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Abstract of the Dissertation

Partial Correlation Analysis in Functional Brain

Imaging Studies
by Kith Pradhan
Doctor of Philosophy
n
Applied Mathematics and Statistics
STONY BROOK UNIVERSITY

2009

There is a great deal of knowledge about the anatomical organization of the human brain
but much less is known about the functional interactions among the brains components
and how these interactions are altered under abnormal conditions such as disease, drugs
or alcohol. Confirmatory multivariate analysis methods, especially structural equation
modeling (SEM), are ideal for the verification of hypothesized brain functional pathways.
However data driven methods, especially the modern partial correlation network method,
would be more suitable for network discovery when little is known about the underlying
pathways. In this thesis, we develop novel correlation network analysis methods that
will enable us to examine the influence of factors such as disease or drugs, as well as the
effect of potential confounders such as age and gender, on the underlying brain functional
pathways. Two approaches are presented with the resulting methods applied to both
simulated and real functional brain imaging positron emission tomography (PET) data

from the Brookhaven National Laboratory.
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Chapter 1

Path Analysis in Neuroimaging

1.1 Introduction

Path analysis in neuroimaging is an attempt to discover relationships between the various
anatomical /functional regions present in the brain. In the past, obtaining information
of such pathways was only possible through in-vivo studies on animal subjects, or the
physical observation of rare medical incidents where damage to one brain region leads
to the loss of functionality associated with another (Novack et al., 2001). Such studies
continue today, but are conducted very infrequently on human subjects, for obvious
reasons. Fortunately, scientific breakthroughs in medical imaging, originating with the
invention of MRI (Lauterbur, 1973), have allowed us to quantitatively measure neuro-

logical attributes of live subjects thus opening doors to a myriad of novel methodologies.

1.2 Background

In recent years there have been many mathematical frameworks developed to aid our
understanding of neurological pathways, the foremost being structural equation mod-
eling (SEM) (McLntosh and Gonzalez-Lima, 1994). In this methodology, an a priori
model is declared that describes the expected directional pathways between anatomical
regions, usually formulated with the aid of experienced neurologists. This theoretical
a priori model implies a specific covariance structure which is validated or rejected by
fitting it with the observed data. If a path in the starting model turns out to be invalid,
a new model can be incrementally formed correcting for the mis-formed path and thus,
better models can be found (Bullmore, 2000; Stein et al., 2007). But an incremental
methodology for model improvement has its own problems. As the number of studied

regions grows, so does the number of possible pathway combinations; and there are an

1



exponential number of combinations (regions, pathways) to test before arriving at the
final model. The biggest difficulty stems from SEM’s requirement of a starting model,
founded in biology, which can be difficult to construct without consulting someone ex-

perienced in the field.

FIGURE 1.1: Structural equation modelling requires a starting model describing the

assumed relationships between endogenous(n’s) and exogenous(£’s) variables as well as

the distributions assumed of their error sources. The SEM procedure estimates the

coefficients (3’s and +’s of the proposed model and can be compared to other models
through a goodness of fit measurement.

The main challenge in the use of SEM in brain pathway analysis is the construction
of the a priori model. SEM can validate a proposed pathway model, but it has no
way to discover one itself unless the number of observations far exceed the number of
parameters in a saturated SEM model. Fortunately, the field of unsupervised pathway
analysis has seen rapid development in the recent years, and though relatively little has
been applied to functional brain images there have been notable breakthroughs. It is
suggested in (Marrelec et al., 2007) to use partial correlation pathways as a starting
model for SEM. In his paper, he finds the partial correlation between all region pairs
as well as their confidence intervals based on a resampling methodology. If the partial
correlation between regions is significantly different from zero, then a link is added
between pathways in the starting SEM model. In his experiment, he found that the
model based on partial correlation corresponds well to the a priori model based on

biology.

There are many methods of pathway analysis that have been applied to data other than
functional imaging, such as genomic microarrays. The amount of literature available on
this subject is huge, but most techniques focus on datasets with a very large number
of variables and few observations. Bayesian networking (Friedman et al., 2000) involves
using conditional probabilities to determine dependence across the variable pairings.
Displayed graphically, with brain regions as nodes and dependencies as edges, this net-

work can give us an idea of the true neurological patterns in the brain. It is not a method



to be recommended for networks containing large numbers of regions as finding the best
model becomes extremely difficult and has been proven to be NP complete (Chickering,
1996).

Relevance networks are another method that has been used to determine relationships
among a large collection of variables. Variable/pathway relationships are represented
graphically through nodes/edges whose relationships are calculated as a specific func-
tional metric. Pathways have been determined through use of correlations (Butte and
Kohane, 1999), and partial correlations (Fuente et al., 2004) with promising results on
gene datasets. Partial correlation is of more use to us because it shows the relationship
between variables controlling for the others, but if the number of variables is larger
than the number of observations, it becomes impossible to compute exactly. In these
cases, the partial correlation matrix must be estimated instead as is done in (Schafer
and Strimmer, 2005a) and (Peng et al., 2009).

Another popular method in determining pathways in the brain is Cross Correlational
Analysis (Welsh et al., 2001). Here we start with the measurement of a single anatomical
region, then we compute its correlation with all other points in the brain space. The
results of such an analysis are a 3D map showing the strength of the relationship between
the chosen region and the rest of the brain, see figure 1.2. The benefit of such a procedure
is that it depicts an intuitive, visual display of the correlations with respect to the rest
of the brain, and is very useful when it is known beforehand which regions are of true
importance. Although marginal correlations are used as default, there is also capability
to support partial and canonical correlations as well. As a downside, only one region’s
correlations may be observed at a time and navigating a dataset can become unwieldy

as the number of regions increases.

FIGURE 1.2: Brainminer: A visualization suite developed at Stony Brook to deal with
the many aspects of Cross Correlation Analysis. This screenshot shows the correlations
of a selected brain region to the remaining regions simultaneously in 3D format.



In (Cao and Worsley, 1999) an attempt is made to find significant pathways by comput-
ing the correlation between every possible pair of voxels in the brain space then culling
those that fall below a threshold based on random field theory. As with CCA, marginal
correlations do not yield information on whether the significant relationships are medi-
ated by other regions but partial correlations cannot be substituted as they can not be

calculated at voxel level.

1.3 Goal

My research focuses on using partial correlation as a measurement of the true pathway
functionality between brain regions. Partial correlation shows us how well one region
can be modeled by another excluding the linear contribution from a set of control re-
gions. This measurement is useful in pathway analysis because, so often, neurological
pathways are affected by neighboring regions. Partial correlation can be used for check-
ing independence as well (Baba et al., 2004), a diagnostic that can be of great use in

the formulation of new neurological models.

The novel methods proposed in this thesis deal with the addition of a descriptive factor
into the partial correlation model indicating the inclusion/exclusion status of a specific
observation vector to a group. The major question we address is whether this group
status affects the strength of the brain pathways under a specific experimental condition.
In our experimental case, we have two sets of brain images, one from normal healthy
control subjects, the other from cocaine addicted subjects, both taken after subjects
have been administered a dose of the psychostimulant methylphenidate. We wish to
determine how addiction affects the neurological paths involved in the brain’s reward

mechanism.

When dealing with marginal and partial correlations, there are many methods to check
if one network is equivalent to another or if a network is equal to a specific form (Brien
et al., 1984); but most procedures focus only on testing the network as a whole and not
on discovering which specific regions pairs are significantly different. Instead, we focus

on where the individual links are distinct by looking at each region pair separately.

This approach stems from the need to validate specific pathways controlling for known
region dependencies. In practice we already assume that two networks are different, it
is finding the exact locations where they are different that interests us. Unfortunately,
testing every region pair introduces all the problems that come with multiple compar-
isons. If each test has a slight chance for error, the chance of at least one test erring is

more than slight. For this reason, we want tests that have as high a power as possible



so that the inevitable introduction of multiple test corrections does not extinguish all

traces of significance.

Fortunately, we show through simulation that our novel methods do indeed have a higher
power than the traditional methods for testing the equality of two partial correlation

coefficients.

1.4 Outline of the Thesis

The remaining chapters discuss the current approaches related to comparing partial
correlations and introduce two new methods based on a regression analysis framework

and a likelihood ratio testing framework.

Chapter 2 describes two widely accepted solutions to the problem of determining equality

of two partial correlation coefficients.

Chapter 3 introduces our first new approach to this problem. A test based on a two-level

regression model.
Chapter 4 presents our second approach involving a likelihood ratio test.

Chapter 5 enumerates the numerical simulations, the real experimental data to which

we applied the two new and two traditional methods, and the results that follow.

Chapter 6 details an extension to the two-level regression model that can incorporate

continuous as well as binary covariate information.

Chapter 7 is a summary of what the thesis has accomplished as well as topics available

for further research.



Chapter 2

Existing Methods for Comparing

Partial Correlations

2.1 Overview

The distribution of the sample correlation coefficient has been known for many years
(Fisher, 1915), and tables of computed values have been published as early as 1938
(David, 1938). More recently, the distribution has been formulated symbolically in
Mathematica (Barabesi and Greco, 2002) and exact tests have been found for a sin-
gle marginal correlation coefficient (Goria, 1980; Chang et al., 2008). Similarly, tests
for partial correlation are known because the partial correlation coefficient follows the
distribution of a marginal correlation coefficient with fewer degrees of freedom (Fisher,
1924).

However, the test comparing two partial correlation coefficients to each other is not
known in the exact form. The accepted solution, described in many advanced (Kendall
and Stuart, 1973) and elementary (Dowdy et al., 2004) statistics textbooks, is to use the
Fisher transform on the two coefficients, and compare them with a standard z-test. For
marginal correlation, when the sample sizes are the same, this test has been shown to
be equivalent to the one based on the likelihood ratio test (Brandner, 1933), but even
o0, the exact distribution of the test statistic is not known. Although it is very easy to
calculate, a major drawback to the Fisher method is its reliance on the large number

theorem and is thus only recommended on large sample sizes (Hotelling, 1953).

Another accepted solution is to use bootstrap resampling to find the confidence intervals
of the partial correlation coefficients in each group and analyze their overlapping regions.

Unfortunately, bootstrap procedures typically require large samples and have theoretical



assumptions that are hard to verify under all but the most simple conditions. What’s
more, accurate results often require ten’s of thousands of resamples and requires ample

computing resources.

2.2 Fisher’s Transformation

There is no exact test that can determine the equality of two partial correlation coef-
ficients, but a very accurate approximation involving Fisher’s transformation is known
for moderate to large sample sizes. First noted in 1915 (Fisher, 1915), Fisher’s transfor-
mation has been the most widely used method of testing the significance of correlations
and partial correlations. Throughout the years there have been many attempts to un-
derstand this transformation and why it provides such an accurate approximation. In
(Winterbottom, 1979) the transformation is rediscovered as a normalizing and variance
stabilizing operation. More recently (Bond and Richardson, 2004), the transformation

is interpreted from a geometric standpoint.

A very important relationship between the marginal correlations and the partial corre-
lations controlling for k variables is described in (Fisher, 1924) which states that the
distribution of the partial correlation coefficient is exactly that of a marginal correlation
coefficient having k fewer degrees of freedom. This relationship allows us to make the
comparison of partial correlations by using a modified version of the test that compares

marginal correlations.

It was proven in (Anderson, 1984) that when the original data comes from bivariate
normal distribution, the asymptotic variance of the fisher transformed correlation co-
efficient depends on the sample size N but is independent to the actual population
correlation coefficient p. However, it is shown in (Hawkins, 1989), that no such indepen-
dence holds between the asymptotic variance of the transformed coefficient and p when
the data comes from distributions other than bivariate normal. This dependence plays
a role in the acceptance/rejection rate of the test based on the Fisher transformation,

as evidenced in our simulations.

2.2.1 Hypothesis Test

We are interested in determining the equality of two independent partial correlation
coefficients through the use of the Fisher Transformation. The relationship between
the partial correlation and the marginal correlation allows us to approximate the dis-

tribution of the sample partial correlation coefficient as that of a correlation coeflicient



with reduced degree of freedom. The test involves transforming each coefficient into an
approximate normal variable, then compares the transformed variables with a simple

z-test.

The test comparing two population partial correlations p; and ps based on two inde-
pendent samples controlling for k other variables, where the sample partial correlations

are r; and 7y with sample sizes n; and ngy respectively is

Lo (Y — (2
Zo = 5 (1 (177-1) l (177‘2))&]\7(0’1) (2.1)

1 1
\/n17k73 + no—k—3

under the null hypothesis Hy : p1 = pa.

2.2.2 Drawbacks

A major problem of this method is that the statistical accuracy depends on a large sam-
ple. The normalizing properties of the transformation exist only at an asymptotic level

and experiments involving small samples may introduce significant errors (Hotelling,
1953).

fisherz(r)
a
1

FicURE 2.1: A graph of Fisher’s transformation of the correlation coefficient. The
transformed values of the stronger correlations slope faster than the weaker correlations.

In Chapter 5, it is shown that the test based on the Fisher transformation yields the
most conservative results of all the methods. This seems to stem from the fact that
partial correlation of high absolute value are mapped to a very wide range of z-values,
see figure 2.1. The transformation takes an almost linear curve in the range of —.75 to

.75, but slopes sharply at the higher values. Because the transformed values are further

8



apart when both partial correlations have very high absolute value than when they both
have low absolute values, it makes intuitive sense that the acceptance rate of the Fisher
based z-test is more dependent on the strength of partial correlation coefficient than tests
not relying on the Fisher transformation. This phenomenon is noted in (Hawkins, 1989)
in data originating from distributions other than bivariate normal. Further evidence of
the bias in acceptance rate determined via Fisher z-test is given when we present our

simulation results in Chapter 5.

2.3 Bootstrapping

A widely used technique to infer qualities of an estimate is the bootstrap resampling
method (Efron and Tibshirani, 1994). In its most basic form, a confidence interval is
created for the parameter of interest under the null distribution through resampling,
and if the parameter estimate taken from the original sample is found to lie outside the

constructed boundary, the null hypothesis is rejected.

This simple technique works well for parameters that follow a symmetric distribution,
like the mean of a normal distribution, but correlation does not have a symmetric dis-
tribution. To illustrate this point, imagine a random sample taken from a bivariate
distribution with a very high correlation parameter. Because the correlation is so high
it is more likely that the observed correlation of the random sample would lie below the
true parameter than above it. This is demonstrated in figure 2.2, through a Monte-Carlo

simulation.

There are a number of ways to compute the bootstrap confidence intervals to deal with
non-symmetrical parameters of this sort (Carpenter and Bithell, 2000). Our problem is
best dealt with through the use of the bias corrected accelerated method, also known
as BCa (Efron, 1987), that more accurately represents the confidence interval of a non-
symmetric parameter. In BCa, two terms are introduced in the formulation of the
confidence interval addressing the correction of the estimate’s bias and the acceleration

of the estimate’s variance to its asymptotic value.

A simple way to tell if two groups’ partial correlations are equal to each other is to
generate two bootstrap confidence intervals and see if they overlap. But computing the
confidence intervals in this manner in order to test the equality of the two parameters
yields a very conservative result. If two 95% confidence intervals do not overlap, then it
can be said that the values are different at a significance level of at least 5%. But the
same can not be said of the converse, i.e. if the confidence intervals do overlap, there is

still a chance that the two values are in fact different.
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FIGURE 2.2: A sample of size 30 was taken from a bivariate distribution with means 0,

variances 1, and correlation coefficient 0.95 from which the sample correlation coefficient

was computed. This was repeated 10000 times and the density of the sample correlation

coefficients is estimated as shown (Sheather and Jones, 1991). This skewness is present
for all non-zero values of the correlation coefficient.

The conservative nature of the test comparing two confidence intervals in this manner has
been examined in (Payton et al., 2003). Through a simulation study involving standard
normal variables, they found the test rejecting the null when two 83% confidence intervals
fail to overlap to have a true significance level of 5% . We could apply this same
methodology to our own by computing the bootstrap confidence intervals of partial

correlation for each group to see if the intervals overlap.

Instead, we found it easier to determine the equality of partial correlations by bootstrap-
ping the differences directly. In each resampling step, the partial correlation is computed
for both groups, and the differences noted. In the end, the partial correlation difference of
the original sample is compared to the list of the N computed bootstrapped differences
to see if it lies outside the accepted boundary of values. Examining the parametric
estimates in this manner gives us less information than the dual confidence interval
approach, as only the differences are investigated, but it may improve the statistical ac-
curacy because there are fewer parameters under consideration. In the end, we decided
on a test that rejects the null hypothesis of equality in partial correlations if the bias
corrected accelerated bootstrapping method produced a confidence interval that does

not include 0.

2.3.1 Hypothesis Test

The bootstrapping algorithm is described below.
10



Given observation matrices X and Y of the first and second group we want to see if the
partial correlation between two columns controlling for the remaining columns is the

same between the groups.

e repeat N times

— draw n; resamples with replacement from matrix X, then compute sample

partial correlation p,.

— draw ng resamples with replacement from matrix Y, and compute sample

partial correlation py

— compute the difference of the two partial correlations pg.

e sort the N values of py taking a lowest and highest quantiles, depending on the

significance level desired, to serve as the confidence interval.

e if the confidence interval does not contain 0 then we reject the null hypothesis that

the two partial correlations are the same between the two groups.

2.3.2 Drawbacks

Bootstrap’s great boon is that there is no need to make the assumption of which dis-
tributions the data originates from. But, by disregarding all parametric qualities that
may be present in the data, it is hard to gauge the accuracy of the bootstrap method
from an entirely mathematical approach. The assumptions required to meet bootstrap’s
asymptotic properties are hard to check when dealing with anything but trivial exam-
ples. Additionally, because dealing with small samples can lead to overly optimistic
bounds on bootstrapped confidence intervals (Schenker, 1985), this method is usually

considered viable only for large starting samples.

2.4 New Methods

The following chapters describe two novel ways to determine the equality of two partial
correlation coefficients. Like the currently accepted methods, they are not exact, but
they will be shown to perform on par with the traditional methods, and in some cases,

result in greater accuracy, even on smaller sample sizes.
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Chapter 3

Two Level Regression

3.1 Overview

This chapter deals with determining the equality of two partial correlation coefficients
through use of a two-level regression modeling approach. We make use of the fact that
the partial correlation between two variables is equal to the correlation of the variables’
residuals after being regressed on the controlling variables. By further decomposing
the model relating the two residuals to account for group status, we determine the
significance of the influence that group status plays on the partial correlation between

the variables under consideration.

The statistical methods employed in this chapter operate under the same assumptions

required for ordinary least squares (OLS) regression, namely:

1. There exists a true linear relationship between the variables being regressed and the
variables being regressed upon, such that the expectation of the residual variable

is zero.
2. The observations of the variable being regressed are independent to each other.

3. The variables of interest have a constant variance over their ranges (homoscedas-

ticity).

Assumptions 1 and 2 are typical of regression analysis and their validity is usually no
cause of concern. The first can be verified with a scatterplot of the two variables of
interest, and the second is implicit in the random nature of clinical designs. As for
assumption 3, the homoscedasticity of the residuals is not effected by the two-level

design introduced in the next section. If the starting observations have satisfied the

12



variance conditions, then their residuals will also satisfy the conditions. If on the other
hand, the starting observations do not satisfy the conditions, then the usual procedures
of data transformation, using robust estimators for standard error or using weighted

least squares regression can be applied.

3.2 Two Level Regression

Our observations come from one of two groups G = {0,1}, and we are interested in the
effect this group factor has on the partial correlation between some pair of variables given
the other controlling measurements. For ease of notation, let us say we are interested in

the partial correlation between variables (Y1,Y2) controlling for measures (Y3, ...,Y}).

The first step, using ordinary least squares, is to obtain the residuals of the variables of

interest regressed on the controlling measures
A A p A
Yi=50+ ) B
i=3

p
Va=40+ > %Y
j=3

Ri=Y-Y (3.1)
Ry =Yy — Ys, (3.2)

where the 3;’s and ;s are the OLS estimates of regressing Y7 on the controlling mea-

surements, and Y, on the controlling measurements, respectively.

In order to analyze the partial correlations between the main variables (Y7, Y3), we will
be working with measures of correlation between the residuals (R, R2). We draw on the
fact that the significance of the test for an independent variable’s coefficient being equal
to zero in ordinary least squares regression gives the same significance as the test for the

correlation being zero between that independent variable and the dependent variable.

In the next stage, we regress residual R; onto residual Ra in the first level of our model
R = by + b1 Ry + ¢, (3.3)

then further decompose the coefficient by in the second level of our model.
b1 = ag + a1G, (3.4)

where G is the group status of the observation.
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Putting these together we get our two-level model

Ry =by+b1Re+e€
Ri =by + (a() + alG)Rg +e€
Ri =by+ agRo + a1GRy + €. (3.5)

N7 parcorr( Y, ¥, Vi, l=corr| R, R} L R=Y — Y,

R,--E}Dr:

bi=ayta G

FIGURE 3.1: An overview of two-level regression model. Residuals are obtained by

regressing the k controlling measurements onto variables Y; and Y;. We then decompose

the model relating the correlation of residuals R; and R; to the partial correlation

between the original variables Y; and Y; to account for the effect of group status. The

by coefficient in the model R; = by + b1 R; + € shows the significance the correlation

between R; and R;. Similarly, the a; coeflicient in by = ag+a1G tells us the significance
group status, G, has in the same relationship.

The coefficient a1 in 3.5 shows us the significance of group status on the linear relation-
ship between residuals R and Rp, i.e. the correlation between R, and Rs, thus showing
us the significance of the partial correlation between variables Y7 and Y5. The problem
here is that the residuals have a slight dependence on each other and further analysis

requires one additional step.

Using traditional notation, let us rewrite our its model

o bo
Y, = Ry, X,=]1 Ry RoG|, B, = ap | »
L ai
Y, = X,B, +e¢ (3.6)
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The covariance structure of residuals Y,

cov(Yy) = cov(e) = (I, — H)o? = ¥,0° (3.7)
H = X3.(X5 ,Xs5.5) "' X3 (3.8)

has non zero entries in the off-diagonals and therefore fails assumption 2 required for

ordinary least squares regression (Draper and Smith, 1998).

3.2.1 Dependent Residuals

We want to perform OLS on the residuals in order to determine the significance of the
ay coefficient, but the residuals are not independent and therefore the mathematical
basis for the significance tests is degraded. Although assumption 2 is not satisfied, in
practice, the correlation amongst residuals is very small (Anscombe and Tukey, 1963)
and we may be able to use ordinary least squares methods to perform our regression with
only slight inaccuracy. Disregarding the dependence of residuals is generally accepted
for graphical methods and by eye approximations, but the accuracy of a significance test

requires more rigorous assumptions to hold.

To deal with the dependency problem we try to apply the usual technique of multiplying
the residuals by a matrix that will decorrelate the covariance structure 3.6, as described
in (Seber, 1977).

_1 1
S %Y, = % (X, B, +¢) (3.9)
Y* = XIB, + ¢, (3.10)
where the cov(e) = X,.

_1
Supposing we could find the proper matrix ¥, 2, the covariance structure of transformed

residuals Y;* would be

cov(Y;¥) = cov(X ) By + €¥) (3.11)
= cov(X, By) 4 cov(e*) 4+ cov(X ) B, €¥) (3.12)
= cov(€") (3.13)
1
= cov(X, %¢) (3.14)
_1 1T
=%, 2%,0°%, 2 (3.15)
= I,0” (3.16)
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and the residuals would be decorrelated with one another.

Unfortunately, this routine leads to a dead end. The covariance matrix 3, = (I, — H)o
is idempotent, so any number of applications of the proposed transformation to the

covariance matrix will yield the same covariance matrix.

There are a number of ways to deal with this type of dependency issue. The problem
with using the original n residuals is that statistical tests based on them will ultimately
be making use of redundant information. Recursive residuals (Brown et al., 1975), and
recovered residuals (Jensen and Ramirez, 1999) are two popular methods of extracting

the n — k residuals that contain only the non redundant information.

Recursive residuals, introduced in (Plackett, 1950) are constructed from a starting model
of k variables, and built sequentially in such a way that the trailing residuals in the
sequence are not in the computation of the earlier ones. Construction in this way makes
the residuals independent from each other, but the order of the observations will have

an effect on the results.

Recovered residuals make use of of spectral decomposition methods to recover the n — k
residuals that can fully describe the information of the n residuals. We make use of
the Best Linear Unbiased Scaled (BLUS) residuals, introduced in (Theil, 1965), that
accomplishes this in a way that minimizes the expected squared length of the transformed
residuals and thus achieves certain optimally properties (Grossman and Styan, 1972),

most importantly, the unbiasedness of the residual estimates.

Theil’s procedure gives us a transformation matrix A that, under the assumption that
the data comes from a normal distribution, transforms the residuals into normally dis-
tributed and independent variables. Under less restrictive assumptions where the origi-
nal data is not assumed normally distributed, the BLUS residuals are still uncorrelated

to each other.

The matrix A is sized (n — k) x n, and therefore reduces the number of residuals after
transformation. This reduction eliminates redundancy allowing us to make inferences

on the now uncorrelated residuals.

Using BLUS residuals, our new model becomes

ATY, = ATX, B, + ATe (3.17)
Y = X*B, + ¢* (3.18)
cov(Y;*) = cov(Y}') = 1,02, (3.19)

where A is Theil’s transformation matrix.
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3.2.2 Swapping Residual Roles

The above procedure gives us a measure of the group factor’s effect on partial correlation
between variables (Y7,Y2), but it is not the end of the analysis. An important question
arises: what happens to the significance level of group factor’s coefficient if we switch

the order of the regression around, i.e. we regress Ry onto R;?

Ry=cy+c1R1 + &
Ro =co+do+diGR1 + &
Ro =cy+doRy + di1GRy + €. (320)

The answer: we get a different p-value.

Without the group factor included, switching the dependant/independent variables has
no effect on the significance of the regression coefficient. But with the group factor
included, the problem essentially becomes a multiple regression model on the residuals
with an interaction term included, but only one main effect present. In the first procedure
3.21, because R; is the dependent variable, the coefficient a; tells of the residual Rs’s
effect on Rp, and thus is a measure of linearity from Y7 to Y. Similarly, the second
procedure 3.22, d; gives us a measure of linearity from Y5 to Y7. In practice, switching
the order on the residuals gives two different, and possibly conflicting measurements for
the effect that group status plays on the partial correlation between variables Y7 and
Y5. We are left with two different measurements but no clear method to choose one over

the other.

Ri=0byp+agRs +a1GRy + ¢ (3.21)
Ro =co+doRy +d1GRy + & (3.22)

As a measure of partial or marginal correlation, coefficients in a regression equation
have no causal direction. We cannot determine causality from the significance of the
correlation coefficient. But, there is an inherent assumption in the dependence relation
between residuals when we model them as 3.21 or 3.22. In the first model, residual
R, is considered dependant on Ry and in the second model, it is Ro that is considered

dependant on R;.

If we have directional information on the causal pathways between the variables before-

hand, then it is clear which of the equations, 3.21 or 3.22 to choose. For example, if we
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know that x causes y, then we would choose to model the residuals of y as the dependent
variable and residuals of x as the independent. To choose roles in this way, we would

require a starting model, like SEM, to specify the causal dependences.

For the simulation and experimental data of chapter 5, we are not privy to any informa-
tion on causal structure and one equation is as logical as the other. In the results section
of the next chapter, we do not make use of causality information and simply report the

average p-value of the two models.

The silver lining to the two-level regression method is that this drawback is indeed also its
advantage if we consider the partial correlation testing as a data exploration/hypothesis
generating step, before an SEM confirmatory analysis. See section 7.1 for more on this

topic.

3.3 Drawbacks

Since this method relies on ordinary least squares regression, all the drawbacks and
pitfalls present in OLS are present in our method. The biggest problem is what to do
when there exists a non-linear relationship between the variables of interest. In this
case, OLS can not give us an accurate picture, and since partial correlation is a measure

of linearity, a true measurement relating the two variables will not be found.
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Chapter 4

Likelihood Ratio Test

4.1 Overview

In this chapter I describe our LRT for determining whether the partial correlation of
two variables (Y7,Y3) are the same between groups. For clarity, the LRT procedure
is explained first by stepping through a simpler problem, then through the proposed

problem of comparing two groups.

For the first section we start with the assumption that our dataset consists of n iid

samples taken from the multivariate normal distribution of the form

iid
(y1,92) ~ MV N(p, ). (4.1)
and the controlling factors (ys,...,ys4) are known constants from which we can linearly

model (y1,y2).

We are interested in the partial correlation between y; and ys given the values of the
Y3, ...,Yp wWhich can be calculated by performing a linear regression of the main vari-
ables on the conditional variables and taking the marginal correlation of the resulting
residuals. The following sections detail our approach to inferring the equality of two

partial correlations through the likelihood ratio test approach.
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4.2 LRT Method

4.2.1 An Easier Problem

Before describing our method for determining whether the partial correlation between
two groups is equal let us start with a simpler example: determining whether the partial
correlation in a single sample is equal to 0. The solution to this example is already known
in exact form (Kendall and Stuart, 1973). We solve it here with a LRT to illustrate the
method.

Like the previous approach, our method starts with a regression of the variables of inter-
est onto the variables we wish to control for. Let Y = X3 4 € be our regression model,
where our two variables of interest are represented by Y = (y1,¥y2), our controlling
variables by X = (y3,...,¥Yp), and B is the (p — 2) x 2 = a x 2 matrix of regression
coefficients, with € ~ MV N(0,I, ® ¥). Least squares estimates of 3 are calculated
as X(XTX)"'XTY = HY, and the residuals R = (r1,72) = Y — Y follow a singular
multivariate normal distribution formulated by Khatri (1968).

(r1,72) ~ N"222((0,0), (I, — H) ® X). (4.2)

nx2

By definition, the partial correlation between two variables given a set of controlling
variables is equal to the marginal correlation of the residuals of the variables’ residuals
when regressed on the controlling variables (Kendall and Stuart, 1973). In the same
sense, we make an inference on the equality of partial correlation between groups by

analyzing the correlation of the residuals via LRT.

Because the residuals have dependence on each other, the usual method of constructing

the likelihood function from the product of independent pdf’s does not work here.

L(6;r) # [ ] fi(r; 0) (4.3)

=1

However, this fact does not affect us since the joint distribution of the residuals is known

(Diaz-Garcia et al., 1997) and can be used directly as the likelihood function.

L(6;r) = fr(r;0,%)

= — — etr¢ —=0"r¥ r (4.4)
(2m) =2 A ATV 6 L2
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where © = I,, — H, A; are the eigenvalues of O, §; are the eigenvalues of ¥ and A~

stands for the pseudoinverse of A.

Looking at equation (4.2) we can see the covariance structure of the residuals is composed
of two parts: (I, — H) deals with the dependence across the n observed residual vectors
and X deals with the covariance of the residual variables themselves. It is ¥ that
details the partial correlation between variables (y1,y2). If the off diagonal entries in
the residual’s 3 are 0, it tells us that the correlation between the residuals is 0, which

in turn tells us that the partial correlation between (y1,y2) is 0.

Knowing the likelihood distribution, we make use of the LRT to determine whether the

partial correlation is equal to 0 !.

\_ Lo _ fr(r;©,%) (4.5)

Li fr(r;©,%)

52

S o1 H, 0 . . R . .

where ¥p = { 0" 52 is the matrix maximizing the numerator(the likelihood func-
2,Hg

a’% H &%2 H

o1 57| is the matrix maximizing the

12,0, 92,H;

denominator(likelihood under alternative hypothesis).

tion under the null hypothesis), and 3 = {

From here we use the y? approximation for the LRT to determine the p-value of the test.
The statistical significance of the test depends on the goodness of fit of the likelihood
ratio under the null hypothesis to that of a x? distribution. In the next chapter, we

show evidence that these conditions are indeed met via simulation study.

4.2.1.1 Regularity Conditions

The procedure for calculating p-value makes use of the y? approximation to the LRT,
and thus requires all the regularity conditions necessary in problems of this nature.
Because we do not follow the typical method of finding the likelihood function we can
not blindly accept the regularity assumptions, but it will be shown that all the conditions

necessary for the use of the y? approximation can be met.

The asymptotic properties that allow our use of the x? approximation to the LRT
requires certain regularity conditions. The main condition is that the Fisher information,
which is a measure of the sharpness of the support curve at the location of the maximum
likelihood estimator, is finite and is defined everywhere. This is due to the fact that the

x? approximation makes use of the Taylor expansion with derivatives up to the 3rd

! These functions can be maximized numerically using various methods freely available in statistical
computing software packages. For our simulations, we use the simplex algorithm proposed by Nelder
and Mead in 1965 (Nelder and Mead, 1965)
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degree. For the Taylor expansion to be accurate it is imperative that the support curve
centered around the maximum likelihood estimators be smooth with no breaks or sharp
points. In this case, it is enough to check that the Fisher information exists at all values

of the parameters being estimated.

It can be shown that the Fisher information matrix of the singular multivariate normal
distribution exists for all values of parameter 3. The pdf for the singular MVN distri-
bution, given by 4.4, can be simplified to the following form in terms of the variables of

interest X

frR(r;0,8) =k-etr {Ax X7}

— L. ot k11 k12 acl—
=k etr{[k21 ,m} x [2%] }

{ akgo  ckoy _ ckig + bk }
— k -e ab—c2 ab—c2 ab—c2 " ab—c2

(4.6)

From this simplified form 4.6, it is easy to see that the Fisher information requirement
%lnf(r;@) < o0, for 6 = {a,b,c} is satisfied for all values of k and for all values of
a, b, and ¢, as long as ab # ¢?, i.e. as long as o109 # 019 or equivalently, as long as

-1<p<l

4.2.2 Back to our original problem...

Now that we’ve dealt with the case of one group, expanding the test to infer the equality
of two groups is easy. As before, let’s assume we have two sets of observations: X from

the first group and Y from the second.

(z1,22) 4 MV N (pte, o)

id
(y1,92) ~ MVN(Hya Zy)

with values of the controlling variables as (x3,...,zp) and (ys,...,yp). In this case, we
regress variables (x1,22) on (x3,...,xp) to get residuals
ra ~ N5 ((0,0), (T, — Hy) © ), (4.7)

and (y1,y2) on (y3,...,¥p) to get residuals

ry ~ NU52((0,0), (1, — Hy) ® 5,). (4.8)

Ty X2
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This time we are interested in the relationship between the off diagonal entries of the
matrices X and X,. The correlation between residuals can be compared by observing

the part of the covariance structure pertaining to the residuals.

Because of the relationship between the marginal correlation of the residuals and the
partial correlation of the original vectors, when the correlation values off diagonal entries
are equal in ¥, and X, the partial correlations of (z1, za|xs, ..., xp) and (y1,y2|y3, ..., Yp)
will be also be equal. By maximizing the likelihood functions under the null where
the correlations are the same between groups, and under the alternative, where the
correlations are allowed to vary, we can determine the significance of the test through

the likelihood ratio test.

Using the same procedures as the simpler case, we compute the likelihood ratio, using
the fact that the observations from Y and X are independent, and f(X,Y) = f(X)f(Y)
the likelihood ratio becomes:

\ = Lo B fX(racQ Oy, 2A:Ow)fY(ry; @y, Z]Oy)

== = . —2 (4.9)
L1 fX(Tw;@waElw)fY(ry;eyaEly)
where the numerator is maximized over 5 parameters: a, b, ¢, d, p.
. a ab-p - c cd-p
Yoz = , Yoy = (4.10)
ab-p b cd-p d
and the Denominator is maximized over 6 parameters: a, b, c, d, p1, pa.
. a ab - p1 A c cd - pa
Yip = , Yiy = . (4.11)
ab - p1 b cd - po d

From this we calculate a p-value based on the x? approximation to the likelihood ratio

test.

4.3 Drawbacks

The performance of this method relies on the ability to approximate the likelihood
ratio test with a y? distribution, a relationship that holds true only under asymptotic
conditions. For large samples this approximation is adequate, but as the sample size

gets smaller, so to does the accuracy of the x? approximation.

In the next chapter we compare the LRT under the null to a y? distribution through

simulation and find an adequate fit. But comparison in this manner is not possible with
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the single observation sample of our real world data. If there is reason to believe the
LRT does not conform to the assumptions required for the significance testing, there are

still other ways to proceed.

One such way is to perform bootstrapping on the LRT as proposed in McLachlan (1987).
In this paper, the data are resampled and the LRT is computed each time to construct a
null distribution to the LRT. The original sample’s LRT is compared to the range of the
constructed LRT distribution to determine the significance of the test. Rotnitzky et al.
(2000) pointed out that special asymptotic distributions for the LRT can be formulated

to deal with sampling distributions having a singular Fisher information matrices.

The other drawback of this method is its reliance on numerical methods to maximize the
likelihood function under the null and alternative hypothesis. If the numerical algorithm
selects a local maximum instead of the global maximum, there is a possibility that our
LRT and its x? approximation becomes invalid. One such way this can happen is if
a local maximum is found under the alternative conditions and the global maximum
is found under the null in such a way as to make the likelihood ratio greater than 1.
Because the conditions under the null are assumed a subset of the conditions under the
alternative, it is never possible for the null likelihood to be greater than the alternative
likelihood, but this may happen in practice due to the numerical nature of determining

our maximizing estimates.
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Chapter 5

Simulation and Experiment

5.1 Overview

In this chapter, we apply the previously described methods for determining the differ-

ences in partial correlations to a series of simulated datasets and analyze their results.

We then apply all four methods to the experimental brain image dataset consisting of

16 normal controls, and 25 cocaine addicted subjects.

5.2 Simulation Diagnostics

The most direct approach to test the new methods from the previous chapters is to
generate a set of data and compare their performance relative to the established /existing
methods. Since the approach based on the Fisher transformation is the most widely used
test for determining whether two partial correlations are equal to each other, we will be

using it as a baseline to gauge the other two methods.

With any hypothesis test there is a chance of getting an incorrect outcome. This can
occur in one of two ways: a type 2 error where the test mistakenly accepts the null
hypothesis when the condition stated in the alternative hypothesis is true, and the more
severe type 1 error where the test rejects the null hypothesis in the case that the null
is true. We will be viewing the new tests in terms of the type 1 and type 2 errors and

comparing them to the test based on Fisher’s approximation to see how they behave.
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5.2.1 Simulated Power Curve (1 - Type 2 Error)

If a test accepts the null hypothesis when it should have rejected it, it has committed a
type 2 error. When we know the distribution of the test statistic, we can calculate the
power of the test given the specified parameter under the alternative hypothesis. For
example the Fisher transformed statistic follows an approximate normal distribution,
as does the test based on two level regression, while the likelihood ratio test follows an
approximate y? distribution and the power curves can be constructed for these approx-
imations. However, the exact distributions to these statistics are either unknown, or

very complicated, and calculating the power curve can be a very drawn out procedure.

Instead, we focus on a Monte-Carlo approach that can give us the same information
but does not require the knowledge of the statistic’s exact distribution. Basically, we
generate many random samples where we know the alternative hypothesis should be
accepted and see how often the test under consideration accepts/rejects the null. If we
bin the results together by alternate hypothesis parameter we can construct a power

curve by noting the percentage of tests that have correctly rejected the null.

The power curve simulation is performed as follows:

e Repeat N times

— Generate data for the two groups. We will assume that data from the first
group comes from a multivariate normal distribution with a mean vector pig
and covariance matrix X,. Similarly, the second group’s data comes from a

multivariate normal of mean pty and covariance matrix 2.

1. Generate a random positive definite matrix 3, of size k x k that will be
used as the covariance matrix of group 1 (Joe, 2006).

2. Duplicate X, into ¥, changing the values so as to make the partial corre-
lation between the first two elements zero. This is done by transforming
covariance matrix ¥, into its corresponding partial correlation matrix
through the inverse operation (Schafer and Strimmer, 2005b), setting
the elements p13 = p21 = 0, then transforming the matrix back into its
original form.

3. Generate X, ni samples from a multivariate normal distribution of mean
0 and covariance X, (Genz, 1992) and Y, ny multivariate samples with

mean 0 and covariance X,.

— Perform the two group comparison testing Hy : p, = py, where p, is partial

correlation of the first two columns of X controlling for the remaining columns
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of X, and p, is defined similarly for Y. For each test, report the p-val of the

test, as well as the actual difference in partial correlations.

x Using the Fisher transformation procedures described in chapter 2.
% Using the two-level regression described in chapter 3.

x Using the likelihood ratio test described in chapter 4.

Once we have a suitable number of data points, we can plot a simulated power curve
by showing the percentage of tests that correctly reject the null hypothesis against the
binned values of the true partial correlation difference between groups. This plot shows
us how likely the methods under consideration will reject the null given a true difference
in partial correlation. For any given significance level «, we expect to see a low rejection
percentage when the true difference in partial correlation is zero, and a higher rejection
percentage as the difference grows. Because we only generate a few thousand data points,
the binned results are somewhat noisy. To help us make sense of the data we smooth
the simulated power curve via LOWESS (Cleveland, 1979).

5.2.2 Simulated Type 1 Error Curve

When a hypothesis test incorrectly rejects the null it has committed a type 1 error. As
before, the exact error curve can be constructed only if the exact distribution of the
statistic is known. Instead we utilize the simulated type 1 error curve, constructed it
in a similar manner to the type 2 curve described above, the only difference is that this
time the covariance matrices are equal (X, = ¥,) thereby giving us a set in which the

null hypothesis is always true.

e Repeat N times

— Generate data for the two groups. We will assume that data from the first
group comes from a multivariate normal distribution with a mean vector pig
and covariance matrix Y,. Similarly, the second group’s data comes from a

multivariate normal of mean p1y and covariance matrix %,,.
1. Generate a random positive definite matrix X, of size k x k that will be
used as the covariance matrix of group 1.
2. Duplicate ¥, into X,,.

3. Generate X, n; samples from a multivariate normal distribution of mean
0 and covariance X, (cite) and Y, no multivariate samples with mean 0O

and covariance X,,.
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— Perform the two group comparison testing Hy : p; = py, where p, is partial
correlation of the first two columns of X controlling for the remaining columns
of X, and p, is defined similarly for Y. For each test, report the p-val of the

test, as well as the true partial correlations.

x Using the Fisher transformation procedures described in chapter 2.
% Using the two-level regression described in chapter 3.

x Using the likelihood ratio test described in chapter 4.

This time we plot the percentage of rejected tests to the true partial correlation which
is in fact the same between groups. We expect the percentage of rejected tests to be
constant and equal to the significance level a regardless of the true value of partial

correlation.

5.3 Simulation 1

For our first simulation we choose a relatively large sample size of n; = ne = 30 and
k = 6, in order to verify that the assumptions required for each method are met. Since we
are working with a large sample size, we can expect the methods based on bootstrapping
and Fisher’s approximation to be accurate. Since the data is coming from a multivariate
normal distribution, the assumptions required for the two-level regression approach are

also satisfied.

Under the null hypothesis, the distribution of the LRT statistic should be distributed
as a x2 with 1 degree of freedom. To validate the LRT procedure, we construct the
distribution of the LRT under the null hypothesis condition by generating a large number
of datasets, and compare it to a random sample from a x? with the Kolmogorov-Smirnov
test (Conover, 1971). The resulting statistic D = 0.0128 and p-value of 0.3857 shows
this condition to be satisfied. A visual display of the sample density (Sheather and
Jones, 1991) of the LRT performed on 10k sets, compared to 10k samples taken from a

x? distribution with 1 degree of freedom can be seen in figure 5.1.

The simulated power curve in figure 5.2 shows us the percentage of tests rejecting the null
hypothesis given the true difference in partial correlation between groups. A perfect test
would would reject the null for every non zero difference and would display a straight
line at the value of 1.0 for its power curve. Since a test like this does not exist, a
more reasonable curve would have its lowest points around the area where the partial
correlation difference is zero and would rise to 1.0 as the the true difference expands.

Such a curve is exhibited in figure 5.2. In this simulation all methods display reasonable
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FIGURE 5.1: Simulation 1(nl = n2 = 30, £k = 6): This figure shows the estimated
density of the 10k independent observations LRT under the conditions stated in the null
hypothesis, along with the density of 10k Y2 variables. The procedure for estimating
the density of the empirical data distribution is accomplished through through the
application of an optimized smoothing kernel to the histogram.

curves, with the LRT test coming out on top with the highest power, and the Fisher

transform method with the lowest for all differences in partial correlation.
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FIGURE 5.2: Simulation 1(nl = n2 = 30, k = 6): Simulated power curve based on 10k
samples and a significance level @ = 0.05. The results are as expected, with a larger
true differences between groups yielding higher rejection rates across all the methods.

The simulated type 1 error curve, see figure 5.3, shows similar results for all nearly all
the methods, as expected. A constant error for all values of the partial correlation shows
that there is no bias in the rejection of the test based on the true partial correlation
value, which is the case for the two new methods proposed in this thesis. The Fisher
method however, shows it is more likely to accept the null hypothesis when the true

partial correlation takes on extreme values close to 1 and -1. This, coupled with the
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lower power demonstrated in 5.2 makes for a more conservative test when using the

Fisher method.

o Fisher
o ‘o LRT
M4 2LvIRegl
= 2LvIReg?
29
2 o
£
2 8]
2 o
2
§ =
[
o
=)
5 =
==
Q
o
[ n | e
Q,
O
o _
Q,
O

-0.6 -04  -0.2 0.0 0.2 0.4 0.6

True Partial Carrelation

FIGURE 5.3: Simulation 1(nl = n2 = 30, k = 6): Simulated type 1 error curve based

on 10k samples, & = 0.05. The tests show nearly constant rejection levels for all values

of partial correlation. Only the method based on Fisher’s transform shows any variation
based on range.

5.4 Simulation 2

In this simulation we use a smaller sample size n; = ng = 20, and fewer regions k = 4, in
order to see how the methods perform on a dataset that does not meet all the large sample
requirements suggested for the bootstrap and Fisher’s transformation methods. Real
world datasets, especially those from functional brain imaging studies, rarely contain as
many samples as a researcher would like. The cost for a single PET scan can range in
the thousands of dollars, which restricts the number of subjects that can be recruited

into the study.

As before, it is necessary for the LRT to follow a x? distribution with one degree of
freedom for the test to have any accuracy. And again, the data shows this to be so, with
a Kolmogorov-Smirnov distance of D = 0.0145, and corresponding p-value of 0.2439
showing the similarity between repeated samples of the LRT under the null conditions
and random samples from a x? distribution. The plots of the estimated density of the
LRT under the null hypothesis is shown along with 10000 random points from the y?

distribution with one degree of freedom.

As before, the simulated type 1 and type 2 error curves are shown for this dataset in
figures 5.5 and 5.6. The plots show results similar to the first simulation, despite the

smaller sample size. It is important to note that under the null hypothesis, the method
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FIGURE 5.4: Simulation 2(nl = n2 = 20, k = 4): This figure shows the estimated
density of the 10k independent observations LRT under the conditions stated in the null
hypothesis, along with the density of 10k 2 variables. The procedure for estimating
the density of the empirical data distribution is accomplished through through the
application of an optimized smoothing kernel to the histogram.

based on the Fisher transformation rejects the null even less than under the conditions of
simulation 1. With a smaller sample size and fewer controlling regions the test rejection

rate is even more dependant to the actual partial correlation value.
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FIGURE 5.5: Simulation 2(nl = n2 = 20, k = 4): Simulated power curve based on 10k

samples and a significance level o = 0.05. The results are as expected, with larger true
differences between groups yielding higher rejection rates across all the methods.
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FIGURE 5.6: Simulation 2(nl = n2 = 20, k = 4): Simulated type 1 error curve based
on 10k samples

5.5 Simulation 3

The purpose of this simulation is to see how a dataset of the same size as our experiment
performs. Like our real world dataset, we have n; = 16 corresponding to the 16 normal
controls, ng = 25 corresponding to the 25 cocaine subjects, and k = 9 corresponding to
the measurements taken from the 9 brain regions. Reasonable curves at this sample size

assures that we can apply these methods to our real world dataset.

The first step is to make sure the LRT follows the x? distribution under the null hy-
pothesis. A Kolmogorov-Smirnov test gives a D stat of 0.0132 and p-value of 0.3483.
The plot can be seen in figure 5.7.

The type 2 error curves shown in figure 5.9 display patterns resembling those from the
the previous simulations except that they are much lower. Increasing the number of
controlling variables has a detrimental effect on the power of the all tests we compared
in this study. The type 1 error curves in figure 5.8 show a possible problem with the
LRT. Despite the fact that the rejection significance level was set at o = 0.05 for all
the tests in the simulation, the rejection rate of the LRT is much higher, falling around
0.08. This coincides with the higher power present in this simulation leading us to
the conclusion that the LRT is more likely than the other methods to reject the null
hypothesis regardless of whether or not it is true. Still, an observed type 1 error of 0.08

does not invalidate the method entirely.

The three simulations tell us much about the testing procedures we will apply to our real

world dataset. For one, they show that method based on Fisher’s transformation is very
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conservative, a property we welcome when the null hypothesis is true, but it causes dif-
ficulty achieving significance when there really is a difference in the partial correlations.
The LRT method has the highest power and has a type 1 error curve consistent with the
proposed simulation significance level at lower sample sizes and controlling measures,
but the addition of controlling measurements increases the likelihood of rejecting the
null hypothesis despite the true state of the parameters. Of the three methods, it is
the two-level regression procedure that gives the most well rounded results. In all three
simulations the type 1 error curve falls in its expected places at 0.05 at all ranges of
partial correlation and in all three simulations it has a higher power than the Fisher

method.

When applied to entire networks, tests of this nature must account for multiple compar-
isons by increasing the threshold required for significance. Because of this need, it may
be beneficial to use our new methods, especially the two-level regression, which achieved
higher power curve than the Fisher z-test, while keeping the type 1 error rate consistent

at all levels of true partial correlation.

Using the results of the simulations as a guide, we should expect the Fisher method to
give us the least number of significant paths, and the LRT method to give the most.
But, as we have learned through the simulations, we should be wary in our acceptance
all of the paths based on the LRT. The results based on the two-level regression are the

most likely to show the true nature of the partial correlations between groups.
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FIGURE 5.7: Simulation 3 (nl = 16, n2 = 25, k = 9): This figure shows the estimated
density of the 10k independent observations LRT under the conditions stated in the null
hypothesis, along with the density of 10k x? variables. The procedure for estimating
the density of the empirical data distribution is accomplished through through the
application of an optimized smoothing kernel to the histogram.
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FIGURE 5.8: Simulation 3 (nl = 16, n2 = 25, k = 9): Simulated power curve based on
10k samples and a significance level & = 0.05. The results are as expected, with larger
true differences between groups yielding higher rejection rates across all the methods.
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FIGURE 5.9: Simulation 3 (nl = 16, n2 = 25, k = 9): Simulated type 1 error curve
based on 10k samples

5.6 Experimental Study

Our data consists of PET scans taken from 16 normal control subjects and 25 cocaine
addicted subjects. We will attempt to find differences in the neurological pathways
between the normal control group and the cocaine addicted group under the condition
that the subjects have been administered a dose of methylphenidate, a drug similar to

cocaine.

This dataset has been analyzed before with traditional methods (Volkow et al., 1997),
(Volkow et al., 2006), (Volkow et al., 2005), (Volkow et al., 2008) but an analysis based
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on partial correlations has not been approached yet.

5.6.1 Data Acquisition and Preprocessing

Nuclear imaging is the process of extracting a 3D representation of an object based on the
amount of radiation it emits. There are a number methods to accomplish this, including
computed tomography (CT) which is essentially a 3D x-ray, magnetic resonance imaging
(MRI) which measures the speed at which atoms return to their resting state after an
initial alignment due to magnetism, and positron emission tomography (PET) which
measures the amount of radiation given off by an object. In our experiment, we are

working with images taken from a PET machine.

When we take PET scans using FDG, we are effectively measuring brain activity. If a
human subject was put in a PET scanner as is, we would get a meaningless picture.
Our bodies give off small quantities of radiation all the time but of a type that is
unmeasurable, or insignificant to the topic we are studying. For this reason, the subjects
of our study have been given a dose of FDG (Phelps et al., 1979), a radioactive chemical
that binds to glucose. The idea is that when certain regions of the brain are more
active, more blood will be flowing to them, blood containing measurable amounts of
FDG bound glucose. The PET image gives us a 3D measurement of how active the

various parts of the brain were during the time of the scan.

A direct comparison of PET intensity based on a fixed coordinate position would yield
meaningless results. Not everyone has the same sized brain so the measurement at a
fixed coordinate could yield the intensity of the amygdala in one patient and the intensity
of the eye socket in another. Moreover, other than bolting the head down, there is no
physical way to make sure the subjects’ heads are aligned in exactly the same way.
Therefore, a number of procedures must be performed on the 3D scans to make them

directly comparable to each other.

The first procedure is known as spatial normalization which corrects the problem of
differently shaped brains. To start off, a template is generated either from an amalga-
mation of scans or by selecting a single scan at random, to represent a coordinate system
to which all the other scans will be transformed to. Then, for each image, the affine
transformation is found to minimizes the difference between the transformed image and
the template, see figure 5.10. The application of this affine transformation warps the
image under consideration into the space of the template, thereby making the intensity

at any given point comparable across the dataset.
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Spatial Normalisation

Image :/scratch/ffMRI_data/data/meanfMRI_vis_stim_0000.img
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FIGURE 5.10: The normalization procedure as implemented through SPM software

(Ashburner and Friston, 1999). A 3 x 4 affine transformation matrix is found that

minimizes a metric describing the distance of the warped brain scan to the chosen
brain template.

The second procedure partitions the 3D image into a set of well documented regions and
extracts those that are of interest to the current study. To each scan, we apply a mask
that assigns each location to an anatomical region. This automatic method has been
utilized in various studies, and has been shown to produce accurate and reproducible
results compared to the labor intensive manual approach (Scheinin et al., 2008). We use
the original mask based on Talairach’s work (Lancaster et al., 2000), but the procedure

could be done using any atlas, even a probabilistic map as studied in (Lee et al., 2004).

The third procedure is to normalize the dataset across subjects by intensity. The process
of acquiring images is a very lengthy one, and can take months to complete an entire
study. Throughout the study, it is impossible to control all parameters so that they
are exactly the same on each subject. On large studies, like the one we are analyzing,
data comes from multiple scanners, is taken on different days, and by different machine
operators. What’s more, people’s brain differ by volume. A camera’s reading of higher
intensity could be caused by the actual differences between groups, or by any number
of these unavoidable parameters. We try to control for this effect by utilizing an in-
tensity normalizing procedure. Dividing each scan by its total intensity equalizes these

discrepancies somewhat.
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FIGURE 5.11: The autoROI software package is used to extract regions of interest

automatically from our dataset. The figure shows a 2D slice in the transverse plane

of a spatially normalized PET image overlayed with various anatomical regions. Our

experiment consists of the nine regions associated with the brain’s reward mechanism,
but new anatomical sets can be easily substituted into the analysis work flow.

The last procedure involves finding single values to best represent the regions found in
the previous step. Each region is a collection of positions in the brain space, see figure
5.11. The easiest to to represent the intensity of a region is to use the mean or median
of the region. This method is easily implemented, but we have found that taking a small
neighborhood around the maximum of the region gives results that better match those
of a trained doctor performing the region selection manually (Ma et al., 2004). Despite
the normalization step, there are always slight differences in the brain configuration
between patients. In the manual procedure the doctor selects a small region based on
visual inspection and hand draws a selection region. When we base the region selection
around the maximum value instead of the whole region, we hope to reduce errors due

to slight differences in spatial distortion between subjects.

What we end up with is a set of numbers representing the key areas of the brain involved
in the reward pathway for each patient. These areas have been found by our collaborator
to be directly responsible for the reward mechanism in human subjects (Volkow et al.,
2002), and consist of the following regions: Ventral Striatum (VS), Thalamus (THAL),
Insula (INS), Putamen (PUT), Motor Frontal Cortex (MFC), Cerebellum (CER), Amyg-
dala (AMYG), Orbito Frontal Cortex (OFC), Cingulate Gyrus (CG).
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5.6.2 Normality Check

Some of the procedures we use operate under the assumption that the data follows a
multivariate normal distribution. We checked this assumption through the use of a
parametric bootstrap energy test (Szkely and Rizzo, 2005). The resulting p-value of
0.3353 shows clear evidence that the assumption is valid. Additionally, scatterplots of
all region pairings, see figure 5.12, show visually that this assumption is reasonable for

the bivariate case.
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FIGURE 5.12: Scatterplots of all region pairings show that it is reasonable to assume
that some form of linear relationship exists.
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5.6.3 Procedure

After all the preprocessing steps, the data ends up in matrix form, see figure 5.1, to
which we apply the four methods of the previous chapters: bootstrapping, Fisher’s

transformation, two-level regression, and LRT.

(a) Normal Control

. Region 1 | Region 2 | Region ... | Region k
nml 1 T11 12 T1k
nml 2 o1 92 ces Tok
nml nq Tny1 Tn,2 - Tk

(b) Cocaine addicted

. Region 1 | Region 2 | Region ... | Region k
coc 1 Y11 Y12 Yik
coc 2 Y21 Y22 . Yok
COC N9 Ynol Yno?2 o Ynok

TABLE 5.1: The data matrices obtained after preprocessing the PET image scans

Because we are applying this test to all region pairs, obtaining an accurate p-value
requires us to deal with the problem of multiple comparisons. Let’s say the probability
of a single test to incorrectly reject the null hypothesis by chance is a = 0.05. If there
are many tests taking place, the probability of at least one of the tests rejecting the null
by chance is much greater than a. The simplest, but most restrictive, solution is to use
Bonferroni correction and divide the individual test significance levels by the number of
tests. It was Boole who first noted that the probability of any set of events is less than
or equal to the sum of the probability of each individual event, i.e. P(AUBUC) <
P(A)+P(B)+P(C). Bonferroni later applied this fact to the multiple testing problem by
dividing each individual significance by the number of tests being carried out, there bye
setting an upper limit on the probability of any one of the tests incorrectly rejecting the
null by chance. Since we have 9 regions in the current study, there are (g) = 36 possible
pairings, so we would have to adjust each individual significance level to «/36 = 0.0014
to have a total groupwise significance level of 0.05. Bonferronis method sets an upper
bound, on the groupwise significance level, but it is very conservative, so much so that
on the current dataset, none of the four methods under consideration find any significant
differences in partial correlation between groups. The use of multiple test correction in
partial correlation network analysis (PCNA) is in general, considered unnecessary as
PCNA is considered an exploratory analysis vehicle. The resulting network must be
verified through confirmatory analysis, preferably based on an independent data set,

through structural equation modeling SEM analysis (Peng et al., 2009).
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However, correcting for multiple comparisons plays a less important role in the compar-
ison of the various tests to each other which is what we want to do. Since there are the
same number of tests being applied to the network for each of the methods, a direct

comparison of p-values can be done to see how the methods perform against each other.

5.6.4 Results

To begin, lets look at the partial correlation matrices of the two groups separately, see
figure 5.2. In this format it is hard to determine which of the region pairs have differ-
ent partial correlations between the groups. It is easier to make sense of the data by
visualizing it, see figure 5.13. Here, we represent each region by a node, and the partial
correlations as lines connecting the nodes, with weaker partial correlations showing up
with a greater transparency. In the diagram, the blue lines represent the partial cor-
relations of the normal control group, and the red lines are from the cocaine addicted
subjects. From the picture alone, it seems that the cocaine addicted group has higher
partial correlation in the OFC, INS, PUT, VS and CER regions, while the normal con-
trols exhibit stronger partial correlation in the OFC, MFC, INS, PUT and VS regions.
Of course, this is just a quick run through by eye.

(a) Normal Control

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC CG
VS 1.000 | 0.379 | 0.155 | 0.918 | 0.484 | 0.744 | -0.164 | -0.783 | -0.360
THAL | 0.379 | 1.000 | -0.146 | -0.259 | -0.378 | -0.156 | 0.147 | 0.459 | 0.340
INS 0.155 | -0.146 | 1.000 | -0.213 | 0.367 | -0.411 | 0.269 | 0.439 | 0.090
PUT | 0918 | -0.259 | -0.213 | 1.000 | -0.345 | -0.709 | 0.220 | 0.756 | 0.388
MFC | 0.484 | -0.378 | 0.367 | -0.345 | 1.000 | -0.274 | -0.225 | 0.510 | 0.386
CER | 0.744 | -0.156 | -0.411 | -0.709 | -0.274 | 1.000 | 0.120 | 0.810 | 0.377
AMYG | -0.164 | 0.147 | 0.269 | 0.220 | -0.225 | 0.120 | 1.000 |-0.173 | 0.361
OFC |-0.783 | 0.459 | 0.439 | 0.756 | 0.510 | 0.810 | -0.173 | 1.000 | -0.278
CG -0.360 | 0.340 | 0.090 | 0.388 | 0.386 | 0.377 | 0.361 | -0.278 | 1.000

(b) Cocaine Addicted

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC CG
VS 1.000 | -0.446 | 0.204 | 0.748 | 0.443 | 0.448 | -0.068 | -0.461 | -0.088
THAL | -0.446 | 1.000 | -0.126 | 0.505 | 0.368 | 0.248 | 0.400 |-0.152 | 0.151
INS 0.204 | -0.126 | 1.000 | 0.079 | 0.097 | 0.258 | 0.313 | 0.285 | 0.373
PUT | 0.748 | 0.505 | 0.079 | 1.000 | -0.295 | -0.315 | -0.072 | 0.504 | 0.037
MFC | 0.443 | 0.368 | 0.097 | -0.295 | 1.000 | -0.323 | -0.308 | 0.506 | 0.206
CER | 0.448 | 0.248 | 0.258 | -0.315 | -0.323 | 1.000 | -0.025 | 0.498 | 0.005
AMYG | -0.068 | 0.400 | 0.313 | -0.072 | -0.308 | -0.025 | 1.000 | 0.109 | 0.103
OFC | -0.461 | -0.152 | 0.285 | 0.504 | 0.506 | 0.498 | 0.109 | 1.000 | -0.173
CG -0.088 | 0.151 | 0.373 | 0.037 | 0.206 | 0.005 | 0.103 | -0.173 | 1.000

TABLE 5.2: Partial correlation matrices of the two groups

The statistical analysis takes place by applying each of the methods from the previous
chapters to our dataset region by region. Each region pair was analyzed with the four
methods and figures 5.3, 5.4, 5.5 and 5.6 show their resulting p-values. As with the
partial correlation matrices, it is easier to make sense of the data through visualization,

see figure 5.14. Here, p-values are represented by lines connecting the regions to which
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FI1cURE 5.13: A visual display of the partial correlation matrices. The nine brain re-

gions are shown as nodes, and partial correlation between regions as edges connecting

the nodes. The partial correlation strength is signified by the opacity of the line con-

necting regions, with higher absolute values appearing more opaque. Positive partial

correlations are shown in a solid line, and negative partial correlations in a dotted line.

Partial correlations of the normal control subjects are shown in blue and the cocaine
addicted subjects in red.

the tests were applied, each test in a different color. Although all test pairings are
displayed, with more significant p-values shown with more opaque lines, for the purpose
of reducing clutter, less opacity was given to the p-values below 0.15. In the next section,

we report all region pairings that show an uncorrected significance level below 0.10.

Looking at the results of all four methods, we come to the conclusion that the Fisher
method, which is by far the most popular way to compare two partial correlation coef-
ficients, had the lowest rate of finding significance in group effect. As in the simulation
studies, the Fisher method found the fewest significant pathways. The other widely
used technique of comparing partial correlations, the bootstrap, gives use a result ma-
trix very similar to the that of the two-level regression approach. Except for one region
pair (insula, cerebellum), bootstrap came to the same conclusions as two-level regression

at significance level o = 0.10.

Moving to the next method, the LRT picks up all the region pairings that bootstrap
found and more. In particular, it seems to have an easier time distinguishing partial
correlations that are both very high, or both very low, as in the case of region pairs
(ventral striatum, cerebellum) and (putamen, cerebellum). Recall simulations 5.3, 5.6,
5.9 to note the difficulty Fisher’s method had in this task. Unfortunately, the LRT failed
to converge properly on some of the tests, including the (insula, cerebellum) pair that

two-level regression determined to have significantly different partial correlations.
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. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.046 | 0.912 | 0.705 | 0.926 | 0.516 | 0.824 | 0.467 | 0.549
THAL 0.968 | 0.075 | 0.083 | 0.356 | 0.570 | 0.153 | 0.671
INS 0.503 | 0.556 | 0.120 | 0.921 | 0.724 | 0.535
pPUT 0.909 | 0.376 | 0.506 | 0.570 | 0.440
MFC 0.914 | 0.861 | 0.992 | 0.685
CER 0.758 | 0.486 | 0.401
AMYG 0.520 | 0.573
OFC 0.812
CG

TABLE 5.3: Two

sided p-values comparing partial correlations between groups based

on the bootstrap method with 5k resamples.

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.087 | 0.919 | 0.724 | 0.933 | 0.540 | 0.842 | 0.505 | 0.573
THAL 0.967 | 0.114 | 0.123 | 0.402 | 0.600 | 0.205 | 0.696
INS 0.545 | 0.577 | 0.166 | 0.928 | 0.750 | 0.559
PUT 0.917 | 0.415 | 0.545 | 0.602 | 0.468
MFC 0.918 | 0.863 | 0.994 | 0.709
CER 0.763 | 0.518 | 0.442
AMYG 0.560 | 0.594
OFC 0.828
CG

TABLE 5.4: Two

sided p-values comparing partial correlations between groups using

the traditional Fisher approximation.

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.020 | 0.687 | 0.530 | 0.809 | 0.431 | 0.634 | 0.402 | 0.366
THAL 0.952 | 0.045 | 0.067 | 0.191 | 0.419 | 0.139 | 0.655
INS 0.229 | 0.655 | 0.063 | 0.587 | 0.522 | 0.430
pPUT 0.967 | 0.207 | 0.398 | 0.364 | 0.302
MFC 0.643 | 0.966 | 0.851 | 0.490
CER 0.475 | 0.491 | 0.487
AMYG 0.595 | 0.477
OFC 0.778
CG

TABLE 5.5: Two

sided p-values comparing partial correlations between groups using

the two-level regression approach.

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.033 | 0.846 | 1.000 | 0.920 | 0.030 | 0.711 | 0.172 | 0.703
THAL 0.713 | 0.062 | 0.056 | 0.202 | 0.772 | 0.091 | 0.357
INS 1.000 | 0.326 | 1.000 | 0.226 | 1.000 | 0.294
pPUT 0.870 | 0.055 | 0.174 | 0.264 | 0.461
MFC 0.325 | 0.608 | 0.974 | 0.574
CER 0.189 | 1.000 | 0.575
AMYG 0.169 | 0.854
OFC 0.906
CG

TABLE 5.6: Two

sided p-values comparing partial correlations between groups using
the likelihood ratio test.
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FIGURE 5.14: The result matrices of the four methods are displayed visually. The

brain regions are shown as the nodes in the graph and group’s effects on the partial

correlation are shown as the edges. The results each of the four methods are displayed

in a different color with Fisher’s in red, bootstrapping in cyan, two-level regression in

green and LRT in blue. The significance of the tests are shown through edge opacity,
with lower p-values appearing more opaque than a higher p-values.
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5.6.4.1 Bootstrapping

This method gives us a network consisting of four main regions: VS, Thal, Put, and
MFC. Figure 5.15 shows us the VS, Put, and MFC are all connected to the Thal hub

node. For this experiment, we used a bootstrap sample of 5000 to determine the simu-

o o ©

lated p-values.
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(a) graphical display

Region 1 | Region 2 | Sample PC (nml, coc) | p-value
VS Thal (0.379, -0.446) 0.046
Thal Put (-0.259, 0.505) 0.075
Thal MFC (-0.378, 0.368) 0.083

(b) tabular display

FIGURE 5.15: Bootstrap method: region pairs with an uncorrected p-value < 0.10
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5.6.4.2 Fisher’s Approximation
As expected from our simulation results, the traditional method based on Fisher’s trans-
formation is the most conservative of all methods. There is only one region pair that

meets the uncorrected significance level of 0.10. Although they are not significant, the

weak pathways found with this method follow a similar pattern to those of the bootstrap

o o ©

and two-level regression.

&

-

(a) graphical display

Region 1 | Region 2 | Sample PC (nml, coc) | p-value

VS Thal (0.379, -0.446) 0.087
(b) tabular display

FIGURE 5.16: Fisher method: region pairs with an uncorrected p-value < 0.10
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5.6.4.3 Two Level Regression

Two-level regression yields a network similar to the bootstrapping approach. However,
this method deems the (insula, cerebellum) region pair to have a significantly different
partial correlation between groups. The sample partial correlations of this region pair

are —0.411 for the normal controls and 0.258 for the cocaine addicted subjects.

o o ©
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(a) graphical display

Region 1 | Region 2 | Sample PC (nml, coc) | p-value
VS Thal (0.379, -0.446) 0.020
Thal Put (-0.259, 0.505) 0.045
Thal MFC (-0.378, 0.368) 0.067
Ins Cer (-0.411, 0.258) 0.063

(b) tabular display

FI1GURE 5.17: Two Level Regression method: region pairs with an uncorrected p-value
< 0.10
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5.6.4.4 LRT

The likelihood ratio test gives us a network with six main regions, and contains pairings
that none of the other methods pick up on, most notably between the ventral striatum
and cerebellum which had a sample partial correlation of 0.744 in the normal controls,
but only 0.448 in the cocaine group. Unfortunately, it also failed to pick up on the
(insula, cerebellum) pair that the two-level regression found. Because this is a numer-
ical method, sometimes it is not possible to find a valid estimates that maximize the
likelihood function, and thus it fails to obtain any result at all. This was the case with

the (insula, cerebellum) pair as well as a few other pairings.

(a) graphical display

Region 1 | Region 2 | Sample PC (nml, coc) | p-value
VS Thal (0.379, -0.446) 0.033
VS Cer (0.744, 0.448) 0.030

Thal Put (-0.259, 0.505) 0.062
Thal MFC (-0.378, 0.368) 0.056
Thal OFC (0.459, -0.152) 0.092
Put Cer (-0.709, -0.315) 0.055

(b) tabular display

FicUrE 5.18: LRT method: region pairs with an uncorrected p-value < 0.10
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Chapter 6

Dealing with Continuous

Covariates

6.1 Overview

Real world data often contains information that does not directly interest us, but may
affect our inference into the variables we do wish to examine. For example, in the clinical
study from from Chapter 5 we are interested in the ways substance abuse changes the
neurological pathways involved in the brain’s reward mechanism, but these changes may
be affected by factors beyond addiction status, like age and education level. In this
chapter, we determine how additional covariate information can influence the pathways

under consideration.

6.2 Extended Two-Level Regression

The two-level regression method introduced in Chapter 3 can be readily extended to
measure how additional factors affect the partial correlation between regions. This is
accomplished by inserting the covariate information into the residual equations before

performing the regression procedure.

Recall equation 3.3 that describes the residuals of two regions of interest controlled
for the k remaining regions. In our current problem, we have information from two
covariates, C7 and Cq, which are not required to be simple binary factors. We want to
model the effect of covariate Cy on the partial correlation while controlling for the effect
of C.
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By reformulating the b; coefficient to account for the effects of both covariates, i.e.,

b1 = ag + a1C1 + axCs (6.1)

we achieve this goal. Resubstituting b; back into the equation relating residuals, we end

up with the following model:

Ry =byg+b1Rs+ ¢
Ry =bo + (ap + a1C1 + a2C2)Ra + €
Ri =bg+ agRo + a1C1 Ry + asCoRs + €. (62)

Incorporating the new covariates simultaneously gives us a model relating the partial
correlations of regions y; and ys to covariate Co while controlling for the covariate C1,
and similarly, it relates covariate C7 to partial correlation while controlling for Co. In a
multiple regression model the coefficient of an independent variable is proportional to the
partial correlation of that variable and the dependent variable controlling for the other
independent variables of the model. For example, in the model y = by + b1x1 + bz + €,
the coeflicient b has the same significance level as PCorr(y, z1|z2). In principle, using
model 6.2 gives us the significance of the factor of interest, C, controlled for the effects

of the extraneous covariate Cs.

Continuing as usual with the regression procedure described in Chapter 3, we find the
significance of covariate C7 coefficient and thus the effect C; has on partial correlation

while controlling for covariate Cs.

6.3 Application to Experimental Data

Our experimental data from Chapter 5 includes the additional information of subject age,
and education level, see figure 6.1. In addition to studying how cocaine addiction affects
the neurological pathways under the proposed experimental conditions, it may also be
interesting to examine how age or education influence these pathways. Younger subjects
might display a different brain network when dealing with reward and expectation than
older subjects, a discrepancy that unless accounted for, could distort our findings. The
latent factors involved in education, such as discipline and intelligence could play a role

similar to age, and end up skewing the pattern addiction lays in the brain’s network.
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We can examine these relationships through our extended two-level regression model by

including the information of these covariates in our regression model.

. Region 1 | Region 2 | Region ... | Region k | Group | Age | Education
nml 1 T11 T2 e Tk 0 Azl Ezl
nml 2 21 X922 e T2k 0 Azg Exg

. 0 Az?) EﬂcS
nml 74 Tpy1 T2 ... Tk 0 Azn, Eyn,
coc 1 Y11 Y12 Y1k 1 Ay E,
coc 2 Y21 Y22 e Yok 1 Ayo Ey

1 Ayg Eyg
COC T2 Ynol Yno2 v Ynok 1 Ayng Eynz

FI1GURE 6.1: The data matrix of the preprocessed PET image scans along with subject

covariate information. Group status G is a binary variable with G = 0 for the normal

controls, and G = 1 for the cocaine addicted subjects. Age A is measured in years, and
education E is measured in the number of years spent in school/college.

50



6.3.1 Age and Addiction Status

First, let us look at the model with both age and addiction status included. The notation
follows the same style as in Chapter 5, with GG depicting the group status of each subject
with 0 being normal control and 1 being cocaine addicted. A is a continuous variable

depicting the subject’s age in years.

Ri=by+b01Ro+ ¢
Ry =bo+ (ap +a1A+ a2G)Ry + ¢
Ri = by + agRo + a1ARy + aoGRs + €. (63)

The coefficients of equation 6.3 tell us how each factor affects the partial correlation
between regions of interest. The a; coefficient tells us how strongly age influences the
relationship between residuals while controlling for group, as the ao coefficient tells us
the how group affects the relationship controlling for age. The ag coefficient shows
the strength of the total partial correlation using observations from both groups while

controlling for both factors, age and group.

It should be noted that the mean ages of the subjects are significantly different between
groups, with the cocaine addicted subjects being slightly older. A Student’s t-test on
the means gave a p-value of 0.03281, see table 6.1.

Group | Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max.
nml 27.60 | 30.28 34.00 | 36.23 | 41.85 | 49.20
cocaine || 32.40 | 38.50 40.50 | 40.49 | 43.30 | 46.00

TABLE 6.1: A summary of ages between groups. There seems to be a significant
difference in the means of the two groups.

It seems the discrepancy in ages between the two groups does make a difference in the
significance levels of the partial correlation network. The p-values of the a coefficients of
our two-level model are shown in table 6.2 and they are displayed visually side by side
with the two-level results from Chapter 5 in figure 6.2. The visual display shows us that
age seems to affect the partial correlation network pattern, particularly in the (amyg-
dala, Motor Frontal Cortex) pair with a p-value of 0.041, and the Motor Front Cortex,
Cerebellum) pair with a p-value of 0.069. It also demonstrates that the group effect on
the network pattern is degraded when information of the subject’s ages are included in
the model. Notice how the (ventral striatum, thalamus) and the (insula, cerebellum)
links are no longer significant in the model containing both the group indicator and the

age covariate.
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(a) Two sided p-values of the ag coefficient

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.291 | 0.115 | 0.086 | 0.717 | 0.211 | 0.650 | 0.084 | 0.151
THAL | 0.000 | 0.000 |0.919 | 0.546 | 0.315 | 0.692 | 0.363 | 0.930 | 0.461
INS 0.000 | 0.000 | 0.000 | 0.077 | 0.354 | 0.116 | 0.751 | 0.440 | 0.306
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.731 | 0.289 | 0.096 | 0.174 | 0.063
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.112 | 0.028 | 0.563 | 0.766
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.347 | 0.293 | 0.138
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.482 | 0.623
OFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.065
CG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(b) Two sided p-values of the aj coefficient

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.194 | 0.144 | 0.691 | 0.512 | 0.637 | 0.764 | 0.335 | 0.228
THAL | 0.000 | 0.000 | 0.873 | 0.624 | 0.213 | 0.649 | 0.409 | 0.822 | 0.308
INS 0.000 | 0.000 | 0.000 | 0.110 | 0.548 | 0.212 | 0.820 | 0.780 | 0.305
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.595 | 0.680 | 0.152 | 0.492 | 0.112
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.069 | 0.041 | 0.334 | 0.891
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.258 | 0.482 | 0.212
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.367 | 0.423
OFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.084
CG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(c) Two sided p-values of the ay coefficient

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.006 | 0.850 | 0.503 | 0.812 | 0.567 | 0.697 | 0.758 | 0.899
THAL | 0.000 | 0.000 | 0.936 | 0.085 | 0.034 | 0.167 | 0.334 | 0.153 | 0.554
INS 0.000 | 0.000 | 0.000 | 0.518 | 0.720 | 0.202 | 0.637 | 0.573 | 0.265
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.889 | 0.325 | 0.675 | 0.650 | 0.910
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.909 | 0.522 | 0.818 | 0.499
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.309 | 0.436 | 0.803
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.423 | 0.351
OFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.566
CG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

TABLE 6.2: Following the same procedure as Chapter 5, we applied the two-level

regression model Ry = by + agR2 + a1 ARy + aaGRy + € to all region pairs. Because we

are trying to find the significance that addiction plays in the partial correlation network

of the brain’s reward mechanism, it is the as matrix that is of most interest to us which
shows the significance of group controlling for age.

6.3.2 Education and Addiction Status

Let us look at the model including both education level and addiction status. As before,
group status is indicated by G, and education level, which is measured by the number

of years the subject has spent in school, by E.

Ri=by+b1Rs+¢
Ri=by+(ag+a1E+aG+...)Ra+e¢
Ri =byg+agRe +a1ERy + asGRy + ... + €. (6.4)
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(a) two-level regression, only group covariate. R1 = bg + agR2 + a1GR2 + ¢

(b) two-level regression, group and age covariates. R1 = bg + agR2 + a1 AR2 +
a2GRs + €

FIGURE 6.2: This visual display shows two interpretations of group’s affect on the

partial correlation network. The top figure shows the significance levels of the group

coefficient in the model consisting of group status alone, Ry = by + agRs + a1G Ry + €.

The bottom figure shows the significance levels of the age and group coefficients in the

model containing both, Ry = by + agR2 + a1 ARy + a2GRs + €. In both figures, group

significance is shown in green, age significance in dark purple, with the more significant
pathways shown with more opacity.

This time, the covariate factor is not significantly different in the two groups. A Student’s

t-test on the means gave a p-value of 0.1034, see figure 6.3.

Using model 6.4, we applied the two-level regression method to each regional pair. The

matrices of coefficient significance levels are shown in tables 6.4 and the significance of
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Group || Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
nml 7.00 | 12.75 14.50 | 13.88 16.00 | 18.00
cocaine || 8.00 11.00 12.00 | 12.52 14.00 | 16.00

TABLE 6.3: A summary of education level between groups. Education levels are valued
as the number of years spent in school.

the two coefficients relating education and addiction status to partial correlation are
displayed visually in 6.3. As before, the current model is compared to the model of
Chapter 5 to see how education plays a role in partial correlation network. This time,
the aq coefficient gives us a picture relating group effect to partial correlation controlling

for the influences of education level.

The network describing group’s affect on partial correlation controlling for education is
very similar to the network that excludes education level information, see figure 6.3. The
four significant paths obtained through the original model are essentially the same as
the new model including education levels. Although education level does seem to have
some effect on the partial correlation between the Insula and Thalamus, this relationship
does not effect the significant pathways caused by group status. Remember that there
was no significant difference in education levels between the two groups, so similarities

between the two models are to be expected.
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(a) Two sided p-values of the ag coefficient

. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.914 | 0.243 | 0.239 | 0.606 | 0.161 | 0.312 | 0.205 | 0.928
THAL | 0.000 | 0.000 | 0.056 | 0.785 | 0.242 | 0.756 | 0.431 | 0.506 | 0.767
INS 0.000 | 0.000 | 0.000 | 0.183 | 0.800 | 0.725 | 0.724 | 0.839 | 0.343
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.538 | 0.314 | 0.734 | 0.117 | 0.820
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.704 | 0.276 | 0.773 | 0.111
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.504 | 0.482 | 0.668
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.204 | 0.225
OFC 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.552
CG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(b) Two sided p-values of the aj coefficient
. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.794 | 0.309 | 0.089 | 0.620 | 0.583 | 0.217 | 0.521 | 0.718
THAL | 0.000 | 0.000 | 0.023 | 0.787 | 0.333 | 0.696 | 0.351 | 0.300 | 0.749
INS 0.000 | 0.000 | 0.000 | 0.252 | 0.536 | 0.439 | 0.894 | 0.425 | 0.325
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.417 | 0.754 | 0.522 | 0.478 | 0.589
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.685 | 0.359 | 0.907 | 0.187
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.376 | 0.225 | 0.483
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.130 | 0.338
OFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.445
CG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.000
(c) Two sided p-values of the ay coefficient
. VS | THAL | INS | PUT | MFC | CER | AMYG | OFC | CG
VS 0.000 | 0.026 | 0.620 | 0.125 | 0.792 | 0.389 | 0.869 | 0.305 | 0.543
THAL | 0.000 | 0.000 | 0.677 | 0.059 | 0.050 | 0.213 | 0.246 | 0.141 | 0.654
INS 0.000 | 0.000 | 0.000 | 0.170 | 0.735 | 0.070 | 0.583 | 0.533 | 0.216
PUT | 0.000 | 0.000 | 0.000 | 0.000 | 0.753 | 0.214 | 0.575 | 0.257 | 0.544
MFC | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.638 | 0.672 | 0.858 | 0.340
CER | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.635 | 0.421 | 0.692
AMYG | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.717 | 0.281
OFC 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.792
CcG 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

TABLE 6.4: Following the same procedure as above, we applied the two-level regression
model R; = by + agR2 + a1 ERs + asGRs + € to all region pairs. Because we are trying
to find the significance that addiction plays in the partial correlation network of the
brain’s reward mechanism, it is the as matrix that is of most interest to us which shows

the significance of group effect controlling for education level.
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(a) two-level regression, group covariate alone. Ry = bg + agR2 + a1GR2 + ¢

(b) two-level regression, group and education covariates. Ri = by + aoR2 +
a1ERs + a2cGR2 + ¢

FIGURE 6.3: This visual display shows two interpretations of group’s affect on the

partial correlation network. The top figure shows the significance levels of the group

coefficient in the model consisting of group status alone, Ry = by + agRs + a1G Ry + €.

The bottom figure shows the significance levels of the education and group coefficients

in the model containing both, Ry = by + agR2 + a1 ERs + asG Ry + €. In both figures,

group significance is shown in green, education significance in dark red, with more
significant pathways shown with more opacity.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis dealt mainly with the problem of determining whether the partial correlation
between two groups are significantly different. Currently there are no exact methods
to determine this, but there are widely accepted approximate methods, such as the
procedures based on bootstrapping and Fisher’s transformation. We introduced two
new approximate methods, the first a two-level regression and the second a LRT test,

that approach this problem from an entirely novel direction.

In numerical simulations of varying sample sizes and numbers of controlling variables,
the new methods are, in general, found to be more powerful and at the same time less
conservative than the traditional methods. In all simulations, the new methods have a
higher rejection rate under the alternative hypothesis, but also a lower acceptance rate
under the null. Of the three methods compared, the one based on two-level regression
has the most consistent rejection rate with the significance level o = 0.05 set in the

simulations.

We applied the four methods to an experimental PET dataset taken from a study of
addiction’s role in the brain’s reward mechanism and constructed a series of networks
describing the effect that group status has on the partial correlations between brain
regions. All four networks showed a similar pattern involving the regions VS, THAL,
PUT, and MFC, but varied in path significance.

Finally, we extended the two-level regression approach to help determine a continuous
covariates role in the strength of the partial correlation between regions, as well as the
inclusion of extraneous information which may impact the significance of our inference.

We applied this methodology to our experimental data using two separate extended
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models containing information on age and education level. Only age demonstrated a

notable effect on the partial correlations between regions.

7.2 Future Work

The groupwise analysis of partial correlation networks is a rich field with many avenues
open to future research. One topic that merits further investigation is the construction
of an SEM starting model that takes into account the bidirectional pathways generated
from the role reversed equations of our two-level regression model. Another topic involves
dealing with nonlinear relationships and how they associate with partial correlation. A
third topic that could be pursued is the extension of the LRT to allow for dependent
observations between groups. Lastly, the current implementation of our LRT utilizes a
numerical algorithm that is not guaranteed to provide a valid statistic; new optimization

procedures can be attempted to ensure that true global maximisations are found.

7.2.1 Starting Model for SEM

As we mentioned earlier, a major issue in using structural equation modelling is the
necessity of a starting model. The two-level approach has the most potential here because
of the bidirectional pathways that can be obtained through the use equations, 3.21 and
3.22, that utilize both independent and dependant roles of the variables. In the first
equation, one region is modelled as a dependent variable to the other, and when the
roles are reversed we get a second model showing the same region as the independent
variable. These two measures together can be used to construct a bidirectional pathway
diagram to be fed directly into the SEM model with the dependency of the variable

under consideration determining the direction of the arrow.

Not only are we getting bidirectional pathways, but we are getting the pathways that
have been determined to be most affected by the covariate factors under analysis. For
example, if we wanted to study how cocaine addiction might influence a neurological
network through the use of an SEM framework, we would need a starting model relating
the regions of interest, as well as some insight on how group status might affect this
starting model. By using two-level regression before hand, we have a starting point
from which we can base our SEM analysis, with bidirectional arrows showing how likely

group status is to affect the relationship between regions.

Figure 7.1 illustrates the joint network exploratory and confirmatory analysis paradigm

using the covariate PCNA and the covariate SEM. First we start with the PCNA to

o8



arrive at a data-driven non-directional pathway (a — b). This pathway is subsequently
split into a directional pathway (b — c¢) formulating the SEM hypothesis (i.e. the hy-
pothesized pathway), which, after the SEM analysis, will yield the confirmed directional
pathways (¢ — d). To avoid over-fitting, our data will be randomly split into two - the
training data set for PCNA exploratory analysis (a,b), and the test data set for SEM

confirmatory analysis (c,d).

FIGURE 7.1: Identification and confirmation of novel pathways using covariate PC-

NA/SEM. (a.) Initial unrestricted covariate PCNA model with two covariates group

(G) and gender (M). (b.) Final covariate PCNA model derived through the training

data. (c.) Directional covariate SEM hypothesis based on the covariate PCNA results.
(d.) Final covariate SEM model confirmed by the testing data.

In a recent paper (Marrelec et al., 2007), a similar (while much simpler, with no in-
volvement of any factor nor covariate) methodology was carried out with the partial
correlations as the input into a SEM model and subsequently obtained results support-
ing their expected biological model. Our method contrasts their’s in that instead of a
single measure of partial correlation mapping to a single non directional link in the SEM
model, we would use both measures of partial correlation, giving us directional paths
and further reducing the need for a field expert in the initial construction of the pathway

design.

We also considered the incorporation of nonlinear and interactive terms in PCNA and
SEM because the brain is considered by many to have nonlinear and non-additive func-
tional relationships. Multiple regression analysis offers a straightforward way to repre-
sent curvilinear and interactive effects of observed variables. This method can be used
directly in PCNA/SEM analysis as illustrated in Figure 7.2. Note that the unanalyzed
association is represented in this model with a dashed line instead of a solid one. This

represents the possibility that a power/interaction term can be created so that it has
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reduced or even zero correlations with its component variables. Higher-order effects such
as a cubic term or a linear X quadratic interaction can also be added to these models

similarly.

m X
R _X' \ ; \
‘-' rl—e iw Y b—¢
o 5(: "
{7
(a) Inclusion of non-linear effect in PC- (b) Inclusion of interaction terms in PC-
NA/SEM. NA/SEM
FIGURE 7.2:

7.2.2 Accounting for Nonlinear Relationships

In accordance to the definition of partial correlation, we have dealt with the linear
relationship between two variables controlling for a linear contribution of other variables.

But what if the relationships under consideration have a nonlinear form?

Our two-level method would benefit from the study of using different regression tech-
niques to determine both the residuals as well as the coefficients of the factors included
in the model. To start with, the residuals could be computed using various nonlinear
regression methods and compared. This however would necessitate the coining of new
terminology, because partial correlation is defined as the linear relationship between

variables controlling for a linear contribution from controlling measurements.

Nonlinear regression could be used to determine the significance of each of the model’s
coefficients as well. But this too, would mean we are no longer dealing with partial

correlations as traditionally defined.

7.2.3 Extending the LRT to Allow for Dependent Observations

In the experimental framework examined in this thesis, we studied the relationship
between two separate groups of subjects. In future studies however, we may be presented
with two sets of observations from the same group of subjects. For example, we might
have access to brain scans taken from the same subject under different conditions or at

different time frames. In this case, the simple likelihood function describing the joint
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distribution of both groups, see equation 4.9, is no longer valid, because the observations

from both groups are no longer independent to each other.

If we are to analyze datasets of this sort using the LRT framework developed in this the-
sis, we will need a new joint likelihood function that accurately takes into consideration

the dependent nature that may be present in the observations.

7.2.4 Utilizing Different Numerical Algorithms

If the LRT method of chapter 4 is to be pursued, we need to make sure the optimization
algorithm finds estimates pertaining to global rather than local maximums. Besides
substituting a different optimization algorithm, one thing we can try is to perform the
optimization many times with different starting points each time and make sure they all
come to the same maximum. If the various starting points yield different maxima, we
can take the one yielding the highest value. This simple procedure has no convergence
criteria and does not guarantee a global maximum, it does however provide an ever

monotonically increasing estimate for the maximum.
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