

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Automatic Calibration of a

Camera Array-based Robot Tracking System

A Thesis Presented

by

GURUSWAMY NAMASIVAYAM

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

December 2009

ii

Stony Brook University

The Graduate School

Guruswamy Namasivayam

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend acceptance of this thesis.

Professor Tzi-cker Chiueh - Thesis Advisor

Department of Computer Science

Professor Samir Das – Defence Committee

Department of Computer Science

Professor Jie Gao – Defence Committee

Department of Computer Science

This thesis is accepted by the Graduate School

 Lawrence Martin

Dean of the Graduate School

iii

Abstract of the Thesis

Automatic Calibration of a

Camera Array-based Robot Tracking System

by

GURUSWAMY NAMASIVAYAM

Master of Science

in

Computer Science

Stony Brook University

2009

In recent years, there has been an increase in the amount of wireless

protocol design and testing activities that depend on wireless testbeds. Most

of these testbeds used today are low-cost, miniaturized testbeds and support

different forms of mobility. In this thesis we propose improvements to the

setup and operations of the Miniaturized wireless Network Testbed, MiNT-m.

The testbed consists of several fully mobile wireless MiNT nodes that

are capable of emulating NS scripts. Each mobile node consists of a router

board with four wireless cards mounted on commercial off-the-shelf robots.

The robots are capable of responding to simple movement commands. The

range of the wireless cards are limited by radio frequency attenuation to keep

the testbed small. The nodes are identified and located by an array of

overhead cameras that scan for differently colored patches attached to the

nodes. However, this color based tracking system requires a significant effort

in setup time and requires constant maintenance. Also, the current color

based scheme does not lend itself to be scaled to hundreds of nodes. Another

issue with the current scheme is the precise alignment requirement of the

cameras in MiNT testbed. This camera alignment apart from consuming setup

time, requires significant overlap between adjacent cameras. The later

iv

requirement results in a smaller testbed than would have been possible with

the same number of cameras.

In this thesis, we discuss the problems in the setup that take up

considerable time and effort, and propose development of new tools to make

setup process significantly faster and more reliable. Also, we suggest

significant modifications to the color based node detection algorithm for the

MiNT testbed. This would make the testbed easily scale to a large number of

nodes, make better utilization of the regions covered by the camera and make

the setup process easier. In effect, we propose a complete solution that would

make the testbed readily deployable anywhere in the world with minimal time

and effort.

To

Almighty God and My Family

vi

Table of Contents

List of Tables ... viii

List of Figures ... ix

Acknowledgements ... x

1.1 Overview of the MiNT-m Wireless Testbed ... 1

1.1.1 MiNT-m Robot Tracking System ... 2

1.1.2 The Vision Based Tracking Algorithm of MiNT-m 5

1.2 Thesis Proposal .. 7

2.1 Testbeds with virtual movement .. 9

2.2 Testbeds with optical tracking .. 9

2.3 Testbeds with non-optical tracking systems .. 11

3.1 Motivation for the New Optical System .. 13

3.2 Options for Improving the Color-based Node Positioning Algorithm 13

3.3 Scale-Invariant Feature Transformation .. 15

3.4 SIFT based Robot Tracking System .. 16

3.4.1 Robot Tracking Algorithm .. 16

3.4.2 Tool for Automating the Selection of Training Images 21

3.4.3 Computation for Calculating the Centroid of the Images given the
Matching Features .. 23

3.4.4 Computation for eliminating Outliers ... 25

4.1 Problems in Calibrating the MiNT-m Color Based Tracking System 26

4.2 Goals for the New Calibration System ... 28

4.3 Design of the Automatic Camera Calibration System 29

4.3.1 Ensuring full testbed coverage .. 29

4.3.2 Design of the Automatic Calibration Process 31

4.3.3 Hardware Components of the New MiNT-m Testbed 35

4.3.4 Software Components of the MiNT-m Node Localization Component
 .. 35

4.4 Automatic Calibration System Workflow .. 38

4.4.1 A Typical Camera Calibration Work Flow .. 40

4.5 Implementation Issues ... 43

5.1 Performance Evaluation of SIFT image detection algorithm used in the
testbed .. 46

5.1.1 Generating Feature Points for Training Images 46

vii

5.1.2 Generating Feature Points for the Image Captured from the Camera
 .. 47

5.1.3 Time taken for Matching Features ... 48

5.2 Evaluation of the Camera Array based Automatic Calibration System . 50

6.1 Contributions to the thesis ... 53

6.2 Future Enhancements to the SIFT Image Selector Tool 53

6.3 Future Enhancements to the Camera Array Automatic Calibration 54

Bibliography ... 55

viii

List of Tables

Table 1 - Comparison of times for generating features for different images
sizes and number of features .. 47

Table 2 – Comparison of time taken for generating features for an image
taken in the testbed. .. 47

Table 3 – Comparison of time taken for matching feature points of an image
with training features. .. 48

Table 4 - Comparison of the accuracy of SIFT algorithms for different
orientations and images with different number of features 50

Table 5 - Time taken for setting up MiNT-m Testbed vs SIFT based testbed 51

Table 6 – Comparison of accuracy of camera position locator for different
orientations and images under the camera. .. 51

ix

List of Figures

Figure 1 - Schematic diagram of the original MiNT-m testbed showing the
degree of camera alignment required and the amount of unusable space due
to the mandatory requirement of overlap. ... 3

Figure 2 - Figure explaining the wireless architecture of MiNT-m wireless
testbed. .. 4

Figure 3 - Schematic diagram of the color patches on the MiNT-m nodes. The
green and red colored patches at the top and bottom are the header and
footer patches. The two colored patches in the middle are the ID patches. 5

Figure 4 - Example of a 2D binary code, QR code [6] 14

Figure 5 - Flowchart of Node Localization algorithm. 19

Figure 6 - Training image dog matching a dog in the testbed. The red dot
illustrates the computed center. .. 20

Figure 7 - Training image tiger matching a tiger in the testbed. The red dot
illustrates the computed center. .. 21

Figure 8 - Schematic diagram of computation of center B from each feature
point, one of which is shown A. ... 24

Figure 9 - Illustrates the calculations for computing the center of the camera in
the testbed. .. 33

Figure 10 - Schematic diagram showing the computation of the four corners of
the rectangle. ... 34

Figure 11 - Schematic diagram showing the functional modules of camera
server ... 36

Figure 12 - Functional Software component diagram of camera position
locator .. 38

Figure 13 – Figure illustrating steps in Automatic Calibration. Cameras not
aligned. One camera without any image under it. ... 41

Figure 14 – Figure illustrating steps in Automatic Calibration. Cameras not
aligned. Top left camera has a single image under it. 41

Figure 15 – Figure showing a testbed camera obliquely pointed to the tesbed.
 ... 42

Figure 16 – Image generated by the automatic calibration tool showing all the
cameras fully covering the testbed. ... 43

Acknowledgements

 I would like to Thank my advisor Professor. Tzi-cker Chiueh who

helped me greatly in the design of the new SIFT based node localization

system. He was instrumental in coming up with new ways to solve

implementation issues and get the system to work. I would also like to thank

Jui–Hao Chiang who helped in setting up the MINT-m testbed, testing the new

MINT-m node localization system and in de-bugging issues related to the

roomba robot.

1

Chapter 1

Introduction

1.1 Overview of the MiNT-m Wireless Testbed

A growing body of wireless research with requirement for high fidelity in

experiments is moving towards wireless testbeds. In recent years, there has

been an increase in the use of miniaturized in-lab testbeds for wireless

experiments. However, there are only a few publicly available wireless

testbeds available for running experiments. Still, most researchers refrain

from setting up their own testbeds as setting up a testbed involves a lot of

effort. Typically, most of the testbeds require significant amount of space to

setup which in itself is costly, costly hardware and significant manual effort to

set up. In this thesis, we try to address the above concerns for the MiNT-m

wireless testbed.

MiNT-m wireless testbed uses the off-the-shelf robotic vacuum cleaner,

roomba as the robot used to carry a wireless router board with 4 wireless

cards. The router board can emulate NS scripts and also issues simple move

commands to the roomba robots. The position of the robots is determined by

processing the feed from an overhead camera array. The feed from each of

the cameras are processed individually in the tracking system. The output

from the tracking system is then aggregated in the intermediate server. The

system consists of 4 main components,

1. Robot tracking system – The component responsible for locating

the node within the testbed.

2. Intermediate server – Component responsible for aggregating the

position of all the nodes in the testbed.

3. Controller – component that interfaces with the user and allows the

user to run experiments.

4. Node daemon – This process run on each of the router boards and

controls the movements of the individual nodes.

2

The tracking system interfaces with the camera and computes the

position and orientation of the image within the camera. This information is

then sent to the intermediate server where it gets aggregated and is

disseminated to the rest of the system. It then sends this input to the

controller. The controller uses this information to plan the trajectory for future

destinations and intimates the calculated movement commands to each of the

noded processes running in the router boards. These processes then issue

the commands to the roomba robot to achieve movement.

1.1.1 MiNT-m Robot Tracking System

MiNT-m uses a color based node identification scheme. The tracking

system uses a camera array consisting of six overhead cameras arranged in

overlapping fashion. The overlap between each of the cameras must be at

least large enough to fit a single MiNT node along any dimension (including

the diagonal).

This requirement can be seen in Figure 2. The requirement is enforced

to ensure that a MiNT node is covered completely by at least one camera at

all times. When a camera moves from one camera to another, say from

camera 1 to camera 2, the node is initially covered completely by camera 1,

then it moves to the overlap region of camera 1 and 2. During the transition, it

is covered by both the cameras, though partially by one of them at some

locations. At locations where a node is covered by two cameras, the location

of the node as calculated by both the cameras is averaged to produce the

node position and orientation.

3

 Figure 1 - Schematic diagram of the original MiNT-m testbed showing the
degree of camera alignment required and the amount of unusable space due
to the mandatory requirement of overlap.

The feed from each camera is processed by a dedicated node

detection process. The vision based node detection software was developed

by modifying camstream, an open source software that can be used for taking

pictures or making videos from webcams. Each of the camstream based

processes process the frame grabbed from the video stream and detect the

position and orientation of all the nodes under each of them. The camstream

processes then communicate the detected node position and orientation to a

central process called the intermediate server. The camstream process only

computes the position and orientation of the nodes within each camera. It is

the intermediate server that translates this position update from each camera

into a global position and orientation. It does this by keeping track of the fixed

offset in the co-ordinate space associated with each camera. The current

implementation of MiNT-m not take into account any camera’s rotation.

Cameras have to be aligned with the x-axis to have 0 slope. The intermediate

CameraCamera

Camera Camera

CameraCamera

4

server is also responsible for averaging the positions of nodes that are located

in the overlap region of two or more cameras to come out with a single value

for its position and orientation. It is the source of node position/ orientation

information for the rest of the MiNT system.

This separation of roles between the image processing and

aggregation of results makes the system very scalable. The image processing

algorithm in the camstream process is computationally intensive as each pixel

has to be scanned. Only a limited number of camstream processes can be

run on a given server. In the actual MiNT implementation, all 6 camera feeds

at a resolution of 320x240 were processed by a single server. However, the

testbed design should be scalable for arbitrarily large testbeds. To achieve

this, wide angle cameras producing frames at a higher resolution or more

number of cameras or a combination of the two could be used.

Figure 2 - Figure explaining the wireless architecture of MiNT-m

wireless testbed.

In any case, the computational needs of image processing for a larger

testbed would easily surpass the capabilities of a single server. Furthermore,

there are hardware restrictions on the number of USB devices that can be

connected to a single server. To overcome these difficulties, sets of cameras

can be assigned to each physical machine. Each of them processes the video

feed from a small set of cameras and sends the computed position and

orientation to the tracking server.

Camstream
Camstream

Camstream
Camstream

Camstream
Camstream

Intermediate
Server

Video feed

Position and
orientation
information

Aggregated
Position and
orientation
information

5

1.1.2 The Vision Based Tracking Algorithm of MiNT-m

 The vision based tracking system identifies the nodes’ position and

orientation using color patches on the nodes. The coloring scheme used by

the node can be seen in Figure 3. To reduce the probability of false positives

due to random objects in the test bed room being detected as nodes, the

node incorporates a green header patch and red footer patch.

The header and footer apart from reducing the probability of false

positives, also play a part in calculating the orientation of the nodes. The

actual node identification is performed using the identification patches in the

middle. A total of 4 colors dispersed as far from each other in the color space

as possible are identified apart from red and green. The colors that were used

for the original MiNT-m navigation system are 1.Yellow, 2.Pink, 3.Orange,

4.Blue yielding a total of 16 nodes.

Figure 3 - Schematic diagram of the color patches on the MiNT-m nodes. The
green and red colored patches at the top and bottom are the header and
footer patches. The two colored patches in the middle are the ID patches.

The image processing algorithm used by the camstream based

process is listed below. The following steps are applied to each video frame

captured by the cameras.

The pixels in the image are normalized to lessen the impact of uniform

lighting. Since uniform lighting scales each color by the same constant factor,

Centroid of
Header

Orientation

Centroid of
Footer

6

normalization works by dividing each color component by the sum of all

components so that the constant scaling factor gets cancelled. The result can

again be converted to the 0 – 255 scale by multiplying by 255 and rounding to

the nearest integer. The normalization procedure follows the following

formula;

r, g, b = r g b

 ------------, ------------, ------------

 r + g + b r + g + b r + g + b

Each pixel of the image frame is converted from RGB format to HSV

format. The RGB color space is not used in analysis, particularly in color

pattern matching applications because the values for Red, Green and Blue

are correlated for most of the colors. As an example, yellow is a mix of red

and green. HSV color space is used to obtain distortion invariant color image

recognition. HSV ranges are pre-assigned to each of the colors in the color ID

patches of the MiNT nodes. Note that although individual components of the

HSV color space can overlap, there should be no two pair of colors that have

overlap in all 3 color space components. This is to enable unique identification

of a color.

Each pixel in the frame from the video is compared to each of the pre-

assigned colors and if it matches any of them, it is classified as one of the

colors of the color patch. Once identification is made, all neighboring pixels

are scanned for a pixel that can be classified as the same color. Repeating

this procedure for each new pixel identified results in small blobs classified

into the same color. The remaining steps are executed after the image has

been parsed once. Even if large blobs of the same color exist, they are

typically identified by the camera as blobs of smaller size due to lighting

irregularities and camera distortions. So, all blobs of the same color close to

each other are coalesced into larger blobs. At the end of this step, blobs

would have grown to the size of patches.

7

Once the patches are identified, only patches of a certain minimum

size are considered. This dimension is larger for header, footer patches than

for ID patches as they are larger in size. This is the first step in filtering out

testbed noise. As a second phase of noise filtering, ID patches get associated

with headers and footers closest to them. ID patches being smaller in size are

more prone to noise. Hence, ID patches that cannot be associated with a

header and footer near them are ignored.

Following this step, centroid is computed by averaging the location of

all pixels for both ID patches and header, footer patches. The average of four

centroids gives the position of the node within the camera. The slope of the

line joining the header and footer gives the orientation of the node. The

system is computationally efficient and simple to implement.

1.2 Thesis Proposal

We propose changes to the MiNT-m wireless testbed that includes a

modified testbed design, flexible robot tracking algorithm and tools for easy

setup of the MiNT-m testbed. The new design makes use of cheap, portable,

off-the-shelf components to build the testbed thereby bringing down the costs

and increasing the deployability. The new robot tracking algorithm was

evolved with an eye towards ease of setup and effective use of the area under

the overhead cameras. The algorithm uses a SIFT based image detection

system that converts the images of the nodes on the testbed into feature

points that can be used to identify the nodes uniquely.

This new scheme drastically reduces the setup time of the testbed and

has a more relaxed requirement for camera alignment. The SIFT algorithm

has an additional advantage of being more accurate and scalable to more

number of nodes than the color based node detection scheme. We also

developed tools for automatic image selection for the SIFT module and a tool

for automatically detecting the position of cameras in the testbed and help in

setting up the cameras to cover the entire testbed. The objective of this thesis

is to reduce the testbed setup time significantly to the extent that the testbed

can be setup on demand within a couple of hours, costly.

8

The rest of this thesis report is organized as follows. In Chapter 2, we

discuss the node localization algorithms used by contemporary wireless

testbeds and setup process involved in setting up each of the testbeds. We

also discuss the problems in the node localization algorithm and a few related

setup problems of the MiNT-m testbed. In Chapter 3, we discuss the

proposed solutions to the problems discussed above. In Chapter 4, we

discuss different performance metrics for the node localization, camera

positioning system (a tool for easy setup of MiNT-m setup), and the time

taken for setup. In Chapter 5, we conclude the thesis and discuss future

improvements to some of the proposed algorithms.

9

Chapter 2

Related Work

Several wireless testbeds had been developed and deployed

throughout the world. However, only a handful of them address the problem of

mobility and the related problems of tracking and setup. Some of the more

famous deployed wireless testbeds and how they tackle the problem of

movement and tracking has been discussed.

2.1 Testbeds with Virtual Movement

Testbed setups like ORBIT [1] use a fixed array of wireless nodes for

their experiments. In case of ORBIT, the testbed consists of 20 X 20 nodes for

a grid of 400 nodes. The movement is simulated by migrating the virtual state

of the virtual node used for experiment from one node to the other across the

nodes in the grid lying on the proposed path. Movement achieved in this case

is at discrete intervals. Also costs and time involved in the setup of a similar

testbed are very high.

2.2 Testbeds with Optical Tracking

Several testbeds use variations of color based tracking or color based

tracking in combination with other heuristics to determine the position and

orientation of the wireless node.

Mobile Emulab [2] uses Acroname Garcia robots mounted with XScale

based Stargate small computer running Linux with an attached Mica2 Mote as

the mobile wireless testbed. The testbed uses an array of ceiling mounted

cameras that cover the entire testbed. The modified Mezzaine vision

algorithm then recognizes a pair of differently colored circular blobs attached

to each of the robots. The blobs are of the same two colors (colors widely

separated in the colorspace) for all the nodes. So the vision based tracking

system is only used to identify the location of the nodes in the testbed, not to

map each node to its location. This mapping is achieved by the “Wiggle

10

Algorithm”, moving nodes one at a time to map a particular node to their

position. This procedure is executed during the testbed setup at the start of

the experiment. Thus the testbed setup time increases linearly with the

number of nodes in the testbed as only one node can be moved at a time.

Also, the visiond tracking system aggregates the feed from multiple cameras

into a single track to handle the case when nodes are located at the boundary

of two or more cameras. This step also introduces scalability concerns. Also

setting up the overhead cameras also involves significant effort without the

use of additional tools to aid the setup.

The Caltech Multi-Vehicle Wireless Testbed [3] uses stripped down

laptops on custom built robots powered by ducted fans. The testbed is setup

in a special room with no black spots. Black blob patterns on each of the

nodes are used to uniquely identify the nodes. Also the angle between certain

sized blobs are used to determine the orientation of the vehicles. This setup

requires a specialized room for the testbed. Also, the number of combinations

of uniquely identifiable patterns that can be formed within the area occupied

by a node is limited, limiting scalability. This is because, in addition to

providing uniquely shaped/positioned blobs for unique identification, certain

portion of the image has to be dedicated for redundancy/validation to prevent

confusion when nodes move close to each other.

Kansei: a high-fidelity sensing testbed [5], primarily a testbed for

sensor networks uses a array of static nodes as well as mobile nodes for

experiments as well as for injecting sensor readings. The setup consists of an

array of stationary nodes supporting a Plexiglas platform on which the mobile

nodes are run. Each mobile node is consists of Acroname robots with 802.11b

and XSM nodes. The layered setup is required to support their unique

requirement of having to inject sensing events in real-time. The mobile nodes

apart from running experiments are capable of producing light that passes

through the Plexiglas to activate the sensors of the static nodes that are

situated below the Plexiglas. To enable this, the mobile nodes are tracked

using a high resolution, network programmable cameras with capabilities for

pan, tilt and zoom to focus a prescribed location on the testbed. The video

feed from this camera is used by the vision system to track the mobile robots.

11

However, the system may not be scalable in a testbed with multiple nodes

moving simultaneously.

2.3 Testbeds with Non-Optical Tracking Systems

 MiNT-2, A miniaturized robotic platform for wireless protocol

development and emulation [4] is an improvement over MiNT-m wireless

testbed. The optical tracking system is replaced by a three tier tracking

system. The first tier makes use of the iRobot create robot’s ability to move

at a particular speed and orientation. The second level uses the robot’s

rotation sensor that can be used to precisely measure the distance moved as

well as the rotation of the robot. However, the tracking system cannot be

designed purely based on the first two tiers. Both the systems can lead to

accumulation of error in both position and orientation. The errors could be

caused by slippage in the robot’s wheels, rounding errors or due to encoder

inaccuracy. The third tier is composed of an array of RFID tags distributed

throughout the testbed. The position of all the RFID tags are already known

and when the robot enters the reading range of any of the RFID tags, the

position of the robot can be determined. Orientation of the robot is calculated

by the robot itself every time it passes through two RFID tags. The angle of

the line joining the two RFID tags is added to the rotation reading from the

rotation sensors in the distance travelled between the two RFID tags. The

setup for this testbed involves placing RFIDs on the floor, configuring their

position and setting the robots to auto configure. In the auto configuration

mode, the robots travel in a straight line, till they come across two RFID tags,

thereby establishing their position and orientation. During the auto

configuration phase, if the robot comes across an obstacle like a wall or

another robot, it takes a random rotation and continues its straight line path.

The auto-configuration phase is considered complete only when the node

manages to hit two RFID patches while moving in a straight line.

Though the array of RFID tags is cheaper than a sparse array of

cameras, this configuration has a few disadvantages. During the auto

configuration phase, since the position of none of the nodes are known, there

12

is a high possibility of collision among nodes, if the density of nodes in the

testbed is high. Also, since the probability of collision increases with the

increase in the number of nodes, the testbed setup time also increases with

the increase in number of nodes in the testbed. Another minor problem is that

a small portion of the battery charge is used up during the auto configuration

phase.

13

Chapter 3

A New Computer Vision-based Robot Tracking System

3.1 Motivation for the New Optical System

 We tried to retain a vision based tracking system as it has some

inherent advantages over other de-centralized tracking systems. The vision

based tracking system can optionally allow the remote user to view the

testbed to actually verify the actual position of the nodes. Also, a central

optical tracking system would still be able to track the position of a node even

if the router board on the node has crashed (A common occurrence in a

testbed with large number of nodes and continuous operation) and there is no

communication from that node. This would enable the current dead node to

be classified as an obstacle so that other nodes can navigate the testbed

without colliding with this node.

The primary problems we had been trying to solve are threefold.

1. Replace the color based identification algorithm with a more robust and

scalable vision based tracking system.

2. Eliminate or reduce the requirements for precise position of camera.

3. Try to reduce by as much as possible the area wasted by the overlap

requirement.

3.2 Options for Improving the Color-based Node Positioning
Algorithm

 The initial idea was not to rely on colors but on image features for

object identification and detection. We considered several alternatives with

this objective. Using Alphabets and or numbers printed on the patches, using

2 dimensional bar codes like QR codes or using distinct images on each node

and using an image detection algorithm.

The first idea that was considered was using alphabets and or numbers

and using OCR like algorithms to detect the image. Thought the algorithm to

detect images or numbers is pretty straight forward, this scheme would only

14

work if alphabets/numbers are fed to the algorithm upright and individually.

Even if this were possible, we would only be able to identify that a particular

node is present in the image that was input to the algorithm. A different

algorithm then needs to be used to determine the exact center of the node. As

for orientation, it has to be determined even before the frame is fed to this

algorithm as the image being fed to this algorithm should be adjusted for

orientation and made upright.

The second idea was to use 2 Dimensional bar code encoding formats like

QR codes. An example of QR code can be seen in Figure 4 [6]. Tools for

generating thousands of unique bar codes are already available. The

algorithm is fairly resistant to changes in scale and rotation. However, an

independent scheme has to be used to detect the orientation of the image as

well as the boundary of the image to compute the center of the node. This is

required because the algorithm requires a rectangular image from which it will

try to read the store information. So, only if the node’s boundary is known, the

image within the boundary can be input to the QR code decoder.

Figure 4 - Example of a 2D binary code, QR code [6]

 The other option was to use a set of images on the nodes and use an

image detection algorithm to classify the images into the set of already

decided training images. This way, we could have an infinite supply of

images.

For this procedure, we considered the SIFT, Scale Invariant Feature

Transform algorithm. The algorithm has very good resilience for changes in

scale, rotation, lighting and affine transformations. This means that the results

produced by this algorithm are very accurate as well as resilient to errors.

15

Also, since the algorithm uses the image features to detect the images,

the difference in orientation between these image features can be used to

determine the orientation. Also since a number of feature points are used to

obtain orientation, and the feature points themselves match only if the feature

is found in the image, the orientation measurements from this algorithm is

also of higher accuracy. Lastly, an image is classified as a particular image

only if certain number of features in the training images are present in the

image captured by the camera. This guarantees that the probability of false

positives or incorrect detection is very low. The only problem with this

algorithm is that it is computationally more expensive compared to the other

methods.

Given the requirements of the testbed to be resilient to lighting changes,

scale and orientation SIFT was chosen as the algorithm for the optical

detection system. We used a implementation of Sift from Rob Hess of Oregon

State University [8] in our optical node system.

3.3 Scale-Invariant Feature Transformation

Sift algorithm is mainly used in computer vision for identifying objects in

the real world that were already present in a set of training images. The actual

steps of the algorithm are listed below [7].

The first step of the algorithm is to find scale-space extrema. A series of

images are constructed in different scale-spaces and Gaussian transform is

applied to them. After this step, Laplace of Gaussian gives the best indication

of the characteristic scale. However, to reduce computational complexity,

difference of Gaussian is performed instead. After this step, each pixel is

compared with each neighboring pixels including the pixels in the neighboring

scale to obtain the Difference of Gaussian Extrema.

This step involves locating the true extrema by taking the derivative of the

Taylor’s series. Also filter out points with low contrast and perform edge

response elimination. The next step performs the orientation assignment. For

each region around the key points identified in the previous step, create a

16

gradient histogram with 36 bins for orientation weighted by Gaussian window.

All peaks above 80% of the highest peak are used for creating key-points with

that orientation.

Using the image of the closest scale, rotate a region of pixels typically

16X16 pixels close to the computed key points, by the already determined

orientation. This region is divided into sub-regions typically, 4X4 pixels for a

total of 16 sub-regions. In each sub-region, a gradient histogram is drawn with

8 bins for orientation. This 4X4 sub-regions each with 8 bins forms a 128

element vector referred to as feature point.

Feature points are computed individually for each of the images used for

comparison. All comparisons or matching operations performed on the image

are essentially matching the feature points. Typically, the feature points from

the training image are stored in a K-dimensional indexing structure like the K-

d tree to make the comparison process faster. The algorithm is made scale

invariant by considering multiple scale-spaces, rotation invariant since only

the best orientation is considered.

3.4 SIFT based Robot Tracking System

The SIFT algorithm as explained above can be used to match objects

in training images to objects in the frames from the camera. However, this

information should be used to obtain the exact position and orientation of

objects. Though well established algorithms are already available for outlier

elimination, we use a computationally simple outlier elimination algorithm that

delivers sufficient accuracy of operation.

3.4.1 Robot Tracking Algorithm

The devised algorithm is explained below:

A set of training images are selected without having any common features.

Given any two random images, there is only a small probability that the two

images will share a significant number of features. We also wrote a tool to

make the process of finding images for the SIFT algorithm. The tool is

17

discussed in section 3.4.2. The training images are pre-processed by the

training algorithm to identify all the features in them. Each image is associated

with a set of features each of which includes the position of the feature, the

orientation of the feature as well as SIFT related information required for

matching these features with the features on the destination image.

Each frame from each individual camera is broken down to feature points.

These feature points are then compared to each set of features in the training

image. The matching features are maintained in a separate set for each

training image. It has to be noted that multiple MiNT nodes can be present in

the same camera frame. This is the reason for maintaining separate matching

set for each image.

However, in this set we need to maintain only the position and orientation

of each feature. We will not be using SIFT based attributed after this point in

the algorithm. For further computation, we also associate each feature

(position and orientation) in the matching set with the feature point in the

training image that matched it. Here also, it is sufficient to maintain only

position and orientation of the matching features in the training set. Let us

refer these training feature points associated with features in the matching set

as associated training feature points.

Once the feature points are identified, centroids for the MiNT nodes are

calculated from them. This step is necessary as features tend to be

concentrated along the rich portions of the image. Taking an average of the

position of the features would skew the value of the centroid towards these

rich regions.

The computation of the centroid for the MiNT nodes requires the use of the

associated training feature points. Thus the output of this step is a set of

centroids as computed from each element of the matching set. Let us call this

set the centroid set. At the end of this step, there is utmost one set of centroid

feature points for each training image. In other words, nodes that are present

in that frame would have a centroid feature set associated with it. Ideally,

Nodes that are not present should not have centroid sets associated with

them. The computations for calculating centroid of the MiNT nodes are

18

discussed in section 3.4.3. After the completion of this step, the associated

training feature points need not be maintained.

However, there is a small probability that the nodes that are not present in

the current frame could have centroid sets with a few points. It means that few

features in these images look similar to features in other training images. On

the same note, there is also a small possibility of a some features in the

matching set of correct nodes actually being features of other images or

objects in the testbed. In both of the above cases, the number of erring

features are typically small, one or two.

However, taking them into account for further calculation would lead to

incorrect values for the centroids. These points can easily be eliminated as

they typically are well separated from the correct set of points. Also, these

points could have incorrect orientation which could skew the orientation

significantly if the actual computed orientation happens to be a small value.

The algorithm for elimination of these points is simple and light-weight.

(Discussed in section 3.4.4)

After the elimination of erring points, if the number of feature points in the

matching set (when compared with a particular training image) are higher than

a particular threshold, we assume that the feature points in that matching

indicate the presence of that particular node at that position.

19

Figure 5 - Flowchart of Node Localization algorithm.

Selection of
Training

SIFT

<Training ImageName,
Training Feature Set>

Pre-Processing

Grab Frame
from Camera

SIFT

Feature Set

Processing of camera

Position Calculation
Steps

Matching SIFT based feature points

For Each <Training ImageName, Training Feature Set>, process the
Feature Set

<Training Image, Matching Set>.

Matching Set =>(Feature Points, Associated Training Feature Points)

Compute Centroid

<Training Image, Centroid Set>

Centroid Set => (Feature Points)

Eliminate Outliers

<Training Image, Centroid Set>

Centroid Set => (Feature Points)

Compute average center and orientation

Training Image, Centroid, Orientation

20

Now the center of the node is given by the average co-ordinates of all

the remaining features in the centroid set. The orientation is also computed as

the simple average of all the orientations. However, some special cases are

needed to handled for orientation. This occurs when angle is close to 0. The

average orientation is computed as 180 as the average between 0 and 360.

As of now, this issue is fixed by detecting this case and handling it specially.

Figure 6 - Training image dog matching a dog in the testbed. The red dot

illustrates the computed center.

21

Figure 7 - Training image tiger matching a tiger in the testbed. The red dot

illustrates the computed center.

3.4.2 Tool for Automating the Selection of Training Images

Though the process of selecting training images is easy compared to other

vision based recognition systems, it can become difficult when the number of

images are high. Also, if the entire process is manual, it is possible to choose

an image which has features similar to several different images if there are

large number of images.

So, we evolved an algorithm that when given a large folder of images,

could automatically process them using the SIFT algorithm and select the

best set of images that could be used. There are 3 parameters that determine

the desirability of a image for the SIFT algorithm 1) The image must be

composed of a minimum number of feature points. 2) The image must overlap

with as few other images as possible. 3) The overlap with any other image in

22

the set, in terms of number of feature points should be kept below a threshold.

4) Image should not have repeating features within itself. Though, this does

not impact the image detection in anyway if all the above criteria are satisfied,

there is a possibility of features within the images being matched to other

features, thus making the orientation computation inaccurate.

The selection algorithm consists of 2 stages. The first stage is the filtering

stage. Each image is fed to the SIFT algorithm to generate a set of SIFT

feature points. Images having number of SIFT feature points below a certain

threshold are skipped in this step. Also, images are matched to themselves

and their center and orientation computed. If their center and orientation are

significantly different from their determined orientation, they are eliminated.

This step is to filter out images with property 4.

The second step is responsible for enforcing the steps 2 and 3 of the

desirability parameters. First, the SIFT feature points of each image is

compared with the feature points every other image and the number of feature

points overlapping with every other image is determined. We store the

number of feature points from each image overlapping with other images. We

also store the total number of overlapping feature points.

It is to be noted that the acceptable threshold is calculated individually for

each image depending upon the total number of feature points it consists of.

In other words, nodes with large number of feature points can afford to have

more overlap, than nodes with lesser number of feature points. The reasoning

is that, in case of nodes with larger number of feature points, after the

overlapping points get eliminated by the outlier elimination algorithm, these

nodes would still have enough feature points to qualify as a valid image. (The

minimum number of feature points required in the optical tracking algorithm to

qualify as a node is constant.)

Acceptable overlap = Number of feature points – Minimum number of

feature points needed to qualify as a node.

Technically, an image overlapping in features with many images just

above the acceptable threshold is far worse than an image which overlaps

23

with a fewer number of images with a larger number of feature points. The

reasoning behind the above statement is that the former image disqualifies a

larger set of images from being usable. However, such nodes tend to occur

less frequently. Such nodes should be eliminated first.

To detect this case, during the calculation of step 3, a count of the number

of images disqualified as a result of this image is also maintained. Eliminate

the image that disqualifies the largest set of images and adjust the values for

the rest of the images. In case of more than 1 node with the same count

(occurs frequently when the count drops to 3 or below), the conflict is resolved

by using the number of feature points overlapping as a percentage of the total

number of feature points in the image.

The above steps are executed till a) No images are being disqualified. b)

Number of non-overlapping feature points for all images are greater than the

threshold. Once this is complete, the images can be used for the optical

tracking system. At each step when a node is eliminated, the stored values for

each of the nodes is to be adjusted. This adjustment step takes only linear

time. In a single pass through the cells of the offending node, the number of

feature points overlapping with each node is subtracted from the total. Also,

subtract 1 from the count of number of images disqualified when this node is

removed.

3.4.3 Computation for Calculating the Centroid of the Images given the

Matching Features

This computation requires both the location, (position and orientation) of

the current feature point as well as the location of the feature it matches to in

the training image. In addition to this, it requires the position of the centroid of

the training image. Since training image only contains the node image, the

centroid is always image width/2 , image height/2. Since the distance and

angle of the centroid of training image to the matching feature in the training

24

image is already known, we should be able to compute a similar point for the

actual image offset by an angle given be the orientation of the image.

Figure 8 - Schematic diagram of computation of center B from each

feature point, one of which is shown A.

Using points A and B, the distance (d) between centroid of the training image

(B) and the mapped feature point on the training image (A) is determined.

Also the slope of the line joining A and B is determined. (Θ). However, this

slope has to be adjusted since the origin of the current testbed is in the top left

corner. Comparing the images of the two nodes in Figure 8, the slope Θ is

retained as Θ1 even in the rotated image. In addition to that, there is an

additional component of rotation caused by the orientation of the orientation of

the node. Therefore, the center on the image from the camera is computed

by:

Offset factor (X,Y) = d * cos (Θ1 – Θ2)

The offset factors can then be added or subtracted to the co-

ordinate at point B’ depending up on the quadrant of occurrence of B

keeping A as the origin.

Θ3
d

B’B

Training Image
Image from
camera

Θ A’

Θ1

A

d

Θ

25

3.4.4 Computation for eliminating Outliers

The algorithm takes advantage of the fact that outliers are generally

distributed away from the centroid of the image and tries to eliminate such

points. However, there is a small probability that the feature matched a wrong

point, but still lies close to the centroid. Such points do not affect the average

position of the centroid by a large factor. So we do not take steps to eliminate

these points.

For each feature in the image set, compute the Euclidean distance with all

other points in the matched set. Compute the median of the distances. If the

median distance is greater than a particular threshold (typically half the size of

the node), the point is not considered for node identification. The reasoning is

that if it is a genuine point, it should be located close to the actual centroid.

So, this distance with most of the other points must be small and median

would be one of those values. This results in the genuine point being

selected.

However, had it been an outlier, it would be well separated from the

centroid, and therefore will be far from most of the other points. Even if the

current point occurs with a small group of outlying points, the median would

be one of the distances between the current point and one of the points close

to the centroid which would be large. As a result, this point would be

eliminated by the outlier elimination algorithm. Median is used at this stage

instead of mean because values are typically small and a few rogue values

can skew the calculated values significantly.

26

Chapter 4

Automatic Camera Array Calibration

4.1 Problems in Calibrating the MiNT-m Color Based Tracking
System

Nodes in the MiNT tracking system are identified by the color of the ID

patches attached to them. For this scheme to work perfectly, all the colors

used for the patches in the test bed have to be as far apart in the HSV color

space as possible. If the colors chosen for the ID patches are widely

separated and as non-overlapping as possible in each of the components H,

S and V, each of the colors can have a wide range of values that would still

match to this color. This would take care of minor changes in lighting

conditions, camera blurs at the edges or the effect of shadows.

However, only a limited number of such unique colors can be identified

as the colorspace is constant. The MiNT-m testbed uses only 6 colors of

which two colors - green and red are used for header and footer. The

remaining 4 colors each of which can be used in any of the ID tags giving rise

to a total of 16 nodes. Even with such a limited number of colors, the

probability of a color being identified incorrectly or not being identified at all

was a small but significant value. So the only way the testbed could be scaled

is to increase the number of patches used for identification. This would have

to be accomplished keeping the area of each patch constant, leading to an

increase in the total area of the patch itself. This would in-turn lead to reduce

the total area available for experiments both directly as well as indirectly

(requirements of overlap and collision avoidance.). In effect, the color based

node identification scheme does not lend itself to scale for hundreds of nodes.

The color based identification scheme is also very susceptible to

variations in lighting and shadows. The scheme is so specific to lighting in a

particular area, that each camera in the same testbed has different ranges of

HSV values for each color owing to the slight difference in lighting across the

testbed. This in-turn leads to incorrect detection of nodes at the borders of the

27

camera and also at places where there are changes in lighting within the

same camera. Coming up with range values for each of the cameras is an

imperfect and non-trivial task. Typically, all the color patches are placed in a

distributed fashion throughout the testbed under a camera (Each of the

cameras have to setup individually to handle variations in lighting). This is

followed by coming up with different values for the ranges till all the nodes are

identified.

We wrote a few tools to help make this process easier. The tool has

two components to it. The first component takes as input the different

positions of all the colors. As an example, if the current camera has six color

patches placed under it, green would be present in six different locations as

header, red in 6 different locations as footer and the different ID colors in

different location on the ID patches. With this input, it generates statistics on

all the colors including mean, standard deviation, median, max and min

values for the H, S and V components of all the colors. Looking at this

statistics for each of the components, first, an attempt is made to assign HSV

values to all colors without overlapping using the min and max values. In most

cases, this is not directly possible. In this case, mean and standard deviation

values can be used to come up with slightly compromised range values for

the HSV value components.

The second part of the tool allows us to see how the camera has

recognized the color patches for each of the range values being tried. The two

part tool makes the job of coming up with guesses for range values slightly

more data oriented. However, the process was still cumbersome and required

significant amounts of time to tune the HSV color ranges to the optimal

values.

The MiNT testbed requires the cameras to be aligned in a particular

way to work flawlessly. The cameras should be aligned to either of the axes

and or the border of the other cameras as closely as possible. Also, the

overlap between cameras at the intersection should be atleast as large as one

MiNT node. Both these tasks are non-trivial and require considerable manual

effort. This effort becomes even more difficult as the height of mounting the

28

camera increases. The difficulty also increases as the testbed becomes

squarer, as overlap requirements have to be satisfied with the four adjacent

cameras.

 The overlap requirement also wastes a lot of usable camera area

though overlap allows us to avoid stitching thereby increasing scalability. The

amount of camera area wasted by the overlap can be computed by the

formula

roomba_diagonal * (rows - 1) * camera_height + roomba_diagonal * (columns

- 1) * row_width

where rows, columns represent the number of rows and columns of cameras,

camera_width and camera_height represent the camera resolution

In addition to this, for each column or row of cameras, the node cannot be

allowed to move out of the test bed partially. This would render another

2* camera_width * roomba_diagonal unusable for each column and 2 *

camera_height * roomba_diagonal unusable for each row. So, the total

camera area wasted by the testbed is approximately given by:

= roomba_diagonal * (rows+1) * camera_height + roomba_diagonal *

(columns+1) * row_height

= roomba_height * [(rows + 1) * camera_height + (columns + 1) *

row_height].

However, it is to be noted that all test bed would waste an area equal to the

second factor to maintain accuracy in node position at the testbed borders.

4.2 Goals for the New Calibration System

As previously discussed, the problem of perfectly aligning the camera is

two-fold. Any optical tracking system for a testbed has to cover the testbed in

its entirety. This requirement cannot be avoided. However, achieving this task

without wasting too much camera area is a non-trivial task. We developed a

tool for simplifying camera based setup to ensure full testbed coverage.

29

Adjusting the camera for the above MiNT-m setup also involves the more

difficult task of satisfying the requirement of overlap. Ensuring exact overlap

makes the setup difficult and time consuming apart from wasting effective

camera area. Ideally, the tracking algorithm should work without the need for

overlap. This would not only reduce the setup time drastically, but also help

reduce the amount of camera area wasted by camera overlap.

4.3 Design of the Automatic Camera Calibration System

4.3.1 Ensuring full testbed coverage

To ensure, full testbed coverage, the calibration system has to know

the dimension of the testbed and compute the precise location and orientation

of the cameras in the testbed. If this information could be obtained, we could

then determine the exact location of camera within the testbed. Once we have

this information, a unified image of the testbed showing the orientation of

position of all cameras in the testbed can be displayed for the user. Also, the

displayed image can be updated whenever the user moves a camera

manually. The visual representation of the testbed as well as online feedback

showing the current status of the testbed in response to him moving the

cameras will make it easy for him to setup the cameras. Uncovered regions of

the testbed can be easily identified and corrective action taken.

Handling the Camera Area Outside the Testbed

It must be noted that cameras at the borders of the testbed with incorrect

orientations can have portions of the camera area present outside the

testbed. This portions of the camera area should also be displayed to make it

is easier for the user tuning the position of the cameras. Ideally, the user

would want to minimize the amount of camera area being wasted. Displaying

the camera area outside the testbed allows the user to adjust the camera so

that this area can be minimized. To make this possible, the testbed image

being referred to in the automatic calibration system uses a constant

percentage of the total dimension of the testbed as a border. In our

30

experiments, we used a border of 30% which effectively means that there is a

50% left, right, top and bottom margin.

Automatic Camera Calibration

When the user is done with the calibration process, the position and

orientation of all cameras in the testbed is written to a configuration file. This

information is then used by the tracking algorithm during the tracking process

to determine the location of all the cameras in the testbed. The images /

features detected under each camera are adjusted with offset and orientation

of the current camera. As a result, this tool along with the improvements in the

tracking system completely eliminates the need for exact camera alignment.

Eliminating the Need for Overlap

As previously discussed, overlap is required only to ensure that the nodes

are fully covered by at least one camera. However, using the properties of the

SIFT algorithm and clever design of tracking components, the overlap

requirement can be completely removed.

SIFT detects images by matching features generated by the training image

with features in the current image. Once a match is established, the position

of the node’s center and its orientation can be determined with respect to that

feature. This computation can be performed even if this feature is the only

feature detected by the current camera. Given this property, all features

detected by each camera are sent to a central system, tracking server. The

tracking server then groups the feature points based on what training images

they originally matched and then computes the center and orientation. This

procedure completely eliminates the need for overlap area between cameras.

As a result, automatic calibration system can direct the user to just fully

cover the testbed without the need for worrying about a minimum amount of

overlap. Also, the elimination of the overlap and automatic computation of

camera positions on the testbed means that the cameras can be positioned

any way fit such as to minimize the amount of overlap and wastage of camera

area.

31

4.3.2 Design of the Automatic Calibration Process

Different approaches were considered for determining the position of

the cameras. The approaches included numbering the testbed floor, drawing

a grid on the testbed floor etc. However, since we already have an image

recognition system in place, we decided to leverage the capabilities of the

SIFT algorithm to locate the camera on the testbed. Images are placed in the

testbed at regular intervals in known positions which is used by the algorithm

for its computations.

It is to be noted that the calibration process should detect the pixel to

inch ratio, the position and orientation of camera on the testbed. For the

detection to be accurate, each camera must have at least two images lying in

its range of vision.

Algorithm for Automatic Calibration System

The algorithm takes as input the frames from multiple cameras, the

dimensions of the testbed in inches and the position of all the images in

inches. It also takes as input the size of the canvas to display the testbed and

location of the cameras. This size is typically the maximum size of the image

that can be displayed in a window (Browser). It processes each frame of the

camera individually and uses the position and orientation information to

update a global image of the testbed. The global image of the testbed is reset

at the end of each run.

The testbed is represented by a rectangle of a different color (white in

our testbed) and the rectangle corresponding to the cameras (blue with red

borders in our case) are drawn over this rectangle. At the beginning of each

cycle, the rectangle corresponding to the testbed is drawn on a clear image

and the following processing steps are performed for each frame of every

camera:

32

The image is fed to the SIFT module where it is compared with every

training image in the set. The SIFT module returns the name of the images

that are currently present along with their current position (in pixels) and

orientation within that particular camera frame. The first task of the automatic

calibration system is to identify the pixel to inch ratio for each camera. There

are differences in pixel to inch ratio for each camera owing different mounting

heights and or different levels of zoom. Since the task of camera position

locator requires processing the location of different cameras and representing

them in a single image of fixed resolution, most of the calculations are

preformed in inches. This is because different cameras have different values

of pixel-to-inch ratio and the pixel values from them cannot be compared with

each other. At the final step, the inches are mapped to fixed dimensions of the

testbed image.

To find the pixel-to-inch ratio, distance in pixels is computed between the

centroids of each pair of images lying under the camera. Since the absolute

position of all the images in the testbed is already known, distance in inches

can be computed between each of these pairs can also be readily computed.

The pixel to inch ratio is obtained by dividing the distance in pixels by distance

in inches for each pair of images and taking the average.

Pixel-to-inch ratio = (∑ i,j (Pixel distance between centroidi and

centroidj / Inch distance between centroidi and centroidj))/Number of

pairs of centroids.

The next step is to compute the position of the center and orientation of

each camera. For this step all positions are converted to inches. This

procedure is very similar to the computation of center for the images in the

node location algorithm. Let us first look at the scenario within the

camera.(Please refer Figure 9). The center of the camera can be readily

computed as the frame resolution width/2 , frame resolution height/2. Let the

distance of the centroid of an image to the center of the camera be

represented d. Similarly, the angle of the line joining the centroid to the

centroid of the camera can also be readily computed, say Θ. Now if the

33

calculations have been computed in inches so far, the distance between the

camera center and the image centroid will still be the same. (d). Moreover, the

position of point A’ which represents the absolute location of the image in the

testbed is already known. From this information B’, the center of the camera

has to be computed. This is the same problem as finding the center of an

image on the testbed, given the position of the point and the center in the

training image. Please refer section 3.4.3 for the calculations to determine the

position of B’.

Figure 9 - Illustrates the calculations for computing the center of the camera in

the testbed.

Following step 5, center is computed with respect to each image present in

the testbed. This value is then averaged to determine the center of the

camera. Calculating orientation or the angle of tilt for the camera is trivial and

can be computed by averaging the orientation values for each of the images.

d

B’B

Perspective
within camera Camera’s

perspective within
the testbed

Θ A’
Θ1

A

d

Θ Θ3

34

Figure 10 - Schematic diagram showing the computation of the four corners of

the rectangle.

The next step of the algorithm computes the four corners of the

rectangle using the center and orientation just computed. Using the pixel-to-

inch ratio and the resolution for the camera, the bounds of the camera in

inches can be computed. The four corner points of a rectangle can easily be

computed given the center point, its orientation and the length of the half-

diagonal (d). Like in the previous step, two offset factors are computed for

each corner based on the angle of that corner from x-axis and the angle of

rotation of the camera. For example to compute the position of the point A,

Offset_x = d * cos (360 – Θ + orientation of camera)

Offset_y = d * sin (360 – Θ + orientation of camera)

A (x,y) = (camera center X + Offset_x, camera center Y + Offset_y)

Once the four corners of the rectangle are obtained, lines are drawn
joining the four corners of the rectangle.

A

360 - Θ

Θ
180 - Θ

d 180 + Θ

35

4.3.3 Hardware Components of the New MiNT-m Testbed

The new MiNT-m testbed was designed to be setup using as less time as

possible and also be highly reconfigurable. So instead of attaching the

cameras to the ceiling, we decided to attach them to rods (extension poles)

supported on each side by props. For props, we extended the height of

commercially available coat-stands to increase their height to 9 feet. We then

placed an extension pole on top of them. Cameras are then attached to the

extension pole. To prevent the coat stands from toppling over as they have

become top-heavy, weights are attached to them. This is the procedure for

constructing a single row of cameras. This can be extended to any number of

cameras by repeating the same number of steps.

4.3.4 Software Components of the MiNT-m Node Localization
Component

The MiNT testbed is composed of composed of primarily of 3 main

software components

1. Camera server

2. Camera Position Locator

3. Tracking server

Architecture of the Camera Server

The camera server is responsible for computing the feature points lying

under each camera. One camera server process is run for each camera in the

testbed. An open source tool named streamer is modified to capture video

frames from the camera. The camera server process waits on the socket for

being polled. On being given the region of the image under the camera to

scan and the training image to compare with, the camera server captures the

current frame from streamer, performs the SIFT based matching of the portion

of the image specified, with the features in the specified training image. This

results in features matching the training image. Using these features, and the

computation detailed in section 3.4.3, the center of the nodes according to

36

each of the feature points can be computed. These feature points are then

returned to the polling process.

The polling process can be either the camera position locator or the

tracking server. The functionality of the camera server remains the same. The

camera server is designed as one process for each camera to increase

scalability. The bottle-neck in both node localization and camera position

locator is the SIFT algorithm for matching features. If the process of grabbing

the entire frame and processing it for SIFT can be moved to different physical

machines for different sets of cameras, the setup can be scaled to tens to

hundreds of cameras.

Figure 11 - Schematic diagram showing the functional modules of camera
server

Camera Server

Streamer

Camera Server
Controller

Helper class for Socket
Communication

SIFT based feature
point detection

Center computation

Tracking Server Camera Position
Locator

37

Architecture of the Automatic Camera Array Calibration System

Camera Position Locator is responsible for interactively displaying the

location of the cameras in response to user adjusting the cameras. The

camera position locator polls all the camera servers in the MiNT testbed

requesting them to compare the feed from the camera with all the training

images. Depending up on the location and orientation of images lying under

each of the cameras, the automatic calibration system computes the position

of each of the cameras and displays them in the global image of the testbed.

All the three modules use the same Socket Helper module for socket

communication. Also, the camera position locator does not poll the camera

server with each training image one at a time for performance reasons.

Instead, the camera server compares each image against the entire list of

training image and returns a map containing the training image and the set of

feature points found when matching it.

The returned result is pruned of outlying features and checked to see if

there are at least a minimum number of feature points. If not, there is a good

probability that only a part of the training image is lying under the current

camera. In these cases, outlier elimination algorithm would not have been

exact and it is better to ignore such images. The features are then used to

compute the rectangular regions and then updated in the global image. It is to

be noted that the global image is to cleared at the end of every cycle.

38

Figure 12 - Functional Software component diagram of Camera Position
Locator

Architecture of the Tracking Server

Tracking server also makes use of the camera server. It communicates

with all the camera servers to obtain the position of all the nodes under them.

It then translates them to absolute positions making corrections for camera

position and orientation. The tracking server also performs outlier elimination

and intelligent tracking schemes to preserve accuracy and speed.

4.4 Automatic Calibration System Workflow

The actual manual steps involved in the setup of the testbed are detailed

below:

Place images on the testbed at marked positions without any tilt. Positions

of the marked positions are already measured before hand or the positions of

the images are measured after they are placed on the testbed. If the set of

images used for detection are different from the set of images used for

tracking the images can even remain fixed to the floor when experiments are

run. This way, whenever there is a change in camera position or new cameras

are added to the testbed, their position can be automatically detected.

Automatic Camera Array Calibration System

Camera Server
1

Camera Server
2

Camera Server
3

Camera
Position
Locator

Socket Helper

Computations
for finding
rectangular
bounds

Global
Image
Updater

39

The cameras are attached to props looking down on the testbed. No

special care needs to be taken to orient/align them. The automatic calibration

system processes the image from each feed independently. In the initial run, it

gives a list of cameras that do not have even two images under them. If the

camera contains no image under it, the position of the camera is not

displayed. However, if there is at least one image under the camera, the

position of the camera is drawn with a default pixel to inch ration (typically 640

pixel/ 72 inches).

But given the density of images on the testbed and the fact that each

camera covers a significant area, this is a rare occurrence. Should this arise,

the user has to point these cameras in such a way that at least two images

are captured by them. Once this step is done, the calibration tool generates

an image of the testbed once, every 10 seconds. The cameras are

represented as rectangles that show both the position and orientation of the

cameras with respect to the testbed. Using this image, the user can verify

whether the entire testbed is being covered or not. The image can be viewed

in a browser with refresh timeout set to 10 seconds. This way user has live

feedback whenever he moves the cameras. Since, the user has live feedback,

it is easier for him to adjust the cameras to get a better coverage and better

utilization of the camera area.

Whenever, the camera positions are changed, the position and orientation

of the cameras are stored in a file. The tracking system takes this file as the

input and automatically makes adjustments to the features coming in from

different cameras based on their position and orientation. The system can be

used very effectively even after the testbed has been setup. If new cameras

are added or there have been small changes to the camera orientation, the

testbed is still fully covered. The user can run the camera position locator tool

and manually verify that the testbed is still fully covered. Once this is

complete, he can start the tracking system and tracking will work seamlessly.

40

4.4.1 A Typical Camera Calibration Work Flow

We illustrate different possible scenarios faced during the automatic

calibration process. It is to be noted that white represents the testbed

dimensions, blue shaded, red bordered rectangles represent the area covered

by the cameras. Initially, it is assumed that all the cameras are highly skewed

with some cameras facing the testbed at an angle.

 Initially, one of the camera is facing away from the testbed. It does not

even contain a single image under it. In this case, the camera calibration

system prompts the user to adjust the camera and displays the positions of

the rest of the cameras. The image generated by the automatic camera

calibration system when the top left camera is facing away from the testbed is

shown in Figure 13. In Figure 14, this camera is slightly adjusted to have one

image under it. Though the automatic calibration system still prompts the user

for the particular camera to be adjusted to have atleast two images under it, it

computes the position and orientation of the testbed and displays the camera

using default values for pixel-to-inch ratio. This gives the user, a sense of

where the camera is in relation to the testbed. It can be seen in Figure 14, that

the top left camera is considerably smaller than the other cameras. This is

because the default pixel-to-inch ratio is very conservative and is just meant

to give a sense a location to the camera.

41

Figure 13 – Figure illustrating steps in Automatic Calibration. Cameras not
aligned. One camera without any image under it.

Figure 14 – Figure illustrating steps in Automatic Calibration. Cameras not
aligned. Top left camera has a single image under it.

Following this the user further adjusts the camera to face the testbed.

This time, the camera is facing the testbed at an oblique angle .The remaining

42

cameras are also adjusted to fully cover the testbed. Portion of the testbed as

seen from an obliquely pointing camera can be seen in Figure 15. Following

this, a final image of the testbed is generated that fully covers the testbed,

Figure 16. It is to be noted that even with this amount of irregularity in camera

position and orientation, tracking still works reasonably.

Figure 15 – Figure showing a testbed camera obliquely pointed to the tesbed.

43

Figure 16 – Image generated by the automatic calibration tool showing all the
cameras fully covering the testbed.

4.5 Implementation Issues

 We faced a host of implementation issues during implementation and

integration of the Robot tracking system and the Automatic calibration

System. Most of the problems were due to the fact that the system involved

inter-working and integration of lot of components. However, on a positive

light, these issues made the design of the system more extensible and more

scalable.

4.5.1 USB Bandwidth Problem

USB cameras typically reserve a percentage of the available USB

controller bandwidth [8]. This happens irrespective of the frame-rate. As a

result of this fact, even though we require a low frame-rate, typically 5 frames

per second, more than 3 cameras cannot be connected to the same USB

controller. One solution to this problem is to use 1 USB adapter card for each

camera, effectively one controller for each camera. This way, there will no

contention for USB bandwidth of USB controller. As a result of this design

44

issue, camera servers were designed to operate on one camera at a time.

Each server can run as many camera servers as the USB bandwidth of the

server would support.

4.5.2 Incompatible Drivers for Camstream

 We had to buy new cameras for the testbed as the old cameras in the

testbed were found to be noisy. However, the new cameras Logitech

Quickcam Pro 9000 were compatible only with V4L2 which were only

available in the later versions of linux kernel [9]. Particularly, they were not

compatible with the existing pwc drivers. But when the tracking servers were

upgraded to 2.6 kernel, we discovered that camstream, the open source

software that was customized for tracking, would not work with Quickcam Pro

9000 though it supported V4L2 [10]. This forced us to adapt aV4L2 based

video grabber software, streamer which was used for tracking. As a result, the

new robot tracking algorithm and the tracking server are both designed to be

completely decoupled from any frame grabbing software used. This would

make the shift to a new camera frame grabbing software with minimal

changes to code.

4.5.3 Distributed System Architecture

Designing and implementing a system composed of several distributed

components caused unique problems in design and debugging. The design

revolves around asynchronous requests from camera position locator and

tracking server to camera server and asynchronous responses. To keep the

asynchronous behavior under acceptable limits, the design tries to batch

requests and responses whenever possible. This is a desired trait as some

components of the testbed like the tracking server and the automatic

calibration system require the position information of the entire testbed at a

snap shot in time.

 To achieve this behavior, all centralized components like tracking

server and the automatic calibration system queue responses from multiple

camera server, and only process the responses when all of them have

responded. This approach has a caveat that if one camera server dies, the

45

entire testbed becomes useless. To handle this case, we timeout after a

certain time interval and if the same camera server misses updates

continuously for a pre-configured number of times, the camera server is

marked non-functional. As of now, though the current implementation detects

this case, and points out the erring camera server, the process does not

continue. This because computing trajectory in a testbed with failed cameras

located arbitrarily is difficult.

46

Chapter 5

Evaluation

 The two main contributions from this thesis are developing a SIFT

based robot tracking system and camera array automatic calibration system.

The first step of evaluation was to study the performance of the different

stages of the SIFT based image detection algorithm, evaluate its accuracy

and finally the setup time and accuracy of Automatic camera array calibration

system.

5.1 Performance Evaluation of SIFT image detection
algorithm used in the testbed

First, we study the performance of SIFT algorithm for generating and

matching features. The SIFT algorithm as used in the image detection

system has three main components that contribute to the total running

time of the algorithm. They are

1. Generating feature points for training images.

2. Generating feature points for the image captured from the camera.

3. Time taken for matching features.

5.1.1 Generating Feature Points for Training Images

This step is executed once at the beginning of the setup. Once features

are computed for all the training images, this data is preserved for the

duration of the setup and experiment. The time taken for this step is therefore

non-recurring but proportional to the number of training images in the testbed.

But since the training images are smaller in dimension than any of the video

frames captured in the testbed, the time taken for this step should be

insignificant.

From the above Table 1, it can be clearly seen that the time taken for

detecting all the features in a given image is dependent more on the number

47

of features present and less on the size of the actual image. This fact is easily

illustrated by comparing the first image and last image.

Image size Number of Features Time taken in ms

80x66 31 27.697

78x72 40 33.335

75x62 66 34.694

82x58 73 47.905

75x61 75 64.133

80x60 95 71.093

Average 63.33 46.476

Table 1 - Comparison of times for generating features for different

images sizes and number of features

5.1.2 Generating Feature Points for the Image Captured from the Camera

From the above table, it should be clear that with the increase in the

number of nodes under a camera, the number of features within them will

increase and hence the time taken for computing the number of features.

Number of Images in
testbed

Number of features in
camera image

Time taken in ms

0 89 456.809
1 136 486.734
2 227 367.07
3 290 541.801
4 367 576.086
5 445 644.22
6 533 654.313

Average 532.4333
Table 2 – Comparison of time taken for generating features for an image

taken in the testbed.

The values that we obtained in table 2 are in accordance with the fact that

the computing time slightly increases with the increase in the number of

feature points. The first entry was taken with an empty but no means clean

testbed. The testbed had several tape measurements and measurement

markings. Even with 89 features for the background noise in the testbed,

48

localization was pretty accurate for all the test cases. Also, it has to be noted

that even with 6 images lying under the camera, a very unlikely occurrence for

both tracking server and the automatic configuration utility, the time taken for

processing the image was less than a second. It is to be noted that since this

operation is performed by the camera server, there is no increase in overall

delay irrespective of the number of cameras as long as camera servers are

load balanced in multiple servers.

5.1.3 Time taken for Matching Features

Since the image position and orientation are determined by matching the

features from training image to those from the actual image, time taken for

matching will be proportional to the number of features present in the camera

frame. This means that the time taken for matching would also increase if

there are more nodes present within a single camera.

Number of Images in
testbed

Number of features in
camera image

Time taken in ms

0 89 2.026
1 136 3.146
2 227 5.55
3 290 6.573
4 367 27.656
5 445 10.655
6 533 12.692

Average 9.756857
Table 3 – Comparison of time taken for matching feature points of an image

with training features.

 From table 3, It can be seen that the time required for matching SIFT

features is insignificant compared to the time taken for generating the features

in the image. However, as already predicted a small increase in the time

taken is noticed as there is an increase in the number of features. This cost

increases linearly with the number of nodes in the testbed. This also shows

that though the automatic calibration system compares each frame captured

from the camera with all the training images, the comparison should take

negligible time, given that the Automatic calibration system updates its global

image only once every 5 or 10 seconds.

49

5.1.4 Evaluation of the Accuracy of the SIFT Detection Algorithm

We also need to evaluate the accuracy of the SIFT image detection

algorithm. We measure both the accuracy in the position and orientation of

different images when they are present with different orientations.

The table below (Table 4) is constructed from data taken from 5 different

frames of the testbed with two images dog (image with 24 feature points) and

tiger (image with 72 features) placed at different positions of the testbed.

However, since the orientation cannot be precisely controlled on the testbed,

the five images are then digitally rotated in increments of 45 degrees to obtain

eight different orientations. This step is performed only to enable precise

measurements of the error in position and orientation. The error value for

each image in each orientation is the average of the five error values at each

specific orientation (say dog at 45 degrees is the error computed from 5

different positions of the dog in the testbed). From the above table, it can be

seen that the accuracy increases with the increase in the number of features,

but only marginally. From our experiments, we determined that accuracy

remains acceptable when the number of number of feature points is greater

than 20. So we fixed the threshold value for the detection of the image at 20

feature points. Since the pixel-to-inch ratio in the testbed is 7.619, the average

error in position is only 1.204 inches.

Orientation Features Error in position

in pixels

Error in

orientation in

degrees

0 24 5.59017 0

45 24 7.905694 +0.800

90 24 5 +0.250

135 24 10.30776 +2.4

180 24 12.5 +0.6

225 24 15 +1.8

270 24 10.6066 +1.0

315 24 19.52562 +0.85

Average 10.8044 0.9625

0 72 5 0.100

50

45 72 2.5 +0.5

90 72 9.002 +0.5

135 72 5 +1.0

180 72 9.013878 -.05

225 72 12.5 -2.0

270 72 10.30776 -0.3

315 72 7.071068 -1.8

Average 7.549 0.71875

Table 4 - Comparison of the accuracy of SIFT algorithms for different
orientations and images with different number of features

5.2 Evaluation of the Camera Array based Automatic
Calibration System

Since the primary goal of this thesis is to decrease the time of setup, one

of the main evaluation parameter for automatic calibration system is the time

taken for the setup. The time taken for the setup of the old test bed and the

new SIFT based testbed consists of the following factors:

1. Time taken for selecting SIFT images

2. Time taken for assembling the MINT-m nodes.

3. Time taken for physical testbed setup

4. Time taken for camera adjustments for alignment

5. Time taken for color based adjustment

6. Time taken for setting up computing resources and software.

The improvements propsed in the thesis reduce factors 1, 3 and 4.

Time taken for assembling MiNT-m nodes is proportional to the number of

nodes in the testbed.

Operation MiNT-m Testbed SIFT based Testbed

Time for Selecting

Images

- 30 mins

0 if images are published

Time taken for physical

testbed

1 hour 1 hour

51

Time taken for camera

adjustments

1 hour/camera 45 minutes

Time taken for color

based adjustments

2 hours/camera -

Total 1 hour + 3 hour/camera 2 hours 15 minutes

Table 5 - Time taken for setting up MiNT-m Testbed vs SIFT based testbed

From the above table, it becomes clear that the redesigned SIFT based

testbed takes significantly less time to setup compared to the old MINT-m

testbed. Also, it has to be noted that the MINT-m design does not scale to

more than tens of robots.

5.3 Evaluation of the Accuracy of the Camera Array based Automatic

Calibration System

Accuracy of Camera Position Locator was also experimentally

evaluated initially with 2 images placed under a camera and then with 3

images. The above experiment was also run for 8 different digitally rotated

versions of the camera image to closely monitor the orientation and an

average of 5 values were taken.

Orientation 2 images under the camera 3 images under the camera

Orientation Position Orientation Position Orientation

0 1.224 0.4 1.08234 0.3

45 5.512769 0.4 5.24616 0.2

90 11.42503 -0.8 10.7132 -1.0

135 16.05557 +1.0 13.7619 -0.2

180 18.31154 +0.2 17.6956 -0.7

225 16.49337 +1.8 14.2164 0.8

270 11.67262 -0.8 10.0051 0.8

325 5.81082 -0.9 4.8674 -0.5

Average 10.81321 0.7875 9.698513 0.5625

Table 6 – Comparison of accuracy of camera position locator for different

orientations and images under the camera.

52

As in the above experiment, though there was a slight increase in

accuracy, the increase was only slight. So we can conclude, that we can get

the required amount of accuracy even if we have 2 images under each

camera.

53

Chapter 6

Conclusion

6.1 Contributions to the thesis

 In this section, we highlight our contributions to the MiNT-m testbed

and advantages of these new techniques. We also discuss possible

improvements to the different modules. We replaced the color based node

location system with an image recognition system based on SIFT. Since, the

SIFT algorithm is designed to match images, the testbed can be scaled to any

number of nodes. This is also made easy by the flexible design of camera

server which allows each server to handle different number and sets of

cameras. The characteristics of the SIFT algorithm along with our algorithm to

eliminate outliers has drastically improved the detection accuracy of the

testbed. We also developed tools to make the process of finding desirable

images for SIFT easy. Also, a large set of images could be published along

with the software, to make the setup easier. Another tool was developed to

make the process of setting up cameras easier. Since cameras are mounted

on rods supported by props, setting up the testbed (The camera alignment

part) takes very little time as the camera position locator tool accurately

displays the position of the cameras in the testbed in real-time.

6.2 Future Enhancements to the SIFT Image Selector Tool

The tool is used to make the process of selecting images to be used for

node localization easier. The entire process of choosing images can be

automated by automatically crawling for images of particular size and type in

a public image site given the number of images required. The current

implementation just returns the set of all usable images. It would be more

useful if it ranks all the returned images by desirability as the number of

images required is typically less than the images required.

This procedure is basically an offline procedure. The algorithm for

selection of images can be made much more efficient if for each training

54

image, we were also allowed to eliminate only those feature points that

overlap with a number of other images. However, for this to work, the selected

feature points should be persisted and read in by the algorithm for the tracking

system. One disadvantage of this approach is that there would be reduction in

image detection accuracy if many such features are dropped.

6.3 Future Enhancements to the Camera Array Automatic
Calibration

A simple enhancement to increase the update frequency would be to

remember the training images that were detected under the camera during

the previous scan. After this cycle, it makes sense to only compare those

images which are a fixed distance away from these images.(say 1.5 m). With

this enhancement, the update frequency can be as high as 1 or 2 s and since

a camera can be physically moved only such a distance in this time duration,

it makes sense.

Instead of the user determining if the complete testbed is covered, the

system can automatically determine if the testbed is covered or not. This can

be easily achieved by shading each rectangle with a color instead of just

drawing the boundary. Once all the cameras are processed, the testbed is

scanned once more to determine if all the pixels in the testbed are shaded. If

not the testbed is not fully covered. This enhancement was not completed

mainly for performance reasons.

Given which portions of the testbed are left uncovered, the testbed could

suggest cameras that can be moved to cover the overlap. However, this is a

non-trivial task since given an uncovered area and several cameras occurring

around that area, there are several ways of filling up the free space. Also,

given the availability of network controlled cameras which are capable of pan/

tilt, the output from the previous step can be fed to the cameras and they can

tune themselves. However, the currently available cameras with pan/tilt facility

are costlier than normal cameras.

55

Bibliography

[1] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,

R. Siracusa, H. Liu and M. Singh, "Overview of the ORBIT Radio Grid

Testbed for Evaluation of Next-Generation Wireless Network Protocols",

Proceedings of the First International Conference on Testbeds and Research

Infrastructures for the DEvelopment of NeTworks and COMmunities, 308 -

309, February 2009.

 [2] D. Johnson, T. Stack, R. Fish, D.M.Flickinger, L. Stoller,R. Ricci, J.

Lepreau, "Mobile Emulab: A Robotic Wireless and Sensor Network Testbed",

INFOCOM 2006. 25th IEEE International Conference on Computer

Communications. Proceedings, 1-12, April 2006.

[3] Lars Cremean , William B. Dunbar, Dave van Gogh, Jason Hickey, Eric

Klavins, Jason Meltzer and Richard M. Murray, "The Caltech Multi-Vehicle

Wireless Test bed", Proceedings of the 41st IEEE Conference on Decision

and Control, 2002, 86-88 vol.1, Dec. 2002.

[4] C. Mitchell, V.P. Munishwar, S. Singh, Xiaoshuang Wang, K. Gopalan,

N.B. Abu-Ghazaleh, "Testbed design and localization in MiNT-2: A

miniaturized robotic platform for wireless protocol development and

emulation", Communication Systems and Networks and Workshops, 2009.

COMSNETS 2009, 1-10, Jan. 2009.

[5] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, W. Leal, "Kansei: a high-

fidelity sensing testbed", Internet Computing, IEEE vol 10;issue 2, 35- 47, Mar

- Apr 2006.

[6] Wikipedia page for QR codes http://en.wikipedia.org/wiki/QR_Code

[7] D. Lowe, “Distinctive image features from scale-invariant keypoints”,

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

[8] Problem of USB bandwidth

http://www.lavrsen.dk/twiki/bin/view/Motion/FrequentlyAskedQuestions#How_

do_I_get_Motion_to_work_with

56

[9] V4L2 included in kernel in 2.5.x/2.6.x

http://www.linuxtv.org/wiki/index.php/Development:_Video4Linux_APIs

[10] UVC incompatible Software

 http://www.quickcamteam.net/software/linux/v4l2-software/uvc-incompatible-

software?searchterm=camstream

