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Abstract of the Thesis  

High-Flux Microfiltration Filters Based on Electrospun PVA Nanofibrous Mats 

by 

Yang Liu 
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in 

Chemistry 

Stony Brook University 

2009 

 

A novel class of high flux microfiltration membrane consisting of an electrospun 

nanofibrous membrane and a conventional non-woven microfibrous support is being 

presented. The nanofibrous membrane was fabricated by electrospinning of poly (vinyl 

alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. 

By altering the processing voltage and the concentration of PVA solution, electrospun 

PVA membranes with an average fiber diameter of 100 nm were obtained. 

Characterizations revealed that the mean pore size of the electrospun PVA membranes 

ranged from 0.32 μm to 0.21 μm with the membrane thickness varying from 10 μm to 

100 μm. Due to the high porosity, these electrospun membranes showed 2.5 to 9 times 

higher pure water flux than the Millipore GSWP 0.22 μm membrane. The nanofibrous 

microfiltration membranes with a thickness of 20 μm could successfully reject more than 
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98% of the 0.2 μm polycarboxylate particles, and still be kept at a much higher permeate 

flux than that of the Millipore membrane. Therefore, this type of novel microfiltration 

media would be very useful in removing the bacteria for drinking water application. In 

addition, due to the high-filtration efficiency and low-cost fabrication of such filtration 

media, it could provide a potentially very important and promising pathway in solving 

the drinking water problem for many less developed countries in the world.   
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1. Introduction  

1.1 Water scarcity  

Clean, safe drinking water is the foundation of life and a basic human need. However, 

in the developing world, nearly 1 billion people do not have access to safe drinking water 

and almost 80% of illnesses can be linked to unsanitary water conditions. Worldwide, 1 

out of every 4 deaths of children under the age of 5 is due to water-related diseases [1]. 

The limited availability of clean water has become a root cause of many problems in the 

world.  

Drinking water can come from different resources, such as ground water and surface 

water. In some developing countries, where people cannot afford a pump to bring water 

from the ground, surface water often becomes the main source of daily drinking water. 

Due to high exposure to the environment, surface water from lakes and rivers usually 

contains fairly large amounts of bacteria, such as salmonella enterica, salmonella bacteria, 

Escherichia coli, vibrio cholera, sphingopyxis alaskensis [2]. As a result, water-borne 

diseases without proper purification are the source of a major health problem, especially 

in developing countries where, for example, 12.5 million people suffer from Typhoid 

fever every year, caused by the salmonella enterica from unpurified water. In Africa, 

about 125,000 cases of Cholera were reported in 2005, resulting from the vibrio cholera 

in drinking water. Other diseases in humans, such as the diarrhoeal disease, are also 

related with water borne bacteria. [3]    

 There are a number of organizations providing health care services as well as water 
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purification solutions in some African countries. For example, in Kenya the National 

Science Foundation has provided a method of straining water through a cloth, which can 

reduce certain amount of pathogens in the drinking water, including the bacterium that 

causes cholera[4]. Some companies are also aiming at designing devices which can filter 

out the bacteria from the surface water as it is being drunk, but they are usually too 

expensive for many people to afford such a scheme [5]. 

 
Table 1 Some commonly seen bacteria in water and their sizes [2] 

Bacteria Disease Rod length/diameter (μm) 

Salmonella enterica Typhoid fever 2.0 - 5.0 / 0.7 - 1.5 

Salmonella Bacteria Salmonellosis 2.0 - 5.0 / 0.7-1.5 

Pseudomonas aeruginosa Otitis Externa 3.0 / 0.5 – 1.0 

Escherichia coli Colitis 2.0 – 4.0 / 0.8 – 1.0 

Vibrio cholerae Choloera 1.0 – 3.0 / 0.5 – 0.8 

Yersinia enterocolitica Yersiniosis 1.0 – 3.0 / 0.5 – 0.8 

Listeria monocytogenes Listeriosis 0.5 – 2.0 / 0.4 – 0.5 

Mycobacterium marinum M. marinum infection 1.0 - 4.0 / 0.25 - 0.6 

 

While most of the water borne bacteria has a diameter of ≥ 0.3 microns, as listed in 

Table 1, it is possible to sterilize such contaminated water by filtration through 

membrane filters with pore size in the 0.2 micron size range. This method is capable of 

removing a substantial amount of the microorganisms (except viruses) from water and 

has been widely used in scientific research as well as medical and industrial applications 

[2-4]. However, when the method is applied to the purification of drinking water in daily 
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life in Africa, there are two major limitations. The first limitation is that the current 

commercial microfiltration membranes are too expensive; the second problem is that 

these commercially available microfiltration membranes exhibit very low throughputs at 

low pressures which makes it essentially impractical to purify drinking water effectively 

under less developed conditions where electrical power is essentially non-existent and 

sanitary conditions are minimal. Preparing microfiltration membranes with an average 

‘pore’ size in the 0.2-0.3 micron length scale at low cost and with a sufficiently high flux 

at relatively low pressures will provide a potentially feasible pathway to help people in 

less developed countries to have access to save drinking water. It is the main objective of 

our study.  

 

1.2 Microfiltration membrane 

Membrane filtration technology has been improved dramatically over the past 30 

years due to its cost-effectiveness, energy-efficiency and environmentally friendly 

operations  [6, 7]. Ultra-filtration is currently playing a major role in pretreatment and 

purification of fresh water, brackish and saline water, as well as in waste-water 

treaatment [8, 9]. Classified by the pore size of membranes, the size and the charge of 

retained particles or molecules, and the pressure exerted on the membrane during the 

filtration process, filtration membranes can be distinguished as microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) [10, 11], as listed in 

Table 2. Microfiltration membranes have the pore size ranging from 0.1 μm to 10 μm, 
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with the smallest pore sizes corresponding to the size of suspended solids, colloids. MF 

is an efficient process to remove bacteria and particle, and is often used as the 

pretreatment in water purification. 

 
Table 2 Characteristics of different filtration membranes [10] 

                Microfiltration 

(MF) 

Ultrafiltration 

(UF) 

Nanofiltration 

(NF) 

Reverse Osmosis 

(RO) 

Permeability 

(L/h.m2.bar) 
>1,000 10 - 1,000 1.5 - 30 0.05 - 1.5 

Pressure (bar) 0.1 - 2 0.1 - 5 3 - 20 5 - 120 

Pore size (nm) 100 - 10,000 2 - 100 0.5 - 2 < 0.5 

Applications Clarification; 

pretreatment; 

removal of 

bacteria 

Removal of 

macromolecules, 

bacteria, viruses

Removal of 

(multivalent) 

ions and 

relatively small 

organics 

Ultrapure water; 

desalination 

 

Conventional microfiltration filters are based on porous membranes, typically 

manufactured by the phase immersion method [12] or phase inversion method [13-18]. 

The process induced by immersion precipitation is a well-known technique to prepare 

asymmetric membranes. By immersion, the solvent in the casting solution film is 

exchanged with non-solvent in the precipitation medium and phase separation occurs. 

This process results in an asymmetric membrane with a dense top layer and a porous 

sub-layer containing macro-voids, pores and micro-pores. The sub-layer formation is 
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controlled by numerous variables in the polymer dope solution, such as composition, 

coagulant temperature and organic/inorganic additives. Porous polymeric membranes 

manufactured by conventional methods have their intrinsic limitations, such as low-flux 

and high-fouling performance, due to the geometrical structure of pores, the 

corresponding pore size distribution and undesirable macro-void formation across the 

whole membrane thickness [19-23]. 

 

1.3 Electrospinning 

Electrospinning is a process that produces continuous polymer fibers with diameters 

in the sub-micron size range through the action of an external applied electric field 

imposed on a spinneret containing polymer solution [24]. Charges are induced within the 

fluid when a high voltage is applied to the polymer solution [25]. When the charges reach 

a critical amount and the Columbic repulsion force overcomes the surface tension and the 

viscoelastic force of the solution, a fluid jet will erupt from the tip of the spinneret and 

forms the well-known “Taylor cone”. The jet travelling down towards the region of lower 

potential—collector in most cases becomes elongated and further thins down due to 

stretching and bending instabilities, which is caused by the repulsive force between 

charges in the jet. The process continues until solidification takes place with the dried or 

slightly damp nanofiber finally depositing on the collector [26-29]. Recently, 

Electrospinning has received a great deal of attention because it can produce nanometer 

diameter fibers easily from either natural [30] or synthetic [31] polymers, with widely 
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ranging applications in fields such as filtration [32], biomedical application [33], 

composites [34], fuel cells etc. 

For electrospun membranes, the pores are caused by the entanglement of nanofibers 

and are fully interconnected. Therefore they usually exhibit good tensile strength and 

lightweight. The pore size is relatively small and the porosity is up to 70 % ~ 80 % or 

even higher, so the electrospun membranes should be particularly suitable for fluid 

filtration as the pores are not easily blocked by particles that penetrate into the filter. Our 

group [12, 20, 35] has successfully applied the electrospun membranes for ultrafiltration 

and nanofiltration.  

A number of studies has addressed the relationship between the pore size and the 

electrospun nanofiber diameter, revealing that the smaller the fiber diameter, the smaller 

the average pore size [26, 36, 37]. For example, Kim and co-workers reported the 

physical properties of non-woven mats composed of nylon-6 nanofibers. Depending on 

the fiber diameter, the average pore size was in the range of 2.7~0.17 microns and the 

porosity varied from 25 % ~ 80 % [38]. Empirically, the average pore size is nearly 2~3 

times of the fiber diameter from these studies. So it can be hypothesized that if the 

electrospun nanofiber diameter is lowered down to 100 nm, there will be a reasonably 

good chance that the average ‘pore’ size can be limited to around 0.3 μm.  

    In the electrospinning process, the fiber diameter is affected by many parameters 

either directly or indirectly. These parameters include properties of polymer solutions 

such as the solution viscosity, surface tension, solution conductivity, processing 
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conditions such as voltage, solution flow rate, distance between the spinneret tip and the 

collector [25]. Ambient parameters like humidity, temperature, pressure, type of 

atmosphere are also important to influence the fiber diameter [39-43]. Many 

mathematical models have been set up to try to illustrate the relationship between these 

parameters and the fiber diameter [29], but it is difficult to include all variables which are 

actually coupled with one another into one model. So up to now, control over the fiber 

diameter in electrospinning still remains a technical bottleneck and often requires 

empirical by adjusting the typical spinning parameters.  

Poly (vinyl alcohol) (PVA) is chosen as the material for the electrospun membrane 

because it is an inexpensive material and is not degradable under most physiological 

conditions [35]. However, as PVA is a water-soluble polymer, it has to be treated with 

cross-linking reagents to form a three-dimensional water-resistant network [44, 45]. In 

this study, PVA nanofibers were successfully electrospun with the diameter of 100 nm by 

controlling the electrospinning conditions.  

In another aspect, once a filtration membrane is formed, two key factors define its 

functionality: flux and selectivity [46], which are affected by properties such as the 

membrane thickness, porosity, and pore size. For microporous membranes, a single pore 

size value is not sufficient for characterization as the pores have to be assumed to have a 

size distribution [47]. Many methods have been used to determine the average pore size 

and the pore size distribution of microporous membranes, including mercury intrusion 

porosimetry, liquid extrusion porosimetry [48], electron microscopy, adsorption-base 
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methods and capillary flow porometry [37, 47, 48]. Among these, capillary flow 

porometry is a simple, fast, non-toxic and non-destructive technique that has been widely 

used in many commercially available automated equipment for membrane 

characterizations. In a capillary flow porometry measurement, a non-reacting gas 

(typically air or nitrogen) flows through a dry sample and then through the wet sample 

which has been wet with a liquid having a low surface tension and low vapor pressure. 

The flow rate is recorded as a function of pressure for both dry and wet processes. Pore 

size distribution as well as mean pore size can be derived from calculations.  

In this study, cross-linked polyvinyl alcohol (PVA) electrospun membranes with 

different thicknesses were prepared. Membrane properties such as pure water flux, mean 

pore size and pore size distribution were investigated. To better understand the capability 

and performance of the membranes in removing bacteria, the rejection test using particles 

with an average diameter of 0.2 μm and a narrow size distribution was conducted. 

Certain properties of the commercial microfiltration membrane Millipore GSWP with a 

nominal pore size of 0.22 μm were also studied and compared with those of electrospun 

PVA membranes. 
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2. Experimental 

2.1 Materials  

Poly (vinyl alcohol) (PVA) with a weight-average molecular weight (Mw) of 75,000 

g/mol was purchased from Kuraray Co. Ltd, Japan. Glutaraldehyde (GA) (50% aqueous 

solution), hydrochloric acid (36.5% aqueous solution) and acetone (99.8%) were 

obtained from Aldrich and used as received. Sodium chloride was purchased from Fisher 

Scientific. The non-woven polyethylene terephthalate (PET) with average fiber diameter 

of around 10 μm was purchased from Sanko Ltd, Japan, and was used as the substrate. 

Polycarboxylate microspheres with the diameter of 0.209 ± 0.011 μm used for the 

rejection test was purchased from Polysciences. Inc.  

 

2.2 Preparation and characterization of PVA solutions 

PVA was dissolved in distilled water at 90 °C and was stirred for 1 day to ensure 

homogeneity. Four different concentrations (6, 8, 10, 12 wt %) of PVA solutions were 

prepared to test the effects of solution concentration on the fiber diameter. Three different 

ratios of sodium chloride (0.1, 0.2, 0.5 wt %) were added to a PVA solution of specified 

concentration in order to investigate the effects of ionic salt addition on the electrospun 

fibers.  

The viscosity of polymer solution was determined by using a Brookfield digital 

viscometer (model LVTDCP) at 24.0 °C. The electric conductivity was measured with 

the Oakton conductivity/TDS/°C meter (CON 11 Series). 
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2.3  Electrospinning of PVA nanofibrous membrane 

A schematic diagram of the electrospinning device for fabricating fibers of small 

diameters is shown in Fig. 1. The power supplies from Glassman High Voltage, Inc were 

used to supply the applied voltage of 0-40 kV. Polymer solution was fed to the spinneret 

(diameter 1 mm) tip at controllable flow rates ranging from 5-100 μL/min, through a BD 

syringe using a syringe pump from Welmex Inc. The process was operated in a closed 

chamber, with the relative humidity controlled at 55% ± 5% and temperature at 24 °C ± 

1 °C during the electrospinning process. An air drier and a humidifier were used to 

introduce dried or wet air in order to adjust the humidity of the chamber, and a heating 

tape from McMaster was placed on the back wall of the chamber to adjust the 

temperature when necessary. A temperature sensor and a humidity sensor manufactured 

by Fisher Scientific were used to monitor the temperature and the humidity in the 

chamber. A grounded metal drum (diameter: 10 cm) with a rotating speed of 300 rpm 

was used as the collector and was placed 10 cm below the tip of the spinneret. A stepping 

motor was used to control the oscillatory translational motion perpendicular to the drum 

rotation direction to ensure the production of uniform electrospun membrane with 

sufficient membrane area. The thickness of membranes was controlled by the volume of 

polymer solution delivered.  
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Figure 2 Cross-linking reaction of PVA with GA. 
 

2.5 Characterization of fiber diameter 

Electrospun fibers were imaged using a scanning electron microscope (SEM) 

(Phenom, FEI) after gold-sputter coating (SC7620 Sputter Coater, Quorum Technologies). 

Samples were coated at a current of 18 mA and under vacuum of 0.1 mbar for 30 seconds. 

The average diameter of the fibers was analyzed from the SEM images using the 

LeicaIMGRead software. At least four images were taken from different spots of each 

sample and 100 different fibers were used to calculate the fiber diameter. Results were 

reported as mean ± standard deviation. 

 

2.6 Membrane characterizations 

2.6.1 Thickness and porosity 

The thickness and porosity of the electrospun PVA membrane were measured after 

peeling the PVA membrane from the PET substrate. The thickness was measured using a 

micrometer, and the porosity of the electrospun PVA membranes was calculated by using 

equation: 
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differential pressure of nitrogen gas was applied and slowly increased on the membrane. 

Based on the Young-Laplace equation  

             D ൌ ସஓ
∆P
cosθ                             (2) 

(where D is the maximum diameter of the pore, ∆P differential pressure, γ the surface 

tension of the wetting reagent, and θ is the wetting angle) and as the pressure was 

increased, the gas would reach a point where it could overcome the surface tension of the 

liquid in the largest pores and would push the liquid out. The first air bubble would be 

observed. The corresponding pressure that produces the first air bubble can be related to 

the maximum pore size of the membrane. The the flow rate was recorded with a 

Smart-Trak 2 digit mass flow meter (Sierra Instruments, US). With the pressure further 

increased, smaller pores would be open until the membrane became “dry” when all the 

pores were open. The relationship between the air flow rate and the differential pressure 

was plotted as the “wet curve”. The pressure and the air flow rate through a dry 

membrane were also measured and plotted as the “dry curve”. For determination of the 

mean pore size of the membrane, a “half-dry curve” that gives half of the flow rate 

through the dry membrane at a certain differential pressure was computed. The mean 

flow pressure was determined as the differential pressure corresponding to the 

intersection of the half-dry curve with the wet curve, and the mean pore size was 

calculated with Equation 2. The mean pore size is such that 50 % of the flow is through 

pores larger than the mean pore size and 50 % of the flow is through pores smaller than 

the mean pore size. The pore size distribution of the membrane was calculated from the 
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2.6.4 Particle rejection test 

Set-up of rejection test was achieved by simply replacing the pure water in the flux 

test by the polycarboxylate feed solution. A suspension of polycarboxylate particles with 

a diameter of 0.209 ± 0.011 μm was diluted in water to prepare a polycarboxylate 

particle suspension at a concentration of 250 ppm to serve as the feed solution. For each 

membrane, the rejection test was run for 20 minutes at the pressure of 5 psi, and the 

permeate was collected at 1st, 3rd, 5th, 10th and 20th minute. A total Organic Carbon 

Analyzer (TOC) (Shimadzu Corporation, Japan) was used to measure the concentrations 

of the feed solution and of the permeate and the rejection ratio was calculated using 

equation:  

     rejection ൌ ቌ1 െ C୮ୣ୰୫ୣୟ୲ୣ
C୤ୣୣୢ
൘ ቍ ൈ 100            (4) 

where Cpermeate and Cfeed are the polycarboxylate concentration in the permeate and the 

feed. 

 

3. Results and discussion 

3.1 Electrospinning processing parameters 

In this study, the PVA polymer solution was electrospun onto the PET non-woven 

substrate at the humidity of 55% ± 5% and temperature of 24 °C ± 1 °C. The following 

variables including solution properties (concentration and ionic salt addition) and 

processing parameters (applied electric field) have been examined. Their relationships 
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with the electrospun nanofiber diameter and the membrane porosity are summarized 

below. 

3.1.1 Electric field effect 

Electrospinning is a process involving various forces and properties of polymer 

solution, such as electrical force, surface tension and viscoelastic force of the solution, 

etc. We confirm that the morphology and the fiber diameter can be changed by increasing 

the voltage. 

For the 8 wt% PVA solution at a flow rate of 10 μl/min, the morphologies of the 

membrane obtained under different accelerating voltages (24, 28, 32 kV) are shown in 

Fig. 5. It can be seen that at an applied voltage of 24 kV, the fiber morphology showed a 

great deal of beads or microdroplets with an average fiber diameter of 220 nm. At lower 

voltages, the Columbic repulsion could not overcome the surface tension and the 

viscoelastic force of the solution. As a result, the Taylor cone was not able to be formed 

in the jet initiation, which resulted in the observation of jet dripping and microdroplets 

formed in the structure. As increasing voltage, the beads in the structure became less and 

smaller in size, and the average fiber diameter was reduced to 140 nm at 28 kV and 100 

nm at 32 kV. The decrease in the average fiber diameter could be attributed to the greater 

elongation force provided by the increase in the electric field strength.   
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(a) 24 kV 
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(c) 32kV 

Figure 5 SEM images of PVA membranes fabricated on the PET non-woven substrate by 
electrospinning of an 8 wt% solution at a flow rate of 10 μL/min and the voltages of (a) 
24 kV; (b) 28 kV; (C) 32 kV. Other electrospinning parameters: distance from spinneret 
to the collector: 10 cm; humidity 55% ± 5%; temperature 24 °C ± 1 °C. 
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Figure 6 Effects of applied voltage on the diameter of electrospun PVA nanofibers 
fabricated from 8 wt% PVA solution. Flow rate was 10 μL/min.  
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3.1.2 Concentration effect 

PVA solutions were prepared at various concentrations, ranging from 6% to 12%. 

Fig. 7 shows the viscosity of the PVA solution as a function of concentration. The 

viscosity values for PVA solutions were found to increase with increasing concentration. 

Specifically, there was a sharp increase of the viscosity from 50 cp to 669 cp when the 

concentration was increased from 10% to 12%. The relationship between the viscosity of 

PVA solution and the concentration could be estimated with an exponential growth 

equation (see equation in Fig. 7).  
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Figure 7 Viscosity as a function of concentration of PVA solutions. 
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(c) 10% 

 

   

(d) 12% 

Figure 8 SEM images of PVA membranes fabricated on PET non-woven substrate by 
electrospinning of PVA solution at concentrations of (a) 6 wt%; (b) 8 wt%; (c) 10 wt%; 
(d) 12 wt% at voltage of 32 kV, flow rate of 10 μL/min. Other electrospinning parameters: 
distance from spinneret to the collector: 10 cm; humidity 55% ± 5%; temperature 24 °C 
± 1 °C. 
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Fig. 8 shows a series of SEM images in order to illustrate the effect of concentration 

of PVA solutions on the morphological appearance of the electrospun membranes. At a 

low concentration of 6% or low viscosity of 16 cp, only a few nanofibers were produced, 

and a large number of microdroplets were formed creating a porous film-like structure. 

This is because at such low viscosities, the viscoelastic force (a result of the low degree 

of chain entanglements) in a given jet segment was not large enough to counter the 

higher Coulumbic force, resulting in the break-up of the charged jet stream, Many studies 

have reported that a minimum concentration of polymer solution is required for smooth 

fiber formation [26, 42, 51, 52]. As the concentration was increased to 8% and 10%, 

beads gradually became less and were eliminated at 10%, whereby a uniform 

fiber-structure with the fiber diameter of 100 nm was formed. With a further increase in 

concentration to 12%, beads were formed again in the structure, and the fiber diameter 

increased to 150 nm. This finding can be explained based on the following argument. 

When the viscosity was high to 669 cp, the electrical force was not sufficient to fully 

stretch the fiber due mainly to the high viscoelastic force, resulting in fibers with larger 

diameter or even beads in the final structure.   
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Figure 9 Effects of concentration on fiber diameter and porosity of electrospun PVA 
membrane. 

 
Table 3 Relationships between viscosity, fiber diameter and porosity at different PVA 

solution concentrations 

PVA 

concentration 

Viscosity (cp) Fiber diameter (nm) Porosity 

6% 16 - 57% 

8% 22 100 ± 30 81% 

10% 50 100 ± 20 83% 

12% 669 150 ± 70 76% 

 

The porosity of electrospun PVA membranes fabricated by using different PVA 

concentrations was measured, as listed in Table 3. It is noted that the porosity of the 

membrane is quite low (57%) because of the film-like structure at the concentration of 
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6%. Other membranes all exhibited porosity higher than 75%, and the largest one 

reached to 83% at the 10% concentration.  

3.1.3 Effect of ionic salt addition 

Adding ionic salt into the PVA solution can change the conductivity of the solution 

and has a further influence on the morphology of the membrane. It is generally 

considered that adding salt into the polymer solution can increase the charge density and 

therefore produce a higher elongation force for the jet stream under the applied electric 

field, which may result in thinner fibers. However, in Fig. 10, the fiber diameter was 

found to increase from 100 nm to 160 nm with increasing NaCl contents. This could be 

due to the higher acceleration at the higher elongation force which reduced the flight time 

of the jet and shortened the stretching time.  
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Figure 10 SEM images of PVA membranes fabricated on PET non-woven substrate by 
electrospinning of a 10 wt% solution at a voltage of 32 kV, flow rate of 10 μL/min, and 
with NaCl of content (A) 0.1 %; (B) 0.2 %; (C) 0.5%. Other conditions such as humidity 
and temperature were same as above. 

 
Table 4 Relationship between viscosity, conductivity and e-spun PVA fiber diameter at 

different NaCl contents 

NaCl content 

(wt %) 

Viscosity  

(cp) 

Conductivity 

(μs/cm) 

Fiber diameter 

(nm) 

0 50 312 100 ± 20 

0.1 50 933 100 ± 40 

0.2 52 1123 120 ± 70 

0.5 58 1948 160 ± 70 

 

A careful examination on the viscosities of the solution with different NaCl contents 

revealed that there was a slight increase in viscosity from 50 cp to 58 cp when the NaCl 

content was increased from 0.1% to 0.5% as shown in Table 4. The increased viscoelastic 

force and the shorten flight time were considered to counteract the higher elongation 

force and be attributed to the increased fiber diameter. Another observation is that the 
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uniformity of nanofibers decreased as the fiber diameter showed broader distribution 

with increasing NaCl content. This may be due to the uneven charge distribution in the 

electrospinning jet.  

 

3.2 Membrane properties evaluation 

10% PVA solution without any NaCl added was used for the electrospinning based 

on the previous experiments, at 32 kV and a flow rate of 10 μL/min as the operating 

parameters. PVA membranes with five different thicknesses (10 μm, 20 μm, 30 μm, 40 

μm and 100 μm) were electrospun onto the PET substrate by delivering different 

amounts of the polymer solution. Membranes were labeled as M1, M2, M3, M4 and M5 

for the convenience of the further discussions. The thickness variation was within 10% 

for all membranes. Membrane properties were investigated in terms of pure water flux, 

pore size distribution, and particle rejection ratio. Same tests were also carried out on the 

Millipore GSWP 0.22 μm microfiltration membrane for comparison. 

3.2.1 Pure water flux 

 Fig. 11 shows the pure water flux of different membranes. It can be seen that at a 

driven pressure of 2.3 psi, the pure water flux of the electrospun PVA membrane M1 was 

10,773 ± 798 L/m2 h. With increases in the thickness, the pure water flux decreased to 

6650 ± 645 L/m2 h for M2 and gradually to 2,394 ± 266 L/m2 h for M5. The thicker 

membrane has a higher hydraulic resistance, partly because of changes related to the 

effective pore size for such nonwoven structures. Compared with Millipore GSWP 0.22 

1 μm 1 μm 

1 μm 

A B 

C 
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μm membrane with a pure water flux of 1,048 ± 71 L/m2 h at 2.3 psi, the electrospun 

PVA membranes showed much higher flux due to the higher porosity of the electrospun 

nanofibrous mat. 
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Figure 11 Pure water flux of the Millipore GSWP 0.22 μm membrane and electrospun 
membranes with different thicknesses  
 

3.2.2 Pore size distribution 

Fig. 12 shows typical dry and wet curves of the electrospun PVA membrane M2 

obtained from capillary flow porometry. In the wet flow, the starting “bubble point” 

corresponds to the maximum pore size of the electrospun membrane. The mean flow 

pressure is the intersection of the half-dry curve with the wet curve, and the mean pore 

size is calculated with the Young-Laplace equation (Equation 2). As the pressure was 

increased, the dry and wet curves met at a certain pressure indicating all the pores had 

been completely “open”. Between this point and the “bubble point” was the pore size 
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range of the electrospun membrane.  
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Figure 12 Wet and dry curves of M2 obtained from capillary flow porometry 
 

Fig. 13 shows typical pore size distributions of M1, M2, M3, M4 and M5. For each 

membrane, the three runs of the capillary flow porometry produced very similar bubble 

points, and the mean pore sizes varied within 0.01 μm. The only difference among the 

three runs for each membrane was in the distribution due to the nature of the electrospun 

membrane. Table 5 summarizes the pore size range and the mean pore size of the 

electrospun membranes.  
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Figure 13 Pore size distribution of electrospun membranes with different thicknesses 
 

Table 5 Pore size range and mean pore size of M 1-5 obtained from capillary flow 

porometry 

Membrane Pore size range (μm) Mean Pore size (μm) 

M1 0.77~0.17 0.32 

M2 0.66~0.17 0.27 

M3 0.57~0.17 0.24 

M4 0.57~0.17 0.22 

M5 0.57~0.15 0.21 

  

From Fig. 13 and Table 5, it can be observed that, for M1 with a thickness of 10 μm, 

the pore sizes were ranged from 0.77 μm to 0.17 μm, with a mean pore size of 0.32 μm. 

As the thickness was increased, the maximum pore size was reduced and the pore size 

range became narrower. For M2 and M3, the pore size range were 0.66 ∼ 0.17 μm and 
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0.57 ∼ 0.17 μm, and the mean pore sizes decreased to 0.27 μm and 0.24 μm, respectively. 

As the electrospun membranes became thicker to 40 μm and 100 μm, the pore size range 

kept almost unchanged but the pore size distributions shifted slightly towards lower 

values as shown in Fig. 13.  

The effect of the electrospun membrane thickness on the pore size can be explained 

as follows. Thicker membranes are produced by depositing more fibers on the substrate. 

As the pores of the electrospun membrane are caused by the entanglement of fibers with 

other variables (such as fiber diameter and fiber length) being fixed, more fibers crossing 

a certain area should form smaller pores. This explains why the mean pore size of the 

electrospun membrane decreased with increasing of the membrane thickness. It should be 

noted that from the thickness of 40 μm to 100 μm, the mean pore size of the electrospun 

PVA membrane deceased only by 0.01 μm (or remained essentially the same), from 0.22 

μm at a thickness of 40 μm to 0.21 μm at the thickness of 100 μm. This observation 

indicates that for the electrospun PVA membranes, thickness does not play an important 

role in reducing the pore size when it has reached ~40 μm and beyond in agreement with 

results from literature [37]. 

3.2.3 Particle rejection test 

To evaluate the ability of electrospun PVA membranes to function as MF filters, the 

particle rejection test using 0.209 μm polycarboxylate particles was employed (size 

deviation of particles was 0.011 μm).  
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Figure 14 Rejection ratio to 0.2 μm polycarboxylate particles of different membranes vs 
time 
 

Fig. 14 shows the rejection ratios of different membranes to the particles with time. 

M 2-5 all exhibited more than 98% of the initial rejection ratios. This finding could not 

be correlated with previous membrane characterization data which indicated the mean 

pore sizes of all membranes to be greater than 0.2 μm. To better understand this 

observation, SEM images were taken on the cross-section, top and bottom surfaces of 

M2 after the particle rejection test, as shown in Fig. 15. It could be seen in Fig. 15 that 

the particles were trapped in the top several layers of the electrospun membrane, with no 

obvious particles within the membrane or at the bottom surface. It should be noted that 

the particles could easily get into the membrane as most of the pores on the top layer 

were greater than 0.2 μm. As the particles went deeper, the effective pore size in the flow 

direction became smaller due to the increasing intersections of the fibers. In another 
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the effective pore size of the electrospun membranes and the permeate flux. Overall, the 

electrospun membranes exhibited a much higher permeate flux than the Millipore GSWP 

membrane, because the electrospun membranes could still hold high porosity in the 

“screen filter” layer even if there was a “cake layer” formed on the top.   
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Figure 17 Permeate flux of different membranes in the rejection test vs time. 

 

4. Conclusions 

The electrospinning technique was used to fabricate nanofibrous membranes for 

microfiltration applications in this study. The effects of processing voltage and solution 

properties including concentration and ionic salt addition were thoroughly investigated. 

Results demonstrated that at a high voltage of 32 kV, the spinneret-to-collector distance 

of 10 cm, and the PVA solution concentration of 10 wt%, the formation of uniform 
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nanofibers with no beads can be achieved. The diameter of the nanofibers was found to 

increase with the addition of NaCl. Electrospun membranes with a fiber diameter of 100 

nm were fabricated into the thicknesses of 10 μm, 20 μm, 30 μm, 40 μm and 100 μm. 

Filtration membrane properties, such as the pore size distribution and the mean pore size, 

pure water flux and rejection to the 0.2 μm polycarboxylate particles, were investigated. 

Same properties of the Millipore GSWP 0.22 μm membrane were also tested for 

comparison. It was shown that the mean pore size was decreased with the membrane 

thickness below 30 μm and could be kept almost the same when the thickness reached 40 

μm and beyond. Pure water flux of the electrospun membranes monotonically decreased 

with increasing thickness. Based on membrane thickness, these membranes showed 2.5 

to 9 times higher pure water flux than the comparable Millipore membrane. Rejection 

test revealed that the membranes with a thickness of 20 μm or more could reject more 

than 98 % of the 0.2 μm polycarboxylate particles, which was higher than the rejection 

ratio of the Millipore GSWP membrane. Despite the “cake layer” formation during the 

rejection test, the electrospun membranes could still be kept at a higher permeate flux 

than the Millipore GSWP membrane, possibly due to the high porosity of the ‘unfouled’ 

screen filter layer. Considering the filtration performance and the production cost, the 

electrospun membrane with a thickness of ~20 μm should be a good candidate for the 

novel filtration membrane, as it demonstrated more than 5 times pure water flux, 2 ~ 4 

times permeate flux in the rejection test with a 98 % rejection ratio to the 0.2 μm 

particles. With proper module design, there would be a potential for the electrospun PVA 
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membranes to be used to remove the bacteria in surface water effectively. There is also 

potential of using these electrospun membranes as the pre-filter prior to ultrafitration or 

nanofiltration to minimize the possibility of fouling and contamination from 

micro-organisms or microparticles.   
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