot, it is easy to see that when 
1 0.95e  , we have 
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0.8401   and 
2 0.453.e   If, however the user wishes the desired line to be at least 85% 

efficient for the estimation of Y. From the efficiency plot, we will find that 
1 0.85e 

corresponds to 0.5686   and 
2 0.624.e    

 

 
Figure 3. Efficiency plot for Example 1.  

 

4.2 Example 2 

     Our second example from the atmospheric science also motivated this work. In 

order to investigate the organic aerosol evolution, the time evolution of aerosol 

concentration and chemical composition in a megacity urban plume was determined 

based on 8 flights of the DOE G-1 aircraft in and downwind of Mexico City during the 

March 2006 MILAGRO field campaign (Kleinman et al.2007). The data consist of 113 

pairs of carbon monoxide (CO) and organic aerosol concentrations observed above the 
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Mexico City. Our goal is to study the linear relationship between the random variables 

ln(CO), as X, and the concentration of organic aerosol (Y). Similar to Example 1, we can 

visually inspect the span of compound regression lines ranging from OLS(X) to OLS(Y) 

in the following scatter plot. 

 
Figure 4. Span of Regression Lines for Example 2. 

 

     Unlike Example 1 where the scales of the two random variables are comparable, 

here the scale of Y can be three times as large as that of X. Subsequently the sum of 

squares for Y would be much larger than that for X which means the former would 

dominate the minimization of the compound regression sum of squares SS
 for most . 

We will still obtain the entire class of compound regression lines however the efficiency 

plot would be flat on most of the interval for   and then change abruptly at the end of 

the interval, which will hamper the visual inspection and selection of desired regression 
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lines. This phenomenon can be easily corrected by standardizing the compound 

regression sum of squares as follows:  

2 2

1 1

2 2

1 1

2 2

1 1

( ) 2 ( ) 2

1 1

( ) ( )
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min ( ) min ( )
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 
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  

 

 

    

 

 

 

 

 

 

     The resulting standardized compound regression is easily shown to be equivalent to 

the constrained regression as well as the structural model. Selected compound regression 

lines using the standardized criterion are shown in Table 2.  

 

Table 2. Selected Compound Regression Analysis Results for Example 2. 

 

  
1  0  2

1

( )
n

i i

i

Y Y


  2

1

( )
n

i i

i

X X


  
1e  2e    

0 (OLS_X) 8.68 -47.13 895.63 11.891 0.755 1.000 0.00 

0.01(OR) 8.64 -46.90 888.08 11.892 0.761 1.000 1.00 

0.10 8.36 -45.13 835.29 11.943 0.810 0.996 9.56 

0.20 8.12 -43.56 795.04 12.066 0.851 0.985 19.08 

0.30 7.91 -42.23 765.36 12.239 0.884 0.972 29.47 

0.40 7.72 -41.03 742.24 12.458 0.911 0.955 41.62 

0.50(GMR) 7.54 -39.90 723.63 12.725 0.934 0.934 56.87 

0.60 7.37 -38.80 708.42 13.052 0.955 0.911 77.70 

0.70 7.19 -37.68 696.01 13.459 0.972 0.884 109.73 

0.80 7.01 -36.50 686.17 13.981 0.985 0.851 169.44 

0.90 6.80 -35.19 679.17 14.689 0.996 0.810 338.29 

1 (OLS_Y) 6.55 -33.62 676.20 15.750 1.000 0.755   

  

     From Table 2, we observe that the efficiency of predicting Y increases from 0.755 
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to 1 while the efficiency of predicting X decreases from 1 to 0.755 as  goes from 0 to 1.  

We also observe that the GMR yields equal efficiencies (0.934) for the estimations of X 

and Y as proven in Theorem 3. We would highly recommend this regression line to our 

collaborators for the given study. In case they wish for a slightly higher efficiency for the 

estimation of Y, say 95%, one can easily find the corresponding compound regression 

line with 0.575   and a 92% efficiency for X as illustrated in Figure 5.  

 

 

Figure 5. Efficiency plot for Example 2.  

 

 

 

4.3 Example 3 

     In microarray analysis, measurement error exists in every gene expression measure. 

Therefore, ordinary least square regression is not suitable here. In this example, we 
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analyze a microarray data with 95 observations. Our goal is to find the linear relationship 

between 3 genes for possible genetic pathway relations. Here, GLS and compound 

regression method are used. 

     First, we find that these genes are not normally distributed. Therefore, 

log-transformations are used to modify the data. QQ-plots are shown below: 

      

Figure 6. QQ-plots for Example3 

     Second, the general least square method gives up the following model for this 

example: 
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1 2log 5 log 6 log 11gene gene gene      

If we have the knowledge of s (actually, we only need to know the ratio of s), we can 

plug this into formula (3) and get the slope estimates. For example, if the measurement 

errors are equal, then 3I  and the slope estimates are: 

1 20.2, 1.12    and the corresponding s are: 1 2 30.3899, 0.0006, 0.6095      

     However, there are cases where we don’t have knowledge of the measurement 

errors. And since we cannot get the measurement error from the data,  s cannot be 

obtained from statistics. In this case, we can use our compound regression. For different

 s, we get the following estimate: 

=[1,0,0]  the slope estimates are 1 20.2174, 0.4647   . This is the same with the 

ordinary least square regression using model above; 

=[0.5,0.5,0] the slope estimates are 1 20.8430, 0.0985    . The corresponding s 

are 1 2 31, 1.9804, 0.0007     ; 

=[0.33,0.33,0.33]  the slope estimates are 1 20.5079 , 0.5809   . 

      Here we also give the following table stating some value of  s and the 

corresponding slope estimate,  s and efficiencies. 

 

Table 3. Selected Compound Regression Analysis Results for Example 3. 

1   2  3  1  2  1  2  3  1e   2e  3e   

1 0 0 0.2174  0.4647  1 0 0 1.0000  0.0847  0.2167  

0 1 0 2.5657  -1.6494  0 1 0 0.0848  1.0000  0.2314  
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0 0 1 -0.7720  2.1443  0 0 1 0.2167  0.2314  1.0000  

0.5 0.5 0 0.8430  -0.0985  1 1.98 0 0.5662  0.7211  0.0055  

0.5 0 0.5 -0.0972  0.9988  1 0 1 0.7323  0.0124  0.7332  

0 0.5 0.5 0.5604  0.6299  0 1.6 1 0.5426  0.3054  0.2160  

0.33 0.33 0.33 0.5079  0.5809  1 15 9 0.6434  0.2974  0.2179  

0.3899 0.0006 0.6095 -0.2000  1.1181  1 1 1(OR) 0.6452  0.0457  0.8083  

     For different s, we get different efficiencies and also get the projection plot of 

efficiency e1, e2 and e3 on plane γ1 v.s. γ2 

 

Figure7a. Efficiency plot of loggene5 (projection to γ1-γ2 plane) 
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    Figure 7b. Efficiency plot of loggene6 (projection to γ1-γ2 plane) 
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           Figure 7c. Efficiency plot of loggene11 (projection to γ1-γ2 plane) 

 

     Although as mentioned earlier, equivalence between compound regression and 

constrained regression has not been theoretically proven, we can get some numerical 

results from this example. For example, if we set the constrained on 1 and 2 as follows: 

1 20.6 0.6e and e   we want to find the optimal 3  to maximize the e3. 

     It’s easy to see that if we increase the proportion of 3 , we can increase the 

efficiency of x3. We use Matlab code (see Appendix B.3) to calculate the corresponding 

e3. The output shows k=44, l=58 and the corresponding efficiency is 0.011.  

     We can try some other value. When we set criterion 1 20.3 0.3e and e  , we can 

get the optimal efficiency of x3 is 0.2207. When we set criterion 3 20.1 0.3e and e  , 
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we can get the optimal efficiency of x1 is 0.9030. 

 

4.4 Simulation Study 

 

     We have done analyses on real data in the previous section. Here we did some 

simulation study to test how well our model estimates the true slope.  

 

2-dimension case: 

     We here conduct some simulation for test our model fitting. We create our data 

using the GLS model assumption.  

 

Data generation 

1) Data range, we define the range from 0 to 10. 

2)  follows normal distribution with mean 0 and standard deviation 10; 

3) Sample size, I choose 200 data points 

4) True slope: η=2ξ. 

5) Error term: error follows normal distribution with mean 0. Standard deviation of error 

in X (δ) is 0.1*range; standard deviation of error in Y (ε) is 0.1*range*abs(slope) 

 

Model fitting 
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1) Compound regression: 

     We fit the data with our compound regression line and we have the following 

efficiency plot. (X-axis is γ, Y-axis is efficiency) 

In this data set, we can see that range 0.15 to 0.25 is probably the best solution we need 

(in this situation, the efficiency of both X and Y is above 0.925).  

 

Figure 8a. Compound Regression Efficiency plot for simulation example1. 

 

2) Constrained regression 

     From the plot, we can get the rough idea of obtaining the corresponding gamma to 

make sure the efficiency of regression for both variables would not be low. Now we run 
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the constrained regression analyses to see in which range would both the efficiencies 

would be at least 0.925 and got the above results [0.145,0.279]  (in Figure 8a). 

 

3) Generalized Least Square regression and other methods. 

     From the data generating step, we can see that GLS model assumptions hold here 

and the error variance ratio of Y and X is 4, therefore, the MLE of =4 should be suitable 

in this case and the corresponding 1.9533  .  

     Compound and constrained regression give us the alternative selection method 

when we don’t know the error ratio. In this example, γ corresponding to MLE of GLS 

equals 0.2155 which falls inside the interval we select. This means our model is close to 

the existing suitable model even when we have less information.  

 

Re-sampling 

     Since we can’t get theoretical inference of the slope estimate (confidence interval), 

we use re-sampling procedure to get the 95% confidence interval of slope estimate.  

Procedure: 

1) For each value of ，randomly (with replacement) choose 200 points from the data set 

and calculate the corresponding slope estimate.  

2) Do step 1 for 1000 times. Calculate the mean and standard deviation of   

3) Calculate the upper value as mean+1.96*std and lower value as mean-1.96*std. 
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4) Plot the confidence interval. X-axis is ; Y-axis is the slope-estimate. 

 

Figure 8b. Compound Regression confidence interval for simulation example1. 

 

     From the plot, we can see that the confidence interval of  when [0.15,0.28] 

covers the actual slope value of 2. Here, I also attached some slope estimate when

[0.15,0.28]  . 

     0.15, 2.0005       0.2, 1.9693    

     0.18, 1.9810       0.24, 1.9485    
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let ratio equals 2, 1, 0.5 etc. Here we only list the results of these simulations. 

1) Case: error variance ratio λ=2. In this case, we still use the model η=2ξ to generate 

data. 

     The efficiency plot is: 

 
Figure 9a. Compound Regression Efficiency plot for simulation example2. 

 

     The MLE when 2  is 2.0286  . And from the efficiency plot above, we can 

see that if we want both efficiencies of regression to be no smaller than 0.95, we can limit 

the range of γ inside the interval of [0.121, 0.301]. This interval contains γ corresponding 

to the MLE (γ=0.1804). Here we also list the slope estimate corresponding to some γ 

value inside the interval.  
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     A bootstrap re-sampling was carried out following the steps shown in simulation 

example1 and we got the following confidence interval plot. 

 

Figure 9b. Compound Regression confidence interval for simulation example2. 

 

      From the above plot, we can see that the true slope 2 is always inside the 95% 

confidence interval for the γ interval we select.  

 

Case3: error variance ratio λ=1. This is the case when orthogonal regression is suitable. 
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The efficiency plot is: 

 

Figure 10. Compound Regression Efficiency plot for simulation example3. 

 

     From the efficiency plot, we can limit the range of γ from 0.147 to 0.279 then we 

can make both efficiencies larger than 0.95. The estimate from orthogonal regression is 

2.0781 and the corresponding γ is 0.0509. Although this number is not inside the interval 

we select, we can see that the slope estimate of this interval varies from 2.0111 to 1.9577 

which is closer to the exact slope parameter 2 we set in our simulation. 

     Unlike the GLS approach which requires the normality assumption, an advantage 

of our model is that it’s non-parametric, that is, distribution-free. When we encounter data 

which does not follow normal distribution, GLS may not give us appropriate results. Here 
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we give a simulation to illustrate this circumstance. 

 

Data generation 

2) Data range, we define the range from 0 to 10. 

3) X follows uniform distribution with mean 0 and standard deviation 10; 

4) Sample size, I choose 200 data points 

5) True slope: η=2ξ 

6) Error term: error follows uniform distribution with mean 0. Standard deviation of 

error in X (δ) is 0.2*range; standard deviation of error in Y(ε) is 

0.2*range*sqrt(abs(slope)) 

And we have efficiency plot as follows: 
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Figure 11a. Compound Regression Efficiency plot for simulation example4. 

 

     The interval we choose is [0.158, 0.289] in which efficiencies are no less than 0.85. 

The slope estimate we got in this interval varies from 1.861 to 2.0025 which are close to 

the exact value 2  .  

     A bootstrap re-sampling was carried out and the 95% confidence interval plot is 

shown below: 
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   Figure11b. 95% confidence interval for slope estimate in simulation example 4 

 

     From the above plot, we can see that the true slope value 2 is always inside the 95% 

confidence interval for the β value in the interval we select. 

 

     We can compare this value with MLE. MLE of GLS is 2.1242   when in this 

case, =2 . And orthogonal regression gives estimate of 2.2937. None of these estimates 

are as good as the compound and constrained regression estimate.  

Here we give the scatter plot and regression lines. 
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Figure 11c. Scatter plot for simulation example4. 

 

     We here also check our model when there are outliers in the dataset, now we still 

use the dataset above with several outlier points (2 points). 

     And we can see the scatter plot and efficiency plot below. 

 

       Table 4. Selected slope estimate Results for simulation Example4 

Exact slope 

value 

MLE( =2 ) Orthogonal 

Regression  

Compound Regression Interval  

2 2.2730 2.4998 2.0774 1.9024 
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     From the above table, we can see that compound and constrained regression is the 

closest to the exact regression line. 

 

 

Figure 11d. Scatter plot for simulation example4 with outliers 
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Figure 11e. Compound Regression Efficiency plot for simulation example4 with outliers 

 

     From this example, we can see that our model is non-parametric. Therefore, it has 

better performance when the normality assumption required by GLS can’t be guaranteed.  

 

Higher Dimension case 

     Now we check the performance of our model in higher dimension case.  

Data generation 

1) Data range, we define the range from 0 to 100. ξ1 and ξ2 follow normal distribution 

with mean 0, variance 100. 

2) Sample size, I choose 200 data points. 

3) True slopes follow the model: ξ3= ξ1 +ξ2. 
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4) Error term: variances of error in X (ε1), Y (ε2) and Z (ε3) are 10. 

 

Model fitting 

1) Compound regression: 

We fit the data with our compound regression model.  

The efficiency plots of this data set are: 

 
Figure 12a. Compound regression efficiency plot of Z (projection to γ1-γ2 plane) of 

simulation example 5 
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Figure 12b. Compound regression efficiency plot of X (projection to γ1-γ2 plane) of 

simulation example 5 
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Figure 12c. Compound regression efficiency plot of Y (projection to γ1-γ2 plane) of 

simulation example 5 
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    for j=1:101; 
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

gamma1

 

g
a
m

m
a
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



42 

 

            gamma1(k)=i; 

            gamma2(k)=j; 

            k=k+1; 

        else; 

        end; 

    end; 

end; 

     And we have γ1 and γ2 contain the combination of γ satisfying our criterion. There 

are 687 points satisfy this criterion, that is, about7%. And the slope estimate varies from 

0.9793 to 1.0113 for β1 and from 1.0052 to 1.0385 for β2. These values are in a small 

range around the exact value of (1, 1). 

 

3) Generalized Least Square Regression  

      The MLE of GLS here is β1=0.9878, β2=1.0161 when Λ=I3. And the 

corresponding γs are γ1=0.3313, γ2=0.3155 and efficiency of regressions are e1=0.9786, 

e2=0.9565, e3=0.9615. This shows that MLE falls in the interval we select.   

  

4) Re-sampling 

     Here we did a bootstrap re-sampling to obtain the confidence interval for the slope 

estimate, and we found that the true slope 1 is always inside the 95% confidence intervals. 
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We have the following table containing selected value. 

 

Table 5. selected output of 95% confidence interval from re-sampling 

 

 

We can also get the simulation on different λs. Here we list some results: 

 

Case2: We are using error variance of X 20, error variance of Y 40, error variance of Z 10. 

That is, 

1 0 0

0 2 0

0 0 4

 
 

 
 
  

 

 Then we have the following results. 

Efficiency plots 
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Figure 13a. Compound regression efficiency plot of Z (projection to γ1-γ2 plane) of 

simulation example 6 
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Figure 13b. Compound regression efficiency plot of X (projection to γ1-γ2 plane) of 

simulation example 6 
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Figure 13c. Compound regression efficiency plot of Y (projection to γ1-γ2 plane) of 

simulation example 6 
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Data generation 

1) Data range, we define the range from 0 to 10. ξ1 and ξ2 follows normal distribution 

with mean 0 and standard derivation of 10; 

2) Sample size, I choose 200 data points 

3) True slopes follow the model: ξ3=2ξ1+ 3ξ2. 

4) Error term: variance of error in X (ε1) is 20; variance of error in Y (ε2) is 40 and 

variance of error in Z (ε3) is 10. 

 

Model fitting 

1) Compound regression  

We have the following efficiency plots: 
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Figure 14a. Compound regression efficiency plot of Z (projection to γ1-γ2 plane) of 

simulation example 7 
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Figure 14b. Compound regression efficiency plot of X (projection to γ1-γ2 plane) of 

simulation example 7 
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Figure 14c. Compound regression efficiency plot of Y (projection to γ1-γ2 plane) of 

simulation example 7 
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and the 

corresponding γs are γ1=0.0279, γ2=0.4452. And the efficiencies of regression are: 
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     From the efficiency value, we can see that MLE falls inside the interval we select. 
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with the definition of efficiency, give us an alternative way to select the more suitable 

regression line. In circumstances that the ratio of variance is not available, we can still get 

very close fit to the real slope and the MLE of GLS. 

 

 

 

 

  

  

5. DISCUSSION  

 

     In this work, we presented two novel approaches for deriving the best regression 

line for regression with errors in variables (EIV), also known as the measurement error 

model. We derived the equivalence between the compound regression approach and the 

traditional maximum likelihood estimation (MLE) method for generalized linear model. 

Furthermore, we proved the equivalence between the compound and the constrained 

regression approaches analytically for the simple linear regression model while 

demonstrated their equivalency in higher dimensions numerically.  

     Our approaches are distribution free while the traditional Frequentist MLE method 

relies on the multivariate normality assumption (Kerridge 1967). Statistical inference 

based on the compound regression analysis or equivalently, the constrained regression 

analysis approach can be carried out using the nonparametric bootstrap resampling 

method (Efron 1979; Efron and Tibshirani 1993).  
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     In this thesis, we focused on the Frequentist approach due to the lack of prior 

knowledge/information in most situations. We will examine potential extension of our 

approaches in a Bayesian context for the future and compare them to existing Bayesian 

methods (Zellner 1971; Bretthort, 1988). In addition, we will also compare the 

performance of our methods to existing robust regression methods such as the least 

median-of-squares method (Rousseeuw, 1984) which represent an alternative direction of 

development for EIV models.  
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APPENDIX A: PROOFS OF RESULTS 

 

 

Theorem 1: the orthogonal regression is the same as the MLE when all the errors are 

equal ( 1  ).  

Proof:  

     The only thing we care is the slope estimates (not the intercept term), so it would 

be OK if we just consider the case of centered data. 

     For the MLE approach, the slope estimate is the eigenvector corresponding to the 

smallest eigenvalue of matrix S (the covariance matrix). This is actually very reasonable. 

Since the covariance matrix is nonsingular, and the PCs can expand the same dimension 

(n) of space of data and the regression plane is (n-1) dimension. Hence, it is reasonable to 

use only the PCs that can explain most variance to expand the regression plane. we can 

define these eigenvectors as 1 2, ,..., k   in the order of descending eigenvalues ( 1 2, ,..., kc c c ). 

In orthogonal regression under the above assumption, we can see that the formula has 

minimizing 
2

1 1 2 2

2 2 2
1 1 2

( ... )

...

n
i i k ki

i k

X X X  

  

 

  
 . We can put the above formula in matrix form 

which is 

1 2 1 2
1 2 1 22 2 2 2 2 2

1

( , ,..., )( , ,..., ) ( , ,..., )( , ,..., )
n

T Tk k
i i ik i i ik

i j j j j j j

x x x x x x
    

     


     
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where S is the covariance matrix. 

     We can see that these  s are normalized vectors. 

     Since the eigenvectors can expand the space. We can write the above vector in  

1 1 2 2 .. k kl l l      ( 1 2 ... 1kl l l    ) therefore, the above formula will become: 

1 1 2 2 1 1 2 2( .. ) ( .. )T

k k k kl l l S l l l            

And we know the eigenvectors are orthogonal and
T

i i iS c   , therefore, the above 

formula becomes 1 1 2 2 ... k kc l c l c l   . Under the constraint 1 2 ... 1kl l l    and 

1 2 ... kc c c   , we can obtain the minimum when 1kl   which is the eigenvector 

corresponding to the smallest eigenvalue. That is, the MLE.     
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Theorem 3  Equivalence of the constrained regression and the compound regression 

in 2-dimensional case. 

Proof.  The proof is divided into three parts. The first two parts are  

1)  , suppose the estimator minimizing 2 2

1 1

(1 ) ( ) ( )
n n

i i i i

i i

X X Y Y 
 

     is ˆ
 , then 

there exists a value c such that ˆ
 will also minimize 2

1

( )
n

i i

i

X X


 under the constraint

2

1

( )
n

i i

i

Y Y c


  . 

Proof.  , suppose ˆ
  will minimize 2 2

1 1

(1 ) ( ) ( )
n n

i i i i

i i

X X Y Y 
 

     ,  

     Let 2

ˆ

1

ˆ( ) ( ) |
n

YY i i

i

c S Y Y


  





  , ˆ
 will minimize 2

1

( )
n

i i

i

X X


 under the 

constraint that 2

1

( )
n

i i

i

Y Y c


  ; otherwise, we will have ˆ ' satisfy: (1) ˆ( ') ;YYS c   (2) 

ˆ ˆ( ') ( )XX XXS S    which yields 

 ˆ ˆ ˆ ˆ ˆ( ') (1 ) ( ') (1 ) ( ) ( ) (1 ) ( )YY XX XX YY XXS S c S S S                     

This contradicts the fact that “ ˆ
 would minimize 2 2

1 1

(1 ) ( ) ( )
n n

i i i i

i i

X X Y Y 
 

     ”  

     Therefore, there exists a value c for which ˆ
 would minimize the constrained 

regression model. 

2) c , under the constraint of 2

1

( )
n

i i

i

Y Y c


  , suppose the estimator minimizing 
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2

1

( )
n

i i

i

X X


 is ˆ
c , then there exists a , such that ˆ

c is also the estimator to minimize 

2 2

1 1

(1 ) ( ) ( )
n n

i i i i

i i

X X Y Y 
 

     . 

Proof.  First, we prove that ( )YYS  is a continuous and monotonic function of . 

Here we use the inverse function of Equation (1):  

         4 3

1 1 1 0
1 1

XX XY XY YYS S S S
 

  
 

   
 

 

     Since   is monotone in  when  varies from 0 to 1 (Theorem 1b), the inverse 

function should exist and  can be solved from  

       1

3

1 1

1

1

YY XY

XX XX

S S
k

S S



  


 

 
 

     The right part is a continuous function and thus the inverse function when  varies 

from 0 to 1 is also continuous. Therefore  is continuous of , and we know that ( )YYS  is a 

continuous function of  which obtain that ( )YYS  is a continuous of .  

     Let 1 2   since
1

 will minimize the compound function for 1   we have:  

1 1 2 2

1 2 1 2

1 1 1 1

1 1

(1 ) ( ) ( ) (1 ) ( ) ( )

(1 )( ( ) ( )) ( ( ) ( )) 0

XX YY XX YY

XX XX YY YY

S S S S

S S S S

   

   

       

     

    

     
 (A1) 

     Similarly, since
2

 will minimize the compound function when 2  , we have:    

       
2 1 2 12 2(1 )( ( ) ( )) ( ( ) ( )) 0XX XX YY YYS S S S              (A2) 

If 1 1  , we can obtain the result directly from (A1), otherwise, we can divide (A1) by

11  and divide (A2) by 21   add them together to obtain 
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Since 1 2  , then 1 2

1 21 1

 

 


 
, thus

1 2
( ) ( )YY YYS S   . 

     Hence we have proven that ( )YYS  is a continuous monotonic function of .  

     In a constrained model, c , there exists an estimator ˆ
c  that will minimize

2

1

( ) .
n

i i

i

X X


  Let
* ˆ( ),YY cc S  then * .c c  Furthermore ˆ ˆ( ) ( )XX c XXS S  , ̂ such 

that ˆ( )YYS c   (A 3) 

     If
1( )c SYY   , then the constraint can be ignored, and the estimator is the one 

that will minimize 2

1

( )
n

i i

i

X X


 . If
0( )YYc S   , then no estimator would satisfy the 

constrained function. Hence we obtain
0 1( ) ( )YY YYS c S     .  

     The conclusion follows immediately if
1( )YYc S   or

0( )YYc S   . 

     Hence, we only consider
0 1( ) ( )YY YYS c S     . Since ( )YYS  is a continuous 

and monotonic function of  and according to the mean value theorem, there exists

*0 1  , such that *
ˆ ˆ( ) ( )YY YY cS S


  .Since *
ˆ


 minimizes the compound function when

*  , we have: * *

* * * *ˆ ˆ ˆ ˆ(1 ) ( ) ( ) (1 ) ( ) ( )XX YY XX c YY cS S S S
 

              

     In addition we have *
ˆ ˆ( ) ( )YY YY cS S


  , and thus *
ˆ ˆ( ) ( )XX XX cS S


  . We also have:

ˆ ˆ( ) ( )XX c XXS S  , ̂ such that ˆ( )YYS c  from (A3).  

     Hence *
ˆ ˆ( ) ( )XX XX cS S


  . The theorem is proven. 

3) Now we derive the corresponding  in the compound regression given a particular 



62 

 

value for c in the constrained regression. 

2 2

1

1 1

2 2 2 2

1 1 1 1

1 1 1

2 2

1 1

1

ˆˆ( ) ( ( ))

ˆ ˆ ˆ ˆ( ) ( ) 2 ( )( ) 2

ˆ ˆˆ( ) 2

n n

i i i i

i i

n n n

i i i i YY XX XY

i i i

n

i i YY XX XY

i

Y Y Y Y X X

Y Y X X Y Y X X S S S

Y Y S S S c



   

 

 

  



    

         

     

 

  



 

2 2

1

( ) ( )ˆ [ , ]XY XY XX YY XY XY XX YY

XX XX

S S S S c S S S S c

S S


     
   

From Theorem 1, we can see that: 

     If XYS 0 , then would be a decreasing function of 1̂ ; if 0XYS  , then would be 

an increasing function of 1̂ . Let 1 2  , from (A2) we have  

       
2 1 2 12 2(1 )( ( ) ( )) ( ( ) ( )) 0XX XX YY YYS S S S              

     And we know
2 1

( ) ( )YY YYS S   from the proof of above theorem, hence the 

second part is non-negative; and hence the first part should be non-positive. Therefore, 

we have
2 1

( ) ( )XX XXS S   . That is, 2

1

ˆ( )
n

i i

i

X X


 increases when increases, we should 

choose as small as possible. Therefore, we obtain: 

   1

4 3

1 1 1

ˆ
ˆ

ˆ ˆ ˆ
YY XY

YY XY XX XY

S S

S S S S




  




  
,

2

1

( ) ( )ˆ XY XY XY XX YY

XX

S sign S S S S c

S


  
  

 

Theorem 4. (a) The Geometric Mean Regression would always yield equal 

efficiencies for the estimations of X and Y respectively. (b) The Ordinary Least Squares 

Regressions for X and Y have the same efficiencies, albeit in reverse order, for X and Y.   
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 Proof.  (a) As described above 2 2

1 1

1

ˆ ˆˆ( ) 2
n

i i YY XX XY

i

Y Y S S S 


      

2 2

2 2
1 11 1 1

1 1 1ˆ ˆ( ) ( ) 2
ˆ ˆ ˆ

n n

i i i i YY XX XY

i i

X X Y Y S S S
   

        

For geometric mean regression, we have 1
ˆ ( )XY YY XXsign S S S  ; hence, 

1

1

2 2
2

2
ˆ 2

1
1

1
2 2

ˆ
1 1

ˆ( ) |ˆ 2min ( )

2 2ˆ ˆ( ) ( ) | 2

XY

XX

YY

XX

n
n

XY XY
i i S YYi i

i Si XX XX XX YY XY

n n

YY XX YY XY XX YY
i i i i S YY YY XY

i i XXS

S SY Y SY Y
S S S S S

e
S S S S S S

Y Y Y Y S S S
S










 

  


   


   



 
 

1

1

2
2

2 ˆ 2
111

2
2 2

2 ˆ
1 11

1 ˆ( ) |ˆmin ( ) ˆ

1 2 2ˆ ˆ( ) ( ) |
ˆ

YY

XY

YY

XX

n
n

i i S
i i

i Si XX YY XY

n n

XX YY XY XX YY
i i i i S

i i S

Y YX X
S S S

e
S S S S S

X X Y Y














 




  


 



 
 

Thus we have proven that e1=e2, for the geometric mean regression. 

(b) The equality of e1 (for r = 0) and e2 (for r = 1) are easily proven as follows: 

2 2 2 2

1 1 2 2 2 2 2 2 2

2
0 ,

2
, YY YY XY XX XY XX YY XY XX YY XX XY

XY YY XX YY XY YY YY XX XY YY YY XX XY YY XX

S S S S S S S S S S S S
e

S S S S S S S S S S S S S S S
 

   
    

   

2 2 2 2

1 2 2 2 2 2 2 2 2

2
1

2
, ,XY XY YY XX XY YY XX XY YY YY XX XY

XX YY XX XY XX XX YY XX XY XX XX YY XY YY XX

S S S S S S S S S S S S
e

S S S S S S S S S S S S S S S
 

   
    

   
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Appendix B: Programs 

 

1. MatLab code for finding slope estimates of constrained regression simulation 

  

c=0; 

for i=1:101; 

    for j=1:101; 

        if e1(i,j)>=0.7 & e2(i,j)>=0.5 & e3(i,j)>=c; 

            c=e3(i,j); 

            k=i; 

            l=j; 

        else; 

        end; 

    end; 

end; 

 

2. MatLab code for resampling simulation 

 

function [up,m,low]=resamp2d(what); 

A=what(:,1); 

B=what(:,2); 

for j=0:1:10; 

    gamma=j/10; 

for i=1:1000; 

    s=rand(1,200)*200+1; 

    k=fix(s); 

    x=what(k,1); 

    y=what(k,2);        

f=inline('(gamma+(1-gamma)/beta^2)*(s(y,y)+beta^2*s(x,x)-2*beta*s(x,y))

','beta','gamma','x','y'); 

beta(j+1,i)=fminsearch(f,1,[],gamma,x,y); 

end; 

m(j+1)=mean(beta(j+1,:)); 

st(j+1)=std(beta(j+1,:)); 

up(j+1)=m(j+1)+1.96*st(j+1); 

low(j+1)=m(j+1)-1.96*st(j+1); 

end; 
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3. MatLab code for simulation data generation 

 

function pt=sim3d; 

p = 200;    % Designed sample size 

NoiseLevelX=2*3;  

NoiseLevelY=1.41*3; 

NoiseLevelZ=1*3; 

trueSlopeX=2; 

trueSlopeY=3; 

dataRange=3; 

pt=getNoise3D(p,NoiseLevelX,NoiseLevelY,NoiseLevelZ,... 

    trueSlopeX,trueSlopeY,dataRange); 

 

 

function pt=myData(p,NoiseLevelX,NoiseLevelY,NoiseLevelZ,... 

    trueSlopeX,trueSlopeY,dataRange) 

pt=zeros(p,3); 

sigmaX = NoiseLevelX*rand(p,1); 

sigmaY = NoiseLevelY*rand(p,1); 

sigmaZ = NoiseLevelZ*rand(p,1); 

pt(:,1) = dataRange*randn(p,1); 

pt(:,2) = dataRange*randn(p,1); 

pt(:,3) = trueSlopeX*pt(:,1)+trueSlopeY*pt(:,2)+sigmaZ; 

pt(:,1) = pt(:,1)+sigmaX; 

pt(:,2) = pt(:,2)+sigmaY; 

return; 
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