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Abstract of the Dissertation

A Spline-Based Data Modeling Framework Over Regular Domains

by
Hongyu Wang

Doctor of Philosophy
in

Computer Science
Stony Brook University

2009

With the rapid advancement of modern 3D scanning technologies, CAD-based
digital prototypes are routinely acquired in forms of raw points and/or triangu-
lar meshes. In order to enable geometric design and downstream product devel-
opment processes (e.g., accurate shape analysis, finite element simulation, and e-
manufacturing) in CAE environments, discrete data inputs must be converted into
continuous, compact representations for scientific computing and engineering ap-
plications. In this dissertation, we present a novel spline-based data modeling
framework to directly define tensor-product splines over any manifolds (serving
as parametric domains). Since tensor-product B-splines and NURBS are current
standards in CAD software industry, our entire mesh-to-spline data transformation
pipeline enables and expedites the manifold surface design over existing CAD soft-
ware platform industry (without any trimming), and thus, has great potential in
shape modeling and reverse engineering applications of complicated real-world ob-
jects.

Tensor-product spline schemes require the parametric domains have the reg-
ular (rectangular) structures, and constructing the domain manifold with regular
structures in an efficient way still remains a challenge. In this dissertation, we
study and present efficient regular domain construction methods, and demonstrate
their applications in modeling 3D objects of arbitrary topology.

First, we propose the novel concept of polycube splines by defining splines
directly upon the polycube map, serving as its parametric domain. We present a
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systematic way to construct polycube maps for surfaces of arbitrary topology based
on global conformal parameterization, and demonstrate the modeling efficacy of
the proposed polycube splines in solid modeling and shape computing.

We then further improve the stage of the polycube map construction by intro-
ducing the user-controllable polycube map, which allows users to directly select
the corner points of the polycubes on the original 3D surfaces, then construct the
polycube maps by using the discrete Euclidean Ricci flow. The location of singular-
ities can be interactively placed where no important geometric features exist, which
makes the entire hole-filling process much easier to accomplish.

We also develop an effective method to construct polycube maps in an auto-
matic fashion. The proposed algorithm can both construct a similar polycube of
high geometric fidelity and compute a high-quality polycube map. In addition, it is
theoretically guaranteed to output a one-to-one map.

Finally, we propose a geometry-aware domain decomposition algorithm for
T-spline-based manifold modeling by which objects with arbitrary topology (espe-
cially objects with long branches) can be modeled elegantly. The segmentation pro-
cess simultaneously respects local geometric features and global topological struc-
tures.

Through our experiments, we demonstrate that the proposed framework is very
flexible and can potentially serve as a geometric standard for product data repre-
sentation and model conversion in shape design and geometric processing. The
great potential of our geometric modeling framework will be highlighted through
many valuable applications such as shape modeling, remeshing, texture synthe-
sis, finite element analysis, deformation editing, animation morphing, and physics-
based modeling. Furthermore, we envision broader application scopes including
computer vision, data-driven information retrieval, digital medicine, virtual envi-
ronments, etc.
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Chapter 1

Introduction

1.1 Problem Statement

With the ever-improved modern 3D scanning technologies comes the urgent
demand for more efficient, robust, and powerful data modeling techniques for rou-
tinely acquired CAD-based digital prototypes which are in forms of raw points
or triangular meshes. These data have to be converted into continuous, com-
pact representations to enable geometric design and downstream product devel-
opment processes (e.g., accurate shape analysis, finite element simulation, and e-
manufacturing) in CAE environments. Subdivision surfaces and spline schemes
have been extensively investigated during the recent past to fulfill the aforemen-
tioned goal.

Real-world physical prototypes are frequently 2-manifolds of complex geom-
etry and arbitrary topology. Naturally, subdivision surfaces can start with a coarser
piecewise linear polygonal mesh, and the smooth surface can be calculated as the
limit of a sequence of successive refinements from the coarse mesh. Despite their
modeling advantages for arbitrary complicated surfaces (especially in animation
and digital entertainment), subdivision surfaces have certain drawbacks. Accurate
surface evaluation is usually too computationally intensive for realtime applications
since most subdivision schemes do not allow closed-form analytic formulation for
their basis functions. In addition, extraordinary points solely depend on the connec-
tivity of the control mesh and need special care. On the other hand, spline surfaces

1
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have demonstrated their significance in shape modeling, finite element analysis,
scientific computation, visualization, manufacturing, etc. In order to model an arbi-
trary surface in 3D, conventional spline schemes will segment the surface to many
smaller open patches, and cover each patch by a single coordinate system, so that
each patch can be modeled by a spline surface. Finally, any generic approach must
glue all the spline patches together by adjusting the control points and the knots
along their common boundaries in order to ensure continuity of certain degree. The
entire segmenting and patching process is performed manually, and it requires user
knowledge and skills, and for non-trivial topology and complicated geometry this
task is laborious and error-prone.

Manifold splines proposed by Gu, He, and Qin [60] provides a technical solu-
tion for directly defining continuous surfaces over arbitrary manifold domains. In
their work, they extend the existing spline schemes defined over planar domains
to any manifold domain of arbitrary topology using affine structures. To further
promote their work in real-world applications, in [75] they present the manifold T-
splines, a natural and necessary integration of T-splines and manifold splines, which
naturally extends the concept and the currently available algorithms/techniques of
the popular planar tensor-product NURBS and T-splines to arbitrary manifold do-
main of any topological type. Manifold T-splines can be directly defined over the
manifold of arbitrary topology to accurately represent various shapes with com-
plicated geometry/topology. It naturally inherits all the attractive properties from
T-splines defined over a planar domain, including the powerful local refinement ca-
pabilities and the hierarchical organization for LOD control. Despite this earlier
success, certain drawbacks of manifold T-splines still remain: (i) There must be
singularities for any closed manifold except tori, and in practice small holes must
be punched around the singularities in order to enable the easy construction of man-
ifold splines in the finite dimension space. No efforts for hole-filling in the vicinity
of singular points were made; (ii) It is impossible to specify the locations of all the
singularities on the domain manifold given the fact that the number of singularities
is actually fixed, but their positions are somehow globally related; (iii) The pro-
posed domain construction method is far from sufficient for surfaces with bound-
aries or surfaces with long branches. For surfaces with long branches, the existing
global parameterization methods usually introduce extremely large area distortion
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and therefore make it even harder and numerically unstable for spline fitting pro-
cess later on. The only feasible way is to introduce additional cuts in these areas to
make it a surface with boundaries and then use double covering method to achieve a
better parameterization result. However, this technique will at least double the time
complexity and not practical for a large scale complex dataset.

To overcome the above modeling and design difficulties and address the topo-
logical issue, we seek novel modeling techniques based on tensor-product spline
schemes that would allow designers to directly define continuous spline models
over any manifolds (serving as parametric domains). Such a global approach would
have many modeling benefits, including no need of the transition from local patch
definition to global surface construction via gluing and abutting, the elimination
of non-intuitive segmentation and patching process, and ensuring the high-order
continuity requirements. More importantly, we can expect a true one-piece repre-
sentation for shapes of complicated topology, with a hope to automate the entire re-
verse engineering process (by converting points and/or polygonal meshes to spline
surfaces with high accuracy) without human intervention.

Towards this goal, we present a spline-based data modeling framework based
on regular domain construction. Regular domains will for sure facilitate the defi-
nition of tensor-product splines (NURBS, T-splines, the current industry standard)
naturally, and the GPU based geometric modeling and shape analysis. In this dis-
sertation, we study and present various regular domain construction methods (poly-
cube maps and geometry-based domain decomposition) and demonstrate their ap-
plications in modeling 3D objects of arbitrary topology.

Through our experiments, we hope to demonstrate that the proposed data mod-
eling framework is very flexible and can potentially serve as a geometric standard
for product data representation and model conversion in shape design and geometric
processing.

1.2 Contributions

In this dissertation, we systematically study the planar splines, spherical
splines, and manifold splines, and present a spline-based data modeling framework
based on regular domain construction of 3D objects.
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In particular, the contributions of this dissertation are as follows:

∙ We develop the polycube splines which not only inherit all the features of
general manifold splines but also have new and more attractive properties
of its own, including hierarchical representation, level-of-detail control, reg-
ular domain, partition-of-unity for basis functions, easy chart construction,
and easy handling of extraordinary points. The polycube splines are natu-
rally built upon the polycube map which serve as its parametric domain. The
use of polycubes for spline surface definition and construction is the first
attempt to take advantage of the rectangular structure over the boundary of
polycubes, allowing the parametric domain to actually mimic the geometry
of the modeled objects with lower area distortion while enforcing their topo-
logical consistence. We present algorithms to construct polycube maps as
the first step to enable spline construction over polycubes of arbitrary topol-
ogy. We show that the introduced polycube maps easily induce the affine
structures except at the finite number of corner points, where we also articu-
late our strategy for hole-filling. Through extensive experiments on various
models, we demonstrate that polycube splines are a very good candidate for
accurately representing complicated geometric models of arbitrarily compli-
cated topology with low fitting errors and fewer control points (in comparison
with polygonal models).

∙ We present a novel framework of user-controllable polycube maps, which can
overcome the disadvantages of the conventional methods for polycube map
construction, and can be easily generalized to complicated surfaces of arbi-
trary topology. The newly-proposed method allows users to directly select
the corner points of the polycubes on the original 3D surfaces in an interac-
tive manner, then constructs the polycube maps by using discrete Euclidean
Ricci flow. The resulting polycube map usually has lower area distortion and
retains small angle distortion as well, both of which are strongly desirable
for spline construction in reverse engineering. We develop algorithms for
computing such polycube maps, and show that the resulting user-controllable
polycube map serves as an ideal parametric domain for constructing spline
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surfaces. The location of singularities can be interactively controlled. There-
fore, the later hole-filling process and better data-fitting results can be eas-
ily accomplished by placing the singularities at regions where no rich ge-
ometric features exist. Through extensive experiments on various models,
we demonstrate that the user-controllable polycube maps are well suited for
spline construction of complicated geometric models of arbitrarily compli-
cated topology towards better data-fitting results in reverse engineering and
solid modeling applications.

∙ We propose an automatic method to construct a polycube map for surfaces of
arbitrary topology. The underlying theory and the entire algorithmic pipeline
are clearly documented. Within our framework, the users only need to control
how close the polycube resembles the given shape by using two intuitive pa-
rameters. With no user intervention after the initial parameter setup, our new
method can automatically construct a high-quality polycube map. Further-
more, our method is theoretically sound and numerically robust and stable to
guarantee a one-to-one map between the constructed polycube and the given
3D model. We applied the constructed polycube maps to various graphics
applications, such as seamless texture synthesis and tiling, T-spline construc-
tion, and quad mesh generation. The experimental results have demonstrated
the great promise of our method over existing techniques. Extensive compar-
isons have been conducted to hightlight all the advantages of our algorithm.

∙ We present a new and effective method to construct manifold T-splines for
surfaces of complicated topology/geometry. The most significant new idea
of our approach is the geometry-aware object segmentation that simultane-
ously respects local geometric features and global topological structures. Our
divide-and-conquer strategy can decompose an arbitrarily complicated sur-
face into a group of non-overlapping components that comprise branches,
handles, and base patches. This object segmentation greatly simplifies ob-
jects of arbitrary topological type into a family of genus-zero regular sur-
faces with four curved boundaries. Popular spline schemes such as tensor-
product B-splines and T-splines can be easily employed to model segmented
patches with high accuracy. Furthermore, the entire segmentation process
is extremely flexible and intuitive, accommodating either full automation or
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interactive user control. This local-to-global surface reconstruction is made
possible through a global gluing process followed by a global relaxation algo-
rithm. The proposed construction pipeline is extremely flexible and has great
potential in shape modeling and reverse engineering applications of compli-
cated real-world objects.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In the next two
chapters, we briefly review prior research work related to surface parameterization,
skeleton extraction, mesh decomposition and splines. In Chapter 4, we present a
new concept of polycube splines and develop novel modeling techniques for using
the polycube splines in solid modeling and shape computing. In Chapter 5, we in-
troduce a more powerful polycube map construction framework: user-controllable
polycube map, which allows users to directly select the corner points of the poly-
cubes on the original 3D surfaces in an interactive manner, then constructs the
polycube maps by using discrete Euclidean Ricci flow. The resulting polycube
map usually has lower area distortion and retains small angle distortion as well. In
Chapter 6, we discuss our work on polycube-map construction for surfaces with
complicated topology and geometry in an automatic fashion. Using our method,
users can simply specify how close the target polycube mimics a given shape in a
quantitative way. Our algorithm can both construct a similar polycube of high geo-
metric fidelity and compute a high-quality polycube map. In addition, our method
is theoretically guaranteed to output a one-to-one map. In Chapter 7, we present
our geometry-aware domain decomposition framework for T-spline based manifold
modeling. Finally, we conclude this dissertation and outline some future research
directions in Chapter 8.



Chapter 2

Previous Work on Mesh-Based
Geometry Processing Techniques

2.1 Previous Work on Surface Parameterization

Parameterization of 3D mesh data is very important in shape modeling and
interactive graphics applications, including spline construction, texture mapping,
remeshing, and morphing. This section reviews the literatures in planar, spherical
and global parameterization.

2.1.1 Geometric Structures on Surfaces

According to Felix Klein’s Erlanger program, a geometry is the study of prop-
erties of a space X invariant under a group G of transformations of X . For example,
planar Euclidean geometry is the geometry of 2-dimensional Euclidean space ℝ2

invariant under rigid motions (translations, rotations). The central invariant is the
distance between two points. Planar affine geometry studies the invariants of the
plane under affine transformations (non singular linear maps). The invariants are
parallelism and bary-centric coordinates. Real projective geometry on real projec-
tive spaceℝℙ2 studies the invariants under projective transformation (linear rational
maps), and the cross ratio is the central invariant.

Most algorithms in geometric modeling, computational geometry and com-
puter graphics are constructed on planar spaces, and different algorithms are based

7
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Figure 1: Geometric structures. (Image Courtesy of Gu et al. [60])

on different geometries. For example, planar Delaunay triangulation uses Euclidean
geometry, and the distances among points play the central role; Splines with planar
domains based on polar forms use affine geometry, and the bary-centric coordi-
nates play the central roles. The fundamental task of geometric modeling is to
study shapes, therefore it is highly desirable to find a systematic way to generalize
the conventional mature planar constructions onto the surfaces. Hence, we need a
solid theoretic tool to define different geometries on surfaces.

Geometric structures are natural surface structures, which enable different ge-
ometries to be defined on the surfaces coherently and allow general planar algorith-
mic constructions to be generalized onto the surfaces directly.

Surfaces are manifolds, in general, there are no global coordinates. Instead, a
surface M is covered by a set of open sets {Uα} as shown in Figure 1. Each Uα can
be parameterized by a local coordinate system, and a map φα : Uα → ℝ2 maps Uα

to its parameter domain. (Uα,φα) is a local chart for the surface M. A particular
point p may be covered by two local coordinates systems (Uα,φα) and (Uβ,φβ).
The transformation of the local coordinates of p in (Uα,φα) to those in (Uβ,φβ) is
formulated as the chart transition map φαβ = φβ ∘φ−1

α . All the charts form the atlas
{(Uα,φα)}.

If all chart transition maps are rigid motions on ℝ2, then we can discuss the
concepts of angle, distance, and parallelism on the surface locally. These geometric
measurements can be calculated on one chart, and the results are independent of
the choice of the charts. Namely, we can define Euclidean geometry on the surface.
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Similarly, if all transition maps are affine, then we can define parallelism on the
surface. If all transition maps belong to a particular transformation group of ℝ2,
we can define the corresponding geometry on the surface. Thurston [143] gave the
concept of (X ,G) structure, where X is a topological space, and G is a subgroup of
the transformation group of X , if M has an atlas {(Uα,φα)}, such that the parameter
domain φα(Uα)⊂ X is in space X , and the transition maps φαβ ∈ G are in G.

Surfaces have rich (X ,G) geometric structures. For topological structure, X is
ℝ2, G is the homeomorphisms of ℝ2. For conformal structure, X is the complex
plane ℂ, G is the group of bi-holomorphic functions (conformal maps). A genus
zero surface has a spherical structure, where X is the unit sphere S2 and G is the
rotation group. A genus one surface has an affine structure, which plays vital roles
in manifold splines. For affine structure, X is the plane ℝ, and G is the general
linear maps GL(ℝ,2).

2.1.2 Conformal Structure

For conformal structure, X is the complex plane C, and G is the group of
holomorphic functions (conformal maps). Conformal maps are also called angle
preserving maps, and locally distances and areas are only changed by a scaling
factor. A conformal mapping is intrinsic to the geometry of a mesh, independent of
the resolution of the mesh, and preserves the consistency of the orientation.

Because of these nice properties, one big application in computer graphics,
computer vision and medical images for conformal structures on surfaces is pa-
rameterization. conformal parameterization has been proposed for texture map-
ping [66,94,103], geometry remeshing [3], and visualization [5,62]. Conformal pa-
rameterization continuously depends on the metric of the surface, so it can be used
to match two similar surfaces. One such matching method is introduced in [65].
Furthermore, all surfaces can be classified easily by conformal invariants. A method
to compute the conformal invariants for meshes is introduced in [65].

Many techniques have been developed to compute conformal parameteriza-
tions, but most of them only deal with genus zero surfaces or have to segment the
high genus surfaces into patches. These methods decompose meshes into topologi-
cal disks, then parameterize each patch individually, which introduces discontinuity
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along the patch boundaries and conformality can not be preserved everywhere. So
global conformal parameterization, which preserves conformality everywhere (ex-
cept for a few points), is highly desirable.

Global conformal parameterization for closed genus zero surface has been ad-
dressed in [52, 62, 65, 66]. Global conformal parameterization for non zero genus
closed surfaces with arbitrary boundaries is investigated in [65, 81, 82, 87].

2.1.3 Computing Conformal Parameterization

A parameterization of a surface can be viewed as a one-to-one mapping from
a suitable domain to the surface. Generally, the parameter domain can be any sur-
face, so constructing a parameterization actually means mapping one surface into
another. It is best to parameterize the mesh over a domain which is topological
equivalent to it. This significantly reduces the distortion introduced by the pa-
rameterization without resorting to methods which introduce other artifacts such as
cutting seams. So if a mesh is genus zero open surface, it is best to use a planar, or a
disk like, domain; if the mesh is genus zero closed surface, it is best to use a spher-
ical parameter domain; for the higher genus surface, a corresponding same genus
canonical parameter domain can be used according to the request of the application.

Parameterization is important for many graphics applications, for example,
texture mapping, remeshing, morphing, and registration. The main challenge is
to produce a planar triangulation that best matches the geometry of the 3D mesh,
minimizing some measure of distortion, for example, in angles or areas. Many
different ways of achieving this have been proposed in the literature.

Since the surfaces are usually represented by triangular meshes, the mappings
we are finding are piecewise linear.

2.1.3.1 Parameterization of Triangle Meshes

In computer graphics, people usually use triangle meshes, which is piecewise
linear, to approximate underlying smooth surfaces discussed above. So actually, we
are constructing a parameterization of a triangulation. A triangulation is defined as
follows.
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Definition 1 Let T = T1, . . . ,Tn be a set of triangles in ℝ3. We call T a triangula-
tion if
(i) Ti ∩Tj is either empty, a common vertex, or a common edge (i ∕= j), and
(ii) the union of the triangles ΩT = ∩n

i=1Ti is an orientable 2-manifold.

In general a parameterization φ of a triangulation T over a parameter domain
Ω ⊂ ℝk is a homeomorphism between this domain and the surface of T .

From differential geometry, we know that such a homeomorphism and the
inverse parameterization ψ = φ−1 exists if and only if Ω and ΩT are topologically
equivalent. As discussed in Hormann’s thesis [79], ψ and φ are uniquely determined
by the images ψ(v) which we call the parameter points or parameter values of the
vertices of the triangulation. Since we want ψ to be injective we have to assure the
parameter points to be arranged such that the parameter triangles do not overlap and
the parameter triangulation is valid in the sense of Definition 1.

In the following sections, we denote set of all vertex of triangulation as V , set
of all faces as F , and set of all edges as E, and we use vi to denote the i-th vertex,
[vi,v j] to denote an edge connecting vertex vi,v j, [vi,v j,vk] to denote a face formed
by vi,v j,vk, and Nvi to denote the set of vertex in one-ring neighborhood of vertex
vi.

2.1.3.2 Conformal Parameterization of Topological Disk Surfaces

Harmonic Maps One of the earliest methods for mapping disk-like surfaces
into the plane was to approximate a harmonic map using the finite element method.
This method was introduced by Eck et al. [34], called discrete harmonic map.

Dirichlet’s boundary value problem: Given a 2-manifold M with boundary, a
simply-connected region D ⊂ℝ2, and a homeomorphism g : ∂M → ∂D between the
boundaries of M and D, find a function f : M → R that agrees with g on ∂M and is
harmonic: ∆ f = 0.

Harmonic maps can be visualized as this. Imagine the topological disk surface
M to be composed of elastic, triangular rubber sheets sewn together along their
edges. Stretch the boundary of M over the boundary of the target planar polygon
boundary P according to the map g. The harmonic map minimizes the total energy
of this configuration of rubber sheets. The energy is called Dirichlet energy.
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Variational calculus states that the solution f to this Dirichlet’s boundary value
problem is the minimizer of Dirichlet energy

ED( f ) =
1
2

∫

M
∣∣∇ f ∣∣2,

subject to the same boundary condition. Here the manifold M becomes a triangu-
lation T and the boundary condition is given by the pre-fixed parameter points of
the boundary vertices, the Dirichlet energy of the piecewise linear mappings can be
represented by

ED( f ) =
1
2

∑

[vi,v j]∈E

κi, j∣∣h(vi)−h(v j)∣∣2,

The following lemma and corollary introduced and proved by Pinkall et al. [118]
give us the representation of weight κi, j.

Lemma 2 Let f be the linear map between two triangles △1 and △2. Then the
Dirichlet energy of f is

ED( f ) =
1
4
(cotαa2 + cotβb2 + cotγc2),

where α,β,γ are the angles in △1 and a,b,c are the corresponding side lengths in
△2. (Figure 2).

Figure 2: Linear map between two triangles. (Image Courtesy of Floater et al. [42])

Corollary 3 The Dirichlet energy of a piecewise linear mapping ψ is

ED(ψ) =
1
2

∑

[vi,v j]∈E

1
2

wi j∣∣ψ(vi)−ψ(v j)∣∣2
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with the harmonic weights

wi j =
1
2
(cotαi j + cotβi j)

where αi j and βi j are the angles opposite to [vi,v j] in the adjacent triangles (see
Figure 3).

Figure 3: Angles for the discrete Dirichlet energy and the mean value coordinates. (Image
coutesy of Floater et al. [42])

Now if we fix the parameter points ψ(vi) for the boundary vertices, and mini-
mize the Dirichlet energy with respect to the interior parameter points ψ(vi), we get
a harmonic map ψ and the corresponding harmonic parameterization φ = ψ−1.

In [34], Eck et al. show that these maps also minimize metric dispersion,
which measures how much a map stretches regions of small diameter in T .

Minimizing the Dirichlet energy can be reduced to

∆ψ(vi) =
∑

[vi,v j]∈E

wi j(ψ(vi)−ψ(v j)) = 0

and leads to a linear system Ax = b. The positive definiteness is guaranteed for the
coefficient matrix A(proved in [79]), which shows the existence and uniqueness of
a solution to this minimization problem.

Convex Combination Maps Another linear parameterization method was in-
troduced by Floater in [39]. First fix the resultant parameter points ψ(vi) for all
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boundary vertices. Then for each interior vertex vi a set of strictly positive convex
weights λi j for vi and v j ∈ Nvi with

∑

v j∈Nvi

λi j = 1

is chosen; and so the ψ(vi) for interior vertex are determined by solving the linear
system of equations

ψ(vi) =
∑

v j∈Nvi

λi jψ(v j)

Therefore, every interior parameter point is a convex combination of its neighbors.
This piecewise linear function ψ that are defined by the parameter points ψ(vi)

above are called convex combinations maps and the following theorem [39, 79],
guarantees them leading to proper parameterizations under certain conditions.

Theorem 4 If the boundary polygon that is formed by the fixed parameter points
ψ(v) for all boundary vertex, then the convex combination map ψ is a bijection, i.e.
the planar triangulation ψ(T ) is without self-intersections.

For harmonic maps, the weight wi j can be negative, the weight is not convex,
so harmonic map does not fulfill the requirements of this theorem, and we say it is
not convex but only an affine combination map.

Floater gives a slightly different version of this theorem with weaker assump-
tions in [41].

Corollary 5 If the boundary polygon is weakly convex and there is no trian-
gle [vi,v j,vk] ∈ T for boundary points vi,v j,vk such that ψ(vi),ψ(v j),ψ(vk) are
collinear, then ψ is a bijection.

Now we know the convex combination maps is unique and bijective. The question
is whether the weights λi j can be chosen such that the reproduction property holds
in addition. The positive answer was given by Floater in [39, 40].

Shape Preserving Maps and Mean Value Coordinates Maps Discrete har-
monic maps have this reproduction property but are not guaranteed to be injective.
The shape-preserving method of [39] is a convex combination mapping designed
to get the reproduction property(since it is convex, injectivity is assured). In many
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Figure 4: Remeshing a triangle mesh with a regular quadrilateral mesh using different
parameterization methods. (Image coutesy of Floater et al. [42])

numerical examples, the discrete harmonic map and shape-preserving maps look vi-
sually very similar, the two methods begin to differ more, with the shape-preserving
map being more robust in the presence of long and thin triangles.

A more recent Floater’s paper [40] gives an alternative construction of a con-
vex combination mapping with the reproduction property, which both simplifies
the shape-preserving method of [39] and at the same time directly discretizes a har-
monic map. It is based on mean value coordinates and motivated as explain below.
The numerical results are quite similar to the shape-preserving parameterization.
Figure 4 shows the result of first mapping a triangle mesh (a) to a square and then
mapping a regular rectangular grid back onto the mesh. The four mappings used
are barycentric (b), discrete harmonic (c), shape-preserving (d), and mean value
(e).

In [40], Floater gave an observation that harmonic functions satisfy the mean
value theorem. At every point in its planar domain, the value of a harmonic function
is equal to the average of its values around any circle centered at that point. This
suggests finding a piecewise linear map f : ST → S∗, for a planar triangular mesh
ST , which satisfies the mean value theorem at every interior vertex vi of the mesh.
We let Γi be a circle centered at vi with radius ri > 0 small enough that Γi only
intersects triangles in T which are incident on vi. We then demand that

f (vi) =
1

2πri

∫

Γi

f (v)ds.

Some algebra then shows that for the small enough ri, independent of ri > 0, the
above equation is similar to the previous frame work for computing harmonic and
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convex combination maps, with the weights wi j replaced by

wi j =
tan(δi j/2)+ tan(γi j/2)

∣∣v j − vi∣∣ ,

with the angles shown in Figure 3. When ST is a surface mesh, they use the same
weights with the angles taken from the mesh triangles.

Mean value maps guarantee the bijective and reproduction property, but in con-
trast to discrete harmonic maps(which minimize the Dirichlet energy) and shape-
preserving maps(which minimize an energy that is based on second differences),
they are not the solution of a minimization problem.

The boundary mapping The first step in constructing both the discrete har-
monic and the convex combination maps is to choose the boundary mapping f ∣∂ST .
There are two issues here: (i) choosing the shape of the boundary, and (ii) choosing
the distribution of the points around the boundary.

∙ Choosing the shape
In most applications, we only need the domain to be a rectangle or a circle
approximated by a polygon. In these cases, the boundary is convex and the
methods of the previous section work well.

The convexity restriction may generate big distortions near the boundary
when the boundary of the surface ST does not resemble a convex shape.
One solution to avoid such distortion is to build a ”virtual” boundary, i.e.,
to augment the given mesh with extra triangles around the boundary so as to
construct an extended mesh with a ”nice” boundary. This approach has been
successfully used by Y. Lee in [93].

∙ Choosing the distribution
The usual procedure in the literature is to choose some simple boundary map-
ping such as chord length parameterization, either around the whole bound-
ary, or along each side of the boundary.

Consider first the case of a smooth surface S with a smooth boundary ∂S.
According to Riemann Mapping Theorem, S can be mapped into any given
simply-connected region S∗ ⊂ ℝ2 by a conformal map f : S → S∗. Since any
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such conformal map defines a boundary mapping f ∣∂S : ∂S→ ∂S∗, this implies
that there must exist some boundary mapping such that the harmonic map it
defines is also conformal.

Linear Methods for Discrete Conformal Maps Lévy et al. [94] and Desbrun
et al. [30] both independently developed a third method to compute discrete confor-
mal mappings which has the advantage of being linear. For a bivariate linear func-
tion g : ℝ2 → ℝ2, Lévy et al. propose measuring the violation of Cauchy-Riemann
equations in a least squares sense, i.e., with the conformal energy

EC(g) =
1
2
((ux − vy)

2 +(uy + vx)
2).

Based on this they find the optimal piecewise linear mapping f : ST → S∗ by mini-
mizing

EC( f ) =
∑

T∈T

EC( f ∣T )A(T ).

EC(g) can be expressed in terms of the singular values of the Jacobian of g and
there is a close relation to the Dirichlet energy.

We can get

EC(g) =
1
2
(σ1 −σ2)

2

and
EC(g)A(S) = ED(g)−A(g(S))

for any planar region S. Therefore we have

EC( f ) = ED( f )−A( f )

which also shows that EC( f ) is quadratic in the unknowns f (v) and that the nor-
mal equations for the minimization problem can therefore be expressed as a linear
system of equations.

Desbrun et al. [30] take a slightly different path to arrive at the same system.
They start with the finite element method that yields the equations

DpED( f ) = 0

for all parameter points p= f (v) of the interior vertices v; then they imposed natural
boundary constraints

DpED( f ) = DpA( f ),
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Figure 5: Example of two different discrete conformal mappings for the same triangulation.
(Image coutesy of Floater et al. [42])

for all p = f (v) on boundary points v. But as they also show that DpA( f ) = 0 at the
interior vertices, this amounts to solving

gradED = gradA

and is thus equivalent to minimizing EC( f ).
However, if there is no additional constraints, f will be degenerate that maps

ST to a single point because in that case EC( f ) is trivially minimized. Therefore,
both papers propose to fix the parameter values f (v), f (w) of two vertices v,w so
that a unique non trivial solution can be found. Unfortunately, the solution depends
on this choice seriously. For example, if we parameterize the pyramid in Figure 5
(a) whose vertices lie on the corners of a cube, fixing p1 = f (v1) and p2 = f (v2)

gives the solution in (b), while fixing p1 = f (v1) and p3 = f (v3) results in the
parameterization shown in (c).

Finally, this approach sometimes generates folded triangles and according to
Floater [42], currently there is no research showing any sufficient conditions that
guarantee the resulting parameterization to be a one-to-one mapping.

Angle Flattening Methods Sheffer et al. [136] introduce an angle flattening
methods to parameterize a genus zero open surface, unlike all the previous methods
which focus on finding mapping of vertex positions, their method works on an-
gles. The boundary is also not pre-fixed but computed as a part of the optimization
procedure.

In discrete case, the Gaussian curvature at one interior point can be represented
by
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2π−
n∑

i=1

αi. (1)

On planar surface, the Gaussian curvature for interior node is zero everywhere,
represented by that equation (1) is zero.

The work of Sheffer et al. starts from this observation. Since the change of the
Gaussian curvature inevitably brings the angular deformation, they believe the best
case is the deformation is evenly distributed around the vertex.

Denote the set of all one-ring faces around a vertex v by Nv, the set of in-
dices of the angles around v by I(v), and denote the sum of these angles by
θ(v) =

∑
i∈I(vi)

θi.
Using a scalar factor defined on every node v

s(v) =

{
2π/θ(v), v is an interior node;

1, v is a boundary node.

The optimal angle φi on planar surface for node vi is given by:

φi = βis(vi)

where the βi is the original corner angle of the vertex vi.
The objective function is given by

F(α) =
∑

i

(αi −φi)
2wi (2)

where αi is the planar angle we try to solve, and the wi > 0 are weights, standard
initial choice for the weights is wi = (φi)

−2. Intuitively, this initialization assures
the small angles are not neglected.

The constraints for the optimization problem are

1 All the computed angles should be larger than a preset value ε;

2 The sum of three corners of any triangle equals to π;

3 The sum of angles around an interior node equals to 2π;

4 Using the sine rule, given an edge and fix any of its interior node, going
around all edges sharing same fixed node in counterclockwise order, the
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Figure 6: Angle Flattening by Sheffer. (Image Courtesy of Sheffer et al. [136])

length of the first one and the last one(coinciding with the first one) agree
with each other. As shown in Figure 6, length of l7 should agree with length
of l1.

This reduces to a constrained minimization problem, which is non-linear, but
proved in [136] to have a global uniquely converged solution. Also the mapping
is proved to be injective. One other advantage of this method is it is not affected
by the input mesh qualify due to the use of angles only. A main problem for this
method is the non-linear system is too slow to solve for practical use.

2.1.3.3 Conformal Parameterization of Genus Zero Closed Surfaces

For meshes having the topology of a sphere, a spherical domain is a best choice
for the parameterization. Comparing to domains having other topological structure,
this can significantly reduce the distortion introduced by cutting and seaming.

The existence is also guaranteed. Parameterizing a 3D triangle mesh over the
sphere is equivalent to embedding its connectivity graph on the sphere, such that
the resulting spherical triangles partition the sphere [52]. There is a classical result
due to Steinitz guaranteeing the existence. It says that a graph may be embedded
on the sphere if and only if it is planar and 3-connected. Thus any triangulation of
a closed genus zero manifold satisfies it and can always be mapped to a spherical
triangulation.

A simplest way to map a closed triangle mesh to the sphere is given by Haker
et al. [66]. The primary idea is to convert the mapping to be planar. The method
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Figure 7: Spherical geometry. (Image Courtesy of Sheffer et al. [137])

is first, Cut out one triangle and the left mesh become disk-like and then can be
parameterized using planar methods discussed in previous sections, then finally,
an inverse stereo projection is applied to map the plane back to a sphere. The
main problem of this method is severe distortion. According to Gotsman [52],
although the inverse stereo projection is conformal in the continuous case, it does
not preserve angles in the discrete case. Also, the projection does not guarantee that
the result is a spherical triangulation.

A similar method to take the use of planar mapping can be slicing the closed
mesh into two parts, each part is mapped onto a hemisphere, and finally glue the two
hemispheres; also the closed meshes can be just sliced to be an open surface patch
instead of two, and after the planar mapping, the boundary is seamed together again,
as Sheffer did in [135]. These methods can be less distorted than the one of [66], but
they severely depend on the slicing, and introduce discontinuities along the cutting
boundary.

A better method is to parameterize on sphere directly instead of going back
and forth to the plane. Using spherical domain greatly reduce the distortion.

Sheffer et al. [137] use another way to build an injective parameterization.
The method is inspired from their angle flattening work on planar parameteriza-
tion [136] discussed above, and work on the spherical angles instead of the planar
location.

A spherical triangle is the region enclosed by three great circles on the unit
sphere (a great circle is a circle on the sphere whose center is the origin). As shown
in Figure 7, denote the length of the arcs who are the sides of the spherical triangle
by a,b and c. The spherical defect of the triangle is D= 2π−(a+b+c). A spherical
angle is the dihedral angle between the two planes defined by the two great circles,
and we denote these by A,B and C. The sum of the spherical angles of a spherical
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triangle is always more than π and less than 3π. The spherical excess of that triangle
is E = A+B+C−π. The solid angle defined by a spherical triangle is the area of
the region on the sphere defined by that triangle, and is equal to the excess of the
triangle. Hence the sum of all solid angles and the sum of all excesses in a spherical
triangulation is 4π. The sum of all spherical angles around any vertex in a spherical
triangulation is exactly 2π.

The object function is defined as

F(α) =
∑

i

(αi −φi)
2 +

∑

i

(ei − e′i)
2.

where the αi is the angle we try to solve, φi is the optimal angle, ei is the excess of
the planar angles, and e′i is the optimal excess.

A similar set of constraints is given based on spherical triangles settings ac-
cordingly.

The procedure is also non-linear and are reduced to constrained minimization
problem which minimizes the least-squares distance of the solution values from
their target values set by users. However, this method so far lacks an efficient nu-
merical computation procedure(according to [52]); also, the final embedding pro-
cedure may accumulate a numerical error, and the error bound is not given.

Gu et al. [62] compute the conformal mappings of genus zero closed surfaces
with a harmonic map, they proved harmonic maps are conformal for genus zero
closed surface. So given an initial map, for example, a spherical barycentric map,
h, it can be diffused to harmonic by minimizing the harmonic energy.

In spatial case, a function h : M → ℝ3 considered, and the Dirichlet energy is
defined as

E(h) =
∑

[vi,v j]∈E

wi j∣∣h(vi)−h(v j)∣∣2,h = (h0,h1,h2)

where the weight wi j =
1
2(cotαi j +cotβi j) is defined similar to the previous discus-

sion, and the Laplacian on one component is

∆(hk) =
∑

[vi,v j]∈E

wi j(hk(vi)−hk(v j))

for k = 0,1,2. The Laplacian for h is simply

∆h = (∆h0,∆h1,∆h2)
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h is harmonic if the all tangential component of the Laplacian is zero.
The whole optimization problem can be solved by a heat flow procedure:

dh
dt

=−Dh(t),

the derivative is defined as Dh(v) = ∆h(v)−∆h(v)⊥ where ∆h(v)⊥ is the normal
component of the Laplacian

(∆h(v))⊥ =< ∆h(v),n(h(v))> n(h(v)).

2.1.3.4 Conformal Parameterization of Higher Genus Surfaces

For higher genus surfaces, the problem becomes different and much more
complicated. A possible method is to cut the given surface into several patches
and parameterize them separately. A post-relaxation procedure to blur the disconti-
nuities along cut boundaries may need to be applied. As done in [88, 89, 127, 142].
In addition, a powerful automatical cutting method comes from Morse theory
[108]. For more application in topology analysis of shape based on Morse the-
ory, [8, 9, 68, 111] can be referred.

However, like the parameterization in Genus zero closed surfaces, doing pa-
rameterization on the surface directly is preferred because it greatly reduces the
distortion along the cutting trajectory. Thus, a better approach is to take the topol-
ogy into account and use the global formulation to obtain the parameterization.
However, unlike the genus zero case, some zero points are inevitable due to the
topology structure of the surface. For a genus g(g > 1) surface, there are at least
(2g−2) zero points .

One-form Based Global Conformal Parameterization The problem of com-
puting global conformal parameterization for general closed meshes has two main
methods. One is using one-form by Gu et al in [65] and later Gu et al extend the
method to general meshes, either closed or open, in [64], [56]. The basic idea is
to compute the gradient field of the conformal maps, called holomorphic one-form,
which can be integrated to get the final parameterization. The process is briefly
explained as follows:

(1) Compute the homology bases B which are 2g closed curves e1,e2, . . . ,e2g;
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(2) Compute the cohomology bases Ω which are 2g vector fields w1,w2, . . . ,w2g;

(3) Compute corresponding harmonic 1-forms ζ = ζ1, . . . ,ζ2g such that ζi is ho-
mologous to wi;

(4) Apply Hodge star operation on ζi, and compute holomorphic 1-forms: ζi +√−1∗ζi.

Then the conformal parameterization is obtained by integrating the gradient
field. This method minimize the distortion of the parameterization so that except
2g−2 zero points, the mapping is conformal.

Circle Packing Based Global Conformal Parameterization with Curva-
ture Control Thurston first gave an algorithm to compute conformal structure
based on circle packing metric [143]. A practical software system for circle pack-
ing can be found in [139].

[87] applied the theory of circle patterns from [12] to globally conformal pa-
rameterizations. They obtain the uniform conformality by preserving intersection
angles among the circum-circles, each of which is defined from a triangle on the
given mesh. In their approach, the set of angles is non-linear optimized first, then
the solution is refined with cooperating geometric constraints. They provide several
parameterization results, such as 2D parameterization with predefined boundary
curvatures, spherical parameterization, and globally smooth parameterization of a
high genus model with introduced singularity points. [81] adopt the discrete Ricci
flow [16,67] as the tool to do the conformal surface parameterization for Euclidean
case, and further compute the uniform hyperbolic metric and real projective struc-
ture induced from hyperbolic structure for general surfaces [82].

In theory, the Ricci flow [16] and the variations with circle patterns [12] have
the same mathematical power. But the way to compute the uniform metric using
the Ricci flow in [81,82] is using Newton’ method, which is far more practical than
using gradient flow method as circle pattern.

Applications for Conformal Parameterization Conformal Parameterization
of 3D mesh data is very important in shape modeling and interactive graphics appli-
cations, including spline construction, texture mapping, remeshing, and morphing.

In [94], the model to be textured is decomposed into parts with natural
shapes,which are homeomorphic to discs, referred to as charts, and each chart
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is provided with a quasi-conformal parameterization based on a least-squares ap-
proximation of the Cauchy-Riemann equations introduced in this paper, then a new
packing algorithm is used to gather them in texture space.

[149] uses the global conformal parameterization to convert the 3D surface
texture synthesis problem to a 2D image synthesis problem, which is more intuitive,
easier, and conceptually simpler. While the conformality of the parameterization
naturally preserves the angles of the texture, they provide a multi-scale technique
to maintain a more uniform area scaling factor.This multi-scale method synthesizes
nonuniform textures on a 2D geometry image by considering the area stretching
factor (the inverse of the conformal factor) in order to obtain the uniform 3D tex-
tures.

[3] introduces an interactive remeshing for surface with irregular geometry.
First, the original (arbitrary genus) mesh is substituted by a series of 2D maps
in parameter space, including conformal parametric domain, area stretching map,
mean curvature map and Gaussian curvature map. The user can easily combine
these maps to create a control map which controls the sampling density over the
surface patch. This map is then sampled at interactive rates allowing the user to
easily design a tailored resampling. Once this sampling is complete, a Delaunay
triangulation and fast optimization are performed to perfect the final mesh.

[62] proposes a method which can find a unique mapping between any two
genus zero manifolds by minimizing the harmonic energy of the map with some
constraints added to ensure that the conformal map is unique.

(a) (b) (c) (d)

Figure 8: Examples of models with poly-cubic parameterizations: the original model
((a)(c)), and shaded parameterization of the mesh over the polycube surface ((b)(d)). (Image
Courtesy of Tarini et al. [142])
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2.1.4 Polycube Maps

Tarini et al. [142] pioneered the concept of polycube maps, a new surface pa-
rameterization technique in which the parametric domain roughly resembles the
given mesh and faithfully represents its topology a natural way to reduce the para-
metric distortion (see Figure 8 for examples of polycube-maps). They demonstrated
that polycube maps naturally lead to a seamless texture mapping method that is sim-
ple enough to be implemented in currently available graphics hardware. Their algo-
rithm for the construction of the poly-cubic parameterization of a given mesh M can
be summarized as follows (refer to Figure 9 for the 2D analogue of the algorithm):

Figure 9: The 2D analogue of Tarini’s algorithm for the construction of the poly-cubic
parameterization. (Image Courtesy of Tarini et al. [142])

1. Define a polycube that has roughly the same shape as the given mesh M and
captures all the large scale features.

2. Warp the surface T3 of the polycube from its axis aligned position in the 3D
texture space T3 to the object space ℝ3.

3. Establish a correspondence between both surfaces by moving every vertex v
of M along the surface normal direction onto the deformed polycube.



CHAPTER 2. Previous Work on Mesh-Based Geometry Processing Techniques 27

4. Apply the inverse warp function to the projected vertices and map them to T3.

5. Optimize the texture positions by minimizing the overall distortion of the
parameterization.

Tarini et al.’s technique is trying to find the one-to-one mapping of the 3D
shape and polycube extrinsically, which typically requires the projection of points
from one shape to the other. As a result, their method is usually quite difficult to
handle cases where the two shapes differ too much and the point projection does not
establish the one-to-one correspondence. Recently Lin et al. used Reeb graph to
segment the surface and then developed an automatic method to construct polycube
map [101]. However, their segmentation method may not work for shapes with
complicated topology and geometry and does not guarantee a bijection between the
polycube and the 3D model.

Figure 10: Skeleton extraction by mesh contraction. (Image Courtesy of Au et al. [6])

2.2 Previous Work on Skeleton Extraction

Curve-skeletons are 1D structures that represent a simplified version of the
geometry and topology of a 3D object. Figure 10 shows an example of the skele-
ton extraction procedure. The extraction of curve-skeletons from 3D models is a
fundamental problem in computer graphics and visualization, which has received a
lot of attention in recent decades. Compared to the well known skeletal represen-
tation, Blum’s medial axis [11], which is designed to capture reflectional symme-
tries in a shape and generally a non-manifold containing 2D sheets that are hard to
store and manipulate (refer to Figure 11 for an example), a 1D curve skeleton is
more useful in practice due to its topological simplicity, leading to computational
efficiency and ease of manipulation. Examples of applications that use a curve
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skeleton include: virtual navigation, registration, animation, morphing, scientific
analysis, shape recognition, and shape retrieval.

Figure 11: A medial axis in 2D (a and b) and a medial surface in 3D (c) and a few examples
of inscribed discs (2D) and ball (3D). (Image Courtesy of Cornea et al. [19])

One of the difficulties is that a curve-skeleton is an ill-defined object. This has
led to a large number of algorithms and heuristics in the literature and many more
constantly being proposed. Many of the algorithms in the literature use different
definitions, parameters and thresholds and demonstrate their performance on a lim-
ited number of diverse 3D objects. Additionally, some are fine-tuned for a specific
application.

Many algorithms for curve skeleton extraction have been developed [19] in
recent decades. These methods can be roughly classified into two main categories,
volumetric and geometric, depending on whether an interior representation or only
the surface representation is used [6].

Most existing curve-skeleton extraction methods make use of a volumet-
ric discrete representation, either a regularly partitioned voxelized representation
[102, 113, 150] or a discretized field function defined in the 3D space [69, 154].
Voxel-thinning methods [102, 113, 150] extract curve-skeletons from voxelized
representations by iteratively removing boundary voxels while maintaining the
topology of the input. In [150] they proposed an algorithm for skeleton extrac-
tion which first uses iterative least squares optimization to shrink models and pre-
serving their geometries and topologies, then extracts curve skeletons through the
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Figure 12: System overview of curve-skeleton extraction using iterative least squares op-
timization. (a) The original volumetric model. (b) The shrunk model transformed by our
algorithm. (c) By applying the thinning method to the original model, the extracted skele-
ton is jagged and deviates from the models center. (d) By applying the thinning method to
our shrunk model, a smooth and centered skeleton is obtained. (Image Courtesy of Wang
et al. [150])

thinning algorithm, finally prunes unnecessary branches based on shrinking ratios
(refer to Figure 12). The proposed method is less sensitive to noise on the sur-
face of models and can generate smoother skeletons. These Voxel-thinning meth-
ods differ by the priority for removal and the way of choosing boundary voxels.
Field-based approach for curve skeleton extraction relies on an Euclidean dis-
tance field [69, 104, 154] or an implicit potential field [1, 17, 18] corresponding to
the input shape, resulting in a voxelized representation of the internal volume. The
skeleton is then computed via volumetric thinning, ridge extraction, or force fol-
lowing along the ridges of a potential field. These methods generally require clear
knowledge about the interior of the input shape and the process of connecting can-
didate voxels is not robust. In general, these volumetric methods share the common
drawbacks of potential loss of details, and numerical instability caused by inappro-
priate discretization resolution. These methods are also usually computationally
intensive.

Geometric methods work directly on polygon meshes or point sets without
pre-sampling the mesh model into a volumetric representation. Voronoi diagram is
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Figure 13: An example of Reeb graph: the pseudo-colored surfaces show the function used
for computing the Reeb graph. The transparent models show the structure of the Reeb graph
and its embedding. (Image Courtesy of Pascucci et al. [114])

a popular geometric approach. Such methods obtain an approximate medial surface
by extracting the internal edges and faces of the Voronoi diagram [4, 33, 112] and
prune the medial surface to obtain a curve-skeleton. Reeb-graph-based methods
are also geometric approaches which have gained much attention in recent years.
The Reeb graph [123] is a fundamental data structure that captures the topology
of a compact manifold by following the evolution of the level sets of a real-valued
function defined on the respective manifold. It is obtained by contracting to a point
the connected components of the level-sets of a function defined on a mesh. A lot
of algorithms have been proposed to compute Reeb graph of an object using various
real-value functions. Aujay et al. [7] proposed a harmonic Reeb graph that uses the
harmonic function, found by solving the Laplace equation. He et al. [76] proposed
an algorithm for curve skeleton computation by taking advantage of the intrinsic
property of harmonic 1-form, i.e., it is determined by the metric and independent of
the resolution and embedding. they first construct the skeleton-like Reeb graph of
a harmonic function defined on the given poses. Then identify the initial locations
of joints by examining the changes of mean curvatures. Finally they refine the
joint locations by solving a constrained optimization problem. A robust on-line
algorithm for computing Reeb graphs was presented in [114] (Figure 13).

Au et al. [6] (Figure 10) skeletonizes a shape by shrinking it using constrained
Laplacian smoothing. Excellent results are obtained, but they can only come from
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Figure 14: Curve skeleton extraction from incomplete point cloud. (Image Courtesy of
Tagliasacchi et al. [141])

watertight meshes, since Laplacian smoothing requires mesh connectivity and a
full model is needed to balance the shrinking process so as to obtain a centered
skeleton. More recently, Tagliasacchi et al. [141] presented an algorithm for curve
skeleton extraction from imperfect point clouds where large portions of the data
may be missing (refer to Figure 14). Their method is primarily based on a novel
notion of generalized rotational symmetry axis (ROSA) of an oriented point set.
Specifically, given a subset S of oriented points, they introduce a variational def-
inition for an oriented point that is most rotationally symmetric with respect to S.
Their formulation utilizes normal information to compensate for the missing data
and leads to robust curve skeleton computation over regions of a shape that are gen-
erally cylindrical. They present an iterative algorithm via planar cuts to compute
the ROSA of a point cloud by special handling of non-cylindrical joint regions to
obtain a centered, topologically clean, and complete 1D skeleton.

2.3 Previous Work on Mesh Decomposition

A hard problem might become easier if only the objects at hand could be cut
up into smaller and easier to handle sub-objects. Mesh decomposition is funda-
mental for many computer graphics and animation techniques. The last few years
have witnessed a growing interest in mesh decomposition for computer graphics
applications [13, 53, 99, 105, 138].

Mesh decomposition benefits many applications. In metamorphosis [53, 138,
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155], mesh decomposition is used for establishing a correspondence. Compres-
sion [85] and simplification [46, 156] use decomposition for improving their com-
pression rate. In 3D shape retrieval, a decomposition graph serves as a non-rigid in-
variant signature [156]. In collision detection, decomposition facilitates the compu-
tation of bounding-volume hierarchies [99]. In texture mapping, parameterization is
applied to each component [94]. Other potential applications include modification
and modeling by parts.

(a) first level (b) second level (c) third level (d) fourth level

Figure 15: Hierarchical k-way decomposition of a dino-pet. (Image Courtesy of Katz et
al. [86])

Several approaches have been discussed in the past for decomposing meshes.
In [13, 14] convex decomposition schemes are proposed, where a patch is called
convex if it lies entirely on the boundary of its convex hull. Convex decomposi-
tions are important for applications such as collision detection. However, small
concavities in the objects result in over-segmentation, which might pose a problem
for other applications. In [105] a watershed decomposition is described. In this
case, a post-processing step resolves over-segmentation. One problem with the al-
gorithm is the dependency on the exact triangulation of the model. Furthermore,
the meaningful components, even planar ones, might get undesirably partitioned.
In [46], face clustering is proposed so that the clusters may be well approximated
with planar elements. This algorithm is useful for simplification and radiosity, and
less for applications seeking the meaningful components. In [99], skeletonization
and space sweep are used. Nice-looking results are achieved with this algorithm.
However, smoothing effects might cause the disappearance of features for which it
is impossible to get a decomposition. In [138] a K-means based clustering algo-
rithm is proposed. The meaningful components of the objects are found. However,
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the boundaries between the patches are often jagged and not always correct.

Figure 16: Consistent partitioning based on the SDF function. (Image Courtesy of Shapira
et al. [133])

Several works explore the strong connection between part-partitioning and
skeletonizing [100, 109, 144, 145, 152]. In [144] feature points are extracted from a
mesh, and are used to calculate an invariant mapping function, revealing important
parts in the mesh. Geometrical and toplogical analysis using Reeb graphs enable
the authors to extract a visually meaningful skeleton. This skeleton was employed
in a follow-up work [145] to calculate a hierarchical segmentation. In [86] they
present an algorithm for hierarchically decomposing meshes. The key idea of the
algorithm is to first find the meaningful components of the mesh and only then fo-
cus on generating the exactly boundaries between the components. The object part
decomposition facilitates the definition of a skeleton, which in turn is used for defor-
mations and animation (Figure 15). In [133] they target the problems of partitioning
and skeleton extraction of a family of 3D meshes with consistency. They present
an algorithm on a volume-based shape-function called the shape-diameterfunction
(SDF), which remains largely oblivious to pose changes of the same object and
maintains similar values in analogue parts of different objects. The SDF is a scalar
function defined on the mesh surface expressing a measure of the diameter of the
objects’s volume in the neighborhood of each point on the surface. Using the SDF it
is possible to process and manipulate families of objects which contain similarities
(Figure 16).

Au K.-C. et. al. in [6] provided a simple mesh segmentation algorithm in
their curve-skeleton extraction framework by exploiting the induced skeleton-mesh
mapping and the local thickness of each skeleton node. They first order the branches
of the extracted curve-skeleton according to their approximate volume. Starting
from the thickest branch, they iteratively assign a cut to each branch to segment the
mesh, with each cut resulting in exactly one additional segment. The cutting stops
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(a) (b)

Figure 17: A visualization of the local thickness at each skeleton node in (a), and segmen-
tation results in (b). (Image Courtesy of Au et al. [6])

when every branch has been assigned one cut or a desired number of segments
specified by the user has been reached (Figure 17).

Figure 18: Segmentation induced by the analysis of discrete Laplace-Beltrami operators.
(Image Courtesy of Reuter et al. [124])

More recently, in [124] Reuter et al. analyzed the correctness of the Laplacian
eigenfunctions of different discretizations of the Laplace- Beltrami operator. Then,
they selected the FEM operators for eigenfunctions computation, and derived a set
of segmentations from the nodal domains of the eigenfunctions in the first part of
the Laplacian spectrum. Golovinskiy et al. extended the idea of single-mesh seg-
mentations to a segmentation of multiple meshes [47]: they simultaneously segment
models and create correspondences between segments. Specifically, they first build
a graph whose nodes represent faces of all the models in the set, and whose edges
represent links between adjacent faces within a mesh, and between corresponding
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Figure 19: Consistent segmentation of 3D models. (Image Courtesy of Golovinskiy et
al. [47])

faces of different meshes. They then cluster the graph, creating a segmentation in
which adjacent faces of the same model and corresponding faces between different
models are encouraged to belong to the same segment.



Chapter 3

Previous Work on Splines

Figure 20: An example of spline devices used to draw smooth shapes. (Image Courtesy of
Poston et al.)

In mathematics, the term splines refers to smooth, piecewise polynomials.
They are ideal tools for applications where continuous representations are criti-
cal. The classical spline or engineering spline is usually a wooden beam or metal
strip, which can be used to draw smooth curves (see Figure 20). The first study on
splines goes back to 1946 by Schoenberg. Since then, splines become a very active
research area due to the rapid development of computational science. There exists

36
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huge number of literatures on theoretical foundation of splines and their applica-
tions. The most popular spline schemes, such as tensor product Bézier surfaces,
tensor product B-spline surfaces, triangular Bézier surfaces and B-patches, can be
unified as the different variations of polar forms [120, 122, 132]. We shall briefly
explain the concept of polar forms, and then, we concentrate on the introduction of
different spline schemes, including the planar splines and manifold splines.

3.1 Polynomials and Polar Forms

The most basic class of curves and surfaces is the class of parametric poly-
nomials. In the context of graphics and CAGD these curves and surfaces are best
studied with the help of a classical mathematical tool, the polar form [122, 131].

Definition 6 (Affine Map) A map f : ℝk → ℝt(k ≥ 1) is affine, if and only if
it preserves affine combinations, i.e., if and only if f satisfies f (

∑m
i=0 αiui) =∑m

i=0 αi f (ui) for all scalars α0, . . . ,αm ∈ ℝ with
∑m

i=0 αi = 1.

Definition 7 (Symmetric, Multi-Affine) Let F be an n-variable map. F is sym-
metric if and only

F(u1,u2, ⋅ ⋅ ⋅ ,un) = F(uπ(1),uπ(2), ⋅ ⋅ ⋅ ,uπ(n))

for all permutations π ∈∑
n. The map F is multi-affine if and only if F is affine in

each argument if the others are held fixed.

The well-known blossoming principle indicates that any polynomial is equiv-
alent to its polar form [132]:

Theorem 8 (Blossoming Principle) Polynomials F : ℝk → ℝt(k ≥ 1) of degree n,
and a symmetric multi-affine map f : (ℝk)n → ℝt are equivalent. Given a map of
either type, unique map of the other type exists that satisfies the identity F(u) =
f (u, ⋅ ⋅ ⋅ ,u︸ ︷︷ ︸

n

). The map f is called the multi-affine polar form or blossom of F.
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Figure 21: The de Casteljau Algorithm in the case n=3. (Image Courtesy of Seidel et
al. [131])

3.2 Bézier Curve

A Bézier curve in its most common form is a simple cubic equation that can
be used in any number of useful ways. It is attributed and named after a French
engineer, Pierre Bézier, who used them for the body design of the Renault car in
the 1970’s. They have since obtained dominance in the typesetting industry and
in particular with the Adobe Postscript and font products. A Bézier curve can be
defined as following:

Definition 9 (Bézier Curve) Given a set of n+ 1 control points P0,P1, . . . ,Pn, the
corresponding Bézier curve (or Bernstein-Bézier curve) is given by

C(t) =
n∑

i=0

PiBi,n(t)

where Bi,n(t) is a Bernstein polynomial Bi,n(t) =

Ã
n
i

)
t i(1− t)n−i and t ∈ [0,1].

The Bézier representation of a polynomial F is closely related to its polar form
[27, 28]:

Theorem 10 (Bézier Points) Let ∆ = [r,s] be an arbitrary interval. Every polyno-
mial F : ℝ→ ℝt can be represented as a Bézier polynomial w.r.t. ∆. The Bézier
points are given as

bj = f (r, . . . ,r︸ ︷︷ ︸
n− j

,s, . . . ,s︸ ︷︷ ︸
j

), (3.1)

where f is the polar form of F.
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Figure 22: The de Casteljau algorithm for a cubic Bézier curve. (Image Courtesy of Seidel
et al. [131])

Equation (3.1) immediately leads to an evaluation algorithm that recursively com-
putes the values

bl
j(u) = f (r, . . . ,r︸ ︷︷ ︸

n−l− j

,u, . . . ,u︸ ︷︷ ︸
l

,s, . . . ,s︸ ︷︷ ︸
j

)

= s−u
s−r f ( r, . . . ,r︸ ︷︷ ︸

n−l− j+1

,u, . . . ,u︸ ︷︷ ︸
l−1

,s, . . . ,s︸ ︷︷ ︸
j

)+ u−r
s−r f (r, . . . ,r︸ ︷︷ ︸

n−l− j

,u, . . . ,u︸ ︷︷ ︸
l−1

,s, . . . ,s︸ ︷︷ ︸
j+1

)

= s−u
s−r bl−1

j (u)+ u−r
s−r bl−1

j+1(u)

from the given control points. For l = n we finally compute bn
0 = f (u, . . . ,u) =

F(u) which is the desired point on the curve. The resulting computational scheme
is illustrated by Figure 21 and Figure 22. This algorithm is called de Casteljau
Algorithm, which was first studied by Paul de Faget de Casteljau [27, 28].

Formula (3.1) also shows that the de Casteljau Algorithm offers a way to sub-
divide a Bézier curve: suppose that we wish to subdivide a Bézier curve F over a
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given interval ∆ = [s, t] at an arbitrary parameter u ∈ ∆. The new Bézier points of
the left and right segments Fl and Fr with respect to the subintervals ∆l = [r,u] and
∆r = [u,s] are given as

bl
0 = f (r, . . . ,r),bl

1 = f (r, . . . ,r,u), . . . ,bl
n = f (u, . . . ,u)

and
br

0 = f (u, . . . ,u),br
1 = f (u, . . . ,u,s), . . . ,br

n = f (s, . . . ,s).

Bézier curves satisfy the following shape properties:

1. Convex Hull Property: A Bézier curve is contained in the closed convex hull
of its Bézier polygon.

2. End Point Interpolation: A Bézier curve interpolates the end points of its
control polygon and is tangent to the control polygon there.

3. Variation Diminishing Property: The number of intersection points of a
Bézier curve with an affine hyperplane H is bounded by the number of in-
tersection points of H with the control polygon. Intuitively this means that a
Bézier curve wiggles no more than its control polygon.

4. Affine Invariance: The relationship between a Bézier curve and its control
polygon is invariant under affine transformations.

Undesirable properties of Bézier curves are their numerical instability for
large numbers of control points, and the fact that moving a single control point
changes the global shape of the curve. The former is sometimes avoided by
smoothly patching together low-order Bézier curves. A generalization of the Bézier
curve is the B-spline.

3.3 B-Splines

B-splines (short for Basis Splines) go back to Schoenberg who introduced them
in 1946 [125, 126] for the case of uniform knots. B-splines over nonuniform knots
go back to a review article by Curry in 1947 [20]. de Boor derives the recursive
evaluation of B-spline curves [25]. It was this recursion that made B-splines a truly
viable tool in CAGD. Before its discovery, B-splines were defined using a tedious
divided difference approach which was numerically unstable. Later on, Gordon and
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Figure 23: An example of B-spline curves.

Riesenfeld [49] realize that de Boor’s recursive B-spline evaluation is the natural
generalization of the de Casteljau algorithm and Bézier curves are just subset of B-
spline curves. Versprille [146] generalizes B-spline curves to NURBS (non-uniform
rational B-spline) which has become the standard curve and surface form in the
CAD/CAM industry [117]. In this section, we first introduce basic concepts of
B-spline and its polar form representation, then describe the rational extention of
B-splines - the NURBS.

Figure 24: The de Boor Algorithm in the case n=3. (Image Courtesy of Seidel et al. [131])
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3.3.1 Univariate B-Splines

Definition 11 (B-Spline) Let a vector known as the knot vector be defined

T = {t0, t1, . . . , tm}

where T is a nondecreasing sequence with ti ∈ [0,1] , and define control points
P0, . . . ,Pn . Define the degree as

p ≡ m−n−1

The ”knots” tp+1, ..., tm−p−1 are called internal knots.
Define the basis functions as

Ni,0(t) =

{
1 if ti ≤ t < ti+1 and ti < ti+1;
0 otherwise.

Ni,p(t) =
t − ti

ti+p − ti
Ni,p−1(t)+

ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1

Then the curve defined by

C(t) =
n∑

i=0

PiNi,p(t)

is a B-Spline.

Figure 23 shows an example of B-spline curves. Similar to section 3.2, we
have the following [121, 122]:

Theorem 12 (de Boor Points) Every polynomial F :ℝ→ℝt can be represented as
a B-spline segment over a non-decreasing knot sequence rn ≤ . . .≤ r1 < s1 ≤ . . .≤
sn. The de Boor points are given as

dj = f (r1, . . . ,rn− j,s1, . . . ,s j), (3.2)

where f is the polar form of F.

Theorem 12 and the de Boor Algorithm are illustrated by Figure 24 and Figure
25.
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Figure 25: The deBoor Algorithm for a cubic B-spline segment. (Image Courtesy of Seidel
et al. [131])

The B-spline basis functions are positive and form a partition of unity. In
addition, they have local support (Nn

i (u) = 0 for u ∕∈ [ti, ti+n+1]), and it can be shown
that they are Cn−µ-continuous at a knot of multiplicity µ. The knot values determine
the extent of the control of the control points.

B-spline curves have similar shape properties as Bézier curves:

1. Convex Hull Property: A B-spline is contained in the convex hull of its de
Boor points. Moreover, if u ∈ [t j, t j+1), then F(u)⊂ [d j−n, . . . ,d j](local con-
vex hull property).

2. Multiple Control Points:If n control points d j−n+1 = . . . = d j = d coincide,
then F(t j+n) = d, i.e., the curve interpolates to this point and is tangent to the
control polygon there.

3. Collinear Control Points:If n+ 1 control points d j−n, . . . ,d j lie on a line L,
then F([t j, t j+1]) ∈ L, i.e., the curve contains a line segment.
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4. Multiple Knots:If n knots t j+1 = . . .= t j+n =: t coincide, then F(t) = d j, i.e.,
the curve interpolates to this point and is tangent to the control polygon there.

5. Variation Diminishing Property:The number of intersection points of B-
spline curve with an affine hyperplane H is bounded by the number of in-
tersection points of H with the control polygon. Intuitively this means that a
B-spline curve wiggles no more than its control polygon.

6. Affine Invariance Then relationship between a B-spline curve and its control
polygon is invariant under affine transformations.

Specific B-spline types include the nonperiodic B-spline (first n+1 knots equal
0 and last n+ 1 knots equal to 1) and uniform B-spline (internal knots are equally
spaced). Bézier curves are a special case of B-splines (for special knot vector T =

(s, . . . ,s︸ ︷︷ ︸
n

< t, . . . , t︸ ︷︷ ︸
n

))

Figure 26: An example of tensor product surfaces. (Image Courtesy of Wikepedia)

3.3.2 Tensor Product B-Spline

By far the most popular surfaces in CAGD and computer graphics are tensor
product surfaces (see Figure 26): Given a curve scheme F(u) =

∑n
i=0 Bi(u)bi,bi ∈

ℝt , the corresponding tensor product scheme is defined as

F(u,v) =
n∑

i=0

m∑

j=0

Bi(u)B j(v)bi j,bi j ∈ ℝt ,

which can also be written as
F(u,v) =

∑n
i=0 Bi(u)biv with biv = bi(v) =

∑m
j=0 B j(v)bi j.
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The last equation demonstrates that tensor product surfaces may be considered as
curves of curves. In generation of the curve case, the Bézier points bi j of F in
the representation F(u,v) =

∑n
i=0

∑m
j=0 Bn

i (u)B
m
j (v)bi j as a tensor product Bézier

surface over [p,q]× [r,s] are given as

bi j = fT P(p, . . . , p︸ ︷︷ ︸
n−i

,q, . . . ,q︸ ︷︷ ︸
i

;r, . . . ,r︸ ︷︷ ︸
m− j

,s, . . . ,s︸ ︷︷ ︸
j

)

while the de Boor points di j of F in the representation

F(u,v) =
n∑

i=0

m∑

j=0

Nn
i (u)N

m
j (v)di j

as segment of a tensor product B-spline surface over the knot vectors S = {si} and
T = {t j} are given as

di j = fT P(si+1, . . . ,si+n; t j+1, . . . , t j+m).

Many algorithms that have been discussed for Bézier and B-spline curves can then
be generalized to B’ezier and B-spline tensor product surfaces.

3.3.3 NURBS

Many CAD systems use conic sections(ellipses, parabolas and hyperbolas) as
basic components for the construction of more complex objects. Parabolas can
be easily represented as B-splines, e.g. as quadratic Bézier curves. However, it
is impossible to represent an ellipse or a hyperbola exactly by a B-spline. One
can only approximate ellipses or hyperbolas with arbitrary prescribed tolerance.
Rational curves (curves with the form R(u) = C(u)

w(u) where C is a polynomial curve
and w is a scalar polynomial) allow an exact representation of a conic section. The
most important class of rational spline curves is the set of Non-Uniform Rational
B-Splines, briefly NURBS, which are the rational extension of B-splines, have all
the nice features of B-splines, and include conic sections. In this section we will
give a description of this class.

Definition 13 (NURBS) Let a vector known as the knot vector be defined T= {t0 ≤
t1 ≤ . . . ≤ tk+n ≤ tk+n+1} with the restriction that the interior knots have at most
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Figure 27: Rational curve is the projection of an integral curve. (Image Courtesy of Barsky
et al. [10])

multiplicity n, that is ti < ti+n for i= 1,2, . . . ,k, define control points P0, . . . ,Pk ∈Ed ,
and define positive weights w0,w1, . . . ,wk, associated to the control points Pi.
The analytic representation of the corresponding NURBS curve R of degree n in Ed

is given by

R(u) =
∑k

i=0 wiPiNn
i (u)∑k

i=0 wiNn
i (u)

,u ∈ [t0, tk+n+1] (3.2)

where Nn
i , i = 0,1, . . . ,k are the normalized B-spline basis functions of degree n

corresponding to the knot vector T .

Since in definition 13 the weights are assumed to be positive, the denominator
in (3.2) does not vanish. If all the weights coincide and the knots at the end points
have multiplicity n+1, the curve is a B-spline curve.

A further advantage of a rational formulation is that it is invariant under projec-
tive transformation (only affine invariance holds for its integral counterpart). Addi-
tionally, there are weights which can be used to control shapes in a manner similar
to shape parameters. Geometrically, a rational curve can be viewed as the projection
of an integral curve from a vector space of one higher dimension (see Figure 27).
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The NURBS curve (3.2) can be obtained by projecting the B-spline curve R̂ in Ed+1

having the same knot vector and control points P̂i = (wiPi,wi). As a consequence,
the NURBS inherit all the nice properties from B-splines, and can represent conic
sections.

Figure 28: NURBS surface, 6x4 control points. (Image Courtesy of Barsky et al. [10])

If we extend equation (3.2) in two parametric directions we obtain a surface
with the same properties as the NURBS curve:

F(u,v) =

∑n
i=0

∑m
j=0 wiPiBi(u)B j(v)∑n

i=0
∑m

j=0 wiBi(u)B j(v)
(3.3)

The surface does not have to be of equal degree in both directions. Observe the
surface in its rendered form in Figure 28 where we clearly see the local control
property.

3.4 Hierarchical B-Splines and T-splines

Forsey and Bartels present the hierarchical B-spline [44], in which a sin-
gle control point can be inserted without propagating an entire row or column of
control points. In their work two concepts are introduced: local refinement us-
ing an efficient representation, and multi-resolution editing. These notions extend
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to any refineable surface such as subdivision surfaces. Gonzalez-Ochoa and Pe-
ters [48] present the localized-hierarchy surface splines which extended the hierar-
chical spline paradigm to surfaces of arbitrary topology.

Figure 29: Pre-image of a T-mesh. (Image Courtesy of Sederberg et al. [129])

Hierarchical B-splines were also studied by Kraft [90]. He constructed a mul-
tilevel spline space which is a linear span of tensor product B-splines on different,
hierarchically ordered grid levels. his basic idea is to provide a selection mechanism
for B-splines which guarantees linear independence to form a basis. CHARMS [55]
focuses on the space of basis functions in a similar way, but in a more general set-
ting and hence with more applications. Weller and Hagen [151] studied spaces of
piecewise polynomials with an irregular, locally refinable knot structure. They con-
sidered the domain partition with knot segments and knot rays in the tensor-product
B-spline domain. Their approach is restricted to so-called ”semi-regular bases”.

In [129], Sederberg et al. present the T-spline, a generalization of the non-
uniform B-spline surfaces. T-spline control grids need not to be totally regular. In
particular, they allow T-junctions (the final control point in a partial row), and lines
of control points need not to traverse the entire control grid (see Figure 29). There-
fore, T-splines enable true local refinement without introducing additional, unnec-
essary control point in nearby regions. A serious weakness with NURBS models is
that NURBS control points must lie topologically in a rectangular grid. This means
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(a) NURBS (b) T-spline

Figure 30: Head modeled (a) as a NURBS with 4712 control points and (b) as a T-spline
with 1109 control points. The red NURBS control points are superfluous (Image Courtesy
of Sederberg et al. [128])

that typically, a large number of NURBS control points serve no purpose other than
to satisfy topological constraints. They carry no significant geometric information.
In Figure 30 (a), all the red NURBS control points are, in this sense, superfluous.
Figure 30 (b) shows a T-spline control grid which was obtained by eliminating the
superfluous control points from the NURBS model. Sederberg et al. also develop
an algorithm to convert NURBS surfaces into T-spline surfaces, in which a large
percentage of superfluous control points are eliminated [128].

3.5 Triangular Splines

While tensor products have proven themselves an excellent tool for the mod-
eling of fairly regular surfaces, e.g., outer car bodies, they have well-known draw-
backs if the modeling of largely irregular objects is required. In this section, we will
give a brief introduction to the surfaces defined on triangles instead of rectangles.
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Figure 31: A cubic Bézier patch. (Image Courtesy of Seidel et al. [132])

3.5.1 Triangular Bézier Patches

Triangular Bézier patches (see Figure 31 for an example of cubic Bézier patch)
have originally been introduced by de Casteljau using polar forms [132]: Consider
a polynomial surface F : ℝ2 → ℝt . Suppose we wish to represent F as a triangular
Bézier patch over some given domain triangule ∆ = ∆(r,s, t). Representing u ∈ ℝ2

in barycentric coordinates w.r.t. ∆,

u = r(u)r+ s(u)s+ t(u)t,r+ s+ t = 1,

we obtain

F(u) = f (u, . . . ,u)
= r(u) f (u, . . . ,u,r)+ s(u) f (u, . . . ,u,s)+ t(u) f (u, . . . ,u, t)
=

∑
i+ j+k=n B∆,n

i jk (u) f (r, . . . ,r︸ ︷︷ ︸
i

,s, . . . ,s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

)

where

B∆,n
i jk (u) =

Ã
n

i jk

)
r(u)is(u) jt(u)k

are the Bernstein polynomials w.r.t. ∆ = ∆(r,s, t). we have shown
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Theorem 14 (Bézier Points) Let ∆ = ∆(r,s, t) be an arbitrary triangle. Every
polynomial F : ℝ2 → ℝt can be represented as a Bézier triangle w.r.t. ∆. The
Bézier points are given as

bi jk = f (r, . . . ,r︸ ︷︷ ︸
i

,s, . . . ,s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where f is the polar form of F.

Figure 32: The de Casteljau Algorithm for a quadratic Bézier patch. (Image Courtesy of
Seidel et al. [132])

Similar to the curve case, theorem 3.9 leads to the de Casteljau Algorithm for
evaluation, subdivision, and computation of the polar form (see Figure 32 ). Finally,
affine invariance also follows in exactly the same way as in the curve case.

Triangular Bézier patches are frequently used for interpolation. The Clough-
Tocher interpolant [140] is a C1-continuous piecewise cubic that interpolates to
C1-data at the vertices of the macro-triangle and to a given cross-boundary deriva-
tive along each edge. The split is obtained by splitting the macro-triangle into three
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pieces along the centroid. The boundary Bézier points are determined by the in-
terpolation conditions while the inner Bézier points are set to satisfy the desired
C1-conditions.

The Powell-Sabin interpolant [119] is a C1-continous piecewise quadratic that
interpolates to C1-data at the vertices of the macro-triangle. In the generic case each
macro triangle is split into six subtriangles by connecting every vertex and midpoint
of an edge to the centroid. The Bézier points are set to interpolate the given data
and to make the interpolant C1-continuous throughout.

3.5.2 B-patches and Triangular B-Splines

The theoretical foundation of triangular B-splines lies in the multivariate B-
spline, or simplex spline, introduced by de Boor [26]. Meanwhile, many researchers
have tried to produce useful linear combinations of simplex splines sharing some
of the properties of the univariate B-splines, in particular, the polynomial or piece-
wise polynomial reproduction property (see [21] for a survey in simplex splines).
Dahmen and Micchelli [23, 24] and Höllig [78], using combinatorial arguments,
propose convenient basis of simplex splines that reproduce polynomials of degree
n. But the reproduction of Cn−1 piecewise polynomial functions on a given trian-
gulation could not be settled.

Based on the blossom or polar form [122] and B-patch [130], Dahmen, Mic-
chelli and Seidel [22] propose a general spline scheme in s-dimensional space,
which constructs a collection of multivariate B-splines whose linear span comprises
all polynomials of degree at most n. The bivariate case is called triangular B-spline
or DMS spline. Due to its elegant construction and many attractive properties for
geometric modeling, triangular B-spline has received much attention since its incep-
tion. Fong and Seidel [43] present the first prototype implementation of triangular
B-splines and show several useful properties, such as affine invariance, convex hull,
locality, and smoothness. Greiner and Seidel [54] show the practical feasibility
of multivariate B-spline algorithms in graphics and shape design. Pfeifle and Sei-
del [115] demonstrate the fitting of a triangular B-spline surface to scattered func-
tional data through the use of least squares and optimization techniques. Gormaz
and Laurent study the piecewise polynomial reproduction of triangular B-spline and
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give a direct and intuitive proof [51]. Pfeifle and Seidel [116] present scalar spher-
ical triangular splines and demonstrate the use of these splines for approximating
spherical scattered data. Franssen et al. [45] propose an efficient evaluation algo-
rithm, which works for triangular B-spline surfaces of arbitrary degree. Recently,
Neamtu [110] describes a new paradigm of bivariate simplex splines based on the
higher degree Delaunay configurations. He and Qin [74] present a method to sur-
face reconstruction using triangular B-splines with free knots. He et al. [71] present
rational spherical spline for genus zero shape modeling. He et al. [70] present an
efficient method to fair triangular B-spline surfaces of arbitrary topology.

Triangular B-spline surfaces can be defined on planar domains with arbitrary
triangulations. In particular regions, triangular B-splines are B-patches. For the
convenience, we introduce notations according to [59].which are similar to those
employed in [22, 50]. Essentially, we formulate B-patches through the use of a
polar form. Let ∆I := [tI

0, t
I
1, t

I
2] be the triangle “I” of our triangulation T of ℝ2. For

each vertex tI
i we assign a list of k+1 distinct additional knots

tI
i := {tI

i,0, t
I
i,1, ⋅ ⋅ ⋅ , tI

i,k}. (3)

The rule proposed in [22] consists of producing a subset V I
β , where β = (β0,β1,β2)

are three non negative integers, as follows:

V I
β := {tI

0,0, t
I
0,1, ⋅ ⋅ ⋅ , tI

0,β0
, tI

1,0, t
I
1,1, ⋅ ⋅ ⋅ , tI

1,β1
, tI

2,0, t
I
2,1, ⋅ ⋅ ⋅ , tI

2,β2
}.

If we want to define a degree k simplex splines, we must impose that

∣β∣ := β0 +β1 +β2 = k.

V I
β is the set of all knots associated with one vertex in T .

We further define ∆I
β := [tI

0,β0
, tI

1,β1
, tI

2,β2
] and

X I
β := (tI

0,0, ⋅ ⋅ ⋅ , tI
0,β0−1, t

I
1,0, ⋅ ⋅ ⋅ , tI

1,β1−1, t
I
2,0, ⋅ ⋅ ⋅ , tI

2,β2−1) ∈ (ℝ2)∣β∣. (4)

X I
β is the set of knots associated with one control point f (X I

β).
If ∆I

β is non-degenerate, it is possible to define the barycentric coordinates of
u ∈ ℝ2 with respect to this triangle:

u =

2∑

i=0

λI
β,i(u)t

I
i,βi

, and
2∑

i=0

λI
β,i(u) = 1. (5)
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The generalized algorithm computes F(u) starting from the values f (X I
β),

∣β∣= k. Those values are called the poles of F . Let us define

X I
βuv := X I

β × (u,u, ⋅ ⋅ ⋅ ,u︸ ︷︷ ︸
v

) ∈ (ℝ2)∣β∣+v

and assign Cv
β(u) := f (X I

βuv) with ∣β∣= k−v, the algorithm uses the k-affinity of f
stating the recurrence relation:

C0
β(u) := f (X I

β), ∣β∣= k

Cv+1
β (u) :=

2∑

i=0

λI
β,i(u)C

v
β+ei(u), (6)

where ei denotes the canonical basis vector. Then F(u) =Ck
0(u). If the basis func-

tion for the pole f (X I
β) is denoted as BI

β(⋅), then we obtain

F(u) =
∑

∣β∣=k

f (X I
β)B

I
β(u).

(a) Original triangular B-spline. (b) Transformed triangular B-spline.

Figure 33: Parametric affine invariance: (a) and (b) are two triangular B-splines sharing
the same control net, the two parametric domains differ only by an affine transformation.
The same control nets result in the same polynomial surfaces shown in (a) and (b). (Spline
model courtesy of M. Franssen) [59].

Triangular B-splines have the following valuable properties which are critical
for geometric and solid modeling:
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1. Local support. The spline surface has local support. In order to evaluate the
image F(u) of a point u ∈ ∆I , we only need control points cJ

β (associated with
knot set V J

β on triangle J), where triangle J belongs to the 1-ring neighbor-
hood of triangle I.

2. Convex hull. The polynomial surface is completely inside the convex hull of
the control points.

3. Completeness. The B-spline basis is complete, namely, a set of degree n B-
spline basis can represent any polynomial with degree no greater than n via a
linear combination.

4. Smoothness. A degree n B-spline surface is a piecewise polynomial of degree
n over the sub-triangulation induced by its knot net that is Cn−1-continuous
everwhere if its knots are in general position.

5. Parametric affine invariance. The choice of parameter is not unique: if
one transforms the parameter affinely and the corresponding knots of con-
trol points are transformed accordingly, then the polynomial surface remains
unchanged (see Figure 33).

6. Affine invariance. If the control net is transformed affinely, the polynomial
surface will be consistently transformed affinely.

Note that parametric affine invariance is different from affine invariance. The dia-
grams below illustrate the radical difference.

u,V I
β φ(u),φ(V I

β)

F F ∘φ

-φ

? ?
-

φ

cI
β φ(cI

β)

F φ∘F

-φ

? ?
-

φ

(a) Parametric affine invariance (b) Affine invariance

The left one above represents parametric affine invariance, which refers to the prop-
erty that, under a transformation between parameter domains, the shape of the poly-
nomial surface remains the same; the right one above indicates affine invariance,
which refers to the property that under a transformation of the control points, the
polynomial surface will change accordingly.
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(a) (b) (c)

Figure 34: Modeling a genus zero surface using a single rational spherical spline. (a)
Spherical parameterization and domain triangulation (1,022 spherical triangles); (b) A C2

spherical spline; (c) Control net (4,601 control points) overlaid on the spline surface. (Image
Courtesy of He et al. [71])

3.5.3 Spherical Triangular Spline

Conventional approaches for modeling a closed manifold surface with either
regular tensor-product or triangular splines (defined over an open planar domain)
require decomposing the acquired geometric data into a group of charts, mapping
each chart to a planar parametric domain, fitting an open surface patch of certain
degree to each chart, and finally, trimming the patches (if necessary) and stitching
all of them together to form a closed manifold. In shape modeling, many objects
are closed, genus zero surfaces, which are topologically equivalent to a sphere. In
order to model a closed manifold surface without introducing degeneracy, one must
define a network of tensor-product B-spline patches and maintain certain continu-
ity (usually G1 or C1) between adjacent patches [35, 91]. This process requires
many user interventions and is very labor intensive and un-intuitive. Therefore, it
is necessary to devise a natural way to effectively and accurately model genus zero
surfaces using splines without any cutting and patching work.

Based on the breakthrough work on spherical barycentric coordinates and
spherical Bernstein-Bézier (SBB) polynomials by Alfeld, Neamtu and Schumaker
[2], Pfeifle and Seidel [116] present scalar spherical triangular B-splines. These
splines inherit many attractive properties from their planar counterpart (i.e., planar
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triangular B-splines), such as the capability of representing any piecewise smooth
surfaces of Cn−1 continuity and modeling the SBB polynomials as a special case.
Furthermore, these spherical spline surfaces exhibit no degeneracies that frequently
arise when attempting to employ planar parametric spline surfaces for modeling
sphere-like, geometrically closed point clouds [116]. Because of the topologi-
cal equivalence between spheres and other genus zero objects, spherical splines
promise to be ideal for modeling closed genus zero surfaces both in theory and in
practice.

However, the drawback of the spherical spline proposed by Pfeifle and Seidel
is that it does not satisfy the convex hull property, because the partition of unity of
the basis functions does not hold. Therefore, it may be difficult and less intuitive
for ordinary users to interactively edit a spline surface by modifying its control
net. To make spherical splines more accessible to a broader community and more
useful in shape modeling applications, He et al. [71] present the rational spherical
spline which inherits all the attractive properties of Pfeifle and Seidel’s spline. More
importantly, they offer the convex hull property because of the partition of unity of
the rational basis functions. Figure 34 shows an example of modeling a genus zero
surface with rational spherical splines.

3.6 Manifold Spline

In shape modeling, many objects are surfaces with complicated geometry and
arbitrary topology. In order to model such shapes using planar splines, one must
define a network of tensor-product B-spline patches and maintain certain continuity
(usually G1 or C1) between adjacent patches [35, 91]. This process requires many
user interventions and is labor intensive and un-intuitive. Therefore, it is necessary
to devise a natural way to effectively and accurately model surfaces using splines
without any cutting and patching work. In [59], a general theoretical and com-
putational framework was presented to extend spline surfaces defined over planar
domains to manifold domains with arbitrary topology with or without boundaries.
They studied the affine structure of domain manifolds and proved that the exis-
tence of manifold splines is equivalent to the existence of a manifold’s affine atlas.
They also developed a set of practical algorithms to generalize triangular B-spline
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surfaces [59, 72], the popular planar tensor-product NURBS and T-splines [75] to
arbitrary manifold domain of any topological type.

3.6.1 Manifold Spline Theory and Algorithm

In this section, we will use the notion in [59] to introduce the new spline
scheme - manifold splines.

3.6.1.1 Manifold Spline Concepts

Definition 15 (Affine Atlas) For affine structure (G,X), X is R2, and G is the
group of affine transformations. A 2 dimensional manifold M with an atlas (Uα,φα),
if all chart transition functions

φαβ := φβ ∘φ−1
α : φα(Uα ∩Uβ)→ φβ(Uα ∩Uβ))

are affine, then the atlas is called an affine atlas, and M is called an affine manifold
(see Figure 1).

Two affine atlases are equivalent if their union is still an affine atlas. All the
equivalent affine atlases form an affine structure of the manifold. For closed sur-
faces, only genus-one surfaces have affine structures, but all surfaces with bound-
aries have affine structures.

Definition 16 (Manifold Spline) A manifold spline of degree k is a triple (M,C,F)

as shown in Figure 35, where M is the domain manifold with an atlas. F is a map
representing the entire spline surface. The knots are defined on M directly. C is the
control point set, each control point is associated with a set of knots, such that

1. On each chart of the atlas, the restriction of F and C is a spline surface
patch.

2. The evaluation of F is independent of the choice of the charts.

The central issue of constructing manifold splines is that the atlas must satisfy
some special properties in order to meet all the requirements for the evaluation
independence of chart selection. Because the existing planar spline schemes are
parametric affine invariant, this requires that all the chart transition functions are
affine.
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Figure 35: Key elements of manifold splines: The parametric domain M is a triangu-
lar mesh with arbitrary topology as shown at the bottom. The polynomial spline sur-
face F is shown at the top. Two overlapping spline patches (φα(Uα),C(α),F(α)) and
(φβ(Uβ),C(β),F(β))are magnified and highlighted in the middle. On each parameter chart
(Uα,φα),(Uβ,φβ) the surface is a triangular B-spline surface. For the overlapping part, its
two planar domains differ only by an affine transformation φαβ. The zero point neighbor is
Z. (Image Courtesy of Gu et al. [59])

Theorem 17 The sufficient and necessary condition for a manifold M to admit
manifold spline is that M is an affine manifold.

In order to define a manifold spline, an affine atlas of the domain manifold
must be found first. According to characteristic class theory [Milnor and Stasheff
1974], general closed 2-manifolds do not have an affine atlas. On the other hand,
all open surfaces admit an affine atlas. In order to define manifold splines, the
domain manifold has to be modified to admit an atlas by removing a finite number
of points. This offers a theoretical evidence to the existence of singular points due
to the topological obstruction. A classical result from characteristic class theory
claims that the only closed surface admitting affine atlas is of genus one.

Theorem 18 (Existence) A domain manifold M admits a manifold spline scheme,
if and only if M admits an affine structure, which holds for ALL the planar spline
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schemes if they are parametric affine invariant.

Theorem 19 (Closed affine manifold [107]) The closed affine 2-manifold must be
of genus one.

Theorem 20 Theorem 3. (Open affine manifold) Any oriented open surface admits
an affine structure:

1. We can construct manifold splines if the domain is open,

2. If the domain manifold is closed and not a torus, then we must remove at
least one point from the domain manifold to make it open.

3.6.1.2 Affine Structure Computation and Spline Construction

The key of constructing manifold splines is to compute the affine structure of
the domain manifold. The paper [59] builds a connection between a manifold affine
structure and its conformal structure with the following theorem:

Theorem 21 Suppose M is a 2-manifold with a conformal atlas, ω is a holomor-
phic 1-form, then ω induces an affine structure of M∖Z, where Z is the zero set of ω
and ∣Z∣ equals to the Euler number of M, i.e., ∣2g−2∣ for manifold M of genus g.

Given a holomorphic 1-form w on a surface M, assume its zero point set is Z;
then, an affine atlas A for M∖Z can be constructed straightforwardly as illustrated
by a genus two model in Figure 36.

1. Compute conformal structure of the domain manifold M.

2. Select one holomorphic 1-form, remove zero point neighbor.

3. Construct affine atlas by integrating the holomorphic 1-form.

4. Define knots on one chart, consistently extend to all charts.

5. Given one point on M, evaluate the spline surface on the point by choosing
arbitrary chart which covers it by polar form.
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Figure 36: Construction of manifold spline: (a) Holomorphic 1-form w, the octagonal
region indicates a singular point; (b) Domain manifold M; (c) Singular point removal M∖Z;
(d) Manifold spline F ; (e) Spline surface F covered by control net C; (f) The regions of
singular points are filled. (Image Courtesy of Gu et al. [59])

3.6.2 Manifold Interpolatory Splines

Converting point samples and/or triangular meshes to a more compact spline
representation for arbitrarily topology is both desirable and necessary for computer
vision and computer graphics. [73] presents a C1 manifold interpolatory spline that
can exactly pass through all the vertices and interpolate their normals for data in-
put of complicated topological type. Starting from the Powell- Sabin spline as a
building block, they integrate the concepts of global parametrization, affine atlas,
and splines defined over local, open domains to arrive at an elegant, easy-to-use
spline solution for complicated datasets. The proposed global spline scheme en-
ables the rapid surface reconstruction and facilitates the shape editing and analysis
functionality.

3.6.3 Manifold T-spline

[75] presents the manifold T-splines, a natural and necessary integration of
T-splines and manifold splines, with a goal to retain all the desirable properties
while overcoming the aforementioned modeling drawbacks at the same time. The
manifold T-splines naturally extend the concept and the currently available algo-
rithms/techniques of the popular planar tensor-product NURBS and T-splines to
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Figure 37: Globally interpolatory spline: (a) A genus-6 Buddha model with 25K vertices;
(b) Global conformal parameterization; (c) A global C1 spline surface which interpolates all
the vertices and their normals of (a); (d) Close-up view: top, original mesh; middle, spline
surface; bottom, spline surface with the red curves corresponding to the edges in the mesh.
(Image Courtesy of He et al. [73])

arbitrary manifold domain of any topological type. The key idea is the global con-
formal parameterization that intuitively induces a tensor-product structure with a
finite number of zero points, and hence offering a natural mechanism for gener-
alizing the tensor-product splines throughout the entire manifold. In their shape
modeling framework, the manifold T-splines are globally well-defined except at a
finite number of extraordinary points, without the need of any tedious trimming and
patching work. They also present an efficient algorithm to convert triangular meshes
to manifold T-splines. Because of the natural, built-in hierarchy of T-splines, it is
easy to reconstruct a manifold T-spline surface of high-quality with LOD control
and hierarchical structure. Figure 38 shows an example of surface modeling using
manifold T-spline.
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Figure 38: Modeling the Iphegenia model using manifold T-spline. (a) Global conformal
parameterization; (b) The domain manifold; (c) A C2 manifold T-spline with 9,907 control
points; (d) The red curves are the images of the edges of the rectangles in the domain
manifold. (Image Courtesy of He et al. [75])
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3.7 Application

Spline have demonstrated their significance in various areas. In addition to the
traditional reverse engineering and geometric design area in which they are usually
used for scattered data fitting and surface design, they are also applied to scientific
computation, visualization, manufacturing, etc.

Aliasing artifacts are a consequence of the errors introduced by attempting
to represent a continuous model on a discrete device. McCool [106] describes a
method whereby an image consisting of Gourad-shaded triangles can be represented
by simplex splines; these can then be convolved with a box spline filter to form a
set of prism splines representing the filtered image. This permits analytic filtering
by filters which can be constructed from box spline basis functions, a special case
being tensor product B-splines. Any further filtering for reconstruction is performed
by digital post-processing.

Ming-Jun Lai et al. use bivariate and trivariate spline functions to solve 2D
and 3D partial differential equations which can be further used for fluid flow sim-
ulation [92]. Some of advantages of spline solutions of PDE’s are (1) piecewise
polynomials of higher degrees can be used for numerical solution of PDE’s very
easily; (2) spline solutions of any smooth can be used for numerical solution very
easily without constructing macro-elements; (3) Spline solution may be variable
smoothness across the domain; (4) Spline solution can be obtained over arbitrary
polygonal domains. They are able to solve many different PDE’s including 2D and
3D Navier-Stokes equations.

Besides geometric modeling and processing, manifold spline [59, 72] can also
serve as a general and powerful tool for scientific computation and engineering
analysis, because of its many attractive numerical properties, including global one-
patch representation, partition of unity, arbitrary triangulation of the domain man-
ifold, local support, piecewise polynomial reproduction, robustness, stability and
efficiency in evaluation, etc. Manifold splines are ideal tools for the global inter-
polation/approximation, and numerical solution of ordinary and partial differential
equations, reverse engineering, rapid prototyping, and many more.
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3.8 Comparison and Summary

In this section, we have reviewed the existing spline schemes, including the
planar spline, spherical spline, and emerging manifold splines. We analyzed both
their desired properties and limitations, also their applications in various areas. Re-
fer to Table 1 for the comparison of the properties of popular spline schemes.

Table 1: Comparison of different spline schemes.

Convex
hull

Local
support

Polynomial
reproduction

Affine
invariance Continuity

Bézier curve
√ √ √ √

Ck

B-spline
√ √ √ √

Ck

NURBS
√ √ √ √

Ck

T-spline
√ √ √ √

Ck

Triangular Bézier
√ √ √ √

Ck

Powell-Sabin splines
√ √ √ √

C1

Triangular B-spline
√ √ √ √

Ck

Non-rational spherical tri-
angular B-spline × √ √ × Ck

Rational spherical triangu-
lar B-spline

√ √ √ √
Ck



Chapter 4

Polycube Splines

4.1 Introduction and Motivation

As we discussed in Chapter 1, discrete data inputs must be converted into con-
tinuous, compact representations in order to enable geometric design and down-
stream product development processes (e.g., accurate shape analysis, finite element
simulation, and e-manufacturing). In order to model an arbitrary manifold in 3D,
traditional planar spline schemes require segmenting and patching process which is
primarily performed manually, and requires users’ knowledge and skills, therefore
laborious and error-prone for non-trivial topology and complicated geometry. The
new emerging manifold splines extend the existing spline schemes defined over pla-
nar domains to any manifold domain of arbitrary topology using affine structures.
Despite this earlier success, certain drawbacks of manifold splines still remain and
demand more powerful modeling techniques. First of all, there must be singulari-
ties for any closed manifold except tori. The existence of singularities comes from
the topological obstruction, which can not be avoided within the current manifold
spline framework. [60] proposed a method to compute the affine structure with
Euler number ∣2− 2g∣ singularities for a closed domain manifold of genus g. Al-
though in theory singularity points are simply points without occupying any regions
or areas, in practice “small” holes must be punched in order to enable the easy con-
struction of manifold splines. Their earlier work makes no efforts to actually fill the
“small” holes in the vicinity of extraordinary points. In addition, it is impossible to

66
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specify the locations of all the singularities on the domain manifold given the fact
that the number of singularities is actually fixed, but their positions are somehow
globally related.

To overcome the above modeling and design difficulties and address the topo-
logical issue, we seek novel modeling techniques that would allow designers to
directly define continuous spline models (especially tensor-product splines, which
are the current industry standard) over any manifolds (serving as parametric do-
mains). Such a global approach would have many modeling benefits, including no
need of the transition from local patch definition to global surface construction via
gluing, the elimination of non-intuitive segmentation and patching process, and en-
suring the high-order continuity requirements. More importantly, we can expect a
true “one-piece” representation for shapes of complicated topology, with a hope to
automate the entire reverse engineering process (by converting points and/or polyg-
onal meshes to spline surfaces with high accuracy) without human intervention.

Figure 39: T-splines on polycubes. The polycube serves as the parametric domain which
mimics the geometry of the 3D model. All the corners are singularities which are colored
in yellow.

In this chapter, we forge ahead with our new research efforts by developing
the polycube splines, with a goal to further improve the current state of knowledge
for manifold splines. In a nutshell, our polycube splines can be considered as a
novel variant of manifold splines with many new and attractive modeling proper-
ties. Unlike the previous manifold splines, the polycube splines are built directly
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upon the polycube map, serving as its parametric domain. Because of its regular-
ity, the polycube is now only covered by charts which are uniquely associated with
faces and edges belonging to one of the cubes. As a result of the polycube map, all
the corner points are now becoming singular. The key motivation for us to pursue
the definition and construction of polycube splines is the fact that the polycube map
offers a rectangular structure which for sure will facilitate geometric computing and
shape analysis. Another main advantage of the polycube spline is that its parametric
domain can mimic the geometry of any modeled objects in a topologically correct
way, hence, it is much easier to isolate and control the position of the singulari-
ties. Furthermore, there are only three kinds of connectivity on the singularities,
valence 3, 5 or 6, which can greatly simplify our procedures to handle extraordi-
nary points. The polycube domain can be constructed to approximate the modeled
geometry with better accuracy, but at the expense of more cubes and more charts.
So, users will have freedom to control the complexity of the underlying parametric
domain and place singularity points with great flexibility. Figure 39 demonstrates
an example of our polycube splines. Similar to manifold splines, polycube splines
also afford a general theoretic and engineering framework in which all the exist-
ing planar splines can be generalized to any polycube domain via affine structure.
In this chapter, we develop algorithms to construct T-splines over polycubes and
demonstrate their applications in shape modeling and reverse engineering in order
to take advantage of the properties of partition-of-unity, level-of-detail control, and
hierarchical representation. It may be noted that other powerful spline schemes,
such as triangular B-splines, can be employed in a similar fashion.

The specific contributions of this work are as follows:

1. We present a systematic way to construct polycube maps for surfaces of ar-
bitrary topology. Our method is fundamentally different from Tarini et al.’s
technique [142] in that we do not need to compute the projection of the points
from the 3D shape to the polycube, thus, the polycube can be flexibly con-
structed at any resolution and complexity.

2. We show that the introduced polycube maps naturally induce the affine struc-
ture by removing a finite number of corner points. Thus, polycube splines
become a novel variant of manifold splines with many new and attractive
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properties (outlined above). Taking advantage of the low area distortion be-
tween the domain manifold and the smooth spline surface (because polycubes
can be built to approximate the modeled geometry within any user-specified
accuracy), the polycube splines can be constructed easily and robustly by us-
ing simple and regular charts and isolating all the user-controllable singularity
points.

3. Polycube splines offer a general framework in which any existing planar
spline scheme can be generalized to a polycube domain via affine structure.
Especially, in this chapter, we construct T-splines on polycubes and demon-
strate the efficiency of polycube splines to model surfaces with high fidelity,
while retaining the attractive properties of partition-of-unity, level-of-detail
control, and hierarchical representation.

The remainder of this chapter is organized as follows. We introduce the the-
oretical foundation of our work in Section 4.2. Then in Section 4.3 we present the
detailed algorithms for constructing the polycube map. Next, we show the hierar-
chical surface reconstruction in Section 4.4. Finally, we demonstrate the experi-
mental results with statistics and performance data in Section 4.4.

4.2 Theoretical Foundation

4.2.1 Riemannian Uniformization Metric

Suppose a surface S is embedded inℝ3, then it has a Riemannian metric, which
is represented by its first fundamental form, induced from the Euclidean metric of
ℝ3, denoted by g. Suppose u : S → ℝ is a scalar function defined on S, then it can
be verified that e2ug is another Riemannian metric on S, denoted by ḡ. It can be
proven that angles measured by g are equal to those measured by ḡ. Therefore, ḡ is
conformal to g and now e2u is called the conformal factor.

In essence, Riemannian metric determines the length, area, curvature and dif-
ferential operators on S. When the Riemannian metric is conformally deformed,
these geometric quantities will be changed accordingly. Suppose g is changed to
ḡ = e2ug. Then the Gaussian curvature will become

K̄ = e−2u(−∆u+K), (7)
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where ∆ is the Laplacian-Beltrami operator under the original metric g. The
geodesic curvature will become

k̄ = e−u(∂nu+ k), (8)

where n is the tangent vector orthogonal to the boundary. According to Gauss-
Bonnet theorem, the total curvature is

∫

S
KdA+

∫

∂S
kds =

∫

S̄
K̄dĀ+

∫

∂S̄
k̄ds̄ = 2πχ(S), (9)

where χ(S) is the Euler characteristic number of S and ∂S is the boundary of S.
Riemann uniformization theorem [84] states that for any surface S, there exists

a unique conformal metric, such that it induces constant Gaussian curvature K̄ and
zero geodesic curvature k̄.

K̄ =

⎧
⎨
⎩

+1, χ(S)> 0
0, χ(S) = 0
−1, χ(S)< 0

(10)

Such kind of metric is called the uniformization metric of S.

4.3 Construction of Polycube Maps

In this section, we explain in details our algorithm for constructing affine atlas
using polycube maps for surfaces of arbitrary topology. The key difference be-
tween the techniques employed in [142] and ours in this work is that Tarini et al.’s
technique is trying to find the one-to-one mapping of the 3D shape and polycube
extrinsically, which typically requires the projection of points from one shape to the
other. As a result, their method is usually quite difficult to handle cases where the
two shapes differ too much and the point projection does not establish the one-to-
one correspondence. In contrast, our method aims to compute such a mapping in an
intrinsic way. We first conformally map the 3D shape and the polycube to the same
canonical domains (e.g., sphere, Euclidean plane, or hyperbolic disk), then we con-
struct a map between these two domains, which induces a one-to-one map between
the 3D shape and the polycube. Since our method avoids the direct projection of
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the 3D shape to the polycube, the polycube can be constructed independent of the
actual geometry of 3D shape, allowing different complexity and resolution for the
polycube.

4.3.1 Overview of the Algorithm

Constructing the polycube map is equivalent to seeking a bijective map be-
tween the 3D model and the polycube. Our method for establishing such a map-
ping varies according to different topologies of surfaces:genus zero surfaces, genus
one surfaces, and surfaces of high genus. We compute the uniformization metric
with heat flow method [63] for genus zero surfaces, holomorphic 1-form method
[64,83] for genus one surfaces, and hyperbolic Ricci flow method [82] for surfaces
with genus greater than one.

In the followings, we use notations M and P to denote the 3D model and its
polycube approximation (serving as the parametric domain), respectively.

The overall flow of our algorithm for establishing the one-to-one mapping can
be summarized as follows:

1. Given a 3D model M from data acquisition, construct a polycube P which
roughly resembles the geometry of M and is of the same topology of M.

2. Compute the uniformization metric of M and embed M in the canonical do-
main DM, which is a domain in S2, E2 or ℍ2, i.e., φM : M → DM.

3. Compute the uniformization metric of P and embed P in the canonical domain
DP, i.e., φP : P → DP.

4. Construct the map φDM→DP : DM → DP.

5. Finally, the composition φM→P = φ−1
P ∘φDM→DP ∘φM gives the desired poly-

cube map from M to P as shown in equation (11).

M P

DM DP

-φM→P

?

φM

?

φP

-
φDM→DP

(11)
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Note that, our construction method varies depending on different types of sur-
faces. Genus zero surfaces are mapped to the unit sphere S2 with positive curvature
K̄ = 1. Genus one surfaces are mapped to Euclidean plane E2 with zero curvature
K̄ = 0. Surfaces of high genus are mapped to hyperbolic disk ℍ2 with negative
curvature K̄ =−1.

Figure 40: Conformal mapping of a genus zero surface to the unit sphere induces the
genus zero conformal polycube map. Both the original mesh M and the polycube P are
conformally mapped to the canonical domains, i.e., S2, E2 or ℍ2. Denote these maps by
φM : M → DM and φP : P → DP. By finding the optimal map between DM and DP, we get
the polycube map φM→P = φ−1

P ∘φDM→DP ∘φM.

4.3.2 Genus-zero Polycube Map

Genus zero surfaces are topologically equivalent to sphere. Thus, we use
sphere as the canonical domain for both M and P. We use the heat flow method to
construct conformal maps between a closed genus zero surface and the unit sphere
S2 [63]. The idea is that, for genus zero closed surfaces, conformal maps are equiv-
alent to harmonic maps.

Let φ : M → S2 denote the spherical mapping. The harmonic energy is defined
as

E(φ) =
∫

M
< ∇φ,∇φ > dA, (12)
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where <,> is the inner product in R3. The critical point of the harmonic energy is
the harmonic map. Define the normal component of the Laplacian as

(∆φ)⊥ =< ∆φ,n∘φ > n, (13)

where n is the normal of φ(M). If φ is the harmonic map, then the tangent compo-
nent of Laplace-Beltrami operator vanishes, i.e.,

∆φ = (∆φ)⊥. (14)

Therefore, we can diffuse φ to harmonic map by the heat flow method:

dφ
dt

=−(∆φ− (∆φ)⊥). (15)

After computing the maps φM : M → S2 and φP : P → S2, we need to find a
map φDM→DP : S2 → S2 which can align their major features. For example, we want
to align the eyes and nose of the Isidore Horse model (see Figure 40) to be at certain
positions on the polycube. To do so, we conformally map the sphere to the plane
using stereographic projection

τ : (x,y,z)→ (
2x

1− z
,

2y
1− z

), (x,y,z) ∈ S2. (16)

We then use a special conformal map from the plane to itself, a Möbius transforma-
tion, to move three arbitrary feature points into any new desired positions. Suppose
for the first surface, the three feature points are z0, z1 and z2. We first construct the
Möbius transformation which takes them into 0, 1, and ∞:

ψ1 =
(z− z0)(z1 − z2)

(z− z2)(z1 − z0)
. (17)

We then construct ψ2 for three positions on P in a similar way. Then ψ−1
1 ∘ψ2

maps the feature points on the second surface into those on the first one. Finally,
the conformal map φDM→DP : S2 → S2 is defined as

φDM→DP = τ−1 ∘ψ−1
2 ∘ψ1 ∘ τ. (18)

Note that the polycube map φM→P = φ−1
P ∘ φDM→DP ∘ φM is conformal since

each sub-map is conformal.1

1Strictly speaking, the map φP : P → S2 is conformal everywhere except at the corners of the
polycube.
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Figure 41: Holomorphic 1-form ω on genus one surface is well defined everywhere.

4.3.3 Genus-one Polycube Map

Suppose M is a genus one closed surface, ω is a holomorphic 1-form. Then, ω
is well-defined everywhere, i.e., there are no zero points as shown in Figure 41.

By integrating ω, M can be periodically mapped to the plane, each period is
called a fundamental polygon. Each canonical fundamental polygon of genus one
surface is a parallelogram. Given two arbitrary parallelograms, there exists a unique
affine map to map one to the other, such that corners are mapped to corners, sides
are mapped to sides.

The fundamental polygons of M and P, DM and DP, are parallelograms. De-
note the unique affine map between them as φDM→DP , then the polycube map
φM→P : M → P is formulated as

φM→P = φ−1
P ∘φDM→DP ∘φM. (19)

Figure 42 demonstrates the above mapping method for constructing a polycube
map of the Rockerarm model. The polycube mesh is manually built. Then both the
Rockerarm mesh and the polycube model are parameterized using the holomorphic
1-form method [64]. Their fundamental polygons are extracted and mapped by an
affine map. The affine map further induces a bijective map between the Rockerarm
model and the polycube.
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(a) M (b) φM : (c) P (d) φP : (e) φ : M → P
M → DM ⊂ E2 P → DP ⊂ E2

Figure 42: Euclidean structure induces the genus-one polycube map. The genus one Rock-
erarm model M in (a) is conformally mapped to the Euclidean plane in (b). The fundamental
domain is a rectangle region enclosed by the green boundary in (b). Then, a polycube P in
(c) is also parameterized over the rectangular region in the same way in (d). By matching
the two fundamental regions in (b) and (d) via an affine map, the conformal polycube map
for the Rockerarm model is established (e).

4.3.4 High Genus Polycube Map

Given a high genus surface with simple geometry like the 3-hole torus model
shown in Figure 39, the polycube map can be constructed using the techniques
in [142]. However, for surfaces with complicated geometries like the model in
Figure 44, the direct projection techniques in ℝ3 hardly generate bijective maps. To
avoid these difficulties, we use hyperbolic parameterization method instead.

4.3.4.1 Hyperbolic Ricci flow

Hyperbolic Ricci flow is introduced in [82]. A circle packing on a mesh
associates a circle with each vertex, circles intersect each other. A mesh with circle
packing is denoted as (M,Γ,Φ), where M represents the triangulation (connectivity)
with vertex set V, edge set E and face set F, Γ = {γi,vi ∈V} are the vertex radii and
Φ = {φi j,ei j ∈ E} are the angles associated with each edge. A circle packing metric
is define as (M,Φ,Γ). A discrete conformal mapping τ : (M,Γ,Φ) → (M, Γ̄,Φ)

solely changes the vertex radii Γ, but preserves the intersection angles Φ.
Given the circle packing metric, the length li j associated with the edge ei j is

computed using the hyperbolic cosine law.

cosh l2
i j = coshγi coshγ j + sinhγi sinhγ j cosφi j, (20)
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where φi j is the intersection angle between two circles associated at vi and v j with
radius γi and γ j respectively.

The discrete Gaussian curvature Ki at an interior vertex vi with surrounding
face fi jk is defined as

Ki = 2π−
∑

fi jk∈F

θ jk
i , vi ∕∈ ∂M, (21)

where θ jk
i is the corner angle of fi jk at vi. While the discrete Gaussian curvature for

a boundary vertex vi is defined as

Ki = π−
∑

fi jk∈F

θ jk
i , vi ∈ ∂M. (22)

Then the hyperbolic Ricci flow is defined as

∂γi

∂t
=−sinhγiKi (23)

It can be proven that discrete Ricci Flow is convergent to the uniformization
metric and the convergence rate is exponential [16] [82].

Figure 43: A genus two surface with a set of canonical fundamental group generators
{a1,b1,a2,b2} is shown on the left. A finite portion of its universal covering space is shown
on the right. Different fundamental domains are drawn in different colors. The bound-
ary of each fundamental domain is the preimage of a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 . The points

{p0, p1, p2} are the primages of p on the surface.

4.3.4.2 Hyperbolic embedding

With the uniformization metric, M with g> 1 can be periodically mapped onto
the hyperbolic space ℍ2. We use the Poincaré hyperbolic disk model to represent
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the hyperbolic space ℍ2. The Poincaré disk is a two-dimensional space defined in
the unit disk {z ∈ ℂ : ∣z∣< 1} on the complex plane ℂ with hyperbolic metric. The
hyperbolic metric is defined as

ds2 =
dzdz̄

(1− z̄z)2 . (24)

The geodesic (hyperbolic lines) in the Poincaré disk are Euclidean circular arcs
perpendicular to the boundary ∣z∣ = 1. The rigid motions in the hyperbolic plane
are the Möbius transformations z → w, z ∈ ℂ with the form

w = eiθ z− z0

1− z̄0
, (25)

where z0 is an arbitrary point inside the unit disk.
To embed M into Poincaré disk, we need to compute the canonical homology

basis, which is a set of 2g curves {a1,b1,a2,b2, . . . ,ag,bg} satisfying the following
criteria:

1. All the curves meet at a single base point, v.

2. Each pair of curves {ai,bi} algebraically intersect each other exactly once.

3. No curve in another pair {a j,b j} algebraically intersects either of ai,bi.

We slice the mesh M along {ai,bi}g
i=1 to form the fundamental domain D whose

boundary ∂D is
∂D = a1b1a−1

1 b−1
1 ⋅ ⋅ ⋅agbga−1

g b−1
g .

Then the canonical homology basis are mapped to geodesics on the Poincaré disk.
Figure 43 illustrates the canonical homology basis and the hyperbolic embedding
with the uniformization metric for a genus 2 model.

4.3.4.3 Constructing the polycube map

In order to find the map between M and P, we compute their hyperbolic pa-
rameterizations by solving the discrete hyperbolic Ricci flow in (23). Then, similar
to the genus zero case, a harmonic map φDM→DP is constructed such that maps the
fundamental polygon of M to the fundamental polygon of P. Finally, the polycube
map is constructed as

φM→P = φ−1
P ∘φDM→DP ∘φM. (26)
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Figure 44 demonstrates the example of polycube map for a genus-3 surface
and highlight our construction pipeline.

(a) (b) (c)

(d) (e) (f)

Figure 44: Hyperbolic structures induce the high genus polycube map. The canonical
homology basis of the genus-3 sculpture model are colored in blue in (a). (b) shows the
isometric embedding of its universal covering space on the Poincaré hyperbolic disk. We
compute the hyperbolic uniformization metric of the polycube in (c) using a similar ap-
proach. The canonical homology basis of the polycube are drawn in blue in (c), (d) shows
the isometric embedding of its universal covering space on the Poincaré hyperbolic disk.
By establishing the correspondence between the fundamental domains, we construct the
polycube map (shown in (e) and (f)) between (a) and (c).

4.3.5 The Affine Atlas via Polycube Map

We construct an affine atlas from the polycube map. Each face and edge on the
polycube are associated with its own local chart. Each face chart covers only inte-
rior points of corresponding face and leaves off all the edges of the face. Each edge
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(a) Face charts (b) Edge charts (c) Singularities

(d) Close-up view of one face (e) Face chart (f) Transition function
chart and its associated edge

charts and singularities

Figure 45: Polycube map induces affine structure. The polycube is covered by face and
edge charts. Each face chart (drawn in blue) covers only interior points of corresponding
face and leaves off all the edges of the face. Each edge chart (drawn in red) covers interior
points of the edges but leaves off corner vertices. The corners (drawn in yellow) are singu-
larities which are NOT covered by any charts. We highlight one face chart and its associated
edge charts and singularities in (d). By flattening the edge charts, we get the planar domain
shown in (e). Note that the transition functions between overlapped edge and face charts
are simply translations and rotations (f). Therefore, by removing all the corners, the open
polycube P∖C has the affine structure.
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chart covers interior points of the edge but leaves off corner vertices. Furthermore,
there are overlaps between face charts and edge charts. The transition functions
between overlapped edge and face charts are simply translations and rotations of 90
degrees. Note that there is NO vertex chart for the corner vertex, i.e., the corners are
singular points. Therefore, by removing all the corners, polycube map naturally in-
duces the affine structure. Figure 45 highlights face and edge charts of a polycube.
The extraordinary points are colored in yellow.

In [60], they have pointed out that any planar spline schemes which satisfy
the parametric affine invariant property can be generalized to manifold domain via
affine structure. By removing all the corner points, a polycube domain is just an
affine manifold preserving the affine structure. Therefore, we can define spline
surfaces on polycube directly.

4.4 Hierarchical Surface Reconstruction Using Poly-
cube T-Splines

After constructing the domain manifold and affine atlas of the original model
by computing the polycube maps (section 4.3), we are now ready to generalize
T-spline from planar domains to manifold domains via affine structure. This will
enable the automatic reverse engineering from polygonal models initially acquired
to a more compact spline representation with high accuracy.

4.4.1 T-Splines via Polycube Maps

The key advantage for defining T-spline over polycube maps is that each face
chart of the polycube is nothing more than a union of rectangles, conventional
tensor-product splines are special cases of T-splines, and they are all naturally de-
fined over rectangular regions. More importantly, the hierarchical definition and
level-of-detail control are attractive features in practice.

Recall that for every control point in the T-mesh, the covering region of its
basis function is a rectangle, whose side lengths (knot vectors) are determined by
the connectivity of the T-mesh. In polycube T-splines, we follow the rules defined
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in [128,129]. We further require that on each chart, the basis functions vanishes out-
side the boundary of the chart. Thus, the face charts are totally separate from each
other. Each edge chart connects two face charts (one face chart if it is a bound-
ary edge and not shared by two faces). Therefore, given an arbitrary parameter
u ∈ P∖C, it may be covered by a single face chart, or a single edge chart, or by one
face chart and one edge chart.

On each (edge and face) chart (Ui,φi), the spline patch is defined as a point-
based spline whose control points form a T-mesh:

Fi(u) =
∑

j

c jB j(φi(u)),u ∈Ui, (27)

where c j ∈ ℝ3 are the control points.
Given an arbitrary parameter u ∈ P∖C, the spline evaluation can be carried out

as follows:

1. Find the set of charts which cover this point u. This set V contains one face
chart, or one edge chart, or one face chart and one edge chart.

2. The function value is the partition of unity of the spline patches in the above
chart(s), i.e.,

F(u) =
∑

i∈V
∑

j c jB j(φi(u))∑
i∈V

∑
j B j(φi(u))

.

4.4.2 Least-Square Fitting and Hierarchical Refinement

We now discuss the problem of finding a good approximation of a given polyg-
onal mesh S with vertices {pi}m

i=1 by a manifold T-spline. We assume that the
polygonal mesh S has been normalized to be inside the unit cube centered at origin.
A commonly-used technology is to minimize a linear combination of interpolation
and fairness functionals, i.e.,

minE = Edist +λE f air. (28)

The first part is

Edist =

m∑

i=1

∥F(ui)−pi∥2,
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S Polycube N1
c = 1218 N3

c = 4325 N5
c = 6475

Nv = 31K map L1
∞ = 5.8% L3

∞ = 1.9% L5
∞ = 0.54%

Figure 46: Hierarchical surface reconstruction of Polycube T-splines. Ni
c and Li

∞ are the
number of control points and maximal fitting error in iteration i. Nv is the number vertices
in the input polygonal mesh S. The input data is normalized to a unit cube.

(a) Polygonal mesh (b) T-spline (c) T-junctions (d) Control points

(e) Polygonal mesh (f) T-spline (g) T-junctions (h) Control points

Figure 47: Close-up views of the reconstructed details. Our hierarchical surface recon-
struction algorithm can faithfully reconstruct the details in the original model. (a) and (e)
show the original polygonal model. (b) and (f) show the T-spline surfaces of C2 continuity.
(c) and (g) highlight the T-junctions on the spline surfaces. (d) and (h) show the splines
overlaid with the control points.
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where ui ∈ M is the parameter for pi, i = 1, . . . ,m.
The second part E f air in (28) is a smoothing term. A frequently-used example is
the thin-plate energy,

E f air =

∫∫

M
(F2

uu +2F2
uv +F2

vv)dudv.

Note that both parts are quadratic functions of the unknown control points, leading
to a linear system.

We solve Equation (28) for unknown control points using Conjugate Gradient
method. The value and gradient of the interpolation functional and fairness func-
tional can be computed straightforwardly.

In our method, we control the quality of the manifold T-spline spline by spec-
ifying the maximal fitting tolerance L∞ = max∥F(ui)− pi∥, i = 1, . . . ,m. If the
current surface does not satisfy this criterion, we employ adaptive refinement to
introduce new degrees of freedom into the surface representation to improve the
fitting quality. Because of the natural and elegant hierarchial structure of T-splines,
this step can be done easily. Suppose a domain rectangle I violates the criterion and
denote LI

∞ the L∞ error on rectangle I. If the LI
∞ > 2ε, split the rectangle I using

1-to-4 scheme; Otherwise, we divide I into two rectangles by splitting the longest
edge. After adaptive refinement, we then re-calculate the control points until the
maximal fitting tolerance is satisfied.

Figure 46 shows the whole procedure of hierarchical fitting of T-splines. For
example, the initial spline of the Head model(Figure 46) contains only 1218 control
points and the maximal error L∞ = 5.8%. Through five iterations, we can obtain a
much more refined spline surface with 6475 control points by inserting only neces-
sary control points. The maximal fitting error reduces to 0.54%. As shown in the
close-up view (Figure 47), our hierarchical data fitting procedure can produce high
quality polycube T-splines with high-fidelity and we will be able to recover all the
surface details.

4.4.3 Handling the Extraordinary Points

In [60], Gu et al. proved that manifold splines MUST have singularities if the
domain manifold is closed and not a torus. The number of extraordinary points
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(a) (b) (c) (d)

Figure 48: Handing the extraordinary points of the manifold T-spline whose affine atlas
is constructed using polycube maps, where all the corners are extraordinary points (shown
in (a)). (b) shows the domain manifold after removing all the corners. (c) shows the open
manifold T-spline surface with many holes. For each hole, we construct a cubic triangular B-
spline surface which minimizes the thin-plate energy functional (Equation 30) and satisfies
the boundary condition. (d) shows the final result after hole-filling (hole areas are all colored
in green).

of the domain manifold via conformal structures and polycube maps are different.
Given the surface M with genus g and b boundaries, the number of zero points of the
holomorphic 1-form is fixed, i.e., ∣2g− 2+ b∣. Using polycube maps, the number
of extraordinary points depends on the geometry of the polycube, i.e., each corner
is a singularity.

Although the singularities are just points on the domain manifold, in practice,
we have to remove these points and their 1-ring or 2-ring neighbors. As a result,
the holes are unavoidably in the spline surface. Thus, we need to find a blending
surface patch to fill the holes smoothly. In our implementation, we use a cubic
triangular spline to fill each hole such that the surface is C2 inside and G1 along
the boundaries of the hole. The reason that we choose triangular B-spline [74] is its
flexibility in the domain construction and its potential to match with any number of
sides of holes.

Thus, our goal is to solve the following optimization problem:

E(s) =
∫∫

Ω
(

∂2s
∂u2 )

2 +2(
∂2s

∂u∂v
)2 +(

∂2s
∂v2 )

2dudv. (29)

where s is the triangular B-spline surface, and Ω is the parametric domain of s. Our
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strategy to fill the hole is to find s solving the following minimization problem:

min{E(s) : s∣∂Ω = f ,
∂s
∂u

× ∂s
∂v

∣∂Ω = n}. (30)

where f and n are the boundary positions and normals.
The boundary conditions are represented by several sampling points on the

boundary of the spline surface. The boundary position constraints naturally lead
to a system of linear equations on the control points. The normal constraints are
expressed as

<
∂s
∂u

,n >= 0, <
∂s
∂v

,n >= 0.

Therefore, Equation (30) is a linear least-square problem with linear constraints,
which can be solved easily using Lagrange Multiplier method. Figure 48 demon-
strates the procedure pipeline to handle the extraordinary points on the Rocker Arm
model.

Figure 49: Extraordinary points (marked in red) with valence 3, 5, 6.

4.4.4 Discussions

This subsection compares the T-splines constructed using conformal struc-
ture [75] and polycube map, respectively. From the chart-relation’s point of view,
these methods differ in three aspects, the number and the locations of singularities,
the angle/area distortion, and the type of transition functions. Each method has its
own merits and users may choose one or another depending on their specific appli-
cation needs. Table 2 summaries the salient differences between these methods.
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Table 2: Comparison of the methods to compute affine structures. g, genus of the domain
manifold M; b, number of boundaries of M.

Method # of singularities Location of
singularities Area distortion Angle

distortion
Transition
function

Conformal structure ∣2g−2+b∣ difficult to control large on
extruding parts no translation

Polycube map many easy to control low low translation and 90
degree rotation

Conformal structure induces the affine structure with the fixed number of ex-
traordinary points, i.e., ∣2g−2+b∣. For genus-zero surfaces, we usually intention-
ally cut two boundaries on the model. Note that, although we do not modify the
geometry of the original model, the number of extraordinary points drop to zero.
Although conformal structure preserves the angles very well, they inevitably intro-
duce large area distortion if the model has some long, extruding parts, e.g., the tail
and feet of the bird model. These large area distortions usually make the spline
construction very difficult, since we need to introduce more control points in such
areas. The transition functions of the affine atlas via conformal structure is sim-
ply the translations, which facilitates the implementation of T-splines on manifolds.
The valence of extraordinary points of T-splines via conformal structure is eight,
i.e., the hole is sixteen-sided.

Polycube maps are ideal to reduce both the area and angle distortion in the
affine atlas, as shown in the 3-hole torus models in Figure 39. Thus, it facilitates
the spline construction procedures. However, the side-effect to reduce the area
distortion is to introduce more extraordinary points simultaneously. Usually, the
lesser the area distortion, the more number of extraordinary points. The transition
functions of the affine atlas via polycube maps is the composition of translation and
90 degree rotation. The valence of singularities of T-spline via polycube map is
three, five, or six, thus, the hole is six, ten or twelve-sided (see Figure 49).

4.4.5 Experimental Results

Our prototype system is implemented in C++ on a MS Windows XP PC with
dual Intel Xeon 2.6GHz CPUs and 2GB RAM. We built a complete system for com-
puting the conformal structures, the polycube maps and T-splines. We tested our
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algorithms on various models from genus zero to genus three. The statistics of the
test cases are shown in Table 3. Figure 46 illustrates the hierarchical surface recon-
struction. As shown in Figure 46 and 47, we can get high-quality spline surfaces by
gradually increasing the number of control points. More complicated models are
shown in Figure 50 and Figure 51. The results demonstrate both the theoretic rigor
and feasibility in practice for methodologies and computational techniques.

Table 3: Statistics of test examples (after 5 iterations). Ns, # of singularities; Nv, # of
vertices in the input polygonal mesh; Nc, # of control points; rms, root-mean-square error;
L∞, maximal fitting error.

Object genus Ns Nv Nc rms L∞

Head (Figure 46, 47) 0 8 31K 6475 0.05% 0.54%
Bimba (Figure 51) 0 16 98K 10964 0.07% 0.62%
Buddha (Figure 51) 0 16 120K 11067 0.04% 0.55%

Rockerarm (Figure 51) 1 24 51K 4132 0.03% 0.32%
3-hole Torus (Figure 39) 3 32 48K 5180 0.02% 0.22%

Chinese Dragon (Figure 50) 0 28 100K 11335 0.07% 0.61%
Ramesses (Figure 51) 0 24 115K 9874 0.04% 0.59%

(a) Polycube map (b) T-spline (c) T-junctions (d) Control points

Figure 50: Polycube T-splines for the Chinese Dragon model.

4.5 Performance Discussion

The polycube spline is naturally built upon the polycube map which serves
as its parametric domain. The use of polycubes for spline surface definition and
construction is the first attempt to take advantage of the rectangular structure over
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the boundary of polycubes, allowing the parametric domain to actually mimic the
geometry of the modeled objects with lower area distortion while enforcing their
topological consistence.

The proposed polycube spline construction pipeline in this work is mainly
composed of two steps: polycube map construction and spline construction with
the polycube map serving as the parametric domain. The quality of a polycube map
(in terms of angle and area distortion) can be quantitatively controlled by design-
ing the polycube which resembles the geometry of the input shape and shares the
same topology. In this work the polycube approximation for the input 3D shapes
is built manually by using Maya. Designing polycubes for shapes of complicated
geometry and topology remains to be very tedious and labor intensive. Domain
knowledge and expertise are required to construct a polycube approximation for
the input 3D shape which will further induce a polycube map in high quality. An-
other key factor to the quality of the resulting polycube map is the parameterization
methods used to compute the 1-1 mapping between the input 3D shapes and the
polycube approximations. This process is usually time consuming especially for
shapes with complicated topologies and geometric features, and normally takes up
to 70% of the entire execution time for the spline construction pipeline in our ex-
periments (after manually constructing the polycube). Parameterization with small
angle distortion and area distortion is highly desirable for spline construction which
will usually lead to a spline surface with smaller fitting errors and fewer number of
control points. The global conformal parametereization methods used in this work,
though theoretically sound to guarantee a bijection, may not be practically useful
for a topologically complicated surface since the rounding error will cause serious
numerical problems in computing the hyperbolic parameterization and the funda-
mental domain, which therefore leads to a highly unstable parameterization result.
On the other hand, in existing work the 3D surfaces with negative Euler characteris-
tics are usually required to reduce the number of faces significantly before comput-
ing the hyperbolic parameterization. Therefore, many geometry details are lost in
the resulting polycube maps, which is for sure not desirable for spline-based surface
reconstruction. We will address this issue in the subsequent chapters by providing
algorithms which are better for complicated shapes such as high genus surfaces and
surfaces with open boundaries.



CHAPTER 4. Polycube Splines 89

Computational conformal geometry algorithms usually use numerical calcu-
lations to approximate smooth cases, and usually involve solving a linear system.
As discussed in section 4.4.2, the computation of the spline surface also involves
solving a linear system. So the overall time required to compute a spline surface to
approximate the given 3D shape is decided by the speed of the linear system solver.
Linear system solver has been a research topic and been implemented in commer-
cial softwares (e.g. MatlabⓇ, IntelⓇ MKL, etc) for many years. In some cases the
system is sparse, symmetric and positive definite. Then we prefer to use the con-
jugate gradient method or Cholesky decomposition to save the computational time
from O(n3) to O(n2) for a linear system of size n. NVIDIAⓇ CUDA (Common
Unified Device Architecture) technology has been widely applied in solving linear
systems recently. IBMⓇ also provides source codes for sparse matrix-vector mul-
tiplication (SpMV4GPU). With the rapid development of computer hardwares, the
faster linear system solver can be expected. On the other hand, in addition to the
traditional reverse engineering and geometric design area in which they are usually
used for scattered data fitting and surface design, spline construction is usually used
as the preprocessing step for other graphics applications like finite element simu-
lation, fluid simulation, visualization, and e-manufacturing to convert the discrete
data inputs into continuous, compact representations. In most of these applications,
the fitting quality of the spline surface with respect to the original discrete data input
is more important compared to the construction time. Once the spline computation
is finished, the result can be reused whenever and wherever the continuous rep-
resentations are needed. And the spline representations with high quality usually
means fewer number of control points and smaller fitting errors, which will for sure
lead to faster surface rendering/evaluation and introduce more flexibility in the real
world applications.

We will focus on discussing the fitting quality (in terms of root-mean-square
error and the number of control points) instead of the execution time when evaluat-
ing the proposed data modeling frameworks in the subsequent chapters.
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(a) Polycube map (b) T-spline (c) T-junctions (d) Control points

Figure 51: Construction of manifold T-splines using polycube maps.



Chapter 5

User-Controllable Polycube Map

5.1 Introduction and Motivation

There are two research directions immediately following Gu et al.’s work on
manifold splines. One is to further reduce the number of extraordinary points.
In [58], Gu et al. presented a method to construct manifold splines with single ex-
traordinary point reaching their theoretic lower bound of singularity for real-world
applications. They first computed a special metric of any manifold domain such
that the metric becomes flat everywhere except at one point. Then, the metric natu-
rally induces an affine atlas covering the entire manifold except this singular point.
Finally, manifold splines are defined over this affine atlas. They showed that the
uniformity of the metric varies drastically depending on the location of singularity.

Another direction, in sharp contrast, is to increase the number of extraordinary
points to reduce the total area distortion in the affine atlas. In [147](Chapter 4),
we proposed polycube T-splines which is a variant of manifold splines such that the
metric of the affine manifold (polycube without corners) is explicitly determined by
the geodesic distance on the polycube. Compared with [58], the polycube domain
offers a rectangular structure which necessarily facilitates subsequent geometric
computing and shape analysis. Within our work in [147], the user first constructs
the polycube manually. Then both the 3D model and polycube are mapped to one
of the canonical domains, i.e., sphere S2, Euclidean plane E2, and hyperbolic disc
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(a) User-controllable (b) Polycube (c) T-junctions on (d) Close-up of
polycube map. T-spline. polycube spline. control points.

Figure 52: Polycube spline for the David Body model. (a) The user-controllable polycube
map serving as the parametric domain. (b) and (c) Polycube T-splines obtained via affine
structure induced by the polycube map. Note that our polycube spline is globally defined
as a “one-piece” shape representation without any cutting and gluing work except at the
finite number of extraordinary points (corners of the polycube). The extraordinary points
are colored in green in (b). The red curves on the spline surface (see (c)) highlight the
T-junctions. (d) Close-up of the spline model overlaid by the control points. The polycube
T-spline contains 9781 control points. The original model contains 100K vertices. The
root-mean-square error is 0.3% of the model’s main diagonal.

ℍ2, depending on the topology of the input model. Next, we try to find a map be-
tween the fundamental domains which induce the map between the input 3D shape
and polycube. This method is completely different from the method introduced
in [142] such that the new approach is essentially intrinsic which completely avoids
the direct projection of 3D points to the polycube domains.

Although the method presented in [147] can naturally compute the polycube
map in an intrinsic way, it has some drawbacks: (1) there is very little user con-
trol which can be employed interactively. For example, the user can only specify
three points on the 3D model and their images on polycube for genus-zero cases.
Therefore, they can not directly control the desired location of extraordinary points
(corners of polycube). If the extraordinary points happen to locate on the highly
detailed, feature-rich regions, then it is difficult to fill the ”holes” in the postpro-
cessing step; (2) It is difficult to handle open surfaces. The only feasible way is to
use double covering technique introduced in [64] which converts the open surfaces
into closed ones. However this technique will at least double the time complexity
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and not practical for complex large-scale datasets; (3) It is difficult to handle high
genus models, since computing the fundamental domain of any high genus model
is known to be error-prone since the numerical truncated error may cause serious
problems when the points are near the boundary of the Poincare disk; and (4) It
is difficult to control the total area distortion if the user-designed polycube differs
from the given 3D model too much.

In this chapter, we aim to further improve our work in [147] (Chapter 4) by de-
veloping a novel framework of user-controllable polycube maps, which overcomes
the aforementioned disadvantages and challenges, and is much more efficient and
accurate. Within this framework, the current approach allows users to directly spec-
ify the extraordinary (corner) points of the polycubes on the input 3D surfaces. The
location of singularities can be interactively placed where no important geomet-
ric features exist in order to facilitate the subsequent hole-filling process. We then
develop algorithms for computing polycube maps in an intrinsic way, and show
that the resulting user-controllable polycube map is an ideal parametric domain for
spline construction, reverse engineering, and other applications. Figure 52 demon-
strates one example of polycube splines construction upon user-controllable poly-
cube maps.

The specific contributions of this work are as follows:

1. We propose a novel framework to construct user-controllable polycube maps
by using discrete Ricci flow. Our method is fundamentally different from
Tarini et al.’s technique [142] and the method proposed in [147]. The user
is allowed to choose the extraordinary points directly and freely on the given
3D surfaces, thus, can avoid the high detailed feature-rich regions which then
facilitates later hole-filling processes.

2. The proposed method for polycube map construction has lower area distor-
tion compared with traditional methods and enforce small angle distortion
as well. By minimizing the size of singularities on the parametric domain,
we can ensure that the corresponding holes in the resulting surfaces are also
small.

3. The proposed method can construct polycube map easily for high genus sur-
faces and open surfaces, which are usually difficult to be handled by the tra-
ditional methods as explained above.
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The remainder of this chapter is organized as follows. We present the details
of our algorithm to construct the user-controllable polycube map of arbitrary topol-
ogy in Section 5.2. We then discuss the benefits of the user-controllable polycube
map in manifold spline construction and demonstrate the experimental results in
Section 5.3.

5.2 Construction of Polycube Maps

In this section, we explain in details our algorithm for constructing polycube
maps for surfaces with arbitrary topologies.

The key differences between the techniques employed in [142, 147] and ours
in this work are that Tarini et al.’s technique is trying to find a one-to-one mapping
from the original surface to the polycube surface extrinsically, which typically re-
quires the projection of points from the suface to the polycube. As a result, their
method is usually quite difficult to handle cases where the surface and the polycube
differ significantly, because the point projection does not guarantee a one-to-one
correspondence; the methods used in [147] compute such a mapping in an intrinsic
way. They first conformally map the 3D shape and the polycube to the same canon-
ical domains (e.g., sphere, Euclidean plane, or hyperbolic disk), then construct a
map between these two domains, which induces a one-to-one map between the 3D
shape and the polycube. The drawback of this intrinsic method in practice is that
the user has very limited control on the global mapping. For example, users can
not control the positions of extraordinary (corner) points. If the vicinity regions of
those points have rich geometric features, later hole-filling processes will unavoid-
ably become very challenging and error prone. In contrast, our new method offers
users the full control of the corner point placement, therefore, users can choose the
corner points at regions with fewer geometric features to simplify the hole filling
procedure. Furthermore, the method in [147] builds the polycube manually first,
then construct the mapping between the surface and the polycube. If the polycube
changes, the mapping need to be re-calculated completely; whereas, in our current
method, we establish the mapping first, then we determine the polycube based on
the mapping. If we modify the shape of the polycube, the correspondence between
the surface and the polycube does not change. Therefore, we can adjust the shape
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of the polycube easily to obtain a better fitting for the original surface defined over
the polycube. Our experimental results show that the new polycube method also in-
troduces lower area distortion. Lower area distortion in the vicinity of corner points
will ensure better hole filling results.

The polycube map is constructed in the following way:

1. Users set the positions and the curvatures of the corner points on the surface.

2. We deform the Riemannian metric of the surface by Ricci flow, such that all
the corners have the prescribed Gaussian curvatures, and other points are flat.

3. We compute the straight lines connecting corners on the surface under the
new metric to partition the surface to a collection of planar quadrilaterals.

4. We transform each quadrilaterial to a planar rectangle by setting the corner
angles to be π

2 ’s and running Ricci flow.

5. Assembly all the planar rectangles to the desired polycube. For vertices on
the edges of the polycube, they might be mismatched. We enforce them to
meet together on the edge, and use harmonic map to relax the interior of each
rectangle.

Next we will give a brief introduction to discrete Ricci flow in 5.2.1, then the
detailed algorithm for polycube map construction will be presented in 5.2.2.

5.2.1 Discrete Ricci Flow

Suppose S is a surface with a Riemannian metric g. Let u : S →ℝ be a function
on the surface, then ḡ = e2ug is also a Riemannian metric of S, where u represents
the area distortion and called the conformal factor. Furthermore, the angles between
two tangle vectors at the same point measured by g equal to those measured by
ḡ, therefore, we say ḡ is conformal to g. Gaussian curvatures are determined by
Riemannian metrics. Let K and K̄ are the Gaussian curvature functions induced
by g and ḡ, respectively. Then K, K̄, and u are governed by the following Yamabe
equation:

K̄ = e2uK(−∆gu+K), (31)

where ∆g is the Laplace-Beltrami operator determined by g. This equation shows
that given a desired Gaussian curvature K̄, we can uniquely determine a Riemannian
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metric e2ug. The desired metric can be computed using Ricci flow method:

du(t)
dt

= K̄ −K(t), (32)

where the initial condition is u(0) = 0, and K(t) is the Gaussian curvature induced
by the metric e2u(t)g. Riccif flow is proven to be convergent to the unique solution
under the constraint that the surface area is preserved during the flow [67].

Discrete Ricci flow method is introduced in [16] and discrete Euclidean Ricci
flow is applied for solid modeling in [58]. In practice, the surface is approxi-
mated by a triangular mesh. The Riemannian metrics are approximated by the
edge lengths. The Gaussian curvatures are approximated as the angle deficit from
2π at each vertex. The conformal metric is approximated by circle packing met-
ric, where the mesh is covered by a collection of circles centered at each vertex.
The circles intersect with each other. We can change the circle radii and preserve
the intersection angles, then the radii and the intersection angle together determine
the edge lengths, then the discrete curvatures at the vertices. Let the circle radii at
vertex vi be γi, ui be lnγi, then discrete Ricci flow has exact the same form as the
smooth Ricci flow

dui(t)
dt

= K̄i −Ki(t),

with a normalization constraint, that during the flow the total area of the mesh is
preserved. Discrete Ricci flow is a powerful tool to design edge lengths according
to the user defined curvatures.

Furthermore, discrete Ricci flow is the gradient flow of the so called discrete
Ricci energy. Let u be the vector of logarithms of radii (u1,u2, ⋅ ⋅ ⋅ ,un), k be the
vector of vertex Gaussian curvature
(K1,K2, ⋅ ⋅ ⋅ ,Kn). Let u0 be (0,0, ⋅ ⋅ ⋅ ,0), then the discrete Ricci energy is given by

E(u =

∫ u

u0

n∑

i=1

(K̄i −Ki)dui.

It is proven that the discrete Ricci energy is convex, therefore has a unique global
minimum, which induces the curvature k̄. Therefore, we can use Newton’s method
to compute the desired metric from the user-defined curvature.
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5.2.2 Construction of Polycube Maps

The fully user-controllable polycube map can be interactively built using the
following procedure:

1. Corner Selection. Given a mesh M with arbitrary topology, user can design
the polycube P based on the shape of the surface by directly selecting corners
of P on M. The choices of the corners reflect the symmetry of M. The
curvature at each corner c equals to (2− k

2)π, where k is the valence of c
on the polycube p. Namely, protruding corners are with π

2 , recessed corners
are with −π

2 . The total curvatures of all corners equals to 2πχ(M), where
χ(M) is the Euler-characteristic number of M. Figure 53 (a)(b) shows the
selected corner points on Buddha model. The red corners are the protruding
corners, the green corners are the recessed corners. For non-corner vertices,
we set the curvature to be zero.
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Figure 53: Corner points are marked on Buddha model in (a) and (b), red ones with π/2
target Gaussian curvature, and green ones with −π/2 target Gaussian curvatures. Geodesics
between corner points are marked with sharp edges in (c) and (d), which are computed using
Dijkstra’s algorithm with computed conformal metric as edge lengths.

2. Mesh Partition. We use the discrete Euclidean Ricci flow to compute a new
circle packing metric according to the target curvature. For any two corners
c1,c2 on the mesh, whose correspondences are connected on the polycube, we
compute the shortest path connecting them on the mesh under the new metric
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using Dijkstra’s method (Figure 53(c)(d)). All such shortest paths segment
the mesh to patches. Figure 54 (a) shows one patch from the partition of the
buddha mesh using this step, which corresponds to one face of the polycube.

3. Rectification. Each patch is a planar quadrilateral under the new metric, but
may not be a rectangle. We can use the Ricci flow method to rectify the planar
quadrilateral to the rectangle by setting the target curvatures of 4 corners to be
π
2 , and all the other interior and boundary vertex curvatures to be zero. Ricci
flow can find a flat metric, the layout of the mesh under the flat metric is a
rectangle. The aspect ratio of the rectangle is solely determined by original
geometry of the patch. Figure 54 (b) illustrates the rectification result.
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Figure 54: One patch from Buddha model after partition is shown in (a) and (b), which
corresponds to one face of the polycube. (a) shows the quadrilateral before rectification,
(b) shows the rectangle after rectification. User-controllable polycube map for the Buddha
model is shown in (c), and its corresponding polycube T-spline surface is shown in (d). The
extraordinary points are colored in green.

4. Polycube Assembly. Assemble all the rectangles to a polycube, scale each
rectangle along x and y directions whenever it is necessary. First, we build the
dual graph of the polycube, each node represents a face of the polycube, each
edge corresponds to an edge. Then we use breadth first searching method to
traverse the dual graph. We first embed the root face, each time we access
a new face, we determine the coordinates of its corners. In this way, we can
embed the whole polycube in ℝ3. Figure 54 (c) shows the polycube map for
genus-0 Buddha model.



CHAPTER 5. User-Controllable Polycube Map 99

If two rectangles on the polycube share one edge, enforce the corresponding
vertices to align each other. Then we use a discrete harmonic map to relax the
positions of the interior vertices of each rectangle with the fixed boundary condition.

Using the above construction procedure, the mapping between the polycube
and the surface is automatically established. The shape of the polycube and the
correspondence are fully determined by corner points. Therefore, the choices of the
corner points become critical. The followings are the important criteria for choosing
the corner positions: (1) the corners should be at regions with fewer geometric
features for the purpose of better hole filling; and (2) the configuration of the corners
should reflect the symmetry of the original surface.

Our experimental results in 5.3 will show that current method gives users much
more freedom to design the polycube; it induces lower area distortion between the
surface and the polycube; it is capable of handling surfaces with more complicated
topologies, such as high genus surfaces or open surfaces, which are difficult to
handle by using conventional methods.

5.3 Defining Manifold Splines Over Polycube Maps

As shown in [147], the polycube map of given 3D surfaces naturally induces
the affine structure with a finite number of extraordinary points (corners). Any pla-
nar spline schemes which satisfy the parametric affine invariant property can be
generalized to manifold domain via affine structure [60]. Therefore, spline surfaces
can be defined over the polycube map directly. The data fitting quality using poly-
cube T-splines depends heavily on the construction of underlying polycube maps. In
this section, we explain with examples that the introduced user-controllable poly-
cube maps are better for manifold spline construction compared with traditonal
methods [147].

In [147], they first conformally map the 3D shape and the polycube to the
same canonical domains (e.g., sphere, Euclidean plane, or hyperbolic disk), then
construct a map between these two domains, which induces a one-to-one map be-
tween the 3D shape and the polycube. Figure 55 demonstrates the above mapping
method for constructing a polycube map of the genus-one kitten model. Both the
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(a) M (b) φM : (c) P (d) φP : (e) φ : M → P (f) Initial
M → DM ⊂ E2 P → DP ⊂ E2 fitting result

Figure 55: Genus-one polycube map induced by Euclidean structure. The genus one Kitten
model M in (a) is conformally mapped to the Euclidean plane in (b). The fundamental
domain is a rectangle region enclosed by the green boundary in (b). Then, a polycube P in
(c) is also parameterized over the rectangular region in the same way in (d). By matching
the two fundamental regions in (b) and (d) via an affine map, the polycube map for the
Kitten model is established in (e).

kitten model and its polycube approximation are parameterized using the holomor-
phic 1-form method. Their fundamental polygons are extracted and mapped by an
affine map. The affine map further induces a bijective map between the kitten model
and the polycube. The drawback of this intrinsic method is that the user has very
limited control on the entire mapping. For example, the user can not control the
positions of extraordinary points. If the vicinity regions of those points have impor-
tant geometric features, the following hole-filling process will be very challenging
and error prone. Figure 55(f) shows the initial fitting result from the polycube map
in Figure 55(e). One of the corner points is at the tip of the ear, which is difficult to
fill compared with other smooth regions.

Since our method allows users to select the locations of corner points on the 3D
surfaces directly, we can put corner points at regions where no important geometric
features exist. As shown in Figure 56(a), we place corner points at smooth regions.
The resulting polycube map is shown in Figure 56(c). Figure 56(d) demonstrates the
initial fitting result from the user-controlled polycube map. We can also tell from
the shape of T-cells (Figure 55(f), and Figure 56(d)) that the introduced polycube
map is more conformal compared with [147]. The affine map used in [147] to align
the two fundamental polygons in E2 sacrifices quite a lot the conformality of the
mapping. We measure the angles of each triangle in P and compare with the original
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(a) (b) (c) (d)

Figure 56: Genus-one polycube map constructed by discrete Euclidean Ricci flow. Corner
points are marked in (a), red ones with π/2 target Gaussian curvature, and green ones with
−π/2 target Gaussian curvature. Geodesics between corner points are marked with sharp
edges in (b). (c) shows the resulting polycube map and (d) demonstrates the initial spline
fitting result based on (c). The red curves on the spline surface highlight the T-junctions.
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Figure 57: Comparison of angle ratio distribution: (a) The result for the polycube map in
[26] (Figure 55(e)); (b) The result for the user-controllable polycube map (Figure 56(c)).

ones in M. The distribution of the angle ratio is illustrated in Figure 57. We can
see that the ratio is mainly concentrated around 1 (which should be ideal) for our
new method, and it shifts away from 1 for the method in [147] due to the affine map
used to align the fundamental polygons.
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Furthermore, the introduced polycube map usually induces lower area distor-
tion between the surface and the polycube. For the examples shown in Figure 55
and Figure 56, area distortion for the method employed in [147] is 8.7548, while
it is 0.8477 for the user-controllable polycube map. The area distortion is calcu-
lated as

∑
∆∈M ((area(∆′)

area(∆) −1)2×area(∆)). The areas of the input model M and the
resulting polycube P are normalized to 1 before the computation. ∆′ is the image
of the triangle ∆ of M on P. Lower area distortion ensures that the holes on the
resulting spline surface will be small by making the holes around corner points on
the domain polycube small.

Another advantage of the proposed new method for spline construction is that
it is capable of handling surfaces with more complicated topologies, such as high
genus surfaces or open surfaces, without introducing extra overhead. In reality
these surfaces are very difficult to handle by using conventional methods. Figure
52 shows the polycube map for David body model which is a genus-one surface
with two boundaries. It is difficult to construct the polycube map for it by using
the traditional method. The only feasible way is to use double covering technique
which converts the open surfaces into closed ones. However, this technique is far
less efficient because it at least doubles the topology complexity and is not practical
for complicated, large-scale datasets. By allowing selecting the corner points on the
surfaces interactively, the construction of the polycube map for these complicated
surfaces is now as easy as that of simple surfaces. Figure 52 shows the spline surface
built upon the resulting polycube map. Figure 58 show more examples of polycube
maps and spline surfaces for open surfaces and high genus surfaces, respectively.
The statistics of the examples are shown in Table 4.

Table 4: Statistics of various test examples (after 5 iterations): g, genus of polycube P;
Nb, # of boundaries; Ns, # of singularities; Nv, # of vertices in the input polygonal mesh;
Nc, # of control points; rms, root-mean-square error; L∞, maximal fitting error; darea, area
distortion.

Object g Nb Ns darea Nv Nc rms L∞

Buddha (Figure 54) 0 0 16 0.6785 72K 8842 0.06% 0.42%
Three people (Figure 58) 0 1 4 0.3529 100K 9402 0.21% 0.66%

Kitten (Figure 58) 1 0 16 0.8477 45K 4678 0.13% 0.62%
David body (Figure 52) 1 2 24 0.5378 100K 9781 0.32% 0.71%
Amphora (Figure 58) 2 0 24 1.02 65K 6791 0.08% 0.46%
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(a) 3-people: genus-zero open surface.

(b) Kitten: genus-one surface.

(c) Amphora: genus-two surface.

Figure 58: Various examples of polycube T-splines.



Chapter 6

Automatic Polycube Map
Construction

6.1 Introduction and Motivation

As we introduced in Chapter 2.1, polycube map is a novel cross-surface pa-
rameterization technique where the parametric domain is a polycube (a.k.a. cubical
complex). Compared with other global parameterization techniques, the quality
of a polycube map (in terms of angle and area distortion) can be quantitatively
controlled by designing the polycube which resembles the geometry of the input
shape and shares the same topology [142]. Because of their highly regular structure
(i.e., each face is a square or poly-square) and the nature of the “one-piece” global
parametric domain (i.e., no cutting and abutting), polycube maps have shown great
promise in texture mapping and synthesis [95, 142], shape morphing [38], spline
constructions [147, 148] and harmonic volumetric mapping [77, 98].

Despite many promising properties and great modeling potentials of polycube
maps, polycube maps have not yet been widely applied to real-world applications.
The underlying reasons are two-fold: 1) Polycubes are usually constructed man-
ually with great care and specific domain knowledge. Designing polycubes for
shapes of complicated geometry and topology remains to be very tedious and la-
bor intensive. 2) Once the polycube is devised, the existing techniques to construct
the map between the given 3D shape and polycube require either projection of the

104
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vertices from 3D shape to the polycube (e.g., [142] which is an extrinsic method)
or computing a global surface parameterization (e.g., [147] which is an intrinsic
method). As a result, many technical challenges can not be easily overcome with
all the existing methods. For example, the extrinsic method may not produce a valid
one-to-one map if the polycube differs from the modeled shape significantly. The
intrinsic method, though theoretically sound to guarantee a bijection, may not be
practically useful for a topologically complicated surface since the rounding error
will cause serious numerical problems in computing the hyperbolic parameteriza-
tion and the fundamental domain. In [96, 147], the 3D surfaces with negative Euler
characteristics are required to reduce the number of faces significantly before com-
puting the hyperbolic parameterization. Therefore, many geometry details are lost
in the resulting polycube maps. In order to arrive at a high-fidelity polycube map,
particularly for a complicated real-world object, our goal is to develop more effi-
cient and accurate methods for producing polycube maps for shapes of complicated
geometry and arbitrary topology with far less user intervention towards a full au-
tomation.

(a) (b) (c) (d)

Figure 59: Polycube map for the genus-1 Dancer model. (a) shows the constructed poly-
cube map. The red curves in (b) illustrate the polycube structure. (c) shows the quadrilateral
mesh generated using the polycube map. (d) shows some close-up views of the quadrilateral
mesh. Note that both the polycube and polycube map are constructed automatically.

In particular, this work tackles the aforementioned technical challenges and
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develops a novel method to construct polycube maps of arbitrary topology. Com-
pared with the existing methods which usually require tremendous amount of effort
from users to design and build the polycubes, our method, in sharp contrast, is au-
tomatic. The user may choose to specify two parameters to control how close the
polycube mimics the geometry of the input shape, then our algorithm can construct
both the polycube and the one-to-one map between the polycube and input shape
automatically. As an example, Fig. 59 shows the automatically-constructed poly-
cube map for the genus-1 Dancer model, as well as the quadrilateral remeshing
using polycube maps.

The contributions of this work include:

1. We develop an automatic method to construct polycube maps of complicated
topology and geometry. The polycube map is theoretically sound to guarantee
a bijection between the 3D model surface and the polycube domain.

2. We compare our method with the existing polycube map construction tech-
niques and show that the constructed polycube maps have lower angle and
area distortions, and hence, are of high-quality.

3. We apply the constructed polycube maps to various applications, such as
polycube T-splines, seamless texture synthesis, and quadrilateral and hexa-
hedral mesh generation, and demonstrate the efficacy of our method in real-
world examples.

The remainder of the chapter is organized as follows: Section 6.2 details our al-
gorithmic pipeline of automatic polycube map construction. Section 6.3 shows the
experimental results corresponding to different applications, such as quad mesh
generation, polycube T-splines, and texture synthesis. We thoroughly compare the
newly-developed method with existing techniques in Section 6.4. Finally, discus-
sions are presented in Section 6.5.

6.2 Automatic Polycube Map Construction

This section details the theory and algorithmic pipeline of automatic polycube
map construction. As mentioned earlier, our method is intrinsic in that it avoids the
projection of vertices from a 3D surface to the polycube domain. Therefore, the
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major goal is to map the input model and polycube to the canonical domains and
then find the map between the canonical domains. The existing intrinsic method
proposed by Wang et al. [147] requires the global parameterization, i.e., mapping
the models with positive Euler characteristic χ > 0 to sphere S2, models with χ = 0
to Euclidean plane E2 and models with χ< 0 to hyperbolic diskℍ2. It is known that
embedding models with negative Euler characteristic is error-prone when the point
is very close to the boundary of the Poincaré disk due to the numerical rounding
error. Therefore, Wang et al.’s method is not practical and much less numerically
stable to construct polycube maps of large-scale models with negative Euler char-
acteristics.

To construct intrinsic polycube maps in a more robust and practical way, we
use a divide-and-conquer strategy, i.e., segmenting the polycube and the given 3D
surface into multiple disjoint components, then constructing the piecewise poly-
cube map for each component, and finally computing a globally smooth map for
the entire polycube domain. The key reason that we use the divide-and-conquer
approach is to avoid the time consuming and error-prone global parameterization
since parameterizing each segmented component (of genus-0) to the planar domain
is relatively easier, more efficient, and more robust than working directly on the
global shape in its entirety. Note that the straightforward gluing of the individual
polycube maps have only C0 continuity across the cutting boundaries. Therefore,
we must apply a global relaxation algorithm to the entire shape and achieve a glob-
ally smooth polycube map. Our automatic polycube map construction algorithm
consists of five steps:

1. Given a 3D mesh M, construct a harmonic function f : M → ℝ and extract
all the critical points of f which reveal the topological structure of M (Sec-
tion 6.2.1).

2. Progressively construct the polycube P using the scan-line like algorithm
(Section 6.2.2).

3. Slice M and P into disjoint components Mi and Pi, i.e., M =
∪

Mi, P =
∪

Pi,
where Mi and Pi are genus-zero open surfaces. Compute the uniform flat
metric for Mi and Pi, and embed them to the multi-hole disks (Section 6.2.3).

4. Compute a one-to-one map between the Mi and Pi by solving a harmonic map
between the multi-hole disks (Section 6.2.4).
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5. Compute the globally smooth polycube map by solving the harmonic map for
the individual face, edge and corner charts (Section 6.2.5).

6.2.1 Extracting the Topological Structure

The divide-and-conquer approach requires segmentation of the input mesh to
a set of genus-0 shapes. To develop a general and automatic segmentation method,
we should extract the topological structure of the input mesh M. To achieve this
goal, we construct a harmonic function [111], f : M → ℝ, such that

△ f = 0, (33)

with the boundary condition

f (v0) = 0 and f (v1) = 1,

where △ is the Laplace-Beltrami operator under the Euclidean metric (edge length)
of M, whereas v0 and v1 are the bottom-most and top-most points on M, respec-
tively. Note if multiple bottom(top)-most points exist, we just pick arbitrary one.

We then find all the critical points of f whose partial derivatives vanish. These
critical points can be classified into four categories (see Figure 60):

∙ Maximal point where a new component starts;

∙ Saddle point where the handle splits;

∙ Saddle point where the handle merges;

∙ Minimal point where the current component ends.

For a closed surface M of genus g, the number of critical points satisfies the follow-
ing equation

#minimal −#saddle+#maximal = 2−2g.

Since the maximal and minimal points are specified by the boundary condition, the
number of saddle points is always 2g.

6.2.2 Constructing the Polycube

We sort all the critical points in an ascending order by their z values. Let
v0,c1,c2, ⋅ ⋅ ⋅ ,c2g,v1 denote the sorted critical points including the bottom-most and
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(a) Harmonic function (b) Critical points

Figure 60: Critical points of a harmonic function on a closed surface. (a) shows the har-
monic function △ f = 0, f (v0) = 0 and f (v1) = 1 where v0 and v1 are the bottom-most and
top-most points on the model, respectively. (b) The saddle, the global minimal, and the
global maximal points are colored in green, red, and blue, respectively.

top-most points which are the global minimal and maximal points, respectively. Let
z(p) denote the z coordinate of point p. Then we construct 2g+1 horizontal cutting
planes, such that

z0 =
z(v0)+ z(c1)

2

z1 =
z(c1)+ z(c2)

2
⋅ ⋅ ⋅

z2g =
z(c2g)+ z(v1)

2

Note that because of shape symmetry, two or more critical points may have the same
(or nearly the same) z coordinate. In such a case, only one representative point is
selected.

Let dz be the user-specified parameter for the maximal distance between two
adjacent cutting planes. This parameter controls how close the resulting polycube
mimics the given shape. Intuitively speaking, the smaller the value of dz, the larger
the number of cutting planes, and thus, the more similar to the given shape the
polycube approximation is. Note that if the distance between two consecutive cut-
ting planes, say, zi and zi+1 is greater than dz, we uniformly insert ⌊(zi+1 − zi)/dz⌋
cutting planes in-between. Since there is at least one cutting plane between two ad-
jacent critical points, the given shape M is sliced into multiple disjoint components,
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(a)

(b) (d) (f)

(c) (e) (g)

(h)

Figure 61: Automatic polycube construction for the genus-2 Amphora model (with pa-
rameters dz = 0.05 and da = 0.3). (a) shows the genus-2 Amphora model marked with
saddle points c1, ⋅ ⋅ ⋅ ,c4, and the global minimum/maximum points v0,v1 in red. A total of
18 horizontal cutting planes slice the given shape M into 29 components, each of which is
a genus-0 open surface. The blue curves show the cross-section contours of the horizontal
scanning planes. (b) and (c) show the cross-section contours (blue lines) for scanning plane
15 (with z value z15) and 16 (with z value z16), respectively. The inner boundaries (holes)
are drawn in green. Then axis-aligned polygons Qi (red polygons in (b) and (c)) are used
to approximate the curved cross-section contours (blue and green curves in (b) and (c)). (d)
shows the polygonal face at z value (z15 + z16)/2, which is the union of Q15 − (Q16

∩
Q15)

(red) and Q16 − (Q16
∩

Q15) (blue). (e) shows the side face by projecting the boundaries
of Q16 along the z-axis from (z15 + z16)/2 to (z16 + z17)/2. (f) shows the result by adding
(d) to the partial polycube after processing the first 15 intersections. (g) shows the result
by adding the side face (e) to the partial polycube in (f). (h) shows the final polycube. The
blue lines in (h) correspond to the intersection contours in (a).
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each of which is a genus-zero open surface. Then the polycube can be constructed
automatically using the scan-line like algorithm as detailed below.

Let us use the genus-2 Amphora model to illustrate our idea and the key al-
gorithmic components. There are four saddle points c1, c2, c3, and c4 shown in
Fig. 61(a), whereas v0 and v1 are the bottom-most and top-most points, respec-
tively. Note that c3 and c4 have similar z coordinate, therefor it is not necessarily to
differentiate these two points by inserting a cutting plane in-between. In our imple-
mentation, two or more critical points are considered on the same level if the dif-
ference of their z-coordinates is less than 0.01 of the height of the model. Then the
z range of the given model is split into 4 intervals: [v0,c1], [c1,c2], [c2,c3], [c3,v1].
Next, we uniformly segment the shape by several cutting planes perpendicular to
z-axis as shown by the blue lines in Fig. 61(a).

The intersection between each horizontal cutting plane and M is a set of pla-
nar curves as shown in Figure 61(b)-(c). Then we approximate these intersection
curves by a set of axis-aligned polygons using a quad-tree method, i.e., starting
from the bounding rectangle of this polygon, and keep subdividing it until the given
approximation accuracy threshold is satisfied or the maximal subdivision level is
reached. The approximation accuracy of the axis-aligned polygons p to the in-
put curved contours c is quantitatively measured by the normalized area difference
da = area(p∖ c)/area(c). Note that da is a user-specified threshold. In general, the
smaller the value of da, the more accurate the approximated axis-aligned polygons
to the curved contours, and thus, the more detailed the axis-aligned polygons are.

After we get the axis-aligned polygon approximation of the curved intersection
contours, we can readily construct the 3D polycube by extruding the axis-aligned
polygons along the z axis and by performing necessary CSG operations. Suppose
there are n scanning planes with z values z1 < z2 < .. . < zn and Qi is the set of
axis-aligned polygons for scanning plane i with z value zi, all the boundaries of the
polygons in Qi are extruded along the z axis from (zi + zi−1)/2 (z(v0) for the first
scanning plane) to (zi + zi+1)/2 (z(v1) for the last scanning plane) to form the side
face. The polygonal face with the z value (zi + zi−1)/2 is computed as the union
of Qi−1 − (Qi

∩
Qi−1) and Qi − (Qi

∩
Qi−1). The polygon face will be Q1 at the z

value z(v0), and Qn at the z value z(v1).
Figure 61(d)-(e) show the polygon face at (z15+z16)/2 and the side face for the
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16-th scanning plane, respectively. Figure 61(f)-(g) show the partial polycube after
combining the polygon face and side face for 16-th scanning plane. Figure 61(h)
shows the final polycube; the contours for the axis-aligned polygon approximations
are colored in blue.

(a) Mi (b) DMi (c) Pi (d) DPi

Figure 62: We map each segmented component Pi and Mi to a multi-hole disk using uni-
form flat metric, where the Gaussian curvature of the interior vertices is zero and the total
geodesic curvature of the boundary is constant, i.e., 2π for the outer boundary, and −2π for
each hole. Since the geometry of Pi and Mi are similar, their embeddings of the uniform flat
metric are consistent and stable.

6.2.3 Uniform Flat Metric and Multi-hole Disk

After a polycube is constructed automatically and then segmented into multi-
ple disjoint components, we are ready for the parameterization step. Note that each
segmented component is of a genus-0 open surface, therefore, the idea parametric
domain is the Euclidean disc. A common technique for the planar parameterization
is solving a harmonic map with the user-specified boundary condition. However,
the harmonic map is not suitable for this step since it is very hard to specify the
position of boundary points for surface with multiple boundaries. Therefore, we
use discrete Ricci flow [16,61,80] for the parameterization step since we only need
to specify the target curvatures (rather than their positions) of the boundary points.

Suppose S is a surface with a Riemannian metric g. Let u : S → ℝ be a scalar
function on S, then ḡ = e2ug is also a Riemannian metric which is conformal to g.
Let K and K̄ denote the Gaussian curvature induced by g and ḡ, then the desired
metric ḡ can be computed using

du(t)
dt

= K̄ −K(t), (34)
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where the initial condition is u(0)= 0 and K(t) is the Gaussian curvature induced by
the metric e2u(t)g. During this curvature deformation, the metric g(t) is conformal to
the original metric g(0) at any time t. To map the genus-0 open surface to Euclidean
plane, we compute the uniform flat metric of S, namely, a metric g(∞) which is
flat everywhere inside the surface and the geodesic curvature is constant on the
boundary,

K̄ = 0, v /∈ ∂S (35)

k̄g = const, v ∈ ∂S, (36)

where K̄v and k̄v are the target Gaussian and geodesic curvatures. If the total
geodesic curvature on each boundary is given, such a uniform flat metric exists
and is unique. Using uniform flat metric, we can map genus-0 open surface to a
multi-hole disk and the map is guaranteed to be a diffeomorphism.

Note that both the given mesh M and polycube P have been segmented into
multiple disjoint components Mi, Pi, i = 1,2, ⋅ ⋅ ⋅ , each of which is a genus-0 open
surface with b (b≥ 1) boundaries C0∪C1∪⋅⋅ ⋅∪Cb−1. For b≥ 2, C0 is the boundary
with the longest length. We set the target curvature of interior vertices to zero,
the total geodesic curvature of the first boundary C0 to 2π and the total geodesic
curvature to be −2π for each of the remaining boundaries, Ci, i = 1, ⋅ ⋅ ⋅ ,b − 1.
Then the total target Gaussian and geodesic curvatures satisfy the Gauss-Bonnet
theorem: ∫

S
K +

∫

∂S
kg =

∫

S
K̄ +

∫

∂S
k̄g = 2π(2−2g−b), (37)

where g = 0. Once the target Gaussian curvatures are given, we can compute the
uniform flat metric by solving the discrete Ricci flow. Then, we embed the shape
to the Euclidean plane using uniform flat metric and obtain a (b− 1)-hole disc as
shown in Figure 62.

6.2.4 Computing the Piecewise Map

As explained earlier, we take a “divide-and-conquer” approach in that we seg-
ment the topologically complicated shape M and polycube P into multiple disjoint
components, Mi, Pi, i = 1, ⋅ ⋅ ⋅ , each of which has simple topology. Then we con-
struct a harmonic map between Pi and Mi. Note that the map between Pi and Mi
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(a) (b)

Figure 63: Constructing the mapping between boundary curves ∂Pi to ∂Mi. (a) The bound-
aries of Pi and Mi are planar curves. (b) The blue lines show the map ψi between the vertices
on ∂Pi and ∂Mi (see Equation 38).

is smooth for the interior vertices of Mi and Pi. In general, the map of two adja-
cent components (components share one common boundary) may not be continuous
across the boundary. In order to ensure that the two adjacent polycube maps have
C0 continuity across the boundary (otherwise, we can not get the globally smooth
polycube map in the next step), we must impose the boundary condition of adjacent
components in a consistent way.

We first construct a one-to-one map ψ : ∂Pi → ∂Mi between the boundaries of
Pi and Mi in a piecewise fashion. Note that each boundary is a closed planar curve
(on the cutting plane). For each vertex v ∈ ∂Pi, let ψ(v) ∈ ∂Mi denote its image,
then we require that the map ψi minimizes the following distance functional

min
∫

∂Pi

∥ψi(v)− v∥2. (38)

Solving the above optimization problem gives rise to a parameterization between
the boundaries of Pi and Mi with least distortion. Note that each cutting boundary
(not the boundary in the original shape) connects two adjacent components, say,
Pi and Pi+1. Let v ∈ ∂Pi and v ∈ ∂Pi+1, then the above map can guarantee that
the images of v under ψi and ψi+1 are consistent, ψi(v) = ψi+1(v). Therefore,
the resulting polycube maps of two adjacent components are C0-continuous across
the boundary, i.e., they are seamless. Figure 63 shows an example of such a map
between the boundary curves of Pi and Mi.

Let DMi and DPi denote the embedding of Mi and Pi in the Euclidean plane
using uniform flat metric, respectively. Similar to the intrinsic method proposed
in [147], we want to construct the one-to-one correspondence between Pi and Mi by
the composite map φPi→Mi = φ−1

Mi→DMi
∘φDPi→DMi

∘φPi→DPi
as shown in the follow-

ing commutative diagram:
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(a) Mi → DMi (b)Pi → DPi (c) φDPi→DMi

(d) D̄Mi (e) fM : D̄Mi → D (f) D̄Pi

(g) fP : D̄Pi → D (h) g : D → D (i) φ−1
Mi→DMi

∘ f−1
M ∘g∘ fP ∘φPi→DPi

Figure 64: Constructing a diffeomorphism between Pi and Mi (see (a) and (b)). Since DMi

and DPi are not convex, the harmonic map φ : DPi → DMi is not one-to-one. Pay attention
to the flipover in the close-up view in (c). To correct this problem, we first modify the
topology of DPi and DMi by introducing three cuts to connect the three inner boundaries
with the outer boundary (see (d) and (e)). Then we map the modified shape D̄Pi and D̄Mi

to unit disk. Next we compute the harmonic map between two unit disks. The boundary
condition is specified that the cutting loci are mapped to each other consistently, e.g., the
arc AA′ in D̄Mi to the corresponding arc AA′ in D̄Pi . Finally, the polycube map from Pi to Mi

is the the composite map φ−1
Mi→DMi

∘ f−1
M ∘g∘ fP ∘φPi→DPi

.
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Pi Mi

DPi DMi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

-
φDPi→DMi

Harmonic map is a widely used technique to compute the mapping between two 2D
regions. It is well known that a harmonic map f : A ⊆ℝ2 → B ⊆ℝ2 is a diffeomor-
phism if ∂B is convex and the boundary mapping f (∂A) = ∂B is a homeomorphism.
Unfortunately, both DMi and DPi are multi-hole discs, i.e., concave shape. Thus,
solving a harmonic map between DPi and DMi , i.e., △φ = 0 and φ(∂DPi) = ∂DMi ,
can not guarantee a bijection in general.

To address this problem, we decompose the multi-hole discs to topological
discs and then compute the harmonic map between two topological disks.

1. We modify the topology of DMi and DPi by introducing the cuts to connect
the inner circles and the outer circle such that D̄Mi and D̄Pi are topologically
equivalent to a disk. The cuts are constructed as follows: for each inner
circle, we find the shortest line to the outer circle. If the line does not pass
through any other inner circles, we simply use it as cut locus; otherwise we
cut through the shortest line between two inner circles to connect them. We
repeat this cutting until the final shape is a topological disk.

2. We compute the harmonic maps fM : D̄Mi → D and fP : D̄Pi → D where D ⊆
ℝ2 is a unit disk. Note that fM and fP map the boundaries ∂D̄Mi and ∂D̄Pi

homeomorphically into the boundary of unit disk ∂D. Thus, fM and fP are
diffeomorphisms.

3. We compute the harmonic map g : D → D between the two unit disks. The
boundary condition is specified such that the cutting loci are mapped to each
other consistently.

4. The composite map φ−1
Mi→DMi

∘ f−1
M ∘g∘ fP∘φPi→DPi

induces the bijection from
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Pi to Mi. The commutative diagram is shown as follows:

Pi Mi

DPi DMi

D̄Pi D̄Mi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

?

fP

?

fM

-
g

(39)

Figure 64 illustrates the idea to compute the diffeomorphism between Pi and Mi.
Note that a direct harmonic map between DPi and DMi is not one-to-one (see the
flipover in the close-up view Fig. 64(c)). We modify the topology of DPi and DMi

and then construct the bijection between D̄Pi and D̄Mi (see Figure 64(i)).
Figure 65 shows the piecewise polycube map construction for the genus-5 De-

cocube model, which is decomposed into 8 components. A bijective map is con-
structed for each component, and finally, the whole map is obtained by gluing all
components together. Note that the piecewise polycube map is smooth for interior
vertices and C0 continuous across the cutting boundaries.

6.2.5 Computing the Globally Smooth Polycube Map

The polycube map constructed by the aforementioned steps is C∞ inside each
segmented component, however, only has C0 continuity across the cutting bound-
aries. Now, we further improve the quality of the polycube map by solving a har-
monic map for the entire shape. Let {Uc,ψc}, {Ue,ψe} and {U f ,ψ f } denote the
set of corner, edge, and face charts, respectively. As shown in Fig. 66, the corner
set Uc covers the polycube corners; the edge set Ue covers the interior points of
the polycube edge but leaves off corner vertices; the face set U f covers the interior
points of the polycube face but leaves off corner and edge vertices.

For any vertex v ∈U f on the polycube face, v and its neighbors are co-planar.
Function ψ f : U f → ℝ2 is defined by an orthogonal projection along the normal of
the polycube face.
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(a) (b) (c) (d) (e) (f)

Figure 65: Automatic polycube map construction for the genus-5 Decocube model. Be-
cause of symmetry, there are only five distinct z-values among the critical points (see (a)),
so four cutting planes are used to slice the model M and P into 8 components, each of
which is a genus-zero open surface. We construct the one-to-one map φ between Pi and Mi,
i = 1, ⋅ ⋅ ⋅ ,8, respectively (see (b) to (f)). Note that each cutting boundary (instead of the
boundary in the original shape) appears in two adjacent components. Since we use the con-
sistent parameterization between ∂Pi and ∂Mi (see Equation 38), the boundary conditions
of the harmonic map of two adjacent components are consistent. As a result, the piecewise
polycube maps are C0 continuous across the cutting boundaries (red curves), i.e., they are
seamless.

(a) Face charts (b) Edge charts (c) Corner charts

Figure 66: A polycube is covered by face, edge, and corner charts. Each face chart (drawn
in blue) covers only the interior points of the corresponding face and leaves off all the
boundary edges of the face. Each edge chart (drawn in red) covers the interior points of the
edges but leaves off corner vertices. Each corner chart (drawn in yellow) covers the corner.
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(a) Before improvement

(b) After improvement

Figure 67: Improving the polycube map by computing the harmonic map for the entire
shape. The continuities across the cutting boundaries before and after improvement are C0

and C∞, respectively. The angle distortions before and after the improvement are 1.141 and
1.028, respectively. Please pay attention to the quality improvement on the conformality of
the checkerboard texture mapping.

For any vertex v ∈Ue on the polycube edge, its neighbors are on two different
polycube faces. Function ψe : Ue →ℝ2 is defined by rotating one attached polycube
face 90 degrees (i.e., making v and its neighbors co-planar) followed by a projection
along the normal of the un-rotated polycube face.

For any vertex v ∈ Uc on the polycube corner, its one-ring neighbors are on
three or five different polycube edges. Function ψc : Uc → ℝ2 maps v to the origin
and its one-ring neighbors to uniformly distributed points on a unit circle.

Let φ : P → M denote the constructed piecewise polycube map and φ−1 : M →
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Table 5: Statistics of the experimental results. Test models are scaled to a unit cube. g,
genus; # ∆, number of triangles in the given shape; da, the area difference between the axis-
aligned contours and the curved intersection contours; dz, the maximal distance between
two adjacent cutting planes; εangle, angle distortion; εarea, area distortion; T , execution time
measured in minutes.

Model g dz da # ∆ εangle εarea T

Amphora 2 0.06 0.3 125K 1.015 1.128 12
Bimba 0 0.18 0.3 200K 1.014 1.143 9
Buddha 6 N/A N/A 300K 1.051 1.316 28
Bunny 0 0.08 0.3 34K 1.026 1.127 5
Dancer 1 0.05 0.25 186K 1.032 1.119 19
Dragon 0 0.1 0.25 200K 1.028 1.118 20

Decocube 5 0.25 0.3 60K 1.026 1.089 3
Fertility 4 0.08 0.3 100K 1.020 1.148 19
Gargoyle 0 0.08 0.3 75K 1.021 1.155 11

Greek 4 0.05 0.3 200K 1.034 1.082 23
Kitten 1 0.08 0.2 134K 1.045 1.153 12

Laurana 0 0.25 0.3 125K 1.003 1.122 10
Rabbit 0 0.2 0.2 27K 1.032 1.142 2
Sheep 0 0.14 0.3 200K 1.004 1.191 18

Squirrel 0 0.06 0.2 144K 1.004 1.125 14
Totem 0 0.08 0.25 217K 1.025 1.055 23

P the inverse map. Then we solve a harmonic map for the face, edge and corner
charts, respectively. We consider the corner chart in the following, and the edge and
face charts can be handled in a similar fashion.

Given a point v ∈Uc on the polycube corner, let p = φ(v)∈ M denote the point
on the 3D model M. The composite map ψ∘φ−1 : M →ℝ2 maps a 3D point p and its
neighborhood to the planar domain. We can solve a harmonic map h : φ(Uc)→ ℝ2

△h(p) =
∑

qi∈Nb(p)

ωi(h(p)−h(qi)) = 0, (40)

where Nb(p) is the set of one-ring neighbors of p and ωi is the cotan weights
induced by the metric of the given mesh M. The vertices on the boundary of corner
chart ∂Uc are fixed, i.e., h(φ(∂Uc)) = ψ(∂Uc).

Solving harmonic map for each individual face, edge and corner chart signif-
icantly improves the conformality for each chart and the charts cover the whole
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polycube domain, thus, the quality of the polycube map can be improved signifi-
cantly. We should point out that all the cutting boundaries are entirely covered by
the face charts, as a result, the resulting polycube map has C∞ continuity along the
cutting locus as demonstrated in Fig. 67.

(a) (b) (c) (d) (e) (f)

Figure 68: The user can easily control the shape of the polycube by specifying two param-
eters, dz, the maximal distance between two consecutive cutting planes, and da, the area
difference between the axis-aligned contours and the curved intersection contours. The pa-
rameters for the Squirrel model are dz = 0.06, da = 0.2 ((a) to (c)) and dz = 0.16, da = 0.3
((d) to (f)). The model is scaled to a unit cube.

6.3 Experimental Results

We conducted extensive tests of our algorithm over a large variety of models
ranging from genus zero to genus six. Computation time were measured in min-
utes on a workstation with 3.0GHz CPU and 3GB memory. Among all of the five
steps in Section 6.2, computing the uniform flat metric takes nearly 80% of the
entire time. Within our framework, the user may choose to simply specify two pa-
rameters, dz, the maximal distance between two adjacent scanning planes, and da,
the threshold of the normalized area difference between the axis-aligned polygons
on P and the curved intersection contours on M (see Section 6.2.2 for the details).
Figure 68 shows how the user can easily control the shape of the polycube by spec-
ifying the above two parameters. The quality of the polycube map is measured by
the angle distortion εangle and area distortion εarea [29],

εangle =
∑

i

cotαa2 + cotβb2 + cotγc2

4A(△i)
A(φ(△i)), (41)

εarea =
1
2

∑

i

(
A(△i)

A(φ(△i))
+

A(φ(△i))

A(△i)
)A(φ(△i)), (42)
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Figure 69: Automatically constructed polycube maps of complicated topology and geom-
etry.
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where △i ∈ P, φ(△i) ∈ M, a,b,c,α,β,γ are the side length and angles of △i, and
A(⋅) denotes the area. In the isometric map, εangle = 1 and εarea = 1. Therefore,
the closer the values of εangle and εarea to 1, the better the quality of the constructed
polycube maps. The statistics and performance of test cases are reported in Ta-
ble 5, whereas the corresponding constructed polycube maps are shown in Fig-
ure 69. Note that our method can produce polycube maps with very small area and
angle distortions.

We have applied the constructed polycube maps to a wide range of applica-
tions, such as quadrilateral mesh generation, T-spline construction, seamless texture
synthesis, and volumetric parameterization, as demonstrated in Fig. 70 and 71.

Figure 70: Polycube maps applied to quadrilateral remeshing, T-splines and tile-based
texture synthesis.

6.4 Comparisons

In this section, we compare our method with the existing approaches and show
its advantages and disadvantages. Table 6 summarizes the key differences between
our new approach and the existing methods.
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Figure 71: Polycube serves a natural parametric domain for volumetric parameterization.
Therefore, we can generate all-hexahedral meshes without any extraordinary points and
T-junctions [77].

Table 6: Comparison with existing polycube map construction techniques.

Methods Polycube Construction Bijective Performance Limitation

Tarini et al. [142] Manual (The polycube should
mimic the given shape) No Efficient

Difficult for surfaces with complicated
topology and geometry due to vertex
projection from the given shape to the
polycube

Wang et al. [147]
Manual (The polycube can dif-
fer from the given shape signif-
icantly)

Yes Computationally
expensive

Difficult for surfaces with complicated
topology and geometry due to the
numerical unstableness in hyperbolic
embedding

Wang et al. [148]
Manual (The user directly spec-
ifies the polycube structure on
the given shape)

Yes Many user
interactions

Not practical for surfaces with compli-
cated topology

Lin et al. [101]

Automatic (The user specifies
several parameters to control
the Reeb graph embedding and
surface segmentation)

N.A. Efficient Not practical for surfaces with compli-
cated topology and geometry

Our method

Automatic (The user may set
two parameters to specify how
close the polycube mimics the
given shape)

Yes Efficient
Non-axis-aligned branches or handles
will usually result in a geometrically
complicated polycube
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6.4.1 Comparison with [142]

In [142], Tarini et al. first constructed the polycube manually and then warped
the polycube close to the given mesh. Next, the vertices on the given mesh are
projected onto the warped polycube. Finally, the polycube is warped back. This
method is extrinsic, since it requires the projection of the vertices of the input shape
M to the polycube domain P. Therefore, this method requires the user to design the
polycube P manually and carefully such that it closely resembles the geometry of
the input shape M, otherwise, it is difficult to warp the polycube close to M and the
resulting polycube map may not be bijective. Our method is intrinsic in that it guar-
antees the bijection between the given shape and the polycube. Figure 72 shows the
comparison between Tarini et al.’s method and our method on the Laurana model.

Figure 72: Comparison with Tarini et al.’s method [142], where the polycube is con-
structed manually to mimic the given shape (Data courtesy of Dr. Marco Tarini). The
angle and area distortions of the polycube map are εangle = 1.102, εarea = 1.140 (Tarini et
al.’s method [142], left) and εangle = 1.003, εarea = 1.122 (our method, right), respectively.
Note that our new method is more flexible in that the user can easily control the shape of
polycube and reduce the area and angle distortion.

6.4.2 Comparison with [147]

Following Tarini et al.’s pioneering work, Wang et al. proposed an intrinsic
method to construct a polycube map [147]. Instead of computing the map between
the polycube P and input shape M directly, both P and M are first embedded into
one of the three canonical domains, S2, E2, orℍ2, depending on the topology of M,
i.e., πM : M → DM and πP : P → DP using uniformization metric, i.e., the Gaussian
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curvature is constant everywhere. Then by seeking the one-to-one map between the
two domains φDM→DP : DM → DP, the composition φM→P = π−1

P ∘φDM→DP ∘πM is
the desirable polycube map from M to P. This method is intrinsic in that it avoids
the vertex projection from M to P. However, it is known that embedding a sur-
face with negative Euler characteristic into ℍ2 is error-prone when the point is very
close to the boundary of the Poincaré disk due to the numerical rounding error.
Therefore, Wang et al.’s method is not practical and much less numerically stable
to construct polycube maps of large-scale models with negative Euler characteris-
tics. Our method uses a divide-and-conquer approach which avoids computing the
uniformization metric. Note that from the point of view of numerical computation
and its robustness and stability, embedding the genus-0 open surface into ℝ2 using
uniform flat metric is much more robust than embedding a surface with negative Eu-
ler characteristic into hyperbolic space ℍ2 using uniformization metric. Figure 73
compares Wang et al.’s method [147] and our method on the Bimba model.

Figure 73: The left two columns show Wang et al.’s method [147] on Bima model with
distortions εangle = 1.052 and εarea = 5.145. The right two columns show the results using
our automatic method, where εangle = 1.014 and εarea = 1.143. Note that the checkerboard
texture mapping of our method is much more uniform than that of Wang et al.’s approach.

6.4.3 Comparison with [148]

Wang et al. proposed an interactive method to improve the polycube map
for high genus surfaces [148]. The key difference between this user-controllable



CHAPTER 6. Automatic Polycube Map Construction 127

method and [147] is that users have full freedom to specify the number and loca-
tions of the singularities (the pre-images of polycube corners) on M and their con-
nectivity, i.e., which pair of corners forms a polycube edge, which set of polycube
edges form the polycube face, etc. This method avoids the global parameterization
and can nicely produce polycube maps. However, manually specifying the poly-
cube structure on the given mesh M is tedious and sometimes not feasible even for
expert users with deep geometric insight and broad topological knowledge. For
example, the minimal number of singularities for the genus-5 Decocube model is
48. It is rather time consuming and error-prone to specify both the locations and
connectivity of the singularities on the input model of genus-5 for 48 points. Our
method is more flexible in that the user plays with the parameters to specify how
the polycube mimics the given shape and then produces the polycube map with low
area and angle distortion. As demonstrated in Fig. 69, our method is capable of
computing high-quality polycube maps for surfaces of complicated geometry and
topology.

Figure 74: The proposed method may generate a geometrically complicated polycube for
non-axis-aligned long branches or handles, such as the Bunny ears. As a result, the polycube
has a large number of extraordinary points (polycube corners).

6.4.4 Comparison with [101]

Most recently, Lin et al. proposed an automatic method to construct poly-
cube maps [101]. They first segmented the 3D model using Reeb graph and then
approximate the polycube into several polycube primitives, i.e., cube, L-, O-, and
U-shapes. They demonstrated their approach on bunny, 3-hole torus and horse mod-
els. However, Lin et al.’s approach may not work for the surfaces with complicated
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topology and geometry. For example, if the Reeb graph has a node whose degree is
more than 6, (.e.g, the hub of a bicycle wheel is attached with many spokes) then it
is impossible to use the above polycube primitives to approximate the shape. Note
that our approach can generate a polycube for this case, but may have large number
of extraordinary points, which will be discussed in the next section. Furthermore,
there is no guarantee that Lin et al.’s approach produces a bijection. According to
the report in [101], the angle and area distortion of Bunny model is 1.12 and 1.15,
respectively. Our approach results in polycube map with smaller angle and area
distortion 1.026 and 1.127 (see Fig. 74).

Figure 75: Our method also applies to manually constructed polycubes.

6.5 Discussions

6.5.1 Manually vs. Automatically Constructed Polycubes

In the existing techniques of constructing polycube maps [142] [147] [148],
the polycube maps are constructed manually. Although manual constructions work
well for the models with simple topology, it is extremely tedious and time con-
suming to construct polycube with complicated topology. The proposed approach
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(Sec. 6.2.2) can generate polycubes for complicated topology and geometry. How-
ever, it usually generates polycubes which are more complicated (based on the num-
ber of corners and faces) than the manually-built ones. We should also point out that
the current polycube construction stage can be simplified/replaced by any alterna-
tive method (either automatic or manual approach) in order to produce a polycube
with less complexity. Figure 75 shows the genus-6 Happy Buddha model, whose
polycube approximation is constructed manually. Note that using our new method
we can still construct the high-quality polycube map automatically and efficiently,
while accommodating the varying complexity.

6.5.2 Bijection of Our Automatic Polycube Map

In this section, we show that our method generates a bijection between the
polycube and 3D model. Here we assume that given the user specified parameters
da and dz, a valid polycube P is constructed in step 2.

Given a close surface of genus g, we solve the Laplace’s equation using the
z-coordinate of the top-most and bottom-most points as the boundary condition in
step 1. The Laplace’s equation results in 2g saddle points. For each handle, one
saddle point corresponds to the case in which the handle splits, and the other saddle
point corresponds to the case in which the handle merges.

In step 2, the saddle points are sorted in the ascending order of z-coordinate.
Then we construct 2g+1 horizontal cutting planes,

z0 =
z(v0)+ z(c1)

2

z1 =
z(c1)+ z(c2)

2
⋅ ⋅ ⋅

z2g =
z(c2g)+ z(v1)

2

Note that using the top and bottom cutting planes z0 and z2g, the model will be
segmented into 3 parts, the top part (a genus-0 open surface with 1 boundary), the
middle part (a genus-g open surface with 2 boundaries), and the bottom part (a
genus-0 open surface with 1 boundary). Next, 2g−1 cutting planes, z1, ⋅ ⋅ ⋅ , z2g−1,
are used to slice the middle part into 2g layers, each of which contains a set of
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disjoint genus 0 surfaces with at least 2 boundaries. Note that if two or more saddle
points are on the same cutting plane, the number of layers decreases.

In step 3, we compute the uniform flat metric of each segmented component
Pi or Mi using discrete Ricci flow. Ricci flow is theoretically sound to guarantee the
diffeomorphism between the genus-0 surface and the multi-hole disk.

In step 4, we construct the harmonic map between Pi and Mi using the follow-
ing commutative diagram.

Pi Mi

DPi DMi

D̄Pi D̄Mi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

?

φDPi
→D̄Pi

?

φDMi
→D̄Mi

-
φD̄Pi→D̄Mi

(43)

The uniform flat metric computed using discrete Ricci flow is guaranteed to induce
a diffeomorphism between Pi to DPi (and Mi to DMi) [16]. Note that a harmonic map
f : A ⊂ ℝ2 → B ⊂ ℝ2 is a diffeomorphism if ∂B is convex and the boundary condi-
tion f (∂A) = ∂B is a homeomorphism. Since ∂D̄Pi and ∂D̄Mi are circular, φDPi→D̄Pi

,
φDMi→D̄Mi

, and φD̄Pi→D̄Mi
are diffeomorphism. Then the piecewise polycube map

φ : P → M is given by φ =
∪

i φPi→Mi .
In step 5, we further improve the polycube map quality by solving the har-

monic maps for face, edge, and corner charts respectively. The polycube P is cov-
ered by face, edge and corner charts, {U,ψ}, where U ∈ P is an open set of P and
ψ : U →ℝ2 maps U to the planar domain (see Fig. 66). The definition of ψ is given
in Section 6.2.5.

Given a point v ∈ U on a chart, let p = φ(v) ∈ M denote the point on the 3D
model M. Then the composite map ψ ∘ φ−1 : M → ℝ2 maps a 3D point p to the
planar domain. We solve a Laplace’s equation h : φ(U)→ ℝ2 such that

△h(p) =
∑

qi∈Nb(p)

ωi(h(p)−h(qi)) = 0,

where Nb(p) is the set of one-ring neighbors of p and ωi is the cotan weights
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induced by the metric of the given mesh M. The boundary conditions are given by

h(φ(∂U)) = ψ(∂U).

For the edge and corner charts, ψ maps ∂U to a rectangle and a unit circle,
respectively. Note that ψ(∂U) is a homeomorphism and the boundary of ψ(∂U) is
convex, and thus, h is a diffeomorphism.

For the face charts, ψ is defined as an orthogonal projection of the polycube
face along the normal direction. Thus, ψ maps ∂U to itself and h is also a diffeo-
morphism.

Since the improved map h is a diffeomorphism for every point inside the face,
edge and corner charts, and a homeomorphism for the points on the boundary of
face, edge and corner charts. Thus, h induces a bijection between the polycube P
and the 3D model M.

6.5.3 Limitations

Our proposed method has certain limitations and demands further improve-
ment in the future. First, the constructed polycube depends on the orientation of
the 3D model. Different orientations may result in very different polycubes. In
our implementation, we require the user to align the model before the polycube
construction. Second, the proposed method will generate a geometrically compli-
cated polycube for non-axis-aligned long branches or handles, such as the ears of
the bunny model (see Fig. 74). As a result, it may cause difficulty in some appli-
cations, e.g., spline construction, since each corner of polycube is an extraordinary
point. Third, the polycube construction relies on the user inputs, i.e., da and dz. For
a shape with complicated geometry and topology, the global parameters may not
generate a valid polycube. Thus, the local adaptive parameters must be used, which
will result in a much more complicated implementation.



Chapter 7

Geometry-Aware Domain
Decomposition

7.1 Introduction and Motivation

Manifold T-splines presented in [75] is a natural and necessary integration
of T-splines and manifold splines, which naturally extends the concept and the cur-
rently available algorithms/techniques of the popular planar tensor-product NURBS
and T-splines to arbitrary manifold domain of any topological type. It can be di-
rectly defined over the manifold of arbitrary topology to accurately represent var-
ious shapes with complicated geometry/topology, and naturally inherits all the at-
tractive properties from T-splines defined over a planar domain, including the pow-
erful local refinement capabilities and the hierarchical organization for LOD con-
trol. Despite this earlier success, certain drawbacks of manifold T-splines still re-
main: (i) There must be singularities for any closed manifold except tori, and in
practice small holes must be punched around the singularities in order to enable the
easy construction of manifold splines in the finite dimension space. No efforts for
hole-filling in the vicinity of singular points were made in [75]; (ii) It is impossible
to specify the locations of all the singularities on the domain manifold given the
fact that the number of singularities is actually fixed, but their positions are some-
how globally related; (iii) The proposed domain construction method is far from

132
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sufficient for surfaces with boundaries or surfaces with long branches. For sur-
faces with long branches (for example the horse model in Figure 76), the existing
global parameterization methods usually introduce extremely large area distortion
and therefore make it even harder and numerically unstable for spline fitting pro-
cess later on. The only feasible way is to introduce additional cuts in these areas to
make it a surface with boundaries and then use double covering method to achieve a
better parameterization result. However, this technique will at least double the time
complexity and not practical for a large scale complex dataset.

low

high

(a) (b) (c) (d) (e) (f)

Figure 76: Genus-zero horse model with long branches. (b) shows the spherical confor-
mal map of the genus-zero closed surface shown in (a). (c) highlights the area distortion
using colormap. The Reeb graph of the given model shown in (e) is computed based on
the harmonic function f defined on the given surface. (d) shows the isolines of f in red.
The segmentation result based on the Reeb graph representation is shown in (f): four base
patches (colored in green and gray), and six long branches (colored in blue).

Polycube T-splines proposed by us in [147] unifies T-splines and manifold
splines to define a new class of shape representations for surfaces of arbitrary topol-
ogy by using polycube map as its parametric domain. Instead of further reducing
the number of singular points as Gu et al’s work in [58], we aimed to reduce the total
area distortion of the parameterization by introducing more singular points (corners
of the polycube) to facilitate a better spline surface fitting. In [148] we advanced our
work by introducing the user’s interaction into the process of polycube map con-
struction. By allowing the user to directly select the corner points of the polycubes
on the original 3D surfaces in an interactive manner, the location of singularities of
the polycube map can be interactively controlled. Therefore, the subsequent hole-
filling process and better data-fitting results can be easily accomplished by placing
the singularities at regions where no rich geometric features exist. However, our
interactive polycube map construction framework has the following limitations: (i)
Domain knowledge from users is required to select a feasible set of corner points
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which gives rise to a polycube map with high quality (that has small angle distortion
and area distortion); (ii) The resulting polycube map is C0 continuous across poly-
cube edges that connect corners, which may introduce unpleasing results for later
spline surface fitting; (iii) It is not possible to properly handle surfaces with long
and thin branches (refer to Figure 76 for an example) because users can not easily
specify corner points in long and thin branches and the computation of straight lines
connecting corner points in these parts will be numerically unstable and error-prone.

In this work our objective is to further improve the existing work in data mod-
eling, which overcomes the aforementioned drawbacks, and is much more efficient,
robust, and applicable in real-world applications and industrial CAD environments.
We propose a geometry-aware framework for manifold T-spline construction, which
first decomposes any given surface into three categories: long branch (genus-zero
patch with one boundary), handle (genus-zero patch with three boundaries) and base
patch (genus-zero patch with at least three boundaries) by using the pants decompo-
sition method and exploiting the skeleton representation of the surface, then locally
parameterize all of these patches into regular domains using Ricci flow, build the
domain manifold for each patch independently, and finally glue them together to
form a complete domain manifold for later spline fitting. Note that, the T-junctions
are allowed along the patch boundaries to ensure certain continuity. The proposed
construction pipeline is extremely flexible: (i) it can be made fully automatic, which
is therefore very useful and applicable in industrial settings; (ii) users’ interaction is
also allowed (refer to section 7.3 for details) during the process to arrive at a result
they prefer. Figure 76 shows the horse model with long thin branches, which is very
difficult to handle by using existing data modeling techniques, but can be handled
elegantly by our new method. Figure 83 shows the manifold T-spline surface for
this model constructed by using our proposed algorithm.

The specific contributions of this work are as follows:

1. We provide a systematic way to segment any given surface into three cate-
gories (branches, handles, and base patches), and handle each category using
different strategies to ensure high-quality parameterization and fitting results.
Object segmentation and local parameterization enhance the system’s flexi-
bility while improving time/space performance by avoiding time-consuming
and error-prone global parameterization.
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2. We show that the number of extraordinary points equals 2∗nbranch+nhandle+

2 ∗ nbase and the resultant spline surface is C2 everywhere except C1 at the
extraordinary points.

3. The entire object segmentation always leads to a set of four-sided patches for
any input surface with diverse topological types. Tensor-product B-splines
or T-splines are naturally serving as basic building blocks, bridging the large
gap between NURBS-centric existing CAD software in industry and manifold
surface modeling algorithms.

4. The entire construction pipeline is flexible: it can be made fully automatic,
which makes the proposed framework very valuable in industrial settings.
Users’ interaction can also be enabled in certain parts of the pipeline to lead
to a user-controllable object segmentation and local parameterization that re-
spects both feature alignment and geometric constraints simultaneously.

5. The entire data processing pipeline enables the flexible and accurate modeling
of manifold surfaces within the currently-available industrial CAD environ-
ment. The rectangular structure of each modeled piece completely avoids the
trimming operation, while ensuring the “one-piece” representation for mani-
fold surfaces satisfying high-order continuity requirements.

The remainder of this chapter is organized as follows. We review the related
work on skeleton extraction, and handle/tunnel loops computation in Section 7.2.
In Section 7.3 we present the detailed algorithms for our geometry-aware domain
decomposition pipeline. Finally, experimental results are demonstrated in Section
7.4.

7.2 Related Work

This section briefly reviews prior research on handle/tunnel loop computation
and skeleton extraction. Refer to Chapter 2.1 and Chapter 3 for previous work on
parameterization and splines.
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7.2.1 Handle/Tunnel Loop Computation

The handle and tunnel loops can be defined as follows (see also [31] for the
definition): a loop bi on a surface M is a handle if it spans a disk in the bounded
space I; if one cuts M along bi and fills the boundary with that disk, one eliminates
a handle. A loop ai on a surface M is a tunnel if it spans a disk in the unbounded
space O, whose its removal eliminates a tunnel. These loops characterize impor-
tant topological information of the surface, and automatic detection of these loops
are necessary in many applications such as topology repair of 3D models, surface
parameterization , and feature recognition.

Various algorithms for computing different types of non-trivial loops on sur-
faces have been proposed in recent years. They either do not guarantee detecting
handle and tunnel loops [37] [15] [36]; or need some graph structures built from the
input model to compute the handles and tunnels such as Reeb graph [134], medial
axis [153], or curve skeletons [31]. More recently, Dey et al. proposed a persistence
based algorithm to compute well defined handle and tunnel loops for a 3D model
in [32]. The algorithm provides a mathematical guarantee on detecting handle and
tunnel loops and does not require computing any extra structures.

7.2.2 Skeleton Extraction

Curve-skeletons are 1D structures that represent a simplified version of the
geometry and topology of a 3D object. The extraction of curve-skeletons from 3D
models is a fundamental problem in computer graphics and visualization, which
has received a lot of attention in recent decades. We refer the readers to [19] for a
detailed overview of curve-skeleton properties, applications and algorithms.

Methods for curve-skeleton extraction can be classified into two main cate-
gories, volumetric and geometric, depending on whether an interior representation
or only the surface representation is used [6]. Most existing curve-skeleton extrac-
tion methods make use of a volumetric discrete representation, either a regularly
partitioned voxelized representation [102, 113, 150] or a discretized field function
defined in the 3D space [69, 154]. They share the common drawbacks of poten-
tial loss of details and numerical instability caused by inappropriate discretiza-
tion resolution. Geometric methods work directly on polygonal meshes or point
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sets [4, 6, 7, 33]. Reeb-graph-based methods are also geometric approaches which
have gained much attention in recent years. The Reeb graph [123] is a fundamen-
tal data structure that captures the topology of a compact manifold by following
the evolution of the level sets of a real-valued function defined on the respective
manifold. It is obtained by contracting to a point the connected components of the
level-sets of a function defined on a mesh. A lot of algorithms have been proposed
to compute Reeb graph of an object using various real-value functions. Aujay et
al. [7] proposed a harmonic Reeb graph that uses the harmonic function, found
by solving the Laplace equation. A robust on-line algorithm for computing Reeb
graphs was presented in [114].

7.3 Algorithm

7.3.1 Algorithm Overview

As discussed in Section 7.1, the key idea of our proposed approach is the
geometry-aware object segmentation, by which the given surface is first decom-
posed into a group of disjoint components: branches, handles and base patches.
We then apply conformal parameterization and construct the domain manifold for
each individual component. Finally the domain manifold for each component can
be glued together to form a complete domain manifold followed by a global re-
laxation for later spline fitting. The proposed construction pipeline is flexible and
robust: it can be made fully automatic, which makes the proposed framework very
valuable in industrial settings. Users’ interaction can also be enabled during certain
parts of the pipeline to lead to a user-controllable object segmentation and local
parameterization that respects both feature alignment and geometric constraints.

The manifold T-spline construction pipeline for a given surface M is as fol-
lows:

1. Segment the surface to branches, handles and base patches.

2. Parameterize branches, handles and base patches using discrete Ricci flow.

3. Construct the domain manifold and set the knots.

4. Fit manifold T-spline and handle extraordinary points.
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Figure 77 shows the decomposition procedure for the genus-2 David model.
We define different segmented components for a given surface M as follows:
∙ A branch of M is a genus-zero patch with single boundary, which is a region

of M corresponding to the arc in its Reeb graph representation with two end
nodes of degree-1 and degree-3 respectively(refer to section 7.3.2 for details). A
long branch of M with respect to a given threshold ε is the branch of M with
arc length (in its Reeb graph representation) longer than ε (blue components in
Figure 77(f));

∙ A handle of M is a region of M with genus-one and single boundary (red com-
ponents in Figure 77(f));

∙ A base patch of M is a genus-zero patch with at least three boundaries. By
removing all the handles and long branches, the remaining region of M is a base
patch (gray component in Figure 77(f)); if the remaining region of M is further
decomposed into a set of pants patches (refer to section 7.3.3 for details), each
pants patch is a base patch of M (green and gray components in Figure 76(f));

∙ All the branches, handles and base patches of M are disjoint, and their union
equals M.

(a) (b) (c) (d) (e) (f)

Figure 77: Decomposition of genus-2 david model. The Reeb graph of the given model
shown in (b) is computed based on the harmonic function f defined on the given surface
shown in (a). (c) shows the result after long branches removal. (d) highlights in blue
the handle and tunnel loops computed by using the method in [32], and the loops used
to remove the handles are shown in blue in (e). (f) shows the decomposition result: two
branches colored in blue, one base patch colored in gray, and two handles colored in red.
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7.3.2 Branch Segmentation

For surfaces with long branches, the existing global parameterization meth-
ods usually introduce very large area distortion and therefore make it numerically
unstable for spline fitting process later on (refer to Figure 76 for an example). To re-
duce the parameterization distortion, we first remove long branches from the given
surface, and then parameterize them separately.

Reeb graph [123] is an ideal tool to detect the long branches from a given sur-
face. It is a 1D structure whose nodes are critical points (maxima, minima, and sad-
dles) of a real-value function f defined on the model surface. It encodes the topol-
ogy of the model and can be constructed by contracting the connected components
of the isolines (level sets or contours) of f to a point. Given its intrinsic properties
Reeb graph becomes an ideal tool for us to find and remove the long branches from
a given surface M: each branch of M corresponds to an arc in its Reeb graph rep-
resentation with two end nodes of degree one and degree three, respectively. Given
the property that each arc A in the Reeb graph represents a family of contours CA

that do not change topology, we can easily remove the long branch B (suppose its
corresponding arc is A) from the given surface by cutting the surface along one
contour c ∈ CA (the set of contours of arc A). In practice, the long branches to be
removed and the corresponding cut contours used to remove the branches from the
given surface can be either specified interactively by the user from its Reeb graph
representation; or decided by a preset length threshold εlength, and a removal ratio
r, such that all the branches with corresponding arc length larger than εlength will be
removed by the given ratio r. In the latter way the branch removal process will be
automatic.

Many algorithms for Reeb graph computation have been proposed during the
recent decades. We adopt the on-line algorithm presented in [114] to compute the
Reeb graph presentation of a given surface because of its robustness and scalability.
Figure 77(b) shows the Reeb graph of the genus-2 David model based on the har-
monic function f shown in Figure 77(a). Figure 77(c) shows the remaining region
after removing the long branches.
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7.3.3 Handle and Base Patch Segmentation

In [97] a consistent pants decomposition algorithm was presented which takes
as the input the handle and tunnel loops of the surface, and then segments the given
surface into a set of pants patches (genus-zero patch with three boundaries) in a
consistent manner. In our construction pipeline, we use the similar algorithm to
remove the handles from the given surface with long branches removed.

The handle and tunnel loop information is required for automatic pants de-
composition of the 3D surfaces [97]. There are various existing algorithms for
computing critical loops on surfaces, but many of them do not guarantee detecting
handle and tunnel loops. We use the persistence based algorithm proposed by Dey
et al. in [32] which computes well defined handle and tunnel loops for a 3D model,
and guarantees that the resulting handle and tunnel loops are topologically correct
and geometrically small. The handle and tunnel loop computation is conducted on
the original surface instead of the remaining patch with branches removed since the
algorithm in [32] requires that the input surface is a closed one. Figure 77(d) high-
lights in blue curves the handle and tunnel loops computed by using the algorithm
in [32].

Once the indexed g handle and tunnel loops (ai,bi,0 ≤ i < g) of the given
surface M with genus g are computed, we first map them to the remaining patch M′

(M with long branches removed), and then conduct a subsequent decomposition on
M′ to obtain a set of handles (genus-one patch with one boundary) and one base
patch (genus-zero patch with at least three boundaries). The algorithm is detailed
in [97], here we briefly outline the idea:

Step 1 Slice/remove all handles from M′. Repeat the following steps until all han-
dles are removed:

(1.1) Compute a loop bounding the handle-i (topologically, such a loop ci =

a1
i ∘b1

i ∘a−1
i ∘b−1

i ).
(1.2) Shrink ci homotopically to the shortest loop wi (Figure 78(a), blue loops).
(1.3) Remove the handle-i from M′ by slicing the loop wi.

Step 2 (The remaining patch M′′ is a topological sphere with at least three holes)
Decompose M′′ into pants patches (Figure 78(b)(c)).

(2.1) Put all boundaries wi of M′′ into a queue Q.
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(2.2) If Q has ≤ 3 boundaries, end; else goto (2.3).
(2.3) Compute shortest loop w′ homotopic to wi ∘w j.
(2.4) (w′, wi and w j bound a pants patch pw′) Remove pw′ from M′′. Remove

wi and w j from Q. Put w′ into Q. Goto (2.2).

After step 1, we get a set of handles and one base patch M′′ which is a genus-
zero patch with at least three boundaries. Step 2 is optional in our construction
pipeline: we can either parameterize M′′ directly, or further decompose it into a set
of pants patches using the algorithm in step 2, then parameterize each pants patch
using the method presented in section 7.3.6. In Figure 76(f), the remaining region
of horse model after removing six long branches is further decomposed into four
base patches (colored in green and gray).

w1

w3

w2

w4

w0

w
′

0

w3

w
′

0

w2

w
′

1

w4

(a) (b) (c)

Figure 78: Pants Decomposition. (a) Remove handle patches. (b, c) Decompose base
patch: (b) Slice w′

0, get a new pants patch. Boundary number decreases by 1. (c) Set w′
0 as

a new boundary, go on to compute w′
1.

7.3.4 Branch Parameterization

Each branch B of the given surface is a genus-zero patch with one boundary.
Figure 79 shows the parameterization procedure for a branch from the David model
shown in Figure 77. The algorithm is as follows:

Algorithm 1: Branch parameterization.
In: Branch B with boundary length lB.
Out: A rectangular domain D of B.

1. Find a point p which is the farthest point to the boundary of B (Figure 79(a)).
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(a) (b) (c)

Figure 79: Parameterizing the branch. (a) shows the pivot point p (colored in green) on
the given branch B which is the farthest vertex from the boundary. In (b) the branch B is
conformally mapped to a unit disk Ω with p as the disk center. Two line segments c and c′

are selected on Ω which correspond to two smooth lines on B (colored in red in (a) and (b)).
(c) shows the rectangle domain D obtained by running Ricci flow after slicing B by using c
and c′. a1 and a2 marked in blue in (a) and (b) are the extraordinary points for the branch.

2. Conformally map B to a unit disk Ω [64]. If p is not the center of Ω, use a
Möbius transformation to move p to the center (Figure 79(b)).

3. Find a diameter d of Ω, which separates the disk to two halves with minimal
area difference. Choose two points a1 and a2 on d with equal distance to p
in ℝ3, such that the line segment c connecting a1 and a2 passes through p,
and its length lc in ℝ3 satisfies ∣2∗ lc − lB∣< ε . Find another line segment c′

perpendicular to c which starts from p and intersects with the boundary of Ω.
c and c′ correspond to two smooth curves on B.

4. Slice B using c and c′, and run Ricci flow to get the rectangle domain D
(Figure 79(c)).

7.3.5 Handle Parameterization

Each handle H is a genus-one surface with single boundary. The handle and
tunnel loop information is computed by using Dey’s algorithm [32] on the original
surface and mapped to H. Figure 80 shows an example for the procedure of handle
parameterization. The algorithm is as follows:

Algorithm 2: Handle parameterization.
In: Handle H with computed handle and tunnel loops (Figure 80(a)).
Out: A set of four rectangle domains Di of H (0 ≤ i ≤ 3).
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1. Slice H along the handle and tunnel loops , and map it to a rectangle domain
D with one inner circle using Ricci flow (Figure 80 (b)): The inner circle
corresponds to the original boundary of H, and the four corners of D are all
images of c (common points of the handle and tunnel loop).

2. Find a point p on the tunnel loop so that p, its image p′ and the center o of the
inner circle are as colinear as possible. Draw straight lines from o to p and
p′ with two intersection points a and b with the inner circle (Figure 80(b))
which partition the domain D into two parts D′ and D′′ (Figure 80(d)) shows
one part).

3. For D′, find an arc A passing through p and p′ such that A has no other in-
tersection points with D′ except p and p′. D′ can be further divided into two
parts by slicing along A. Find another arc A′ for D′′ with the same property,
and D is finally decomposed into four parts by the lines op and op′, and the
arcs A and A′.

4. Parameterize each of the four parts from the step 3 into a rectangle with corner
points from a,b, p,c using Ricci flow.

7.3.6 Base Patch Parameterization

Each base patch is a genus zero patch with at least three boundaries. Figure
81 (a) shows an example of the base patch from David model in Figure 77. Given a
base patch B with k boundaries, it can be parameterized into a set of 2∗k rectangles
using the following algorithm:

Algorithm 3: Base Patch Parameterization.
In: Base patch B with k boundaries.
Out: 2∗ k rectangle domains Di of B (0 ≤ i ≤ 2∗ k−1).

1. Find two center points c1 and c2, and then draw k curves from each which are
perpendicular to the k boundaries:
(1.1) For each vertex v on base patch, compute its shortest distance to the k
boundaries: d1, d2, ..., dk. Compute c1 as the one with the minimum range of
distances to the boundaries (Figure 81(a)).
(1.2) Remove m-ring neighbors of c1 from B, and map the remaining patch
B′ to a circle Ω with k holes (circles) inside, which correspond to the original
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(a) (b) (c)

(d) (e) (f) (g)

Figure 80: Parameterizing the handle. (a) shows one handle from David model with handle
and tunnel loops highlighted in blue, and the common point c of the loops shown in yellow.
Point p in Step 2 can be found by traversing all vertices on the tunnel loop to minimize the
angle difference ∣ ∠pop′−π ∣. (c) shows on the original handle patch the preimages of the
cut lines (in thick blue) connecting the center of the circle and point p in the rectangular
domain. The arc with the property in Step 3 is not unique. One feasible way to find such an
arc is to simplify the problem into finding an angle φ so that the resulting arc satisfies the
required property (refer to (d)). In practice, φ can be either decided automatically by iter-
ating all possible values to find the one with the required property and minimizing the area
difference of the two parts obtained by slicing along the corresponding arc, or specified by
the user in an interactive fashion to achieve a user-preferred segmentation result. (e) high-
lights in thick blue the lines by which the original handle is decomposed into four pieces. (f)
shows one piece of the decomposition, and (g) shows its corresponding rectangular domain.
p is the extraordinary point for the handle.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 81: Parameterizing the base patch. (a) shows the base patch (with four boundaries)
of the David model with c1 marked with sharp edges, and in (b), a new boundary b′ is
introduced by removing m-ring neighbors of c1. The remaining patch is then parameterized
into a disk Ω with four inner circles ((c)) which correspond to the original four boundaries.
The outmost boundary of Ω corresponds to b′. (c) highlights in red the lines connecting
c2 and the centers of four inner circles, and (d) shows their preimages on the original base
patch. (e) shows the eight curves from c1 and c2 and (f) shows one of the eight patches by
slicing the original base patch using these curves. The patch in (f) is then parameterized
into a regular hexagon (g), and further decomposed into two parts by slicing along the line
connecting c1 and c2 on the hexagon, each of which is parameterized into a rectangle as
shown in (h). c1 and c2 are the two extraordinary points for the base patch.
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k boundaries, and the outmost boundary of Ω corresponds to the hole intro-
duced by removing the m-ring neighbors of c1 (Figure 81(b)(c)).
(1.3) Compute c2 as the one with the minimum distance range to the k bound-
aries on Ω, and draw lines from c2 to each center of the k circles(holes) inside
Ω (Figure 81(c)).
(1.4) Remove n-ring neighbors of c2 from B, and map the remaining patch to
a circle Ω′ with k inner circles, draw k curves on Ω′ from c1 to the center of
each inner circle (Figure 81(e)).

2. Slice B into k patches using the 2 ∗ k curves computed from step 1, each of
which contains c1 and c2, and four intersection points with the original k
boundaries. Parameterize each patch into a regular hexagon, and partition it
into two parts by the line connecting c1 and c2 (Figure 81(f)(g)).

3. Finally B is decomposed into 2 ∗ k patches, each of which is parameterized
into a rectangle (with four corners: c1, c2, and two of the 2 ∗ k intersection
points with the k boundaries) using Ricci flow.

7.3.7 Domain Manifold Construction

Since the branches, handles and base patches are parameterized individually
(refer to section 3.4 - 3.6), the parameterization may not be consistent along the
shared cutting boundaries, i.e., the same cutting boundary of the 3D mesh is mapped
to lines of different length by the parameterization of different patches. This in-
consistency in the parametric domain causes significant troubles in constructing
manifold splines, since the knot vectors of adjacent patches do not meet along the
boundaries. We apply a post-processing to eliminate these inconsistency.

Note that we map all patches (branches, handles and base patches) to rectan-
gles. Let φ : P → D denote the parameterization, where P is the 3D patch and D is
the rectangle on the parametric domain. The four corners of D are v0, v1, v2, and
v3. Then we solve a harmonic map ψ : D → D such that △ψ = 0 with following
boundary conditions:

(1) ψ(vi) = vi, i = 0,1,2,3;

(2) ψ(v) = (1 − α)vi + αvi+1 for any boundary vertex v ∈ (vi,vi+1) and α =
length(φ−1(vi),φ−1(v))

length(φ−1(vi),φ−1(vi+1))
. The function length(p,q) measures the arc length of
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the boundary curves with end points p and q.

Solving the above harmonic map for each individual parameterization can
guarantee that the shared boundary for two adjacent patches is mapped to two
straight lines (side of the rectangle) that only differ by a translation, a rotation and
a scaling. In other words, given two parameterized rectangles ABCD and A′B′EF
where AB and A′B′ are the sides corresponding to the same cutting boundary of
the original mesh, we can find an affine transformation (a composite map of one
translation, one rotation and one scaling) such that AB and A′B′ coincide.

To facilitate the implementation, we scale all parameterized rectangles to make
sure that two adjacent patches have the same side lengths on the parametric domain.
We should also point out that T-junctions are allowed along the boundaries of the
patches. Thus, the resultant T-mesh is ready to serve as the domain manifold for
a manifold T-spline, where the knot interval of each edge is just its length on the
parametric domain.

Given the fact that each patch is parameterized individually, thus, the above
T-mesh may result in angle/area distortion along the boundaries. To reduce the
distortion, we use the following technique.

For each cutting boundary, we extract the k-ring neighbors (k is the user-
specified parameter, k=2 in our implementation) and then map it to a rectangle.
Then we solve a harmonic map for the rectangle where the vertices along the rect-
angle sides are fixed. This harmonic map is helpful to reduce the angle distortion
of the parameterization. Figure 82(a) shows the domain manifold for David model
in Figure 77 after the global relaxation.

7.3.8 Surface Fitting

Once the domain manifold M with conformal structure f : M →R2 is given, we
proceed to solve the problem of finding a good approximation of a given polygonal
mesh P with vertices {pi}m

i=1 by a manifold T-spline. We adopt the same strategy
presented in [75] to minimize a linear combination of interpolation and fairness
functionals, i.e.,

minE = Edist +λE f air. (44)
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(h) (i)

Figure 82: Surface fitting for David model. Extraordinary points ((b) and (e)) on the
domain manifold correspond to the holes on the spline surface (shown in (c) and (f)). For
each hole, we construct a Catmull-Clark subdivision surface with high order continuity
along their shared boundaries. (d) and (g) show the results after hole-filling (hole areas
are colored in yellow). (h) shows the manifold T-spline surface. The yellow curves on the
spline surface in (i) highlights the T-junctions (singularities are colored in red).
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The first part is

Edist =

m∑

i=1

∥F(ui)−pi∥2,

where ui ∈ M is the parameter for pi, i = 1, ...,m. The second part E f air in (44) is a
smoothing term with a fairness weight λ ≥ 0. In our proposed framework, the pa-
rameterizations for all decomposition components are quasi-conformal which leads
to a set of good initial values for the control points, so we can obtain satisfactory
results using simply a small, constant λ as suggested in [35]. We choose λ = 0.2 in
our experimentation. We refer readers to [75] for the detailed definitions of F(ui)

and E f air. Both parts are quadratic functions of the unknown control points, leading
to a linear system. We solve Eq. (44) for unknown control points using conjugate
gradient method. The value and gradient of the interpolation functional and fairness
functional can be computed straightforwardly.

As discussed in section 7.3.7, our parameterization ensures the consistency
along the shared boundaries of different segmented components on the parametric
domain. Furthermore, our method guarantees the transitions among local charts on
the domain manifold to be affine. According to manifold spline theory [60], the
construction leads to an affine atlas, and the continuity along the shared boundaries
is ensured automatically. The resulting spline surface is C2 everywhere except at
the extraordinary point.

Handling the Extraordinary Point: In [60], Gu et al. proved that manifold
splines MUST have singularities if the domain manifold is closed and not a torus.
The number of extraordinary points in our geometry-aware manifold T-spline con-
struction pipeline equals 2 ∗ nbranch + nhandle + 2 ∗ nbase, and they can be classified
into three categories: (1) extraordinary points for handles: each handle has a single
extraordinary point with valence 8 (p in Figure 80(e)); (2) extraordinary points for
branches: each branch has two extraordinary points with valence 2 (a1 and a2 in
Figure 79(a) and (b)); (3) extraordinary points for base patches: each base patch
with k boundaries has two extraordinary points with valence 2 ∗ k (c1 and c2 in
Figure 81). Figure 82 shows one extraordinary point with valence 2 in (b) for the
branch shown in Figure 79, and one extraordinary point with valence 8 in (e) for
the base patch shown in Figure 81(a) with four boundaries.

Although the singularities are just points on the domain manifold, in practice,
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Table 7: Statistics of various test examples (after 5 iterations): g, genus of polycube P;
Nbranch, # of branches; Nhandle, # of handles; Nbase, # of base patches; Ne, # of extraordinary
points; Nv, # of vertices in the input polygonal mesh; Nc, # of control points; rms, root-
mean-square error; L∞, maximal fitting error.

Object g Nbranch Nhandle Nbase Ne Nv Nc rms L∞

David (Fig. 82) 2 2 2 1 8 142K 15765 0.12% 0.71%
Horse (Fig. 83) 0 6 0 4 20 98K 12016 0.06% 0.55%
Greek (Fig. 83) 4 1 4 2 10 129K 16778 0.13% 0.61%

Armadillo (Fig. 83) 0 7 0 3 20 124K 15654 0.09% 0.65%
Eight (Fig. 83) 2 0 2 0 2 61K 6745 0.02% 0.21%

we have to remove these points and their 1-ring or 2-ring neighbors. As a result,
the holes are unavoidable in the spline surface. Thus, we need to find a blending
surface patch to fill the holes smoothly. In our implementation, we use a Catmull-
Clark subdivision to fill each hole such that the surface is C2 everywhere except
C1 at the extraordinary point. For each extraordinary point, we remove its 2-ring
neighbors from the domain manifold (red quads in Figure 82(b)(e)), and use its 6-
ring neighbors as the domain for the Catmull-Clark subdivision surface to fill the
introduced hole. The T-spline surface is evaluated without using the yellow quads
but taking into account their contributions (to the green quads). The continuity
along the shared boundary between the T-spline surface and the Catmull-Clark sub-
division surface (i.e., the shared boundary between yellow quads and green quads
in Fig. 7(b) and (e)) is ensured naturally due to the same set of control points for
that shared boundary on both the T-spline domain manifold and the domain of the
Catmull-Clark subdivision surface. Figure 82 (h) shows the manifold T-spline sur-
face built upon the domain manifold shown in Figure 82 (a). In Figure 82 (i) the
yellow curves highlight the T-junctions on the spline surface. The singularities are
colored in red in Figure 82 (h) and (i).

7.4 Implementation and Results

Our prototype system is implemented in C++ on a MS Windows XP PC with
dual Intel Xeon 2.6GHz CPUs and 2GB RAM. We built a complete system for the
Reeb graph computation, handle and tunnel loops detection, surface decomposition
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and parameterization, and T-spline surface fitting. We tested our algorithms on
various models with complicated topologies. More examples are shown in Figure
83. The results demonstrate both the theoretic rigor and feasibility in practice. The
statistics of the examples are shown in Table 7.
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(a)Reeb graph (b)Surface decomposition (c)T-Spline (d)T-junctions

Figure 83: Experimental results.



Chapter 8

Conclusion and Future Work

In this dissertation, we present our recent research results, ongoing research
and future research directions within our general spline-based data modeling frame-
work. We seek novel modeling techniques based on tensor-product spline schemes
(the current industry standard) that would allow designers to directly define con-
tinuous spline models over any manifolds (serving as parametric domains). Our
framework contributes to the research of modeling 3D objects of arbitrary ge-
ometry and topology over regular domains. Theoretically, it brings fundamental
progress in understanding, analyzing and solving geometric modeling problems.
We also demonstrate its great potential in many valuable real-world applications.

8.1 Contribution Summary

Our contributions in the methodologies of geometric modeling over regular
domains include:

∙ We propose a new concept of polycube splines and develop novel model-
ing techniques for using the polycube splines in solid modeling and shape
computing. The polycube splines are naturally built upon the polycube map
which serve as its parametric domain. The use of polycubes for spline sur-
face definition and construction is the first attempt to take advantage of the
rectangular structure over the boundary of polycubes, allowing the paramet-
ric domain to actually mimic the geometry of the modeled objects with lower

153
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area distortion while enforcing their topological consistence.

∙ We present a systematic way to construct polycube maps for surfaces of ar-
bitrary topology based on global conformal parameterization. The proposed
algorithm is intrinsic in that we do not need to compute the projection of the
points from the 3D shape to the polycube, thus, the polycube can be flexibly
constructed at any resolution and complexity.

∙ To control the location of extraordinary points, and further improve the map-
ping quality, we propose a novel framework to construct user-controllable
polycube maps. The newly-proposed method allows users to directly select
the corner points of the polycubes on the original 3D surfaces in an interactive
manner, then constructs the polycube maps by using discrete Euclidean Ricci
flow. It can construct polycube maps easily for high genus surfaces and open
surfaces, which are usually difficult to be handled by the traditional methods.

∙ To avoid the time consuming and error-prone global parameterization for in-
trinsic polycube maps construction, we develop an effective method to con-
struct polycube maps for surfaces with complicated topology and geometry in
an automatic fashion. More specifically, we use a divide-and-conquer strat-
egy, which first segments the polycube and the given 3D surface into multiple
disjoint components, then constructs the piecewise polycube map for each
component, and finally computes a globally smooth map for the entire poly-
cube domain. Our algorithm can both construct a similar polycube of high
geometric fidelity and compute a high-quality polycube map. In addition, our
method is theoretically guaranteed to output a one-to-one map.

∙ We propose a geometry-aware domain decomposition algorithm for T-spline-
based manifold modeling by which an arbitrarily complicated surface model
can be decomposed into a group of disjoint components. Such a domain de-
composition simplifies objects of arbitrary topological type into a family of
genus-zero/one open surfaces, each of which can be conformally parameter-
ized into a set of rectangles. In contrast to the conventional decomposition
approaches, our method can guarantee that the cutting locus are consistent
on the parametric domain. As a result, the resultant T-splines of decomposed
components are automatically glued and have high-order continuity every-
where except at the extraordinary points. We show that objects with arbitrary
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topology (especially objects with long branches) can be modeled elegantly
by the proposed algorithm.

∙ We provide singularity-handling strategies: cubic triangular spline and sub-
division surface based hole-filling schemes.

Practically, we demonstrate their power in many valuable applications, and
show their great potential as enabling tools serving for research in broad areas of
computer graphics, geometric modeling and processing, vision, visualization.

8.2 Future Research Directions

There are many more immediate and valuable research topics based on our
current framework. Here are some research topics that directly extend from work
we have done in this dissertation.

We would like to further improve the current stage of our automatic polycube
map construction framework. Our proposed method has certain limitations and de-
mands further improvement in the future. First, the constructed polycube depends
on the orientation of the 3D model. Different orientations may result in very differ-
ent polycubes. In our implementation, we require the user to align the model before
the polycube construction. Second, the proposed method will generate a geomet-
rically complicated polycube for non-axis-aligned long branches or handles. As a
result, it may cause difficulty in some applications, e.g., spline construction, since
each corner of polycube is an extraordinary point. One potential solution is to first
compute the axis-independent Reeb graph representation of the given 3D surface
(for example, harmonic 1-form based Reeb graph proposed in [76]), then regularize
the Reeb graph so that each branch is parallel to one coordinate axis. Finally we
construct the polycube from the rectified Reeb graph and associated radius infor-
mation. The polycube map can then be computed in a divide-and-conquer fashion
as what we do in our original work. By doing so, the number of corner points (sin-
gularities) of the resulting polycube will be much fewer, which will thereby leads
to better spline surface fitting, texture mapping and synthesis, and quadrilateral
remeshing results.

We would like to further strengthen our current user-controllable polycube



CHAPTER 8. Conclusion 156

map framework. Within the existing framework, users are allowed to directly spec-
ify the extraordinary (corner) points of the polycubes on the input 3D surfaces. The
location of singularities can be interactively placed where no important geometric
features exist in order to facilitate the subsequent hole-filling process. However,
domain knowledge from users is required to select a feasible set of corner points
which gives rise to a polycube map with high quality. We will try to provide mean-
ingful help to the users on corner point selection. One possible way is to exploit the
topology information provided by the skeleton representation of the given surface.
We also plan to seek more efficient and effective methods to improve the quality of
the polycube maps.

We also expect to extend our current bivariate polycube splines to trivariate
volumetric splines through the polycube volumetric parameterization of solid ob-
jects, and seek potential applications in volume modeling, simulation, finite element
analysis and scientific visualization. The volume modeling framework will provide
representations for the design, testing, and manufacturing of complicated mechan-
ical objects, and will also facilitate the specification of material distributions that
may be smoothly graded, discontinuous, and/or layered.

Techniques such as geometry image [57] can be used for mesh compression.
Such a regular grid structure is compact and drastically simplifies the rendering
pipeline and allows direct application of pixel-based image processing methods.
Despite its obvious importance for efficient rendering and compression, geometry
image reveals a few drawbacks due to the inevitable surface cutting: each geometry
image has to be homeomorphic to a disk, therefore closed or high-genus models
have to be cut along a cut graph to extract either a polygonal schema or an atlas.
Finding a ”smart” cut graph (i.e. minimizing a notion of distortion) is a delicate
issue and introduces a set of artificial boundary curves. Via cross surface parame-
terization (e.g. polycube maps), we can also re-sample (and get rid of mesh con-
nectivity) surfaces on canonical domains without cutting. Without tearing surfaces
apart, compression and reconstruction could be more effective.

In addition, the regular structure of polycubes will for sure facilitate the GPU
based applications like surface/volume rendering optimization, flow simulation,
FEM, etc. GPUs are probably today’s most powerful computational hardware, be-
cause the highly data-parallel nature of graphics computations (in vertex, geometry,
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and fragment shaders) enable GPUs to use additional transistors more directly for
computation, achieving higher arithmetic intensity with the same transistor count.
The arithmetic power of GPU results from a highly specialized architecture evolved
over years to extract maximum performance on the highly parallel tasks of tradi-
tional computer graphics, so general computations must be recast into graphics-
specific terms in order to utilize the underlying hardware. However, not every sci-
entific computation can take full advantage of the GPU-acceleration, especially the
modeling of complex geometric shapes of arbitrary topology, due to the lack of in-
herent regularity structure (or parametric domain). We propose to bridge this gap
by introducing surface/volume polycube mapping of complex shapes onto regular
parametric domain, such that the complex geometric models can be represented as
2D/3D geometric-texture in order for the GPUs to perform the general data regis-
tration, modeling, and visualization tasks in a highly parallel fashion. The GPU-
centric data formats and models will enable the efficient implementation of shape
registration, surface and solid modeling, multi-scale data modeling via reverse en-
gineering, simulation/analysis, and model visualization. Meanwhile, the efficient
GPU-based algorithm will enhance existing algorithmic functionalities with im-
proved parallel performance in order to handle large-scale, complicated models.

8.3 Concluding Remarks

These directions for future work, and the many other open problems that exist,
are sure to encourage interesting and exciting research in geometric modeling for
years to come. As technical difficulties are overcome, and existing computational
algorithms are improved, the applications of geometric modeling will increase in
variety and number. We are pleased to have taken the first step in uncovering the
heretofore untapped potential of geometric modeling by presenting our framework
to the graphics and visual computing. It is our hope that this integrated approach
and demonstrated applications will foster continued interest and research in this
area. We look forward to the continued exploration of geometric modeling and
predict a successful future for it.
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