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Abstract of the Thesis
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Wireless Sensor Networks

by

Zhexi Pan

Master of Science

in

Electrical Engineering

Stony Brook University

2009

Wireless sensor networks (WSNs) have emerged as a new information

gathering paradigm in a wide-range of applications. An important class

of such applications is continuous monitoring applications such as habitat

monitoring and structural monitoring, where a large number of wireless

sensor nodes are employed for continuous sensing in a field, and the sensing

data from scattered sensor nodes are gathered and transmitted to a base

station for processing. Among different approaches proposed to gather

data in WSNs, clustering is generally considered as a promising approach

for data gathering in large-scale WSNs due to its hierarchical nature.

Recent experimental studies have revealed that a large percentage of wire-

less links are lossy and unreliable for data delivery in WSNs. Such findings

raise new challenges for the design of clustering algorithms in WSNs in

terms of data reliability and energy efficiency. In this thesis, we propose

distributed clustering algorithms for WSNs by taking into account of the
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lossy nature of wireless links. We first formulate the one-hop clustering

problem that maintains reliability as well as saves energy into an inte-

ger program and prove its NP-hardness. We then propose a metric-based

distributed clustering algorithm to solve the problem. We design a new

metric called selection weight for each sensor node that can indicate both

link qualities around the node and its capability of being a cluster head.

We further extend the algorithm to multi-hop clustering to achieve better

scalability. Extensive simulations have been conducted under a realistic

link model and the results demonstrate that the proposed clustering algo-

rithm reduces the total energy consumption in the network and prolongs

network lifetime significantly compared to a typical distributed clustering

algorithm, HEED, that does not consider lossy links.
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Chapter 1

Introduction

In this chapter, we introduce the clustering approach, its challenges and goals in the

existence of unreliable links in wireless communications, and the contributions of the

thesis.

1.1 The Clustering Approach

Wireless sensor networks (WSNs) have gained much attention recently for their po-

tential use in a wide range of applications. An important class of such applications is

continuous monitoring applications, such as habitat monitoring [1], structural mon-

itoring [2], emergency response [3], etc. For these applications a large number of

wireless sensor nodes are employed for continuous sensing in a field. The sensing data

from scattered sensor nodes are then gathered and transmitted to a base station (BS)

for processing.

Due to the tremendous practical interests, much research effort has already been

devoted to efficient data gathering in WSNs and different approaches have been pro-
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posed, such as power aware routing [4, 5], mobile data gathering [6, 7] and clustering

[8–12]. In a homogeneous network where sensors are organized into a flat topology,

although power aware routing finds better routes to save energy, it shares one common

feature with other routing schemes: sensor nodes close to BS are overloaded with the

relay traffic from the nodes that cannot reach BS directly. Hence they consume more

energy than others and become the bottlenecks of the network lifetime. Network

lifetime is defined as the time until the first node depletes its energy. By introducing

a mobile collector into the field, the mobile data gathering approach alleviates the

burden of relay traffic for each node and thus prolongs the network lifetime. The

mobile collector gathers data from sensors within its communication range while it

traverses through the entire field. Although the benefits of mobile data gathering

approach is remarkable, it may cause relatively long delay in data collection, since

each sensor node has to wait for the collector before its data can be sent.

Clustering is generally considered as a promising approach for data gathering in

large-scale WSNs due to its hierarchical nature. Compared to the aforementioned

approaches, clustering alleviates the “hot spots” problem encountered in routing,

and achieves a balance between the uniformity of energy consumption and the long

data collection latency in mobile data gathering. Specifically, clustering is to group

sensors into disjoint clusters such that sensors as cluster members form the lower

layer of the network send data to their cluster heads, and cluster heads form the

higher layer of the network and forward data to the BS. This hierarchical nature of

clustering increases the scalability and is especially suitable for large-scale WSNs.

Fig. 1.1 illustrates the routing and clustering approaches.
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Figure 1.1: Different ways to gather data in a WSN: routing and clustering.

1.2 Challenges and Design Goals

Due to the nature of wireless communications, WSNs may suffer from the unreli-

able wireless links. Recent empirical studies [13–15] have revealed the prevalence of

lossy and asymmetric links in WSNs, which are unreliable for data delivery. It was

reported in [14] that one third of the links in their test-bed composed of 60 Mica

motes experienced more than 30% of the packet loss even under light traffic loads

in an office building. The existence of such lossy links is problematic to support re-

liable data gathering over a long period of time in WSNs, as lossy links can result

in not only failure of data delivery but also more energy consumption due to packet

retransmissions.

Although a multitude of clustering algorithms [16] have been proposed for WSNs

in the literature, the problem of lossy wireless links in WSNs has not been addressed

by existing solutions. First, lossy links are unreliable for data delivery while reliabil-

ity of packet transmission is critical in many applications. For example, in a sensor

network for air pollution monitoring in a chemical plant or radiation level control in

a nuclear plant, the reliability of packet transmission largely affects the quality of

surveillance. A common approach of ensuring reliable packet delivery is to employ
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hop-by-hop retransmissions, where each individual link provides reliable forwarding

to the next hop by retransmitting lost packets when necessary. Second, the energy

consumption on transmission and reception is under-estimated by assuming all the

wireless links are reliable, which fails to capture the actual energy consumed in real-

istic scenarios. The energy spent in a reliable packet delivery is proportional to the

number of transmissions needed till the packet is successfully received. Therefore, it

may be possible to reduce the total energy consumption in the network by selecting

some “good” links other than using links randomly.

Based on the above discussions, taking into consideration of the lossy nature of

wireless links, the design goals of our clustering approach in the thesis is to maintain

reliability as well as save energy from unnecessary retransmissions. We also want to

maintain favorable properties as a basic clustering approach, for example, a small

amount of cluster heads generated in the network and uniform distribution of the

cluster heads in a homogenous network.

1.3 Contributions

The thesis provides the main contribution in that the distributed clustering algorithms

for WSNs that takes account of the lossy wireless links are proposed for the first time,

and extensive simulations demonstrate a much better performance in terms of the

packet delivery ratio, the total energy consumption in the network, and the network

lifetime, compared to a typical clustering algorithm called HEED [11], that does not

consider lossy links.

In more detail, we formulate the one-hop clustering problem under lossy links

into an integer program and prove the NP-hardness of the problem. The integer
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program has the objective to minimize the total energy spent on transmissions and

receptions in the entire network for a single round, in which each sensor node as a

cluster member sends one data packet to its cluster head. It also has a constraint

on the total number of cluster heads so that the goal of maintaining a small number

of cluster heads can be satisfied. By solving the integer program we are able to

obtain the optimal solution for the one-hop clustering problem. However, due to the

NP-hardness of the clustering problem the brutal force search method of the optimal

solution in a large network becomes infeasible. Therefore we proceed to propose a

distributed clustering algorithm that works well for large-scale networks.

We propose a metric-based distributed clustering algorithm to solve the one-hop

clustering problem. We design a new metric called selection weight for each sensor

node that can indicate both link qualities around the node and its capability of being

a cluster head. The distributed one-hop clustering algorithm is proven to be of low

complexity in both time and messages per node in the thesis.

We further extend the algorithm to multi-hop clustering to achieve better scal-

ability and discuss some implementation issues and an extension to deal with node

failures, which is a common problem in applications involving a large-scale sensor

networks.

Extensive simulations are conducted under a realistic link model and the results

demonstrate that the proposed clustering algorithm can reduce the total energy con-

sumption in the network and prolong network lifetime significantly compared to a

typical distributed clustering algorithm, HEED, that does not consider lossy links.
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1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews the related

work on clustering algorithms and lossy wireless link problems. Chapter 3 gives one-

hop and multi-hop clustering algorithms, and discusses some implementation issues.

Chapter 4 presents the simulation results and Chapter 5 concludes the thesis and

discusses the future work.
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Chapter 2

Related Work

In this chapter, we introduce the related work regarding clustering algorithms, em-

pirical studies for wireless sensor networks and routing protocols that take the lossy

link problem into consideration.

2.1 Clustering Algorithms

Clustering algorithms for wireless sensor networks (WSNs) have been extensively

studied in the last few years, see, for example, [8, 10–12]. The max-min d-cluster

algorithm proposed in [8] generates cluster heads that form a d-hop dominating set

using two rounds of message flooding. Each node in the cluster is at most d hops

away from its cluster head. Since this algorithm was designed for ad hoc networks, its

clustering goal focuses on the stability of the cluster head other than considerations on

energy efficiency. The LEACH protocol [10] designed for WSNs shows that clustering

can prolong network lifetime significantly compared with routing. LEACH protocol

selects cluster heads distributively at each node via probability-based self-election
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and forms a one-hop intra and inter clustering topology, where all the nodes are

assumed within the communication range of each other and the base station. However,

in practice this assumption may not always hold, since cluster heads usually are

regular sensors and the base station is often not directly reachable from every node.

The HEED algorithm proposed in [11] selects cluster heads using metric-based self-

election and forms one-hop (intra) clusters. The metric takes into consideration of the

residual energy of each node as well as the communication cost such as the neighbor

proximity and the cluster density. Recently, a clustering protocol that uses a cluster-

based cost metric was proposed in [12] for underwater sensor networks. The metric

measures the communication cost for the entire cluster and takes into consideration of

the characteristics of the underwater network, such as the relative location between

the cluster head and the underwater base station, which requires the geographic

information of all the nodes in the cluster.

2.2 Empirical Studies and Realistic Link Models

Due to the nature of wireless communications, WSNs may suffer from the unreliable

wireless links. Several actual sensor network deployments[13–15, 17] have shown that

a large fraction of wireless links are lossy and explored characteristics of these lossy

links. In [13], authors presented empirical results from a simple flooding protocol

and identified its complexities by examining separate effects at the various layers of

the protocol stack. One important observation from their experiments is that the

distribution of packet reception over distance is non-uniform. In [14], the authors

reported measurements of packet delivery in three different environments, an indoor

office building, a habitat and an open parking lot respectively. They pointed out the
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existence of a “gray area” that experienced large variability in packet reception. In

[15], authors presented an empirical characterization of wireless links experienced on

their platform, and then studied and evaluated their link estimator. They showed that

using a simple time averaged EWMA estimator, frequency based table management,

and cost-based routing with a minimum expected transmission metric was the most

effective solution to the routing. From their empirical results they identified the

existence of three distinct reception regions of a wireless link: connected, transitional

and disconnected. The transitional region is quite significant in size and characterized

by high-variance in reception rate and asymmetric connectivity. However, the link

quality is stable when nodes are immobile. Similar result was also reported in a more

recent paper in [18]. In [17], the authors studied on the causes of the transitional

region and gave an analytical link model addressing its lossy characteristics.

2.3 Routing Protocols Considering Lossy Wireless

Links

Although the aforementioned clustering algorithms could generate a set of cluster

heads with good distributions and disjoint clusters, they did not consider the prob-

lem of lossy and asymmetric links in WSNs. Meanwhile, the effect of lossy links

has received much attention in the design of routing protocols in multi-hop wireless

networks, see, for example, [19–21]. In [19], an expected transmission count metric

(ETX) was proposed for finding high throughput paths. Measurements from their

test-bed demonstrated the effectiveness of ETX with much improved performance.

In [20], a trade-off was identified in geographic routing between shorter high-quality

9



links and longer lossy links, and the product of the packet reception rate and the

distance was shown to be a good forwarding metric. In [21], the problem of finding

a minimum energy reliable path in a hop-by-hop retransmission model was solved by

using a similar link cost metric to ETX.

In summary, considering the lossy nature of the wireless links has demonstrated

its advantage in routing, while it has not been explored in clustering. This motivates

us to design a clustering algorithm that accounts for lossy links in WSNs.

10



Chapter 3

Distributed Clustering Algorithms

for Lossy Wireless Sensor

Networks

In this chapter, we present and analyze our distributed clustering algorithms for

lossy wireless sensor networks (WSNs) in detail. We start with describing the net-

work model that we used to capture the lossy nature of WSNs, formally formulate the

clustering problem in the one-hop case and prove the NP-hardness of the clustering

problem. We proceed to present distributed algorithms for one-hop and 𝑘-hop clus-

tering problems one by one. We also have had discussions on some implementation

issues and an extension to the algorithms to deal with node failures at the end of this

chapter.
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3.1 Network Model

We consider a set of sensor nodes randomly deployed onto a 2-D area. Sensor nodes

are assumed to be static and equipped with omnidirectional antennas. Each sensor

node has a fixed transmission power 𝑃𝑡 and a fixed reception power 𝑃𝑟 and the

transmission range of each sensor is 𝑅.

Lossy wireless links are modeled by the probabilities of the packet reception ratio

(PRR). We adopt a hop-by-hop retransmission model, for example, a simple auto-

matic repeat request (ARQ) mechanism at the MAC layer. ARQ mechanism uses

acknowledgments and timeouts to achieve reliable data transmissions. If a sender

does not receive an acknowledgment before the timeout, it retransmits the packet

until it receives an acknowledgment or exceeds a predefined number of transmissions,

𝑇 . Each link (𝑖, 𝑗) has a PRR of 𝑝𝑖𝑗 that is the probability of node 𝑗 successfully

receiving the packet transmitted by node 𝑖, and a non-negative weight 𝑤𝑖𝑗 =
1
𝑝𝑖𝑗
. If

the number of retransmissions is not bounded, the weight of each link denotes the

expected number of transmissions needed to send a packet successfully over the link.

The value of 𝑝𝑖𝑗 in this thesis is generated using a realistic, empirically validated

link model in [17]. The model agrees very well with previous empirical findings on

the characteristics of wireless links. For example, the distribution of packet reception

over distance is non-uniform [13], and there exists three distinct reception regions of a

wireless link: connected, transitional and disconnected. While the transitional region

is quite large in size and characterized by high-variance in PRR and asymmetry [15],

the PRRs for a connected region and a disconnected region is almost always 1 and

0, respectively. Previous studies also pointed out that the link quality is stable when

nodes are immobile [15, 18], which makes our probability model more reasonable. The
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model also takes the packet bit length 𝑙 and transmission power 𝑃𝑡 as its parameters.

Therefore, a link from node 𝑖 to node 𝑗 has a higher 𝑝𝑖𝑗 when node 𝑖 transmits a

packet of smaller sizes or using a higher transmission power. The term “lossy” in this

thesis refers to the intrinsic characteristic of the physical layer in wireless communi-

cations, and we do not consider other packet loss due to contention and interference

in the MAC layer. This is reasonable because in a low-rate network, such as a sensor

network, contention and interference from simultaneous transmissions can be avoided

or effectively minimized by using TDMA-based MAC protocols.

Each node is initially provisioned with an amount of energy 𝐸𝑚𝑎𝑥, corresponding

to a fully charged battery. The value of 𝐸𝑚𝑎𝑥 of different sensor nodes can be different.

Network lifetime is defined as the time until the first sensor node depletes its energy.

Suppose node 𝑖 transmits a packet of a fixed bit length 𝑙 to its neighbor node 𝑗 over

link (𝑖, 𝑗), the energy spent at node 𝑖 until the packet is successfully received by node 𝑗

is 𝑤𝑖𝑗 ⋅𝑙 ⋅𝑃𝑡 and the energy spent at node 𝑗 is 𝑤𝑖𝑗 ⋅𝑙 ⋅𝑃𝑟. The total energy consumed over

link (𝑖, 𝑗) is 𝑤𝑖𝑗 ⋅𝑙 ⋅(𝑃𝑡+𝑃𝑟), and we define a constant 𝑃𝑙 equals 𝑙 ⋅(𝑃𝑡+𝑃𝑟). Apparently,

the energy consumption of a reliable packet delivery over a link is proportional to its

weight, and the energy consumption over a path is proportional to the sum of the

weights of all the links on the path. Between any two nodes there always exists a

minimum energy cost path that has the minimum sum of weights of all the links on

the path.

In this thesis we mainly focus on the intra-cluster communications under lossy

wireless links, instead of the inter-cluster communications. First of all, intra-cluster

communications are directly related to the cluster head selection and cluster member

association, which are the two main components of a clustering algorithm. On the

other hand, inter-cluster communications may depend on network applications. For

13
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Figure 3.1: Different clustering schemes for a network.

example, cluster heads may use a multi-hop routing protocol to communicate with

each other and the BS. It is also possible to introduce a mobile collector that visits

each cluster head for data gathering to substitute the multi-hop routing.

3.2 Clustering Problem Formulation

Consider a connected network represented by a directed graph 𝐺 = (𝑉,𝐴), where 𝑉

is the set of sensor nodes and 𝐴 is the set of directed links. The graph is directed

so as to account for the asymmetry of links. Each link (𝑖, 𝑗) has a weight 𝑤(𝑖, 𝑗)

as defined in the previous subsection. Clustering is to group sensors into disjoint

clusters such that each sensor as a cluster member is associated with exactly one

cluster head. We refer to the clustering as one-hop clustering in which each cluster

member is within one hop of its cluster head, and the clustering as 𝑘-hop clustering

in which each cluster member is at most 𝑘 hops away from its cluster head. For any

14



given network G, there exists multiple possible clustering schemes. For example, Fig.

3.1 shows three clustering schemes for the same network, where the first two are one-

hop clustering, and the third one is 2-hop clustering. Besides satisfying the reliability

requirement by using retransmissions, our clustering goal is to save energy so that

the network lifetime can be prolonged, and to keep the number of cluster heads small

so that the network can have a good scalability. We start with the one-hop case. We

first formulate it into an integer program to solve the problem optimally for small

sizes and to gain some insights for designing a better algorithm. In the formulation

we assume that the predefined number of transmissions, 𝑇 , is not bounded, and that

in a single round each node in the sensor network sends one packet to its associated

cluster head until the packet is successfully received. Before we proceed, we explain

some terms that will be used in the formulation. The notations are summarized in

Table 3.1.

Each cluster head 𝑖 has a cluster-centric communication cost 𝐶𝑖, which is the sum

of energy cost on transmissions and receptions in a single round from each cluster

member 𝑗 to cluster head 𝑖, given by

𝐶𝑖 =
∑

𝑗∈𝑉
𝑃𝑙𝑛𝑗𝑖𝑥𝑗, 𝑖 (3.1)

where 𝑃𝑙 is a constant factor mentioned in the previous subsection that is introduced

to calculate the energy cost on each link for every packet delivery. If there is a link

(𝑗, 𝑖) in the graph, 𝑛𝑗𝑖 = 𝑤𝑗𝑖, which is the expected number of transmissions needed

to send a packet successfully from node 𝑗 to node 𝑖. If there is not a link (𝑗, 𝑖), we

define 𝑛𝑗𝑖 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. We also define 𝑛𝑖,𝑖 = 0 since there is no need for each node to

send a packet to itself. And 𝑥𝑗, 𝑖 = {0, 1} is a Boolean variable of node association. If

15



Table 3.1: Notations used in the formulation

Indices:
𝑉 = {𝑣1, 𝑣2, . . .} A set of sensor nodes in the network.
Constants:

𝑁𝑐 An integer system parameter that constrains the total
number of cluster heads.

𝑃𝑙 A constant factor introduced to calculate the energy cost
on each link for every packet delivery.

𝑓𝑗, 𝑖 = {0, 1} Location indicator. If node 𝑗 has a direct link (𝑗, 𝑖) to
reach node 𝑖, 𝑓𝑗, 𝑖 = 1, otherwise, 𝑓𝑗, 𝑖 = 0.

𝑛𝑗𝑖 𝑛𝑗𝑖 = 𝑤𝑗𝑖, if there exists link (𝑗, 𝑖), otherwise 𝑛𝑗,𝑖 =
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, except 𝑛𝑖𝑖 = 0.

Variables:
𝐶𝑖 Cluster-centric communication cost, which is the sum of

energy cost on transmissions and receptions in a single
round from each cluster member to cluster head 𝑖.

𝐼𝑖 = {0, 1} Indicator of selected cluster head. If node 𝑖 is selected
to be the cluster head, 𝐼𝑖 = 1, otherwise, 𝐼𝑖 = 0.

𝑥𝑗, 𝑖 = {0, 1} Indicator of node association. If node 𝑗 chooses node 𝑖
as its cluster head, 𝑥𝑗, 𝑖 = 1, otherwise, 𝑥𝑗, 𝑖 = 0.

node 𝑗 chooses node 𝑖 as its cluster head, 𝑥𝑗, 𝑖 = 1, otherwise, 𝑥𝑗, 𝑖 = 0.

Then the one-hop clustering problem under lossy links can be formulated as fol-

lows.

Minimize
∑

𝑖∈𝑉 𝐶𝑖 =
∑

𝑖∈𝑉
∑

𝑗∈𝑉 𝑃𝑙𝑛𝑗𝑖𝑥𝑗, 𝑖 (3.2)

Subject to 𝑥𝑗, 𝑖 ≤ 𝑓𝑗, 𝑖 ⋅ 𝐼𝑖, ∀𝑖, 𝑗 ∈ 𝑉 (3.3)

∑
𝑖∈𝑉 𝑥𝑗, 𝑖 = 1, ∀𝑗 ∈ 𝑉 (3.4)

∑
𝑖∈𝑉 𝐼𝑖 ≤ 𝑁𝑐 (3.5)

In the above formulation, objective function (3.2) minimizes the total energy con-
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sumption in the network by summing up energy cost 𝐶𝑖 for each cluster 𝑖. Constraint

(3.3) ensures that two conditions should be met before node 𝑗 can be associated to

node 𝑖. One condition is that there exists a link from node 𝑗 to node 𝑖 determined by

the boolean location indicator 𝑓𝑗, 𝑖 and another condition is that node 𝑖 is a cluster

head. That is, if 𝑥𝑗, 𝑖 = 1 then 𝑓𝑗, 𝑖 = 1 and 𝐼𝑖 = 1. Constraint (3.4) ensures that

each node is associated to exactly one cluster head. Constraint (3.5) ensures that

the number of selected cluster heads is small as long as a given value 𝑁𝑐 is small.

This constraint not only achieves our goal of having a small number of cluster head

in order to increase the network scalability, but also it excludes the trivial case of

generating “singleton” clusters which contain only one node (the cluster head itself)

and have the cluster-centric communication cost 𝐶𝑖 = 𝑃𝑙𝑛𝑖𝑖𝑥𝑖, 𝑖 equal 0.

Note that the clustering problem, especially the one-hop clustering problem afore-

mentioned, is very similar to the dominating set (DS) problem in the sense that a

dominating set covers all other nodes in a graph while a set of cluster heads domi-

nates all other sensor nodes in a WSN. Given an undirected graph 𝐺 with a set of

vertices 𝑉 and a set of edges 𝐸, and a positive integer 𝑍, a subset of vertices 𝐷 ⊆ 𝑉

is called a dominating set if every vertex not in 𝐷 is connected to at least one member

of 𝐷 by an edge. The DS problem is to determine whether there is a dominating set

of size at most 𝑍 for 𝐺 and it was proved to be NP-complete. Similarly, we have the

following lemma concerning the NP-hardness of the general clustering problem.

Lemma 1. The clustering problem under lossy links in WSNs is NP-hard.

Proof. To show the problem is NP-hard, we reduce it from the NP-complete DS

problem. The reduction algorithm takes an instance of the DS problem as input.

Given a graph 𝐺 and an integer 𝑍, as shown in Fig. 3.2, it constructs an auxiliary
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Figure 3.2: One-hop clustering problem is NP-hard.

graph 𝐺
′
by replacing every edge in 𝐺 with two directed arcs pointing to each other

in 𝐺
′
. We set all the weights over arcs to 0, and the constraints on the number of

cluster heads 𝑁𝑐 to 𝑍. Thus, 𝐺
′
becomes a special unweighted instance of one-hop

clustering problem.

To complete the proof, we show that 𝐺 has a dominating set 𝐷 of size at most 𝑍

if and only if 𝐺
′
has a one-hop clustering with at most 𝑁𝑐 cluster heads.

If we find a dominating set 𝐷 of size at most 𝑍 in 𝐺, we use all the nodes in 𝐷

as cluster heads in 𝐺
′
, and assign each of the remaining nodes to exactly one node in

𝐷. By the definition of a dominating set, each node 𝑗 ∈ 𝑉 −𝐷 is connected to some

node 𝑖 ∈ 𝐷 by an edge (𝑖, 𝑗) in 𝐺. Since 𝐺
′
is constructed by replacing each edge in

𝐺 with two directed arcs pointing to each other, we have arcs (𝑖, 𝑗) and (𝑗, 𝑖) in 𝐺
′
.

Thus we are able to assign cluster member 𝑗 to cluster head 𝑖 ∈ 𝐷 using arc (𝑗, 𝑖).

Clearly, the number of cluster heads in 𝐺
′
equals the size of dominating set 𝐷 in 𝐺.

This way we find the one-hop clustering with at most 𝑍 = 𝑁𝑐 cluster heads.
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On the other hand, if we have the one-hop clustering with at most 𝑁𝑐 cluster

heads, we use these 𝑁𝑐 cluster heads to form a set 𝐷 in 𝐺. In the one-hop clustering

problem, each node 𝑗 is either a cluster member associated to some cluster head 𝑖

via an arc (𝑗, 𝑖) or a cluster head itself. Since both arcs (𝑗, 𝑖) and (𝑖, 𝑗) correspond

to the same edge (𝑗, 𝑖) in 𝐺, we have that each node 𝑗 in 𝐺 either has an edge (𝑗, 𝑖)

connecting to node 𝑖 ∈ 𝐷 or in set 𝐷 itself, which is a dominating set. The size 𝑍 of

dominating set 𝐷 equals the number 𝑁𝑐 of cluster heads. Thus we find a dominating

set 𝐷 of size at most 𝑁𝑐 = 𝑍 in 𝐺.

We have shown in the above that the unweighted one-hop clustering problem is

NP-hard. Since it is a special case of the clustering problem under lossy links (i.e.

with weights), the general clustering problem is also NP-hard.

3.3 One-hop and 𝑘-hop Clustering Algorithms

In this section we present distributed algorithms for one-hop and 𝑘-hop clustering

problems. The algorithms select a set of cluster heads first, then form clusters by

associating each node to exactly one cluster head. Cluster heads are distributively

self-elected based on a metric that accounts for lossy wireless links. Before we proceed

to describe the algorithms in detail, we first introduce the metric.

3.3.1 Selection Weight Metric

Recall that our clustering goal is to minimize the total energy cost in the network

including energy consumption on retransmissions, and to maintain a small number of

cluster heads as well. As in other metric-based clustering algorithms, a better metric

is to help select a better set of cluster heads that fulfill the clustering goal. We have
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following two observations that can help design a better metric to save energy.

∙ Cluster heads consume more energy than other nodes and thus may deplete
their energy earlier.

∙ Energy consumption on a reliable packet delivery is proportional to the number
of transmissions for the packet.

Based on the first observation, we should rotate the roles of cluster heads in the

network, and select the nodes with relatively high residual energy 𝐸𝑟𝑒𝑠 as cluster

heads. Based on the second observation, we should select the nodes as cluster heads

whose “potential clusters” have better link qualities and accordingly fewer retrans-

missions in the clusters. Combining these two aspects, we design a selection weight

metric as follows.

Consider the largest possible one-hop cluster of node 𝑖, which consists itself and

its one-hop neighboring nodes 𝑛𝑏𝑟𝑖. One-hop neighboring nodes are defined as those

falls in the transmission range and have 𝑃𝑅𝑅 > 0 over links connecting to node 𝑖.

We use 𝑇𝑎𝑣𝑔 to denote the average number of transmissions for the cluster of node 𝑖

when it is the cluster head

𝑇𝑎𝑣𝑔(𝑖) =

∑
𝑗∈𝑛𝑏𝑟𝑖 𝑛𝑗𝑖

∣𝑛𝑏𝑟𝑖∣ (3.6)

where 𝑛𝑗𝑖 is as defined in the previous section. 𝑇𝑎𝑣𝑔 of a node provides a good

estimate on the overall link qualities in the cluster if this node becomes the cluster

head. Furthermore, since we use fixed transmission power and reception power for

each link, it is not difficult to see that 𝑇𝑎𝑣𝑔 also provides an estimate on the average

energy consumption on a successful delivery of a packet in the cluster, which is 𝑇𝑎𝑣𝑔 ⋅𝑃𝑙.

It captures energy consumed on retransmissions due to lossy links. Similarly, in the
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𝑘-hop clustering case, 𝑇𝑎𝑣𝑔 is defined for the largest possible 𝑘-hop cluster of node 𝑖

which consists itself and its 𝑘-hop neighboring set 𝑛𝑏𝑟𝑘𝑖 .

𝑇𝑎𝑣𝑔(𝑖) =

∑𝑘
1

∑
𝑗∈𝑛𝑏𝑟𝑘𝑖 𝑛

𝑘
𝑗𝑖

∣𝑛𝑏𝑟𝑘𝑖 ∣
(3.7)

where 𝑛𝑘
𝑗𝑖 denotes the sum of weights of all the links on the minimum energy cost

path from node 𝑗 to node 𝑖.

We define residual energy ratio 𝐸𝑟𝑎𝑡𝑖𝑜 for each node to indicate its capability of

being a cluster head as

𝐸𝑟𝑎𝑡𝑖𝑜 =
𝐸𝑟𝑒𝑠

𝐸𝑚𝑎𝑥

(3.8)

where 𝐸𝑚𝑎𝑥 is the maximum energy that a sensor node has when its battery is fully

charged and 𝐸𝑟𝑒𝑠 is the current residual energy in the node. The residual energy can

be directly measured by the sensor node or estimated by calculation, as the energy

consumed per bit for sensing, processing and communication is typically known and

fixed.

We finally define the selection weight metric of node 𝑖 as follows to model the link

qualities in its neighborhood and its capability of being a cluster head.

𝑊𝑠𝑒𝑙(𝑖) =
𝑇𝑎𝑣𝑔(𝑖)

𝐸𝑟𝑎𝑡𝑖𝑜

(3.9)

3.3.2 One-hop Clustering Algorithm

We are now in the position to present our one-hop clustering algorithm which will be

executed by each node periodically. The pseudocode for node u is given in Table 3.2.

We assume that each node knows its neighbors and weights over links in the
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Table 3.2: One-hop clustering algorithm executed at node u

Input: receive(i, declaration), receive(i, acknowledge);
/*receive a message from node 𝑖*/

Output: broadcast(u, declaration), broadcast(u, acknowledge);
/*broadcast a message within one hop */

Pre-Process
calculate the selection weight;
broadcast weight to its one-hop neighbors;
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← False;
create a list containing selection weights for its neighbors;
create a tentative cluster head set 𝒯 containing all the neighbors
and itself;
create an empty final cluster head set ℱ ;

Cluster Head Selection Process
see Table 3.3

Cluster Formation Process
if 𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) = False

if receive(i, declaration)
add node 𝑖 into ℱ ;

end
if ℱ ∕= ∅

associate to a cluster head from ℱ using a link of the
minimum weight;

else
broadcast(u, declaration);
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← True;

end
end

neighborhood initially. We defer the implementation details on how to initialize the

network to Section 3.4. During the execution of the algorithm, each node keeps a

record of selection weights for all its neighbors, and maintains two lists for its tentative
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Table 3.3: cluster head selection process executed at node u

Cluster Head Selection Process
if u = 𝑚𝑖𝑛𝑐𝑜𝑠𝑡(𝒯 )

broadcast(u, declaration);
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← True;
wait till cluster head selection process time out;

end
do {

if receive(i, declaration)
add node 𝑖 into ℱ ;
if this is the first time to hear the declaration message
broadcast(u, acknowledge);

end
end
if receive(i, acknowledge);
remove node 𝑖 from 𝒯 ;

end
if u has never received any declaration message and
u = 𝑚𝑖𝑛𝑐𝑜𝑠𝑡(𝒯 )
broadcast(u, declaration);
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← True;
wait until time out;

end
} until time out;

cluster heads 𝒯 and final cluster heads ℱ . The length of a time slot in the algorithm
is equal to the communication time of a message transmission in one hop. Note that

the message used in the algorithm to exchange information is of a much smaller size

than a data packet. According to the realistic link model, a smaller message size has

a higher PRR when the transmission power is fixed. Thus, it is reasonable to assume

that PRR for these small messages is close to 1. Hence, the transmission time of such

a small message is bounded and well-defined. We also adopt the following two rules
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in the algorithm:

∙ Rule 1: Head Selection

A node elects itself to be a cluster head, if it has the minimum selection weight

among all the nodes in the tentative cluster head list, or wins the random

selection when it has the same minimum weight as some other nodes in the list.

In the second case, a node will randomly pick an ID number among nodes with

the same minimum weight. If the ID number picked is itself, we say it wins the

random selection.

∙ Rule 2: Node Association

A node associates itself to a cluster head that has the minimum value among

all the minimum energy cost paths from the node to possible cluster heads in

the final cluster heads list ℱ . The minimum energy cost path is a path that has
the minimum sum of weights of all the links (possibly contains only one link)

on the path, which was defined in Section 3.1.

The algorithm can be described as follows. Initially, each node calculates its selec-

tion weight and locally broadcasts the weight to all the neighbors. In the meanwhile,

each node puts all the neighbors and itself into the tentative cluster head list 𝒯 . After
hearing from all the neighbors, each node enters the cluster head selection process

and decides autonomously whether it will volunteer to be a cluster head. The dura-

tion of the head selection process is pre-defined and is three time slots long, in which

we allow each node to run the head selection rule (each run lasts one time slot) at

most twice. In the first time slot, each node runs the head selection rule for the first

time. If a node satisfies the rule, it decides to be a cluster head and broadcasts a

declaration message to its neighbors. We call such a cluster head volunteer cluster
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head. Volunteer cluster heads keep silent afterward and wait for the time-out of the

head selection process. Otherwise, if a node does not satisfy the head selection rule,

it does nothing in this time slot. In the second time slot, each node except for vol-

unteer cluster heads responds in a message-driven fashion as follows. If a node hears

a declaration message, it broadcasts an acknowledgment message to its neighbors,

indicating that it has been covered by some cluster head. If the node hears more

than one declaration messages from its neighbors, however, it only broadcasts the

acknowledge message once, and puts all the nodes that have broadcast declaration

messages into its final cluster head list ℱ . If a node has not heard any declaration
messages but heard acknowledgment messages, which implies that there is no vol-

unteer cluster head in its neighborhood, it keeps silent and removes the neighboring

nodes that have sent the acknowledgment messages from its tentative cluster head

list 𝒯 . If a node does not hear any message, it keeps silent and does nothing. In the
third time slot, silent nodes in the second time slot run the head selection rule again

to “break the silence” in the neighborhood.

After the head selection process ends, the cluster formation process starts. In

this process, those nodes that have been covered by multiple cluster heads follow the

node association rule to associate themselves to a cluster head. Those nodes that

are uncovered declare themselves to be cluster heads, and we call such cluster heads

forced cluster heads.

We have the following lemma concerning the correctness of the algorithm.

Lemma 2. After the execution of one-hop clustering algorithm, a node is either a

cluster head or a cluster member that belongs to exactly one cluster head.

Proof. During the execution of the algorithm, each node maintains a binary variable
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𝑖𝑠𝑓𝑖𝑛𝑎𝑙 to indicate its status of being a cluster head or not. If node 𝑖 elects itself

to be a cluster head, 𝑖𝑠𝑓𝑖𝑛𝑎𝑙(i) is set to the value of “True” thereafter permanently.

Initially, each node sets the value to “False” in the algorithm. Now assume a node

at the end of the execution is neither selected as a cluster head nor associated to

any of the cluster head. Since the node is not a cluster head, its value of 𝑖𝑠𝑓𝑖𝑛𝑎𝑙

must be “False”. Thus, the node satisfies the condition at the beginning of the

cluster formation process, which is 𝑖𝑠𝑓𝑖𝑛𝑎𝑙(𝑢) = 𝐹𝑎𝑙𝑠𝑒. The node will end up either

associating itself to exactly one cluster head in its final cluster head set ℱ following
the node association rule or being a cluster head, which contradicts the assumption.

Thus, the lemma holds.

The cluster heads generated by one-hop clustering algorithm have a good property

that the probability that two cluster heads are one-hop away is small. Consider all the

possible cases that two cluster heads selected are within one hop. It is not difficult

to see that there are only two such cases. The first case is that two neighbors 𝑖

and 𝑗 both elect themselves to be cluster heads during the cluster head selection

process, where two nodes have the same minimum selection weights and both win

the random selection. Consider the simplest network consisting of two nodes 𝑖 and

𝑗. We assume that they have the same selection weights with probability 1, which

is very rare in practice. Even in this unrealistic worst scenario, the first case occurs

with a probability of only 1
4
. The second case is that neighbors 𝑖 and 𝑗 both elect

themselves to be cluster heads during the cluster formation process. Both nodes were

not selected as cluster heads during the cluster head selection process, nor heard

any declaration messages and have kept their final cluster head list ℱ empty. They

consider themselves uncovered and hence become forced cluster heads. Note that
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if node 𝑖 announces to be a cluster head earlier than node 𝑗, node 𝑗 will hear the

declaration message of node 𝑖 and join the cluster of node 𝑖, instead of becoming a

cluster head itself. It follows that node 𝑖 and node 𝑗 become cluster heads within one

hop only when they make their announcements simultaneously. Since our algorithm

is executed distributively at each node and each node follows its own timing slots, it is

very unlikely to achieve such exact synchronization in a network, therefore the chances

that they both become cluster heads are small. Furthermore, when such accidental

synchronization does occur, we can use a random back-off technique to solve the

problem. That is, instead of executing the cluster formation process immediately

after the head selection process times out, each node may wait for a random period

of time to enter the next process.

We now analyze the message complexity of the algorithm.

Lemma 3. The message complexity of one-hop clustering algorithm is 𝑂(1) per node.

Proof. During the pre-process, each node broadcasts one message of its selection

metric to neighbors. During the clustering selection process, it is easy to see that

each node broadcasts at most one message. Specifically, if a node becomes a cluster

head, it broadcasts one declaration message and waits for time out thereafter. When a

node hears a declaration message for the first time, it broadcasts one acknowledgment

message. The rest of the nodes keep silent in the process. During the cluster formation

process, nodes that have already been elected to be cluster heads keep silent and

wait for others to associate to it. Each of the remaining nodes either sends one

request message to associate itself to some cluster head or broadcasts one declaration

message. Hence, during the execution of the algorithm each node sends at most three

messages.
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3.3.3 𝑘-hop Clustering Algorithm

In some monitoring applications in high-density sensor networks, especially those

adopting a simple data aggregation scheme, it may be desirable to have multi-hop

clusters to provide better scalability. In the following, we first describe the general 𝑘-

hop clustering algorithm, and then focus on its differences from the one-hop clustering.

The basic idea of 𝑘-hop clustering algorithm remains the same as that of one-

hop clustering: select a set of cluster heads based on the selection weight metric to

form disjoint 𝑘-hop clusters. Similarly, 𝑘-hop clustering algorithm consists of three

processes, is executed distributively by each sensor node, and uses the same rules.

The pseudocode of the algorithm for node u is given in Table 3.4.

Compared to one-hop clustering, the main differences of 𝑘-hop clustering include:

(1) the calculation of the metric and the identification of the minimum energy cost

path; (2) the longer clustering duration, especially the duration of the head selection

process; and (3) the higher message complexity per node. Based on the definition of

the selection weight metric in Equation (3.9), we can calculate the metric when we

have the knowledge of the minimum energy cost path from each cluster member to

its cluster head. Fortunately, the minimum energy cost path for any two nodes in the

network can be calculated by any distributed weighted shortest path algorithm. We

use the distributed asynchronous Bellman-Ford algorithm [22] in this thesis. For 𝑘-

hop clustering, we only need to know the weighted shortest path within 𝑘-hops, which

largely reduces the problem complexity. It is worth mentioning that this minimum

energy cost path problem is also equivalent to the problem of finding the minimum

breadth-first search (BFS) tree of depth 𝑘 rooted at each node. During each execution

of 𝑘-hop clustering algorithm, the distributed Bellman-Ford algorithm is run only once
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Table 3.4: 𝑘-hop clustering algorithm executed at node u

Input: receive(i, declaration), receive(i, acknowledge);
/*receive a message from node 𝑖*/

Output: broadcast(u, acknowledge);
/*broadcast a message within one hop */
broadcast(u, declaration);
/*broadcast a message within k hop */

Pre-Process
calculate the selection weight using distributed asynchronous
Bellman-Ford algorithm;
broadcast weight to all its one-hop neighbors;
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← False;
create a list containing selection weights for its neighbors;
create a tentative cluster head set 𝒯 containing all the neighbors
and itself;
create an empty final cluster head set ℱ ;

Cluster Head Selection Process
same as one-hop clustering algorithm, see Table 3.3

Cluster Formation Process
if 𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) = False

if receive(i, declaration)
add node 𝑖 into ℱ ;

end
if ℱ ∕= ∅

associate to a cluster head from ℱ using the minimum
energy cost path;

else
broadcast(u, declaration);
𝑖𝑠𝑓𝑖𝑛𝑎𝑙 (u) ← True;

end
end

at the beginning of the pre-process. The minimum energy cost paths calculated are

not only used in the calculation of the selection weight metric, but also define the way
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Figure 3.3: One-hop clustering vs. two-hop clustering.

how each node associates itself to its cluster head in the cluster formation process.

The longer clustering time, especially the longer head selection process, lies in the

fact that for 𝑘-hop clustering algorithm it needs 𝑘 time slots to broadcast declaration

messages. Therefore, the cluster head selection process needs at least 2𝑘+1 time slots

to allow each node to run the head selection rule twice. The message complexity of

𝑘-hop clustering algorithm also increases as the declaration messages are broadcast up

to 𝑘 hops. Let’s look at the message complexity of node 𝑖 that broadcasts a declaration

message. This declaration message can be generated by itself or by any other node

in its 𝑘-hop neighboring set 𝑛𝑏𝑟𝑘𝑖 . Thus the worst case for node 𝑖 is to broadcast as

many as ∣𝑛𝑏𝑟𝑘𝑖 ∣ messages. During the pre-process, each node broadcasts one message
to its neighbors. During both the head selection process and the cluster formation

process, it is possible for a node to broadcast declaration messages. Therefore, the

worst case of the message complexity per node in 𝑘-hop clustering is 2∣𝑛𝑏𝑟𝑘𝑖 ∣.
It should be mentioned that although 𝑘-hop clustering has higher scalability, it

may have lower energy efficiency compared to one-hop clustering. Let’s look at a

simple example in Fig. 3.3, where each link has a weight of 2 and each node has one

packet to send. With the same throughput, one-hop clustering uses 4 units of energy

while 2-hop clustering uses 6 units. This is because that in 2-hop clustering node 𝑣2

not only sends its own packet but also relays a packet for node 𝑣3. In general, in 𝑘-hop

clustering, the larger the 𝑘 is, the more scalability and the fewer cluster heads the

network has. However, energy consumption increases due to relaying traffic, and thus
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it may shorten network lifetime. As will be seen in the next section, our simulation

results reveal the performance deterioration in terms of network lifetime in 2-hop

clustering compared to one-hop clustering.

3.4 Some Implementation Issues and Discussions

We have designed one-hop and 𝑘-hop clustering algorithms for WSNs under lossy

links. In this subsection, we briefly discuss some implementing issues and an extension

of our algorithms to deal with node failures.

The first issue is network initialization, especially how to explore neighboring

nodes and how to know PRRs over links in the neighborhood. At the beginning, each

node does not know its neighbors. Therefore they broadcast a “hello” message of a

fixed size periodically, say, in a period of 𝜏 . Every node knows its neighbors when

it receives the message. These hello messages are also link probes for each node to

estimate PRRs over links in the one-hop neighborhood. Every node remembers the

probes that it receives during a time window 𝑤. Then the average PRR at time 𝑡 can

be calculated by

probes received in [𝑡− 𝑤, 𝑡]

𝑤/𝜏

where 𝑤/𝜏 is the probes expected to be received in [𝑡 − 𝑤, 𝑡]. This method is called

passive probing and was discussed in more detail in [19]. An alternative approach

is that each node broadcasts its “hello” message once. Then every node knows its

neighbors if it receives the message, uses the received signal strength as an indicator

of the link quality [15], and estimates PRR accordingly. By initializing the network

periodically, our clustering algorithms can be adaptive to the change of topologies
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and link qualities in the environment.

The second issue is re-clustering. Similar to most existing clustering algorithms,

our clustering algorithms are triggered periodically to select a new set of cluster

heads such that the load of cluster heads is balanced in the network. The length

of the steady state phase after each execution of the clustering algorithm, in which

sensors send packets to their cluster heads, is called re-clustering period. Although a

short re-clustering period leads to more balanced load, it consumes more energy on

the execution of the clustering algorithm, and may also make the network unstable.

Thus re-clustering should be done periodically but infrequently.

Finally, our clustering algorithms can be extended to deal with node failures in

the network, which is a common problem in applications involving a large scale de-

ployment of sensors such as habitat monitoring [23]. By adopting the above technique

to estimate link qualities periodically, we can compare a few most recent records of

link qualities over the same link. If the deviation exceeds some threshold, we consider

there is a node failure at the nodes connected by this link.
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Chapter 4

Performance Evaluation

In this chapter, we evaluate the performance of the one-hop and 2-hop clustering

algorithms through simulations. We have conducted two sets of simulations in wireless

sensor networks (WSNs) with random topologies.

4.1 Simulation Settings

In both sets of simulations, we assume that each node is provisioned with an initial

energy level of 1 Joule. Each node generates data at a rate of 2 packets/minute and

each packet has a fixed size of 50 bytes.

We use the energy model introduced in [10] to model the energy consumption in

transmissions and receptions. To deliver an 𝑙-bit packet in distance 𝑑, the transmission

power is

𝐸𝑇𝑥 = 𝛼 + 𝛽 ⋅ 𝑑2

and the reception power is

𝐸𝑅𝑥 = 𝛼
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where 𝛼 and 𝛽 are two constants depending on the length of the packet and the

electronics energy. In our settings with packet length of 50 bytes, 𝛼 = 20000𝑛𝐽 and

𝛽 = 4000𝑝𝐽/𝑚.2. Since we use fixed transmission and reception powers and have

transmission range 𝑅 = 40, we set 𝑑 = 𝑅 and obtain values for 𝐸𝑇𝑋 = 26400𝑛𝐽 and

𝐸𝑅𝑥 = 20000𝑛𝐽 per packet.

We adopt a realistic link model described in [17] to calculate the packet reception

ratio (PRR) 𝑝𝑖𝑗 and model lossy and asymmetric wireless links using these probabil-

ities. We use non-return-to-zero (NRZ) encoding and non-coherent frequency-shift

keying (FSK) modulation, which are commonly used in WSN test-beds. These are

the parameters of the link model together with the packet length and transmission

power. Fig. 4.1 shows a specific instance of statistics for all 𝑝𝑖𝑗 in a network of 20

sensors scattered in a 40m ×40m region with the same configuration of sensors as

that in our simulations. It can be seen from Fig. 4.1(a), if two nodes are within a

distance of 10𝑚, the links between them are reliable with 𝑃𝑅𝑅 = 1. On the other

hand, although some node pairs are within transmission range of 40𝑚, the links be-

tween them have 𝑃𝑅𝑅 = 0. We do not consider these nodes as neighbors, and do

not use these values for any 𝑝𝑖𝑗 in the algorithms. From Fig. 4.1(b), we can see that

a majority of links in this network instance are reliable.

A simple automatic repeat request (ARQ) mechanism is used at the MAC layer

to ensure reliability. We assume the maximum number of retransmissions before

dropping a packet is 3.
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Figure 4.1: A realistic link model in a wireless sensor network.

4.2 Performance of Large-scale Random Networks

We evaluate the clustering algorithms in large-scale random networks in a 150m ×
150m field. All the simulation results are averaged over 100 runs, with each run using

a different randomly generated topology with different link qualities.

We choose a typical clustering algorithm called HEED for performance compari-

son. As shown in [11, 16], HEED outperformed previous clustering algorithms when

it was proposed and has now become a well-accepted representative clustering al-

gorithm. Depends on different clustering goals such as load distribution or dense

clusters, HEED can be divided into HEED-max degree and HEED-min degree algo-

rithms. We compare both of them with our algorithms.

Fig. 4.2 shows the network performance of different algorithms in a one-hour time

period without re-clustering when the number of nodes varies from 50 to 500. Fig.

4.2(a) plots the data delivery ratio of each algorithm. The delivery ratio is calculated

by the number of packets successfully delivered divided by the number of packets gen-

erated at the nodes. For all the algorithms compared, we use retransmissions with
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maximum retries of 3 before dropping a packet. We can see that both our one-hop

and 2-hop clustering algorithms successfully deliver over 95% of total packets to cor-

responding cluster heads, while the two HEED algorithms yield lower delivery ratios

due to lossy links. Furthermore, as the number of nodes increases, the performance of

both HEED algorithms deteriorates. This is because that when the network becomes

denser, without considering link quality, there are more nodes in the cluster using

long lossy links in HEED algorithms, while the performance of one-hop clustering

algorithm is quite stable in terms of delivery ratio and 2-hop clustering algorithm

improves the performance by replacing long lossy links with two short reliable links.

Fig. 4.2(b) indicates that one-hop clustering algorithm consumes the least amount

of total energy in the network, and saves as much as 30% of the energy compared to

HEED-max for all network sizes. Note that we impose a bound for the number of

retransmissions, which in turn constrains that energy consumption for each packet

transmission over an extremely lossy link is at most 3 times more than that over a

reliable link. Fig. 4.2(c) shows the number of cluster heads generated by each algo-

rithm. As expected, 2-hop clustering algorithm generates the least number of cluster

heads. Other three algorithms have a similar number of cluster heads, which indicates

that both our algorithms maintain a small number of cluster heads.

Fig. 4.3 illustrates the relationship between the network lifetime and the re-

clustering period with 200 sensor nodes dispersed in the field. We can see that a

short re-clustering period yields longer network lifetime due to frequent load balanc-

ing in the network. When the re-clustering period increases, the one-hop clustering

algorithm is able to maintain good performance in terms of network life time com-

pared to other algorithms, which indicates more uniform energy consumption in the

one-hop clustering algorithm compared to other algorithms.
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Figure 4.2: Network performance in a one-hour period.
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Figure 4.3: Network lifetime vs. re-clustering period.

Fig. 4.4 shows the network lifetime of each algorithm when the re-clustering

period is set to be 1 hour and the number of nodes varies from 50 to 500. From the

discussions in the previous section, we know that the message used for information

exchange is of a small size and therefore consumes less energy in transmissions. We

also proved that our clustering algorithms have a low message complexity that each

node sends at most 3 messages for one-hop clustering during cluster creation. Thus, it

is reasonable to assume that the energy consumption on cluster creation is negligible

compared to the energy consumption on data packet transmissions after clusters are

created. In this experiment, we did not calculate the energy consumption on cluster

creation in the four algorithms compared. We can see that the one-hop clustering

algorithm performs best and increases network lifetime by 17% − 42% compared to

the HEED-min degree algorithm and by 28% − 42% compared to the HEED-max

degree algorithm. These results clearly demonstrate the benefit of considering lossy

links in the design and implementation of clustering algorithms.

38



50 100 150 200 250 300 350 400 450 500
2000

4000

6000

8000

10000

12000

14000

Number of sensor nodes

N
um

be
r 

of
 r

ou
nd

s 
un

til
 th

e 
fir

st
 n

od
e 

di
es

 

 

HEED − max degree
HEED − min degree
One−hop clustering
2−hop clustering

Figure 4.4: Network lifetime vs. number of nodes.

4.3 Performance Comparison with Optimal Results

In this section, we further compare our one-hop clustering algorithm with the optimal

solutions obtained by solving the integer program (IP) in Section 3.2 using ILOG OPL

Studio software [24]. Due to the NP-hardness of the clustering problem, the brutal

force search method of the optimal solution in a large network becomes infeasible.

Therefore, we have managed to obtain optimal solutions for a few small networks to

gain some insights on the optimal performance.

We mainly focus on the total energy consumption in the network for a single

round, which is the objective function in the problem formulation.

We consider a bunch of sensor nodes scattered over a 50m × 50m square area.

All the simulation results are averaged over 100 runs, with each run using a different

randomly generated topology. In each run, we let 𝑁𝑐 in the IP formulation take

the same number of cluster heads generated in our clustering algorithm. Fig. 4.5

shows the results of different algorithms compared with optimal solutions when the

number of sensor nodes varies from 30 to 50. We can see that the one-hop clustering
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Figure 4.5: Performance of one-hop clustering algorithm compared with optimal so-
lutions.

algorithm is closer to the optimal solutions in small random networks compared to

the two HEED algorithms.
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Chapter 5

Conclusions

Wireless sensor networks (WSNs) have emerged as a new information gathering

paradigm in a wide-range of applications. Clustering introduces a hierarchy to the

network and is generally considered as a promising approach for data gathering in

large-scale WSNs. Specifically, clustering is to group sensors into disjoint clusters

such that sensors as cluster members form the lower layer of the network send data

to their cluster heads, and cluster heads form the higher layer of the network and

forward data to the base station.

While reliability in data delivery largely impacts the quality of surveillance in

WSNs, empirical studies have revealed that a large percentage of wireless links are

lossy and unreliable for data delivery. These lossy links may cause data delivery

failure and energy wastage due to unnecessary packet retransmissions. Although a

multitude of clustering algorithms have been proposed for WSNs in the literature, this

lossy link problem was not taken into consideration in existing clustering algorithms.
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5.1 Summary of Contributions

In this thesis, using retransmissions to guarantee reliability, we have tackled the clus-

tering problem under lossy links with the objective to save energy in retransmissions

as well as to maintain a small number of cluster heads. In particular, this thesis

provides the following contributions.

We formulated the one-hop clustering problem under lossy links into an integer

program and proved its NP-hardness. The integer program has the objective to

minimize the total energy spent on transmissions and receptions in the entire network

for a single round, in which each sensor node as a cluster member sends one data

packet to its cluster head. The objective of saving energy in retransmissions in turn

can prolong the network lifetime, which is defined earlier as the time until the first

sensor node depletes its energy. By solving the integer program we are able to obtain

the optimal solution for the one-hop clustering problem. However, due to the NP-

hardness of the clustering problem the brutal force search method of the optimal

solution in a large network becomes infeasible. Therefore we proceeded to propose a

distributed clustering algorithm that would work well for large-scale networks.

We have proposed a metric-based distributed clustering algorithm to solve the one-

hop clustering problem. We designed a new metric called selection weight for each

sensor node that indicated both link qualities around the node and its capability of

being a cluster head. The intuition comes from two observations in the following.

∙ Cluster heads consume more energy than other nodes and thus may deplete
their energy earlier.

∙ Energy consumption on a reliable packet delivery is proportional to the number
of transmissions for the packet.
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Therefore, we introduced residual energy ratio 𝐸𝑟𝑎𝑡𝑖𝑜 to indicate the capability of

being a cluster head and used average number of transmissions 𝑇𝑎𝑣𝑔(𝑖) for the cluster

of node 𝑖 when it was the cluster head, in order to indicate link qualities in the cluster

and in turn to estimate the energy consumption in the cluster.

Our distributed one-hop clustering algorithm was proven to be of low complexity

in both time and messages per node. The algorithm first selects a set of cluster

heads based on selection weight metric in the cluster head selection process and then

associates each sensor node to exactly one cluster head to form disjoint clusters in

the cluster formation process. The low time complexity comes from the fact that we

used the pre-defined duration for the cluster head selection process. For example,

for one-hop clustering we defined three time slots long for the process. Under such a

time-out setting, we also proved that we could always have a feasible solution. That

is, after the execution of the one-hop clustering algorithm, a node is either a cluster

head or a cluster member that belongs to exactly one cluster head. We analyzed

the message complexity of one-hop clustering algorithm in detail in Chapter 3.3 and

showed that during the execution of the algorithm each node sends at most three

messages.

We further extended the algorithm to multi-hop clustering to achieve better scal-

ability and discussed some implementation issues and an extension to deal with node

failures, which is a common problem in applications involving a large-scale sensor

networks.

Extensive simulations have been conducted under a realistic link model and the

results demonstrate that the proposed clustering algorithm can reduce the total en-

ergy consumption in the network and prolong network lifetime significantly compared

to a typical distributed clustering algorithm, HEED.
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5.2 Future Work

For the clustering problem under lossy links, there is still much work to be done.

In this thesis, reliability of packet delivery is required therefore retransmissions are

needed. If we differentiate different links and use “good” links to construct clusters,

we can save energy from unnecessary retransmissions. Making use of this intuition,

the clustering algorithms with the objective of energy saving developed in this thesis

try to minimize the total energy consumption in the entire network.

However, our algorithms may not work well for the cases that only partial reliabil-

ity is required and retransmissions are not used. For example, the clustering goal is

to have all the links between cluster members and their associated cluster heads had

a reliable probability higher than 0.5 without using retransmissions, that is, with a

packet reception ratio (PRR) higher than 0.5 over these links. This clustering prob-

lem with objective on having reliable-threshold links is apparently different from our

problem described in the thesis, and can be formally stated in the following.

Reliable-threshold links clustering problem:

Let 𝐺(𝑉,𝐴) be a directed graph representing a wireless sensor network, where 𝑉 is the

set of sensor nodes and 𝐴 is the set of directed links. Each link (𝑖, 𝑗) has associated a

PRR of 𝑝𝑖𝑗, and 𝑁𝑐 be a positive integer that constraints the number of cluster heads

in the network. For any cluster 𝐶𝑖 with cluster head node 𝑖, define 𝑝(𝑗, 𝑖) to be the

minimum PRR in the cluster 𝐶𝑖 from its cluster member node 𝑗 to the cluster head

node 𝑖. The problem is to find a set of cluster heads 𝑆 ⊆ 𝑉 , with ∣𝑆∣ ≤ 𝑁𝑐, so as to

max{min𝐶{𝑝(𝑗, 𝑖)}}.
Recall one earlier observation that cluster heads consume more energy than other

nodes and thus may deplete their energy earlier and the definition of network lifetime
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as the time until the first sensor node depletes its energy. If rotation of cluster heads

is not adopted, we conclude that network lifetime is determined by the time until the

first cluster head depletes its energy. Let 𝑃𝑙 denotes the energy spent on delivering

one fixed data packet over a reliable link including both transmission and reception

consumptions, and 𝑛𝑗𝑖 denotes the expected number of transmissions needed for a

reliable data delivery over link (𝑗, 𝑖). Now consider a cluster with node 𝑗 as its cluster

members and node 𝑖 as its cluster head, who has maximum energy of 𝐸𝑚𝑎𝑥 and a

degree of 𝑑. We have the following lifetime of the cluster head 𝐿𝑖,

𝐿𝑖 =
𝐸𝑚𝑎𝑥∑
𝑑 𝑛𝑗𝑖𝑃𝑙

(5.1)

We then obtain the network lifetime 𝐿 using 𝐿 = min𝐶 𝐿𝑖. We can also see from the

above that network lifetime mainly depends on two factors: number of transmissions

over links and degrees of each cluster head.

Saving energy in retransmissions for each node as what we did in this thesis pro-

longs the network lifetime, which in nature is to reduce the number of transmissions

incurred for each link from a cluster member to a cluster head. There is another

important factor that we have not yet made fully use of: degrees. We formally state

this maximal life clustering problem in the following.

Maximal lifetime clustering problem:

Let 𝐺(𝑉,𝐴) be a directed graph representing a wireless sensor network, where 𝑉 is the

set of sensor nodes and 𝐴 is the set of directed links. Each link (𝑖, 𝑗) has associated a

positive integer, denoting an expected number of transmissions needed for a reliable

data delivery over the link, and 𝑁𝑐 be a positive integer that constraints the number

of cluster heads in the network. Each cluster head has lifetime 𝐿𝑖 defined in Equation
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(5.1). The problem is to find a set of cluster heads 𝑆 ⊆ 𝑉 , with ∣𝑆∣ ≤ 𝑁𝑐, so as to

max{min𝐶{𝐿𝑖}}.
Finally, it is also important to have experimental evaluation of these clustering

algorithms in the future using real sensor network test-beds. The lossy link problem

was pointed out and raised attention by previous empirical studies in the sensor field,

therefore the best way to validate clustering algorithms under lossy links is to evaluate

the performance in the real world.
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