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Abstract of the Dissertation 

 

Linkage Analysis of a Quantitative Trait: 

Suggested method for sibling pairs 

with at least one member having an extreme trait value 

by  

So Youn Shin 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2009 

 

Most model-free methods for family based genetic linkage analysis require 

unbiased trait parameter estimates. Using simulation studies, Cuenco et al. (2003) and 

Bhattacharjee et al. (2008) examined the sensitivity of existing model-free methods to the 

assumed trait parameter values. They concluded that the misspecification of the trait 

parameter values could significantly lower the power of linkage analysis methods. 
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 Because trait parameter values of interest are the mean, variance, and correlation, 

they can be estimated without bias in random samples. However, clinical and 

epidemiological studies based on selected samples are more powerful, because families 

are usually selected for having at least one member with an extreme trait value. 

Parameter estimates based on such truncate samples are biased.   

 In this paper, we will concentrate on improving the application of existing model-

free linkage analysis methods to truncate samples by considering three new approaches 

for estimating trait parameter values. These three approaches have not previously been 

applied to linkage analysis, but have been suggested for truncate selection for other 

purpose (Cohen, 1959; Rao et al., 1968; Mendell and Elston, 1974; Aboueissa and 

Stoline, 2004). We will evaluate the effect of using five different estimators (the three 

new approaches based on the truncated likelihood function, and two existing approaches 

based on the likelihood function and the conditional likelihood function) on the power of 

five model-free linkage analysis methods. 

 We note that in our studies, S & P’s method seems to be more powerful than Xu 

and Cuenco’s methods, and Xu’s method seems more robust to the estimators used (even 

with sample moments and Shin Nu). In most cases, two of our suggested estimators give 

greater power (and higher LOD scores) for Xu’s method than Peng’s CMLEs. However, 

when S & P’s and Cuenco’s methods are used, Peng’s CMLEs have greater power than 

our estimators. We recommend using S & P’s method with Peng’s CMLEs with Shin RM 

as an initial value for its iteration, because Peng’s CMLEs are more robust to the 

truncation scheme than our estimators. 
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Chapter 1 Introduction 

 

Genetic linkage analysis is the process of finding the approximate location of 

genes that determine a trait of interest, by using marker genes whose locations are already 

known. Linkage analysis is based on the fact that when the trait gene and marker gene are 

physically close to each other, two related individuals having similar trait values are 

likely to have the same marker genotypes. Linkage and association studies are two main 

strategies in gene mapping and play an important role in genetic epidemiology.   

Recently, more focus has been on genome-wide association studies (GWAS) 

which use population-based designs, except in the case of the transmission disequilibrium 

test (TDT) (Laird and Lange, 2006). However, we should not underestimate the 

important role of linkage analysis and family-based designs. Identifying a candidate 

region by linkage analysis can lead to a more cost-effective association study (Clerget-

Darpoux and Elston, 2007). Also, since family-based and population-based designs have 

different strengths and weaknesses, they should complement each other especially now 

that we have information on hundreds of thousands of sequenced nucleotides (Laird and 

Lange, 2006). 

In this paper, we suggest a linkage analysis method for selected samples. In 

Chapter 1, we will present background on statistical genetics, model-free linkage analysis 

methods for quantitative trait locus, and study designs. In Chapter 2, we will show two 

existing approaches and suggest three new approaches for estimating trait parameter 

values for selected samples. In Chapter 3, we will explain how to generate simulation 
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data sets. In Chapter 4, we will show the effects on power, using linkage analysis 

methods, with different trait parameter estimates. In Chapter 5, we will discuss the results 

of our study and future directions. 

 

 

 

 

 

 

1. 1. Quantitative Trait Linkage Analysis in Truncate Samples 

There are two types of statistical methods for doing linkage analysis: gene model-

based methods and gene model-free methods. Gene model-based methods require 

knowledge of the inheritance pattern of the trait of interest. For example, they focus on 

understanding the genetic mechanisms of disorders, usually caused by a single allele, at a 

single genetic locus. On the other hand, gene model-free methods do not require 

knowledge of the specific genetic transmission model. For example, most gene model-

free methods for a quantitative trait locus (QTL) require only information on trait values 

in sib pairs and the number of shared alleles Identical by Descent (IBD), at each marker 

of interest. Thus, gene model-free methods are based on the relation between phenotype 

differences and genotype differences in relatives. 

In this paper, we focus on two of the most commonly used model-free linkage 

analysis methods for identifying markers linked QTL. The first one is regression based 

and the second one is likelihood based.  
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A regression based method was originally suggested by Haseman and Elston 

(1972) and has been extended by many researchers. The original Haseman and Elston 

method is intuitively simple and robust with respect to assumptions about the distribution 

of a quantitative trait.  However, it has less power than likelihood based methods, 

especially in randomly sampled sib pairs (Feingold 2001). Many researchers including 

Elston et al. (2000), Xu et al. (2000) and Sham and Purcell (2001), have tried to improve 

the power of regression based methods. However, these latter methods require estimating, 

or knowing additional parameter values of the trait’s distribution, i.e. mean, variance, and 

correlation. It is not a hard issue to estimate these trait parameter values in random 

samples. However, estimates of trait parameter values in selected samples are biased, 

making recent modifications of regression-based methods less robust than the original 

Haseman and Elston’s method.   

Likelihood based methods include a variance components method created by 

Amos (1994) and relatively new, score test based methods, suggested by several 

researchers (Tang and Siegmund, 2001; Cuenco et al, 2003). Most score test statistics are 

similar to one another. They have been modifiecd to achieve robustness (Cuenco et al, 

2003). The advantage of the score test statistic is that the computation is done only under 

the null hypothesis of no linkage, not under the alternative. In contrast, the traditional 

variance components method requires computations under both hypotheses. Since the 

likelihood based test statistics were developed based on the assumption that the trait 

value distribution is normal, these methods are sensitive to violations in the assumption 

of normality and to misspecification of the parameter values of the trait distribution. In 
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other words, if the trait is not normally distributed or the sample is not randomly 

ascertained, power drops dramatically. 

Thus, most model-free methods, including both newly suggested regression based 

methods and likelihood based methods, require unbiased trait parameter value estimates. 

Using simulation studies, Cuenco et al. (2003) and Bhattacharjee et al. (2008) examined 

the sensitivity of existing model-free methods to the assumed trait parameter values. 

They concluded that misspecification of the trait parameter values could significantly 

lower the power of linkage analysis methods. 

Because trait parameter values of interest are the mean, variance, and correlation, 

they can be estimated without bias in random samples. However, clinical and 

epidemiological studies based on selected samples are more powerful, because families 

are usually selected for having at least one member with an extreme trait value. 

Parameter estimates based on such truncate samples are biased. 

One way to obtain trait parameter values for truncate samples is to use 

information from previous studies of random samples. This approach is fine as long as 

the populations used in the previous and current studies are the same. Another way to 

obtain trait parameter values is by using the moments of the truncate sample, although 

these are biased estimates. Although this approach is not optimal, it is, nevertheless, 

widely used. When there is no information on the trait distribution or previous studies 

about the trait of interest, this approach can be used. Another way to obtain trait 

parameter values, based on the conditional maximum likelihood estimators (CMLEs), 

was suggested by Peng and Siegmund (2006). As long as the quantitative trait is normally 
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distributed, this approach was shown to be very effective in estimating trait parameter 

values for truncate samples. 

 

 

 

 

 

 

1.2. The Goal of Our Paper 

In this paper, we will concentrate on improving the application of existing model-

free linkage analysis methods to truncate samples by considering three new approaches 

for estimating trait parameter values. These three approaches have not previously been 

applied to linkage analysis, but have been suggested for truncate selection for other 

purpose (Cohen, 1959; Rao et al., 1968; Mendell and Elston, 1974; Aboueissa and 

Stoline, 2004). We will evaluate the effect of using five different estimators (the three 

new approaches based on the truncate likelihood function, and two existing approaches 

based on the likelihood function and the conditional likelihood function) on the power of 

the five model-free linkage analysis methods of Haseman and Elston (1972), Xu et al. 

(2000), Sham and Purcell (2001), Tang and Siegmund (2001) and Cuenco et al (2003).  

Although Cuenco et al. (2003) and Bhattacharjee et al. (2008) conducted 

simulation studies on the power of linkage analysis methods with misspecified trait 

parameter values, they used randomly picked values, rather than reasonable estimates. 

Also, although Peng and Siegmund (2006) evaluated the effect of using sample moments 
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and CMLEs, they examined only the power of one linkage analysis method, the Tang and 

Siegmund method. Our paper moves beyond the existing literature by evaluating five 

linkage analysis methods with five different trait parameter estimates. 

 

 

 

 

 

 

1.3. Background  

 In this section, we explain some basic concepts in statistical genetics, and then 

discuss details about existing model-free linkage analysis methods that we will apply to 

our study. The main sources for this section are Statistics in Human Genetics (Sham, 

1997), Quantitative Trait Loci: Methods and Protocols (Camp and Cox, 2002), and 

Statistical Methods in Genetic Epidemiology (Thomas, 2004). 

 

1.3.1. Terminology in Statistical Genetics 

Gregor Mendel, an Augustinian monk, conducted a series of experiments using 

pea plants. He showed that observable traits (phenotypes) are inherited, by offspring from 

parents in discrete units that we now call genes. Each gene can have many alternative 

forms or alleles. About twenty years after Mendel’s work, researchers identified the 
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structure and role of chromosomes, which are located inside the nucleus of the cell. The 

human body’s genetic information is contained in two gametes, each of which has 22 

pairs of autosomes and one pair of sex chromosomes. The chromosomes contain a long, 

ladder-like molecule called deoxyribonucleic acid (DNA). The complete genetic 

sequence for humans is called the human genome. The particular position in the genome 

is called a locus.  

An individual has two alleles at a locus. One allele is transmitted from the two 

alleles of the father (with equal chance), and the other is transmitted from the two alleles 

of the mother (with equal chance). This is Mendel’s law of segregation. Considering 

multiple loci, an individual’s genotype is formed by two haplotypes (the combination of 

alleles that are transmitted together), one from the father and the other from the mother. 

However, when a crossover takes place at an early stage of meiosis, an individual’s two 

haplotypes will be different from those of the parents’. For example, if the paternal and 

maternal haplotype at loci A and B are AfBf  and Am Bm , offspring may have AfBm  and 

Am Bf, as well as AfBf and Am Bm . The recombination fraction is defined as the 

probability of having (an odd number of) crossovers and is denoted as θ for 0 ≤ θ ≤ 0.5. 

When two loci are distant and inherited independently, the probability of crossover is 0.5, 

the same as the probability of AfBm  or Am Bf when A and B are on different 

chromosomes. When two loci are located close enough to each other, it is less likely that 

the crossover will occur, and the recombination fraction will be close to zero.  

 In this paper, we will assume Hardy Weinberg Equilibrium (HWE), Linkage 

Equilibrium (LE) and no epistasis. HWE is the tendency for population genotype 

frequencies (related to the allele frequencies) to remain unchanged across generations and 
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to be functionally related to the allele frequencies in a specific way. That is, at a bialleleic 

locus, with alleles A1 and A2 having allele frequencies p and q = 1 − p, the probability 

of having genotype A1A1, A1A2, and A2A2, are p2, pq, and q2, respectively. Assuming 

there is no selection and that mating is at random with respect to a locus, the three 

genotypes in the next generation will be P A1A1 = p2, P A1A2 = pq, and P A2A2 =

q2. Linkage Equilibrium occurs when two alleles at different loci are independent in the 

population. Thus, the joint occurrence of a gamete with allele Ai, at a locus A with allele 

frequency P Ai , and allele Bj, at a locus B with allele frequency P Bj , has frequency of 

P Ai P Bj . Epistasis is the interaction between genes. Epistasis occurs when the effect 

of one gene is modified by another gene. In this paper, we make the assumption that no 

epistatis is occurring. 

 

1.3.2. Types of Phenotypes 

Since the phenotype is the observable trait of a gene, it is easy to understand the 

concept of qualitative phenotypes as the results of having particular alleles at a trait locus. 

Traditionally, diseases traits are assumed to be qualitative and dichotomous with one 

allele being the disease allele and another allele being the healthy allele. Although this is 

a reasonable formulation for single gene disorders with Mendelian inheritance, more 

complex models are required to explain the relationship between alleles, disease and 

disease-related traits.  



9 
 

When phenotypes vary in degree (i.e., are continuous), we call them quantitative 

phenotypes. Quantitative traits can be more complicated to understand than qualitative 

traits because they cannot be completely determined by alleles at a single locus. In fact, 

in the case where there are a large number of genes having small additive effects, the 

pattern of continuous quantitative traits in a population can be shown to follow a bell 

curve. This suggests that quantitative traits can be the result of a major locus but also 

environmental factors and other genes.  

 

1.3.3. The Genetic Model for Quantitative Traits 

Our model is based on a general quantitative trait model, which was originally 

suggested by Fisher in his classic paper (1918), one of the highlights of quantitative 

genetics. Fisher noted that a quantitative trait value could be determined by a single 

major genetic effect and environmental effects.  

Let us first consider the effect of a single main locus with two alleles. Then we 

can form a model that includes the environmental effect. Suppose that our trait locus has 

two alleles A1 and A2 with allele frequencies p and q = 1 − p, and that the mean effect of 

each genotype has the value a, d and –a, for A1A1, A1A2 and A2A2. These are deviations 

from the midpoint of two homozygote genotype means. That is, the additive genetic 

value, a, is half of the difference between two homozygote genotype mean effects. The 

dominance genetic value, d, is the deviation of the heterozygote mean, from the midpoint 

of two homozygotes (Camp and Cox, 2002). The dominance genetic value, d, equals a, 0, 
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or –a, depending whether the inheritance of A1 is dominant, additive, or recessive to A2, 

respectively. 

The overall trait mean deviation from the midpoint for this single locus genotype, 

is computed as  

 p2a + 2pqd + q2 −a . (1.3.1)  

Thus, the variance of trait values, due to this gene, is computed as 

 ςg
2 = 2pq a − d p − q  

2
+ 4p2q2d2 . (1.3.2)  

The first and second terms used in genetic variance are called the additive and  

dominance variance components, respectively. Eq. (1.4.2) can be rewritten as 

 ςg
2 = ςa

2 + ςd
2 ,     where (1.3.3)  

 ςa
2 = 2pq a − d p − q  

2
     and (1.3.4)  

 ςd
2 = 4p2q2d2. (1.3.5)  

 These two components of the genetic variance are frequently referred to in quantitative 

genetics. The additive variance component represents the additive effects of the 

individual alleles at a locus, and the dominance variance component shows the 

interaction between alleles (Thomas, 2004). When the type of inheritance is additive, i.e. 

d = 0, the additive variance component ςa
2 is proportional to the additive genetic value, a, 

and the dominance variance component σ2
d  becomes 0.  

Now let us consider the covariance of sibling trait values, in the case where there 

is a single main locus. In order to explain the covariance, we use the concept of alleles 

that are identical by descent (IBD).  When two relatives have identical alleles, and these 
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alleles are copies of one allele transmitted from a common ancestor, the relatives are 

identical by descent. Two relatives can share 0, 1, or 2 alleles IBD at a locus. In sibpairs, 

the probabilities of sharing 0, 1 and 2 alleles IBD are 0.25, 0.5 and 0.25, respectively. 

Thus, the expected number of alleles IBD in sibpairs is 1. The expectation of the 

proportion of alleles IBD, which is half of the expected number of alleles IBD , denoted 

by , becomes 0.5. The following table shows the expected proportion of alleles IBD for 

some types of relative pairs: 

 

Table 1.1. Probability of sharing alleles IBD and the expected of the proportion of alleles IBD for 

different type of relatives (Thomas, 2004) 

Type of relative E(π) f0  f1  f2  

Monozygotic twins 1 0 0 1 

Dizygotic twins 0.5 0.25 0.5 0.25 

Full sibs 0.5 0.25 0.5 0.25 

Half sibs 0.25 0.5 0.5 0 

Grandparents and grand child 0.25 0.5 0.5 0 

Random unrelated individuals 0 1 0 0 

π: Proportion of alleles IBD, f0 , f1 , f2: Probability of sharing 0,1, or 2 alleles IBD 

 

Now, let us go back to the covariance of trait values in pairs of relatives resulting 

from a single main locus. The covariance is dependent on the number of alleles IBD. If 

the number of alleles IBD, at this locus, equals zero, there would be no contribution to 

the covariance of the trait values by this gene.  If the number of alleles IBD is two, the 

covariance due to the genotype effect will be exactly the same as the variance ςg
2 = ςa

2 +

ςd
2 . Lastly, if the number of alleles IBD is 1, the covariance will be half of the additive 

variance component 0.5ςa
2 , since only one allele contributes to the covariance and thus, 
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the effect of interactions between alleles does not have to be considered. The covariance 

of trait values between two relatives, due to the effect of a single gene, has the form of  

 Cov two relatives = f1 0.5ςa
2 + f2 ςa

2 + ςd
2 = πςa

2 + f2ςd,
2  (1.3.6)  

where π is the proportion of alleles IBD, and f1 and f2 are the probability of sharing 1 and 

2 alleles IBD at a locus, respectively. For example, in sibling pairs, the expectation of 

covariance between two siblings will be 0.5ςa
2 + 0.25ςd

2  according to Table 1.4.1.  

As we mentioned at the beginning of this section, our quantitative trait model 

assumes the effects of both genotypes and environments. Assuming the HWE, LE and no 

epistasis, the trait value of an i-th relative has the form of    

 xi = μ + gi + ei (1.3.7)  

where μ is a constant overall trait mean, gi is the effect of a single genotype, and ei is the 

environmental effect, uncorrelated to the genetic effect. Without loss of generality, 

E gi = E(ei) = 0 can be assumed. Letting X be the random variable of the trait value, 

we have  

 E X = μ   and (1.3.8)  

 Var X = ςg
2 + ςe

2 = ςa
2 + ςd

2 + ςe
2 ≡ ςx

2. (1.3.9)  

Letting X1, X2 be the random variable of trait values of two relatives, we have  

 Cov X1, X2|π = πςa
2 + f2ςd

2 + ρeςe
2  ≡ ρπςx

2 (1.3.10)  

where ρe = corr(e1, e2) is the correlation due to environmental effects, and ρπ  is the 

conditional correlation between two relatives, X1 and X2, given genotype information. 

In sibpairs, the marginal covariance can be written as 
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 Cov X1, X2 = 0.5ςa
2 + 0.25ςd

2 + ρeςe
2 ≡ ρςx

2 (1.3.11)  

where ρ is the marginal correlation between two siblings X1 and X2. By substituting 

ρeςe
2 = ρςx

2 − 0.5ςa
2 − 0.25ςd

2  from equation (1.3.11) to equation (1.3.10), the 

conditional covariance between sibpairs is now   

 Cov X1, X2|π = ρπςx
2 = ρςx

2 +  π − 0.5 ςa
2 +  f2 − 0.25 ςd

2 . (1.3.12)  

Tang and Siegmund (2001) suggested rewriting (1.3.12) as  

 Cov X1, X2|π = ρπςx
2 = ρςx

2 +  π − 0.5 ςg
2 −  f1 − 0.5 ςd

2/2 (1.3.13)  

so the terms involving π have a mean of zero and are uncorrelated.  

Before moving to linkage analysis methods for quantitative traits, we introduce 

one more term, heritability. Heritability is used to measure the contribution of genetic 

factors in the variability of a trait. It is defined as the ratio of variance due to genetic 

effects to the overall trait variance. As a narrow definition, it is the ratio of the additive 

variance component to the overall trait variance, and can be expressed as 

 
h2 =

ςa
2

ςx
2

. 
(1.3.14)  

Heritability of a trait can be different in different populations.  
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1.4. Gene Model-Free Linkage Analysis Methods  

 

1.4.1. The Regression Based Method for Linkage 

This method is based on the regression of quantitative trait values in siblings, 

X1 and X2, on the proportion of alleles IBD, π, at a trait locus. Let  

 
𝐱𝐢 =  

x1

x2
 

i
=  

x1i
x2i

 =  
μ + g1i

+ e1i

μ + g2i
+ e2i

  (1.4.1)  

be the observed trait value of the i-th sibpair described in the previous section. Also, we 

denote by  

 xD i
=  x1i

− x2i
 

2
,   (1.4.2)  

the squared trait difference, and by  

 
xS i

=   x1i
− μ +  x2i

− μ  
2

, (1.4.3)  

the mean corrected squared trait sum of the i-th sibpair. 

The basic idea of the regression based methods is the following: the expectation 

of xD i
=  x1i

− x2i
 

2
  can be written in the form of a simple regression model (assuming 

no dominance variance) as  

 E XD = αD + βDπ (1.4.4)  

where π is the proportion of alleles IBD at a trait locus. It can be shown that the sample 

slope is an unbiased estimate of genetic variance. That is   



15 
 

 βD = −2ςg
2. (1.4.5)  

Haseman and Elston (1972) originally proposed the regression model, given the 

marker genotype in the form of  

 E XD = αD + βDπ + γDf1 (1.4.6)  

where π is the proportion of alleles IBD at a marker locus, and f1 is the probability of 

sharing 2 alleles IBD at a marker locus. They also considered dominance variance and 

showed that  

 αD = 2 1 − ρe ςe
2 + 2Ψςg

2 + 2Ψ 1 − 2Ψ ςd
2  , (1.4.7)  

 βD = 2 1 − 2Ψ ς2
g  , and                               (1.4.8)  

 γD =  1 − 2Ψ 2ςd
2 .                                                  (1.4.9)  

Here, Ψ = θ2 + (1 − θ)2 and θ denotes the recombination fraction between the trait and 

the marker loci. Since θ is between 0 and 0.5, Ψ also has values between 0 and 0.5. Thus, 

βD  can equal 0 or have a negative value. It will be 0 when there is no linkage between the 

trait and the marker locus when the recombination fraction equals 0.5. Haseman and 

Elston tested the null hypothesis of no linkage, H0: β
D

= 0 against the alternative 

hypothesis, HA: β
D

< 0. Here the test statistic is a one sided t-statistic for the slope 

estimate β 
D

. 

 Many regression-based methods have been proposed with the objective of 

increasing power to detect linkage. Two variations by Xu et al. (2000) and Sham and 

Purcell (2001) have shown to have greater power than others methods, according to 

Cuenco et al (2003).  
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Xu et al. (2000) performed two regressions of xD i
=  x1i

− x2i
 

2
    and xS i

=

  x1i
− μ +  x2i

− μ  
2

 on πi separately, and proposed a new test statistic based on the 

weighted average of the slope estimates β 
D

 and β 
S
. (The regression coefficient βS  is 

−2 1 − 2Ψ ς2
g  at  a marker locus (Drigalenko, 1998) and the slope estimate β 

S
 is a one 

sided t-statistic for the hypothesis H0: β
S

= 0 vs. HA: β
S

> 0.) The new test statistic has 

the form of  

 β = w −β D +  1 −w β S                                                 

=
ς S

2 − ς DS
2

ς D
2 + ς S

2 − 2ς DS
2  −β D +

ς D
2 − ς DS

2

ς D
2 + ς S

2 − 2ς DS
2 β S  

(1.4.10)  

where w =
ς S

2−ς DS
2

ς D
2 +ς S

2−2ς DS
2  , ς D

2 = Var (β 
D

), ς S
2 = Var (β 

S
) and ς DS

2 = Cov (β 
D

, β S). The null 

hypothesis is H0: β = 0 against the alternative hypothesis of HA: β > 0 .  

Sham and Purcell (2001) regressed the weighted linear combination of xD i
 and xS i

 

on the mean corrected proportion of alleles IBD, πi − 0.5, shown as  

 
E  

XS

(1 + ρ)2
−

XD

(1 − ρ)2
+

4ρ

1 − ρ2
 = α + β π − 0.5  (1.4.11)  

where ρ is the marginal correlation. The test statistic is a one sided t-statistic for the slope 

estimate β , with null hypothesis H0: β = 0, against the alternative hypothesis HA: β > 0. 

Sham and Purcell also showed that this regression-based method has power equivalent to 

likelihood-based methods. The Sham and Purcell model assumes that the trait variance 

equals one. We note that the linear combination of xD i
 and xS i

of the regression model is 

from the bivariate normal distribution. In order to evaluate power, with misspecified trait 
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parameter values, including the variance, in our simulation, we will use the modified 

Sham and Purcell method as follows 

 
E  

XS

ςx
2(1 + ρ)2

−
XD

ςx
2(1 − ρ)2

+
4ρ

1 − ρ2
 = α + β π − 0.5  (1.4.12)  

with the slope estimate β  with null hypothesis H0: β = 0 against the alternative hypothesis 

HA: β > 0. 

 

1.4.2. Likelihood Based Method 

 This method is based on the likelihood function of trait values under the 

assumption of multivariate normality. Specifically, the joint distribution is bivariate 

normal in sib pairs, and multivariate normal in a pedigree of k relatives.   

 

ln L = c −
1

2
 ln det 𝚺𝐢  

N

i=1

−
1

2
  𝐱𝐢 − 𝛍𝐢 

T𝚺𝐢 
−1 𝐱𝐢 − 𝛍𝐢 

N

i=1

 (1.4.13)  

where 𝐱𝐢 is the trait value vector of the i-th pedigree, 𝛍𝐢 = E 𝐱𝐢  is the mean vector and 

𝚺𝐢 is the covariance matrix of the i-th pedigree. Note that this likelihood can be applied to 

any size pedigree, as long as the assumption of multivariate normality holds. The 

variance and the covariance between two pedigree members are given in equations (1.3.9) 

and (1.3.10). Amos (1994) showed the covariance at a marker locus, as well as at a trait 

locus, by assigning coefficients of ςa
2 and ςd

2  as the function of proportion of alleles IBD 

and the recombination fraction 𝜃. However, he suggested assuming θ = 0 in hypothesis 

tests for linkage when the data are from only one type of pedigree, where the unique 

estimates of θ and ςa
2 are not guaranteed. In our simulation, we consider only sibpairs, so 
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we will assume that θ = 0 and use the covariance of equation (1.3.10) for the following 

likelihood-based methods. 

 Using this log likelihood function, Amos (1994) tested the null hypothesis of no 

linkage H0: ςa
2 = 0 against the alternative hypothesis HA : ςa

2 > 0, using the χ2 log 

likelihood ratio test statistic, −2 ln L − ln L0 . He suggested estimating the linkage 

parameters ςa
2 (as well as other parameters) by using generalized estimating equation 

(GEE) approaches. 

 Recently, many researchers prefer score statistics to log likelihood ratio statistics 

because of the simplicity of computation. The score test is asymptotically equivalent to 

the likelihood ratio test, but the computation of the maximum likelihood estimates should 

be done only under the null hypothesis (Carroll et al., 2006). In general, if we are testing 

H0: η = η0, the score test statistic is defined as 

 ZS = S η0 / In η0  (1.4.14)  

where 

 
S η =

∂

∂η
ln L(η|X)    and (1.4.15)  

 
In η = Varθ S η  = −Eη  

∂2

∂η2
ln L(η|X)  (1.4.16)  

(Casella and Berger, 2002). 

 As we mentioned earlier, score statistics in linkage analysis are similar to one 

another and have been modified to achieve robustness (Cuenco et al, 2003). Two of them, 

by Tang and Siegmund (2001), and Cuenco et al. (2003), are shown below.  
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 From sibling pairs of 𝐱𝐢 =  
x1i
x2i

  for i = 1,⋯ , n, with 𝛍 =  
μ
μ  and 𝚺𝐢 =

 
ςx

2 ρπi
ςx

2

ρπ i
ςx

2 ςx
2  , where ρπ i

 is the conditional correlation between two siblings for a 

given genotype, the likelihood function in equation (1.4.13) becomes 

 

ln L = c +   − ln ς2 −
1

2
ln 1 − ρπ i

2  −
 x1i

− x2i
 

2

4ςx
2 1 − ρπi

 

N

i=1

−
 x1i

+ x2i
− 2μ 

2

4ςx
2 1 − ρπ i

 
     and thus, 

(1.4.17)  

 
S ςa

2 =
∂

∂ςa
2

ln L                                                                                                        

             =   
ρπi

1 − ρπ i
2
−

 x1i
− x2i

 
2

4ςx
2 1 − ρπi

 
2 +

 x1i
+ x2i

− 2μ 
2

4ςx
2 1 − ρπi

 
2   

πi − 0.5

ςx
2

  

N

i=1

 ,

 (1.4.18)  

since  

 ∂ρπi

∂ςa
2

=
πi − 0.5

ςx
2

 (1.4.19)  

from equation (1.4.13) assuming no dominance, as Tang and Siegmund (2001) suggested.  

 Setting the trait variance equal to 1.0, Tang and Siegmund (2001)’s suggested a 

robust score statistic in the form of   

 
  

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4(1 − ρ)2 +
 x1i

+ x2i
− 2μ 

2

4(1 + ρ)2   πi − 0.5 

1

2 2
   

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4(1 − ρ)2 +
 x1i

+ x2i
− 2μ 

2

4(1 + ρ)2  

2

 
(1.4.20)  
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and Cuenco et al. (2003) suggested another score statistic by using the empirical standard 

deviation of π instead of 
1

2 2
, in the form of 

 
  

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4(1 − ρ)2 +
 x1i

+ x2i
− 2μ 

2

4(1 + ρ)2   πi − 0.5 

   πi − 0.5 2

n
   

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4(1 − ρ)2 +
 x1i

+ x2i
− 2μ 

2

4(1 + ρ)2  

2

 . 
(1.4.21)  

Note that the score statistics include only a marginal correlation, because the computation 

is done under the null hypothesis of no linkage.  

 In our simulation, we would like to evaluate different estimates for trait parameter 

values, including the variance, as well as the mean and the correlation. Thus, we will use  

a modified version of Tang and Siegmund’s method and Cuenco et al’s method of 

 
  

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4ςx
2(1 − ρ)2 +

 x1i
+ x2i

− 2μ 
2

4ςx
2(1 + ρ)2   

πi − 0.5
ςx

2  

1

2 2
   

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4ςx
2(1 − ρ)2 +

 x1i
+ x2i

− 2μ 
2

4ςx
2(1 + ρ)2  

2

 
1
ςx

2 
2

   and 
(1.4.22)  

  
ρ

1 − ρ2 −
 x1i

− x2i
 

2

4ςx
2(1 − ρ)2 +

 x1i
+ x2i

− 2μ 
2

4ςx
24(1 + ρ)2   

πi − 0.5
ςx

2  

   πi − 0.5 2

n
   

ρ
1 − ρ2 −

 x1i
− x2i

 
2

4ςx
2(1 − ρ)2 +

 x1i
+ x2i

− 2μ 
2

4ςx
2(1 + ρ)2  

2

 
1
ςx

2 
2

.     1.4.23                          
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1.5. Sampling Designs 

There are several sampling approaches in linkage analysis. In many cases, the 

sampling is based on trait values. For example, in clinical studies, families are often 

selected when at least one member has extreme trait values. This type of ascertainment 

based on a single-proband is called truncate sampling in our paper. It has been known 

that single-proband sampling has the advantage of greater power than random population 

sampling (Feingold, 2001). When a pedigree has a constant sibship size, the power gains 

are even greater (Feingold, 2001). However, the trait distribution of this selected sample 

is different from that of the population.   
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Chapter 2 Methods 

 

In this chapter, we will show two existing approaches and propose three new 

approaches for estimating trait parameter values in truncate samples, assuming that the 

trait distribution in sibpairs is bivariate normal. The two existing estimates are based on 

the likelihood function for random samples and the conditional likelihood function. On 

the other hand, the three new estimating methods are based on the likelihood function for 

truncate samples, where at least one sibling has an extreme trait value. In these three new 

methods, the trait mean and the trait variance will be estimated together, but the 

correlation will be estimated separately. In this chapter, we will focus on estimating only 

the marginal correlation ρ, not the conditional correlation, because the model-free linkage 

analysis methods we use in our study, require only a marginal correlation in their test 

statistics.  

 

 

 

 

 

 

2.1. Existing Approaches 

 

2.1.1. Sample Moments  
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 Working with sample moments is the most commonly used way to estimate 

parameter values, especially for random samples. However, this may not be a good 

approach for truncate samples because it does not allow for the selection. Assuming a 

single multivariate normal distribution, we can easily get the maximum likelihood 

estimates for trait parameter values. We will first review the MLEs for general pedigrees 

with sibship of size s.  

Suppose that the trait value 𝐗 ∈ ℝ𝐬 (column vector), of s siblings, comes from a 

distribution with mean vector 𝛍 ∈ ℝ𝐬 and s × s dimensional covariance matrix 𝚺. If we 

assume a multivariate normal distribution for 𝐗, the probability density function (pdf) of 

𝐗 is written as 

 𝑓 𝐱 =
1

(2π)s/2
∙ det Σ −

1
2 exp −

1

2
 𝐱 − 𝛍 T𝚺−1 𝐱 − 𝛍  . (2.1)  

From the independent and identically distributed n observations of 𝐱𝐢 for i = 1,⋯ , n, we 

get the log likelihood function of 

 

ln L 𝛍, 𝚺 = −
sn

2
ln 2π −

n

2
ln det 𝚺 

−
1

2
tr  𝚺−1   𝐱𝐢 − 𝛍  𝐱𝐢 − 𝛍 T

n

i=1

 . 

(2.2)  

We can derive the maximum likelihood estimates (MLEs) of the population mean vector 

and the covariance matrix as  

 𝛍 =
1

n
 𝐱𝐢

n

i=1

   and    (2.3)  
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 𝚺 =
1

n
  𝐱𝐢 − 𝛍   𝐱𝐢 − 𝛍  T

n

i=1

. (2.4)  

If we consider sibpairs (i.e. s = 2), the MLEs of three population parameter 

values μ, σ and ρ from n observations of random sample 𝐱𝐢 =  
x1i
x2i

  for i = 1,⋯ , n, 

along with 𝛍 =  
μ
μ  and 𝚺 =  

ς2 ρς2

ρς2 ς2   will be 

 μ =
1

2n
 (x1i

+ x2i
)

n

i=1

, (2.5)  

 σ 2 =
1

2n
   x1i

− μ  
2

+ (x2i
− μ )2 

n

i=1

   and (2.6)  

 ρ =
1

σ 2 ∙
1

n
  x1i

− μ  (x2i
− μ )

n

i=1

. (2.7)  

 However, in truncate samples, these estimates are no longer MLEs, even though 

Peng and Siegmund (2006) and Bhattacharjee et al. (2008) retained the term “MLEs”. In 

order to avoid confusion, we will call the estimates shown in equations (2.5), (2.6) and 

(2.7) “sample moments”.  
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2.1.2. Conditional Maximum Likelihood Estimates 

Peng’s conditional MLEs (Peng and Siegmund, 2006) can be used when the 

proband is known (Bhattacharjee et al., 2008). As in the previous section, suppose that 

trait value 𝐗 ∈ ℝ𝐬 (column vector) obtained from a sibship of size s, is from the 

distribution with mean vector 𝛍 ∈ ℝ𝐬 and s × s dimensional covariance matrix 𝚺, 

assuming a multivariate normal distribution. 𝐗 can be rewritten as  
X1

𝐗𝟐
 , where X1 ∈ ℝ is 

the proband’s trait value, and 𝐗𝟐 ∈ ℝs−1 is his/her sibling’s trait value. Peng’s 

conditional log likelihood function of 𝐗𝟐 given X1 = x1 is  

 

ln L 𝛍𝐜, 𝚺𝐜 = −
sn

2
ln 2π −

n

2
ln det 𝚺𝐜 

−
1

2
tr  𝚺𝐜

−1   𝐱𝟐𝐢 − 𝛍𝐜  𝐱𝟐𝐢 − 𝛍𝐜 
T

n

i=1

 . 

(2.8)  

The equation above is similar to equation (2.2) but with the conditional mean 𝛍𝐜 =

E 𝐗𝟐 X1 = x1  and the conditional covariance matrix 𝚺𝐜 = Cov 𝐗𝟐 X1 = x1 .  

Let us now consider n observations of sibpairs 𝐱𝐢 =  
x1i
x2i

  for i = 1,⋯ , n, where 

𝛍 =  
μ
μ  and 𝚺 =  

ς2 ρς2

ρς2 ς2  . Then the equation (2.8) reduces to  

 

ln L μ, σ2, ρ = −n ln 2π −
n

2
ln σ2 1 − ρ2     

− 
 x2i

−  μ + ρ x1i
− μ   

2

2σ2 1 − ρ2 

n

i=1

. 

(2.9)  

where 
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 μ
c

= E X2 X1 = x1 = μ + ρ x1 − μ    and (2.10)  

 Σc = Var X2 X1 = x1 = σ2 1 − ρ2 . (2.11)  

Peng and Siegmund (2006) then suggests the use of a numerical iterative method 

to obtain the estimates of μ, σ and ρ, maximizing the conditional log likelihood function. 

These estimates are called conditional MLEs. 

 

 

 

 

 

 

2.2. Suggested Approaches 

The following three new methods use the likelihood function for truncate samples, 

where at least one sibling has an extreme trait value, i.e. a trait value greater than a 

threshold value T. Like existing methods, we assume that the trait value X =  
X1

X2
  of  

sibpairs has a bivariate normal distribution with mean 𝛍 =  
μ

μ   and covariance matrix 

𝚺 =  
σ2 ρσ2

ρσ2 σ2  .  

If we define a random variable X∗ =  
X1
∗

X2
∗  of a truncate sibpair where X1

∗  and X2
∗  

represent a proband’s trait and his/her sibling’s trait, the pdf of X1
∗  is 
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 𝑓 x1
∗ =

 
 
 

 
 𝑓 x1

∗; μ, σ2 

 𝑓 x1
∗; μ, σ2 

∞

T

=

1

 2πς
exp −

 x1
∗ − μ 2

2σ2  

1 − Φ 
T − μ
ς  

    if x1
∗ > 𝑇

0                                                                                 if x1
∗ ≤ T

      and (2.12)  

and its log likelihood function from n observations of xi
∗ =  

x1
∗

i

x2
∗

i

  for i = 1,⋯ , n, is 

 

ln L μ, σ2 = −n ln  1 − Φ 
T − μ

ς
  −

n

2
ln 2π −

n

2
ln σ2

−
1

2σ2
  x1

∗
i
− μ 

2
n

i=1

. 

(2.13)  

 This likelihood function will be used to get “truncated maximum likelihood 

estimates” for μ and σ2 as shown in subsections 2.2.1, 2.2.2, and 2.2.3. At the end of this 

section we explain how to derive the correlation estimate for truncate samples.  

 

2.2.1. Shin’s Application to Rao and Mendell (Shin RM) 

It has been shown by many investigators, including Rao et al. (1968) and Mendell 

and Elston (1974) that the estimates of μ and σ2 by the method of moments, from n 

observations of x1
∗

i
 for i = 1,⋯ , n, are 

 μ = x1
∗ − λσ    and (2.14)  

 σ 2 =
1

1 − λ(λ − zT)
s1
∗2

 (2.15)  

where 
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 x1
∗ =  

1

n
 x1

∗
i

n

i=1

,             (2.16)  

 s1
∗2 =

1

n
 (x1

∗
i
− x1

∗ )2

n

i=1

, (2.17)  

 zT ≡
T − μ

ς
   and         (2.18)  

 λ ≡
φ(zT)

1 − Φ zT 
.        (2.19)  

Here, zT  is the standardized threshold of T and λ is the ratio of the density of probability 

to the tail area, where φ x =
1

 2π
exp −

x2

2
  and Φ x =

1

 2π
 exp −

u2

2
 du

x

−∞
 are the pdf and 

cdf of a standard normal random variable. 

It can be shown that from the log likelihood function for truncate samples in 

equation (2.13) that these sample moments are MLEs of μ and σ2. We set the first 

derivatives of the likelihood function with respect to μ and σ2 to be zero as follows:  

 
∂ ln L

∂ μ
= −

nλ

σ
+

1

σ2
  x1

∗
i
− μ 

n

i=1

≡ 0   and (2.20)  

 
∂ ln L

∂ σ2
= −

nλzT

2σ2
−

n

2σ2
+

1

2σ4
  x1

∗
i
− μ 

2
n

i=1

≡ 0. (2.21)  

Here zT  and λ are defined as in equations (2.18) and (2.19), respectively. Given the 

truncate sample with a threshold value T, we get MLEs of the original population 

parameters 

 μ = x1
∗ − λσ    and (2.22)  
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 ς 2 =
1

1 − λ(λ − zT)
s1
∗2

 (2.23)  

which are the same as the sample moments of equations (2.14) and (2.15). 

These estimates can be derived simply and analytically as shown above. However, 

it is natural to wonder how one could obtain the standardized threshold value zT  

 and λ = λ zT .   In practice, we usually do not know μ and σ2 (which is the reason these 

values are being estimated), so zT  is unlikely to be obtained since it corresponds to the 

threshold value of T. 

However, we often have a set value of p ≡ Pr⁡(X1 > 𝑇) or a rough idea of p. For 

example, you may have chosen T because it is known that roughly 10% of the population 

is on or above T. In this case, zT = −Φ−1(p). Or if we estimate p by p , then we get the 

estimates zT = −Φ−1(p ). 

So we have reason to suppose that we know p as well as T, when we apply our 

estimates for the mean and variance in equations (2.22) and (2.23). 

 

2.2.2. Shin’s Application to Cohen and Aboueissa (Shin CA) 

In this section, we will show the computer algorithm for obtaining Cohen’s MLEs 

(Cohen, 1959) for the mean and variance from normally distributed singly censored or 

singly truncated samples as suggested by Aboueissa and Stoline (2004). This algorithm 

was originally written for censored samples, but we can easily modify the method for 

truncate samples by substituting the censoring level with p = Pr X1 > 𝑇 . Cohen (1959) 
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used the same likelihood function (2.13) from n observations of x1
∗

i
 for i = 1,⋯ , n, and 

developed the system of equations 

 μ = x1
∗ − ξ(x1

∗ − T) (2.24)  

 σ 2 = s1
∗2 + ξ(x1

∗ − T)2 (2.25)  

providing the tabled values for  

 ξ =

1 − p
p λ

1 − p
p λ − zT

 (2.26)  

where x1
∗ =  

1

n
 x1

∗
i

n
i=1 , s1

∗2 =
1

n
 (x1

∗
i
− x1

∗ )2n
i=1 , zT =

T−μ

σ
, λ =

φ(zT )

1−Φ zT 
 are defined the 

same as in the previous section in equations (2.16), (2.17), (2.18) and (2.19). 

Aboueissa and Stoline (2004) suggested a new algorithm that does not require the 

auxiliary table for ξ =

1−p

p
λ

1−p

p
λ−zT

 and claimed that his replacement method was superior to 

existing replacement methods.  His algorithm is based on solving the equation  

 

1 −
1 − p

p
λ  

1 − p
p

λ − zT 

 
1 − p

p λ − zT 
2 =

s1
∗2

(x1
∗ − T)2

≡ γ (2.27)  

which comes from Cohen’s derivation for zT , which can be written as the second degree 

polynomials of zT , 

 γzT
2 +  γ + 1  

1 − p

p
λ 

2

−  2γ + 1  
1 − p

p
λ zT − 1 = 0. (2.28)  

Once zT  is estimated numerically using the equation above, ξ, μ , and σ 2
 can be 

obtained from equations (2.26), (2.24) and (2.25), respectively.  
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Note that again we assume that p as well as T are known. However, zT  can be 

estimated by using equation (2.28) differently from its application in the previous section, 

where zT = −Φ−1(p ).  

 

2.2.3. Shin’s application to the Newton-Raphson algorithm (Shin 

Nu) 

The second method is the same as the first one except for the estimating algorithm 

for zT  given p. If we only know the threshold value of T on and above which we selected 

our truncate sample, the numerical iterative method would give us the trait values of μ 

and σ2, maximizing the log likelihood function of equation (2.13).  

There are many numerical algorithms to get MLEs, but since Peng and Siegmund 

(2006) recommended using the Newton-Raphson algorithm to get his conditional MLEs, 

we would like to apply the same algorithm to get MLEs of log likelihood functions for 

truncate samples.                                                             

The basic structure of an iteration of the Newton-Raphson algorithm is included 

in the R software package, as a nonlinear minimization function (Schnabel, 1985). Since 

we would like to maximize the log likelihood function of equation (2.13), we denote this 

function by q ω = − ln L ω , where ω =   μ, ς2 . Using the initially estimated 

parameter values of ω, for example, we can simply use the sample moments as ω0 =

 x1
∗ , s1

∗2  and compute a gradient and a hessian of q ω0 . We then compute the next 

estimate of ω  by using the multiplication of the inverse of a hessian and a gradient. 
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Again, by evaluating the gradient of a new estimate, we decide to stop or return to the 

first step with the new estimate as an initial ω0. When we cannot compute the exact 

gradient or hessian, we use an approximation of it. 

 

 2.2.4. Estimating Correlation for Truncate Samples 

 Now let us estimate the correlation, ρ, using n pairs of observations xi
∗ =  

x1
∗

i

x2
∗

i

  

for i = 1,⋯ , n. We assumed in the beginning of section 2.2. that X1 and X2 follows a 

bivariate normal distribution, with μ = μ
1

= μ
2
, σ = σ1 = σ2 and ρ. In that case the 

conditional distribution of X2 given X1 = x1 is normal and the conditional expectation 

has the form of  

 E X2 X1 = x1 = μ
2

+ ρ
σ2

σ1
 x1 − μ

1
 = μ 1 − ρ + ρx1. (2.29)  

Since the assumption of normality implies using the simple linear regression model 

 E X2 X1 = x1 = α + βx1, (2.30)  

we calculate α = μ 1 − ρ  and β = ρ. 

Equations (2.29) and (2.30) still hold for X∗ =  
X1
∗

X2
∗  where X1

∗|X1 > 𝑇 and X2
∗ |X1

∗  

as  

 E X2
∗  X1

∗ = x1
∗ = μ 1 − ρ + ρx1

∗ , (2.31)  

 E X2
∗  X1

∗ = x1
∗ = α + βx1

∗ . (2.32)  

Thus, we can get the MLE of β in the regression model in the form of  
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 β =
 (x2

∗
i
− x2

∗   )(x1
∗

i
− x1

∗ )n
i=1

 (x1
∗

i
− x1

∗ )2n
i=1

 (2.33)  

using the log likelihood function of 

 ln L  α, β, σx2
∗

2  = −
n

2
ln 2π −

n

2
ln σ2 −

  x2
∗

i
− α − βx1

∗
i
 

2n
i=1

2σx2
∗

2  (2.34)  

where σx2
∗

2  is the variance of X2
∗ . Thus, the correlation estimate in our suggested methods 

for our truncate samples is 

 ρ = β =
 (x2

∗
i
− x2

∗   )(x1
∗

i
− x1

∗ )n
i=1

 (x1
∗

i
− x1

∗ )2n
i=1

. (2.35)  
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Chapter 3 Simulations 

 

We conducted a simulation study in order to investigate the power of linkage 

analysis methods with five different nuisance parameter estimates. We generated 

artificial data for simple nuclear families with two siblings and picked families in which 

at least one sibling had an extreme trait value.  

The steps in the simulation of our data set are as follows. Based on the genetic 

model described in Chapter 1, we first generated the parents’ genotypes at a trait locus. 

Then the offspring’s genotype and quantitative phenotype were generated. Quantitative 

phenotype values were standardized using the overall mean and variance. This 

standardization step was done in order to simplify the comparisons of various estimators. 

We also incorporated additional environmental correlation between siblings. Once the 

simulation at the trait locus was completed, we simulated a marker locus taking into 

account the recombination fraction between two loci. Finally, we stored truncate samples 

where at least one sibling had a quantitative trait greater than a given threshold value. The 

probability of alleles shared IBD was computed by Merlin software using the parents’ 

genotypes. Details of the algorithm are described below.  

 Assuming HWE and random mating, we considered two alleles A1 and A2 with 

allele frequencies p and q = 1 − p, respectively, at a trait locus. If we denote Gi (i=1,2,3) 

as the genotype at a trait locus, the probability of having genotype Gi is the following: 
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P(Gi) =  

P(G1) ≡ P A1A1 = p2

P G2 ≡ P A1A2 = pq

P G3 ≡ P A2A2 = q2.

  (3.1)  

First, the genotype of parents at a trait locus was simulated using a uniform 

random number generator.  If a uniform random number fell between 0 and p, we 

assigned A1 to the first allele A1. Otherwise, we assigned A2 as the genotype. Similarly, 

we generated another uniform random number to assign the second allele. Once both 

parents’ genotypes were simulated, we simulated the offsprings’ genotypes. There were 

four possible genotypes with equal chances of being transmitted. If a random number fell 

between 0 and 0.25, the offspring received the first paternal and the first maternal alleles. 

If a random number fell between 0.25 and 0.5, the offspring received the first paternal 

and the second maternal alleles. If a random number fell between 0.5 and 0.75, the 

offspring received the second paternal and the first maternal alleles. Finally, if a random 

number fell between 0.75 and 1, the offspring received the second paternal and the 

second maternal alleles.   

Once the offspring’s genotypes were simulated, we simulated quantitative trait 

values. As mentioned in Section 1.2.4, the actual distribution of a quantitative trait is a 

mixture of Gaussians. Given the genotype, the trait value is equal to the genotype mean 

effect plus a normally distributed environmental effect. Let the mean and the variance of 

environmental effect be 0 and ςe
2, respectively. Then, the distribution of trait value can be 

written as 

 X|G1~N    a, ςe
2  

X|G2~N    d, ςe
2  

X|G3~N −a, ςe
2 .

 (3.2)  
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The weight in the mixture is the probability of having each genotype. Thus, we get the 

probability density function of a trait value, x, as 

 

𝑝 x =  P Gi ∙ 𝑝 x Gi 

3

i=1

                                                

                         = p2 ∙ 𝑓 x a, ςe
2 + 2pq ∙ 𝑓 x d, ςe

2 + q2 ∙ 𝑓 x −a, ςe
2  

(3.3)  

where 𝑓(x|μ, ς2) is the pdf of normal distribution with mean μ and variance ς2. 

The genotype mean effect for each genotype can be computed analytically, given 

the allele frequency, heritability and inheritance type. In our simulation, we considered 

allele frequencies of 0.1 and 0.01, heritability values of 0.2 and 0.4, and three inheritance 

types where A1 is dominant, additive, and recessive to A2. The allele frequencies were 

chosen in order to simulate a trait with a rare allele frequency. The heritability value of 

0.2 were chosen because they have been used by Cuenco et al. (2003). We considered 

heritability value of 0.4 as well. Heritability can be written in terms of allele frequency 

when we know the overall trait variance, as seen in equation (1.3.14)  

 
h2 =

ςa
2

ςg
2 + ςe

2
=

2pq a − d p − q  
2

2pq a − d p − q  
2

+ 4p2q2d2 + ςe
2

. (3.4)  

This equation can be rewritten in terms of genotype mean effect, a, as follows 

 

a2 =

 
 
 
 
 

 
 
 
 

h2ςe
2

 1 − h2 2pq
                                               for d = 0  additive        

h2ςe
2

 1 − h2 2pq 1 − p + q 2 − 4h2p2q2
 for d = a  dominant     

h2ςe
2

 1 − h2 2pq 1 + p − q 2 − 4h2p2q2
 for d = −a  recessive .

  (3.5)  
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However, the given allele frequencies and heritability combinations result in a non-

positive denominator when inheritance is recessive. Upon setting p=0.1 and p=0.01, we 

were required to set h2 at less than 0.18 and 0.0198, respectively. Table 4.1 shows the 

genetic models considered in our simulation. For each model, we can calculated the 

genotype mean effects, a and d. Thus given p=0.1 and 0.01, there is no recessive model 

that would generate heritability as high as 0.2. 

 Let X1 and X2 be the trait values of a sibling pair. The overall mean and the 

overall variance of the trait values are computed in eq. (1.3.1) and (1.3.2) as 

 E X1 = E X2 = μx = p2a + 2pqd + q2 −a  (1.3.1)  

 Var X1 = Var X2 = ςx
2 = 2pq a − d p − q  

2
+ 4p2q2d2 + ςe

2. (1.3.2)  

The conditional covariance between two siblings given their genotypes is computed as 

π ∙ 2pq a − d p − q  
2

+ ∆ ∙ 4p2q2d2 + ρeςe
2, where π is the proportion of alleles IBD 

and ∆ is the probability of sharing 2 alleles IBD at the trait locus. Then the marginal 

covariance due to genotype effect between two siblings is denoted as  

 Cov X1, X2 = ρςx
2 = pq a − d p − q  

2
+ p2q2d2 + ρeςe

2 (3.6)  

since the expected values of π and ∆ are 0.5 and 0.25, respectively. One should note that 

the (polygenic) environmental correlation between siblings is zero at this point, i.e. all 

correlation between siblings is a result of the major quantitative trait locus. 

Next, we can compute the standardized trait random variables Z1 and Z2 as 

follows  
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 Z1 =

X1 − E(X1)

 Var(X1)
 and Z2 =

X2 − E(X2)

 Var(X2)
 (3.7)  

so that  

 E Z1 = E Z2 = 0 (3.8)  

 Var Z1 = Var Z2 = 1 (3.9)  

 
Cov Z1, Z2 = ρ =

pq a − d p − q  
2

+ p2q2d2

2pq a − d p − q  
2

+ 4p2q2d2 + ςe
2

. (3.10)  

In order to obtain additional correlation, ρe , so that the correlation between siblings Z1 

and Z2 becomes a fixed value of ρ, Z1 and Z2into Z1
′  and Z2

′  can be transformed as 

follows 

 Z1
′ = Z1                                                                                                         (3.11)  

 
Z2
′ =

Z2 + cZ1

 Var Z2 + Var cZ1 + 2Cov(Z2, cZ1)
=

Z2 + cZ1

 1 + c2 + 2cρg

 
(3.12)  

where c =  
1−ρg

2

1

ρ2−1
− ρg   is a constant (Appendix A), used for this transformation for a 

given ρ, along with known ρg =
pq  a−d p−q  

2
+p2q2d2

2pq a−d p−q  
2

+4p2q2d2+ςe
2
 of the equation above, so that 

 E Z1
′  = E Z2

′  = 0 (3.13)  

 Var Z1
′  = Var Z2

′  = 1 (3.14)  

 Cov Z1
′ , Z2

′  = ρ. (3.15)  

 

  



39 
 

Chapter 4 Results 

 

 In this section, we provide details about the genetic models we consider, as well 

as our findings on the power of the model-free methods with various parameter 

estimators.  

 Table 4.1 and Figure 4.1 show the details of each genetic model and the 

probability density function before and after standardization. Two allele frequencies (0.1 

and 0.01), two heritabilities (0.2 and 0.4), and two inheritance types (Additive and 

Dominant) were considered as trait model generating parameter values. Based on these 

parameters, the genotype mean effect, variance and correlation, due to a single locus were 

computed. The trait value is the genotype mean effect, plus an environmental effect that 

follows a standard normal distribution. In Figure 4.1, the black line shows the probability 

density function under each model (Table 4.1). The blue dashed line shows the 

probability density function after standardization. The vertical red line is the threshold 

value used for truncate samples. We set the threshold at 1.28 in all cases. (The 90
th

 

percentile of standard normal equals to 1.28.) One should note that 1.28 is not the actual 

threshold for the top 10% of actual distribution of each model of mixture normals. 

However, in using truncate sampling for the top 10%, investors would assume a single 

normal distribution and hence take the threshold of single normal which is the 

approximate 1.28 standard deviation from mean. Finally, additional environmental 

correlation between siblings was added, so that all cases resulted in a correlation between 

siblings equal to 0.25. This approach was used in order to make our findings comparable 

to those reported by Cuenco et al. (2003) and Bhattacharjee et al. (2008).  
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Figures 4.2, 4.3 and 4.4 show that when allele frequency is rare (in this 0.01, 

Models 3, 4, 7 and 8), the models have higher correlations between the magnitude of trait 

differences and the magnitude of genotype differences.  

Figure 4.2 shows the distribution of samples in one replicate under each model. 

This helps us to understand how the trait values of truncate samples and the proportion of 

alleles IBD will look like under each model. For rare allele frequency models (Models 3, 

4, 7 and 8), the concordant pair samples (where trait values for both sibs in a pair are 

extremely high, in this case) have a higher proportion of alleles IBD (colored in purple) 

than other samples. Thus, when both siblings have high trait values, they tend to share 

more alleles IBD. This tendency is less obvious for models in which the allele frequency 

is higher, in this case 0.1 (Models 1, 2, 5 and 6). In that case, siblings sharing 0.25, 0.5 

and 0.75 proportion of alleles IBD have relatively uniform trait values, at least in a 

replicate shown here. 

Figures 4.3 and 4.4 show the same tendency for siblings to share more alleles IBD, 

when the magnitude of the siblings’ trait difference decreases, or when the sum of their 

values increases. Especially when the allele frequency is 0.01 (Models 3, 4, 7, and 8), the 

slope is steeper than when an allele frequency is 0.1 (Models 1, 2, 5, and 6). We can also 

see from Figures 4.3 and 4.4 that steeper slopes are associated with higher heritability, 

comparing Models 1, 3, 5, and 7 with Models 2, 4, 6, and 8, respectively. 
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Table 4.1. Description of Models 1-8 

 Model 1 Model 2 Model 3 Model 4 

Allele frequency 0.1 0.1 0.01 0.01 

Heritability 0.2 0.4 0.2 0.4 

Inheritance Type Additive Additive Additive Additive 

Genotype Mean Effect -1.78, 0, 1.78 -1.92, 0, 1.92 -3.55, 0, 3.55 -5.80, 0, 5.80 

Variance due to Genotype 1.25 1.67 1.25 1.67 

Correlation due to Genotype 0.1 0.2 0.1 0.2 

After Standardization with Additional Environmental Correlation 

Overall Mean 0.0 0.0 0.0 0.0 

Overall Variance 1.0 1.0 1.0 1.0 

Overall Correlation  0.25 0.25 0.25 0.25 

 Model 5 Model 6 Model 7 Model 8 

Allele frequency 0.1 0.1 0.01 0.01 

Heritability 0.2 0.4 0.2 0.4 

Inheritance Type Dominant Dominant Dominant Dominant 

Genotype Mean Effect -0.66, 0.66, 0.66 -1.09, 1.09, 1.09 -1.80,1.80, 1.80 -2.94, 2.94, 2.94 

Variance due to Genotype 1.27 1.73 1.25 1.67 

Correlation due to Genotype 0.1 0.21 0.1 0.2 

After Standardization with Additional Environmental Correlation 

Overall Mean 0.0 0.0 0.0 0.0 

Overall Variance 1.0 1.0 1.0 1.0 

Overall Correlation  0.25 0.25 0.25 0.25 
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Figure 4.1. Probability Density Function of a Quantitative Trait under Models 1-8. The trait value 

is the genotype mean effect, plus an environmental effect that follows a standard normal 

distribution. The black line shows the original probability density function under each model 

(Table 4.1). The blue dashed line shows the probability density function after standardization. 

The vertical red line is the threshold value used. We set the threshold at 1.28 in all cases. (The 

90
th
 percentile of standard normal equals to 1.28.) Although 1.28 is not the actual threshold for 

the top 10% of each distribution, we did this with the idea that in using truncate sampling for the 

top 10%, investors would assume a single normal distribution and hence, take approximately 1.28 

standard deviations from the mean.  
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Figure 4.2. Trait Values vs. Proportion of Alleles IBD for Truncate Samples under Models 1-8 (1 

Replicate, Sample Size=500). Each sample is represented by a point. The green, turquoise, blue, 

purple, and red colors of the point represent 0.0, 0.25, 0.5, 0.75, and 1.0 proportion of alleles IBD, 

respectively. 
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Figure 4.3. Squared Trait Differences vs. Proportion of Alleles IBD for Truncate Samples under 

Models 1-8 (1 Replicate, Sample Size=500). The simple regression line of squared trait 

differences on the proportion of alleles IBD, is shown as a red dashed line. The green, turquoise, 

blue, purple, and red points represent 0.0, 0.25, 0.5, 0.75, and 1.0 proportion of alleles IBD, 

respectively.  
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Figure 4.4. Squared Mean Corrected Trait Sum vs. Proportion of Alleles IBD for Truncate 

Samples under Models 1-8 (1 Replicate, Sample Size=500). The simple regression line of squared 

trait differences on the proportion of alleles IBD, is shown as a red dashed line. The green, 

turquoise, blue, purple, and red points represent 0.0, 0.25, 0.5, 0.75, and 1.0 proportion of alleles 

IBD, respectively.  
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In Table 4.2, we show the five different estimated parameter values for truncate 

samples, under each genetic model with different sample sizes. The best estimate is 

defined as the one having the smallest absolute value of difference with the true 

parameter value, and is marked in bold. (However, the correlation estimate should have 

both nonnegative and the minimum difference value, to be considered as the best 

estimate.) When two estimated values are not significantly different (paired t-test, 

α = 0.01,) both are marked in bold.  

Our estimators (Shin RM or Shin CA) give better mean estimates than other three 

estimators we consider, with only a few exceptions: Model 2 with a sample size of 200, 

Model 6 with a sample size of 200 and 500, Model 4 and Model 8. The Shin CA gives 

better variance estimates under Models 3, 4, 7 and 8. However, Peng’s CMLEs give the 

best estimates under Model 2 with sample sizes of 200 and 500, and under Model 6. It 

should be noted that the sample moments give better mean estimates than other 

estimators, under Models 4 and 8. Our suggested estimators and Peng’s CMLEs give the 

same correlation estimates because we used the regression slope between sibling trait 

values, as the unbiased correlation estimator (Section 2.2.4) and Peng’s likelihood 

function is based on the conditional mean (Section 2.1.2). 

 Our major interest is evaluating different approaches for estimating trait 

parameter values in truncate samples that can be used in model-free linkage analysis. 

Before evaluating estimators, we will first address which of the model-free linkage 

analysis methods gives the greatest power. Figure 4.5 shows the power of five model-free 

methods by Haseman and Elston (1972, Original H & E), Xu et al. (2000, Xu), Sham and 

Purcell (2001, S & P), Tang and Siegmund (2001, T & S) and Cuenco et al. (2003 
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Cuenco). These methods were introduced in Section 1.5. Five estimators were introduced 

in Chapter 2, and they include two existing estimators (sample moments and Peng’s 

CMLEs), and three suggested approaches derived from truncate likelihood function: 

Shin’s application to Rao and Mendell (Shin RM), Shin’s application to Cohen and 

Aboueissa (Shin CA), and Shin’s application to the Newton-Raphson numerical 

algorithm (Shin Nu).  
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Table 4.2. Mean and Mean Squared Error of Estimated Trait Parameter Values under Models 1-8 

(1000 Replicates, Sample Size=100, 200 and 500). The best estimates are printed in bold . 

a. Model 1: p = 0.1, h2 = 0.2, Additive  

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.07 (1.15) 1.10 (0.02) -0.40 (0.42) 

Peng’s Conditional MLEs -0.86 (11.11) 1.18 (1.43) 0.31 (0.06) 

Shin RM -0.13 (0.05) 1.22 (0.12) 0.31 (0.06) 

Shin CA -0.13 (0.03) 1.10 (0.02) 0.31 (0.06) 

Shin Nu -2.64 (48.59) 2.47 (13.08) 0.31 (0.06) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.07 (1.15) 1.10 (0.01) -0.39 (0.42) 

Peng’s Conditional MLEs -0.40 (0.51) 1.03 (0.03) 0.30 (0.03) 

Shin RM -0.14 (0.04) 1.23 (0.09) 0.30 (0.03) 

Shin CA -0.13 (0.02) 1.10 (0.01) 0.30 (0.03) 

Shin Nu -1.69 (22.20) 2.01 (6.28) 0.30 (0.03) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.07 (1.14) 1.10 (0.01) -0.39 (0.41) 

Peng’s Conditional MLEs -0.34 (0.22) 1.01 (0.01) 0.30 (0.01) 

Shin RM -0.15 (0.03) 1.24 (0.07) 0.30 (0.01) 

Shin CA -0.13 (0.02) 1.10 (0.01) 0.30 (0.01) 

Shin Nu -0.99 (5.21) 1.65 (1.57) 0.30 (0.01) 

 

b. Model 2: p = 0.1, h2 = 0.4, Additive  

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.14 (1.30) 1.24 (0.07) -0.31 (0.32) 

Peng’s Conditional MLEs -0.80 (13.07) 1.38 (1.45) 0.30 (0.05) 

Shin RM -0.33 (0.15) 1.61 (0.49) 0.30 (0.05) 

Shin CA -0.35 (0.14) 1.27 (0.08) 0.30 (0.05) 

Shin Nu -2.46 (48.58) 2.84 (18.10) 0.30 (0.05) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.14 (1.30) 1.25 (0.07) -0.31 (0.31) 

Peng’s Conditional MLEs -0.36 (0.59) 1.24 (0.12) 0.30 (0.02) 

Shin RM -0.35 (0.14) 1.62 (0.44) 0.30 (0.02) 

Shin CA -0.35 (0.13) 1.27 (0.08) 0.30 (0.02) 

Shin Nu -1.37 (14.01) 2.22 (5.78) 0.30 (0.02) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.14 (1.30) 1.25 (0.06) -0.30 (0.31) 

Peng’s Conditional MLEs -0.29 (0.18) 1.21 (0.06) 0.30 (0.01) 

Shin RM -0.36 (0.14) 1.63 (0.42) 0.30 (0.01) 

Shin CA -0.35 (0.12) 1.27 (0.08) 0.30 (0.01) 

Shin Nu -0.96 (5.30) 1.97 (2.44) 0.30 (0.01) 
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c. Model 3: p = 0.01, h2 = 0.2, Additive  

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.35) 1.65 (0.47) -0.13 (0.15) 

Peng’s Conditional MLEs -5.43 (458.96) 3.33 (79.45) 0.55 (0.13) 

Shin RM -1.33 (1.90) 3.58 (7.42) 0.55 (0.13) 

Shin CA -0.74 (0.59) 1.56 (0.35) 0.55 (0.13) 

Shin Nu -32.74 (1136.95) 24.52 (610.18) 0.55 (0.13) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.35) 1.65 (0.45) -0.12 (0.14) 

Peng’s Conditional MLEs -2.58 (55.69) 2.20 (11.68) 0.55 (0.11) 

Shin RM -1.34 (1.84) 3.55 (6.88) 0.55 (0.11) 

Shin CA -0.73 (0.56) 1.56 (0.33) 0.55 (0.11) 

Shin Nu -33.02 (1134.42) 24.46 (582.59) 0.55 (0.11) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.35) 1.66 (0.44) -0.11 (0.31) 

Peng’s Conditional MLEs -1.81 (4.10) 1.86 (0.91) 0.55 (0.10) 

Shin RM -1.35 (1.86)  3.58 (6.81) 0.55 (0.10) 

Shin CA -0.74 (0.55) 1.56 (0.32) 0.55 (0.10) 

Shin Nu -33.12 (1137.74) 24.44 (575.19) 0.55 (0.10) 

 

d. Model 4: p = 0.01, h2 = 0.4, Additive  

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.44 (2.09) 3.19 (4.95) 0.00 (0.07) 

Peng’s Conditional MLEs -2.41 (60.94) 3.23 (30.36) 0.52 (0.09) 

Shin RM -3.44 (11.98) 11.24 (107.89) 0.52 (0.09) 

Shin CA -2.19 (4.91) 2.68 (2.90) 0.52 (0.09) 

Shin Nu -56.73 (3370.83) 69.93 (5190.21) 0.52 (0.09) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.43 (2.05) 3.18 (4.82) 0.00 (0.06) 

Peng’s Conditional MLEs -1.81 (4.20) 2.85 (3.96) 0.51 (0.08) 

Shin RM -3.46 (12.04) 11.23 (106.06) 0.51 (0.08) 

Shin CA -2.16 (4.74) 2.66 (2.79) 0.51 (0.08) 

Shin Nu -56.02 (3242.04) 67.48 (4647.69) 0.51 (0.08) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.43 (2.06) 3.19 (4.83) 0.00 (0.06) 

Peng’s Conditional MLEs -1.67 (3.03) 2.80 (3.40) 0.51 (0.07) 

Shin RM -3.49 (12.18)  11.32 (107.14) 0.51 (0.07) 

Shin CA -2.17 (4.75) 2.67 (2.80) 0.51 (0.07) 

Shin Nu -56.41 (3294.44) 67.9 (4679.71) 0.51 (0.07) 
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e. Model 5: p = 0.1, h2 = 0.2, Dominant 

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.07 (1.14) 1.07 (0.02) -0.42 (0.46) 

Peng’s Conditional MLEs -0.51 (8.76) 1.04 (0.65) 0.26 (0.05) 

Shin RM -0.07 (0.03) 1.14 (0.07) 0.26 (0.05) 

Shin CA -0.10 (0.02) 1.08 (0.01) 0.26 (0.05) 

Shin Nu -0.92 (15.62) 1.56 (3.93) 0.26 (0.05) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.06 (1.14) 1.08 (0.01) -0.42 (0.45) 

Peng’s Conditional MLEs -0.26 (0.35) 0.98 (0.03) 0.25 (0.02) 

Shin RM -0.07 (0.02) 1.14 (0.04) 0.25 (0.02) 

Shin CA -0.10 (0.02) 1.08 (0.01) 0.25 (0.02) 

Shin Nu -0.49 (6.76) 1.34 (1.81) 0.25 (0.02) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.07 (1.14) 1.07 (0.01) -0.41 (0.44) 

Peng’s Conditional MLEs -0.19 (0.11) 0.96 (0.01) 0.26 (0.01) 

Shin RM -0.08 (0.01) 1.15 (0.03) 0.26 (0.01) 

Shin CA -0.10 (0.01) 1.08 (0.01) 0.26 (0.01) 

Shin Nu -0.17 (2.38) 1.20 (0.86) 0.26 (0.01) 

 

f. Model 6: p = 0.1, h2 = 0.4, Dominant 

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.13 (1.27) 1.18 (0.05) -0.36 (0.38) 

Peng’s Conditional MLEs -0.18 (2.87) 1.19 (0.44) 0.18 (0.06) 

Shin RM -0.09 (0.03) 1.24 (0.11) 0.18 (0.06) 

Shin CA -0.25 (0.08) 1.20 (0.05) 0.18 (0.06) 

Shin Nu 0.76 (2.16) 0.84 (0.48) 0.18 (0.06) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.13 (1.27) 1.17 (0.04) -0.36 (0.38) 

Peng’s Conditional MLEs 0.00 (0.17) 1.12 (0.03) 0.18 (0.03) 

Shin RM -0.10 (0.02) 1.26 (0.09) 0.18 (0.03) 

Shin CA -0.25 (0.07) 1.20 (0.04) 0.18 (0.03) 

Shin Nu 0.84 (1.02) 0.80 (0.14) 0.18 (0.03) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.13 (1.27) 1.18 (0.03) -0.36 (0.38) 

Peng’s Conditional MLEs 0.04 (0.06) 1.10 (0.02) 0.18 (0.02) 

Shin RM -0.10 (0.01) 1.25 (0.07) 0.18 (0.02) 

Shin CA -0.25 (0.06) 1.20 (0.04) 0.18 (0.02) 

Shin Nu 0.92 (0.93) 0.75 (0.09) 0.18 (0.02) 
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g. Model 7: p = 0.01, h2 = 0.2, Dominant 

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.35) 1.66 (0.47) -0.13 (0.15) 

Peng’s Conditional MLEs -6.18 (421.07) 3.63 (75.7) 0.56 (0.14) 

Shin RM -1.30 (1.82) 3.52 (7.06) 0.56 (0.14) 

Shin CA -0.73 (0.59) 1.56 (0.34) 0.56 (0.14) 

Shin Nu -32.61 (1135.99) 24.46 (612.17) 0.56 (0.14) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.36) 1.66 (0.45) -0.12 (0.14) 

Peng’s Conditional MLEs -2.09 (10.58) 1.99 (2.6) 0.55 (0.11) 

Shin RM -1.35 (1.87) 3.59 (7.05) 0.55 (0.11) 

Shin CA -0.74 (0.58) 1.57 (0.34) 0.55 (0.11) 

Shin Nu -33.56 (1172.47) 25.02 (614.26) 0.55 (0.11) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.16 (1.35) 1.66 (0.44) -0.11 (0.13) 

Peng’s Conditional MLEs -1.76 (3.74) 1.84 (0.83) 0.55 (0.1) 

Shin RM -1.36 (1.86) 3.59 (6.86) 0.55 (0.1) 

Shin CA -0.74 (0.56) 1.57 (0.33) 0.55 (0.1) 

Shin Nu -33.25 (1147.46) 24.63 (585.14) 0.55 (0.1) 

 

h. Model 8: p = 0.01, h2 = 0.4, Dominant 

True Values 𝛍 = 𝟎. 𝟎 𝛔𝟐 = 𝟏. 𝟎 𝛒 = 𝟎. 𝟐𝟓 

    

Sample Size=100 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.44 (2.08) 3.20 (4.98) 0.00 (0.07) 

Peng’s Conditional MLEs -2.47 (49.97) 3.24 (28.2) 0.52 (0.09) 

Shin RM -3.47 (12.14) 11.34 (109.18) 0.52 (0.09) 

Shin CA -2.20 (4.95) 2.69 (2.92) 0.52 (0.09) 

Shin Nu -56.6 (3346.67) 69.76 (5157.91) 0.52 (0.09) 

    

Sample Size=200 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.44 (2.08) 3.21 (4.93) 0.00 (0.06) 

Peng’s Conditional MLEs -1.81 (4.18) 2.87 (4.07) 0.51 (0.08) 

Shin RM -3.48 (12.16) 11.35 (108.23) 0.51 (0.08) 

Shin CA -2.20 (4.88) 2.69 (2.88) 0.51 (0.08) 

Shin Nu -56.93 (3358.31) 69.47 (4961.45) 0.51 (0.08) 

    

Sample Size=500 μ   (MSE) σ 2    (MSE) ρ   (MSE) 

Sample Moments 1.44 (2.08) 3.21 (4.92) 0.00 (0.06) 

Peng’s Conditional MLEs -1.64 (2.94) 2.77 (3.29) 0.51 (0.07) 

Shin RM -3.50 (12.29) 11.44 (109.51) 0.51 (0.07) 

Shin CA -2.21 (4.91) 2.70 (2.89) 0.51 (0.07) 

Shin Nu -57.7 (3432.47) 70.29 (4993.07) 0.51 (0.07) 
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Figure 4.5 presents the additive models with an allele frequency of 0.1. When true 

parameter values, Peng’s CMLEs, Shin RM, and Shin CA values are used, three methods 

(S & P, Cuenco, and Xu) work better than the other two (Original H & E and T & S),  as 

seen in Figure 4.5.a and 4.5.b. When the sample moments are used, the original H & E 

works better than S & P and Cuenco. With the Shin Nu estimator, the original H & E 

method works better than the Cuenco method. Among the best three methods (Xu, S & P, 

and Cuenco), the Cuenco method is more sensitive than the others to the biased 

parameter values used, such as sample moments and Shin Nu estimates. Overall, the T & 

S method shows the least power regardless of estimating methods. Thus this one was 

dropped from further study. Also, the original H & E method will not be considered in 

our evaluation study because it was insensitive to the estimating methods. Figure 4.5 also 

shows that power increases, as heritability increases from 0.2 to 0.4 (Figure 4.5.b). Most 

model-free methods (except T & S) have power close to 0.8, even with sample sizes of 

100 if one of the three estimators (Peng’s CMLEs, Shin RM and Shin CA) or the true 

parameter values are used.  

Figures 4.5.c and 4.5.d show power under Models 3 and 4 that is greater than that 

of Models 1 and 2, respectively, when allele frequency is reduced from 0.1 to 0.01. The 

increase in heritability from 0.2 to 0.4 also results in greater power. In these rare allele 

frequency models, the Xu, S & P, and Original H & E methods work better than the other 

methods. The Cuenco method does not work well when the Shin Nu, Shin RM, and Shin 

CA estimators are used.   

Based on Figures 4.5.e, f, g and h, we chose to use the Xu, S & P, and Cuenco 

methods, in our evaluation of the effects of different estimators on power under dominant 
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models. The reason that the Xu, S & P, and Cuenco methods are chosen is because T & S 

shows the lowest power, and the original H & E is not affected by the trait parameter 

values used, even though the original H & E method is one of the estimators giving 

greater power, especially with very rare frequencies. 
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Figure 4.5. Comparison of Model-Free Methods using Five Different Estimators as well as True 

Parameter Values, for Truncate Samples under Models 1-8 (1000 Replicates, Sample Size=100, 

200 and 500). Power is calculated for α = 0.0001, as the proportion of replicates having a LOD 

score greater than 3.0 out of 1000 replicates. 

a. Model 1: p = 0.1, h2 = 0.2, Additive 

 

 

b. Model 2 : p = 0.1, h2 = 0.4, Additive 
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c. Model 3: p = 0.01, h2 = 0.2, Additive 

 

 

d. Model 4: p = 0.01, h2 = 0.4, Additive 

 

  



56 
 

e. Model 5: p = 0.1, h2 = 0.2, Dominant 

 

 

f. Model 6: p = 0.1, h2 = 0.4, Dominant 
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g. Model 7: p = 0.01, h2 = 0.2, Dominant 

 

 

h. Model 8: p = 0.01, h2 = 0.4, Dominant 
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We now compare the five estimators on the Xu, S & P, and Cuenco model-free 

linkage analysis methods. As seen in Figure 4.6, power using sample moments is lower 

than power with other estimators under the models with an allele frequency of 0.1 

(Models 1, 2, 5, and 6 are shown in Figures 4.6.a, b, e, and f, respectively) except for 

application of Cuenco’s method with a sample size of 500 where sample moments work 

better than Shin-Nu. Under the rare frequency models (Models 3, 4, 7 and 8) the Shin Nu 

estimator has less power than the other estimators. This is particularly the case for the 

Cuenco method. The other estimators (Peng’s CMLEs, Shin RM, and Shin CA) work 

very well under all the models considered, especially with sample sizes greater than 200, 

except when the Shin RM estimator was applied to the Cuenco method under Models 4 

and 8. One should note that the sample moments work as well as the true parameter 

values under the rare frequency models. The numerical values shown in Figure 4.6 are 

shown in Appendix B.  

In order to further investigate differences among the estimating approaches, we 

performed a paired t-test for LOD scores and a McNemar’s test for the significance of 

changes in the LOD > 3.0 between Peng’s CMLEs and each of our two estimators (Shin 

RM and Shin CA). The results show that our estimators give greater power than Peng’s 

estimator for Xu’s method, under all models except Model 1 with a sample size of 500 

and Model 3 with a sample size of 200. Also our estimators give greater LODs for Xu’s 

method, except for Models 2 and 6 with sample sizes of 500, and Models 4 and 8. 

However, if the sample size equals 500 or if the model is based on a rare allele frequency, 

the power of all three methods (Xu, S & P, and Cuenco) reaches almost 100%, except 
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when the Shin RM estimator is applied to Cuenco’s method. The details are shown in 

Appendices C and D.   
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Figure 4.6. Comparison of Five Different Trait Parameter Estimators as well as True Parameter 

Values on Three Model-Free Methods, for Truncate Samples under Models 1-8 (1000 Replicates, 

Sample Size=100, 200 and 500). Power is calculated for α = 0.0001. 

a. Model 1: p = 0.1, h2 = 0.2, Additive 

 

b. Model 2: p = 0.1, h2 = 0.4, Additive 

 

c. Model 3: p = 0.01, h2 = 0.2, Additive 

 

d. Model 4: p = 0.01, h2 = 0.4, Additive 
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e. Model 5: p = 0.1, h2 = 0.2, Dominant 

 

f. Model 6: p = 0.1, h2 = 0.4, Dominant 

 

g. Model 7: p = 0.01, h2 = 0.2, Dominant 

 

h. Model 8: p = 0.01, h2 = 0.4, Dominant 
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Chapter 5 Discussion 

 

 

We carried out a study of the power of model-free linkage analysis methods in 

truncate samples using three different estimators of trait parameter values that were 

derived under the assumption of normality. The simulation studies by Cuenco et al. (2003) 

first showed that selected samples are more affected than random samples by mis-

specification of trait parameter values. The few additional studies on this topic were 

limited to the study of only one linkage analysis method with two estimators (Peng and 

Siegmund, 2006), or to the study of several linkage analysis methods with randomly 

chosen parameter values (Cuenco et al., 2003; Bhattacharjee et al., 2008). Ironically, 

Cuenco et al. (2003) showed that the one method considered by Peng and Siegmund was 

one of the weakest in power. Thus, we applied Peng’s estimator to three different linkage 

analysis methods (especially, more powerful ones) and we also developed three new 

estimators that can be applied to model-free linkage analysis methods for truncate 

samples.  

In our studies, Xu, S & P, and Cuenco’s linkage methods gave greater power than 

T & S, a finding that is consistent with the results of other researchers (Cuenco et al. 

2003). Even though comparing the power of different model-free methods was not the 

primary focus of this study, our results recommended using S & P’s method with Peng’s 

CMLEs for most studies, and the original H & E for rare allele frequency model.  

Cuenco et al. (2003) noted that Xu’s method may be the most robust except in the 

case of selected samples. However, we showed that several of our estimators (Shin RM 
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or Shin CA) or Peng’s CMLEs retain the robustness and the power of Xu’s method, even 

for selected samples. In most cases, two of our suggested estimators give greater power 

(and higher LOD scores) for Xu’s method than Peng’s CMLEs. The reason that our 

estimators have more power is that our estimators yield better mean estimates and Xu’s 

test statistic requires only the trait mean, not the trait variance or trait sibpair correlation.  

However, when S & P’s and Cuenco’s methods are used, rather than Xu et al’s, 

Peng’s CMLEs have greater power than our estimators. As mentioned above, our 

estimators give better mean estimates than Peng’s CMLEs, and all of the estimators give 

the same correlation estimates. Thus, the variance estimator is the factor that could 

account for the differences in power of analyses based our estimators vs. Peng’s 

estimators. Cuenco et al. (2003) and Bhattacharjee et al. (2008) emphasized the 

sensitivity of power to misspecified mean and correlation. However, our results show that 

the trait variance estimator is as important as the trait mean estimator and the correlation 

estimator for maximizing power to misspecified mean and correlation.  

Overall, S & P’s method seems to be more powerful than Xu and Cuenco’s 

methods and Xu’s method seems more robust to the estimators used (even with sample 

moments and Shin Nu). One should note that our estimators are derived from a truncated 

likelihood function, assuming the normal distribution and a known truncation percentile. 

Therefore, if information on the truncation scheme is limited to knowing just the 

truncation value, we suggest the use of S & P’s method with Peng’s CMLEs.  

To our knowledge, rare allele frequency models (p = 0.01) have not been 

considered by other researchers. These models may be unrealistic, since the required 
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spacing between trait distributions would have to be as large as 5 SD units (with an 

additive model) to result in a heritability of 0.2 or more. In a future study, an allele 

frequency of 0.05 may result in a more realistic effect size for a rare allele frequency 

model. Under rare frequency models, the power is great no matter what estimators are 

used, but the estimates are very biased. Surprisingly, sample moments give the best 

estimates and the greatest power for Xu, S & P, and Cuenco’s methods. One should note 

that two of our estimators did not perform well when they are applied to Cuenco’s 

method. We suggest that the major reason for the uniformly high power under rare allele 

frequency models, is that the greater spacing between trait distributions results in larger 

genotype variance and less overlap in the trait distributions of individuals with different 

genotypes. For rare allele frequency models, the original H & E method is the most 

robust and is essentially as powerful as other methods. 

A very important issue to keep in mind is that all linkage methods, except for the 

original H & E, are derived under the assumption of a single normal distribution of a 

quantitative trait. However, by definition, a major quantitative trait locus will always 

generate a mixture distribution. When we treat the mixture of normal as a single normal, 

we will invariably have biased estimates for trait parameter values, especially in truncate 

samples.  

Bhatttacharjee et al. (2008) examined the effects of including higher moments 

(skewness and kurtosis) on the power of linkage methods. They concluded that 

incorporating higher moments results in more power than ignoring higher moments, only 

under highly non-normal distributions.  
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A logical next step that might be more successful for truncate sampling at a 

known percentile, would be to simultaneously consider the “correct” likelihood; 

specifically either a two or three component mixture of normals. Recently, estimation of 

parameter values for the mixture models that result in the case of a major gene has been 

studied by Gianola et al. (2007). However, we need to be aware that in doing so we are 

incorporating genetic parameter values and thus the methods are no longer gene model-

free.   
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Appendix A. The constant used in transformation, c, is derived as follows 

 
Cov Z1

′ , Z2
′  =

Cov(Z1, Z2 + cZ1)

 1 + c2 + 2cρg

=
ρg + c

 1 + c2 + 2cρg

≡ ρ. 
(A.1)  

 
ρg + c = ρ 1 + c2 + 2cρg  (A.2)  

  ρg + c 
2

ρ2
= 1 + c2 + 2cρg =  ρg + c 

2
+  1 − ρg

2  (A.3)  

 
 

1

ρ2
− 1  ρg + c 

2
= 1 − ρg
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ρg + c =  
1 − ρg

2

1
ρ2 − 1
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c =  
1 − ρg

2

1
ρ2 − 1
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Appendix B. Power of Five Model-Free Methods with Estimators, for Truncate Samples under 

Models 1-8 (1000 Replicates, Sample Size=100, 200 and 500, α = 0.0001). Margin of Error at 

95% Confidence ≈ 0.03.  

a. Additive Models 

 Model 1 Model 2 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   True Values 0.17 0.22 0.16 0.96 0.98 0.96 

   Peng’s CMLEs 0.14 0.20 0.14 0.91 0.97 0.94 

   Shin RM 0.17 0.18 0.09 0.95 0.96 0.78 

   Shin CA 0.16 0.18 0.10 0.95 0.96 0.78 

   Shin Nu 0.13 0.16 0.06 0.84 0.93 0.56 

   Sample Moments 0.14 0.04 0.03 0.67 0.28 0.24 

Sample Size=200       

   True Values 0.51 0.61 0.59 1.00 1.00 1.00 

   Peng’s CMLEs 0.45 0.59 0.54 1.00 1.00 1.00 

   Shin RM 0.49 0.57 0.47 1.00 1.00 0.98 

   Shin CA 0.49 0.57 0.48 1.00 1.00 0.99 

   Shin Nu 0.44 0.54 0.29 0.99 1.00 0.72 

   Sample Moments 0.40 0.14 0.12 0.93 0.72 0.71 

Sample Size=500       

   True Values 0.99 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 0.96 0.99 0.99 1.00 1.00 1.00 

   Shin RM 0.98 0.99 0.99 1.00 1.00 1.00 

   Shin CA 0.98 0.99 0.99 1.00 1.00 1.00 

   Shin Nu 0.94 0.99 0.75 1.00 1.00 0.88 

   Sample Moments 0.92 0.52 0.51 1.00 1.00 1.00 

 Model 3 Model 4 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   True Values 0.91 0.91 0.89 1.00 1.00 1.00 

   Peng’s CMLEs 0.88 0.86 0.80 1.00 1.00 1.00 

   Shin RM 0.89 0.82 0.57 1.00 0.97 0.48 

   Shin CA 0.90 0.84 0.71 1.00 0.99 0.89 

   Shin Nu 0.87 0.37 0.01 1.00 0.43 0.00 

   Sample Moments 0.95 0.91 0.90 1.00 1.00 1.00 

Sample Size=200       

   True Values 0.99 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 0.99 0.99 0.99 1.00 1.00 1.00 

   Shin RM 0.99 0.99 0.87 1.00 1.00 0.69 

   Shin CA 0.99 0.99 0.97 1.00 1.00 0.98 

   Shin Nu 0.99 0.58 0.00 1.00 0.66 0.00 

   Sample Moments 1.00 0.99 0.99 1.00 1.00 1.00 

Sample Size=500       

   True Values 1.00 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin RM 1.00 1.00 1.00 1.00 1.00 0.95 

   Shin CA 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin Nu 1.00 0.92 0.00 1.00 0.96 0.00 

   Sample Moments 1.00 1.00 1.00 1.00 1.00 1.00 
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b. Dominant Models 

 Model 5 Model 6 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   True Values 0.21 0.24 0.18 0.99 1.00 1.00 

   Peng’s CMLEs 0.17 0.23 0.16 0.96 0.99 0.98 

   Shin RM 0.21 0.21 0.13 0.99 0.99 0.86 

   Shin CA 0.20 0.21 0.13 0.98 0.99 0.80 

   Shin Nu 0.14 0.19 0.06 0.63 0.91 0.78 

   Sample Moments 0.10 0.01 0.01 0.64 0.22 0.19 

Sample Size=200       

   True Values 0.64 0.71 0.68 1.00 1.00 1.00 

   Peng’s CMLEs 0.58 0.69 0.65 1.00 1.00 1.00 

   Shin RM 0.62 0.68 0.60 1.00 1.00 1.00 

   Shin CA 0.62 0.68 0.60 1.00 1.00 0.99 

   Shin Nu 0.52 0.66 0.42 0.85 1.00 0.98 

   Sample Moments 0.32 0.05 0.05 0.94 0.61 0.61 

Sample Size=500       

   True Values 1.00 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin RM 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin CA 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin Nu 0.99 1.00 0.91 0.99 1.00 1.00 

   Sample Moments 0.89 0.33 0.32 1.00 0.99 0.99 

 Model 7 Model 8 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   True Values 0.91 0.91 0.91 1.00 1.00 1.00 

   Peng’s CMLEs 0.87 0.84 0.79 1.00 1.00 1.00 

   Shin RM 0.89 0.80 0.54 1.00 0.98 0.49 

   Shin CA 0.89 0.83 0.68 1.00 0.99 0.87 

   Shin Nu 0.86 0.37 0.01 1.00 0.43 0.00 

   Sample Moments 0.96 0.92 0.91 1.00 1.00 1.00 

Sample Size=200       

   True Values 1.00 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 1.00 1.00 0.99 1.00 1.00 1.00 

   Shin RM 1.00 0.99 0.90 1.00 1.00 0.66 

   Shin CA 1.00 0.99 0.98 1.00 1.00 0.98 

   Shin Nu 1.00 0.61 0.00 1.00 0.65 0.00 

   Sample Moments 1.00 1.00 1.00 1.00 1.00 1.00 

Sample Size=500       

   True Values 1.00 1.00 1.00 1.00 1.00 1.00 

   Peng’s CMLEs 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin RM 1.00 1.00 1.00 1.00 1.00 0.94 

   Shin CA 1.00 1.00 1.00 1.00 1.00 1.00 

   Shin Nu 1.00 0.91 0.00 1.00 0.96 0.00 

   Sample Moments 1.00 1.00 1.00 1.00 1.00 1.00 
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Appendix C. P-value of McNemar’s test for the significance of changes in the LOD > 3 for 

the Three Model-Free Methods with Peng’s CMLEs and our estimators, for Truncate Samples 

under Models 1-8 (1000 Replicates, Sample Size=100, 200 and 500) When there is significant 

changes in the LOD > 3 for linkage methods with Peng’s CMLEs and with our estimators, the p-

value is marked in bold (significance level=0.05) 

a. Additive Models 

 Model 1 Model 2 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM < 0.001 < 0.001 < 0.001 < 0.001 0.11 < 0.001 

   CMLEs vs. Shin CA < 0.001 < 0.001 < 0.001 < 0.001 0.11 < 0.001 

Sample Size=200       

   CMLEs vs. Shin RM < 0.001 < 0.001 < 0.001 NA NA NA 

   CMLEs vs. Shin CA < 0.001 < 0.001 < 0.001 NA NA NA 

Sample Size=500       

   CMLEs vs. Shin RM < 0.001 1 0.34 NA NA NA 

   CMLEs vs. Shin CA < 0.001 1 1 NA NA NA 

 Model 3 Model 4 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM     0.002 < 0.001 < 0.001 NA < 0.001 < 0.001 

   CMLEs vs. Shin CA < 0.001      0.002 < 0.001 NA    0.013 < 0.001 

Sample Size=200       

   CMLEs vs. Shin RM 1  0.07 < 0.001 NA NA NA 

   CMLEs vs. Shin CA 1  0.48 < 0.001 NA NA NA 

Sample Size=500       

   CMLEs vs. Shin RM NA NA NA NA NA NA 

   CMLEs vs. Shin CA NA NA NA NA NA NA 
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 b. Dominant Models 

 Model 5 Model 6 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM < 0.001 < 0.001 < 0.001 < 0.001 0.29 < 0.001 

   CMLEs vs. Shin CA < 0.001 < 0.001 < 0.001 < 0.001 0.45 < 0.001 

Sample Size=200       

   CMLEs vs. Shin RM < 0.001 0.044 < 0.001 NA NA NA 

   CMLEs vs. Shin CA < 0.001 0.022 < 0.001 NA NA NA 

Sample Size=500       

   CMLEs vs. Shin RM 0.25 NA NA NA NA NA 

   CMLEs vs. Shin CA 0.25 NA NA NA NA NA 

 Model 7 Model 8 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM  < 0.001 < 0.001 < 0.001 NA NA < 0.001 

   CMLEs vs. Shin CA < 0.001 0.025 < 0.001 NA NA < 0.001 

Sample Size=200       

   CMLEs vs. Shin RM NA 0.04 < 0.001 NA NA NA 

   CMLEs vs. Shin CA NA 0.13 0.016 NA NA NA 

Sample Size=500       

   CMLEs vs. Shin RM NA NA NA NA NA NA 

   CMLEs vs. Shin CA NA NA NA NA NA NA 
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Appendix D. 95% Confidence Interval for the LOD differences: (LOD with Peng’s CMLEs) – 

(LOD with our estimators) for the Three Model-Free Methods (Paired t-test). The limits of 

confidence interval are marked in bold, when they are negative, i.e. when our estimator give 

higher power than Peng’s CMLEs. The limits of confidence interval are colored with green, when 

the interval includes zero, i.e. when there is no significant difference in LODs with our estimators 

and those with Peng’s CMLEs. Truncate Samples Under Models 1-4 (1000 Replicates, Sample 

Size=100, 200 and 500) 

a. Additive Models 

 Model 1 Model 2 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM -0.16, -0.10 0.06, 0.08 0.22, 0.29 -0.36, -0.25 0.26, 0.32 0.89, 1.05 

   CMLEs vs. Shin CA -0.16, -0.10 0.06, 0.08 0.21, 0.27 -0.32, -0.22 0.25, 0.32 0.85, 1.02 

Sample Size=200       

   CMLEs vs. Shin RM -0.21, -0.15 0.07, 0.10 0.23, 0.31 -0.26, -0.15 0.34, 0.42 1.43, 1.68 

   CMLEs vs. Shin CA -0.21, -0.15 0.07, 0.09 0.20, 0.28 -0.24, -0.13 0.33, 0.41 1.25, 1.49 

Sample Size=500       

   CMLEs vs. Shin RM -0.38, -0.30 0.10, 0.13 0.26, 0.35 0.05, 0.17 0.35, 0.44 2.42, 2.84 

   CMLEs vs. Shin CA -0.41, -0.34 0.10, 0.13 0.22, 0.32 0.05, 0.17 0.34, 0.43 1.76, 2.14 

 Model 3 Model 4 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM  -0.32, -0.26 0.46, 0.58 1.26, 1.45 1.16, 1.33 5.63, 6.48 7.57, 8.02 

   CMLEs vs. Shin CA -0.22, -0.20 0.20, 0.29 0.43, 0.57 0.36, 0.52 3.38, 3.93 2.82, 3.20 

Sample Size=200       

   CMLEs vs. Shin RM -0.14, -0.06 0.73, 0.91 2.24, 2.61 2.39, 2.60 9.78, 11.13 16.68, 17.36 

   CMLEs vs. Shin CA -0.59, -0.50 0.23, 0.35 0.46, 0.68 0.83, 1.03 4.86, 5.67 4.24, 4.88 

Sample Size=500       

   CMLEs vs. Shin RM -0.41, -0.30 0.60, 0.77 3.51, 4.11 6.14, 6.49 22.45, 24.92 45.34, 46.45 

   CMLEs vs. Shin CA -1.58, -1.45 -0.17, -0.01 -0.49, -0.17 2.31, 2.62 8.17, 9.46 8.36, 9.50 
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b. Dominant Models 

 Model 5 Model 6 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM -0.21, -0.14 0.04, 0.06 0.18, 0.25 -0.42, -0.25 0.11, 0.18 0.87, 1.03 

   CMLEs vs. Shin CA -0.19, -0.12 0.04, 0.06 0.18, 0.25 -0.06, 0.11 0.08, 0.15 1.22, 1.41 

Sample Size=200       

   CMLEs vs. Shin RM -0.26, -0.18 0.07, 0.09 0.25, 0.33 -0.09, 0.13 0.14, 0.21 1.50, 1.76 

   CMLEs vs. Shin CA -0.22, -0.15 0.07, 0.09 0.25, 0.33 0.56, 0.77 0.09, 0.17 2.19, 2.50 

Sample Size=500       

   CMLEs vs. Shin RM -0.43, -0.32 0.09, 0.11 0.27, 0.35 0.92, 1.24 0.02, 0.11 2.99, 3.46 

   CMLEs vs. Shin CA -0.38, -0.27 0.08, 0.11 0.25, 0.34 2.54, 2.87 -0.11, 0.00 5.04, 5.62 

 Model 7 Model 8 

 Xu S & P Cuenco Xu S & P Cuenco 

Sample Size=100       

   CMLEs vs. Shin RM  -0.13, -0.07 0.46, 0.58 1.26, 1.47 1.15, 1.31 5.62, 6.48 7.58, 8.03 

   CMLEs vs. Shin CA -0.35, -0.28 0.21, 0.30 0.48, 0.63 0.31, 0.48 3.38, 3.93 2.79, 3.18 

Sample Size=200       

   CMLEs vs. Shin RM -0.17, -0.10 0.65, 0.81 2.12, 2.47 2.48, 2.69 10.63, 12.03 16.91, 17.61 

   CMLEs vs. Shin CA -0.65, -0.57 0.17, 0.28 0.37, 0.58 0.86, 1.07 5.30, 6.15 4.60, 5.26 

Sample Size=500       

   CMLEs vs. Shin RM -0.37, -0.25 0.66, 0.86 3.79, 4.43 6.64, 6.95 25.01, 27.68 46.48, 47.56 

   CMLEs vs. Shin CA -1.55, -1.43 -0.17, -0.01 -0.46, -0.15 2.65, 2.97 9.63, 11.12 9.47, 10.70 
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