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Abstract of the Dissertation

Event reconstruction and energy calibration
using cosmic muons for the T2K pizero
detector.

by
Le Trung
Doctor of Philosophy
in
Physics
Stony Brook University

2009

Neutrino oscillations were discovered in atmospheric and solar
neutrinos and have been confirmed by experiments using neutri-
nos from accelerators and nuclear reactors. It has been found that
there are large mixing angles in the v, — v, and v, — v, oscilla-
tions. The third mixing angle 6,3, which parameterizes the mixing
between the first and the third generation, is constrained to be
small by the CHOOZ reactor experiment. The T2K experiment
is a long baseline neutrino oscillation experiment that uses the in-
tense muon neutrino beam produced at J-PARC (Tokai, Japan)
and Super-Kamiokande detector at 295 km as the far detector to
measure the angle 63 using the v, appearance channel. One dom-
inant background to the v, appearance search is the single 7° from
neutral-current interactions. This background will be measured
at the near site using the 7% detector which was built at Stony
Brook. The 7" measurement requires a high rejection efficiency for
backgrounds from charged-current neutrino interactions. We have
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developed an event reconstruction specialized to reject the charged-
current backgrounds while keeping the signal 7°. This event recon-
struction was also used during the detector design phase to study
its performance. Finally, we have done the energy calibration of
the detector using cosmic ray muons.
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Chapter 1

Introduction

Elementary particles are matter constituents that do not have any in-
ner structure at currently accessible energies. The interactions among these
matter constituents are carried out by interaction carriers. The matter con-
stituents are categorized into quarks and leptons. Charged leptons are capa-
ble of electro-weak interactions while quarks further have strong interactions.
Neutral leptons are named neutrinos and can only participate in weak inter-
actions. There are three light active neutrinos, (v, v,,v,), from the invisible
width of Z decays[1], each with the flavor given by the accompanying charged
lepton in weak decays. The interactions of elementary particles are completely
determined by the Standard Model of particle physics. In the Standard Model,
neutrinos are considered massless. However, recently there is strong evidence
from neutrino oscillation experiments that neutrinos are massive and there are
at least three distinct masses. This would require extension of the Standard
Model. In the following, we will give a brief overview of neutrino physics which
includes the measurements of the neutrino absolute mass scale, neutrinoless
double beta decay, and neutrino oscillations.

1.1 Introduction to neutrino physics

There are many different experiments designed to measure different proper-
ties of neutrinos. Absolute value of neutrino masses can be measured directly
from kinematic analysis of weak decays. Specifically, the most sensitive method
for measuring the electron antineutrino mass is from studying the endpoint of
the accompanying electron energy spectrum in tritium beta decay:

*He —° He + e~ + 1, (1.1)

The spectrum for zero neutrino mass ends in a straight line while in the case
of m, # 0 this spectrum has a horizontal component. There are various limits



reported by different groups(2, 3]. The best limit on electron antineutrino mass
currently available (m,, < 2.8 eV/c?) has been reported by the Mainz groupl[4].
There is plan to measure this mass with one order of magnitude improvement
of precision and sensitive to m,, of 0.2 eV/c?[5]. Tt should be mentioned that
because of neutrino mixing, the electron antineutrino mass obtained above is
actually an effective mass. It is the average of all mass eigenstates contributing
to the neutrino. Their contributing fractions are given by the mixing matrix
elements |UZ|[6]
my, = Y |UZ|m;. (1.2)
7
The limit on the muon neutrino mass can be established from the kinematic
analysis of the decay 7+ — ™ +p,,. The measurement of the muon momentum
when the pion beam stops (or pion decays at rest) in the target allows to
calculate the muon neutrino mass

2 _ 2 2 /
m,, =mg +m, — 2mg\/mg + p;, (1.3)

The best estimate of the muon neutrino mass is m,,, < 160 eV/c*[7].

Absolute values of neutrino masses can also be measured indirectly. An
outstanding property of neutrinos still to be determined is if they are Majorana
particles, i.e., not distinguishable from their antiparticles. This question can be
answered by the so-called neutrinoless double beta decay (0v2(3). In a number
of even-even nuclei, the beta decay is energetically forbidden while the double
beta decay is energetically allowed. The double beta decays of these nuclei
produce two electrons and two electron anti-neutrinos (2v2(3). However, if
neutrinos are Majorana particles, then one neutrino emitted by one transition
can be absorbed in the other transition. In this case, there are only two
electrons and no neutrinos emitted from the decay (0v23). Therefore, this
process also violates lepton number by two units. Because of neutrino mixing,
all three neutrino mass eigenstates can contribute to 0v23 decay. The decay
is sensitive to the effective Majorana mass defined by|§]

E 2
7

This effective mass can be inferred from the measurement of the half-life of
the double-beta process

_ 12 2 2 2 262 2 203
mpgp = = |ci3C19m + C387mae + 57377 (1.4)

[Tlo/yfﬁ]_l = GOV’MOVFm%ﬁ? (15)

where Gy, is the exactly calculable phase factor, Mg, the nuclear transition
matrix element, and mgg the effective Majorana mass.



The experimental signature of 0v2( decay would be a peak in the spectrum
of the energy deposited in the detector by the two electrons at the endpoint
energy determined by the mass differences between the parent and daughter
nuclei. On the other hand, the 2023 decay has a continuous spectrum, ex-
tending to the endpoint energy. It should be emphasized that although the
observation of 0v2(3 decay proves the Majorana mass nature of neutrinos, the
measurement of the effective mass still requires better understanding of the
nuclear matrix element.

Finally, most of the properties of the neutrino mass matrix can be mea-
sured in neutrino oscillation experiments. The concept of neutrino oscillation
was first conceived by Pontecorvo[9]. Tt is the effect of neutrinos changing the
their flavor as a result of propagation. The observation of neutrino oscillation
would imply that neutrinos are massive. The oscillation is characterized the
oscillation probability. A brief overview of neutrino masses, mixings, and ex-
pressions for oscillation probabilities are given in the next section. Extensive
reviews on the theory of neutrino oscillations can be found in the literature.
There are two ways to observe neutrino oscillations. In an appearance exper-
iment, one creates a flux of neutrinos in association with charged leptons of
one flavor and observes charged current reactions giving leptons of a different
flavor. In a disappearance experiment, one creates a flux of neutrinos in asso-
ciation with charged leptons of one flavor and then measures a smaller flux in
the inverse charged-current process.



1.2 Neutrino masses, mixings, and oscillations

In this section we will give an brief overview of the theory of neutrino
masses, mixings, and oscillations. The neutrino masses and mixings will be
discussed. Next we will derive the general probabilities for neutrino oscillation
in vacuum and in a medium with constant density. Finally, we consider in
more detailed the v, — v, appearance probability.

1.2.1 Neutrino masses and mixings

In relativistic field theory, there are two types of fermion mass term that are
Lorentz invariant: Dirac mass and Majorana mass. The Dirac mass connects
the left and right components of the same field while the Majorana mass
connects the left and right components of conjugated fields. As a result, if
neutrinos have Majorana mass, then they are their own anti-particles. In the
standard electroweak theory, neutrinos are massless because of the limited
particle content of the theory. There is no Dirac mass term since there are
only left-handed neutrinos. There cannot be Majorana mass since the theory
possesses a global symmetry corresponding to lepton number conservation.
This symmetry forbids the Majorana mass term which violates the lepton
number by AL = 2. Therefore, any theory which can incorporate neutrino
masses should be beyond the standard electroweak theory. It is well-known
that it is not possible to distinguish between Dirac neutrinos and Majorana
neutrinos in neutrino oscillation experiment in vacuum [10] and matter [11].
In this work, we will consider the oscillation of Dirac neutrinos. Introducing
the right-handed component vz, we obtain the Dirac neutrino mass term of
the form

Lonass = VpM vy + h.c. = ipM vy + he., LU =e p, T, (1.6)

where M? is a 3 x 3 complex matrix. In order to obtain physical states with
definite masses, the mass matrix must be diagonalized. An arbitrary complex
matrix can always be diagonalized by means of a bi-unitary transformation

VMU =m, (1.7)
where V' and U are unitary matrices and



Thus the mass term can be rewritten

Loass = E DiRéikmkukL + h.c = E m;v;rV;L + h.c. ,
i k=123 i=1,2,3
i=1,2,3
Here
Vv, = g Usvi,, l=e,u,T, (1.10)
i=1,2,3

or equivalently,
vy =Uv (1.11)

where vy = (v, v, V) is the flavor basis, and v = (14, 15, v3) is the mass basis.
From (1.9), we see that v; is a field of a neutrino with mass m;. Equation
(1.11) implies that the flavor fields v, present in the standard electroweak
lepton currents are linear combinations of the left-handed components of the
fields of neutrinos with definite masses. The matrix U is called the neutrino
mixing matrix.

The mixing matrix can be parameterized as follows. A general nxn unitary
matrix has n? parameters. Among them %n(n — 2) parameters may be taken
as FEuler angles which is introduced in dealing with rotations in n dimensions.
The remaining parameters are phases. However, (2n — 1) of these phases can
be removed by rephasing the neutrino and charged lepton fields. Therefore,
the number of phases in the mixing matrix is 3(n —1)(n —2). A 3 X 3 mixing
matrix can have three mixing angles and one phase. The mixing matrix can
be written as the product of three “rotation” matrices, where one of them has
a phase :

U = Us3(03)Ur3(613, 0)Ur2(612), (1.12)

where the angles are limited to the ranges 0 < 0;; < 7 and 0 < 4 < 27.
In practice, one usually employs the standard parameterization of the mix-
ing matrix [12, 13]

1 0 0 C13 0 3136_’5 C12 S12 0
U = 0 Co3 S93 0 1 0 —S12 C12 0
0 —S893  Co3 —81367'6 0 C13 0 0 1
—20
C12C13 C13512 e 813
_ 6 19
= —S812C23 — €'°C12813823  C12C23 — €'°512513523 C13523 ) (1-13)

) i6
—€°C12513C23 + S12823 —€°512513C23 — C12523  C13C23



where we have denoted sin6;; = s;; and cos0;; = ¢;;.

We have seen that the neutrino mass term causes neutrino mixing. The
consequence of neutrino mixing is that weak eigenstates are combinations of
mass eigenstates and the compositions are given by the mixing matrix ele-
ments. The mixing matrix can be parameterized by three angle angles and
one phase. In the next section, we will show how neutrino mixing leads to
neutrino oscillations.

1.2.2 Neutrino oscillations in vacuum and matter

It has been shown in the preceding section that neutrino mixing is a direct
consequence of neutrino masses. In this section we will show how neutrino
mixing can lead to neutrino oscillations. It should be emphasized that al-
though any theory which accounts for neutrino masses should be beyond the
standard electroweak theory, it is reasonable to assume that the production
and detection of neutrinos are well described by the theory. Accordingly, neu-
trinos are produced in a specific flavor given by the accompanying lepton. The
neutrino oscillations can be envisioned as follows. Because of neutrino mixing,
a flavor neutrino state produced from weak decays is a linear combination of
mass eigenstates with definite masses. In other words, the production of a
neutrino with a given flavor is equivalent to the production of three neutri-
nos with different masses. During propagation, neutrino with different masses
will develop different phases. These phase differences increase monotonically
with time and travel distance. As a consequence, the probability of finding a
neutrino of a given flavor is a periodic function of the distance between the
source and the detector. This is called neutrino oscillation. In this section we
will consider the quantum-mechanical treatment of neutrino oscillations. First
we will derive the time evolution equation for neutrinos in vacuum, such an
equation completely determines the vacuum propagation of neutrinos. Then
we derive the general expressions for oscillation probabilities.

Consider a system of three neutrinos v = (v, o, v3) with definite masses
having the same momentum p. Let @ = (¢1,19,13) be the corresponding
wave functions. The time evolution of 1 is determined by the Schrodinger-like
equation:

i

W _ g 1.14
Zdt 0% ( )

where for free propagation of neutrinos in vacuum we have

Hoy = By, By = \/p* + m?. (1.15)



We limit ourselves to the ultra-relativistic limit, i.e. p > m;, then we can

approximate
2 2

m
E; ~ 2
e T

It should be emphasized that the appearance of the term proportional to the
unit matrix in the Hamiltonian in the right hand side of (1.14) is equivalent to
changing all neutrino fields by the same phase factor; it leads to no physical
consequences. Therefore, we can always omit such a term in the Hamiltonian.
The time evolution equation becomes:

(1.16)

2.0 0
R
Cf;f sl 0 om0 e (1.17)
0 0 m3

This equation completely determines the vacuum propagation of neutrinos.
Next we are going to find the oscillation probabilities. Let us consider a
neutrino state of a given flavor produced in weak interaction with momentum
p. Such a flavor state is a superposition of states with definite masses:

lv>= Y Uilv>. (1.18)
1=1,2,3

During propagation, different neutrino components will develop different phases.
This difference in phases increases monotonically with time. The flavor state
at the time t after production is

P
| y(t) >= Z Uie 28" | v > . (1.19)
1=1,2,3

Due to the unitarity of the mixing matrix, we can invert (1.18) and express
the mass eigenstates in terms of flavor states

(vi>= > Up|lw >, (1.20)
l'=e,u,
then
|ui(t) >= ) Uiljie wtm, (1.21)

g

The oscillation amplitude from a neutrino of flavor [ to a neutrino of flavor
', A(vy — vp), at the time ¢ after production is

A, — vr) =< vy | ult Z UyUpe 'zt (1.22)



Consequently, the oscillation probability equals

m2—m3
Py — wp) = A — w) P= Y UU;UUpe™ 2 F, (1.23)

1,J
where in the ultra-relativistic limit (¢ ~ 1) L ~ ¢t and L is the distance from

the source. Let us define the oscillation phase as

0ij = G (1.24)

It is noted that the oscillation phase depends on the ratio L/E,, which we will
see later, characterizes neutrino oscillation experiments. Then we can write
the oscillation probability

P(I/l—>Vl/) = E UliUl”;-UﬁiUl/je_zwﬁ

(2]
= > Ul UG Uy (e 9 = 1+1)
(2]
= ow— Y UsUSUSUri(e#5 - 1). (1.25)

i#]
Defining the quantity J!\' = U,;U;U;;,Up;, and writing JY' = ReJ! + idmJY,
one can show that

Tl (e7# — 1) = —2ReJY¥ sin® p;; + ImJ!¥ sin 2. (1.26)

Finally, substituting J! into (1.25) and using (1.26) we obtain the well-known
formula for the neutrino oscillation probabilities

P(yy— ) = 0w — 4> ReJl sin®;; +2>  ImJ sin2¢p;;. (1.27)
i>j 1>]

Some properties of the oscillation probabilities can be obtained immedi-
ately from (1.27):

e Using the unitarity of the mixing matrix, we find from (1.23) that the
total probability of oscillation of a given flavor into neutrinos of all flavors
is unity.

e If all neutrinos are degenerate in masses then P(v; — vp) = &y, that is
no neutrino oscillations.



e If there were no mixing, i.e. U;; = J;;, then we would also have P(v; —
l/l/) = 5ll’-

e The first sum is CP even, and the second sum is CP odd.

Remember that we mentioned that neutrino oscillation experiments can not
distinguish between Majorana and Dirac neutrinos. This is because Majorana
neutrino mixing involves two extra phases, U — Udiag(1, €2, ¢e'3). These
Majorana phases cancel out in the oscillation probabilities, and thus cannot
be probed via neutrino oscillations.

Neutrino oscillations in matter

As a beam of neutrinos traverse a medium, neutrinos can interact with
electrons in the medium. Neutrinos also interact with nucleons, but the cross
section is much smaller than with electrons. However, electron neutrino inter-
acts differently with electrons compared with the other two neutrinos. Specif-
ically, electron neutrino can interact by exchanging either a W or Z boson
while muon neutrino and tau neutrino can interact only by exchanging Z.
The interaction of all three neutrinos by exchanging the Z boson gives rise
to a potential energy term in the Hamiltonian. This potential energy term is
the same for all three neutrino flavors and thus can be absorbed into a global
phase of the neutrino fields. However, the potential energy term of electron
neutrino because of exchanging the W boson cannot be absorbed and hence
has physical consequences. This is called MSW effect[14].

Let us consider the oscillation of three neutrino flavors in matter with
constant density profile. The time evolution equation for neutrino flavor states
1y in matter is given by

Ay
bk A 1.28
the effective Hamiltonian is
1 m? 0 0 A 00
H=5=|U| O m3 0 |U'+| 0 00 : (1.29)
v 0 0 m? 0 0O

Here U = Us3(023)U13(013,0)U12(012) is the mixing matrix (1.13), which ro-
tates from mass basis to flavor basis. The second term arises from the weak
charged current interactions of v, with electrons in matter A = 2V E, and
V =2G e, Where G is the Fermi coupling constant and n, is the electron
density of the medium traversed by the neutrino beam. It is noted that the
matter potential is monotonically increases with electron density and neutrino



energy. The oscillation probabilities in matter can be obtained similarly to
the oscillation probabilities in vacuum:

Py — wp) =0 — 4 ReJll sin®¢ +2) ImJ sin2¢}!,  (1.30)

i>7 i>7
where we have defined
TV = U U, (1.31)
m i — A
oy = A= LL. (1.32)

Here U™ is the mixing matrix in matter, \; are effective neutrino masses in
matter, and A = Am3;. The mixing matrix in matter can be parameterized
similar to that in vacuum. The relationship between the mixing angles in
vacuum and the mixing angles in matter is given in [15]. It is emphasized that
since the Earth medium is CP asymmetric, there is CP violation effect arising
from the neutrino propagation in addition to the intrinsic CP violation effects
from the complex phase in the mixing matrix.

1.2.3 The (v, — v.) appearance channel

Of the oscillation channels whose oscillation probabilities given by (1.27),
the v, — v, appearance channel is of particular interest. First a nearly pure
beam of (anti-)muon neutrinos can be produced from accelerator. Second as
we will see in the following. The full v, — v, oscillation probability is a compli-
cated function of the mixing angles. However, the oscillation probability could
be expanded in terms of the small mass hierarchy parameter o« = Am3, /Am3;.
Neglecting the matter effects, which is a good approximation for the T2K low
energy beam and short baseline, and the CP violation terms, the v, — v,
oscillation probability can be written as[16]

9 Am%QL

1.33
4Ey ( )

P(v, — v,) = sin® g sin® 20,3 sin
where we have kept only the zero-order term of «. It is noticed that the
oscillation amplitude is proportional to the sin®26;3. Measurement of this
oscillation channel will give a direct measurement of the mixing angle #,3. The
oscillation amplitude is also proportional to the atmospheric neutrino mixing
angle 653. In addition, the phase of the oscillation depends on the atmospheric
neutrino mass squared difference, Am3,. Therefore, to measure the mixing
angle 63, it is necessary to make precise measurements of the atmospheric
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neutrino oscillation parameters, (sin® 26,3, Am32,). Since the oscillation phase
is proportional to the ratio L/FE,, for an experiment of a given baseline and
narrow-band neutrino beam, the peak energy is chosen so as to maximize
the oscillation probability. The probability (1.33) is plotted as a function of
the neutrino energy FE, for the T2K baseline (295 km) in Fig. 1.1. The first
oscillation maximum is around the neutrino energy of 0.7 GeV. The following
parameters are used to make the plot. The angle 6,3 is about the C