

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Computer Vision-based Robot Tracking

and Navigation for the MINT Testbed

A Thesis Presented

by

ARVINDHAKSHAN MADHAVAN

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

December 2009

ii

Stony Brook University

The Graduate School

Arvindhakshan Madhavan

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend acceptance of this thesis.

Professor Tzi-cker Chiueh - Thesis Advisor

Department of Computer Science

Professor Samir Das - Thesis Committee

Department of Computer Science

Professor Jie Gao - Thesis Committee

Department of Computer Science

This thesis is accepted by the Graduate School

 Lawrence Martin

Dean of the Graduate School

iii

Abstract of the Thesis

Computer Vision-based Robot Tracking

and Navigation for the MINT Testbed

by

ARVINDHAKSHAN MADHAVAN

Master of Science

in

Computer Science

Stony Brook University

2009

A platform for testing wireless protocols before they can be deployed on a

large-scale has always been a challenge. A simple approach is to use software

simulation. But accurate modeling of real-world characteristics like propagation

and interference of radio channels is extremely difficult in software and the

fidelity of this approach is questionable. On the other end of the spectrum, the

protocol can be tested in large-scale custom test bed. Although the result of the

testing is accurate, the cost of the setup is high and reconfiguration is difficult.

Mint-m is a miniaturized wireless test bed proposed at Stony Brook University,

which addresses this problem by providing a cost-effective and reconfigurable

wireless test bed for testing generic protocols. It combines the advantages of

above approaches by providing an accurate yet affordable platform for testing

wireless protocols.

iv

Support for mobility is an important characteristic of a wireless test bed.

Mint-m supports mobility by mounting test bed nodes on top of robots. The

tracking of the movement and control is achieved by using overhead cameras.

Mint uses color patches on top of the robots for node tracking and address the

problem of collision detection by using the cameras to detect the obstacles.

In this thesis, we propose a refinement of Mint’s mobility system, which

improves the accuracy of the node positioning and tracking and enables

accurate movements during simulation. The importance of movement accuracy

is amplified by the very nature of miniaturization. A small change in accuracy of

movement in test bed implies proportionally very large change in the system it

models. To address this problem, we re-design the optical tracking system by

using a SIFT (Scale Invariant Feature Transform) based node recognition

system and propose different algorithms for movement and proactively avoid

collisions instead of collision detection in the original design. We also add

capability for movement during experiments.

To

My Parents & my dear Sister

 vi

Table of Contents

List of Tables .. viii

List of Figures ...ix

Acknowledgements .. v

1. Overview of MiNT .. 1

1.1 MINT Wireless Testbed .. 1

1.2 MINT System Architecture .. 2

2. Introduction .. 6

3. Deficiencies of MINT's Tracking and Navigation Subsystem 7

3.1 Current Design .. 7

3.1.1 MiNT Tracking System ... 7

3.2 Deficiencies .. 9

3.2.1 Tracking Deficiencies ... 9

3.2.2 Mobility Deficiencies ... 10

4. Related Work ... 16

5. A New Robot Tracking and Navigation System Design 20

5.1 Identifying Robots Using Patterns ... 20

5.1.1 Requirements ... 21

5.1.2 Scale Invarient Feature Transform (SIFT) 22

5.1.3 SIFT based Robot Tracking ... 25

5.1.4 Predictive Tracking ... 27

5.1.5 Improving Accuracy .. 30

5.2 Scalable Camera Array-based Robot Tracking 30

vii

5.3 Trajectory Planning and Collision Avoidance 34

5.4 Integration with NS-2 to support Mobility Simulation 37

6. Software Implementation ... 38

6.1 Testbed Nodes ... 38

6.2 Controller .. 40

6.3 Tracking Server... 41

6.4 Camera Server .. 42

7. Evaluation .. 43

8. Conclusion and Future Work ... 50

Bibliography .. 52

viii

List of Tables

Table 1 - Tracking Accuracy for different images 44

Table 2 – Error in distance moved .. 45

Table 3 – Time taken for Predictive Tracking ... 46

Table 4 – Straight line Movement accuracy for Roomba 47

Table 5 – Movement speed vs navigation accuracy 48

ix

List of Figures

Figure 1 - Mint Architecture .. 4

Figure 2 - Testbed Node - Color code .. 7

Figure 3 - Camera Overlap ... 8

Figure 4 - Distorted Tracked Images in testbed 10

Figure 5 – Incorrect trajectory planning in MiNT 12

Figure 6 - Partial Camera Image .. 14

Figure 7 – Incorrect trajectory planning in MiNT at overlaps 15

Figure 8 - Feature detection in Sift ... 24

Figure 9 - Testbed Node with SIFT Training Image 25

Figure 10- Predictive Tracking in cameras ... 28

Figure 11- Predictive Tracking Scan Range in the testbed 29

Figure 12- Predictive Tracking Scan Range across cameras 31

Figure 13- Partial Tracking and Center detection 32

Figure 14- Partial Tracking with camera orientation 33

Figure 15- Mint Mobility Architecture Redesign 39

Figure 16 – Illustrative Node Path .. 46

Acknowledgements

First of all, I would like to thank Professor Tzi-cker Chiueh for the

opportunity to work under him and his constant guidance and support through

the course of the thesis. I am always awe-struck at his ability to provide instant

solutions to complex problems. I would also like to thank Jui-Hao Chiang for his

constant support during the implementation phase.

 1

Chapter 1

Overview of MiNT

This chapter presents a brief overview of the MiNT-m wireless test bed.

We explain the MiNT-m architecture briefly with specific emphasis on the MiNT-

m’s mobility system.

1.1 MINT Wireless Testbed

MiNT [1], a miniaturized mobile multi-hop wireless network testbed, is a

generic network platform that can be used to test arbitrary network protocols

and was developed at Stony Brook University. MiNT achieves the accuracy of a

large scale wireless testbed without the associated hassles involved like the

cost of setup, large physical area required and the difficulty in re-use and

reconfiguration.

MiNT also introduces a novel concept of hybrid NS-2 simulation. MiNT

can run majority of NS-2 scripts without any changes in the read-world setup.

MiNT achieves this by using the NS-2 scripts until the network layer and

replacing the simulated Data Link, Medium Access control and Physical Layers

with the actual layers in the testbed. This hybrid mechanism adds more power

and flexibility to the testing wireless protocol implementations.

 MiNT testbed consists of multiple testbed nodes each fitted with multiple

(typically 4) wireless interfaces. These nodes can communicate with each other

over one or multiple hops. Nodes are the heart of the MiNT system and this is

where simulations are run.

2

 Typical size of a MiNT testbed fits into a room. The miniaturization is

supported by attenuating the signal strength of the wireless cards in senders

and the receivers. This feature allows the testbed size to be as small as the

size of the room. A typical range for communication between nodes is 4 feet.

MiNT supports topology reconfiguration by allowing the user to control

signal characteristics between nodes. The reconfiguration is achieved by

placing nodes across the testbed such that the signal characteristics are at

required level between each and every pair of nodes. This flexibility in re-

configuration in addition to the easier setup and low cost makes it an ideal

platform for evaluating wireless protocol.

MiNT supports mobility of nodes by mounting these nodes on top of a

Robot. For minimizing the cost of the setup, MiNT uses iRobot vacuum

cleaners with programmable interface as robotic platforms. The node

movement is tracked by using overhead cameras.

MiNT also supports a visual control interface MOVIE, Mint cOntroller and

Visualization InterfacE, which can be used to monitor and control the

experiment nodes.

1.2 MINT System Architecture

MiNT system comprises of wireless testbed nodes, which are controlled

by a central controller. The position and location of the nodes within the testbed

are tracked by a component called Tracking server. The software and hardware

components of MiNT are explained in this section.

Testbed Nodes

MiNT testbed nodes are made of low power computing devices namely

RouterBoard RB-230. Each of these nodes is fitted with 4 mini IEEE 802.11

a/b/g wireless cards which allow multiple experiments to be run simultaneously.

The mobility is achieved by mounting the node on top of an inexpensive

3

Vacuum cleaner robot from the iRobot. The node controls the movement of the

roomba, with appropriate inputs from the tracking server and the control

system.

The software component of the node comprises of a noded daemon,

which is central control in the testbed nodes. Noded acts as the platform where

Ns-2 experiments are supported. The NS-2 component layer in the noded, uses

the underlying LLE, Link Layer Emulation component of the noded to send and

receive packets over the wireless cards fitted with the nodes. The noded also

has a monitor agent, which captures all packets in the network in promiscuous

mode and reports it to the controller, where time-stamp based arrangement and

duplicate pruning is performed to give a global picture of interference and signal

strength characteristics. The noded daemon also interacts with the central

controller daemon and translates the movement commands from the controller

into the serial commands for robot.

 Controller

Controller is a PC fitted with multiple wireless cards for control

communication with the wireless nodes. The controller runs a daemon called

controld, which acts as the central module for the entire testbed. The controld is

responsible for interacting with the noded and getting the testbed simulation

output and interfaces with the MOVIE interface to display the trace output. It is

also responsible for relaying the control commands from the MOVIE interface

back to the noded.

Controller is also responsible for the mobility of the wireless nodes. The

controller co-ordinates with the tracking server, which is connected with

overhead cameras, and gets the positions of node represented as (x,y) co-

ordinates within the testbed and the orientation angle with respect to the x-axis

of the testbed. It uses these inputs to control the trajectory planning and

collision avoidance of the moving nodes.

4

Move

Robot

Move

Robot

Figure 1 - Mint Architecture

Controller

(Controld)

 Movie Interface

 (NAM)

Tracking Server

 (Camstream)

 User

NS Trace &
Node

location

Movement
commands

Camera Input

Camera input
 Node

location

Testbed Node

(Noded)

Testbed Node

(Noded)

Testbed Node

(Noded)

Movement

commands

NS Trace

5

Tracking Server

Tracking server is again a PC fitted with multiple off-the-shelf webcams

capable of producing images at resolution 320X240. The tracking server

daemon uses open source software camstream to capture images from the

cameras. The nodes are fitted with multi-colored patches for identification. The

tracking server daemon uses the color patches from the camera images to

identify and locate the node. The position and orientation within the camera is

calculated in pixels, and then the data is converted into a location in the global

testbed. The tracking server continuously tracks images from all the cameras

and provides these inputs to the controller for trajectory planning.

MOVIE – Mint Controller and Visualization Interface

This is the GUI (Graphical User Interface) controller interface for the

MiNT testbed. Movie is an extension of NAM[2], which is a popular tool for

visualization of the NS-2 traces. The NAM based MOVIE interface is modified

to display the entire testbed along with the pair-wise signal strength and

interference characteristics for nodes, in addition to displaying the trace

information. This also acts as a platform through which user can configure

different wireless topologies, by moving and placing the nodes appropriately,

such that required signal and interference characteristics between nodes is

setup.

The block diagram Figure 1 - Mint Architecture summarizes the architecture

of MiNT.

6

Chapter 2

Introduction

Mobility is an important feature of MiNT wireless testbed. The Mobility in

MiNT is currently used mainly for placement of nodes within the testbed such

that different topological configurations are achieved. The user will use the

MOVIE control to interactively move the testbed nodes such that signal and

interference characteristics between each pair of nodes are at the required

levels.

The Miniaturization aspect of MiNT introduces great challenges in

accuracy of node placement. An entire MiNT testbed consisting of 12 nodes

would typically fit inside a room of size 14 feet X 12 feet. This greatly reduces

the area available for movement of nodes. Moreover, the signal attenuation of

senders and receivers means, the typical distance between communicating

nodes is 4 feet. Nodes at a distance larger than 4 feet will be out-of

communication range with each other.

Given these small distances, it is imperative that the node mobility is

accurate to centimeters. Although MiNT supports mobility, the accuracy of

MiNT node placement can be vastly improved. In this thesis we propose we

propose a refinement of MiNT mobility system, which overcomes many of the

shortcomings of the existing MiNT mobility system. We propose a complete re-

design of the MiNT tracking system, using SIFT [2] (Scale Invariant Feature

Transform) algorithm. We also improve the trajectory planning system with

additional feedback from the robotic nodes and add proactive collision

avoidance to Mobility system, which currently supports restrictive and reactive

collision prevention.

7

Chapter 3

Deficiencies of MINT's Tracking and
Navigation Subsystem

3.1 Current Design

In this chapter we present a brief overview of the design of the MiNT-m’s

tracking and navigation system and discuss the shortcomings of the systems.

3.1.1 MiNT Tracking System

MiNT-m currently uses a color based tracking system. The testbed arena

consists of 6 cameras mounted on the ceilings. The tracking server is the

component responsible node position localization. It uses the input feeds from

these cameras to aid in the localization process. The Figure 2 - Testbed Node -

Color code shows a node with the color patches mounted at the top.

The node has a header patch in color red, tail patch in color green. These

colors are common to all nodes and serve as the unique identifier of a node

pattern. The colors in the middle (pink and yellow) in this picture serve as the

unique identifier for each node. Currently there are 4 colors in use in the

Figure 2 - Testbed Node - Color code

8

testbed namely blue, yellow, orange and pink. Together these 4 colors can be

useful in setting up 16 unique identifiers.

During the experiment setup, the HSV (Hue, Saturation and Value) low

and high range for each color in use in the testbed is identified. These values

are used during tracking to identify the color patches. First the images from the

camera are normalized to reduce the impact of lighting changes. Then these

images are scanned pixel by pixel, and are grouped as smaller blobs with same

pixel color. These smaller blobs in close proximity are then combined to bigger

blobs. A small allowance for combining smaller blobs are required because,

some of the pixel values in the middle of bigger blob may be outside the lower

or upper boundary of the HSV value and might result in isolation of smaller

blobs.

MiNT-m solves the tracking issues in the camera borders by setting up a

camera overlap in the borders. This overlap is required to ensure that a node is

completely visible in the at least one camera. i.e. a overlap as big as the

diagonal of the node is setup. The overlap is illustrated in Figure 3 - Camera

Overlap. The overlap eliminates the need other sophisticated mechanisms like

stitching algorithms which may be needed otherwise.

During real-time tracking, images from each camera are scanned for

color blobs. Once a blob is located, its center’s position within camera in (x, y)

pixels and orientation with respect to the camera are computed. As each

camera’s position in the testbed and pixel to inch ratio (a measure of how many

Camera1 Camera2

Overlap

Figure 3 - Camera Overlap

9

pixels in the image represent an inch in the testbed) of the camera images, are

known, (x, y) coordinates in inches within testbed and orientation with respect

to the x-axis of the testbed can be computed.

3.2 Deficiencies

This section outlines the deficiencies in the MiNT tracking and navigation

system. We discuss the flaws in the tracking system following by the

corresponding defects it creates in the navigation system.

3.2.1 Tracking Deficiencies

The color patch based recognition system, although simple and straight

forward, introduces inaccuracy in the tracking of images. It is very difficult to

identify and accurately tune the values for each color. Allowing too less an

allowance for low and high HSV values would result in blobs not being

recognized. Allowing bigger allowances would result in false matching for colors

in close range. For example red and pink almost have similar values for hue

(under the standard lighting in the experiment setup), but differ very slightly in

the saturation and value measures. It is very difficult to accurately differentiate

between these colors. Allowing too much allowance would result in pink and

red being interchanged or allowing too less allowance can result in blobs not

being detected.

Although this problem, to certain extent, can be solved by choosing non-

overlapping colors from color space, this greatly reduces the scalability in the

number of colors that are available and hence the number of unique identifiers

for nodes.

A more challenging aspect of the color based detection is the changes in

the HSV values for colors, with little changes in the lighting in the testbed

arena. Although the testbed arena is insulated from the natural sun light, the

lighting in the room slightly varies through the day in the arena. This combined

with other factors like changes in the lighting capacity of the individual ceiling

10

lights and fading in the color patches, can significantly affect detection of the

nodes. Hence it is very hard to calibrate accurate values for the testbed setup,

such that the tracking will be accurate at all times.

As the detection is blob based, even small changes in color values can

result in skewed calculation of center in pixels within the image and it’s the

orientation. A typical pixel-to-inch ratio for the MiNT testbed is 6.75. A variation

in detection of image center by 30 pixels (which is very common in accurately

setup testbed) would result in approximately 5 inches of error in the detection of

each node in the testbed under accurate setup. Hence the distance between

two pair of nodes is almost always misreported as 2 * 5 inches = 10 inches. As

maximum distance in communicating nodes is only 4 feet, we have an error

percentage of around 19% in standard conditions. This value will be even

higher accounting for the changes in lighting, fading in color patch and even the

shadow of wireless antennas falling at an awkward angle inside the node patch.

The Figure 4 - Distorted Tracked Images shows the image blobs as classified by

the pixel scanner under fine-tuned tracking system. The distortion in the image

blobs and the false recognition can be easily seen. The partial detection of the

green blob in the pictures can result in much skewed position and orientation

values.

3.2.2 Mobility Deficiencies

Tracking the position of nodes is at the heart of mobility system. As the

tracing system in the MiNT has a very large inaccuracy, the navigation system

naturally suffers. This section briefly discusses the problems introduced by the

incorrect tracking system in the node mobility.

Figure 4 - Distorted Tracked Images in testbed

11

The trajectory planning system, which uses the position as input,

allocates sufficient thresholds in the tracking position input so as to avoid

collision of nodes. This effectively means, when planning the trajectory, the

node destination or source threshold could be well over 8 feet (the average

tracking error). This contracts the space available for node movement, in an

already miniaturized testbed.

The orientation of distorted images such as those in Figure 4 - Distorted

Tracked Images in testbed may vary by around 10 degrees. As these images are

taken from a near accurate testbed setup, the average error is approximately

10 degrees. The Roomba robot can only move in forward or backward direction

or can make turns up to 360 degree from its current position. Hence, for moving

a Roomba from source to destination, it has to be positioned towards the

destination and then has to be moved forward. Hence an Incorrect computation

of orientation will result in incorrect trajectory planning. The trajectory planning

algorithm is self correcting and it takes intermediate tracking inputs and re-

computes the path accordingly. But inaccuracies at each error point will result

in a roundabout path from source to destination, wasting precious battery

power in Roomba. This is explained in Figure 5 – Incorrect trajectory planning in

MiNT. The figure shows in dotted lines the straight line path which could be

followed and indicates the actual path followed by solid lines. The big

diversions in the path at the camera intersections are due to partial tracking

errors which are explained in subsequent paragraphs.

12

Figure 5 – Incorrect trajectory planning in MiNT

Moreover, Irrespective of how good the image is, if two nodes are close

to each other, then the blobs accumulation might result in incorrect recognition

of the nodes. For example if two nodes in the Figure 4 - Distorted Tracked Images

in testbed are close to each other, then these two nodes could be detected as a

single node with blue and pink identity. i.e by combining blue patch from the

node in the left and pink patch from the node in the right. This could lead to

complete miscalculation of the node position leading to incorrect trajectory

prediction for nodes and collisions.

Overlap

Camera1 Camera2

Destination

Camera3 Camera4

13

Worse yet, if there is a slight change in values of HSV of a single color

used for representation, the nodes with these colors can be completely ignored

and may not appear in the tracking input at all.

A single misbehaving camera can distort the values generated by all the

near-by cameras, for nodes in the common region. The Overlap in between

cameras is setup so that a node is completely visible in minimum one camera

at all times. This means, the overlap region in between each and every camera

is at least as big as the diagonal of testbed node, which is 80 pixels. In a typical

MiNT setup at least 20% of the area is overlapped. The Figure 3 - Camera

Overlap shows the overlap regions. If camera 1 is misbehaving (only for one of

the patch colors), and camera 2 is accurate, then the values for position and

orientation which should be taken as the average is skewed. Worse yet, if there

is a node in a junction of four cameras, then one of the camera misbehaving

will negate the effect of three other cameras.

The other problem with the camera overlap arises due to the partial node

tracked by the camera. The node in Figure 6 - Partial Camera Image is tracked

fully by camera2 and partially by camera 1, camera3 and camera4. Because

camera 1, camera 3 and camera 4 do not have the full image of this node the

center calculation of these cameras will be inaccurate. Averaging these values

with the accurate value generated by camera 2 will ultimately result in an

inaccurate center position. It has to be noted that this problem exists even

when all the cameras have accurate tuning for the HSV color values. Although

this problem can be fixed by setting up a minimum size for the blob, arriving at

an optimum value is extremely difficult. Because of the distortion of the pixels

as shown in Figure 4 - Distorted Tracked Images in testbed reducing blob sizes will

result in genuine blobs being ignored, again resulting in a skewed node center

position and orientation calculation. This also explains the distorted path in

Figure 5 – Incorrect trajectory planning in MiNT. The incorrect positioning at a

distinct point in overlap space, results in incorrect trajectory in the intersection

of four cameras and this error is corrected only when the node is under a single

14

camera, in this case camera2. Again there is distortion at the overlap of

camera2 and camera4, which is corrected when the node is completely inside

camera4.

This problem of partial images in the cameras is amplified when the

destination is at the overlap of the cameras. The trajectory of the node is

completed distorted at the overlap that, the node circles around the destination

point several times before reaching the final destination, again wasting battery

resources. Worse, yet the convergence at some awkward positions take very

long time to reach the destination.

Lastly, if at some point during the incorrect tracking and resulting

incorrect trajectory planning, if the node happens to go out of the camera

controlled regions and out of the testbed, manual intervention might be

necessary to bring the node back into the testbed arena.

Figure 6 - Partial Camera Image

Camera1 Camera2

Overlap

Camera3 Camera4

15

Figure 7 – Incorrect trajectory planning in MiNT at overlaps

Camera1 Camera2

Destination

Camera3 Camera4

16

Chapter 4

Related Work

In this chapter, we study the ongoing academic research for robot

localization and mobility.

Localization and Mobility in contemporary Wireless Testbed

In this section we focus our attention on the contemporary wireless testbeds.

We only consider test beds which support automated physical mobility.

One of the early testbed to propose physical mobility was the Caltech

Multi Vehicle Wireless testbed [3]. They use custom-made Robots mounted on

low friction omni-directional castors and two high powered ducted fans for

providing mobility. The direction changes are accomplished using differential

velocities of the ducted fans. Unlike other “kinematic” robots, which are able to

stop movement instantly, these robots have second order dynamics. Hence

these robots unlike others cannot halt instantly (due to inertia). The tracking

system consists of four CCD cameras and one vision processing boards for

processing images from the cameras at 60 Hz. The high frequency is required

to account for the second order dynamics. The nodes are detected with black

patches, on a white floor. This system is very expensive as compared to the

current MiNT-m implementation also suffers from scalability issues.

Mobile Emulab [4] is a shared access testbed which supports automated

node mobility by mounting the nodes on expensive and more sophisticated

robots namely Acroname Garcia. This testbed uses overhead cameras for

tracking the robots and uses a two colors to identify the nodes. They try to

17

avoid the problem of camera overlap regions by performing a image stitching

and use the stitched image to identify the color patterns. To reduce the

performance impact they rely on the odometry and sensor feedback until 1.5m

and allow the errors to be accumulated until this distance. Errors are corrected

in the next tracking cycle. The sophisticated robots keep the inaccuracy until

1.5m down to 2.2 cms. But the impact on low-cost Robots like Roomba would

make this solution too costly. The tracking cycles for Rommba have to happen

too frequently than the Acroname Garcia, because the sensory and odometry

error accumulation for roomba is larger. Moreover if multiple nodes are

moving, the need for stitching increases arising scalability issue.

An improvement to the MiNT-m testbed, namely MiNT-2 [5] is being

developed in parallel at SUNY Binghamton. They still use the Roomba as the

robotic platform but use a RFID based tracking system. The RFID tags are

spread across the testbed at known positions within the testbed. Should the

Roomba pass close to RFID tag (within 2.5 cms), the position of the tag is set

to the node. In other circumstances, tracking relies on odometry and sensory

data from the nodes themselves. As the self correction happens only at fixed

intervals, the accuracy between RFID tags is high. Moreover, based on our

experiences with Roomba and question over robustness of the Roomba based

sensors tracking for larger distances, the lack of central control might lead to

more collisions.

Localization in other systems

In this section we go beyond the wireless network testbed prototype and

examine a few contemporary vision based node localization systems.

Huang Lee et al [6] present a novel localization technique for image

based wireless sensor network. The wireless sensor nodes are fitted with

pinhole camera and a beacon node vehicle is passed around the network. The

beacon node stops at several locations and broadcasts it position. The authors

consider three cases based on whether the beacon node is position aware or

18

not. If the beacon node is aware of its position, it will broadcast its position to

nodes, which can use this data along with the camera image to identify their

own position. They also present solutions when the beacon movement plane is

parallel or perpendicular to the image plane. When the beacon node is not

position aware, it is made to move at a constant velocity. The sensor nodes

works in pair to identify the relative position and orientations, by making

observations on the moving beacon and exchanging information. Once the

pair-wise localization is complete, they can estimate beacon node’s position

and velocity by triangulation. Although simple and efficient, this method

requires more and more moving objects to pin-point the position of nodes.

Close to 150 moving objects can provide a positioning accuracy of around 0.2

meter. Moreover as the sensor nodes themselves are not mobile, this

localization does not have to happen real-time.

Daniela Fuiorea et al[7] present a localization technique for a video based

wireless sensor network. Because video based wireless sensors are deployed

in great number, the pictures taken from them can have images that share

common field of view and images that are taken from different position and

angles .They localize the camera direction and spatial coordination and

estimate the video-field overlap of these wireless sensor networks. They use

SIFT (Scale Invariant Feature Transform) algorithm for automatic computation

of image features and use this as an input for image registration technique,

which is indeed used for localization. SIFT produces large number of feature

points covering the entire image. These features are distinctive, easy to extract

and allow for allow for correct object identification with low probability of

mismatch. To optimize the performance, all the SIFT based processing are

done in a central server and the results are sent back into the network.

 Claudio Mello Jr. et al [8] present a novel idea for Robotic system

for inspection of underground cable system. The robot which is fitted with a

camera and multiple sensors can detect overheated points, partial electrical

discharges and occurrence of cable treeing. Once the robot is inside the cable

19

system and detects the faults, a localization system for pinpointing the exact

faulty location (position and orientation) is used, where the human operator can

guide the robot to the faulty location. The robot uses a landmark based

localization system, where the images along the path are scanned for natural or

artificial landmarks and a virtual map of visited areas is created. These maps

when combined with the odometry data from the robots can be used for

localization. SIFT algorithm is used for landmark identification and map

construction and feature matching is used to compare the current scene in

camera with to the virtual map.

S. Panzeiri et al [9] present a low cost vision based localization technique

for robots. They use simple landmarks like, ceiling light (which are placed with a

regularity inside the buildings) to localize the node. They use off-the shelf

webcams and mount them on robots. A map of the known landmarks generated

and used as an environment representation for robot. The position and

orientation of the landmarks are known. From the landmark image detected by

the robot’s camera the position and orientation of the robot can be identified.

Unfortunately, this technique does not take collision into account and robot is

assumed to be in a collision free environment.

20

Chapter 5

A New Robot Tracking and Navigation
System Design

Most of the design decisions for the MiNT-m original Mobility system is

based on the design goal for creating a cost-effective testbed. They considered

alternatives for camera based tracking and systems like RF/ultrasound systems

and other odometry mechanisms. Cost and in the later case inaccuracy, were

the main factors for the use of an overhead camera based tracking system.

They also explored the possibility for usage of various robot motion planning for

complex scenarios, but opted for a simple and computationally efficient mobility

options as the mobility patterns in the testbed are restrictive. We are driven by

the same goal to minimize the cost and we continue to use off-the shelf low-

cost ($90) webcams and use the same Roomba robotic platform which is

primarily a vacuum cleaner with limited support for mobility and auto-recharge.

Hence we propose a re-design of the mobility system which addresses all the

problems in the MiNT mobility system.

5.1 Identifying Robots Using Patterns

From the experiences of the MiNT’s color based tracking system, it is

very clear that the color based system is the central source of most problems.

Although color based system provides reasonable accuracy, the accuracy is

not good enough for miniaturized environment like MiNT. Hence we propose a

pattern based recognition algorithm which significantly improves the accuracy

of tracking. The rest of the chapter is organized as follows. First, we propose a

re-design of the tracking system, which is central to most of the issues in the

MiNT. Then we propose improvements to the other components of the MiNT

mobility system namely trajectory planning and collision avoidance.

21

5.1.1 Requirements

A tracking system which addresses all problems in MiNT should have the

following characteristics

 Firstly, the system should be very accurate in determining the position as

well as orientation of nodes in the testbed. As in MiNT, even a pixel

inaccuracy of 30 pixels (> 5 inches) makes a big impact in the testbed.

Ideally the new system should have an inaccuracy range of less than 2

inches and inaccuracy in orientation in less than 2 degrees.

 The tracking system is invariant to changes in lighting, scale changes and

rotation changes in the testbed. The invariance to lighting greatly reduces

the need for allowances in HSV in a color based tracking system, where

as scale variation insensitivity will be required if the positioning of camera

needs to change in the testbed. This aids in easy relocation of the testbed.

The rotation invariance is required for accurately predicting the node in all

different orientations.

 The tracking system should also be invariant to issues caused by camera

overlap. Ideally the system should be able to track an image partially

within the camera without biasing the output generated by an adjacent

camera which reports accurate position and orientations.

 There has to be minimum calibration in the setup. For example, for the

MiNT tracking to work, accurate values for HSV for each color used in the

testbed have to be calibrated. As the lighting may slightly vary between

the cameras, these calibrations have to be performed for individual

cameras. Also, the ideal size of the blobs to be grouped has to be

accurately determined. Ideally the new system should have minimum

calibration requirements.

 More importantly, one of the original goals of MiNT is the minimization of

cost for construction of the testbed. The image tracking algorithm should

not increase the cost of the MiNT testbed significantly.

22

5.1.2 Scale Invarient Feature Transform (SIFT)

One such tracking algorithm, which satisfies most of the above

properties listed is the SIFT (Scale Invariant Feature Transform) [2]. The

algorithm was developed at the University of British Columbia. This

algorithm as the name indicates is a feature point based identification

technique. SIFT defines a sequence of complex transformations which

scans an image to identify key “feature” points. The feature points

produced by the algorithm are distinct enough to identify specific objects

among a group of alternatives. These points are invariant to scale,

rotation and partially invariant to illumination changes.

A bird-eye view description of the algorithm is presented in this

paragraph for completeness. The algorithm uses a staged approach to

identify feature points. Each stage in the algorithm is of increasing

complexity and filters out candidate points so that more expensive

transformations are applied only to filtered matches. The following are

sequences of stages performed by the SIFT algorithm to detect the

feature points

1. The first stage searches all scales and image locations to find a

group of possible candidate points that are invariant to scale

and orientation. The computations of these points are performed

by using difference-of-Gaussian (DOG) function. The DOG

points are compared against the nearby points to identify the

maxima and minima.

2. At each point determined in the first step, a detailed model (3D

curve fitting) is used to determine location and scale.

3. The low contrast points are then filtered out from the image. The

Edge responses are eliminated using Hessian. The key points

are selected based on their stability.

4. One or more orientations are assigned to these points based on

gradient directions. All future operations are based on these

23

points which are transformed relative to assigned location, scale

and orientation, making them invariant to these attributes.

5. The local image gradients are measured in region around all the

key points at a selected scale. These are converted into a

representation that allows for significant levels of local shape

distortion and change in illumination.

This algorithm can be used to accurately identity an image in a

complex real-world scene as shown in

Figure 8 - Feature detection in Sift. For a given training image, the

algorithm computes the distinguishing “feature” points. These images

points are then compared to feature points detected in the target image.

The advantages and disadvantages of the SIFT algorithm are given

below

Advantages

 Scale, rotation, illumination invariance.

 Identification of images which are cluttered in a real-world complex

scene.

 Required only a minimum of 3 points to identify a matching object.

 Close to 90% repeatability in the identification of feature points.

Disadvantages

 Performance. A single comparison for a 640X480 image with a

training image takes on an average 400ms on a machine with Intel

Pentium core 2 Duo 2.53 GHZ with a 6MB L2 cache, 3 GB RAM.

 Problems in position and orientation detection of an image with

symmetry.

 Requires images with sufficiently large features for accurate

matching.

24

Figure 8 - Feature detection in Sift

This figure illustrates the scale and rotation invariance of SIFT in locating

images. The pictures shows matching feature points in pink lines. The picture

also clearly indicates that the SIFT does have a small percentage of false

positives with some of the surrounding images.

25

5.1.3 SIFT based Robot Tracking

The SIFT algorithm can be employed in the tracking for MiNT. Images

with large number of feature points can be used as training sample as shown in

the Figure 9 - Testbed Node with SIFT Training Image. This figure shows a testbed

node with sift tracking image on its top.

All testbed nodes are placed below the cameras and a training image for

the SIFT algorithm is generated during the initial testbed setup. These images

are used as the input for the SIFT based tracking algorithm. The images from

the overhead cameras during the experiment run (i.e. the target images) are

captured and are compared against these training images to identify the

matching nodes.

SIFT only works at the feature point level and does not work at an image

level. It only identifies pairs of matching feature points in the camera target

image and the training image and returns position of the point in the target

image and the orientation (rotation) of this matching feature point with respect

to the training image. This is shown in

Figure 9 - Testbed Node with SIFT Training Image

26

Figure 8 - Feature detection in Sift with pink lines. Here the image at the top

is the training image. The pink lines connect the feature point in the training

image to the corresponding match in the target image. For each point, the (x, y)

co-ordinates of this matching feature in the target image is returned by SIFT, in

addition to the rotation (orientation) of this point. For a typical training image

there are 20-30 such distinct feature points. But as individual points tracked in

SIFT may be slightly inaccurate, we use a simple tracking algorithm on top of

the feature points returned by SIFT to accurately predict the center and

orientation of the node. For computing the center of the node in the target

camera image, we compute the center point with respect to individual matching

feature points and average these points to find the actual center. The

orientation of the node is simply calculated as the average of individual

orientations. This eliminates the slight inaccuracies in tracking of individual

feature points.

The computation of the centre point with respect to the individual features

is explained below and is based on the following assumptions. As the same

camera resolution is used to capture the training image and actual camera

tracking image, there is a fixed relationship between the points in the node’s

camera target image and the training image. The only difference being that the

camera target could be in a different orientation compared to the training

image. Moreover, the center point of the training image is known in advance.

For each of the matching training image feature point, we can calculate its

distance from the center and the slope of the line connecting these points within

the training image plane. We leverage this fact to find the center of the rotated

image with respect to individual feature points. Given these, the problem of

finding the center is reduced to the problem of finding the rotation of the center

point in the target image (which can be solved by shifting center point). The

same process is repeated for each pair of matching feature points and the

center and the orientation of the node in the target image is computed.

27

The accuracy of the tracking increases as the training image has more

and more feature points. To avoid inaccuracies in tracking we only pick training

images with sufficient number of feature points. Experiments have showed that

20 – 30 feature points are good enough to achieve accurate tracking in the

order of less than less than one inch or approximately 2.5 cms.

Performance Optimizations

For the trajectory planning and the collision avoidance to be accurate,

real-time feedback of testbed is as important as the accuracy of the tracking. A

typical roomba movement in the testbed is at an average rate of 1/4 feet per

second. Hence a delay of more than a second in the feedback means, an

inaccuracy of 1/4th of a feet and it defeats the whole purpose of the re-design.

Although SIFT algorithm is very accurate, it is compute intensive as

compared to the original color based tracking scheme. In order to reduce the

cost of testbed, keeping in mind the original goal of cost-effectiveness of the

MiNT testbed, we propose the following optimizations to the reduce need for

high-performance machines for running SIFT algorithm.

5.1.4 Predictive Tracking

The first publication of SIFT algorithm, which was in 1999 [10] claims that

the tracking time for the SIFT based tracking is less than 2 seconds in a

machine with average compute power then. This value will be significantly less,

taking into the account, the progress in the CPU speed and memory

capabilities of machines. For a typical testbed target image (640 X 480 pixels),

the time required to perform a SIFT matching is about 0.4 seconds on an

average. In a MiNT testbed with 10 cameras, SIFT algorithm as is not sufficient

enough to provide real-time tracking in MiNT for 12 nodes, as each camera

image has to be scanned for 12 times, once per each node.

As tracking is resource intensive, the first basic optimization is to move

from camera based to tracking to node based tracking. i.e. instead of the

28

tracking each camera target image for all the testbed nodes, we only look for

nodes in the specific areas of the testbed. This predictive node based tracking

works as follows. During the initial startup, there is a full scan of all the camera

target images and the positions of all the nodes in the testbed are determined.

Once this initial position is known, we can switch to node based tracking. As the

position of each node is known and we also know the direction of roomba

movement if any, we can accurately predict the position of the node in the

testbed in the next scan cycle. Instead of scanning the position of the node in

all cameras, we can cut a small piece of the target camera image where the

node is predicted to be in, and run SIFT in this portion of the image only. The

node based tracking reduces the computational complexity by a order of

number of cameras which is 1/10th in this case. Also the typical size of the cut

image is 1/10th of the original image.

Figure 10- Predictive Tracking in cameras

Camera1 Camera2

Camera4 Camera3

29

The predictive scan logic is explained in explained in

Figure 10- Predictive Tracking in cameras . The Camera 1 image is cut into

two smaller images (the cut images indicated by the red rectangles) and the

only those images are used as input to the SIFT algorithm. Similarly only

portions of camera2 and camers4 are scanned. The Camers3 input image is

not required as there are no nodes under this camera. The Figure 11- Predictive

Tracking Scan Range in the testbed provides a snapshot of a cut- image used in

the predictive scan.

Not all nodes in the testbed will be moving at all times. So we can

differentiate these nodes by having different scan frequencies for moving and

non-moving nodes. i.e real time feed is not required for non-moving nodes as

their position is known priori. Only moving nodes have to be tracked in frequent

scan cycles. Assuming an average upper limit of 50% of the nodes in

movement in the testbed, we still achieve a 2 times speedup.

Moreover, if nodes in the testbed are distributed under a few cameras,

the rest of the camera images need not be processed at all saving the precious

compute resources and as well as USB bandwidth of camera traffic.

Figure 11- Predictive Tracking Scan Range
in the testbed

30

5.1.5 Improving Accuracy

Figure 8 - Feature detection in Sift shows there could be a few false

matching points outside the actual target image. Including these points in the

average computation can bias the results resulting in inaccuracy. There are

algorithms like RANSAC[3] (Random Sample Consensus) can be applied to

improve the outliers in SIFT, we chose to use a simple algorithm for these

eliminations because the external disturbances in the testbed arena are

minimal and the false positive can easily be identified by a simple algorithm.

As the actual size of the training image is known, the maximum distance

a single feature of training image could be away from the center is known. But

when SIFT identifies a match, it is hard to predict which of them are inside and

which lie outside. Hence for each point, we compute the distance from the other

matching points, and try to see if distances are within the threshold as

compared to the maximum possible distances in the training images. If the

difference is higher, then the point is considered to be an out of an image and is

not included in the average.

5.2 Scalable Camera Array-based Robot Tracking

Typical testbed setup consists of 10 cameras. Predictive tracking ensures

that the number of cameras connected to a camera server is not limited by the

ability to perform SIFT computations. But the bottleneck would be the USB

bandwidth and the ability to acquire images from multiple cameras

simultaneously. Hence a multi-tiered scalable architecture for tracking is

required for proper load balancing.

Moreover, as the SIFT works on feature level, it does not require the

entire image to be available to perform tracking, and it can work with partial

images. This allows us flexibility as to have little or no overlap in between the

cameras. Such kind of architecture however requires a central authority who

31

can control and integrate the partial feature points from all the cameras and

perform the position and orientation detection.

Common solution for both these problems is to have client-server

architecture. To this effect, we separate the camera servers, the nodes which

are actually connected to the cameras (Camstream in the original architecture)

and introduce a new component called the tracking server. The camera servers

performs the SIFT calculation based on the image input from the tracking

server and sends them all to the tracking server. Tracking server then

combines the feature inputs from all the cameras and performs the calculations.

This also means the predictive tracking has to work across the cameras.

There can be a maximum of four cameras which can capture a single node

image. The captured image may or may not have overlaps. An example of the

how the partial image can be setup is illustrated in Figure 12- Predictive Tracking

Scan Range across cameras

Figure 12- Predictive Tracking Scan Range across cameras

Camera1 Camera2

Camera4 Camera3

32

The tracking server needs to find all the cameras where this node could

be part off, and sent the respective small regions to be cut-off and tracked to

individual cameras. In this case it has to send region within red rectangle to

each cameras and perform an integration of the feature as shown in Figure 13-

Partial Tracking and Center detection

Figure 13- Partial Tracking and Center detection

Partial Tracking

Module

Position and

orientation

Features

Features

33

The tracking module then integrates the feature points from the individual

camera servers and computes the actual position and orientation. We eliminate

the overlapping points if any, and calculate the center position in (x,y) inches

and orientation in degrees. As the testbed setup will be done to ensure that

there are no gaps in between cameras, such a model will be able to predict the

entire node accurately.

Camera Orientation

One other problem, which has to be addressed in the partial tracking, is

with respect to the orientation of the cameras. The Figure 12- Predictive Tracking

Scan Range across cameras showed the cameras to be aligned in perfect

boundary to illustrate the idea of partial tracking.

Figure 14- Partial Tracking with camera orientation

Camera1
Camera2

Camera4

Camera3

34

But during the setup, the cameras could be aligned in any fashion subject

to the restriction that there are no gaps in testbed as shown in Figure 14- Partial

Tracking with camera orientation. This arrangement is supported to reduce the

stringent constraints on the experiment setup for perfect alignment of cameras.

The red border in the Figure 14- Partial Tracking with camera orientation is

actual testbed area. A tool was developed for aiding the setup, which will

ensure that the cameras are setup without any gaps in the testbed. The tool will

output the final position and orientation of the all the camera in the testbed.

This setup introduces the distinction of position and orientation of nodes

within the camera (the local position) and position and orientation of nodes with

respect to the testbed (the global position). The tracking server needs to

convert the feature points from the local to global position. It also has to

calculate the bounded rectangle in terms of the local position of the cameras

and use the same as the inputs for the global position calculation.

5.3 Trajectory Planning and Collision Avoidance

The trajectory planning in MiNT-m although heuristic based does not have

any major flaws. But due to constraints in the tracking accuracy, the original

MiNT-m only had very limited trajectory planning and collision avoidance. The

MiNT-m planned trajectories with current testbed data. The path to destination

was computed with current placement of obstacles. If there is an obstacle

currently in the path, a detour was planned and the trajectory was computed

accordingly. At each new tracking image input from the camera, all the nodes

which are moving are checked to see if there is any obstacle or possibility of a

collision in the very next step. If there are no obstacles, then the node is moved

forward. If there is an obstacle or possibility of a collision, a randomly picked

node is paused in its place, allowing the other node to move around it.

35

There is also a delay between the moment commands for movement is

given to the node’s robot (roomba) and the time when it executes it. But Mint-m

relied purely on the position tracking through the cameras and did not receive

feedback from the nodes on completion of the command. This introduces the

possibility of sending more movement commands, for the same step when the

original command is pending execution, causing the node to overshoot its

destination and even worse move out of the boundary area of the testbed. To

counter this problem, MiNT-m had an upper bound on the time between issuing

two movement commands. This introduced additional delays in the each step,

causing the node to pause for long time between each scan cycle.

As the node positioning is accurate with SIFT, we can greatly improve

upon the trajectory planning. Instead of merely acting upon the current testbed

snapshot, we can plan the trajectory accurately ahead of time. As the position

and the direction of movement of each node are known priori, we can predict

ahead the position of all nodes after a few cycles and plan the path for these

nodes accordingly. i.e. we can create a snapshot of where the nodes will be

after a few scan cycles and plan the trajectory and collision avoidance

accordingly.

Moreover, as Roomba is primarily a vacuum cleaner, with some support

for serial API communication, the interface for movement is rather preliminary. It

only allows control of the velocity of movement and the radius of rotation. Hence

a forward movement is achieved by specifying a longer radius and a specific

velocity and, the turning is controlled by specifying appropriate velocity and radii.

But due to practical limitations on the speeds that can be specified, a fine

grained control of the actual direction in degrees and movement in centimeters

is hard to achieve in Roomba. Nonetheless, Roomba provides an API to read

the distance and angle of roomba movement. This feedback can be used to

correct the errors in specifying the actual degree and distance for movement of

roomba. It is important to note that the accuracy of this odometry accumulates

36

as the distance increases and the data is found to be accurate for short

distances.

Taking all this factors into account, we device an algorithm, for trajectory

planning as follows. We plan the entire path of the roomba ahead of time for

multiple steps. If there are obstacles in the middle, we plan a detour around the

obstacle. If two paths collide, we still pause one of the nodes, but predetermine

the point of collision, and make one of the nodes stop at the predetermined

point, allowing the other node to pass through. We then resume the original

node’s movement and allow it to continue through to the destination or next

collision path. This would make the movement of the Roomba faster thereby

reducing the time required for Roomba to move from source to destination.

For this algorithm to work, we need to create a queue of commands in the

Roomba controller module (noded). The tracking server can pre-determine a

series of steps and queue it at the noded for all the moving nodes. The

controller in the mean-time can ensure that the node movements are collision

free and take required corrections like halting a node and clearing the noded

queue etc. This monitoring is still required to counter the wheel slips if any in the

roomba, non-responsive roomba or unexpected node crashes. But the speed of

monitoring can be reduced significantly.

Periodic feedback from the Roomba movement can be used to improve

the accuracy of movement errors. If Roomba were originally required to move ‘n’

degrees and due to tuning errors if the node has only moved a little less than ‘n’

degrees, then the compensation in the next move can happen in the noded.

Once a command with sequence of moves is issued to the Roomba, the

controller can monitor the node and only communicate to it if there is an

unexpected collision due to reasons stated above. In the normal case, the

noded can complete the command and send confirmation to the controller on

the completion of the command.

37

In order to control the accuracy of the movement during a turn, we fine

tune the velocity of movement at the last few steps, in order to not over shoot

the destination. This improves the accuracy of the directional movement and

ensures that the node moves according to the pre-planned trajectory. We also

make fine grained adjustments to the straight line movement, by proportionally

reducing the velocity when the node moves closer to the destination to avoid

overshooting the destination and thereby altering the pre-planned path

calculated by trajectory planning algorithm.

5.4 Integration with NS-2 to support Mobility Simulation

MiNT-m supported mobility primarily to configure network topology. The

user can use the signal and interference characteristics, and configure

appropriate values between nodes but it did not support movement during

experiments.

The re-design of the mobility system, allows us to support movement

during the experiments. Our current implementation relies on specifying the

movement in terms of time when the movement should occur, and destination

position for nodes in a separate script isolated from the NS-2 script. The

integration of the movement into the NS-2 script is a straight forward

implementation.

When the movement control commands are executed by the noded, the

noded sends a command to the tracking server module. The tracking server

module can include that node into the list of moving nodes and include it in the

trajectory planning and collision avoidance computations.

38

Chapter 6

Software Implementation

This section briefly summarizes the Software components of the new

mobility system as explained throughout Chapter 5. The tracking server

component in the original architecture Figure 1 - Mint Architecture is split up into

camera server and a tracking server. Other components in the architecture

have significant role changes in the context of mobility. The non-mobility

components of the MiNT-m architecture remain the same. The new software

architecture is illustrated in Figure 15- Mint Mobility Architecture Redesign.

6.1 Testbed Nodes

The noded daemon which is the central control for movement in noded

requires the following changes.

The noded movement control module in the original MiNT was a

command interface which merely translates the commands from the controller

in for movement specified in (inches and degree) to appropriate velocity and

radii and issues the command through serial interface to the roomba.

The noded movement module is refined to have some intelligence with

respect to movement commands. The noded can now queue multiple

commands and initiate bunch of these commands sequentially. The noded

also corrects the inaccuracies in movement between sequential commands, by

adding corrections in the subsequent steps. The velocity of movement in the

last step is fine tuned to prevent the overshooting of destination.

39

Figure 15- Mint Mobility Architecture Redesign

Camera input

Controller

(Controld)

 Movie Interface

 (NAM)

Camera
Server1

 User

Tracking Server

NS Trace &
Node

location

Movement
commands

Node location and

movement directions
 Node

location

Testbed

Node

(Noded)

Testbed

Node

(Noded)

Testbed

Node

(Noded)

Movement
commands

and

feedback

NS Trace

Movement

commands
Movement

Feedback

Camera
Server2

Track area

and node list

40

Noded is also responsible for the movements during experiments. The

noded parses the movement scripts and initiates the movement request with

the controller module at the time specified in the script and waits for the

controller to respond with the movement commands. The received commands

are executed in the same manner as explained above.

New Roomba API

The Roomba SCI (serial command interface) [10] is a serial protocol by

which commands can be passed through the external serial port of Roomba

robot. The SCI supports various commands to control the robot and/or query

the internal state of its sensors. The Roomba supports specification of

movement by specifying the velocity of the in millimeters per second and radii,

The longer radii allow it to move straighter and the shorter radii makes it turn

more. The Roomba also provides an API to query the sensory data, to which

Roomba responds with distance travelled (from the last such query) in

millimeters and the angle of rotation. As Roomba rotation is achieved by

applying variable velocity for wheels, the angle returned is the difference in

distance travelled between the right and left wheel. This can be easily

converted to the angle by using the formula (as specified in the API), where 258

is the distance in millimeters between the Roomba wheels.

 Angle in Radians = 2 * angle returned / 258

The serial interface program for communication with the Roomba was

completely re-written to correct previous implementation flaws which crashed

the roomba and modification to the interface program to query the distance and

angle travelled by the roomba in the last step.

6.2 Controller

In the context of MiNT mobility system, Controller is responsible for

planning the trajectory and collision avoidance. Controller can receive

41

movement commands from the MOVIE interface through user query or from the

noded command during the scripts.

When a movement command is received in the controller, its plans the

trajectory of movement by predicting the snapshot of the testbed in advance

(accounting for other moving nodes and static nodes) and sends a sequence of

commands, which either takes the roomba to its final destination or an

intermediate waypoint (determined by collision). It then translates the trajectory

as sequence of rotations and movement steps and communicates the same to

the noded daemon. It closely monitors the testbed for adverse conditions like

collision and initiates necessary corrective actions.

Controller interacts with the Tracking server for tracking updates and

creates a global picture for display in the MOVIE interface. Controller also uses

this tracking data for testbed monitoring and movement control.

6.3 Tracking Server

The tracking server is the completely re-designed in the new system. In

the older MiNT-m architecture, the tracking server was the machine connected

to the cameras. But the newer architecture treats it as an interface to multiple

camera servers.

One issue that has to be addressed for the tracking server is the

synchronization between the individual cameras. An entire testbed image can

be constructed from only after combining the output from all the cameras.

Hence the tracking server sends sequences of tracking commands to all the

cameras and waits for the responses. Once the tracking data is received from

all the cameras the tracking server can combine individual features and send

the same controller.

The tracking server is responsible for predictive tracking. Before sending

a tracking request, the tracking server interfaces with the controller to get the

information regarding the current moving nodes. For each of these nodes,

42

based on the previous location and the moving direction the tracking server

computes the global position in the testbed where this node is expected to be

present. It then identifies which camera(s) cover this region and translates this

global position into the local position within each of those cameras. It directs

individual cameras to track those portions.

Once the replies are received from all the cameras individual node

feature points tracked from the cameras are converted back from camera

based local positions into global testbed positions. These global positions for

features are then used to calculate the node’s position and orientation within

the testbed.

This component is separated from the controller to achieve better

scalability.

6.4 Camera Server

The camera server is the machine connected to the cameras. As the

images from the camera have to be queried synchronously with the tracking

request from the tracing server, we have changed the open source software

streamer implementation to query the data from the camera synchronously with

the tracking request.

For each tracking request the camera image is queried from the camera.

For each node within the request, the camera server cuts-off the required pieces

of camera image and uses the SIFT algorithm to obtain the matching feature

points. The individual feature points for each node are sent back as response to

the tracking server.

43

Chapter 7

Evaluation

This section evaluates the performance of the new MiNT Mobility system.

Particularly we focus on the movement trajectory, tracking accuracy and the

time required for tracking. We use a testbed setup with 4 cameras and 6 nodes,

where the nodes are evenly distributed across the cameras and a testbed

dimension of 10 X 12 feet. We also tune the velocity that roomba moves

approximately at a rate ½ feet per second. The camera resolution is 640 X 480

and the pixel-to-inch ratio is 8.89.

Tracking Accuracy

We start with the tracking accuracy of the entire tracking system. We

place nodes under the multiple cameras and run the tracking algorithm with the

predictive and partial tracking in real-time. We plot the results for different

images used in the testbed tracking. The Table 1 - Tracking Accuracy for different

illustrates the average errors for several runs with nodes placed under different

portions of the testbed. For estimating the worst case performance of the partial

tracking, we used image tools like GIMP to cut-off images at pixel level

(purposefully such that a few feature points are taken out) and used these

images instead of feed from cameras. Although in real-time calibration, this

scenario is not possible as user cannot fine tune the overlap of the cameras to

be in the order of pixels, this gives us a maximum bound on the worst-case

inaccuracy due to partial tracking.

Image Number of
Cameras

Average
Number of

feature point in
each camera

Error in
Position
(inches)

Error in
Orientation
(degrees)

Letter Tag A 1 4 5.12 40
Letter Tag B 1 3 7.29 60

44

Table 1 - Tracking Accuracy for different images

The accuracy for okapi, Hippo, Elephant and chimpanzee which all have

no symmetry in the image and have feature points in the range 21 – 55 have

very accurate results. But the usage of letters like A and B which have

symmetry in itself leads to larger error in orientations. Also the number of false

matches for the letter strokes is high. This statistics clearly indicates that the

accurate choice of image for the node is mandatory for the high accuracy of the

tracking.

Image of a okapi 1 33 1.12 0.9
Image of a okapi 4 12 1.08 0.897
Image of a okapi 4 pieces of

manipulated
images

8 1.43 1.1

Image of a Hippo 1 43 1.23 1.2
Image of a Hippo 4 15 1.19 1.023
Image of a Hippo 4 pieces of

manipulated
images

9 1.68 1.321

Image of a elephant 1 21 1.35 1.28
Image of a elephant 4 8 1.32 1.27
Image of a elephant 4 pieces of

manipulated
images

3 1.94 1.73

Image of a
Chimpanzee

1 55 1.03 0.87

Image of a
Chimpanzee

4 20 0.99 0.85

Image of a
Chimpanzee

4 pieces of
manipulated

images

12 1.24 1.02

Average
Inaccuracy(exclusive

of A and B)

 1.30 1.12

45

Trajectory Accuracy

We evaluate the accuracy of the trajectory (without obstacle) movement

by measuring the distance covered by roomba (as reported by its sensors)

measured periodically without accumulating errors. Although this is slightly

inaccurate, it is hard to measure the same manually.

For this test, we make the node to repeatedly move across the testbed in

diamond shaped paths. The measurements are shown in the table below.

Number of edges covered

in the diamond

Straight Line Path distance

(in inches)

Additional distance covered

by roomba

1 93.722 10.1292

2 187.444 22.2373

3 281.166 31.4742

4 374.888 42.1243

Table 2 – Error in distance moved

The linear increase Table 2 – Error in distance moved in the .error with

the proportional increase in distance, instead of a cumulative increase is

because of the periodic correction of inaccuracy by tracking inputs.

An illustrative path of the observed tracking path patterns during this

experiment are given in Figure 16 – Illustrative Node Path. The red-line shows the

straight line paths for the movement. The actual Roomba movement oscillates

close to the straight path, primarily due to slight inaccuracies in tracking and the

roomba movement.

46

Figure 16 – Illustrative Node Path

Tracking Delay

The time delay for tracking with and without the predictive tracking is

given below.

Number of

Cameras

Number of Moving

nodes

Time in ms for

non-predictive

tracking

Time in ms for

predictive

tracking

4 1 1408 46

4 2 1408 97

4 3 1408 150

4 4 1408 194

Table 3 – Time taken for Predictive Tracking

Source

Destination

47

The time for non-predictive tracking is a measure of number of cameras

where as that of predictive tracking is a measure of number of moving nodes.

Movement Accuracy

We also measure the movement inaccuracy of the individual node

movement as follows. The tracking accuracy provides the minimum value for

inaccuracy in the whole system, because this inaccuracy cannot be avoided

from the trajectory planning. To compute the maximum bound of inaccuracy,

we also need to compute the movement inaccuracy for individual roomba. As

the movement is executed as sequence of steps in roomba and periodic

feedback from the tracking system corrects these values, at any given point the

maximum possible inaccuracy in movement is bounded by the sum of tracking

inaccuracy and the roomba movement inaccuracy.

Roomba movement

time in

(ms)

Velocity in

mm per

second

Distance to

be moved

(inches)

Distance

actually

moved

(inches)

Error in

movement

(inches)

2000 100 8 7.5 0.5

2400 100 9.6 9 0.6

4100 100 16.4 15 1.4

5200 100 20.8 17.5 3.3

2000 200 16 12 4

2400 200 19.2 16 3.2

4100 200 32.8 25 7.8

5200 200 41.6 29 12.6

Table 4 – Straight line Movement accuracy for Roomba

The table clearly shows that the inaccuracy for velocity 100 accumulates

as the distance increases. The interesting statistics however is the result for

velocity 200. As the velocity of the movement increases, roomba’s wheels

frequently slip during the initial acceleration accounting for the much reduced

48

forward movement. Hence the best accuracy (minimum inaccuracy) is achieved

by moving roomba in velocity 100 in short steps for less than 2 seconds.

Adding it together with the average tracking accuracy of 1.3 in Table 1 -

Tracking Accuracy for different images we get a maximum inaccuracy of 1.8

inches at any instance in time in the testbed.

Maximum Movement Speed

In this section, we measure the maximum possible movement speed that

can be achieved in the system. Two factors influence the speed of movement

of the node. First, is the maximum speed of the Roomba which is 500 mm/s.

Second factor, is the speed at which tracking input can be supplied such that

the tracking system can monitor accurately, every movement step and avoid

collision. If the tracking speed is too slow, the roomba could move at the faster

speed than the tracking system predicts it to be, resulting in collisions.

Table 5 – Movement speed vs navigation accuracy

The collision threshold defines the minimum possible distance that can be

allowed between the roomba before activating the collision avoidance measure

(pausing one roomba and allowing others to move). For safe movement, there

has to be at least 2 tracking cycles before roomba covers this collision distance.

Number of moving

nodes

Speed of tracking

(number of tracking

inputs per sec)

Collision

threshold in

(inches)

Maximum Speed of

movement supportable

without compromising

accuracy in mm per sec

1 21 6 500

2 10 6 500

3 6 6 500

4 5 6 500

1 21 3 500

2 10 3 500

3 6 3 500

4 5 3 500

49

But as we do collision avoidance instead of collision prevention, as long as

there are two cycles before error accumulations reach the collision threshold,

there will not be any collisions. As we saw in Table 4 – Straight line Movement

accuracy for Roomba, the error increases as the velocity increases due to wheel

slips. This problem to certain extent can be countered by moving the first step

in 100 and other steps with increased velocity. We assume a theoretical

constant error of 0.5 inches for roomba movement as long roomba is moved

continuously for less than 1/2 second. The table clearly shows that roomba’s At

this error, the roomba’s maximum movement speed is the bottleneck.

Scalability

The controller and tracking server are the only non-scalable components

in the current architecture. More number of cameras and nodes can be added

in the system by adding more camserver machines.

In general, as the peak tracking speed for SIFT is 21 calculations per

second, and the camera used in the testbed setup currently supports 30 fps

frame rate, the camera used is never a limiting factor.

If more and more robots have to be added to the system, the testbed

area has to be proportionally increased to support free movement of these

nodes. As the SIFT tracking is dependent on the number of nodes to be

tracked, as long as nodes are distributed equally within the testbed, the USB

bandwidth limits the performance. But as the density of nodes increases within

the coverage region of a single camera server, the SIFT tracking becomes a

bottleneck.

50

Chapter 8

Conclusion and Future Work

 This chapter summarizes the contributions of thesis. We conclude by

presenting future directions.

Summary of Thesis

In this thesis, we proposed a re-design of MiNT-m mobility system using

the SIFT based feature identification, which improves the accuracy of the

original color based tracking system. With the introduction of complex algorithms

like SIFT, always introduces performance concerns. We improved the

performance of tracking using SIFT by making various optimizations like

predictive tracking so that the image tracking system could be used to feed real-

time data.

We also improved the trajectory planning and collision detection by

predicting the position of nodes ahead of time instead of reactive measures in

the original MiNT-m design. The feedback for node movement from the roomba

was used for improving the accuracy of commands issued to the roomba

movement. A combination of accurate tracking and velocity control were used to

accurately place the nodes in their destination.

 Future Work

 Integrating the Node movement control into the NS-2 script. The

node movement during experiment is currently specified in a

separate script. This can be integrated into the NS-2 script.

 Auto-recharging of the Roomba batteries as well as the node’s

routerboard batteries are supported in MiNT-m, but this can be

51

vastly improved by extending the mobility re-design to

accommodate the auto-recharge.

 The movement support during experiments could be enhanced by a

fine grained control of velocity of movement.

 More fault tolerance and robustness in the noded, which can detect

misbehaving Roomba and take corrective actions.

52

Bibliography

 [1] Pradipta De, Rupa Krishnan, Ashish Raniwala, Krishna Tatavarthi, Nadeem

Ahmed Syed, Jatan Modi, and Tzi-cker Chiueh, “MiNT-m: An Autonomous

Mobile Wireless Experimentation Platform”, In Proceedings of Mobisys, 2006

[2] D. Lowe, “Distinctive image features from scale-invariant keypoints”,

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

 [3] Lars Cremean , William B. Dunbar, Dave van Gogh, Jason Hickey, Eric

Klavins, Jason Meltzer and Richard M. Murray, "The Caltech Multi-Vehicle

Wireless Test bed", Proceedings of the 41st IEEE Conference on Decision and

Control, 2002, 86-88 vol.1, Dec. 2002

[4] D. Johnson, T. Stack, R. Fish, D.M.Flickinger, L. Stoller,R. Ricci, J. Lepreau,

"Mobile Emulab: A Robotic Wireless and Sensor Network Testbed", INFOCOM

2006. 25th IEEE International Conference on Computer Communications.

Proceedings, 1-12, April 2006..

[5] C. Mitchell, V.P. Munishwar, S. Singh, Xiaoshuang Wang, K. Gopalan, N.B.

Abu-Ghazaleh, "Testbed design and localization in MiNT-2: A miniaturized

robotic platform for wireless protocol development and emulation",

Communication Systems and Networks and Workshops, 2009. COMSNETS

2009, 1-10, Jan. 2009.

[6] Huang Lee, Laura Savidge, Hamid Aghajan, “Subspace Techniques for

Vision-Based Node Localization in Wireless Sensor Networks”, In Proceedings

of International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Toulouse, France, May 2006

[7] Daniela Fuiorea, Vasile Gui, Dan Pescaru, Petronela Paraschiv, Istin

Codruta, Daniel Curiac and Constantin Volosencu, “Video-based Wireless

Sensor Networks Localization Technique Based on Image Registration and

53

SIFT Algorithm”, WSEAS TRANSACTIONS on COMPUTERS, Issue 7, Volume

7, July 2008

[8] Claudio Mello Jr., Eder Mateus Gonc¸alves, Emanuel Estrada, Gabriel

Oliveira, Humberto Souto Jr. Renan Almeida, Silvia Botelho, Thiago Santos,

Vin´ıcius Oliveira, “TATUBOT – Robotic System for Inspection of

Undergrounded Cable System”, IEEE Latin American Robotic Symposium,

2008

[9] S. Panzieri, F. Pascucci, R. Setola, G. Ulivi, “A Low Cost Vision Based

Localization System for Mobile Robots,” 9th Mediterranean Conf. on Control

and Automation – MEDSYMP 2001, June 27-29, Dubrovnik, Croatia, 2001

[10] David G. Lowe, "Object recognition from local scale-invariant features,"

International Conference on Computer Vision, Corfu, Greece (September

1999), pp. 1150-1157

