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Abstract of the Dissertation

Event reconstruction and energy calibration
using cosmic muons for the T2K pizero

detector.

by

Le Trung

Doctor of Philosophy

in

Physics

Stony Brook University

2009

Neutrino oscillations were discovered in atmospheric and solar
neutrinos and have been confirmed by experiments using neutri-
nos from accelerators and nuclear reactors. It has been found that
there are large mixing angles in the νe → νµ and νµ → ντ oscilla-
tions. The third mixing angle θ13, which parameterizes the mixing
between the first and the third generation, is constrained to be
small by the CHOOZ reactor experiment. The T2K experiment
is a long baseline neutrino oscillation experiment that uses the in-
tense muon neutrino beam produced at J-PARC (Tokai, Japan)
and Super-Kamiokande detector at 295 km as the far detector to
measure the angle θ13 using the νe appearance channel. One dom-
inant background to the νe appearance search is the single π0 from
neutral-current interactions. This background will be measured
at the near site using the π0 detector which was built at Stony
Brook. The π0 measurement requires a high rejection efficiency for
backgrounds from charged-current neutrino interactions. We have
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developed an event reconstruction specialized to reject the charged-
current backgrounds while keeping the signal π0. This event recon-
struction was also used during the detector design phase to study
its performance. Finally, we have done the energy calibration of
the detector using cosmic ray muons.
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Chapter 1

Introduction

Elementary particles are matter constituents that do not have any in-
ner structure at currently accessible energies. The interactions among these
matter constituents are carried out by interaction carriers. The matter con-
stituents are categorized into quarks and leptons. Charged leptons are capa-
ble of electro-weak interactions while quarks further have strong interactions.
Neutral leptons are named neutrinos and can only participate in weak inter-
actions. There are three light active neutrinos, (νe, νµ, ντ ), from the invisible
width of Z decays[1], each with the flavor given by the accompanying charged
lepton in weak decays. The interactions of elementary particles are completely
determined by the Standard Model of particle physics. In the Standard Model,
neutrinos are considered massless. However, recently there is strong evidence
from neutrino oscillation experiments that neutrinos are massive and there are
at least three distinct masses. This would require extension of the Standard
Model. In the following, we will give a brief overview of neutrino physics which
includes the measurements of the neutrino absolute mass scale, neutrinoless
double beta decay, and neutrino oscillations.

1.1 Introduction to neutrino physics

There are many different experiments designed to measure different proper-
ties of neutrinos. Absolute value of neutrino masses can be measured directly
from kinematic analysis of weak decays. Specifically, the most sensitive method
for measuring the electron antineutrino mass is from studying the endpoint of
the accompanying electron energy spectrum in tritium beta decay:

3He →3 He + e− + ν̄e (1.1)

The spectrum for zero neutrino mass ends in a straight line while in the case
of mν 6= 0 this spectrum has a horizontal component. There are various limits
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reported by different groups[2, 3]. The best limit on electron antineutrino mass
currently available (mνe

< 2.8 eV/c2) has been reported by the Mainz group[4].
There is plan to measure this mass with one order of magnitude improvement
of precision and sensitive to mνe

of 0.2 eV/c2[5]. It should be mentioned that
because of neutrino mixing, the electron antineutrino mass obtained above is
actually an effective mass. It is the average of all mass eigenstates contributing
to the neutrino. Their contributing fractions are given by the mixing matrix
elements |U2

ei|[6]

m2
νe

=
∑

i

|U2
ei|m2

i . (1.2)

The limit on the muon neutrino mass can be established from the kinematic
analysis of the decay π+ → µ++µν . The measurement of the muon momentum
when the pion beam stops (or pion decays at rest) in the target allows to
calculate the muon neutrino mass

m2
νµ

= m2
π +m2

µ − 2mπ

√

m2
µ + p2

µ (1.3)

The best estimate of the muon neutrino mass is mνµ
< 160 eV/c2[7].

Absolute values of neutrino masses can also be measured indirectly. An
outstanding property of neutrinos still to be determined is if they are Majorana
particles, i.e., not distinguishable from their antiparticles. This question can be
answered by the so-called neutrinoless double beta decay (0ν2β). In a number
of even-even nuclei, the beta decay is energetically forbidden while the double
beta decay is energetically allowed. The double beta decays of these nuclei
produce two electrons and two electron anti-neutrinos (2ν2β). However, if
neutrinos are Majorana particles, then one neutrino emitted by one transition
can be absorbed in the other transition. In this case, there are only two
electrons and no neutrinos emitted from the decay (0ν2β). Therefore, this
process also violates lepton number by two units. Because of neutrino mixing,
all three neutrino mass eigenstates can contribute to 0ν2β decay. The decay
is sensitive to the effective Majorana mass defined by[8]

mββ =

∣

∣

∣

∣

∣

∑

i

U2
eimi

∣

∣

∣

∣

∣

= |c213c212m1 + c213s
2
12m2e

i2φ2 + s2
13e

i2φ3 | (1.4)

This effective mass can be inferred from the measurement of the half-life of
the double-beta process

[T 0ν2β
1/2 ]−1 = G0ν |M0ν |2m2

ββ, (1.5)

where G0ν is the exactly calculable phase factor, M0ν the nuclear transition
matrix element, and mββ the effective Majorana mass.
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The experimental signature of 0ν2β decay would be a peak in the spectrum
of the energy deposited in the detector by the two electrons at the endpoint
energy determined by the mass differences between the parent and daughter
nuclei. On the other hand, the 2ν2β decay has a continuous spectrum, ex-
tending to the endpoint energy. It should be emphasized that although the
observation of 0ν2β decay proves the Majorana mass nature of neutrinos, the
measurement of the effective mass still requires better understanding of the
nuclear matrix element.

Finally, most of the properties of the neutrino mass matrix can be mea-
sured in neutrino oscillation experiments. The concept of neutrino oscillation
was first conceived by Pontecorvo[9]. It is the effect of neutrinos changing the
their flavor as a result of propagation. The observation of neutrino oscillation
would imply that neutrinos are massive. The oscillation is characterized the
oscillation probability. A brief overview of neutrino masses, mixings, and ex-
pressions for oscillation probabilities are given in the next section. Extensive
reviews on the theory of neutrino oscillations can be found in the literature.
There are two ways to observe neutrino oscillations. In an appearance exper-
iment, one creates a flux of neutrinos in association with charged leptons of
one flavor and observes charged current reactions giving leptons of a different
flavor. In a disappearance experiment, one creates a flux of neutrinos in asso-
ciation with charged leptons of one flavor and then measures a smaller flux in
the inverse charged-current process.
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1.2 Neutrino masses, mixings, and oscillations

In this section we will give an brief overview of the theory of neutrino
masses, mixings, and oscillations. The neutrino masses and mixings will be
discussed. Next we will derive the general probabilities for neutrino oscillation
in vacuum and in a medium with constant density. Finally, we consider in
more detailed the νµ → νe appearance probability.

1.2.1 Neutrino masses and mixings

In relativistic field theory, there are two types of fermion mass term that are
Lorentz invariant: Dirac mass and Majorana mass. The Dirac mass connects
the left and right components of the same field while the Majorana mass
connects the left and right components of conjugated fields. As a result, if
neutrinos have Majorana mass, then they are their own anti-particles. In the
standard electroweak theory, neutrinos are massless because of the limited
particle content of the theory. There is no Dirac mass term since there are
only left-handed neutrinos. There cannot be Majorana mass since the theory
possesses a global symmetry corresponding to lepton number conservation.
This symmetry forbids the Majorana mass term which violates the lepton
number by ∆L = 2. Therefore, any theory which can incorporate neutrino
masses should be beyond the standard electroweak theory. It is well-known
that it is not possible to distinguish between Dirac neutrinos and Majorana
neutrinos in neutrino oscillation experiment in vacuum [10] and matter [11].
In this work, we will consider the oscillation of Dirac neutrinos. Introducing
the right-handed component νR, we obtain the Dirac neutrino mass term of
the form

Lmass = ν̄RM
0νL + h.c. = ν̄lRM

0
ll′νl′L + h.c., l, l′ = e, µ, τ, (1.6)

where M0 is a 3 × 3 complex matrix. In order to obtain physical states with
definite masses, the mass matrix must be diagonalized. An arbitrary complex
matrix can always be diagonalized by means of a bi-unitary transformation

V +M0U = m, (1.7)

where V and U are unitary matrices and

mik = mkδik. (1.8)
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Thus the mass term can be rewritten

Lmass =
∑

i,k=1,2,3

ν̄iRδikmkνkL + h.c. =
∑

i=1,2,3

miν̄iRνiL + h.c. ,

=
∑

i=1,2,3

miν̄iνi . (1.9)

Here
νlL =

∑

i=1,2,3

UliνiL, l = e, µ, τ, (1.10)

or equivalently,
νf = Uν (1.11)

where νf = (νe, νµ, ντ ) is the flavor basis, and ν = (ν1, ν2, ν3) is the mass basis.
From (1.9), we see that νi is a field of a neutrino with mass mi. Equation
(1.11) implies that the flavor fields νlL present in the standard electroweak
lepton currents are linear combinations of the left-handed components of the
fields of neutrinos with definite masses. The matrix U is called the neutrino
mixing matrix.

The mixing matrix can be parameterized as follows. A general n×n unitary
matrix has n2 parameters. Among them 1

2
n(n− 2) parameters may be taken

as Euler angles which is introduced in dealing with rotations in n dimensions.
The remaining parameters are phases. However, (2n− 1) of these phases can
be removed by rephasing the neutrino and charged lepton fields. Therefore,
the number of phases in the mixing matrix is 1

2
(n− 1)(n− 2). A 3× 3 mixing

matrix can have three mixing angles and one phase. The mixing matrix can
be written as the product of three “rotation” matrices, where one of them has
a phase :

U = U23(θ23)U13(θ13, δ)U12(θ12), (1.12)

where the angles are limited to the ranges 0 ≤ θij ≤ π
2

and 0 ≤ δ ≤ 2π.
In practice, one usually employs the standard parameterization of the mix-

ing matrix [12, 13]

U =





1 0 0
0 c23 s23

0 −s23 c23









c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13









c12 s12 0
−s12 c12 0

0 0 1





=





c12c13 c13s12 e−iδs13

−s12c23 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

−eiδc12s13c23 + s12s23 −eiδs12s13c23 − c12s23 c13c23



 , (1.13)
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where we have denoted sin θij = sij and cos θij = cij.
We have seen that the neutrino mass term causes neutrino mixing. The

consequence of neutrino mixing is that weak eigenstates are combinations of
mass eigenstates and the compositions are given by the mixing matrix ele-
ments. The mixing matrix can be parameterized by three angle angles and
one phase. In the next section, we will show how neutrino mixing leads to
neutrino oscillations.

1.2.2 Neutrino oscillations in vacuum and matter

It has been shown in the preceding section that neutrino mixing is a direct
consequence of neutrino masses. In this section we will show how neutrino
mixing can lead to neutrino oscillations. It should be emphasized that al-
though any theory which accounts for neutrino masses should be beyond the
standard electroweak theory, it is reasonable to assume that the production
and detection of neutrinos are well described by the theory. Accordingly, neu-
trinos are produced in a specific flavor given by the accompanying lepton. The
neutrino oscillations can be envisioned as follows. Because of neutrino mixing,
a flavor neutrino state produced from weak decays is a linear combination of
mass eigenstates with definite masses. In other words, the production of a
neutrino with a given flavor is equivalent to the production of three neutri-
nos with different masses. During propagation, neutrino with different masses
will develop different phases. These phase differences increase monotonically
with time and travel distance. As a consequence, the probability of finding a
neutrino of a given flavor is a periodic function of the distance between the
source and the detector. This is called neutrino oscillation. In this section we
will consider the quantum-mechanical treatment of neutrino oscillations. First
we will derive the time evolution equation for neutrinos in vacuum, such an
equation completely determines the vacuum propagation of neutrinos. Then
we derive the general expressions for oscillation probabilities.

Consider a system of three neutrinos ν = (ν1, ν2, ν3) with definite masses
having the same momentum p. Let ψ = (ψ1, ψ2, ψ3) be the corresponding
wave functions. The time evolution of ψ is determined by the Schrodinger-like
equation:

i
dψ

dt
= H0ψ, (1.14)

where for free propagation of neutrinos in vacuum we have

H0ψi = Eiψi, Ei =
√

p2 +m2
i . (1.15)
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We limit ourselves to the ultra-relativistic limit, i.e. p ≫ mi, then we can
approximate

Ei ≃ p+
m2

i

2p
≃ p+

m2
i

2E
. (1.16)

It should be emphasized that the appearance of the term proportional to the
unit matrix in the Hamiltonian in the right hand side of (1.14) is equivalent to
changing all neutrino fields by the same phase factor; it leads to no physical
consequences. Therefore, we can always omit such a term in the Hamiltonian.
The time evolution equation becomes:

i
dψ

dt
=

1

2E





m2
1 0 0

0 m2
2 0

0 0 m2
3



ψ. (1.17)

This equation completely determines the vacuum propagation of neutrinos.
Next we are going to find the oscillation probabilities. Let us consider a
neutrino state of a given flavor produced in weak interaction with momentum
p. Such a flavor state is a superposition of states with definite masses:

| νl >=
∑

i=1,2,3

Uli | νi > . (1.18)

During propagation, different neutrino components will develop different phases.
This difference in phases increases monotonically with time. The flavor state
at the time t after production is

| νl(t) >=
∑

i=1,2,3

Ulie
−i

m2
i

2E
t | νi > . (1.19)

Due to the unitarity of the mixing matrix, we can invert (1.18) and express
the mass eigenstates in terms of flavor states

| νi >=
∑

l′=e,µ,τ

U∗
l′i | νl′ >, (1.20)

then

| νl(t) >=
∑

i,l′

UliU
∗
l′ie

−i
m2

i
2E

t | νl′ > . (1.21)

The oscillation amplitude from a neutrino of flavor l to a neutrino of flavor
l′, A(νl → νl′), at the time t after production is

A(νl → νl′) ≡< νl′ | νl(t) >=
∑

i

UliU
∗
l′ie

−i
m2

i
2E

t. (1.22)
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Consequently, the oscillation probability equals

P (νl → νl′) ≡| A(νl → νl′) |2=
∑

i,j

UliU
∗
ljU

∗
l′iUl′je

−i
m2

i −m2

j

2E
L, (1.23)

where in the ultra-relativistic limit (c ≃ 1) L ≃ t and L is the distance from
the source. Let us define the oscillation phase as

ϕij ≡
m2

i −m2
j

4E
L. (1.24)

It is noted that the oscillation phase depends on the ratio L/Eν , which we will
see later, characterizes neutrino oscillation experiments. Then we can write
the oscillation probability

P (νl → νl′) =
∑

i,j

UliU
∗
ljU

∗
l′iUl′je

−2iϕij

=
∑

i,j

UliU
∗
ljU

∗
l′iUl′j(e

−2iϕij − 1 + 1)

= δll′ −
∑

i6=j

UliU
∗
ljU

∗
l′iUl′j(e

−2iϕij − 1). (1.25)

Defining the quantity J ll′

ij = UliU
∗
ljU

∗
l′iUl′j, and writing J ll′

ij = ReJ ll′

ij + iImJ ll′

ij ,
one can show that

J ll′

ij (e−2iϕij − 1) = −2ReJ ll′

ij sin2 ϕij + ImJ ll′

ij sin 2ϕij. (1.26)

Finally, substituting J ll′

ij into (1.25) and using (1.26) we obtain the well-known
formula for the neutrino oscillation probabilities

P (νl → νl′) = δll′ − 4
∑

i>j

ReJ ll′

ij sin2 ϕij + 2
∑

i>j

ImJ ll′

ij sin 2ϕij. (1.27)

Some properties of the oscillation probabilities can be obtained immedi-
ately from (1.27):

• Using the unitarity of the mixing matrix, we find from (1.23) that the
total probability of oscillation of a given flavor into neutrinos of all flavors
is unity.

• If all neutrinos are degenerate in masses then P (νl → νl′) = δll′ , that is
no neutrino oscillations.
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• If there were no mixing, i.e. Uli = δli, then we would also have P (νl →
νl′) = δll′ .

• The first sum is CP even, and the second sum is CP odd.

Remember that we mentioned that neutrino oscillation experiments can not
distinguish between Majorana and Dirac neutrinos. This is because Majorana
neutrino mixing involves two extra phases, U → Udiag(1, eiφ2 , eiφ3). These
Majorana phases cancel out in the oscillation probabilities, and thus cannot
be probed via neutrino oscillations.

Neutrino oscillations in matter
As a beam of neutrinos traverse a medium, neutrinos can interact with

electrons in the medium. Neutrinos also interact with nucleons, but the cross
section is much smaller than with electrons. However, electron neutrino inter-
acts differently with electrons compared with the other two neutrinos. Specif-
ically, electron neutrino can interact by exchanging either a W or Z boson
while muon neutrino and tau neutrino can interact only by exchanging Z.
The interaction of all three neutrinos by exchanging the Z boson gives rise
to a potential energy term in the Hamiltonian. This potential energy term is
the same for all three neutrino flavors and thus can be absorbed into a global
phase of the neutrino fields. However, the potential energy term of electron
neutrino because of exchanging the W boson cannot be absorbed and hence
has physical consequences. This is called MSW effect[14].

Let us consider the oscillation of three neutrino flavors in matter with
constant density profile. The time evolution equation for neutrino flavor states
ψf in matter is given by

i
dψf

dt
= Hψf , (1.28)

the effective Hamiltonian is

H =
1

2Eν



U





m2
1 0 0

0 m2
2 0

0 0 m2
3



U † +





A 0 0
0 0 0
0 0 0







 . (1.29)

Here U = U23(θ23)U13(θ13, δ)U12(θ12) is the mixing matrix (1.13), which ro-
tates from mass basis to flavor basis. The second term arises from the weak
charged current interactions of νe with electrons in matter A = 2V Eν and
V =

√
2GFne, where GF is the Fermi coupling constant and ne is the electron

density of the medium traversed by the neutrino beam. It is noted that the
matter potential is monotonically increases with electron density and neutrino
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energy. The oscillation probabilities in matter can be obtained similarly to
the oscillation probabilities in vacuum:

Pm(νl → νl′) = δll′ − 4
∑

i>j

ReJ ll′

ij sin2 ϕm
ij + 2

∑

i>j

ImJ ll′

ij sin 2ϕm
ij , (1.30)

where we have defined

J ll′

ij = Um
li U

m∗
lj Um∗

l′i U
m
l′j, (1.31)

ϕm
ij = ∆

λi − λj

4Eν

L. (1.32)

Here Um is the mixing matrix in matter, λi are effective neutrino masses in
matter, and ∆ = ∆m2

31. The mixing matrix in matter can be parameterized
similar to that in vacuum. The relationship between the mixing angles in
vacuum and the mixing angles in matter is given in [15]. It is emphasized that
since the Earth medium is CP asymmetric, there is CP violation effect arising
from the neutrino propagation in addition to the intrinsic CP violation effects
from the complex phase in the mixing matrix.

1.2.3 The (νµ → νe) appearance channel

Of the oscillation channels whose oscillation probabilities given by (1.27),
the νµ → νe appearance channel is of particular interest. First a nearly pure
beam of (anti-)muon neutrinos can be produced from accelerator. Second as
we will see in the following. The full νµ → νe oscillation probability is a compli-
cated function of the mixing angles. However, the oscillation probability could
be expanded in terms of the small mass hierarchy parameter α ≡ ∆m2

21/∆m
2
31.

Neglecting the matter effects, which is a good approximation for the T2K low
energy beam and short baseline, and the CP violation terms, the νµ → νe

oscillation probability can be written as[16]

P (νµ → νe) ≈ sin2 θ23 sin2 2θ13 sin2 ∆m2
32L

4Eν

(1.33)

where we have kept only the zero-order term of α. It is noticed that the
oscillation amplitude is proportional to the sin2 2θ13. Measurement of this
oscillation channel will give a direct measurement of the mixing angle θ13. The
oscillation amplitude is also proportional to the atmospheric neutrino mixing
angle θ23. In addition, the phase of the oscillation depends on the atmospheric
neutrino mass squared difference, ∆m2

32. Therefore, to measure the mixing
angle θ13, it is necessary to make precise measurements of the atmospheric
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neutrino oscillation parameters, (sin2 2θ23,∆m
2
32). Since the oscillation phase

is proportional to the ratio L/Eν , for an experiment of a given baseline and
narrow-band neutrino beam, the peak energy is chosen so as to maximize
the oscillation probability. The probability (1.33) is plotted as a function of
the neutrino energy Eν for the T2K baseline (295 km) in Fig. 1.1. The first
oscillation maximum is around the neutrino energy of 0.7 GeV. The following
parameters are used to make the plot. The angle θ13 is about the CHOOZ
limit, sin2 2θ13 = 0.15 and (sin2 2θ23 = 1.0, ∆m2

32 = 2.5 × 10−3 eV2)

 0
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 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

E(GeV)

Figure 1.1: The νµ → νe oscillation probability as a function of the neu-
trino energy Eν for the T2K baseline (295 km). The angle θ13 is about the
CHOOZ limit, sin2 2θ13 = 0.15 and the atmospheric oscillation parameters are
(sin2 2θ23 = 1.0, ∆m2

32 = 2.5 × 10−3 eV2).

1.3 Overview of neutrino oscillation experi-

ments

Neutrino oscillations have been discovered in atmospheric[17] and solar
neutrinos[18, 19]. They were confirmed by experiments using neutrinos pro-
duced by accelerators[20, 21] and reactors[22]. Two mixing angles have been
measured and they are found much larger than the mixing angles in the quark
sector. Atmospheric and accelerator neutrino oscillation experiments measure
the mixing angle θ23 which parameterizes the mixing of the second and the
third lepton generation and the corresponding squared mass difference, ∆m2

23.
Solar and reactor (with baseline around 100 km) neutrino oscillation experi-
ments measure the mixing angle θ12 between the first and second generation.
The correct sign of ∆m2

21 was established thanks to the matter effects in solar
neutrino oscillation. The neutrino oscillation results require that neutrinos
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have masses and there are at least three distinct masses. However, the neu-
trino oscillation between the first and the third generation has not been found.
Currently there is a limit on the mixing angle θ13 from the CHOOZ reactor
experiment[23]. It is interesting to see if this mixing angle is nonzero. If the
last mixing angle is found to be different from zero, then similar to the quark
sector, the complex phase in the mixing matrix could generate CP violation
in the lepton sector. In this section, we will give a short review of neutrino
oscillation experiments and the current values of the oscillation parameters.

1.3.1 Solar neutrino experiments

Electron neutrinos are produced from the fusion reactions at the core of the
Sun. The fuel burning mechanism is described by standard solar model[24].
The energy spectrum of solar neutrinos for the solar model is shown in Fig. 1.2.
The first experiment to detect neutrinos from the Sun is the Homestake experi-
ment which used the radiochemical method. The experiment detects neutrinos
by the reaction 37Cl(e, νe)

37Ar (for Eν > 0.814 MeV) suggested by Pontecorvo
and Alvarez. It is sensitive to the high energy of the 8B component of the
solar neutrino spectrum. Neutrinos react with Cl in the detector and produce
Ar, which has a half-life of 35 days. The produced Ar is then extracted and
purified. The purified Ar decays are counted by loading the purified Ar into
a proportional chamber filled with methane as counting gas. The efficiency
of the detector was about 25 Ar atoms per year. The result of the experi-
ment found that the number of B neutrinos is substantially lower than that
predicted by the standard solar model.

Two other radiochemical neutrino experiments which use gallium are sen-
sitive to low energy neutrinos from pp reactions[25, 26]. This is because the
nuclear reaction 71Ga(e, νe)

71Ge has a low threshold of 233 keV. Both ex-
periments found the solar neutrino flux lower than the standard solar model
predictions.

The Kamiokande (and later Super-Kamiokande) experiments used a huge
water tank to detect solar neutrinos. These experiments detect neutrinos by
the Cherenkov light from the recoiled electron from neutrino elastic scattering

νx + e− → νx + e− (1.34)

The light is detected by photomultipliers (PMTs) which view the inside of the
detector. The direction of the electron is reconstructed using the position of the
PMTs and recorded light intensities. These experiments can detect neutrinos
in real time. The fact that electron angular distribution peaks around the
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incident neutrinos help remove isotropic background. The result from the
Super-Kamiokande effective 1496 days of running is

φνe
(8B) = 2.35 ± 0.02 ± 0.08 × 106/cm2sec. (1.35)

This is about 46% of the standard solar neutrino flux prediction.

Figure 1.2: Solar neutrino energy spectrum for the solar model.

The Davis Cl experiment, SAGE[25], GALLEX[26] (later GNO)[27], Kamiokande,
and the high-statistics Super-Kamiokande electron neutrino scattering mea-
surements produced results that were incompatible with either standard or
nonstandard solar model predictions [28, 29]. However, the results accord with
the hypothesis of neutrino oscillations in the (ν1, ν2) sector which is governed
by the mass-mixing parameters (∆m2

21, θ12). For a long time the hypothesis
admitted a multiplicity of possible solutions resulting from either the vacuum
or MSW oscillations and spanning several orders of magnitude in both mass
and mixing parameters. A clear preference for MSW solutions at large mixing
angle only emerged with high-statistics Super-Kamiokande data[18].

A direct proof that solar νe underwent a flavor change (affected by solar
matter) came only recently with the Sudbury Neutrino Observatory (SNO)
experiment, a heavy water Cherenkov detector[19]. The heavy water target



14

provided three different reactions for 8B

νe + d→ p+ p+ e− (CC) (1.36)

να + d→ n+ p+ να (NC) (1.37)

να + e− → να + e− (ES) (1.38)

The charged current (CC) reaction is only sensitive to electron neutrinos
whereas the neutral current (NC) reaction is sensitive to all active neutrino
flavors. The measurement of the neutrino flux using neutral current interac-
tion (NC) will provide a check for the standard solar model prediction of the
total 8B flux independent of neutrino oscillations. The elastic scattering (ES)
reaction is also sensitive to all flavors, but with reduced sensitivity νµ and ντ .
The electrons from the neutrino reactions are detected by Cherenkov light.
The protons have momentum far below the Cherenkov threshold, and hence
are not detected. The neutron from neutral-current reaction is detected by
the neutron capture process. In the second stage of the experiment, salt was
added to increase the sensitivity to this reaction, adding the neutron capture
on 35Cl in addition to the capture on deuterium.

The combination of the KamLAND and the global fit of solar neutrinos
gives the best-fit values for the solar neutrino oscillation parameters, (θ12 ∼
370,∆m2

21 ∼ 7.6 × 10−5 eV2) (Fig. 1.3).

)2
 (

eV
2

m∆

-510

-410

θ 2tan

-110 1 10

KamLAND

95% C.L.

99% C.L.

99.73% C.L.

KamLAND best fit

Solar

95% C.L.

99% C.L.

99.73% C.L.

solar best fit

θ 2tan

0.2 0.3 0.4 0.5 0.6 0.7 0.8

)2
 (

eV
2

m∆

KamLAND+Solar fluxes

95% C.L.

99% C.L.

99.73% C.L.

global best fit
-510×4

-510×6

-510×8

-410×1

-410×1.2

Figure 1.3: Combination of the KamLAND and the global fit of KamLAND
and solar fluxes (2 neutrino oscillation analysis).
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1.3.2 Atmospheric neutrino oscillation experiments

Atmospheric neutrinos are produced by the interaction of cosmic rays with
nuclei in the upper atmosphere through the decay chain, π,K → µ→ e. The
decay chain creates approximately two νµ + ν̄µ for every νe + ν̄e. Because of
the isotropy of the cosmic rays and the spherical atmosphere, it is expected
that the atmospheric neutrino flux is up-down symmetric with respect to the
zenith angle. The Super-Kamiokande collaboration which uses a large (50
kton) water Cherenkov detector can reconstruct the direction and hence the
path length L of the ν from the atmosphere. The path length ranges from
L ∼ 15 km for downgoing neutrinos to L ∼ 13,000 km for upgoing neutrinos.
The data showed a clear up-down angular asymmetry of atmospheric νµ flux
with less νµ from the longest path length L. On the other hand, there is no
up-down asymmetry in the νe flux[17]. Therefore, the zenith angle distribution
of atmospheric neutrinos can be interpreted as arising from the νµ → ντ flavor
change. An analysis of the Super-Kamiokande data which used only events
with good resolution of L/E showed an oscillatory signature in atmospheric
neutrino oscillations[30, 31]. The ratio of the data to the MC events without
neutrino oscillation as a function of the reconstructed L/E is shown in Fig. 1.4.
The solid line is the best-fit, (sin2 2θ,∆m2) = (1.00, 2.4× 10−3 eV2), expecta-
tion for two flavor νµ → ντ oscillation. A dip, which should correspond to the
first oscillation maximum, is observed around L/E = 500 km/GeV. This rules
out other hypotheses such as neutrino decay which could explain the deficit in
the νµ flux.

1.3.3 Accelerator-based neutrino oscillation experiments

Neutrino oscillations can be probed by using neutrinos produced by ac-
celerators. In these experiments, the proton beam from an accelerator hits a
target to produce pions. A magnetic horn system is used to select pions of
desired charge and focus the pion beam. The pions in turn decay in a tunnel
into muons and neutrinos, mostly in the forward direction. A beam dump is
placed at the end of the decay tunnel to stop all particles but the neutrinos.
The neutrino flux and spectrum are measured at two sites, usually at a near
site and far site. The neutrino spectrum and the baseline are dictated by the
oscillation parameter ∆m2 that the experiment plans to probe. The flux and
spectrum at the near and far site are then compared to search for neutrino
oscillations. The accelerator neutrino experiments can be sensitive to both
atmospheric oscillation through disappearance measurement and θ13 through
νµ → νe appearance. It should be noted that high statistics measurements of
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Figure 1.4: Ratio of the data to the MC events without neutrino oscillation
(points) as a function of the reconstructed L/E together with the best-fit ex-
pectation for 2-flavor νµ → ντ oscillation (solid line). Error bars are statistical
only. The best-fit expectation for neutrino decay (dashed line) and neutrino
decoherence (dotted line) are also shown[30].

various neutrino cross sections can also be carried out at the near site using
the high intensity neutrino flux.

The K2K is the first accelerator-based neutrino experiment, designed to
confirm the oscillation of atmospheric neutrinos. The experiment uses the 12
GeV proton beam at KEK to produce neutrinos of 1.4 GeV mean energy and
the Super-Kamiokande as the far detector 250 km away. The experiment found
the spectrum suppression and distortion at the far site. The allowed region of
∆m2 and sin2 θ23 is consistent with atmospheric neutrino oscillations.

The MINOS experiment uses the NuMI beam line at Fermilab and a far
detector 735 km away to measure the oscillation of νµ (ν̄µ). The results based
on 3.36 × 1020 POT from the NuMI beam are |∆m2| = (2.43 ± 0.13) × 10−3

eV2 (68% C.L.) and the mixing angle sin2 2θ > 0.90 (90% C.L)[32].

1.3.4 Reactor-based neutrino oscillation experiments

In addition to accelerator-based neutrino experiments where a beam of
νµ (ν̄µ) is usually used, there are also reactor-based neutrino experiments.
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This type of neutrino oscillation experiment uses intense ν̄e flux produced by
nuclear fission reactions in nuclear reactors. Since ν̄e neutrinos from reactors
are low energy (Eν ∼ 5 MeV), below µ, τ production threshold, reactor-based
experiments are of disappearance type experiment in which one measures the
survival probability of neutrinos. The survival probability in the case of three-
flavor neutrinos can be approximately written as

P(ν̄e → ν̄e) ≈ 1 − sin2 θ13 sin2 ∆m2
32

4Eν

L− cos4 θ13 sin2 θ12 sin2 ∆m2
21

4Eν

L (1.39)

It is seen from (1.39) that the oscillation probability has two distinctive terms:
the atmospheric and solar oscillation terms. Depending on the baseline, reactor-
based experiment can be sensitive to either atmospheric or solar neutrino
oscillation parameters. Remarkably, the atmospheric oscillation term which
corresponds to the short baseline (a few km) has the oscillation amplitude
proportional to the unknown mixing angle θ13. Therefore, reactor-based ex-
periment with short baseline is an excellent way to measure θ13. The ν̄e are
detected using the inverse beta decay

ν̄e + p→ e+ + n. (1.40)

The experimental signature in a detector is a prompt positron annihilation
with a pair of back-to-back γs of 0.511 MeV energy, followed by a neutron
capture producing a delayed signal.

Palo Verde and CHOOZ reactor neutrino experiments The Palo
Verde experiment is located in Phoenix, Arizona. It studies the oscillation
of ν̄e from the Palo Verde nuclear power plants about 1 km away[33]. The
short baseline makes the detector sensitive to ∆m2

31 ∼ 10−3 eV2. The ex-
periment has no near detector, and hence the flux and energy spectrum of
unoscillated ν̄e are calculated from the reactor power and fuel composition. It
was found that the ratio of the observed interaction rate to the one expected
for no oscillations is Robs/Rcalc = 1.01 ± 0.024(stat) ± 0.053(sys). Most of the
uncertainties in the experimental results come from the systematic uncertain-
ties in the neutrino flux and detection efficiency[34].

Currently, the most stringent limit on the mixing angle θ13 came from the
results of the CHOOZ reactor experiment[23]. The CHOOZ experiment has
similar baseline to the Palo Verde experiment, the detector is located about 1
km from CHOOZ nuclear power plant, France. The final result was also given
as the ratio of the number of measured events to the number of expected events
for no oscillations, averaged on energy spectrum

R = 1.02 ± 2.8%(stat) ± 2.7%(sys). (1.41)
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It was found that there was no evidence of ν̄e disappearance at 90% CL for the
parameter region given approximately by ∆m2 > 7 × 10−4 eV2 at maximum
mixing and sin2 2θ = 0.1 at large ∆m2. In Fig. 1.5 we show the region in the
∆m2

32−sin2 θ13 plane excluded by the CHOOZ experiment. The corresponding
limit on θ13 is sin2 θ13 > 0.17 for large ∆m2[35].

Figure 1.5: Exclusion plot at 90% CL for the oscillation parameters based on
the differential energy spectrum.

KamLAND reactor neutrino experiment The Kamioka liquid scintil-
lator antineutrino detector (KamLAND) is located in the same mine as the
Super-Kamiokande detector. It measures the oscillation of ν̄e from 16 nuclear
power plants with a power-weighted baseline of 180 km. Due to the relatively
long baseline, the KamLAND detector can be sensitive to the solar oscillation
parameters with ∆m2 ∼ 10−5 eV2 which corresponds to the third term in
(1.39). The result from KamLAND gave the first definitive evidence for ν̄e

disappearance[36].

In summary, neutrino oscillations have been discovered in atmospheric and
solar neutrinos and have been confirmed in both accelerator and reactor exper-
iments. The three-flavor neutrino oscillations emerged from the experimental
results. The atmospheric oscillation parameters have been measured by the
high statistics data from the Super-Kamiokande detector to be sin2 θ23 ∼ 1.0
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and ∆m2
32 ∼ 2.5×10−3 eV2. The solar oscillation parameters have been found

by a combined fit of global solar neutrino experiments and KamLAND exper-
iment to be θ12 ∼ 370 and ∆m2

21 ∼ 7.6 × 10−5 eV2. The third mixing angle,
θ13, is constrainted by the CHOOZ reactor result to be small, sin2 2θ13 < 0.1
at the best-fit ∆m2

23 from atmospheric neutrino oscillations. It is interesting
that two of the mixing angles are large, one nearly maximal, while the last one
is small. The next logical step in exploring the mixing matrix using neutrino
oscillations is to measure this last mixing angle. The work presented in this
thesis contributes to the effort to measure one of the dominant backgrounds to
the measurement of this angle by the T2K experiment. The T2K experiment
and its physics goals are described in the next chapter.
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Chapter 2

Overview of the T2K experiment

2.1 Introduction

In recent years, major progress has been made in neutrino physics, espe-
cially with regard to neutrino masses and neutrino oscillations. The neutrino
oscillation results require that neutrinos are massive and there are at least
three distinct masses. Two mixing angles (θ12, θ23) have been found to be
large with θ23 almost maximal. However, the neutrino oscillation between the
first and the third generation has not been found. Currently the mixing an-
gle θ13 is constrained to be small (sin2 2θ13 < 0.17) from the CHOOZ reactor
experiment[23]. It is interesting to see if this mixing angle is nonzero.

T2K (Tokai-to-Kamioka) experiment is a second generation long baseline
neutrino oscillation experiment to measure oscillation parameters, especially
the mixing angle θ13 through νe appearance from a νµ beam[37]. The T2K
neutrino beam is generated using the high intensity 50 GeV proton synchrotron
at J-PARC in Tokai, Japan and the far detector is Super-Kamiokande which
is located 295 km from the accelerator. The near detector which measures
the neutrino beam properties before oscillation is installed 280 m from the
target. The schematic of the J-PARC facility showing the accelerators and
neutrino beam line is in Fig. 2.1 We will briefly describe the components of
the experiment in the following sections. A detailed description of ND280 near
detector can be found in the T2K ND280 conceptual design report[38].

2.2 T2K physics goals

The T2K experiment aims to measure the mixing angle θ13 through νe ap-
pearance. It has been seen that the appearance probability (1.33) also depends
on the atmospheric oscillation parameters (∆m2

23, sin
2 2θ23). For this reason,
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To Super-Kamiokande

FD

Decay Pipe

Figure 2.1: Layout of the J-PARC facility.

the T2K experiment will make precision measurement of these oscillation pa-
rameters and the mixing angle θ13.

νµ disappearance

The oscillation parameters (∆m2
23, sin

2 2θ23) will be determined from the
survival probability of νµ after traveling 295 km. This probability can be mea-
sured by comparing the neutrino spectra at the near and far site. The neutrino
spectrum at the near site is measured by the near detector system. The neu-
trino flux is also measured at the near site and extrapolated to the far site to
obtain the correct rate normalization. At the far site, the neutrino spectrum is
measured by the Super-Kamiokande detector. Muon neutrinos are detected at
Super-Kamiokande using the quasi-elastic charged current interaction which
has better energy reconstruction. The muons are identified by the presence of
a muon-like ring.
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νe appearance

The mixing angle θ13 is determined from the measurement of the νe appear-
ance signal. The νe signal comes from νµ → νe oscillation if the mixing angle
θ13 is nonzero. Electrons from νe quasi-elastic charged-current interactions are
detected by the presence of a electron-like ring. Backgrounds from νµ interac-
tions are further reduced by requiring that there is no decay electron. After
this, there are two main backgrounds to the νe search at Super-Kamiokande:
the background from single π0 from neutral current interactions and νe intrin-
sic to the beam. The number of expected signal νe and backgrounds assuming
5×1021 protons on target (POT) at 50 GeV are shown in Table. 2.2. The domi-
nant backgrounds are measured by the near detector system before oscillation
and extrapolated to Super-Kamiokande. The estimated π0 and intrinsic νe

backgrounds are subtracted from the selected νe events. The final appearance
signal is fitted to the appearance probability (1.1) to find sin2 2θ13. Fig. 2.2
shows the T2K sensitivity to θ13 at 90% confidence level as a function of ∆m2

23,
assuming no CP violation (δCP = 0) and normal mass hierarchy. The beam is
assumed to be running at 750 kW for 5 years (or equivalently, 5×1021 POT at
50 GeV) and using 22.5 kton fiducial volume of Super-Kamiokande detector.

Table 2.1: Number of events and reduction efficiency of “standard” 1ring e-
like cut and π0 cut for 5 year exposure (5×1021 POT). In the calculation of
oscillated νe, ∆m2 = 0.003 eV2 and sin2 2θ13 = 0.1 are assumed[37].

Off-axis angle 20 νµ CC νµNC1 π0 Beam νe Signal νe

Generated in F.V. 10713.6 4080.3 292.1 301.6
1R e-like 14.3 247.1 68.4 203.7
e/π0 3.5 23.0 21.9 152.2
0.4 < Erec < 1.2
(GeV)

1.8 9.3 11.1 123.2

2.3 Neutrino beam and monitor

The neutrino beam is produced by smashing protons from the J-PARC
proton synchrotron on a target. The main synchrotron is designed to accelerate
protons up to 50 GeV, however, the initial proton energy is limited to 30



23

 Sensitivity13θ90% CL 

 sensitivity13θ 2 2sin

-310 -210 -110 1

)2
 (

eV
232

 m∆

-410

-310

-210

-110

 sensitivity13θ 2 2sin

-310 -210 -110 1

)2
 (

eV
232

 m∆

-410

-310

-210

-110

Systematic Error Fraction

5% sys error

10% sys error

20% sys error

CHOOZ Excluded

 Normal Hierarchy

 Sensitivity13θ90% CL 

Figure 2.2: T2K sensitivity to θ13 at the 90% confidence level as a function of
∆m2

23. Beam is assumed to be running at 750kW for 5 years (or equivalently,
5×1021 POT), using the 22.5 kton fiducial volume SK detector. 5%, 10%
and 20% systematic error fractions are plotted. The yellow region has already
been excluded to 90% confidence level by the CHOOZ reactor experiment. The
following oscillation parameters are assumed: sin2 2θ12 = 0.8704, sin2 2θ23 =
1.0, ∆m2

12 = 7.6 × 10−5eV2, δCP = 0, normal hierarchy.

GeV. The proton beam is extracted by the neutrino primary beamline. The
neutrino beamline consists of 28 combined function superconducting magnets
which produce both dipole and quadrapole fields and normal magnets near the
final focusing sections. The design intensity of the proton beam is 3.3 × 1014

at the rate of about 0.3 Hz. The target is a graphite cylinder of 30 mm in
diameter and 900 mm in length. Three electromagnetic horns are used to
focus (and select the right charge sign) charged pions generated in the target
to the forward direction. The target is installed inside the inner conductor of
the first horn to effectively collect and focus the pions. These horns are driven
by a pulsed current of 320 kA synchronized with the beam. The focused
pions decay into νµ and muons in a 110 m decay tunnel which follows the
horns. There is a small fraction of νe (about .5% at peak energy) produced
by decaying muons and kaons. The decay tunnel is filled with 1 atm helium
gas to reduce pion absorption and tritium production. Charged particles are
stopped by the beam dump placed at the end of the decay tunnel. The beam
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dump is designed to allow high energy muons (> 5 GeV) passing through.
These muons are used to monitor the conditions of the primary proton beam
and the horn system.

Figure 2.3: Neutrino energy spectra at SK at different off-axis angles, 30, 2.50,
20 and on-axis.

The T2K neutrino beamline adopts an off-axis beam configuration[39]. It
exploits the kinematics of pion decay that the neutrino energy is not strongly
dependent on the pion energy at a fixed decay angle in the lab frame to produce
a narrow-band beam (Fig. 2.3). The narrow-band beam is desired to maximize
the neutrino flux at energies near the first oscillation maximum. The off-axis
angle can be changed from 2.0 to 2.5 degrees. This corresponds to the mean
neutrino energies from 0.5 to 0.7 GeV. The nominal off-axis angle is 2.5 degrees,
corresponding to the peak beam energy of about 0.7 GeV. The schematic of
the T2K neutrino beam is shown in Fig. 2.4.

Because of the off-axis beam configuration, the neutrino spectrum at Super-
Kamiokande is sensitive to the neutrino beam direction. For this reason there
are two detector systems designed specifically for online neutrino beam moni-
toring: One is a muon monitor and the other is an on-axis neutrino detector.
The muon monitor can measure the neutrino beam condition in real time by
detecting the accompanying muons. The on-axis neutrino detector monitors
the neutrino beam directly using neutrino interactions. The muon monitor
and the on-axis neutrino detector are described below.

2.3.1 Muon monitor (MUMON)

The muon monitor is placed downstream of the beam dump and monitors
the direction, profile, time structure, and intensity of the beam by detecting
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Figure 2.4: A schematic of the T2K neutrino beam. The T2K neutrino beam
line uses an off-axis beam configuration where the neutrino beam is sent 2.5
degrees beneath the axis between the Super-Kamiokande detector and the
decay pipe.

high energy muons which are produced together with the neutrinos. Thanks
to the high muon flux, the MUMON is sensitive to the proton hit position
on the target and the status of the target and horns. Therefore, it is also
used as a proton beam monitor, a target monitor, and a horn monitor. The
measurements of MUMON can monitor the quality of the neutrino beam on
a spill-by-spill basis. Finally, the MUMON helps aim the neutrino beam at
Super-Kamiokande during the beginning of the experiment. The MUMON
consists of two independent detectors: a matrix of silicon detectors and an
array segmented ionization chambers. Each detector covers an area of 1.5m
× 1.5m. The silicon detector matrix consists of 7 × 7 silicon photodiodes
mounted on the upstream panel. The silicon photodiodes are not radiation
hard and can only be used in the early stage of the experiment. More radia-
tion tolerant detectors like diamond detector are being tested. The ionization
chamber detector consists of an array of 7 segmented ionization chambers on
the downstream side.

2.3.2 On-axis detector (INGRID)

The INGRID detector is located on-axis at 280 m from the target and
beneath the off-axis detector. It monitors the neutrino beam by using muons
from charged current neutrino interactions. Because of the small neutrino cross
sections, it can only monitor the neutrino beam on a daily basis. The total
number of neutrino events observed by INGRID is about 10,000 events/day.
The detector consists of 16 modules arranged in 7 vertical and 7 horizontal
modules and two off-axis modules. Each module has dimensions of 1.2m ×
1.2m × 1.3m and consists of 11 scintillator planes alternating with 10 iron tar-
gets. On the top and sides of each module, three or four additional scintillator
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layers are used as a veto. Each tracking plane has 24 rectangular scintillator
bars, each of dimensions of 5cm×120.3cm×1cm. A schematic view of the IN-
GRID detector is shown in Fig. 2.5. Black boxes are the detector modules and
red frames are supporting structure.

Figure 2.5: A schematic of the INGRID detector. Black boxes are the detector
modules arranged in a cross.

2.4 Near detector system (ND280)

The near detector system is located off-axis at 280 m from the target and
consists of different sub-detectors. The main purpose of the near detector
system is to measure the properties of the neutrino beam before oscillation:

• Measure the neutrino flux and spectrum

• Measure different interaction cross sections to estimate the backgrounds
at Super-Kamiokande.

• Measure the νe beam contamination for νe appearance search.

The ND280 sub-detectors are enclosed inside the UA1 dipole magnet operat-
ing at nominal 0.2 T (Fig. 2.6). The magnetic field is used to reduce electron
diffusion inside the time projection chambers and bend charged particle tra-
jectories for momentum measurement. The sub-detectors are described below.
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Figure 2.6: The off-axis near detector system shown with one side of the UA1
magnet. The inner detectors are supported by a basket and consist of the
P0D upstream, followed by the tracker, and the downstream ECAL. They are
surrounded by the side ECALs.

2.4.1 Pizero detector (P0D)

One of the dominant backgrounds to the νe appearance search in a water
Cherenkov detector is single π0 from neutral current interactions. The P0D is
designed to measure the neutral current single π0 production cross section on
water. Using this cross sections, the π0 background at SK can be estimated.
The P0D consists of a water target sandwiched between two electromagnetic
calorimeters (ECAL). The water target section consists of 26 tracking mod-
ules alternating with water modules. Each water module has two water bags
supported by high-density polyethylene frame. Each tracking module is a
complete tracking unit of dimensions of 220cm×230cm×3.9cm and it has x-y
tracking planes perpendicular to the beam direction. Each tracking plane con-
sists of triangular plastic scintillator bars, each of 1.7 cm height and 3.4 cm
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base and has a axial hole at the center. The plan is to measure the single π0

production in water-in and water-out modes. Events measured with water out
are statistically subtracted from those with water in to obtain the production
cross section on water.

2.4.2 Tracker: Fine-grained detector and time projec-
tion chamber

The other dominant background to the νe appearance search is the νe

beam contamination which is about 0.5% of the νµ flux at peak energy. This
background is resulted from kaon and muon decays, it can not be removed from
the νµ beam and must be measured by the near detector. One of the purpose
of the tracker is to measure this background. The tracker also measures νµ

flux and spectrum before oscillation for νµ disappearance study.
Finally, in addition to the flux and spectrum measurement, the tracker

can distinguish the simple quasi-elastic charged current interaction from non-
elastic interactions. In the fine-grained detector, this is accomplished by the
fine segmentation which allows tracking of low energy protons. The presence
of both proton and muon tracks create a kinematical constraint to remove
non-elastic events. Furthermore, the good particle identification of the time
projection chambers using ionization energy loss can distinguish electrons,
muons, and protons. The time projection chambers can also measure the
charge sign of charged particles to further reject non-elastic events.

Fine-grained detector (FGD)

There are two FGDs, each of dimensions of 200cm × 200cm × 30cm. One
FGD consists of 30 tracking planes. These tracking planes are arranged in
alternating vertical and horizontal direction perpendicular to the beam. The
back FGD consists of alternating x-y tracking planes and 3 cm thick layers of
water target. For both FGDs, each scintillator plane consists of 200 scintillator
bars, each of dimensions 1.0cm × 1.0cm × 200cm, has a central hole for
wavelength shifting fiber and TiO2 coating. The fine-grained segmentation
allows tracking of low energy protons to distinguish CCQE and non-elastic
events. Light collected by the wavelength-shifting fiber is read out by a MPPC.

Time projection chamber (TPC)

The TPCs are optimized to measure charged particles from neutrino in-
teraction in the FGDs and the P0D. There are three TPCs sandwiching with
the FGDs, with one TPC downstream of the P0D. Each TPC module has a
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dimensions of 180cm × 200cm × 70cm (sensitive volume). It has a double
wall structure, the inner wall makes up the field cage and the outer wall is
used for gas, high voltage insulation. The sensitive volume contains a mixture
of gases Ar-CF4-iC4H10 (95%-3%-2%) and has drifting velocity of 7.8cm/µs at
280 V/cm. Gas amplification and readout using Micromegas with pad size of
7mm × 10mm.

2.4.3 Electromagnetic calorimeter (ECAL)

Electromagnetic calorimeters surround the P0D and the tracker to de-
tect showering (e−, γ) particles from neutrino interactions in these detectors.
Charged particles are produced and tracked by the inner detectors. However,
because of the low mass of the inner detectors, showering particles can escape
and cause energy leakage which reduces the energy resolution. The ECALs are
designed to have a short effective radiation length to convert these particles.
Showers found in the ECALs are matched to tracks or showers found in the
inner detectors. The shower-to-track matching helps distinguish muons from
electrons while the shower-to-shower matching reduces the energy leakage.
Furthermore, the ECALs also improves the π0 detection efficiency by increas-
ing the probability of catching the γs from π0 decay. Finally, the ECALs
also acts as a veto detector to detect particles from neutrino interactions in
the magnet.The ECALs consist of alternating layers of plastic scintillator and
lead.

2.4.4 Side muon range detector (SMRD)

It is important to measure muon at high angle relative to the beam direction
to increase the acceptance. As the name implies, the SMRD measures muon
range from which the momentum can be estimated. The SMRD also acts
as the veto detector for cosmic ray muons and is used to form the cosmic
trigger. The SMRD is constructed by inserting scintillator detectors into the
gaps between iron plates of the magnet.

2.5 Far detector - Super-Kamiokande

The far detector Super-Kamiokande (SK) is located 295 km from the near
detector at the Kamioka Observatory, Gifu, Japan. Detailed description and
analysis of the detector can be found in [40, 41]. A brief description is given
here. SK is a 50 kton water Cherenkov detector. The detector is a cylindrical
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tank of 41.4 m in height and 39.3 m in diameter. The tank is optically divided
into an inner detector of 36.2 m in height and 33.8 m in diameter and an outer
detector. Both sides of the dividing wall are mounted with photomultipliers
(PMTs), 11146 20-inch diameter PMTs on the inside facing inward and 1885
8-inch diameter PMTs on the outside facing outward. Cherenkov light from
particles are recorded by these PMTs. A schematic of the Super-Kamiokande
detector is shown in Fig. 2.7.

The detector can distinguish electron from muon by looking at the light
distribution of the projected Cherenkov cone. Electrons scatter more than
muons, thus making a fuzzy ring. It is well-known that water Cherenkov
detector can not distinguish between gamma and electron since they both
produce e-like ring. Because of this, SK could mistake π0 for electron when the
two γs from the π0 decay have a small open angle or large energy asymmetry.
In the case of small open angle, the two γ’s look like a single γ and in the case
of large energy asymmetry, the smaller energy γ is not detected.

Detector hall Access tunnel

1,000m

Control room

Inner Detector

Outer Detector

Photo multipliers

41
m

39m

Figure 2.7: Schematic of the Super-Kamiokande detector.
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Chapter 3

The P0D detector

One of the dominant backgrounds to the νe appearance search in a water
Cherenkov detector is single π0 from neutral current interactions. The P0D
is designed to measure the neutral current single π0 production cross section
on water. This cross section will be used to estimate the π0 background at
Super-Kamiokande. The plan is to measure the single π0 events with water in
and water out and then events measured with water out will be statistically
subtracted from the events with water in to obtain the event rate on water.

The P0D is a sampling tracking calorimeter. It consists of alternating ac-
tive tracking planes and layers of passive target. Only the energy deposit in
the active region can be measured while in the dead materials it is invisible to
the detector. This invisible energy deposit can be inferred from the visible one
and accounted for by an absolute energy calibration constant. The calibration
constant can be obtained from either test beam or quantities involving the
absolute energy scale such as invariant mass. For the P0D, there is plan to
measure the calibration constant using the π0 invariant mass from a well recon-
structed sample of charged current π0 events. Each tracking plane measures
the two-dimensional projection of particle trajectory. The xz and yz projec-
tions of the particle trajectory are measured by alternate tracking planes. A
complete three-dimensional trajectory can be reconstructed by combining the
two-dimensional measurements from both projection planes. In this chapter
we will describe in details the components of the detector.

3.1 Mechanical detector

The P0D consists of a water target section sandwiched between two elec-
tromagnetic calorimeters (Fig. 3.1). The water target section consists of 26
tracking modules alternating with water modules. A brass sheet of the same
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transverse dimensions as the tracking module and 1.6 mm of thickness is in-
serted between the tracking module and water module to promote the photon
conversion. Each water module has two water bags mounted side by side ver-
tically and supported by high-density polyethylene frame. The ECAL section,
each at the front and back of the detector, has 7 tracking modules alternating
with 4 mm thick lead radiators. Each tracking module is a complete tracking
unit which has x-y tracking planes perpendicular to the beam direction. Each
tracking plane is made of triangular plastic scintillator bars (126 bars along the
x direction and 134 bars along the y direction), each of 17.25 cm height and
33.5 cm base and has an axial hole at the center. Scintillation light generated
by passing particles is collected by a Kuraray Y-11 wavelength-shifting fiber
inserted in the hole. The signal is read out at one end of the fiber by a Multi-
Pixel Photon Counter (MPPC) while the other end is polished and mirrored.
On the opposite side of the MPPCs, there are two back-to-back LEDs used to
inject UV light into the wavelength-shifting fibers for calibration purpose.

Figure 3.1: Engineer drawing of the P0D.

3.1.1 Tracking module (P0Dule)

Each P0Dule has of dimensions of 220cm(x)×234cm(y)×3.9cm(z). Each
P0Dule consists of two tracking planes perpendicular to each other, one in the x
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direction, the other in the y direction. The two scintillator planes are separated
by a layer of epoxy which also keeps the two planes together. Both scintillator
planes are fitted inside a PVC outer frame (3cm×3.85cm rectangular profile).
Along the side of the PVC frame there are alignment holes which are used
to mount the P0Dule into the final detector. There are also precision holes
along the side for aligning the scintillator bars and protecting the photosensor
housings. Both outer side of the scintillator planes are covered by a polystyrene
skin of 1.5 mm thickness. The skins are glued to the scintillator planes by
epoxy. At the positive +x and +y side, there are holes in the frame which
allows the installation of MPPC housings. Figure 3.2 shows the P0Dule layout
with the top skin removed, exposing two layers of scintillator bars arranged
perpendicular to each other.

Figure 3.2: P0Dule layout, the top skin removed showing the two layers of
scintillators.

3.1.2 Radiators

In the water target section, the radiator is a brass sheet of 1.6 mm thickness.
For the ECAL sections, the radiator is made of rectangular lead sheets of 3.7
mm thickness fitted inside a stainless steel frame. The front and back of the
radiator are supported by 0.5 mm thick sheets of stainless steel. The stainless
steel sheets are glued to the lead by epoxy to provide support. The radiators
in both ECALs and water target are supported in the final detector by the
same threaded rods as the P0Dules.
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3.1.3 Water target

There are 25 layers of water target. Each water layer has two water bladders
made of high-density polyethylene (HDPE) fitted inside a HDPE frame. The
bladders can be filled with water at the top. The depth of water in each bag
is monitored with one pressure sensor and several binary level sensors.

3.2 Scintillator bars and wavelength-shifting

fibers

Each tracking plane is formed from triangular plastic scintillator (polystyrene)
bars, each bar of 1.7 cm height and 3.4 cm base. The bars in the x direction
have the length of 2134 mm while the bars in the y direction have the length
of 2274 mm. The bar has an axial hole of diameter 2.4-2.8 mm. The sides
of the bar are coated with a layer of 0.25 mm of Ti2O. Both ends of the bar
are counterbored 5.2 mm in diameter and 20 mm deep for housing the optical
ferrule at the photosensor side and the fiber guide at the light injection side.

A wavelength shifting fiber is inserted into the hole in the scintillator bar
to collect scintillation light produced by passing particles. The Kuraray Y-11
multi-clad 1 mm in diameter WLS fibers are used. One end of the fiber is pol-
ished and mirrored by a 250 nm layer of 99.999% chemically pure aluminum
for good reflectivity which is around 85%. The mirror is protected by a coat of
epoxy. The other end of the fiber terminates in a precision alignment ferrule
and is polished to an optical quality finish. The ferrule is glued to hole on the
PVC frame to keep it from falling when in the vertical position. The photo-
sensor is housed in an optical connector which is screwed to the frame. The
optical connector in turn is snapped onto the ferrule to keep the photosensor
in position. Figure 3.3 shows the WLS fiber terminating in the ferrule and
connected to the photosensor, the whole structure is fitted in the hole on the
PVC frame.

3.3 Photosensor

Photosensor converts the scintillation light collected by the WLS fiber into
electric signal. The choice of photosensor is driven by the physics requirements
such as gain and photon detection efficiency (PDE), overall detector design,
and cost per unit because of the large number of channels in the detector (∼
54,000). First, since the off-axis near detector is enclosed inside the magnet,
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Figure 3.3: Bar readout

the photosensor chosen must be able to operate in a magnetic field. In ad-
dition, the limited space inside the UA1 magnet also constraints the choice
of the photosensor. For these reasons, the T2K near detector uses the novel
MPPC (Multi-Pixel Photon Counter) developed by Hamamatsu photonics[42].
Different operational characteristics of the MPPCs for the T2K near detector
have been measured[43].

Figure 3.4: Photograph of a 667-pixel MPPC. Magnified surface of a MPPC
(left) and a MPPC production package (right).

The MPPC is constructed from an array of avalanche photodiodes (APDs)
operating in limited Geiger mode where the applied voltage is higher than the
breakdown voltage. The magnified surface of an 667-pixel MPPC and a MPPC
production package are shown in Fig. 3.4. Since the avalanche photodiode
operates in Geiger mode, it has very high gain, 105-106. Each APD called
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pixel acts as a binary detector. When a photon falls on a pixel of an MPPC,
it creates an electron-hole pair. Due to the high gain, this electron-hole pair
can trigger an avalanche and produces a sizeable output pulse which can be
measured. The signals from all pixels are summed to a single output. The
size of the output is proportional to the the number of pixels which fire and
thereby the number of incident photons can be counted. A LED amplitude
spectrum measured with MPPC is shown in Fig. 3.5. It can be seen that
individual photoelectron peaks can be resolved. However, the high gain also
causes a single thermal electron to produce measurable output. Therefore, the
MPPCs can not distinguish real one p.e. event from dark noise.

Figure 3.5: LED amplitude spectrum measured with the TA9445 MPPC at
the bias voltage 68.4 V and the ambient temperature of 200C[43].

Typical operating voltage is about 1 V above the breakdown voltage or
about 70 V. The difference between the operating voltage and the breakdown
voltage is called overvoltage. Since the MPPCs are solid-state device, their
gain is sensitive to temperature change. An increase in temperature raises the
breakdown voltage which effectively reduces the overvoltage. A summary of
the MPPC specifications and characteristics is given in Table 3.3.

There are noises inherent to the MPPCs: dark noise and correlated noise.
The dark noise is caused by thermalelectron accelerated in the depletion region
and has a typical rate of about 300-800 KHz. It is dominated by one photo-
electron events, dark noise events above 1.5 p.e. is an order of magnitude
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Table 3.1: Some specifications and characteristics of the MPPCs used in the
T2K near detector.

Active area: 1.3 ×1.3 mm
Number of pixels: 667 (50×50 µm each)
Operation voltage: ∼ 70 V
PDE at 515 nm: > 25%
Gain: 6 × 105 at ∆V ∼ 1 V
Dark noise rate: < 1.35 MHz
Operating in magnetic field (0.18-0.2 T)

less. The correlated noise is defined as secondary avalanche(s) produced by an
original avalanche which could be triggered by either detection signal or one
(equivalent) photoelectron from dark noise. While the dark noise is random
and hence independent of the detection signal size, the correlated noise by
definition depends on the signal. Therefore, understanding the effects of the
correlated noise on the light output in different operating conditions will be
crucial to the energy calibration. There will be more discussion of the MPPC
noises and how to measure them in Chapter 6.

3.4 Electronics readout

The P0D detector uses the same front end readout system as other sub-
detectors which uses the MPPCs as photosensors. The front end readout
system for MPPC photosensors is based on the Trip-t chip originally devel-
oped at Fermilab for Visible Light Photon Counter (VLPC) readout in D0
experiment. There are 4 Trip-t chips on each front end board (TFB) which
can instruments up to 64 MPPCs. The TFBs are read out and controlled by
the Readout Merger Module (RMM) which provides communication with the
data acquisition system (DAQ). Cosmic trigger primitives formed on TFBs
from time coincidence of MPPC signals are sent to the Cosmic Trigger Mod-
ule (CTM) where the programmable trigger decision can be made. Neutrino
beam arrival time is transmitted to the TFBs through the Master Clock Mod-
ule (MCM). Detailed description of the TFB and its performance with the
MPPC photosensors are reported in [44]. Schematic of the readout system for
MPPCs is shown in Fig. 3.6. Documentation of the RMM, CTM, and MCM
are being written up by the electronics group and will be reported elsewhere.
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Figure 3.6: A schematic of the front end readout system for MPPC
photosensors[44].
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Chapter 4

Monte Carlo Simulation

At the near detector, the simulation is separated into different steps. It is a
chain of these simulations: beam simulation, neutrino interaction simulation,
detector simulation, and electronics simulation

• The beam simulation outputs the neutrino beam flux and the neutrino
energy spectrum at the near detector site.

• The neutrino interaction simulation (event generator) simulates the neu-
trino interactions of the neutrino flux with the detector materials using
the current knowledge of neutrino cross sections. It also transports parti-
cles produced at the neutrino interaction vertex through nuclear medium.

• The detector simulation transports the particles leaving the nuclei in the
detector. It also provides a detailed description of the detector using
realistic detector materials. Energy deposits in the sensitive volumes of
the detector are saved.

• The electronics simulation converts the energy deposits from detector
simulation into digitized hits in the same format as the actual data.

The beam simulation is maintained by the beam group and not described here.

4.1 Neutrino interaction simulation

The event generator simulates the interaction of the neutrino beam with the
nuclei of the detector materials using the current knowledge of neutrino cross
sections. It uses the simulated neutrino flux from the beam group and simulate
the interactions of neutrino with detector materials. The event generator also
simulates the transport of primary particles produced at neutrino interaction
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vertex in the nuclear medium. The output of the generator for each neutrino
interaction is a list of particles leaving the nucleus with their kinematics. In
the T2K experiment, NEUT is chosen as the official generator[45].

The following neutrino interaction modes are included in NEUT

ν + n→ l− + p (4.1)

ν + n→ l− + n+ π+ (4.2)

ν + n→ l− + p+ π0(η) (4.3)

ν + p→ l− + p+ π+ (4.4)

ν +16 O → l− +16 O + π+ (4.5)

ν +N → l− +N + multiπ (4.6)

ν +N → l− +N + mesons (4.7)

ν +N → ν +N (4.8)

ν +N → ν +N + π0(η) (4.9)

ν + n→ ν + p+ π− (4.10)

ν + p→ ν + n+ π+ (4.11)

ν +16 O → ν +16 O (4.12)

ν +N → ν +N + multiπ (4.13)

ν +N → ν +N + mesons (4.14)

Nuclear effects are included for both initial state and final state particles.
For initial nucleons, the nuclear potential, Fermi motion and Pauli blocking ef-
fects are taken into account. For ν16O simulation, the momentum distribution
of nucleons is estimated from electron 12C scattering experimental data.

For nucleons and mesons in the final state, a cascade model is used to sim-
ulate their interactions before exiting the nucleus. The following processes are
considered for mesons, especially pions: inelastic scattering, charge exchange,
and absorption. A process is selected among the competing processes using
their corresponding mean free paths. The calculated mean free paths depends
not only on the pion momentum but also the pion position. For nucleons,
the elastic scattering is simulated using cross sections from nucleon-nucleon
scattering experimental data. Single-delta and double-delta production are
also simulated using the isobar model. Finally, gamma production from de-
excitation of nucleus is also included in the simulation.

The NEUT neutrino simulation was written for water Cherenkov detectors
(Kamiokande, Super-Kamiokande), so it deals mostly with neutrino interac-
tions on oxygen. As the time of writing, NEUT does not handle real the
detector geometry, i.e., not following neutrino ray and simulating neutrino in-
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teractions with nuclei along the path. For use in the reconstruction algorithm
development, NEUT simulates neutrino interactions on oxygen, then neutrino
vertices with final state particles are distributed throughout the detector using
mass density.

Another event generator, GENIE, is also used at the near detector for cross
check[46].

Figure 4.1: Cross sections of charged-current quasi-elastic scattering from
NEUT simulation. Experimental data from different experiments are also
shown for comparison[45].

4.2 Detector and electronics simulation

The detector simulation is based on Geant4 simulation package[47]. Geant4
is a software toolkit for the simulation of the passage of particles through
matter. The detector simulation takes the particles with their kinematics from
the event generator and transports them separately in the detector. It also
provides a detailed description of the detector with realistic detector materials.
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The energy losses of particles are simulated and energy deposits along the
path lengths are saved in hits. Each hit keeps the position, timing, and the
amount of energy deposit. Details of the simulation are described in the Geant4
documention.

The electronics simulation inputs hits from the detector simulation. The
output of electronics simulation are hits in the same format as the actual
experimental data and can be used by the reconstruction software (Chapter
6). It simplifies the scintillation process by generating a number of photons
corresponding to the amount of energy deposit using a conversion factor. For
example, a conversion factor of 50 photons/MeV means that an amount of
1 MeV energy deposit will generate 50 photons in the optical fiber. The
number of photo-electrons is scaled by a factor which represents the light
attenuation during propagation inside optical fiber to the photosensor. The
light attenuation curve is assumed to have the form:

a(l) = (1 − f)e−l/cs + fe−l/cl (4.15)

where cs, cl are the long, short attenuation components and l is the distance
from the photosensor. The scaling factor is

a(l) + a(L− l)ra(L), (4.16)

where r is the mirror reflectivity and L the fiber length.
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Chapter 5

Event Reconstruction in the P0D

The detector provides the measurements of particle two-dimensional posi-
tion, time, and energy deposit in terms of hits. Each hit contains position,
timing, and energy deposit in the corresponding scintillator volume. The re-
construction of complete trajectories and kinematics of particles must be done
by specialized algorithms using these hits. The interaction vertex can be esti-
mated by extrapolating the reconstructed particle trajectories. This is called
event reconstruction. The event reconstruction uses the fact that particles
make characteristic hit patterns. Specifically, there are two distinctive hit
patterns: charged particle track which appears as relatively straight line and
electromagnetic showers created by γ or electron. This chapter presents the
event reconstruction in the P0D.

5.1 Full-spill reconstruction

The detector readout electronics system is synchronized with the arrival
time of the neutrino beam so that it can record neutrino data every time a spill
comes. The neutrino data from one spill is stored in an event. Between the
neutrino beam time, the readout electronics system switches to either cosmic
or light injection calibration mode. Dependent on the beam configuration, a
spill could have 6, 8, or 15 bunches. The Trip-t timing structure is set so that
each bunch fits inside one Trip-t integration period. The hits produced by
neutrino interactions in each event are separated into groups using the Trip-t
timeslices, each corresponding to one bunch. Since there are more timeslices
than bunches, the remaining timeslices after the spill time are used to store
signals from muon decays. Each hit group is reconstructed independently
except for the muon tagging step where the hits of the whole spill are used. In
order to reduce noise hits from either the MPPC dark noise or slow neutrons
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produced by neutrino interactions from the magnet, only hits within the first
100 ns window of each bunch are included in the reconstruction.

5.2 Charged particle track reconstruction

5.2.1 Track pattern recognition

The main task of the track pattern recognition is to detect charged particle
tracks and separate them from showers. The charged particle tracks are mostly
muons from charged current neutrino interactions. In the following we will
describe the algorithm to detect and separate charged particle tracks from
showers in 2D projection plane. The algorithm is applied separately on the
xz and yz hits. Charged particle tracks which appear as relatively straight
lines are detected using the Hough transform[48]. The Hough transform in its
original form is a line detection algorithm. The normal equation of a straight
line in two dimensions is

r = x cos θ + y sin θ, (5.1)

where θ is the angle between the vector which is perpendicular to the line
and the x-axis, and r is the distance from the line to the origin. In this
representation each line in the image is defined by a point (r, θ). The (r, θ)
plane is usually referred to as Hough space. Using (5.1), a point (x0, y0) in
the image space can be mapped to a sinusoidal curve in the Hough space,
r(θ) = x0 cos θ+y0 sin θ. Two curves corresponding to two points in the image
space intersect at (r, θ) in the Hough space. The intersection point (r, θ) defines
the line that passes through both points in the image space. More generally, a
set of points on a straight line in the image space corresponds to a set of curves
that intersect at the point (r, θ) in the Hough space. Therefore, the detection
of a straight line in the image space becomes detecting the coordinates (r, θ)
where most sinusoidal curves pass through. To detect this point (r, θ), the
Hough space is discretized into cells. Then for each point (x0, y0) in the image
space, a vote is added to cells (ri, θi) in the discretized Hough space, where ri

is a discrete value given by (5.1) and θi running from 0 to 2π. This is done for
all points in the image space. Finally, the cell with the most votes gives the
detected line in the image space.

Although the Hough transform is a robust line detection algorithm, it has
certain drawbacks. First, it is a global transformation which means that points
are found to belong to a straight line can be far away from each other. This
is undesired for tracking application since the hits from the same particle
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trajectory also belong to a spatial cluster. Second, it is hard to find optimal
discretizing step for r and θ. If these steps are too small, points that deviate
slightly from the line will not be detected, the contributing votes falling into
neighboring cells. The cells in the neighborhood of the cell with the maximum
votes can give spurious lines. On the other hand, if the steps are too wide,
different lines can be detected as a single line.

The six points on a straight line in the image space and their corresponding
curves in the Hough space is shown in Fig. 5.1. Since the points are strictly
on a line, the curves intercept at a single point. In practice, the intercepting
point has finite size.
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Figure 5.1: Illustration of the Hough transform. Each point in the image space
on the left is mapped into a sinusoidal curve in the Hough space on the right.
The curves from the points on a straight line in the image space intercept at
a single point in the Hough space.

Application of the Hough transform

Charged particle tracks are found independently in the xz and yz projec-
tions. Let us consider the track finding algorithm in one projection using either
xz or yz hits. The Hough space is discretized into (20, 3 cm) cells. The r step
is chosen to detect charged particles at normal incidence to the scintillator
plane. Particles with some angle with respect to the z-axis have smaller track
width than the normal incident particles (w → w cos θ, where θ is the angle
between the track and the beam z axis). Since there could be more than one
charged particle tracks in an event, the following steps are applied repeatedly
to search for all the tracks.

• The largest rectangle which contains all the hits are found using hit
positions, this defines the size of the image space. This is to improve
computational performance, one could use the detector size.
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• For each hit with the two dimensional position (x0, y0), votes are added to
cells (ri, θi) given by (5.1). In practice, the two dimensional hit position
is either (x, z) or (y, z) in the detector coordinate system.

• Find the cell with the maximum number of votes. The hits in the image
space that contribute votes to this cell are assigned to a straight line
defined by the cell coordinates (rmax, θmax). These hits form the raw
charged particle track.

• Since the Hough transform is global, these hits may be far away from
each other. Therefore, a density-based clustering [49] is applied. This
ensures that hits associated to the track are spatially connected. The
output of the density-based clustering is a set of clusters, each having
a list of hits associated with it. Only the cluster with the most hits is
kept and hits belonging to other clusters or hits not associated with any
cluster are returned to the remaining hit list.

• If a track is slightly bent, the Hough transform could find only short
straight segments of the track. This can be avoided by increasing the
r discretizing step. However, a wider r step means that showers with
small width can be mis-identified as tracks. Therefore, the r step is kept
at 3 cm and the track is extended at both ends using a track following
algorithm (see below).

• All hits belonging to the detected track are removed.

The steps are repeated until there are no remaining hits or the number of
remaining hits is below a threshold of five hits. After this step, there is a set
of charged particle track candidates and a set of remaining hits which are not
associated with any track.

Track following

A track following algorithm is used in combination with the Hough trans-
form to find charged particle tracks. The algorithm is applied at both ends
of the track candidate found by the Hough transform. The track following
algorithm at one end is described as follows. First, the five scintillator planes
at the end of the track is selected. Next the position of the hits from these
planes are fitted to a straight line. The fitted line is projected to the next
plane away from the track end. If there are no hits within a window of 4 cm
around the projected point on this plane, the track following is stopped. If
there are hits within the window, then the plane are added to the five existing
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planes. The last plane at the other end is removed. The steps are repeated
with the new five planes. When the track following at one track end stops, it
is applied at the other end.

Charged particle track and shower separation

The tracks are called candidates because they could be part of a large
shower. The candidates have to pass one of the following selection criteria to
become tracks:

• If the track has a segment longer than 40 cm with no hits in the neigh-
borhood.

• If the track width is less than 1.2 cm. The track width is calculated
as follows. For track traversing more than five scintillator planes, it is
broken into five scintillator plane segments. A principal component anal-
ysis (PCA) is performed on each segment. The PCA finds the principal
axis along which the covariance is maximized. The second principal axis
which is perpendicular to the principal axis is along the width of the
segment. The coordinates of hits on this axis characterize the width of
the segment. The standard deviation of this coordinate of all track hits
in this segment is defined as the track width.

The hits which are not associated with any charged particle track are passed
to the π0 reconstruction.

5.2.2 Track matching

The P0D measures particle trajectory in the xz and yz plane independently.
Three-dimensional track must be reconstructed in software using these two-
dimensional measurements. The matching is proceeded in the following steps:

• All tracks in the xz plane are paired up with all tracks in the yz plane.
Let m,n be the number of charge particle tracks in the xz, yz plane,
respectively, then there are m× n pairs.

• For each pair, the z offsets between two tracks at both ends , ∆zf ,∆zb are
calculated. Only the pair with both ∆z less than 10 cm are considered
matched. The definition of ∆z is illustrated in Fig. 5.2.

• All pairs are sorted using the total z offset, ∆z ≡ ∆zf + ∆zb. The pair
with the smallest ∆z is considered matched.
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• If two pairs have the same ∆z, then the charge difference is calculated for
each pair, and the pair with the smaller charge difference is considered
matched.

• The two two-dimensional tracks corresponding to the matched pair are
removed and the procedure is repeated.

The matched pairs are used to form three-dimensional tracks.

Figure 5.2: Illustration of track matching. The two-dimensional tracks are in
red. The four vertical dashed lines indicate track ends

5.2.3 Track and vertex fitting

After track matching, each 3D track consists of both xz and yz hits. Track
fitting uses these hits to calculate the best estimate of the particle trajectory
and direction at each scintillator plane. Since the sensitive detector is made
of triangular scintillator bars, a charged particle passing a scintillator plane
makes two or three hits, depending on the incident angle. The estimated
position on this plane is the energy-weighted position of these hits

x̄ =
∑

hits

qixi (5.2)

where xi is the position, qi = Qi/Qtot is the fractional energy. This energy-
weighting procedure is done for each track plane before the track fitting.
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The fitting is done using the discrete Kalman filter[50]. The dynamic model
for the Kalman filter is straight trajectory with small random perturbation to
the particle direction to account for multiple scattering. The discrete Kalman
filter is a set of equations which provides a recursive solution to the state
estimation problem. The filter not only gives an optimal state estimation but
also can predicts the state using the dynamic model. The prediction can be
used to extrapolate tracks in a detectors that measure the 2D projections of
particle trajectories.

Application of the Kalman filter to track fitting

The state vector is defined as

x̂ =









x
y
dx

dy









(5.3)

where x, y are the particle position and dx, dy the x, y components of the
direction vector, respectively. Note that the coordinates (x, y) here are either
(x, z) or (y, z) in the detector coordinate system. The process equation which
predicts the state vector at plane k + 1 given the state vector at plane k is

xk+1 = Fk+1,kxk + wk (5.4)

where Fk+1,k is the transition matrix. For a straight trajectory, the transition
matrix is given by

Fk+1,k =









1 0 ∆z 0
0 1 0 ∆z
0 0 1 0
0 0 0 1









(5.5)

where ∆z is the z distance between planes k and k + 1.
The measurement equation which relates measurements to the state vector

is
zk = Hkxk + vk, (5.6)

where zk is the position measurement at plane k and Hk is the measurement
matrix. The position measurement can be either x for X scintillator plane or
y position for Y scintillator plane. The measurement matrix is given by

Hk =

(

1 0 0 0
0 1 0 0

)

, (5.7)
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where the last two columns are all zero since there is no direction measure-
ment. The process noise wk and the measurement noise vk are assumed to be
independent, zero-mean, and with normal probability distributions

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R), (5.8)

where Q is the process covariance matrix and R measurement covariance ma-
trix.

Initialize the filter

The first step is to estimate a state vector which serves as the initial state
for the filter. The initial state vector is estimated as follows. Hits associated
with the track are fitted to a straight line separately in xz and yz planes. The
best fit line equations are

x = kxz + bx (5.9)

y = kyz + by, (5.10)

where k and b are parameters determined from the fits. Note that each of these
two equations is also a three-dimensional plane equation. The intersection of
these two planes is a straight line which defines the particle trajectory. It gives
an estimate of the particle trajectory in case the trajectory slightly deviates
from the straight line. Let z0 be z position of the starting point, then the
three-dimensional point line equation at this point is determined by

M0(kxz0 + bx, kyz0 + by, z0)

~s(kx, ky, 1). (5.11)

This point line equation is used as the initial state vector. Remember that a
line equation in three dimensions can be written in the parametric form

x = x0 + l ∗ t
y = y0 +m ∗ t
z = z0 + n ∗ t. (5.12)

In other words, any point on the line are defined by (5.12) given (x0, y0, z0)
and (l,m, n). The parametric form of a line in three dimensions is called point
line equation.

Track parameter estimation



51

We will use the update step of the Kalman filter to estimate track point
position and direction at every scintillator plane traversed by the particle.
There are two state estimates in the Kalman filter: a priori state estimate
and a posteriori state estimate:

x̂−k = Fk,k−1x̂k−1 + wk−1

x̂+
k = x̂−k +Kk(zk −Hkx̂

−
k ), (5.13)

where Kk is the Kalman gain matrix defined in the following. The first equa-
tion is called the prediction step or time update step and the second equation
is called the measurement update step since it uses the measurement, zk. Let
x̂0 (k = 1) be the initial state vector, the prediction step gives the estimate
of the state vector at the next scintillator plane. The update step uses the
position measurement at the current plane to adjust the predicted state vec-
tor. This is supposed to be a better estimate since it takes into account of
the position measurement. Note that the “-” superscript denotes the state (or
covariance matrix) before using the measurement and the “+” after using the
measurement. For k running from 0 to N , with N the number of scintillator
planes that the particle passes through, the iterative formulae (5.13) gives the
optimal estimate of all the track points. It is noted that since the measure-
ments are only two-dimensional, the Kalman filter also includes extrapolating
during the prediction step.

The Kalman gain matrix is given by

Kk =
P−

k H
T
k

HkP
−
k H

T
k +Rk

, (5.14)

where P−
k ≡ FPk−1F

T + Qk−1 is the a priori process covariance matrix, HT

the transpose of the measurement matrix, and Rk the covariance matrix of the
measurement noise (5.8).

Forward-backward smoothing

Suppose that a particle passes through N scintillator planes, we have N
independent measurements of the particle trajectory. Now we want to estimate
the trajectory intersection point and the particle direction at scintillator plane
m. The standard Kalman filter gives the optimal estimate of the state vector
at plane m using the available position measurements from plane 0 to plane
m. However, for track fitting the measurements from plane (m + 1) to plane
N are also available. Therefore, it is tempting to include these measurements
to improve the state estimate at plane m. The forward-backward smoothing
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is a way to obtain a better state estimate using all available measurements. It
involves calculating two state estimates at the plane m. The first estimate, x̂f ,
is based on the standard Kalman filter with k running forward from 0 to m.
The second estimate, x̂b, based on the standard Kalman filter with k running
backward from N -1 to m. The forward-backward smoothing combines the two
estimates to form the optimal smoothed estimate of the state vector

x̂ = Kf x̂f + (1 −Kf )x̂b, (5.15)

where Kf can be calculated from the covariance matrices of the forward and
backward estimates

Kf =
Pb

Pf + Pb

, (5.16)

where we have dropped the “+” sign on the covariance matrices.
The track fitting procedure described above has been tested on a Monte

Carlo sample of 10,000 2-GeV muons. The direction of the muons are limited
to 100 from the z axis. During detector simulation, the true muon position
and direction are saved every 1 mm. This is to compare the true position and
fitted position at each scintillator plane. The muon MC sample is run through
track pattern recognition, track matching and fitting. After track fitting, the
muon position and direction at each scintillator plane are available. At each
plane, we find the true trajectory point which is closest in z to the fitted track
point. The fitted track point is then projected to the xy plane of the true
trajectory point. The x, y positions of the true trajectory point are compared
with those of the projected point. The x, y residuals are shown in Fig. 5.3.
These residuals are fitted to a Gaussian function and it is found that the means
are zero and standard deviations are σx = 2.1 mm and σy = 2.0 mm.

Vertex fitting

The vertex reconstruction is simple in neutrino experiments, especially for
low energy neutrino beam like T2K since there are not many particles coming
out of the vertex. Most of the time there is a single muon track from charged
current interactions. In this case the interaction vertex is simply the most
upstream track point. When there are more than two tracks, the vertex is
found by minimizing the vertex distance to all the tracks

∑

tracks

|(~r − ~r0) − ((~r − ~r0).~n)~n)| , (5.17)

where ~r0 is the vertex position to be obtained from the minimization, (~r, ~n)
the point line equation of the track, and the sum is over all tracks. For the
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Figure 5.3: Residuals of track fitting (solid histogram) and Gaussian fitted
curve (dashed line). The fitted parameters are µx = 0.0 mm, σx = 2.1 mm
and µy = 0.0 mm, σy = 2.0 mm.

interaction channels where only the π0 produces hits, e.g., νµ+n→ νµ+n+π0,
its vertex reconstruction is described in 5.6.

5.3 Particle identification

Since the main purpose of the P0D is to measure the π0 spectrum and
its production cross sections, it is crucial to reject as many charged-current
neutrino interactions as possible. To do so requires to distinguish muons from
protons. These two particles appear as charged particle track in the P0D.
It is noted that since the charged pion mass is close to the muon mass, it
is not possible to distinguish charged pions from muons in the detector. For
example, these two interaction channels might have similar signature in the
detector: neutral-current single π0 production accompanied by a proton and
charged-current single π0 production where the proton is not detected. An-
other example which does not affect the neutral-current π0 measurement, but
important for cross section measurements, is the quasi-elastic scattering with
both proton and muon tracks detected and the charged-current single charged
pion production with the proton not detected. In this section we will describe
the particle identification algorithm which distinguishes muons from protons
using their energy deposit.

The P0D is a sampling detector, it does not measure all the energy losses
by a charged particle, but only a fraction of the energy deposit on active scin-
tillator planes. When a relativistic charged particle traverses the detector,
it continuously loses energy through excitation or ionization of atomic elec-
trons. Energy loss is a stochastic process, i.e., particles with the same initial
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conditions lose different amount of energy when passing through the same scin-
tillator layer. Therefore, energy deposits on a scintillator layer by a number
of particles are not a discrete value, but a Gaussian-like distribution. This
distribution is more skewed (Landau-like) for very thin scintillator layer or gas
detectors. For the P0D the distribution is Gaussian-like because it has about
2 cm of scintillator per plane. The mean energy loss of heavy (≥ mµ), charged
particle in a medium is given by the Bloch-Bethe formula

−dE
dx

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ(βγ)

2

]

, (5.18)

where

• Tmax ≈ 2mec
2β2γ2 is the maximum energy transfer to an e− in a collision.

• K = 4πNAr
2
emec

2

• NA is the Avogadro’s number

• re the classical electron radius

• I the mean excitation energy

• δ(βγ) the density effect correction to ionization energy loss.

For low-energy charged particles, the mean energy loss is proportional to
1/β2, i.e., inversely proportional to the particle velocity squared, and does not
depend on the particle mass. Hence proton and muon of the same kinetic
energy have very different mean energy loss; proton loses more energy than
muon in the same range. This characteristics of energy loss can be used to
distinguish muons from protons. Specifically, the energy deposits in ten scin-
tillator planes from the particle stopping point will be used. Energy deposit in
scintillator generates scintillation light and is measured in terms of the number
of photoelectrons or light yield. The energy deposit by a charged particle on
scintillator plane is given by the total light yield of all track hits on that plane:

Qplane =
∑

hits

Qi. (5.19)

It is noted that in addition to the energy loss by excitation of atomic electrons,
protons also lose energy from elastic scattering with nucleons in the detector
materials. Most of the energy carried off by these nucleons can not be measured
since the P0D is not optimized to detect low-energy nucleons. For this reason,
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there is more uncertainty in the energy deposit by protons than muons. There
are corrections that must be made to this light yield. The first correction is
to account for the path length difference in a scintillator layer as the particle
with longer path length deposits more energy,

Q→ Q cos θ, (5.20)

where θ is the angle between the particle direction and the z axis.
The second correction is for the light attenuation along wavelength-shifting

fiber. For reconstruction algorithm development, an attenuation curve is used
for all bars

a(z) = fe(−l/cl) + (1 − f)e(−l/cs), (5.21)

where f = 0.77 is the fraction of the long component, cl = 463.4 cm is attenua-
tion coefficient of the long component, and cs = 33.2 cm the short component.
The correction factor for the energy deposit at l away from the sensor is

a(l) + a(L− l) r a(L), (5.22)

where L is the length of the fiber and r is the mirror reflectivity. It should
be emphasized that the light attenuation correction factor given by (5.21) and
(5.22) is different from the one measured from cosmic data. However, this
is not incorrect as long as the correction factor in the reconstruction undoes
the light attenuation applied in electronics simulation. The light attenuation
curve in the electronics simulation will be updated using that measured from
cosmic data. In summary, the light yield correction is

Q→ Qc = Q cos θ/(a(l) + a(L− l) r a(L)). (5.23)

The corrected light yield on ten scintillator planes from the stopping point
for muons and protons are shown in Fig. 5.4. It is noted that the particle
identification is only applicable to 3D tracks since it requires 3D track direction
and 3D position at each scintillator plane.

Likelihood classifier

It has been seen that the energy deposit by protons and muons are very
different near the stopping point. Since the energy loss is a stochastic process,
the energy deposits on different scintillator planes are independent from each
other. Therefore, a discriminant constructed from the energy deposit on all
scintillator planes is expected to better classify protons and muons. Let us
consider the general problem of classifying objects of two classes, ω1 and ω2.
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Figure 5.4: Light yield distributions on ten scintillator planes from the stop-
ping point for muons (solid histogram) and protons (dashed histogram) ( MC
simulation). The x axis is the light yield measured in the unit of photoelectron.

These objects are characterized by a measurable feature vector ~x. Let P (ωi|~x)
be the conditional probability that the object represented by ~x belongs to
class ωi. If the probabilities P (ω1|~x) and P (ω2|~x) can be determined, then a
reasonable decision will be

if P (ω1|~x) > P (ω2|~x) then ~x ∈ ω1 else ~x ∈ ω2. (5.24)

The posterior probabilities can be rewritten using Bayes rule:

P (ωi|~x) =
p(~x|ωi)P (ωi)

p(~x)
, (5.25)

where
∑

i=1,2

p(~x|ωi)P (ωi) (5.26)

is the total probability of ~x. The continuous conditional probability p(~x|ωi)
is called likelihood. Substituting (5.25) into (5.24) and omitting the common
denominator, we get

if p(~x|ω1)P (ω1) > p(~x|ω2)P (ω2) then ~x ∈ ω1 else ~x ∈ ω2. (5.27)

If we want to use only the feature vector ~x to classify objects, i.e., classification
using only characteristics of the objects, the prior probabilities P (ωi) are set
to be the same. In other words, objects of class ω1 and class ω2 have the same
appearance chance. In this case, the decision becomes

if p(~x|ω1) > p(~x|ω2) or
p(~x|ω1)

p(~x|ω2)
> 1 then ~x ∈ ω1 else ~x ∈ ω2. (5.28)
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The ratio in (5.28) is called the likelihood ratio, and it can be used to classify
objects of class ωi.

Particle identification using likelihood

We will use the likelihood method to distinguish between protons and
muons. The feature vector ~x in this case is the corrected light yield in ten
scintillator planes from the stopping point, ~Qc from (5.23). For tracks travers-
ing more than 10 planes, only the 10 planes near the stopping point are used.
For those traversing less than 10 planes, all planes are used. The probability
density function (pdfs) of the corrected light yield can be obtained by normal-
izing the corrected light yield histograms of muons and protons. The likelihood
product is

L =
∏

i

p(Qi|muon)

p(Qi|proton)
(5.29)

or more frequently used, the log likelihood,

logL =
∑

i

(log p(Qi|muon) − log p(Qi|proton)). (5.30)

Here the sum is over all scintillator planes traversed by the track.
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Figure 5.5: Likelihood for protons (dashed histogram) and muons (solid his-
togram). A vertical line at 0.0 divides the log likelihood into the proton-like
and muon-like regions. The region to the left of the divider is proton-like and
the one to the right is muon-like.
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The first step in using the likelihood method is to make the probability
density function for protons and muons. For this purpose, we generate samples
of proton of 300 MeV and muon of 200 MeV kinetic energy. The energies of
the particles are not important, as long as they stop inside the detector. The
second step is to calculate the (log) likelihood distributions for protons and
muons. In Fig. 5.5, the log likelihood distributions for protons and muons are
shown. The log likelihood for muons is the solid line, and the log likelihood
for protons is the dashed line. It is seen that the log likelihood for protons
is clearly separated from the log likelihood for muons. A vertical line at 0.0
divides the log likelihood into the proton-like and muon-like regions.

The log likelihood cut has been to used to test classifying protons from
muons. We generate MC samples of proton of 200-400 MeV kinetic energy
and muon of 100-500 MeV kinetic energy. By using the truth MC, we can
tell if a particle is correctly identified. In Fig. 5.6 (left) the momentum of the
muon sample is shown, the hatched histogram is the muon which is correctly
identified by the log likelihood cut. All the muons in the muon test sample are
correctly identified. In Fig. 5.6 (right) the momentum of the proton sample
is shown, the unfilled histogram are protons that are correctly identified, and
the hatched histogram are protons that are mis-identified as muons.
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Figure 5.6: True momentum distributions of muons and protons from the
particle identification test samples. True momentum distribution of the muon
test sample, all muons are correctly identified by the log likelihood cut (hatched
histogram) (left). True momentum distribution of the proton test sample, most
of the protons are correctly identified (unfilled histogram) with a small fraction
misidentified as muons (hatched histogram) (right).
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5.4 Muon decay tagging

Charged-current neutrino interactions can also be tagged using stopping
muons in the P0D. These stopping muons can either decay or be captured by
nuclei through reactions:

µ− → e− + νµ + ν̄e (5.31)

µ− + p→ n+ νµ. (5.32)

These processes can be detected using the electron from muon decay or the
neutron from muon capture. Muon has a lifetime of 2.2 µsec, so it can make
delayed hits in the detector. Typical timing for hits from other particles is
about 100 ns (see Fig. 5.7). The energy spectrum of electron from muon decays
is shown in Fig. 5.7, the cutoff threshold is given by mµ/2. It is seen that most
electrons from muon decay are at low energy. The range of electrons at this
energy is about 15 cm. This range is significantly reduced if the electrons
traverse the lead radiators. Therefore, hits produced by the decay electron are
connected to those from the parent muon and are within about 15 cm of the
stopping point. In the following, we will describe the algorithm to search for
hits from muon decay.

Figure 5.7: Time distribution of hits from muon decays and captures, gaps
between bins are Trip-T reset periods, the plot is generated using 4000 decays
and captures each (left) and energy spectrum of electron from muon decay
(right).

The search for hits from the stopping muons are carried out independently
in xz and yz planes. In the following, we describe the algorithm for one
projection plane. The hits in a each event are divided into two groups: hits in
the current bunch and delayed hits which consists of hits in the later bunches
and those from the after-spill period. Remember that the Trip-t integration
time of all 23 timeslices is longer than the spill length. First hits in the current
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bunch are clustered using the density-based clustering algorithm. If there is
no cluster which has at least five hits, the search is stopped since there are not
enough connected hits to reconstruct a neutrino interaction and hence there is
no need to find the stopping muon. If there are clusters, then the hits in the
current bunch and the delayed hits are overlapped in time and the hits which
belong to the largest cluster are used as a seed to expand the cluster into the
delayed hits. This expansion is a form of clustering and again the density-based
clustering is used. The delayed hits that are added to the cluster during the
expansion are considered candidate hits from the muon decay. These candidate
hits are further required to be time- and space-connected. The requirement
is that a decay hit has at least one decay hit within 20 ns in time and 5 cm
in space. The candidate hits satisfying these requirements are accepted as
hits from the muon decay. Finally, the decay hits which have been found are
removed from the delayed hits, and the muon decay tagging is repeated for
the next bunch in the event. Strictly speaking, there could be more than one
neutrino interaction in the same bunch but it is unlikely. In that case, the
muon decay tagging should move to the next neutrino interaction in the same
bunch.

The muon decay tagging algorithm described above has been tested using
a sample of Monte Carlo simulated stopping muons. The muon sample has
a flat energy distribution from 50 MeV to 100 MeV and a uniform angular
distribution. The muon energy range is to ensure that parent muons produce
enough hits to trigger the muon decay search and stop inside the detector. The
muon vertex is uniformly distributed in the water target region. The muon
vertex time is uniformly distributed in the 15 bunches, each of 241 ns. By
looking at the other particles produced at the stopping point using MC truth,
it is found that about 30% of muons in the sample are captured by nucleus,
and about 70% decay. The muon decay tagging is run on this sample and
the tagging efficiency is about 50%. This efficiency also includes the number
of muon captures which are detected by the algorithm. It is noted that this
efficiency is for the spill structure of 15 bunches, each of 241 ns. The tagging
inefficiency is caused by the electron stopping in water or lead radiator, the
neutron escaping the detector without any interactions, and the electronics
dead time.

5.5 Track extrapolation from the TPC

The TPC is located downstream of the P0D detector. Since it has better
particle tracking and identification capabilities, charged particle tracks found
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by the TPC are extrapolated into the P0D. The extrapolation enables the
detection of charged particle tracks that are too short to be detected by the
P0D itself or obscured by showers. The extrapolation algorithm is described
below.

Charged particle tracks from the TPC are filtered to select only tracks that
appear to come from neutrino interactions in the P0D. This is done by requir-
ing the most upstream track point to be inside an area of 1.8m× 1.8m centered
around the z axis. Each of these selected tracks is then extrapolated into the
P0D. The extrapolation is implemented in terms of the discrete Kalman fil-
ter. Similar to the track fitting, the dynamic model for the filter is a straight
trajectory with small random perturbation to the particle direction. For each
track, the extrapolation proceeds in the following steps. First the filter is
initialized with the position and the reversed direction of the most upstream
track point and their corresponding covariances. The direction is reversed be-
cause the track is going forward in the beam direction while the extrapolation
is backward. Next the prediction step of the filter is used to project the track
point to most downstream scintillator plane of the P0D. If there are no hits
in a window of 4 cm around the projected point, the extrapolation is stopped.
If there are hits, then the energy-weighted position of these hits is calculated.
Remember that the same weighting was done for hits in the same scintillator
plane before the track fitting. The equation is reproduced here:

x̄ =
∑

hits

qixi, (5.33)

where the sum is over all hits in the window, and qi is the fractional energy,
and xi is the position. Finally, the update step of the Kalman filter uses the
energy-weighted position (5.33) to update its state and covariance. Now the
updated state and the covariance can be used in the prediction step to project
to the next plane. These steps are repeated until the filter reaches the front
of the P0D or the extrapolation fails because of empty hits in the window.
Note that the extrapolation alternates between the xz and yz planes. At
the x plane, the y position is not updated, and vice versa. At the end of a
successful extrapolation, i.e., no track loss, a three-dimensional track is found
in the P0D. Since the particle corresponding to the extrapolated track escapes
the detector, the P0D particle identification which is applicable to stopping
particle track would not be efficient. Therefore, the particle likelihood of the
extrapolated track is copied from the original TPC track.
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5.6 π0 reconstruction

The π0 is reconstructed using the hits which are not associated with charged
particle tracks. The following variables of the π0 are required for analysis:

• Interaction vertex

• Momentum

• Invariant mass

The interaction vertex and invariant mass could be used to select good π0

sample. The reconstruction of π0 from neutral current neutrino interactions are
in general complicated because of the contaminating hits from other particles.
Let us consider the simpler case of π0 from a particle gun where all the hits
are produced by the π0.

5.6.1 Particle gun π0 reconstruction

For simplicity, let us further assume that π0 only decays into two γs. The
Dalitz decay mode, π0 → e+e−γ, has the branching ratio of less than 2%.
In principle, the reconstruction of π0 involves the reconstruction of the two
daughter γs. The π0 energy momentum is simply the sum of the γ energy
momenta. The vertex can be extrapolated from the γ directions. The invariant
mass can also be reconstructed from the energies of the two γs and the open
angle

m2
π0 = 2E1E2(1 − cos θ), (5.34)

where E1, E2 are the energies of γ1, γ2, respectively, and θ is the open angle
between the two γs. The invariant mass is a powerful variable to separate the
π0 from the backgrounds. However, the reconstruction of the two γs presents a
challenging data association problem, especially in a target geometry detector
where it is instrumented to measure forward-going particles. Although for π0

from neutral current interactions the total momentum of the two γs is in the
forward direction, the momentum of individual γ is arbitrary. The high-angle
γs could make isolated showers since they transverse fewer radiator layers and
hence it is hard to associate which shower to which γ. In addition, low-energy
γs produce so few hits that it is difficult to determine the γ direction from the
shape of the hit pattern. Finally, γ showers in xz and yz projection planes
must be matched to form 3D showers. Therefore, we propose an approximate
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method to reconstruct π0 without having to solve the data association problem.
The momentum of each γ can be approximately reconstructed

~pγ = k
∑

γ hits

r̂iQi, (5.35)

where r̂i is the direction vector from the γ vertex, Qi is the hit light yield after
light attenuation correction, and k is the energy calibration constant. Let us
find the error involved in the approximation (5.35). When the direction vector
of all the hits are collinear, the direction vectors can be taken out of the sum
and the momentum is simply

~pγ = r̂k
∑

γ hits

Qi = r̂Eγ (5.36)

where r̂ is the γ direction vector. Equation (5.36) is the exact relativistic
relation between the γ energy and momentum. Note that the direction vector
in (5.35) can be decomposed into the transverse and longitudinal components
with respect to the γ direction, r̂i = r̂i‖ + r̂i⊥, then (5.35) can be rewritten:

~pγ = k
∑

γ hits

(r̂i‖ + r̂i⊥)Qi = r̂Eγ + k
∑

γ hits

r̂i⊥Qi

→ ~pγ − r̂Eγ = k
∑

γ hits

r̂i⊥Qi, (5.37)

where we have substituted (5.36) for the longitudinal term. From (5.37), it is
clear that the error of the approximation is given by the transverse term. In
other words, the approximation assumes that the transverse component of the
direction vector is negligible. This is especially true for γ showering far from
the vertex.

The π0 momentum is simply the total momenta of the two γs.

~pπ0 = k
∑

γ1 hits

r̂iQi + k
∑

γ2 hits

r̂iQi = k
∑

π0 hits

r̂iQi (5.38)

This equation allows calculating of the π0 momentum without having to sep-
arate the gamma hits, the error introduced by this method is given by (5.37).
In Fig. 5.8 (left) the relative deviation of the reconstructed momentum from
the true momentum is shown. The mean shift due to the approximation is less
than 1.5%. A MC sample of π0 with a uniform energy distribution with the
range from 50 MeV to 400 MeV and forward direction is used to obtain the
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plot. The light yield Qi is corrected for light attenuation using the true hit
position from MC and also the true vertex is used to calculate the direction
vector r̂i.

Similarly, the π0 energy can also be reconstructed

Eπ0 = k
∑

π0 hits

Qi. (5.39)

Now given both the momentum and energy, the invariant mass can be calcu-
lated

mπ0 =
√

E2
π0 − p2

π0 . (5.40)

In Fig. 5.8 (right) the invariant mass calculated using this equation is shown.
The calibration constant k is determined so that the mean of the relative
deviation of the reconstructed energy is zero. It should be emphasized that
for real neutrino data, the calibration constant k must be determined from the
absolute energy calibration. This energy calibration could be done by using
the π0 invariant mass of a well-reconstructed π0 sample from charged current
interactions. The calibration constant k is then obtained by minimizing the
quantity

(

mπ0 − k
√

2Q1Q2(1 − cos θ)
)2

, (5.41)

where mπ0 = 134.97 MeV/c2 and Q1, Q2 are the light yield produced by the
two γ’s.
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Figure 5.8: The relative deviation of the reconstructed momentum from the
true momentum, the mean shift due to the approximation is less than 1.5%.
(left). The π0 invariant mass calculated using the approximate momentum
(5.40) (right) (MC simulation).

The momentum reconstruction requires the π0 vertex, it can be estimated
by using a grid search. The search scans the whole detector to find the ver-
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tex position which maximizes the (log) likelihood function of these likelihood
variables:

• The ratio of energy in clusters to the total energy.

• The number of clusters

• Cluster width

• The distance from the vertex to the closest cluster.

Here the width of the cluster is expected to be of the order of the Moliere
radius and the distance from the candidate vertex to the closest cluster is
about the mean free path which is 9/7 of the effective radiation length. Note
that this grid search is very computing extensive, a new vertex finder has been
developed which searches for the vertex around the principal axis determined
by a PCA analysis of all π0 hits.

5.6.2 Neutrino interaction π0 reconstruction

For neutrino data, the π0 reconstruction is more difficult since there are
contaminating hits from other particles, especially from protons and neutrons.
After charged particle reconstruction, the hits associated with charged particle
tracks are removed, then the remaining hits are passed to the π0 reconstruction.
The momentum and energy are reconstructed similarly the particle gun π0

using (5.35) and (5.39), from which the invariant mass (5.40) can be calculated.
It is noted that for π0 produced by the reaction

νµ + p→ νµ + p+ π0, (5.42)

the vertex can be better reconstructed using the proton track. For other
π0 production channels, the grid search described above is used. In general
there is more uncertainty in the momentum and energy for neutrino data since
there are contaminating hits from other particles from the neutrino interaction
vertex.

5.7 Application on neutrino MC

In previous sections we have described the event reconstruction and showed
tests for various algorithms using single particle MC. In this section we will
apply the event reconstruction on neutrino interaction MC.
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5.7.1 Neutrino MC

Neutrino MC data are generated using the NEUT event generator[45]. The
NEUT generator uses the T2K neutrino spectrum and simulates the interac-
tions of neutrino on oxygen nucleus. Currently (2008), the NEUT generator
does not used any flux information from beam simulation. The final-state par-
ticles from neutrino interactions are tracked inside the nuclear medium and
various processes such as inelastic scattering, charge exchange, absorption are
taken into account. The kinematics of the particles from neutrino interactions
that leave the nucleus are saved for use in detector simulation. Note that not
all the particles at the neutrino interaction vertex leave the nucleus. Particles
like π0 could decay inside the nucleus or π+ could charge exchanges into a π0.

Kinematics from the event generator are passed to the detector simulation
which is based on GEANT4. The event generator and detector simulation are
independent, the intermediate results are saved on disk. The detector sim-
ulation simulates the interactions of particles with detector materials, bends
charged particle trajectories in the magnetic field. The neutrino interaction
vertices are distributed throughout the detector using the mass density weight-
ing. The detector simulation steps each particle through the detector, appli-
cable interactions are invoked along the path length. By default, the step
length depends on the traversing detector materials and the amount of en-
ergy loss. This step length can be set manually, for example, to test track
fitting algorithm a small step length of 1 mm is used to easily to compare
the true trajectory points and the fitted track points. Energy deposit from
charged particles in the sensitive volume are collected and associated with the
corresponding scintillator bar. It should be noted that during the detector
simulation, secondary particles from final-state particles and their kinematics
are also saved. For example, given a π0 in the detector, it is possible to trace
the parent of the π0.

The amount of energy deposit in scintillator bar is converted to the number
of photons using the electronics simulation. The conversion factor is such that
the output light yield matches that from the light yield measurement using
cosmic muons. The electronics simulation also applies light attenuation to the
number of photons using the true distance to the photosensor. It also rejects
hits that fall in the electronics dead time, i.e., the reset time between two con-
secutive Trip-t integration periods. The output of the electronics simulation
has the same format as the real data.

For this study, 105 neutrino interactions from the NEUT generator are used.
At full power of the J-PARC accelerator, the number of neutrino interactions
in the P0D is estimated to be about 1.7 per spill. For simplicity, one neutrino
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interaction per spill is assumed.

5.7.2 MC processing and reduction

Neutrino MC data are passed to the event reconstruction. The parameters
of the timing structure for the reconstruction must match those of the MC.
This is important, especially to have a more realistic muon decay tagging.
The reconstruction saves a lot of redundant information since it is the most
time consuming step. The output of the reconstruction is further distilled,
only variables needed to do physics analysis are written to a lightweight data
summary tree (DST).

5.7.3 Event selection

The signal events in the P0D are single π0 from neutral current interactions.
These include the π0 from the following reaction channels:

νµ +N → νµ +N + π0 (5.43)

νµ +16 O → νµ +16 O + π0, (5.44)

where N is either p or n. Because of the interactions of final-state particles,
the number of single π0 escaping the nucleus is not the same as that at the
neutrino interaction vertex. The number of signal events are defined as the
number of events with a single π0 leaving the nucleus. There is a small fraction
of secondary π0 produced by nucleons in the detector.

Background events are any electromagnetic showers that do not come from
the signal events. The electromagnetic showers could come from charged cur-
rent single π0 production, multi-pion and in-elastic interactions. The neutral
current backgrounds include the neutral current multi-pion, in-elastic interac-
tions, and quasi-elastic interactions on nucleons. The charged current back-
grounds can be largely removed by tagging the muon using tracks with muon-
like particle identification or muon decay. The neutral current and charged
current can be further reduced by using the characteristics of electromag-
netic showers from π0 decays. Specifically, except for the Dalitz decay mode,
π0 → γe+e−, π0 decays into two γ’s which is expected to produce 4 showers
on the 2D projection planes. However, because of the long effective radiation
length (∼ 30 cm) in the water target, the two γ’s do not always shower or one
gamma could make two separate showers. The following criteria are used to
select π0:

• No 3D tracks with muon-like likelihood.
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• No 2D unmatched tracks longer than 40 cm.

• No µ− decay.

• Number of 2D showers from 3 to 5.

• 80 MeV/c2 ≤ mγγ ≤ 190 MeV/c2.

• Reconstructed vertex inside the fiducial volume. The fiducial volume is
defined as the volume inside ±6 cm along the z direction and ±25 cm
along the x, y direction from the edge of the detector.

The first three cuts are to remove the charged current backgrounds. The next
two cuts select π0 using its shower characteristics. In Table. 5.7.3, the number
of signal events and charged current backgrounds after each cut are shown.
The final reconstruction efficiency for saved π0 in the fiducial volume is 18.5%
and the µ− rejection efficiency is 99.7%.

Table 5.1: Number of signal and charged current background events after each
cut.
Selection cuts NC1π0 µ−

All 1228 65778
No muon-like track 1182 29644
No unmatched track 1133 22340
No µ− decay 1037 14059
Number of showers 572 3713
Invariant mass 294 1203
Fiducial volume 223 180

5.7.4 Final π0 sample

There are 501 events that passed all the π0 selection cuts. Using the truth
information, the signal and background events can be distinguished. There are
223 signal events and 278 background events. The π0 purity in the final sample
is 44.5%. The π0 reconstructed energy is shown in Fig. 5.9. The background
events are separately shown for charged current (35.9%) and neutral current
backgrounds (19.5%).

The backgrounds can be further broken into individual reaction modes
(Table 5.7.4). The dominant charged current background is caused by the
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Figure 5.9: Reconstructed energy of the final π0 sample. The contributions
from the signal (unfilled) and the backgrounds (hatched) are shown separately.

charged current quasi-elastic scattering (CCQE). This is mostly because the
reconstruction could not identify the hit pattern and the large cross section
of this interaction mode. The backgrounds by the charged current multiple
pion production and in-elastic scattering (CCnπ) are smaller since their cross
sections are small at low energy and most of the events produce many hits,
and therefore, are removed by the cut on the number of showers. The neutral
current background is dominated by the multiple pion events (NCnπ), these
events usually have one or more π0. The single π0 background accounts for 28%
of the neutral current background. Actually these are not background events,
but they are single π0 from outside the fiducial volume. This background will
be removed by a better π0 vertex reconstruction.

The position of muons from charged current backgrounds are shown in
Fig. 5.10. Of the muons near the edges, those escape the detector can be
further detected using the P0DECAL, which surrounds the P0D, or the SMRD.
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Table 5.2: Number of charged current and neutral current background events
from different reaction modes.
Reactions events percentage(%)
CCQE 77 42.7
CC1π± 46 25.5
CC1π0 45 25.0
CCnπ 12 6.7
NCQE 15 15.3
NC1π± 21 21.4
NC1π0 28 28.5
NCnπ 34 34.6
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Figure 5.10: Position of muons from charged current backgrounds.
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Chapter 6

Energy calibration of the P0D using cosmic

ray muons

6.1 Introduction

The cosmic ray tests were done separately for individual SuperP0Dules
before their installation into the final position. These tests are used for hard-
ware and software validation. On the hardware side, the cosmic ray tests make
sure that all the channels are connected and working properly. The full read-
out chain from the scintillator bars to the data acquisition computer can be
checked. On the software side, from the low-level software (firmware) to event
reconstruction can be debugged using these tests.

The cosmic muons can also be used for energy calibration of the detector.
Cosmic muons are minimum ionizing particles (MIP). This means that the
energy losses along their path lengths are almost constant, independent of the
their initial energy. This source of energy is used for calibrating by requiring
that the mean energy deposit per unit path length for all detector channels
are the same. By taking the cosmic data at different running conditions (tem-
perature, photosensor bias voltage), the performance of the photosensors can
be studied. Finally, light attenuation along WLS fibers can be measured by
comparing the energy deposits at different distances from the photosensor.

In this chapter, we will present the procedure to correct for gain change,
the measurement of light attenuation for all the channels, and the energy
calibration.

6.2 Data summary

This chapter presents the analysis of cosmic data from the P0D upstream
ECAL. The data from the water target and central ECAL modules has been
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quality checked and made sure that the cosmic trigger works properly, but
has not been analyzed. There are total of 215 cosmic runs, numbered from
1450 to 1915, each run has an hour of cosmic data at around 30 Hz trigger
rate. Each cosmic run is preceded by a two-minute pedestal run which is
used for calibration. The pedestal runs are actually cosmic runs with the zero
suppression turned off. The ambient temperature and humidity were recorded
every 30 seconds by a sensor mounted on the top of the MPPC side. The
temperature data is read out independently from the cosmic data stream by
a USB cable connected to the DAQ computer. The MPPCs were biased at
70.9 V, and applied the fine voltage offsets from Hamamatsu. Fig. 6.1 (left)
shows the temperature variation during the cosmic runs, up to run 1779. It
can be seen that the temperature variation is about 60C from 250C to 310C.
This large temperature variation was caused by the AC being turned off at
night. It should be mentioned that the sensor measured the temperature at one
particular location and there was no information regarding the temperature
uniformity throughout the detector. The temperature variation during each
cosmic run can also be monitored. For each cosmic run, the difference ∆T
between the minimum and maximum temperature is used to characterize the
temperature variation during the run. Fig. 6.1 (right) shows the maximum
temperature variation during each cosmic run ∆T versus run number.

Figure 6.1: Temperature variation during cosmic runs (left) and maximum
temperature variation during each cosmic run versus run number.
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6.3 Charge calibration

6.3.1 ADC spectrum fitting and gain

The high-gain ADC spectrum for one channel from a pedestal run is shown
in Fig. 6.2. The dominant peak is the pedestal which consists of empty events,
i.e., events with no output from the MPPC. The smaller peak to the right of
the pedestal peak is the dark noise one (equivalent) photoelectron peak. A
small fraction of events above 1.5 p.e. is also visible. The position of the two
peaks can be determined by fitting the ADC spectrum to a double Gaussian
function. At high gain when the two peaks are well separated, fitting the
individual peaks to a Gaussian function is also possible. The double Gaussian
fitted curve (solid line) and two independent Gaussian fitted curves (dashed)
are shown in Fig. 6.2. The pedestals obtained from fitting the ADC spectra
all of channels on a TFB board is shown in Fig. 6.2 (right).

The difference between the one p.e. and pedestal peak is conveniently
defined as the gain

G = 1pe − pedestal. (6.1)

The gain defined this way is related to the conventional gain by a constant
k/e, where k is the ADC resolution and e is the electron charge.
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Figure 6.2: High-gain ADC spectrum for one channel (solid histogram) with a
double Gaussian fit (solid curve) and two independent Gaussian fits (dashed
curve). Pedestal distribution for one TFB board (right).

6.3.2 MPPC noise characteristics

There are two kinds of noise inherent to the MPPCs: random dark noise
caused by thermal electrons and noise which correlates with signals.
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Dark noise

The dark noise is caused by electrons thermally excited in the depletion
region of the photosensor and produces one equivalent photoelectron due to
the high gain. The dark noise is characterized by the dark noise rate. The
dark noise rate can be measured using the high-gain ADC spectrum taken
from the pedestal runs. The number of empty events is defined as the area
under the fitted Gaussian curve and within ±3σ from the pedestal peak. The
number of dark noise events is the difference between the total events and
the empty events. It is noted that the area under the one photoelectron peak
is not the number of dark noise events since dark noise events can create
more than one photoelectron due to the correlated noise. The dark noise
rate is calculated by dividing the fraction of dark noise events by the Trip-
t integration period of 250 ns. In Fig. 6.3, the mean dark noise rate over
all the channels versus the temperature and gain are shown separately for
X and Y bars. It can be seen that the mean dark noise rate is around 650
KHz and the spread is about 100 KHz. From the plot on the right, the
dark noise rate is relatively constant from 9 to 12 ADC counts. This can
be qualitatively explained by the fact that the dark noise depends on two
competing factors: the number of thermally excited electrons in the depletion
region which increases exponentially with the temperature and the over-voltage
which decreases with increasing temperature.
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Figure 6.3: Dark noise versus temperature (left) and dark noise versus gain
(right) .

Correlated noise (crosstalk, afterpulsing)

The second type is correlated noise, i.e., additional avalanches triggered by
existing avalanches previously generated by signal or dark noise. For example,
an afterpulsing avalanche sometimes occurs after the original avalanche in the
same pixel. It is believed to be triggered by a charge carrier that was produced
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by the original avalanche and trapped on an impurity. Crosstalk happens when
a firing pixel causes neighboring pixels to fire. In contrast to the dark noise
which is random and independent of the size of the signal, the correlated
noise scales with the signal. The average number of secondary avalanches
caused by an original avalanche either through afterpulsing or crosstalk is
called the correlated noise probability. This probability can be measured from
the pedestal runs. Remember that the number of zero events can be accurately
determined by fitting the pedestal peak to a Gaussian function. Assuming that
the dark noise process is random and hence the number of occurrences of dark
noise events obeys Poisson statistics, then the number of 1 p.e. events can be
predicted from the number of zero events

λ = − lnP (0) (6.2)

→ Npred. = λe−λ (6.3)

where P (0) is the probability of zero events and λ is the Poisson parameter.
The number of measured 1 p.e. events Nexpt. is given by the area under the
1 p.e. fitted Gaussian curve and within ±3σ from the peak. The events that
are missing from the predicted 1 p.e. events are considered to have caused
correlated noise. The correlated noise probability is defined as

c ≡ Npred. −Nexpt.

Npred.

(6.4)

Figure 6.4: The correlated noise probability versus gain for one channel and
the mean correlated noise probability over all the channels versus gain.

The correlated noise probability is calculated for all the channels for all
runs using pedestal data. The correlated noise probability for one channel is
shown in Fig. 6.4. The correlated noise strongly correlates with the gain. This
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is because the higher the gain, which means higher overvoltage, the more likely
that secondary avalanches are produced by an original avalanche. In Fig. 6.4,
the mean correlated noise probability over all channels as a function of the
gain is shown. The mean correlated noise probability at the nominal gain of
10 ADC counts is about 15%.

Photon Detection Efficiency The photon detection efficiency is defined
as the fraction of detected photons over the incident photons. It depends on
three factors:

• Quantum efficiency

• Geometric factor

• Avalanche probability

The quantum efficiency depends on the properties of the semiconductors from
which the sensor is made. For the same sensitive area, the geometric fac-
tor depends on the number of pixels. The more pixels create more inactive
area between the pixels and hence smaller geometric factor. The avalanche
probability is dependent on the bias voltage; high bias voltage increases the
avalanche probability. The PDE for green light has been measured and found
to be greater than 25%. The PDE as a function of the over-voltage also has
been measured[43]

6.3.3 TFB calibration using charge injection

The TFB response is not a simple linear function, but instead exhibits an
approximately bi-linear behavior, i.e., it is only linear only in the regions below
and above certain value of input charge, and there is a nonlinear transition
between the two regions. The response varies from channel to channel. There-
fore, the response function of every channel on the TFB must be measured
using the onboard charge injection circuit. This is done by measuring the digi-
tized charge output from the TFBs for a range of charge input. The result is a
relating function between the digitized charge output measured in the unit of
ADC counts and the amount of injected charge. The inverse function is used
to translate the digitized charge output into charge input.

Charge is injected by the onboard circuit to every four channels per Trip-t,
e.g., 0-4-8-12 and into the Trip-t second integration cycle. For each charge
injection level which corresponds to a fixed amount of charge, data is taken
for 30 seconds collecting about 800-900 events. After looping over all the 90
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levels, the data is taken for the next four channels on the Trip-t. The charge
injection data are taken with the MPPC bias set above the breakdown voltage.
Therefore, for the high-gain channel, the ADC spectrum is similar to that of
the pedestal runs which has the pedestal peak and one p.e. peak. For the
low-gain channel, the ADC spectrum has a single pedestal peak, and the dark
noise peak falls into the pedestal peak because of the low gain. The effect
of the charge injection is to move both the pedestal and the 1 p.e. peaks to
higher ADC value while keeping the gain unchanged. This is resulted from the
fact that dark noise charge from the MPPC is added on top of the injected
charge. For this reason, the pedestal peak is referred as 0pe peak from now
on in this section.

Figure 6.5: TFB inverse response function: charge injection level versus ADC
counts (circle) and the bilinear fitted curve (left). Residuals of the bilinear fit
versus ADC counts (right).

For high-gain ADC spectra, both the 0pe and 1pe peaks are found in the
same way as described for the pedestal runs. For low-gain ADC spectra, the
0pe is estimated first, then it is fitted to an asymmetric Gaussian. The asym-
metric Gaussian fits better to the low-gain ADC spectra since the upper side
of the pedestal peak gets contributions from dark noise events. These fits are
done for the ADC spectra from all channels and charge injection levels. After
the fitting to obtain the position of the 0pe peak for all charge injection levels,
for each channel there is a set of data points which represent the response of
the TFB for this channel (show figure for both low gain and high gain ADC).
These data points will be used to correct for TFB response in data calibra-
tion. For this purpose, it has to be parameterized to be stored and accessed
efficiently in the calibration database. The simplest way to parameterize is to
use a bi-linear function. This function has four parameters, the two slopes for
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two regions, the intercept, and the kink where the slopes change.

Q(x) =

{

k1 ∗ x+ (k2 − k1) ∗ kink + b2 if x ≤ kink
k2 ∗ x+ b2 if x > kink

(6.5)

where x is the digitized charge measured in the units of ADC counts. Fig. 6.6
shows the data of the injected charge versus ADC counts for the high-gain
channel and the fitted bi-linear line. The plot on the right shows the relative
residuals of the fit. It can be seen that the residuals are less than 0.01 or 1%.

Using the charage injection data, the linearity of the number of (equiv-
alent) photoelectrons versus the input charge in the full dynamic range can
be studied. In other words, it is used to check after correcting for TFB re-
sponse if the number of photoelectrons is a linear function of the input charge.
The amount of charge corresponding to an ADC value can be obtained using
the fitted bilinear functions. Below 800 high-gain ADC count, the high-gain
channel is used while above the threshold the high-gain becomes saturated
and the low-gain channel is used. The amount of charge corresponding to one
photoelectron can be calculated from the 1pe peak

Q1pe = k1 ∗ (1pe− 0pe), (6.6)

where k1 is the slope of the high-gain channel defined in (6.5). Fig. 6.6 shows
the number of photoelectrons versus input charge for the whole dynamic range
(triangle) and the fitted line. The dashed vertical line indicates the fitting
range. The plot on the right shows the relative residuals of the fit. It can be
seen that the relative residuals are less than 5%.

The parameterization of the TFB response function using the bilinear func-
tion is simple and the fit to this function is robust. This parameterization
results in the relative residuals to be within 5%. Higher-order polynomials
and even spline function have been tried to parameterize the response func-
tion. Although the relative residuals could become smaller, the fit to these
functions is less stable. Especially, it is hard to store the splines for all the
channels in a database.

6.3.4 One photoelectron calibration

Charge output from individual pixels on a MPPC are summed to a single
pulse. The pulse size is proportional to the number of firing pixels. For a
fixed number of incident photons, the higher the gain (higher over-voltage),
the larger the pulse size. In the absence of the correlated noise, the number
of measured photons should remain unchanged, independent of the gain. This
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Figure 6.6: The number of (equivalent) photoelectrons versus charge injection
number for the whole TFB dynamic range (triangle) and fitted line (solid)
(left). The fitting range is from 0 to 3000 charge injection levels. The residual
of the fit (right).

can be done by the one photoelectron calibration. When the gain increases,
the pulse size becomes larger, however, the one photoelectron pulse size also
becomes larger. Therefore, this will cancel the increase in the signal pulse size.
The number of photoelectrons corresponding to an ADC value is

Nγ =
Q(ADC) −Q(0pe)

Q1pe

, (6.7)

where Q(x) is defined by (6.5) and Q1pe is given by (6.6). The numerator is
the charge after corrected for TFB response.

6.4 Muon track reconstruction and selection

After charge calibration, the calibrated data are saved on disk for further
analysis. In calibrated data, each hit channel has the two-dimensional po-
sition, timing, and number of photoelectrons. The reconstruction of cosmic
muon tracks are done by the P0D reconstruction software described in chap-
ter 5. Event hits are separated into groups using the TFB timeslices. Each
timeslice has an integration width of 250 ns with 70 ns dead time between
two consecutive integration periods. Group which has more than 20 hits are
searched for muon tracks. It is expected that there are around 28 hits from
normal incident muons. Each reconstructed event has one 3D muon track.
Events triggered by nearly vertical muons has no output track since the nearly
vertical track fails the track matching using 2D tracks. Each 3D track has 3D
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position, direction, timing and energy deposit at each tracking plane. Since
the ECAL sections are thin, tracks in these sections are re-fitted to a single
straight line. Figure shows the distribution of the cosine of the angle between
the muon track and the z axis. Only tracks with cos θ > 0.8 are selected
for light yield study. Fig. 6.7 shows the residuals of reconstructed 3D tracks.
The residuals are defined as the difference between the charge-weighted posi-
tion and the fitted track point position at each tracking plane. The residual
distributions for xz and yz planes are defined separately. These residual distri-
butions are fitted to a Gaussian function, the fitted parameters are µx,y = 0.0
mm and σx = 2.8 mm, σy = 3.2 mm. These standard deviations are slightly
larger than those from MC, σx,y = 1.8 mm. This could be because of the
mis-alignment of scintillator bars in the actual detector.

Entries  57645
Constant   9331
Mean      -0.007084
Sigma     2.428

x residual (mm)
-50 -40 -30 -20 -10 0 10 20 30 40 500

2000

4000

6000

8000

10000 Entries  57645
Constant   9331
Mean      -0.007084
Sigma     2.428

Residual

Entries  57537
p0         7757
p1        0.04017
p2        2.935

y residual (mm)
-50 -40 -30 -20 -10 0 10 20 30 40 500

1000

2000

3000

4000

5000

6000

7000

8000
Entries  57537
p0         7757
p1        0.04017
p2        2.935

Residual

Figure 6.7: Residual distributions of reconstructed 3D tracks (solid histogram)
in the xz (left) and yz (right) planes. The distributions are fitted to a Gaussian
distribution (solid curve).

The triangular configuration is convenient since the point where a muon
passes through a plane can be estimated from the two hit positions and their
light yields

x̄ =
Q1x1 +Q2x2

Q1 +Q2

(6.8)

= x1 + pγ, (6.9)

where p is the pitch (1.7 cm) and γ is the fractional light yield of the second
bar:

γ =
Q2

Q1 +Q2

. (6.10)

The distribution of γ is shown in Fig. 6.8. Fig. 6.9 shows the hit map for one
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tracking plane. One can clearly see the boundaries where the cosmic trigger
primitive is not as efficient.
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Figure 6.8: Fraction of light yield shared by two neighboring bars in the same
plane.

Figure 6.9: Hit map for one P0Dule (x layer).

Path length calculation Because of the triangular bar geometry, path
length inside each bar must be calculated. This would not be necessary for the
rectangular bar geometry where the path length is simply the bar thickness
divided by the cosine of the incident angle. The path length is calculated
using the geometry manager. The geometry manager holds all the information
regarding the detector geometry. Specifically, the geometry manager can tell
what bar volume a point belongs to. The fitted 3D track is parameterized by
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a point line equation

x = x0 + l ∗ t (6.11)

y = y0 +m ∗ t
z = z0 + n ∗ t,

where M0(x0, y0, z0) is a point on the track and ~s0(l,m, n) is the directional
vector. The path length inside a bar is calculated by sampling points along the
track with a step length ∆t of 0.1 mm. Points are checked with the geometry
manager to make sure that they are inside the bar. The path length is the
product of the number of accepted points and the step length ∆t. Assuming
the position M0 and direction ~s0 are accurate, this simple procedure only
introduces a negligible uncertainty of 0.1 mm.
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Figure 6.10: Illustration of singlet and doublet, central hole for WLS fiber is
not shown (left), the black solid line represents a muon passing through, the
arrow on the singlet shows where the muon clips the bar. Mean light yield per
cm by MIP for singlets and doublets (right).

6.5 MIP light yield

6.5.1 Light yield

An important characteristic of minimum ionizing particles (MIP) is that
their energy loss is weakly dependent on their energy, at high energy (∼ 100
GeV) the energy loss rises only a few percent due to relativistic effects. There-
fore, it is an good approximation to assume that the mean energy deposit per
unit length by different MIP particles are the same. The number of photons
produced by passing MIP particles in scintillator is proportional to the path
length inside the scintillator volume. In order to compare the light yield from
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tracks with different incident angles and positions, the light yield per unit path
length is used. There are two ways to calculate the light yield per unit path
length: from the light yield on each scintillator plane and from the light yield
on each bar.

The light yield per unit path length can be calculated from that on each
scintillator plane as follows. Most of the selected muons pass through two
adjacent bars in the same scintillator plane. The path length in the two bars
could be either comparable or very different, depending on the track position
and direction. When the path lengths are comparable, there are two hits in
the two bars, this is called a doublet. However, when one of the path lengths
is small (a few millimeters), there could be no hit, or hit with light output less
than the 2.5 p.e. threshold in one bar and hence there is only one hit from the
other bar, this is called singlet. The doublet and singlet definition is illustrated
in Fig. 6.10 (left). To study the variation of the light yield versus gain, only
the yield calculated using doublets are used. In this case, the light yield per
unit path length is simply the sum from the two bars of the doublets, corrected
for the muon track direction and divided by scintillator plane thickness. The
light yield per cm by MIP particles for both doublets and singlets is shown
in Fig. 6.10. As expected, the mean of the singlets is slightly less than that
of the doublets since there is contribution from only one bar. The mean light
yield of the doublets is more than 20 p.e. per cm.

The light yield per unit path length can also be calculated by dividing
the light yield in a bar by the path length in the same bar. The light yield
obtained this way will be used to study the response of individual bars.

6.5.2 Correction for gain variation

Since the MPPC gain is sensitive to temperature change, its variation
causes large fluctuations in the gain. The gain measurement has been de-
scribed in. Fig. 6.11 (left) shows the mean gain over all the detector chan-
nels versus run number . The gain varies over the range from 9 ADC to 13
ADC. Fig. 6.11 (right) shows the mean light yield over all detector channels
versus run number. It can be seen that the light yield follows the gain vari-
ation pattern. Fig. 6.12 shows the mean light yield versus gain for runs with
∆T < 0.20C (triangle) and ∆T > 0.20C (circle) separately. The plot shows an
approximately linear relationship between the mean light yield and the gain
for runs with ∆T < 0.20C. The mean light yield from runs with ∆T > 0.20C
are mostly outliers since the greater the temperature change during a cosmic
run, the less relevant the pedestal run. Remember that the calibration using
pedestal run works properly only if the pedestal run and cosmic run have sim-
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ilar running conditions. Therefore, the runs with ∆T > 0.20C are excluded
from the following study.

Figure 6.11: Mean gain over all the channels versus run number (left) and the
mean yield versus run number (right).

Figure 6.12: Mean light yield versus gain for runs with ∆T < 0.20C (triangle)
and ∆T > 0.20C (circle).

Since the mean light yield varies greatly from run to run, in order to com-
bine runs to increase muon statistics in scintillator bars requires correction for
the gain variation. From Fig. 6.12, it is reasonable to assume that the mean
light yield is a linear function of the gain,

Y = kG, (6.12)

where Y is the mean light yield, G is the gain, and k is a proportional con-
stant. It is assumed that the light yield vanishes at zero gain. Although this
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assumption sounds intuitively reasonable, it might not be true if there is some
small nonlinear effect. For now assuming that (6.12) is correct, the light yield
Y at an arbitrary gain G can be related to that at some reference gain G0:

Y0 =
Y

1 + ∆G
G0

, (6.13)

where ∆G = G − G0 is the gain deviation from the reference. The equation
(6.13) says that Y0 can be obtained from Y given the gain change ∆G. The
correction factor is:

1

1 + ∆G
G0

(6.14)

It is remarkable that the correction factor does not depend on the proportional
constant k. This means that the light yield can be corrected even before the
muon track reconstruction and the light yield calculation. In this case the gain
variation correction can be applied at the same time as the one photoelectron
calibration. Fig. 6.13 shows the corrected light yield versus run number.

Figure 6.13: Corrected light yield using (6.14) versus run number.

We have seen that the simple model (6.12) can reduce the light yield vari-
ation over runs significantly, however, it is not adequate. Let us consider the
case where the intercept is not zero,

Y = kG+ b. (6.15)

The correction factor becomes:

1

1 + α∆G
G0

where α =
1

(1 + b
kG0

)
(6.16)
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Figure 6.14: Corrected light yield using (6.17) versus run number.

The nonzero intercept adds a second term to the coefficient of ∆G/G0 which
effectively reduces the correction. The parameters (k, b) appearing in the cor-
rection factor can be obtained from the cosmic data by fitting the plot in
Fig. 6.12 (∆T < 0.2) to (6.15). Substituting the fitted parameters into (6.17),
we obtain the empirical correction factor

1

1 + 0.85∆G
G0

. (6.17)

After applying this correction factor, the light yield variation from run to run
is further reduced, around ±0.2 p.e. as shown in Fig. 6.14.
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6.6 Light attenuation measurement

Light attenuation along WLS fiber can be measured using cosmic ray
muons. This is done by comparing the mean light yield from different seg-
ments along the fiber. The mean shifts to a lower value for segments further
away from the sensor.

After correction for the gain change due to temperature variation during
the data taking period, muons from different runs can be combined to increase
the statistics for light attenuation measurement. The number of muons per
bar after combination is about from 10,000 to 15,000. To calculate the light
attenuation curve, each bar is divided into segments, each of 20 cm length.
The mean light yield of the muons in each segment is calculated. Since each
bar has different response, the means from these segments are normalized by
the mean from the segment in the middle of the fiber. After normalization, the
means from the same segment of all the bars are combined. Fig. shows the
mean distributions from two segments, one at -60cm and the other at +60cm.
It is remembered that the sensor is at the positive side. It can be seen from
the plot that the mean shifts to a lower value for segment further away from
the sensor. This is resulted from light attenuation along the fibers. The means
from all the segments versus the segment position are shown in Fig. 6.15. It
can be seen that thanks to the mirror, there is much less light attenuation
compared with that in case without the mirror. These points are fitted to a
double exponential function a(z) which parameterizes the attenuation:

a(z) = c0e
− z

l + c0re
z−2L

l + c1e
−z
s , (6.18)

where

• z is the distance from the light source to the sensor

• c0, c1 are amplitudes of the long and short components

• l, s are the long, and short attenuation lengths

• r is the mirror reflectivity

• L is the length of the bar

The fitted curve is shown (solid line) in the same plot.
The fitted attenuation curve is used to correct for the effect of light atten-

uation. To demonstrate the effectiveness of this curve, in Fig. we show the
profile of the mean light yield versus position along fiber for one bar. It can
be seen that the mean light yield is flat to within ±1p.e. along the bar.
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Figure 6.15: Energy distribution from segments at ±60 cm, mean shifts to
lower value for the segment further away from the sensor (left). Light at-
tenuation along WLS fiber. Solid (red) line is the fitted double exponential
function (right).

6.7 Energy calibration using cosmic muons

6.7.1 Scintillator bar light yield

It was mentioned in Sect. 5 that the light yield per unit length of each
bar is simply the light yield divided by the corresponding path length. How
to calculate the path length is described in Sect. 4. The light yield after
correction for light attenuation and path length for one channel is shown in
Fig. 6.17 (left). The peak of the light yield distribution can be determined by
fitting it to a Gaussian-convoluted Landau distribution. Fig. 6.17 (right) shows
the distribution of peak light yield all the channels in the upstream ECAL.
The distributions for X (solid) and Y (dashed) bars are shown separately. The
number channels are fewer than the total number of channels in the detector
since some bars, especially those at the corner or bottom of the detector, do
not have many passing muons.

6.7.2 Energy calibration

The light attenuation in fibers has been measured using cosmic data and
parameterized by the attenuation curve. This curve is used to correct for
light attenuation before the energy calibration. The following corrections are
applied on the light yield of every track hit:

• Path length: Given the track position and direction, the path length
in any hit bar can be calculated as described above. The path length
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Figure 6.16: Mean light yield along the fiber after light attenuation correction
for one bar.
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Figure 6.17: Light yield per cm after light attenuation correction of one channel
(left). Mean light yield of all (X) channels on one P0Dule (right).

automatically includes the correction for track direction.

• Light attenuation are corrected using the attenuation curve given the
distance from the hit to the sensor. This distance is available for hits
associated with 3D tracks.

After these corrections, the light output difference from channel to channel is
caused by the difference in channel response. These include the non-uniformity
of scintillator bars, fibers, mirrors, fiber-sensor couplings, etc. In other words,
these include all the time-independent difference from channel to channel. For
each channel, the calibrated energy deposit by a muon in the unit of one MIP
per cm is given by
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E(MIP) =
Y

Y0

, (6.19)

where Y0 is the mean light yield of the channel. The mean light yield of each
channel is used as a calibration constant to account for the channel-to-channel
response difference. These calibration constants are tested using a different
set of cosmic runs. Remember that there is only temperature data for runs up
to 1779, which are used to generate the calibration constants. Runs beyond
this range can be used to test the calibration constants. Without temperature
data, it is not possible to know if the gain correction is effective and hence only
a subset of consecutive runs with similar gain are selected for testing. After
the correction for gain variation, the path length and attenuation corrections
are applied, and then the calibrated energy is calculated using (6.19). Fig. 6.18
shows the mean calibrated energy of all the (X) bars on one P0Dule. It can
be seen that the mean energies from all the bars are uniform. The plot on the
right shows the distribution of the calibrated mean energy of all the bars in
the upsteam ECAL, the standard deviation of the distribution is ∼ 0.01.

Figure 6.18: Mean calibrated energy of all (X) bars on one P0Dule and the
distribution of calibrated energy of all the bars in the upstream ECAL.
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CONCLUSION

The T2K experiment is a long baseline neutrino oscillation experiment that
uses the intense νµ beam from J-PARC and Super-Kamiokande to make preci-
sion measurements of the atmospheric oscillation parameters, (∆m2

32, sin
2 2θ23)

and search for νe appearance to improve by ten times the current limit the
sensitivity on the last mixing angle, θ13. One of the dominant backgrounds to
the νe search is the single π0 from νµ neutral current interactions. This back-
ground will be measured at the near site by the P0D and then extrapolated
to the Super-Kamiokande. The P0D is built by a group of US institutions led
by Stony Brook.

In this thesis, we have developed the event reconstruction and the energy
calibration procedure using cosmic muons for the P0D. The event reconstruc-
tion has been tested using the MC simulated data. The rejection efficiency
for charged current interactions is greater than 99%. The reconstruction effi-
ciency for single π0 from neutral current interactions is 18% and the purity of
the final π0 sample is 44.5%. For the energy calibration using cosmic muons,
we have developed the procedure to correct for gain change. The light yield
after correction is uniform within ±0.2 p.e or 1%. We have also measured
the light attenuation curve for WLS fibers. Finally, by using the light yield
measurement with cosmic muons, we have been able to correct for channel
response difference. The calibrated energies from all the channels in the up-
stream ECAL is uniform and the standard deviation of the calibrated energy
distribution is ∼ 0.01.
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The T2K experiment started!

The event display shows the first cosmic muon passing all the sub-detectors in
the basket. The near detector is ready for neutrino beam.

Figure 6.19: First cosmic muon event crossing all sub-detectors in the basket.
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