

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Network Coding for Application Layer
Multicast

A Dissertation Presented

by

Min Yang

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2009

Stony Brook University

The Graduate School

Min Yang

We, the dissertation committee for the above candidate for the Doctor of Philosophy
degree, hereby recommend acceptance of this dissertation.

Yuanyuan Yang – Dissertation Advisor
Professor, Department of Electrical and Computer Engineering

Sangjin Hong – Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Dantong Yu
Adjunct Professor, Department of Electrical and Computer Engineering

Esther M. Arkin
Professor, Department of Applied Mathematics & Statistics

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Network Coding for Application Layer Multicast

by

Min Yang

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

Today’s Internet uses routing to deliver messages from end to end. Net-
work coding is a generalization of routing which allows relay nodes to
encode messages in addition to duplicating and forwarding messages.
It is proved that network coding can achievemulticast capacityand
therefore improve the throughput of a multicast network significantly.
Application layer multicast(ALM) is a perfect candidate to apply net-
work coding due to two reasons: first, ALM is built on peer-to-peer
networks whose topology can be arbitrary so it is easy to tailor the
topology to facilitate network coding; second, the nodes in ALM are
end hosts which are powerful enough to perform complex encoding
and decoding operations.

This thesis presents the following contributions to the theory and prac-
tice of network coding and its application to ALM. First, we propose
a general approach to apply linear network coding to multicast net-
works. We investigate a series of minimal network coding problems
and propose a systematic approach to solve them under a unified frame-
work. Then we apply linear network coding to the peer-to-peer file
sharing system and the peer-to-peer media streaming system respec-

iii

tively. These two systems have different features and requirements.
For the peer-to-peer file sharing system, we focus on the throughput
and reliability. The overlay topology is constructed in such a way that
it can be looked as a union of multiple combination networks. We pro-
pose a general linear network coding scheme for combination networks
and adapt it to the peer-to-peer file sharing system. The simulation
shows great improvement in both throughput and reliability compared
to other systems without network coding. For the peer-to-peer media
streaming system, we focus on the heterogeneity and bandwidth utiliza-
tion of the access links of peers. We adopt the network model that the
bandwidth bottleneck lies only at the edge of the network. The media
content is encoded into multiple stripes throughMultiple Description
Coding(MDC). Peers subscribes to the stripes based on their download
bandwidths. Random linear network coding is performed within the
same stripe. By combining MDC and network coding, peers achieve
much higher satisfaction in terms of received downloading rate. Be-
sides, we investigate the inter-session linear network coding problem
between multiple simultaneous multicast sessions. Two metrics are in-
troduced to evaluate the network coding benefit based on which we
propose a practical inter-session network coding scheme for multicast
networks. The system throughput is increased by about30% in terms
of throughput in most cases when compared to intra-session network
coding.

iv

Contents

List of Figures viii

List of Tables xii

Acknowledgements xiii

1 Introduction 1
1.1 Peer-to-peer and Application Layer Multicast. 1
1.2 Network Coding for Multicast Networks. 3

1.2.1 Linear Network Coding for Multicast. 4
1.2.2 Deterministic Network Coding vs. Random Network Coding8

1.3 Thesis Outline. 9
1.4 Thesis Contributions. 13

2 A Hypergraph Approach to Linear Network Coding in Multicast Net-
works 16
2.1 Problem Formalization. 17
2.2 An Iterative Refinement Algorithm for Finding an Eligible Cover. . 25
2.3 Extensions to General Minimal Network Coding Problems and Gen-

eralizations .28
2.4 Preprocessing Algorithms. 31

2.4.1 Greedy Preprocessing Algorithm. 32
2.4.2 Weighted Preprocessing Algorithms. 33

2.5 Performance Evaluations. 35
2.5.1 Simulation Setups. 36
2.5.2 Performance Evaluation of Preprocessing Algorithms. . . . 38
2.5.3 Performance Evaluation of Network Coding on Multicast. . 41

2.6 Summary .43

3 Peer-to-Peer File Sharing Based on Network Coding 45
3.1 Deterministic Linear Coding over Combination Networks. 47

v

3.2 Peer-to-Peer File Sharing Based on Network Coding (PPFEED). . 50
3.2.1 Overview of PPFEED. 50
3.2.2 Peer Joining. 52
3.2.3 Local Topology Adjustment. 53
3.2.4 Peer Leaving. 55
3.2.5 Data Dissemination. 56
3.2.6 Improving Reliability and Resilience to Churn. 56

3.3 Some Extensions. 58
3.3.1 Support Link Heterogeneity. 58
3.3.2 Support Topology Awareness. 58

3.4 Performance Evaluations. 59
3.4.1 Baseline Configuration. 61
3.4.2 Dynamic Peer Join/Leave Configuration. 64
3.4.3 Heterogeneity Configuration. 64
3.4.4 Topology Awareness Configuration. 67

3.5 Summary .67

4 Network Coding for Heterogeneous Peer-to-Peer Streaming Systems 70
4.1 Optimal Overlay Topology Construction for Heterogenous Peer-to-

Peer Streaming Systems. 72
4.1.1 Problem Formalization. 75
4.1.2 The Greedy Heuristic Algorithm. 79
4.1.3 The Distributed Algorithm. 80
4.1.4 Performance Evaluation. 84

4.2 Adaptive Network Coding for Peer-to-Peer Media Streaming Systems90
4.2.1 Problem Formalization. 92
4.2.2 Adaptive Network Coding for Heterogeneous Peer-to-peer

Media Streaming Systems. 94
4.2.3 Performance Evaluations. 99

4.3 Summary .103

5 A Linear Inter-Session Network Coding Scheme for Multicast 105
5.1 Preliminaries .106
5.2 Heuristic Algorithms for Linear Inter-Session Coding for Multicast. 108

5.2.1 Two Metrics for Session Division.109
5.2.2 The Deterministic Algorithm.110
5.2.3 The Random Algorithm.111

5.3 Performance Evaluations. .111
5.3.1 Simulation Setups. .112
5.3.2 Performance of Inter-Session Network Coding. 112
5.3.3 Inter-Session Network Coding Parameters.115

vi

5.4 Summary .119

6 A Service-Centric Multicast Architecture and Routing Protocol 121
6.1 Preliminaries .122

6.1.1 Existing Multicast Routing Protocols.122
6.1.2 Existing Multicast Tree Construction Algorithms. 123
6.1.3 Problems in Existing Approaches and Our Contributions. . 124

6.2 The New Multicast Architecture.126
6.2.1 Overview of the New Multicast Architecture. 126
6.2.2 Design of the m-Router.127
6.2.3 Multicast Group and Session Management Protocol. 130
6.2.4 Multicast Routing Protocol (SCMP) - An Overview. 131

6.3 Multicast Routing Protocol (SCMP).132
6.3.1 Terminologies .132
6.3.2 Member Joining .133
6.3.3 Member Leaving. .134
6.3.4 Constructing the Multicast Tree at the m-Router. 134
6.3.5 Forming the Multicast Tree in the Network.142
6.3.6 Forwarding Multicast Packets.146

6.4 Performance Evaluations. .147
6.4.1 Multicast Trees. .147
6.4.2 Network-Wide Performance.150

6.5 Summary .154

7 A Peer-to-Peer Tree Based Reliable Multicast Protocol 156
7.1 Preliminaries .159
7.2 Peer-to-Peer Tree Based Reliable Multicast Protocol. 160

7.2.1 Protocol Overview. .160
7.2.2 Constructing the ACK Tree.161
7.2.3 Loss Recovery and Flow Control.162
7.2.4 Timers .170

7.3 Theoretical Analysis .170
7.3.1 Protocol Correctness. .170
7.3.2 Maximum Throughput Analysis.171

7.4 Performance Evaluations. .174
7.5 Summary .178

8 Conclusions and Future Work 179

Bibliography 182

vii

List of Figures

1.1 Illustration of network coding advantage over routing.. 4
1.2 Thesis organization.. 10

2.1 The network topology of the butterfly network.. 20
2.2 The pseudo-dual hypergraph of the multicast network.. 20
2.3 Edge construction inG′. 22
2.4 An example for eligible covers of the pseudo-dual hypergraph. (a) An

eligible cover whenF = {(e1, (1, 0)), (e2, (0, 1))}. (b) An eligible cover
whenF = {(e1, (1, 0)), (e2, (1, 1))}. 28

2.5 An eligible cover of the pseudo-dual hypergraph after merging.. 29
2.6 The performance comparison of the preprocessing algorithms under dif-

ferent network sizes. (a) Graph size evaluation; (b) Computation time
evaluation. .39

2.7 The performance comparison of the preprocessing algorithms under dif-
ferenth values. (a) Graph size evaluation; (b) Computation time evaluation.40

2.8 The performance comparison of the preprocessing algorithms under dif-
ferent group sizes. (a) Graph size evaluation; (b) Computation time eval-
uation. .42

2.9 The throughput comparison between network coding and multiple multi-
cast trees under different group sizes. (a)h = 3; (b) h = 4. 43

2.10 The bandwidth consumption comparison between network coding and
multiple multicast trees under different group sizes.. 44

3.1 Combination networkC2
4. 47

3.2 An example overlay network constructed by PPFEED.. 51
3.3 Illustration of local topology adjustment.. 54
3.4 An example that local topology adjustment does not work.. 55
3.5 Failure probability ratio of the old scheme to the improved scheme.. . . . 57
3.6 Baseline configuration. (a) Finish time; (b) Finish time with link failures.. 61
3.7 Baseline configuration. (a) The number of retransmissions with link fail-

ures; (b) Link stress. 63

viii

3.8 Finish time of the dynamic peer join/leave configuration. (a) Peers stay in
the system after receiving the file; (b) Peers leave the system after receiv-
ing the file. .65

3.9 Heterogeneity configuration. (a) Finish time; (b) Link stress.. 66
3.10 Topology awareness configuration. (a) Finish time; (b) The number of

retransmissions.. .68
3.11 Link stress of the topology awareness configuration.. 69

4.1 Illustration of multiple distribution trees in SplitStream.. 74
4.2 Illustration of the network model for heterogeneous peer-to-peer stream-

ing systems. .77
4.3 Illustration of the necessary but insufficient condition for overlay topol-

ogy for peer-to-peer streaming systems. (a) The bandwidth configuration
of the server and the peers. (b) The overlay topology to achieve the maxi-
mum total downloading rate.. 78

4.4 Average satisfaction under different system sizes.. 86
4.5 Average satisfaction evaluation. (a) Average satisfaction under different

access link bandwidth configurations; (b) Average satisfaction under dif-
ferent values ofα. .87

4.6 Average end-to-end delay under different system sizes.. 88
4.7 Average end-to-end delay under different values ofα. 88
4.8 Link stress under different system sizes.. 89
4.9 Link stress under different values ofα. 90
4.10 Average satisfaction evaluation. (a) Average satisfaction under system

sizes when using the overlay topology construction algorithm in LION;
(b) Average satisfaction under system sizes when using the overlay topol-
ogy construction algorithm in this section..101

4.11 Throughput evaluation. (a) Throughput under different system sizes when
peers join/leave dynamically; (b) Throughput under different system sizes
and different mean uptimes of peers when peers join/leave dynamically.. . 102

4.12 Control overhead evaluation. (a) Control overhead under different sys-
tem sizes; (b) Control overhead under different sizes and different mean
uptimes of peers.. .103

5.1 An example that inter-session network coding achieves higher throughput.106
5.2 The performance comparison under different multicast capacities. (a)

throughput; (b) bandwidth consumption..114
5.3 The performance comparison under different session sizes. (a) through-

put; (b) bandwidth consumption..116

ix

5.4 The performance comparison under differentmixability values. (a) through-
put without considering the multicast capacity difference; (b) throughput
considering the multicast capacity difference..118

5.5 The bandwidth consumption comparison under differentmixability values.119
5.6 The performance comparison under differentδ values. (a) throughput; (b)

bandwidth consumption. .120

6.1 (a) An example of a WAN; (b) Internal structure of a generic router.. . . 122
6.2 Illustration of m-routers and i-routers in the Internet..127
6.3 A sketch of the internal structure of an m-router..128
6.4 Illustration of an m-router switching fabric interconnected with the Internet.129
6.5 Overview of the SCMP protocol. .133
6.6 Example of using the DCDM algorithm. (a) Network topology; (b) Mul-

ticast tree afterg1 andg2 are added; (c) A loop is formed afterg3 is added;
(d) Multicast tree afterg3 is added.139

6.7 Forming the multicast tree using TREE and BRANCH packets.. 144
6.8 Forwarding the multicast packet along a bi-directional multicast tree.. . . 147
6.9 Tree delay comparison. (a), (b) and (c): delay constraint is tightest, mod-

erate and loosest, respectively.. .149
6.10 Tree cost comparison. (a), (b) and (c): delay constraint is tightest, moder-

ate and loosest, respectively.. .150
6.11 Group size versus data overhead. (a) ARPANET; (b) Random topology

network with average node degree 3; (c) Random topology network with
average node degree 5.. .152

6.12 Group size versus protocol overhead. (a) ARPANET; (b) Random topol-
ogy network with average node degree 3; (c) Random topology network
with average node degree 5.. .153

6.13 Group size versus maximum end-to-end delay in seconds. (a) ARPANET;
(b) Random topology with average node degree 3; (c) Random topology
network with average node degree 5..154

7.1 ACK tree in RMTP. .158
7.2 Illustration of ACK tree in reliable multicast protocol. (a) ACK tree in

RMTP; (b) ACK tree in our protocol.159
7.3 The window in the sender.. .163
7.4 State transition diagram of i-receiver..164
7.5 The window of i-receiver in stateS1 whenlast acked is less thancurrent seqno.164
7.6 The window of i-receiver in stateS1 when last acked is equal to or

greater thancurrent seqno. .165
7.7 The window of i-receiver in stateS2 whenlast acked is less thancurrent seqno.165

x

7.8 The window of i-receiver in stateS2 when last acked is equal to or
greater thancurrent seqno. .166

7.9 The window of i-receiver in stateS4 whenlast acked is less thancurrent seqno.166
7.10 The window of i-receiver in stateS4 when last acked is equal to or

greater thancurrent seqno. .166
7.11 The window of i-receiver in stateS3.167
7.12 State transition diagram of l-receiver..167
7.13 Performance comparison under different group sizes. (a) Average retrans-

mission delay vs. group size; (b) Throughput vs. group size.. 175
7.14 Performance comparison of tree-based protocols(1). (a) Throughput vs.

window size; (b) Throughput vs. packet drop probabilities.. 176
7.15 Performance comparison of tree-based protocols(2). (a) Throughput vs.

window size; (b) Throughput vs. packet drop probabilities.. 177

xi

List of Tables

2.1 Notations Used in This Chapter. 19
2.2 Redundant Nodes Deletion Algorithm. 27
2.3 Greedy Minimal Subgraph Algorithm. 32
2.4 Weighted Minimal Subgraph Algorithm 1. 34
2.5 Weighted Minimal Subgraph Algorithm 2. 35

4.1 Greedy Heuristic Algorithm. 81
4.2 Overlay Topology Construction Algorithm. 95
4.3 Stripe Selection Algorithm . 98

6.1 Member Joining Procedure. .134
6.2 Member Leaving Procedure. .135
6.3 Procedure of Adding a Member Node.138
6.4 Loop Removing Procedure. .140
6.5 Procedure of Deleting a Member Node.140
6.6 Format of TREE Packet. .143
6.7 TREE Packet Processing Algorithm.144
6.8 Multicast Packet Forwarding Algorithm.146

7.1 Packet Processing Algorithm for i-receiver (Part I).168
7.2 Packet Processing Algorithm for i-receiver (Part II).169

xii

Acknowledgements

I am deeply indebted to my advisor, Professor Yuanyuan Yang, for her support,
encouragement and invaluable advice during the course of my Ph.D. study.

I would like to thank Professor Sangjin Hong, Professor Esther M. Arkin and
Professor Dantong Yu for serving on my thesis committee. Their invaluable sug-
gestions provide a great resource for the improvement of this thesis.

My thanks also goes to all the collaborators in the High Performance Comput-
ing and Networking Research Laboratory at Electrical and Computer Engineering
Department, State University of New York at Stony Brook. It has been a wonderful
experience working together with them and this thesis benefit greatly from fruitful
discussions with them.

Finally, this thesis is dedicated to my parents. Without their unconditional love
and persistent support, this thesis would not have been possible.

Chapter 1

Introduction

Many network applications, such as audio/video conferencing, video-on-demand
services, e-learning, e-health, distributed interactive simulation, software upgrading
and distributed database replication, requiremulticast communication, a basic type
of group communicationsinvolving more than two end hosts, over a large network
such as the Internet. In multicast communication, messages from the source are
delivered to all the members of a multicast group. The group members are also
called receivers. The source can be one of the members in the multicast group or
any end host in the network.

The demand for multicast communication from networking applications has
been growing at an accelerated pace. Since Stephen Deering first introduced mul-
ticast in [1], a lot of works have been done on multicast routing protocols [2, 3, 4,
5, 6, 7]. Most works focus on extending routers to support multicast forwarding
in addition to unicast forwarding. This requires routers to build a multicast rout-
ing table by exchanging multicast routing information. Usually, multicast routing
protocols construct a multicast tree spanning the source and all the group members.
The source is the root of the tree and the group members are the leaves. The mes-
sages are transmitted from the root to the leaves along the tree. Although multicast
routing has been proposed for more than two decades, it is far from being deployed
in today’s Internet. There are both technical and non-technical reasons [8]. As a
result, scalable and efficient support for multicast communication remains to be a
critical and challenging issue in networking research.

1.1 Peer-to-peer and Application Layer Multicast

The emerge ofpeer-to-peertechnology [9] provides a promising alternative solu-
tion for multicast communication. Peer-to-peer is referred to as a fully distributed
network architecture which is in contrary to the traditional server-client model. In

1

server-client model, a server is providing centralized service requested by different
clients, i.e., hosts1). Usually the address of the server is well known by the hosts
in advance. The most obvious drawback of server-client model is its limited band-
width and resource on the server side. Since the bandwidth and resource of the
server is shared by all the hosts, the server can be easily overwhelmed by a huge
number of simultaneous hosts. Peer-to-peer model allows hosts to form an adhoc
logical overlay network on top of the physical network. The links of the over-
lay network are logical links each of which can be mapped to a physical path in the
physical network. Hosts can share information as well as bandwidth with each other
through the overlay network. This requires hosts be able to perform more complex
operations such as routing and overlay topology construction/maintenance. The
hosts are called peers as they are equivalent in terms of their functionalities. The
advantages of peer-to-peer systems are obvious. First, the larger the system size
is, the larger the total bandwidth is. As peers can share their bandwidth with each
other, peers can contribute their bandwidth to the system. More peers join the sys-
tem, more bandwidth the system has. Second, the processing is distributed, no
single point of failureproblem. In server-client model, the server is much more
important than the hosts. If the server is down, the whole system is down as well.
This is called single point of failure problem. In peer-to-peer systems, peers are of
equal importance. The overlay network is formed in a distributed way such that the
system can continue to work properly even if some peers leave the system.

In practice, a lot of peer-to-peer systems [10, 11] adopt a hybrid model. There
is still a server holding the resource which is requested by a lot of hosts. To make
the system scalable, the hosts form a peer-to-peer network and help each other to
retrieve the resource. As a result, the server can serve much more hosts than that in
server-client mode.

Peer-to-peer technology has many applications. In this thesis, we will focus
on applying peer-to-peer technology to multicast communication, i.e.application
layer multicast. Application layer multicast(ALM) [12] is proposed to circumvent
multicast support in routers by implementing multicast related functionalities in
hosts’ application layer. A peer-to-peer network is formed between the source and
all the receivers. Then a multicast tree is constructed over the peer-to-peer network.
Similarly, the messages are transmitted from the root to the leaves. On the physical
network level, the messages are transmitted through unicast along the paths indi-
cated by the tree. As traditional multicast routing implements multicast support in
network layer, it is often referred asnetwork layer multicast. ALM is a promis-
ing alternative for multicast communication over a large scale network. It does not
need router support, so it is easy to deploy. It can support infinite receivers in theory.

1In this thesis, we use host to represent the end users of the Internet. Every host is connected to
a router to access the Internet.

2

Since receivers help forwarding messages for each other, the more the receivers, the
higher the total uploading bandwidth.

1.2 Network Coding for Multicast Networks

Network codingis proposed recently as a generalization of routing [13]. Routing
allows relay nodes to forward or duplicate messages. While network coding al-
lows relay nodes to encode messages. Forwarding or duplicating is considered as
a special case of encoding. Network coding has a lot of potential applications for
both wired and wireless networks [14]. Multicast is one of the most important ap-
plication of network coding. In [13], the authors prove that with network coding,
a multicast network can achieve its maximum throughput. In this thesis, we will
focus on applying network coding to multicast networks.

First we use an example to illustrate the advantage of network coding over rout-
ing to a multicast network. As shown in Fig.1.1, nodes is the source node,t1
andt2 are two receivers. All edges in the figure have capacity 1, which means the
edge can only transmit 1 unit data (bit) per unit time (second). Sources has two
bits, x1 andx2 to multicast to botht1 and t2. First we use traditional multicast
without network coding as shown in Fig.1.1(a). Without loss of generality, we
use the red flow to represent bitx1, the blue flow to represent bitx2 and the black
flow to represent both bitsx1 andx2. Bit x1 can reacht1 in two seconds. Bitx2
can reacht2 in two seconds. When nodec receives both bits, it forwards them in
sequence. Suppose it forwards bitx1 first. Thent1 receives both bits in 4 seconds
andt2 receives both bits in 5 seconds. Now consider using network coding on link
cu. When nodec receives both bits, it first mixes them by operation XOR. Then it
sends the mixed bit to nodeu. When nodet1 or t2 receives the mixed bitx, it can
recover the original bitsx1 andx2 by XOR the mixed bit and the other received
bit. All the transmission can be completed in 4 seconds. Therefore the throughput
of the network can be increased by1

3
using a very simple network coding.

Based on the type of the encoding function at the relay nodes, network cod-
ing can be categorized into two types: linear network coding where the encoding
functions are linear functions and non-linear network coding where the encoding
functions are non-linear functions. Liet al. proved [15] that linear network coding
is sufficient for a multicast network to achieve its maximum throughput. In the rest
of this thesis, we will focus on designinglinear network codingschemes for ALM
systems.

3

S

a b

c

u

t1 t2

1

1

1

1

1

1

1

1

x1 x2

x1 x2

x1 x2

x

x x

(b)
x=x1 x2

(a)

S

a b

c

u

t1 t2

1

Figure 1.1:Illustration of network coding advantage over routing.

1.2.1 Linear Network Coding for Multicast

In this section, we present some preliminary theories about linear network coding
for multicast. A network can be represented as a directed graphG(V, E,C) where
V is the set of nodes andE is the set of edges andC is the link capacity function,
C : E → <+. Supposes is the source,t1, ..., tL areL receivers. We first give the
definitions of two terms:flow andcut.

Definition 1 (Flow) F = [Fij, (i, j) ∈ E] is a flow in G from s to tl if for all
(i, j) ∈ E

0 ≤ Fij ≤ Cij

such that for alli ∈ V except fors andtl

∑

i′:(i′,i)∈E

Fi′i =
∑

j:(i,j)∈E

Fij

The value of flowF is defined as
∑

j:(s,j)∈E

Fsj −
∑

i:(i,s)∈E

Fis

which is equal to ∑

i:(i,tl)∈E

Fitl −
∑

j:(tl,j)∈E

Ftlj

F is amax-flowfrom s totl in G if F is a flow froms to tl whose value is greater
than or equal to any other flow froms to tl. The max-flowF is the upper bound of

4

the transmission rate betweens andtl.

Definition 2 (Cut) Acut in G betweens and tl means a collection ofH of nodes
which includess but not tl. An edgeij is said to be in the cutH if i ∈ H and
j ∈ H̄. The value of the cut is the sum of the capacity of all the edges fromH to H̄.

Theorem 1 (Max-Flow Min-Cut Theorem) For every nonsource nodet, the min-
imum value of a cut between the source and the nodet is equal to the max-flow
between the source andt.

The Max-Flow Min-Cut Theorem provides a simple way to calculate the max-
flow by finding the minimum cut.

In a unicast session, the maximum transmission rate between the source and the
receiver is the max-flow between them. In a multicast session, we definemulticast
capacityas the minimum of max-flows between the source and the receivers. If the
source must transmit messages to all the receivers at the same rate2, it is easy to see
that the multicast capacity is the upper bound of the transmission rate. Therefore
multicast capacity is considered as the maximum throughput a multicast network
can achieve.

In their pioneer paper [13], Ahlswedeet al. prove that with network coding,
the maximum throughput can be achieved for a multicast network, i.e. network
coding can take full advantage of multicast capacity. In paper [15], Li et al. prove
that linear network coding is sufficient to achieve this goal and even a stronger
result: with linear network coding, each receiver can receive the messages at the rate
determined by the max-flow between the source and the receiver simultaneously.

We give an example to explain the notion of linear network coding. Given a
graphG(V, E), each node has multiple incoming edges and outgoing edges. An
edgee is represented by an ordered node pair(x, y), x, y ∈ V , wherey is called the
head of the edge and denoted asy = head(e), andx is called the tail of the edge
and denoted asx = tail(e). The messages can only be transmitted fromx to y. The
incoming edge set of a nodev is defined as

Ein(v) = {(x, y)|(x, y) ∈ E, y = v} (1.1)

Similarly, the outgoing edge set of a nodev is defined as

Eout(v) = {(x, y)|(x, y) ∈ E, x = v} (1.2)

Assume each edgee ∈ E can carry one symbol from a certain finite field F.
Let ye denote the symbol carried by edgee. Let x = (x1, ..., xh) denote the source

2In live streaming systems, receivers can receive the media content at their respective rates. We
will discuss this in Chapter4.

5

symbols available at sources. For notational consistency, we introduce h source
edges,s1, ..., sh, which all end ins; the source edgess1, ..., sh carry theh source
symbolsx1, ..., xh respectively. Since each node encodes the incoming messages
with a linear function, the symbol on an outgoing edge is a linear combination of
the symbols on the incoming edges, namely

ye =
∑

e′:head(e′)=tail(e)

we′eye′

The coefficients W =we′e is calledmixing coefficients. The set of all mixing coef-
ficients can be collectively represented by a|E| × (|E|+ h) matrix. The structural
restriction of W is thatwe′e = 0 unless head(e′)=tail(e). Partition W into two parts
as

W|E|×(|E|+h) = [A|E|×|E| B|E|×h], (1.3)

where the subscript indicates the size of the matrix.
Equation1.3can be rewritten in a matrix form as

y = Ay + Bx

Suppose the graph is acyclic3, we can topological sort the edges. Then the matrix A
is a lower triangular matrix with zeros on the diagonal line. Thus (I-A) is invertible
and

y = (I − A)−1Bx

Therefore,ye on any edge e is a linear combination of the source symbols. Define
Q|E|×h ≡ (I−A)−1B. Theeth row of Q is denoted asqe, which is called theglobal
encoding vectorat edgee sinceye = qex.

Since eachye is a linear combination of the source symbols, any receivert
receivingh symbols with linearly independent global coding vectors can decode
the source symbols by solving the corresponding system of linear equations.

The above discussion is summarized in the following definition.

Definition 3 Linear Network Coding Assignment: Given an acyclic graph G(V,E)
a source nodes, a finite fieldF , and a code dimensionh, a linear network coding
assignmentW refers to an assignment of mixing coefficientswe,e′ ∈ F , one for each
pair of edges (e, e′) with e′ ∈ E ∪ {s1, ..., sh}, e ∈ E, and head(e′) = tail(e). The
global coding vectors resulting from a linear network coding assignmentW are the
set of row vectors of the matrixQ = (I − A)−1B, whereW = [A B].

In a linear network coding assignmentW , the rank of a nodev, rankv(W),
refers to the rank of a linear space spanned by the global coding vectors for incom-

3If the graph is cyclic, we can find a subgraph which satisfies our requirement.

6

ing edges ofv, i.e.,

rankv(W) ≡ rank{qe(W), head(e) = v} (1.4)

For a receiver to decode the received messages successfully, the rank of the re-
ceiver must be no less than the coding dimensionh. A valid linear network coding
assignment is a linear network coding assignment that all the receivers can decode
successfully.

Given a network topology, there may be multiple valid linear network coding
assignments. We use the network topology shown in Fig.1.1as an example. In this
example,h = 2 and the finite field is F=GF(2). The set of equations of symbols on
each edge are

ye1 = ys1;

ye2 = ys2;

ye3 = ye1;

ye4 = ye1;

ye5 = ye2;

ye6 = ye2;

ye7 = ye3 + ye5;

ye8 = ye7;

ye9 = ye7;

The matrixW is

W = [A9×9 B9×2] =




0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0




7

The matrixQ = (I − A)−1B is

Q9×2 = (I−A)−1B =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 1 1 0 1 0 1 0 0
1 1 1 0 1 0 1 1 0
1 1 1 0 1 0 1 0 1







1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0




=




1 0
0 1
1 0
1 0
0 1
0 1
1 1
1 1
1 1




With this linear network coding assignment, receivert1 can decode the two
source symbols since it observes two symbols with linearly independent global
coding vectors [1, 0] and [1, 1]. Similarly, receivert2 can decode the two source
symbols as well.

In the above, a linear network coding assignment is defined by specifying the
mixing coefficient matrixW . Following theorem gives the sufficient and necessary
condition that a linear network coding assignmentW can achieve the multicast
capacity.

Theorem 2 A capacity-achieving linear network coding assignment for an acyclic
graph G = (V, E) exists if and only if we can assign vectors{qe}e∈E to the edges
that satisfy:

qe ∈ span{qe′ , head(e′) = tail(e),∀e ∈ E}
rank{qe′ , head(e′) = t} = multicast capacity, ∀t ∈ T

1.2.2 Deterministic Network Coding vs. Random Network Cod-
ing

To apply linear network coding to multicast networks is to find a capacity-achieving
linear network coding assignment for a multicast network. There are two ways to
fulfill this task: deterministic network coding and random network coding.

Deterministic network coding adopts a centralized way to calculate the encod-
ing mixing coefficients for each node in the network given the information about
the network topology, source and receivers. Jaggiet al. proposed a polynomial
deterministic linear network coding construction algorithm in [16]. After the linear
network coding assignment is determined, it is distributed around the network. Each
node then encodes the incoming messages based on the linear network coding as-
signment during the whole multicast session. As the linear network coding assign-
ment is calculated centrally based on the complete information about the multicast

8

session, all the receivers are guaranteed to be able to decode properly. Moreover,
the required field size can be as small as the number of receivers [17]. A drawback
of deterministic linear network coding is its dependence on the stableness of the
system topology. Once the topology is changed, the whole linear network coding
assignment needs to be recalculated.

On the contrary, random network coding uses a complete distributed way to
determine the encoding mixing coefficients for each node. Each node even does
not need to collect any local information. The coefficients is randomly generated
for each node. The random coefficients is attached to the corresponding encoded
messages. After receiving the encoded messages, the relay nodes will encode again
with a set of new generated random coefficients and replace the coefficients in the
message with the new ones. At the end, the receivers will try to decode the messages
based on the coefficients attached in the messages. Due to the randomness of the
coefficients, there is a non-zero possibility that the receiver can not decode success-
fully. In this case, the receiver has to receive more messages to perform decoding.
Obviously, if we increase the field size for the coefficients, the probability of failing
to decode is reduced. The strength of random linear network coding is its resilience
under dynamic network topology. As each node generated the coefficients indepen-
dently and randomly, the topology change has no impact on coefficients generation.
For details about random linear network coding, please refer to [18].

1.3 Thesis Outline

Fig. 1.2shows the logical organization of this thesis.
Chapter 2 presents a formal unified approach that can convert the determinis-

tic linear network coding problem for a multicast network into an equivalent graph
theory problem. By doing this transformation, we provide a systematic approach
to solve a series of minimal multicast network coding problems [19]. A minimal
multicast network coding problem is to find a deterministic linear network coding
assignment for multicast networks which minimizes some resource usage. To solve
this type of problems, we map the network topology graph to a pseudo-dual hyper-
graph. And a linear network coding assignment is equivalent to a set of nodes called
cover in the pseudo-dual graph satisfying certain constraints. By iterative refine-
ments, an eligible cover can be found in polynomial time. Moreover, it introduces
multiple preprocessing algorithms to further reduce the computation time required
by the iterative refinements through reducing the graph size before transformation.
Finally by assigning different weights to the edges, minimal network coding prob-
lems are reduced to the shortest path problems in the pseudo-dual graph.

Chapter 3 proposes a peer-to-peer file sharing scheme based on network coding
called PPFEED. The scheme exploits a special type of network topology called

9

MulticastNetwork Coding

Network Coding
Intra−Session

Minimal
Network Coding
(Chapter 2)

Multicast
Application Layer

Multicast
Network Layer

Peer−to−Peer
Systems based on
Network Coding

Inter−Session
Network Coding
(Chapter 5)

File Sharing
(Chapter 3) (Chapter 4)

Media Streaming

Multicast Architecture
Service−Centric

(Chapter 6)
(Chapter 7)
Reliable Multicast

Figure 1.2:Thesis organization.

combination network. It was proved that combination networks can achieve un-
bounded network coding gain measured by the ratio of network throughput with
network coding to that without network coding [20]. The proposed scheme en-
codes a file into multiple messages and divides peers into multiple groups with
each group responsible for relaying one of the messages. The encoding function is
designed to satisfy the property that any subset of the messages can be used to de-
code the original messages as long as the size of the subset is sufficiently large. To
meet this requirement, it first defines a deterministic linear network coding scheme
which satisfies the desired property, then the peers in the same group are connected
to flood the corresponding message, and peers in different groups are connected to
distribute messages for decoding. Moreover, the scheme can be readily extended
to support link heterogeneity and topology awareness to further improve system
performance in terms of throughput, reliability and link stress.

Chapter 4 investigates the optimal overlay construction problem for peer-to-peer
streaming systems and proposes a peer-to-peer streaming scheme based on network
coding. Media streaming is an important Internet application and has received more
and more attentions in recent years. Heterogeneity is a common and important issue
for peer-to-peer systems. Like bulk data distribution systems, live media streaming
systems usually involve a server which hosts the media content and all the clients re-
quest the media content from the server. However, there is a fundamental difference
between them. Live media streaming systems require real-time data delivery and
can tolerate data loss to some extent. While bulk data distribution systems require

10

reliable data delivery and can tolerate delay to some extent. This difference leads
to different consideration in system design. In this chapter, we consider optimiz-
ing the overlay construction for peer-to-peer streaming systems with heterogeneous
access link bandwidths. Our goal is to maximize the total downloading rate and
satisfy the heterogeneous downloading requirements when the uplink bandwidth is
limited. We formalize optimal overlay construction problem into a problem of find-
ing maximum number of edge disjoint trees in a graph which is an abstract model
of the peers and their access link bandwidths. A centralized heuristic algorithm is
given as a basis for a distributed algorithm which makes it scalable in a network en-
vironment. The distributed algorithm constructs an adaptive overlay topology that
can adapt itself to the changing peers such that the end-to-end delay and link stress
are minimized.

This chapter also proposes a scheme to apply network coding to heterogeneous
peer-to-peer media streaming systems. As most peers in a peer-to-peer media
streaming system are individual computers connected to the Internet through ac-
cess links with heterogeneous link capacities, it is desirable to design an adaptive
scheme to satisfy heterogenous requirements. Based on the overlay topology con-
struction algorithm discussed previously, we propose an adaptive network coding
scheme for heterogeneous peer-to-peer streaming systems. The media content is
encoded into multiple stripes. The peers select one or more stripes to subscribe
based on their own download bandwidths. The network coding is applied with each
stripe. For each stripe, a subgraph is constructed such that the coding probability
is maximized. We compare our scheme with another recently proposed scheme
called LION [21] through simulations. Our simulation results show that the pro-
posed scheme achieves higher satisfaction and less control overhead compared to
LION.

Chapter 5 examines the inter-session linear network coding problem in multi-
cast networks. Previous works on linear network coding for multicast primarily
considered encoding the messages in a single multicast session. In this chapter, we
consider the inter-session linear network coding for multicast. The basic idea is
to divide the sessions into different groups and construct a linear network coding
scheme for each group. We use two metrics to guide the group division:overlap
ratio andoverlap width. These two metrics measure the benefit that a system can
achieve by inter-session network coding from two different aspects. The overlap
ratio mainly characterizes the network bandwidth while the overlap width char-
acterizes the system throughput. We also propose two heuristic algorithms, the
deterministic algorithm and the random algorithm, to construct the linear network
coding on the divided groups.

Besides exploiting the performance potential of application layer multicast through
network coding, we have also conducted research on network layer multicast. The

11

last two chapters are focused on improving the scalability, efficiency and flexibility
of network layer multicast from two different aspects.

Chapter 6 presents a new multicast architecture and the corresponding multicast
routing protocol for providing efficient and flexible multicast services over a large
scale network. Traditional multicast protocols construct and update the multicast
tree in a distributed manner, which causes two problems: first, since each node
has only local or partial information on the network topology and group member-
ship, it is difficult to build an efficient multicast tree; second, due to the lack of
complete information, broadcast is often used when transmitting control packets
or data packets, which consumes a great deal of network bandwidth. In the newly
proposed multicast architecture, a few powerful routers, calledm-routers, collect
multicast-related information and process multicast requests based on the informa-
tion collected. The m-routers handle most of multicast related tasks, while other
routers in the network only need to perform minimum functions for routing. The
m-routers are designed to be able to handle simultaneous many-to-many communi-
cations efficiently. The new multicast routing protocol, called the Service Centric
Multicast Protocol (SCMP), builds a shared multicast tree rooted at the m-router for
each group. The multicast tree is computed in the m-router by employing the De-
lay Constrained Dynamic Multicast (DCDM) algorithm which dynamically builds
a delay constrained multicast tree and minimizes the tree cost as well. The physical
construction of the multicast tree over the network is performed by a special type
of self-routing packets in order to minimize the protocol overhead.

Chapter 7 discusses improving the multicast performance through transporta-
tion layer. Reliable multicast is critical to multicast based applications as it pro-
vides reliability over an unreliable network. Although the primary function of re-
liable multicast is loss recovery and flow control which are similar to that of re-
liable unicast, the inherent property of multicast that multiple receivers coexist in
one multicast session imposes new challenges such as acknowledge implosion and
poor scalability. Among existing reliable multicast protocols, tree based reliable
multicast protocols can achieve reliability in a scalable fashion. In such proto-
cols, receivers are grouped into a hierarchy called the ACK tree. The ACK/NACK
messages and retransmitted packets are transmitted between adjacent levels. Since
current tree based reliable multicast protocols construct the ACK tree based on the
multicast tree which is constructed by the multicast routing protocol, the proto-
col performance greatly depends on the multicast tree. In this chapter, we propose a
peer-to-peer tree based reliable multicast protocol which constructs the ACK tree in
a much more flexible way. Our protocol decouples the ACK tree construction from
the multicast tree construction. Any two receivers can be adjacent nodes in the ACK
tree. The ACK tree construction process is based on a heuristic function which is
designed to minimize retransmission delay. A child node sends ACK/NACK mes-

12

sages to the parent node and receives retransmitted packets from the parent node. It
includes a window based flow control mechanism to avoid fast sender floods slow
receiver.

1.4 Thesis Contributions

The thesis contributions are summarized as below.

• It provides a general linear network coding solution for any multicast net-
works which can be modeled by directed graphs. The approach introduced in
this thesis provides a unified way to solve a series of minimal linear network
coding problems for multicast. The approach transforms the linear network
coding problem into a tractable graph theory problem, and then propose an it-
erative refinement algorithm to solve the graph theory problem. To the best of
our knowledge, this is the first work to give a systematic approach to solving
the various minimal linear network coding problems. This is the primary ad-
vantage of this method compared with other existing linear network coding
construction methods. It proposes several preprocessing algorithms which
can be used to find a subgraph of the multicast network before applying any
type of network coding approaches. The time complexity of the method is
sensitive to the multicast capacity and the number of receivers. The prepro-
cessing algorithms are designed to reduce the computation time by finding a
minimal subgraph whose size is much smaller than the original graph. Due to
the reduced graph size, both the computation time and the network bandwidth
can be saved. The results are discussed in Chapter2.

• It applies linear network coding to peer-to-peer file sharing and presents a
high performance peer-to-peer file sharing system, PPFEED. PPFEED uti-
lizes combination networks as its overlay topology prototype. Combination
networks demonstrate great performance gain under linear network coding.
It proposes a simple and efficient deterministic linear network coding scheme
for combination networks and applies to PPFEED. As a result, PPFEED in-
herits its high performance when applied network coding and presents its
superiority compared to other existing peer-to-peer file sharing systems. Our
simulation results show that PPFEED can achieve15%-20% higher through-
put than Narada [12] which is an ALM system without network coding. Be-
sides, it achieves higher reliability and resiliency. It is discussed in Chapter
3.

• It addresses the heterogeneity problem in peer-to-peer streaming system and
formalize the problem of optimal overlay construction for peer-to-peer stream-

13

ing system with heterogeneous downloading requirements. To maximize both
the respective satisfaction of the peers in terms of their downloading band-
width and the system throughput, we formalize it into a problem of find-
ing maximum number of edge disjoint trees in a graph which models the
peers and their access link bandwidths. The problem formalization leads to a
greedy heuristic algorithm and a practical distributed algorithm to construct
the overlay topology under dynamic peer joining and leaving. The overlay
topology can adapt itself to the changing peers in the system. Based on the
optimal overlay construction scheme, we build a peer-to-peer streaming sys-
tem and apply network coding to it. As the overlay topology is constructed
with the consideration of link heterogeneity, the linear network coding should
be adaptive to the link access bandwidths as well. We design an adaptive net-
work coding scheme in which the media content is encoded into multiple
stripes. The peers select one or more stripes to subscribe based on their own
downloading bandwidths. Peers with different downloading bandwidths can
receive the media content at different rates simultaneously. Both the above
two topics are discussed in Chapter4.

• It explores the inter-session linear network coding for multicast networks
and proposes a practical inter-session network coding scheme. Most exist-
ing works focus on intra-session linear network coding, i.e. they consider
only one multicast session when constructing linear network coding scheme.
Actually, multiple simultaneous multicast sessions can also benefit from lin-
ear network coding if they are encoded together. We investigate inter-session
network coding by providing heuristic algorithms and conducting extensive
simulations. We propose an approach to identifying the situations where it
is the most profitable to do inter-session network coding and which sessions
should be encoded together. The benefit is quantified by introducing two dif-
ferent performance metrics. We study the performance of the proposed inter-
session network coding scheme from both the deterministic coding and ran-
dom coding perspectives. Our simulation results show that the inter-session
network coding outperforms the intra-session network coding by about30%
in terms of throughput in most cases. It is discussed in Chapter5.

• It investigates the problems in existing network layer multicast and provides
a different angle to tackle these problems. We propose a new service-centric
multicast architecture which includes a systematic solution for network layer
multicast from hardware to software. In particular, the proposed multicast
routing protocol SCMP is more scalable and efficient compared to existing
multicast routing protocols. The centralized processing makes SCMP easier
to be adapted to various applications with different QoS(Quality of Service)

14

requirements. Moreover, we apply peer-to-peer technology to multicast trans-
portation layer and propose a scalable reliable multicast protocol. The reli-
able multicast protocol functions similar to TCP in unicast communication.
It provides reliable transmission and flow control between the source and the
receivers. Thanks to the peer-to-peer technology, the proposed approach is
free from the acknowledge implosion problem in other reliable multicast pro-
tocols and the performance is improved significantly. These are discussed in
Chapter6 and7.

15

Chapter 2

A Hypergraph Approach to Linear
Network Coding in Multicast
Networks

In [16], Jaggiet al. proposed a polynomial deterministic algorithm for linear net-
work coding construction for a multicast network. However it is only suitable for
the basic linear network coding scheme construction without any constraints. In
practice, there are always some limitations on the resource used for network cod-
ing. For example, in many minimal linear network coding problems, it is desirable
to minimize the number of packets experiencing coding, or to minimize the number
of nodes performing coding [19, 22].

To solve these minimal network coding problems, we introduce a unified ap-
proach based on hypergraph in this chapter. Hypergraph is first used to solve linear
network coding problem in [23] in which a hypergraph calledconflict graphis con-
structed based on the network topology such that each node represents an edge in
the network topology carrying some combination of the original messages, with
each edge connecting the nodes that are incompatible under any valid linear net-
work coding assignments. Then finding a valid linear network coding assignment
is equivalent to finding a maximum independent set in the conflict graph. However,
this work focused on the application of the network coding within a single multi-
cast switch. Since finding a maximum independent set of a graph is a NP complete
problem [24], it is impractical to use this approach to find a linear network coding
assignment for large networks. In addition, the paper gave only some general guide-
lines without a formal description on how to construct the hypergraph and how to
find such an independent set.

In this chapter, we propose a formal unified approach that can convert the
network-wide linear network coding problem in a multicast network into an equiv-
alent graph theory problem. We will also use a hypergraph to model the linear net-

16

work coding assignment but in a completely different way. In our approach, only
compatible nodes (to be defined later) are connected by a hyperedge in the trans-
formed hypergraph to reduce the problem complexity. We call the hypergraph a
pseudo-dual hypergraphbecause it is constructed by mapping the nodes and edges
in the graph representing the multicast network to the edges and nodes in the hy-
pergraph respectively.

The main contributions of this chapter can be summarized as follows:

• We provide a general linear network coding solution for any multicast net-
works which can be modeled by directed graphs. We first transform the linear
network coding problem into a tractable graph theory problem, and then pro-
pose an iterative refinement algorithm to solve the graph theory problem. By
iterative refinements, a valid linear network coding assignment can be found
in polynomial time.

• We provide a unified solution for a series of minimal linear network cod-
ing problems. To the best of our knowledge, this is the first work to give
a systematic approach to solving the various minimal linear network coding
problems. By transforming the linear network coding problem into a graph
theory problem, minimal linear network coding problems can be transformed
to the corresponding problems in graph theory and solved by algorithms in
graph theory. This is the primary advantage of this method compared with
other existing linear network coding construction methods.

• We propose several preprocessing algorithms which can be used to find a sub-
graph of the multicast network before applying any type of network coding
approaches. The time complexity of the method is sensitive to the multicast
capacity and the number of receivers. The preprocessing algorithms are de-
signed to reduce the computation time by finding a minimal subgraph whose
size is much smaller than the original graph. Due to the reduced graph size,
both the computation time and the network bandwidth can be saved.

2.1 Problem Formalization

Suppose a multicast network is represented by a directed acyclic graph (DAG)G =
(V, E), whereV is the node set andE is the edge set. Without loss of generality,
we assume that there is asourcenodes ∈ V which generates messages and a set
of receiversR ⊂ V which consume messages in the multicast network. Although
network topology may contain circle, we use the DAG to model a multicast network
because we focus on the subgraph used for multicast traffic transmission. Usually,
such a subgraph is a tree spanning the source and receivers without circle. Similar

17

to the model described in1, an edgee is represented by an ordered node pair(x, y),
wherex, y ∈ V , y is called the head of the edge and denoted asy = head(e), and
x is called the tail of the edge and denoted asx = tail(e). The messages can only
be transmitted fromx to y. The incoming edge set of a nodev is defined as

Ein(v) = {(x, y)|(x, y) ∈ E, y = v} (2.1)

Similarly, the outgoing edge set of a nodev is defined as

Eout(v) = {(x, y)|(x, y) ∈ E, x = v} (2.2)

Table2.1 lists all the notations to be used in the rest of the chapter.
In the graph, each node has one or more incoming edges and one or more outgo-

ing edges except that the source node has no incoming edges and the receivers have
no outgoing edges. The minimum cut between the source node and each receiver is
h. According to network coding theory, sources can multicast messages to all the
receivers at rateh using network coding. We first consider the special case when
h = 2. We will discuss the general case in Section2.3.

More generally, a network can have multiple source nodes that generate mes-
sages, or a receiver that not only consumes messages but also forwards messages.
Such a network can be converted into a network satisfying our above assumptions
without altering the solvability properties of the network as follows. In the case that
there arek source nodes, a virtual source nodes with k outgoing edges is added.
Thesek outgoing edges are connected to thek real source nodes respectively. In
the case that a receiver has one or more outgoing edges, a virtual receiver withh
incoming edges is added. All theh incoming edges are originated from the real
receiver.

As mentioned in the previous chapter, in a multicast network with linear net-
work coding, the message carried by an edgee can be considered as a linear combi-
nation of the messages from sources. SupposeW is the message vector withh ele-
ments, andQ is a valid linear network coding assignment such thatQ(e) represents
the global encoding vector of edgee. Then the message on edgee is W × Q(e)T ,
whereQ(e)T is the transpose ofQ(e). If we consider the messages as a sequence of
bits, the linear network coding assignment is constructed over the finite Galois field
with field size2, i.e., GF (2). 1 The addition operation overGF (2) is XOR and
the multiplication operation overGF (2) is AND. For each edge, theoretically there
are2h − 1 possible global encoding vectors which represent the2h − 1 different
combinations of theh messages (An edge with zero global encoding vector can be

1The field size is determined by many factors, such as multicast capacityh and network topol-
ogy. Determining the field size is beyond the scope of this thesis. Interested readers may refer to the
literatures, such as [25, 26], on this topic.

18

Table 2.1:Notations Used in This Chapter

G = (V,E) G is a DAG representing a multicast network topology,
whereV is the node set andE is the edge set.

G′ = (V ′, E ′) pseudo-dual hypergraph ofG,
whereV ′ is the node set andE ′ is the edge set.

G′′ a subgraph ofG′

Gt = (Vt, Et) a graph transformed fromG′′,
whereVt is the node set andEt is the edge set.

s source node
R a set of receivers
head(e) head of edgee.
tail(e) tail of edgee.
Ein(v) incoming edge set of nodev.
Eout(v) outgoing edge set of nodev.
h minimum cut
Q a valid linear network coding assignment in a multicast network
W message vector
L a group inG′

P, P ′ a path inG andG′, respectively
SP message flow function defined on pathP
F a feasible source inG′

T a cover inG′

e(v′) corresponding edgee ∈ E of nodev ∈ V ′

U(v′) global encoding vector of nodev ∈ V ′

N upper bound on the number of incoming
edges of a node inV

NR upper bound on the number of incoming
edges of a receiver

M upper bound on the number of outgoing
edges of a node inV

deleted from the graph without altering the network solvability properties).
Given a graphG, we define a pseudo-dual hypergraphG′ = (V ′, E ′) which is

constructed by mapping each node inG to multiple edges inG′ and each edge inG
to multiple nodes inG′. We use an example to illustrate the hypergraph construc-
tion. Suppose the network topology is the butterfly network, we label the edges as
shown in Fig.2.1.

In a graph an edge is connected to exactly two nodes, while in a hypergraph an

19

s

a b

e1 e2

c

d

e4 e5

r1 r2

e3 e6

e8 e9

e7

Figure 2.1:The network topology of the butterfly network.

edge can be connected to any number of nodes. In the rest of the chapter, we usev
ande to represent a node and an edge inG respectively, andv′ ande′ to represent a
node and an edge inG′ respectively. Each edgee is mapped to2h − 1 = 3 nodes in
E ′. These three nodes represent edgee when the global encoding vector ofe is (0,1),
(1,0) and (1,1), respectively. Thus the nodes inG′ can be identified by a pairv′ =
(e, U), e ∈ E andU ∈ {(0, 1), (1, 0), (1, 1)}. We usee(v′) andU(v′) to represent
the first and the second elements of nodev′. If v′ = (e, U), thene(v′) = e and
U(v′) = U . For the nodes whose first elements are the same, we call them agroup,
denoted byL. For example, we haveL(e) = {(e, (0, 1)), (e, (1, 0)), (e, (1, 1))}. In
G′, there are|E| groups and each group has three nodes, thus|V ′| = 3|E|. To have
a visualized idea of what the pseudo-dual hypergraph looks like, readers may refer
to Fig. 2.2. We will discuss its construction in more detail later in the chapter.

(1, 0)

(0, 1)

(1, 1)

group
e1

group
e2

group group
e3 e4

group
e5

group
e6

group
e7

group
e8

group
e9vector

edge

Figure 2.2:The pseudo-dual hypergraph of the multicast network.

In a linear network coding assignment, the global encoding vector of an out-
going edge must lie in the linear span of the global encoding vectors of all the

20

incoming edges. A linear span of a set of vectors is defined as the intersection of
all subspaces containing the set. We use notation〈•〉 to denote the linear span. For
example, over the finite fieldGF (2), 〈{(0, 1), (1, 1)}〉 = {(0, 1), (1, 0), (1, 1)} (we
do not consider zero global encoding vector). Thus we have

Q(e) ∈ 〈
|Ein(v)|⋃

i=1

Q(ei), ei ∈ Ein(v)〉,

∀ e ∈ Eout(v), ∀ v ∈ V

Now we are ready to define the edges inG′. Each edgee′ can be represented by
an ordered pair(X, y) whereX ⊂ V ′ andy ∈ V ′. Similarly,X is called the tail of
the edge andy is called the head of the edge. Generally speaking, given a nodev
with incoming edge setEin(v) and outgoing edges setEout(v), the mapped edgee′

is defined as follows

e′ ∈ E ′, e′ = (X, y) if and only if

|X ∩ L(e)| = 1, ∀ e ∈ Ein(v) and

y ∈
|Eout(v)|⋃

i=1

L(ei), ei ∈ Eout(v) and

U(y) ∈ 〈
|X|⋃
i=1

U(xi)〉, xi ∈ X

The above definition implies that if the global encoding vector of an outgoing
edge lies within the linear span of the set of global encoding vectors of incoming
edges, there should be an edge connecting the corresponding nodes inG′. Since
the linear network coding assignment is over GF(2) withh = 2, any set of more
than two global encoding vectors are linearly dependent. Thus it is sufficient to
consider edges(X, y) where|X| ≤ 2. Specifically, for every two incoming edges
e1 ande2 and an outgoing edgee3, there are3 + 6 × 3 = 21 edges between them.
The first term3 represents the3 edges where the global encoding vectors of two
incoming edges are the same. In this case the linear span contains only one vector
which is the same as the global encoding vectors of incoming edges. The second
term6× 3 means that there are6 different combinations of global encoding vectors
of incoming edges which are linearly independent. Thus the linear span contains
all the3 possible vectors. For each such combination, there are3 edges connecting
it to the nodes corresponding to the outgoing edge with3 different global encoding
vectors respectively. Fig.2.3 shows all the21 edges. For simplicity, we omit the
edges with the same edge tails. In the figure, the edges are differentiated by their

21

colors and line styles. The nodes connected by the lines of the same color and style
are connected by an edge. The rightmost node is the edge head and the rest of the
nodes belong to the edge tail. For example, the three bold (black) lines represent
the three edges of the first term. Nodea, f andg are connected by the dot-dash
(red) line, which represents edge({(e1, (0, 1)), (e2, (1, 1))}, (e3, (0, 1))). The other
two edges with the same edge tail are({(e1, (0, 1)), (e2, (1, 1))}, (e3, (1, 0))) and
({(e1, (0, 1)), (e2, (1, 1))}, (e3, (1, 1))).

p
q

v

incoming outgoingincoming
vector
edge

(0,1)

(1,0)

(1,1)

b

fc

a g

h

i

d

e

edge eedge e1 edge e2 3

Figure 2.3:Edge construction inG′.

We have the following property concerning the edge construction.

Property 1 For a nodev with p incoming edges andq outgoing edges, the total
number of mapped edges is: (i)3q, whenp = 1; (ii) 21

2
p(p− 1)q, whenp > 1.

Proof: Case 1:p = 1. In this case, since there is only one incoming edge,
the only operation the node can perform is forwarding. For each outgoing edge,
there are three edges connecting the nodes corresponding to the incoming edge and
the outgoing edge with the same global encoding vector. Thus the total number of
edges is3q.

Case 2:p > 1. As mentioned earlier, only edgese′ = (X, y) with |X| ≤ 2 need
to be considered. From Fig.2.3, we can see that given a node inL(e1) = {a, b, c}
and a node inL(e3) = {d, e, f}, there is always an edge connecting the two nodes
regardless of the global encoding vector of the second incoming edgee2. In other
words, for any edge(X, y) with |X| = 1, we can always find another edge(X ′, y)
with |X ′| = 2 andX ⊂ X ′ to replace the edge without violating other constraints.
Therefore we only need to count edges(X, y) with |X| = 2. p incoming edges have
p(p − 1)/2 different combinations of two different incoming edges. Given one of
these combinations and one outgoing edge, there are 21 edges between them. Thus
the total number of edges is21

2
p(p− 1)q.

22

A pathP ′ in G′ is defined as a sequence of edges

P ′ = e′1e
′
2 . . . e′m, e′i ∈ E ′, i ∈ {1, 2, . . . , m} such that

head(e′i) ∈ tail(e′i+1), ∀ i ∈ {1, 2, . . . ,m− 1}

Given a pathP ′ in G′, we can always find a corresponding pathP in G:

P = v1v2 . . . vm+1 such that

vi = tail(e(head(e′i))), ∀ i ∈ {1, 2, . . . , m} and

vm+1 = head(e(head(e′m))) (2.3)

An edge in pathP corresponds to a node in pathP ′. An edge in pathP ′ cor-
responds to a node in pathP as well. A node in pathP ′ not only determines an
edge inP , but also determines the global encoding vector of the edge. Connecting
multiple nodes, an edge in pathP ′ determines the linear coding operation on the
corresponding nodev in pathP with each connected node representing an incom-
ing edge or outgoing edge of nodev. Since only compatible nodes are connected
by an edge, it is possible for nodev to perform the linear network coding.

PathP ′ not only determines a corresponding pathP in G, but also determines
a message flow over pathP . A message flowover a pathP = v1v2 . . . vm+1 defines
the global encoding vectors of incoming edges of nodes in{v1, v2, . . . , vm} by func-
tion SP (e) ∈ {(0, 1), (1, 0), (1, 1)}, e ∈ ⋃m

i=1 Ein(vi) such thatSP ((vi, vi+1)) ∈
〈⋃|Ein(vi)|

j=1 SP (ej)〉, ej ∈ Ein(vi), ∀ i ∈ {1, 2, . . . , m}. From the definition we can
see that a message flow over a pathP gives an assignment of global encoding vec-
tors along the pathP which is a subset of a linear network coding assignment. On
the other hand, given a linear network coding assignment and a pathP , the global
encoding vectors along the path form a message flow. Based on this observation,
we propose an iterative refinement algorithm to find a valid linear network coding
assignment by finding the message flows inG′. We will discuss the algorithm in
detail in Section2.2.

For a linear network coding assignment to be valid, the rank of the matrix com-
posed by the global encoding vectors of the edges inEout(s) must beh which is2.
A feasible sourceF is defined to describe a feasible set of global encoding vectors
of the edges inEout(s).

F ⊂ V ′, |F | = |Eout(s)|
∀ e ∈ E, |F ∩ L(e)| =

{
0 e /∈ Eout(s)
1 e ∈ Eout(s)

Rank(U(v′1), U(v′2), . . . , U(v′|F |)) = 2,

v′i ∈ F, i ∈ {1, 2, . . . , |F |}

23

Given a feasible sourceF , not every node inG′ is feasible. i.e. for some edges,
a certain global encoding vector is not possible in any valid linear network coding
assignment. For a node inG′ to be feasible, it must be on a path originated from
one of the nodes inF . This path corresponds to a message flow which indicates
how the messages are encoded along the path. The infeasible nodes and the related
edges can be deleted fromG′. Fig. 2.2shows the pseudo-dual hypergraphG′ of the
multicast network in Fig.2.1 whereF = {(e1, (1, 0)), (e2, (0, 1))}. The feasible
nodes are colored in black while the infeasible nodes are colored in white. Here we
omit the edges connecting infeasible nodes. For each edge, the rightmost node is
the edge head and the rest of the nodes form the edge tail.

A coverT in G′ is defined as a set of nodes such that

T ⊂ V ′, |T ∩ L(e)| = 1, ∀ e ∈ E (2.4)

Therefore, a cover contains|E| nodes from|E| different groups. A cover defines
the global encoding vectors of all edges inG. Thus any linear network coding
assignment can be represented by a cover, but not every cover represents a linear
network coding assignment. As we mentioned earlier, given a linear network coding
assignment and a pathP in G, the corresponding pathP ′ in G′ must be a message
flow over P . If we consider graphG as a union of multiple paths starting from
the source node, in the pseudo-dual graphG′, a cover represents a linear network
coding assignment if and only if for every node in the cover, there is a path from
a node in

⋃|Eout(s)|
i L(ei), ei ∈ Eout(s) to it and the path contains the nodes in the

cover only. A cover represents a valid linear network coding assignment if and only
if the cover represents a linear network coding assignment and for each receiver,
the rank of the matrix composed by the global encoding vectors of incoming edges
is h.

Given the multicast networkG, the source nodes, the receiver setR and the
pseudo-dual graphG′, we formalize the conditions for a coverT to be a valid linear
network coding assignment into following three constraints:

1. ∃F ⊂ T such thatF is a feasible source;

2. ∀ v′ ∈ T \ F, ∃P ′ = (e′1e
′
2 . . . e′k), P

′ is a path inG′, such thattail(e′1) ⊂
F and head(e′k) = v′ andtail(e′i) ⊂ T, ∀ i ∈ {2, 3, . . . , k};

3. ∀ v ∈ R, Rank(U(v′1), U(v′2), . . . , U(v′|Ein(v)|)) = 2, wherev′i ∈ T, head(e(v′i)) =

v, ∀ i ∈ {1, 2, . . . , |Ein(v)|}.
We call the three constraintsvalid linear code constraints.
Based on the above discussions, we have the following theorem.

24

Theorem 3 Finding a valid linear network coding assignment in a multicast net-
work is equivalent to finding a coverT in its pseudo-dual graphG′ which satisfies
the valid linear code constraints.

If we add an artificial nodevorigin in G′ such that there is an edge fromvorigin

to all the nodes in
⋃|Eout(s)|

i=1 L(ei), ei ∈ Eout(s), the first two constraints can be
combined and rewritten as follows.

∀v′ ∈ T, ∃P ′ = (e′1e
′
2 . . . e′k), P ′ is a path inG′, such that

tail(e′1) = vorigin, head(e′k) = v′ and

tail(e′i) ⊂ T, ∀i ∈ {2, 3, . . . , k}.

2.2 An Iterative Refinement Algorithm for Finding
an Eligible Cover

In the previous section, we transform the linear network coding problem into a
graph theory problem. The problem of finding a valid linear network coding as-
signment is formalized into a problem of finding a cover in the hypergraph. In this
section, we propose an iterative refinement algorithm that can find an eligible cover
satisfying the valid linear code constraints in polynomial time.

A naive way to find an eligible cover is to use a brute force method, i.e. to try
every possible cover until an eligible cover is found. Apparently, this method is
impractical and time consuming because there are a total of(2h − 1)|E| different
covers.

Since an eligible cover must be able to construct paths from nodevorigin to
the nodes corresponding to incoming edges of receivers, and for each receiver the
nodes corresponding to incoming edges must satisfy the second valid linear code
constraint, we can find an eligible cover by finding these paths one by one. Based on
this idea, we present the following iterative refinement algorithm to find an eligible
cover.

Step 1: For each receiver, select a combination of global encoding vectors of the
receiver which are linearly independent, and group the corresponding nodes
in G′ into a setZ. For each nodev′ in Z, delete the nodes in the same group
asv′. Let the resulting graph beG′′;

Step 2: If Z is NULL, outputT as an eligible cover. If not, pick a nodev′ from Z,
and deletev′ from Z, then find a path fromvorigin to v′ overG′′. If no such
a path exists, select the next combination, and go to Step 1; if such a path
exists, go to Step 3;

25

Step 3 : For each newly added node in the path found in Step 2, put it in setT , delete
other nodes in the same group and the corresponding edges and nodes inG′′,
and go to Step 2.

In the first step, if the receiver hasp incoming edges, there are3p(p − 1) dif-
ferent combinations of global encoding vectors which are linearly independent. In
fact, if there are some constraints on feasible sourceF , we can delete some impos-
sible combinations by checking the feasibility of the nodes in the combination. A
combination is possible only if all the nodes are feasible.

As for the second step, it is a generalization of the problem of finding a directed
path in a directed graph. A common way is to use a depth-first search or width-
first search starting from the start node of the path until the end node of the path is
found. This method can be used to find a directed path in our hypergraph. We first
transform hypergraphG′′ to a graphGt = (Vt, Et) according to the following rules:

1. Vt = V ′′;

2. et ∈ Et, et = (xt, yt) if and only if e′′ ∈ E ′′, e′′ = (X, y) and xt ∈ X

It is easy to see thatGt is a directed graph with each edge connecting two nodes.
After finding a path inGt using a depth-first search or width-first search, we map
this path back to a path inG′′.

After a new path is determined in the second step,G′′ should be updated before
searching the next path. Two types of nodes and the corresponding edges will be
deleted. The first type is the nodes in the same group as the newly added node and
the second type is the nodes which are not feasible after the first type of nodes are
deleted. The first type of nodes can be easily identified and deleted. The second
type of nodes can be tracked along the path originated from the first type of nodes.
Table2.2 lists the pseudo-code of the algorithm used in Step 3.

Fig. 2.4gives an example of eligible covers of the pseudo-dual hypergraph for
the network in Fig.2.1. Fig. 2.4(a) shows an eligible cover when the incoming
global encoding vectors ofr1 are (1,0) and (1,1), and the incoming global encoding
vectors ofr2 are (0,1) and (1,1). Fig.2.4(b) shows an eligible cover when the
incoming global encoding vectors ofr1 are (1,0) and (0,1), and the incoming global
encoding vectors ofr2 are (1,1) and (0,1).

We have the following theorem concerning the complexity of the refinement
algorithm.

Theorem 4 For a given number of receivers, the iterative refinement algorithm can
find an eligible cover in polynomial time.

Proof: Let n1, n2, . . . , n|R| be the numbers of incoming edges of receivers and
the upper bound on these numbers beNR. In the worst case, the algorithm will

26

Table 2.2:Redundant Nodes Deletion Algorithm
INPUT: newly added nodev′

OUTPUT: updatedG′′

BEGIN
1 Delete the nodes in the same group asv′;
2 Vd = v′;
3 while Vd 6= NULL
4 pick a nodevd in Vd;
5 if e(vd) is the last incoming edge ofhead(e(vd))
6 such that there is only one node ofL(e(vd)) left in G′′

7 foreachedgee in Eout(head(e(vd)))
8 if e has only one possible global encoding vectorUe

9 add node(e, Ue) into Vd;
10 delete other nodes in groupL(e);
END

try all possible combinations in Step 1, which has
∏|R|

i=1 3ni(ni − 1) different com-
binations. For each combination, Step 2 has to find paths fromvorigin to

∑|R|
i=1 ni

different nodes iteratively. Based on these paths, Step 3 deletes redundant nodes
and edges. As the nodes and edges can only be deleted once for all the paths, the
time for Step 3 isO(|V ′| + |E ′|) for each combination. The time to find a path in
G′ is O(|V ′|+ |E ′|). Thus the total time for finding an eligible cover is

|R|∏
i=1

3ni(ni − 1)(

|R|∑
i=1

ni ×O(|V ′|+ |E ′|) + O(|V ′|+ |E ′|))

= O(N2|R|+1|R|(|E|+ |V |N2M)).

Considering thatN andM are constants and|R| is given, the time for finding an
eligible cover is polynomial with respect to|V | and|E|.

As we can see, the time complexity of the algorithm depends on the size of
hypergraphG′. To further reduce the size ofG′, we can optimize graphG before
transformation, which is calledmerging. Merging can be used when there exists a
nodev in G with one incoming edge and multiple outgoing edges. Clearly, such
a node can only forward messages from the incoming edge to outgoing edges. In
the pseudo-dual graphG′, this case can be represented by a hyperedge connecting
the one node representing the incoming edge and the other two nodes representing
the two outgoing edges and all three nodes are mapped to the same global encoding
vector. As their global encoding vectors are the same, we can further reduce the

27

(1, 0)

(0, 1)

(1, 1)

group
e1

group
e2

group group
e3

group
e5

group
e6

group
e7

group
e8

group
e9e4

v_origin

(a)

(1, 0)

(0, 1)

(1, 1)

group
e1

group
e2

group group
e3

group
e5

group
e6

group
e7

group
e8

group
e9e4

v_origin

(b)

Figure 2.4: An example for eligible covers of the pseudo-dual hypergraph. (a) An el-
igible cover whenF = {(e1, (1, 0)), (e2, (0, 1))}. (b) An eligible cover whenF =
{(e1, (1, 0)), (e2, (1, 1))}.

graph size by merging the three nodes without altering the result of the algorithm.
Specifically, we use one node to represent the three nodes and delete the hyperedges
between them. In practice, we first find a node with only one incoming edge in the
topology graph. Then we execute the merging on the corresponding nodes in the
hypergraph. The process is performed repeatedly until there is no such a node to be
found. Fig.2.5shows one of the eligible covers after merging.

2.3 Extensions to General Minimal Network Coding
Problems and Generalizations

It should be pointed out that the main purpose of the proposed hypergraph method
is not to find a linear network coding assignment for a multicast network, instead,

28

group
e2,e5,e6

(1, 0)

(0, 1)

(1, 1)

group group
e1,e3,e4 e7,e8,e9

v_origin

Figure 2.5:An eligible cover of the pseudo-dual hypergraph after merging.

is to provide a unified solution for a series of minimal network coding problems.
This is the primary advantage that makes the proposed approach superior to other
existing linear network coding construction algorithms. In fact, the method can be
applied to many minimal network coding problems discussed in [19]. Next, we use
two examples to illustrate how to extend the method to solve these problems.

In some applications, we may want to minimize the number of packets experi-
encing coding. This is particularly the case in optical networks where a conversion
from optical signals to electrical signals is needed in order to encode the packets.
To achieve this, we can add more weight to the edges inG′ that experience message
encoding. For example, edge((1, 0), (1, 0), (1, 0)) means that the corresponding
node forwards one of the messages from two incoming edges to the outgoing edge,
edge((1, 1), (1, 0), (1, 0)) means that the corresponding node forwards the message
from the second incoming edge to the outgoing edge, and edge((1, 1), (1, 0), (0, 1))
means that the corresponding node encodes the messages from two incoming edges
before sending it to the outgoing edge. Note that in Step 2 of the algorithm for
finding an eligible cover, we always find the minimum weight path for each node in
Z.

In other applications, we may want to minimize the number of nodes performing
coding, i.e. to maximize the number of nodes that only forward messages. To
achieve this, we can construct the edges by considering all the incoming edges and
outgoing edges. For a nodev with p incoming edges andq outgoing edges, there is

29

an edge(X, Y), X ⊂ V ′, Y ⊂ V ′ if

|X| = p, |Y | = q,

∀ e ∈ E, |X ∩ L(e)| =
{

0 e /∈ Ein(v)
1 e ∈ Ein(v)

∀ e ∈ E, |Y ∩ L(e)| =
{

0 e /∈ Eout(v)
1 e ∈ Eout(v)

∀v′y ∈ Y, U(v′y) ∈ 〈
p⋃

i=1

U(v′i)〉, v′i ∈ X

We can assign less weight on the edges where
⋃

U(v′y) ⊂ ⋃
U(v′x), v

′
y ∈

Y and v′x ∈ X and assign more weight on other edges. Similarly, the number
of nodes performing coding can be minimized by finding the minimum weight path
in G′′.

Next, we consider some generalizations of the method. We have focused on the
case forh = 2 so far. We now generalize the method to the case forh > 2.

For h > 2, the hypergraph construction is similar. Each edgee is mapped to
2h − 1 nodes inG′. There is an edge between the nodes if the global encoding
vector of the corresponding outgoing edge lies in the linear span of the set of global
encoding vectors of corresponding incoming vectors. If a nodev has more thanh
incoming edges, it is sufficient to consider the combination of less than or equal to
h incoming edges only. However, whenh > 2, it is likely that there does not exist
any valid linear network coding assignment for some network topologies. In this
case, no cover satisfies the valid code constraints unless it is permitted to use the
linear network coding assignments over a larger finite field. Suppose we use linear
network coding assignments over a finite fieldGF (n), the number of nodes inG′

mapped by one edge inG isnh−1. We can see that the size of the pseudo-dual graph
grows exponentially whenh increases. Thus, it is critical to reduce the size of the
feasible solution set whenh or field size is large. As the algorithm time complexity
is proportional to the number of nodes and edges in the hypergraph, we propose
to remove the redundant nodes or edges in the hypergraph to reduce the problem
size. Clearly, such removal should not alter the solvability of the problem and the
resulting hypergraph size should be small enough to apply the method in practice.
In the next section, we propose several efficient algorithms to remove the redundant
nodes and edges. These algorithms are called preprocessing algorithms because
they should be applied to the hypergraph before we apply the iterative refinement
algorithm to the hypergraph.

30

2.4 Preprocessing Algorithms

Before we introduce the preprocessing algorithms, we need to answer the following
question: Is it possible to reduce the graph size without altering the solvability of
the linear network coding problem? The answer to this question is yes based on
the following observation: for a multicast network with a certain multicast capac-
ity, there is at least one valid linear network coding assignment which can achieve
the multicast capacity. This can be directly inferred by the result in [15] that the
multicast capacity can be achieved by linear network coding. In other words, given
a multicast network and one of its subgraphs (the subgraph should include at least
the source and the receivers such that it is also a multicast network), there is always
a valid linear network coding assignment as long as the multicast capacity of the
subgraph is the same as the multicast network.

In this section, we discuss how to reduce the graph size in order to reduce the
consumed time of the iterative refinement algorithm. The basic idea is to find a
subgraph of the network topology graph such that both the source node and the re-
ceivers are in the subgraph and the multicast capacity of the subgraph is the same as
the original graph. Then we apply the hypergraph transformation to the subgraph to
find a valid linear network coding assignment. The linear network coding assign-
ment for the subgraph can be easily adapted and applied to the original graph by
assigning zero global encoding vectors to the edges which are in the original graph
but not in the subgraph.

As the procedure involves the processing of the graph before the transformation,
we call it preprocessing and the corresponding algorithms are called preprocessing
algorithms. Besides reducing the computation time of the iterative refinement algo-
rithm, preprocessing can save the network bandwidth consumption as well. Recall
that the linear network coding assignment constructed based on the subgraph needs
to be adapted before being applied to the original multicast network. The global
encoding vectors of the edges which are not in the subgraph are set to be zero. In
other words, the traffic is confined within the subgraph after preprocessing while
the multicast capacity is still achieved by the linear network coding assignment.
As a result, the network bandwidth is saved without sacrificing the performance.
Another merit of the preprocessing is that it is a general optimization for any lin-
ear network coding assignment, not only for the scheme specially designed for the
iterative refinement algorithm. In fact, any linear network coding construction al-
gorithm can apply the proposed preprocessing algorithms first before constructing a
linear coding assignment such that the graph size is reduced and the network band-
width is saved. We will evaluate the performance of the preprocessing algorithms
in terms of computation time and network bandwidth in Section2.5.

It should be mentioned that the merging method discussed in the previous sec-
tion is a type of preprocessing to reduce the size of the hypergraph. In this section,

31

we consider the preprocessing in depth by giving several different preprocessing
algorithms with respect to different optimization objectives.

2.4.1 Greedy Preprocessing Algorithm

Theoretically, we can pick any subgraph with the same multicast capacity as the
original graph. Here we want to minimize the size of the subgraph. Thus our
goal is to find a minimal subgraph with the same multicast capacity. By a minimal
subgraph we mean that if any node or edge is removed from the subgraph, the
multicast capacity becomes smaller.

Recall that multicast capacity is the minimum of the maximum flows from the
source to each receiver. For a multicast network with multicast capacityh, it is guar-
anteed that there areh edge-disjoint paths between the source and each receiver. A
straightforward way to find the minimal subgraph is to find theh edge-disjoint paths
for each receiver and add the paths to the subgraph one by one. However, the sub-
graph generated this way is not good enough as it does not consider minimizing the
numbers of nodes and edges when searching for the paths. Therefore, we propose
the first preprocessing algorithm which is called greedy minimal subgraph algo-
rithm as shown in Table2.3, whereR is the set of receivers andT is the union of
the paths that have been found. In the greedy minimal subgraph algorithm, we al-
ways find the shortest paths between the source and the receiver so that the numbers
of nodes and edges are minimized in each iteration.

Table 2.3:Greedy Minimal Subgraph Algorithm
INPUT: GraphG
OUTPUT: SubgraphGs

BEGIN
1 Gs = NULL;
2 foreach receiver r ∈ R
3 T = {};
4 do
5 Find a shortest pathp betweens andr in G− T ;
6 T = T + p ;
7 until h paths are found;
8 Gs = Gs + T ;
END

After applying the greedy minimal subgraph algorithm, the network topology
is “compressed.” Some nodes and edges are removed, which results in a reduced

32

hypergraph size. The “compression ratio” can be approximated as follows. Assume
that the number of nodes isN , and there exists a link between any two nodes with
probabilityp. Therefore, the average node degree isp∗(N−1), the number of edges
is approximatelyp∗N ∗(N−1)/2 and the diameter isd = log N/ log(p∗(N−1)).
As end hosts are usually at the edge of the network, we can use the diameter to
approximate the average path length from the source to the receivers. Ifh is the
multicast capacity, for any receiver the number of nodes on theh edge-disjoint
paths is(d − 1)h and the number of edges on theh paths isdh. That is, after the
greedy preprocessing algorithm, the number of nodes in the “compressed” graph
is at most(d − 1)hm and the number of edges is at mostdhm. The size can be
further reduced if there is overlap between the paths for different receivers. For
example, ifN = 500, p = 0.01, h = 2, andm = 20, the number of edges is
1, 247. After the “compression,” the number of nodes is about114, which is only
23% of the original graph, and the number of edges is about154, which is only12%
of the original graph. We can see that the preprocessing algorithm can reduce the
graph size dramatically. In Section2.5, we will evaluate the benefit brought by the
preprocessing algorithms in more detail through simulations.

After finding the subgraph, we can further reduce the size of the graph by delet-
ing a special type of nodes which are redundant to any valid linear network coding
assignment. When a node has one incoming edge and one outgoing edge, we say it
is redundant because the edge function of the outgoing edge can only be forward-
ing. As a result, the node and the outgoing edge can be deleted and the incoming
edge is connected to the next node of the deleted node. After the deletion, the mul-
ticast capacity is unchanged. The linear coding assignment based on the reduced
graph can be adapted to the original graph by making the global encoding vector
of the deleted outgoing edge equal to the global encoding vector of the incoming
edge.

2.4.2 Weighted Preprocessing Algorithms

In some cases, we want to minimize the number of nodes or edges with some prop-
erties when we construct the subgraph. For example, it is preferred to use the nodes
or edges which are already put in the subgraph to construct the path for a different
receiver to maximize the overlap of different paths. Whenh is large, it is preferred
to find a path that will not increase the maximum in-degree of the nodes in the sub-
graph, as the computation time is sensitive to maximum in-degree whenh is large.
We assign different weights to the nodes in such a way that the nodes with the
desired properties have higher weights and other nodes have lower weights. Now
finding a path in the graph becomes finding a minimum weight path in the graph.

Table2.4 shows the pseudo-code of the weighted minimal subgraph algorithm

33

which gives higher priority (lower weights) to the nodes or edges already in the
subgraph when finding the minimum weight path. Here the weight of the path is
the sum of the weights of the edges on the path. In each iteration, the number of new
nodes or edges put into the subgraph is minimized. As a result, the total number of
nodes and edges in the subgraph is also minimized.

Table 2.4:Weighted Minimal Subgraph Algorithm 1
INPUT: GraphG
OUTPUT: SubgraphGs

BEGIN
1 Set all the edges weights to1;
2 foreach receiver r ∈ R
3 T = {} ;
4 do
5 Find a minimum weight pathp betweens andr in G− T ;
6 T = T + p ;
7 until h paths are found;
8 Set the weights of the edges inG corresponding to the edges inT to 0;
9 Gs = Gs + T ;
END

Although the above algorithm minimizes the graph size by re-using the nodes
or edges as much as possible, one side effect is that the maximum degree of the
subgraph may increase due to the repeated re-use of the existing nodes. From the
time complexity analysis of the iterative refinement algorithm, we know that the
time has an order of the maximum in-degree of the graph to the powerh. When
h is large, the time consumed by the algorithm is more sensitive to the maximum
in-degree than to the graph size. Thus it is critical to limit the maximum in-degree
whenh is large. To achieve this, we propose the second weighted minimal subgraph
algorithm as shown in Table2.5. In the algorithm, we assumeW is the set of nodes
with the maximum in-degree inGs. The algorithm marks the nodes that have the
most number of incoming edges after previous iteration and assign these nodes
with higher weights (lower priority). Then in the next iteration, the algorithm finds
a minimum weight path to minimize the maximum in-degree. Here the weight of
the path is the sum of the weights of the nodes on the path.

Unlike the greedy preprocessing algorithm, it is difficult to approximate the
“compression ratio” of the weighted preprocessing algorithms as it depends on the
positions and the join orders of the receivers. However, the first weighted prepro-
cessing algorithm will always achieve a “compression ratio” no less than that of

34

Table 2.5:Weighted Minimal Subgraph Algorithm 2
INPUT: GraphG
OUTPUT: SubgraphGs

BEGIN
1 Set all the nodes weights to1;
2 foreach receiver r ∈ R
3 T = {} ;
4 do
5 Find a minimum weight pathp betweens andr in G− T ;
6 T = T + p ;
7 until h paths are found;
8 Set the weights of nodes inW in G to 0 and the weight of other nodes to1;
9 Gs = Gs + T ;
END

the greedy preprocessing algorithm, because it maximizes the reusability of the ex-
isting nodes. As for the second weighted preprocessing algorithm, it may have a
lower “compression ratio” than the greedy preprocessing algorithm, because it may
adopt longer paths for a lower maximum degree. We will further investigate their
performance through simulations in Section2.5.

Among the three preprocessing algorithms proposed in this section, each al-
gorithm has its own specific applications. The first weighted minimal subgraph
algorithm minimizes the number of nodes and edges of the subgraph without con-
sidering the maximum degree of the subgraph. Thus it is suitable for the network
topologies where the degree is small. The second weighted minimal subgraph algo-
rithm considers minimizing the maximum in-degree of the subgraph, which makes
it suitable for the network topologies where the degree is large andh is large. When
the degree is large buth is small, it is preferred to use the greedy minimal subgraph
algorithm as the time is less sensitive to the maximum in-degree and the greedy
algorithm achieves the best balance between minimizing the graph size and mini-
mizing the maximum in-degree of the subgraph.

2.5 Performance Evaluations

We have conducted extensive simulations to evaluate the effectiveness and effi-
ciency of the proposed unified approach and preprocessing algorithms. We present
the simulation results in this section.

35

2.5.1 Simulation Setups

The simulations are composed of two parts: first, we evaluate the performance of
the preprocessing algorithms by observing how much the graph size can be reduced
and how much time can be saved; second, we evaluate the multicast performance
with network coding compared to that without network coding.

We first describe the simulation settings for the performance evaluation of the
preprocessing algorithms. We implement the three preprocessing algorithms in C
language and compile with GCC 3.4.3 on RedHat Enterprise Linux Version 4. The
simulations are run on a Linux server with two 64-bit Intel Xeon processors at
3.8GHz and 8GB DDR-2 400 SDRAM. The network topologies are random topolo-
gies generated by GT-ITM [27] which is a degree-based Internet structural topology
generator. The number of the nodes in the topology is a tunable parameter. Each
pair of nodes are connected by a link with some probability that is also tunable.
The randomness of the topology is the result of the link probability. As GT-ITM
can only generate undirected graphs, we extend the generated undirected graphs
to directed graphs by replacing each link with two directed links. The source and
the receivers are chosen from the nodes randomly. The multicast capacity is deter-
mined after we choose the source node and the receivers. We change the tunable
parameters to obtain network topologies with different multicast capacities.

We observe two performance metrics when evaluating the performance of the
preprocessing algorithms:

• Graph size: Graph size is defined as the sum of the number of nodes and
edges in the graph. The reason to use the sum instead of use them separately
is that both the number of nodes and edges play similar roles in the time con-
sumption based on the time complexity analysis of the iterative refinement
algorithm: given the other parameters, the time complexity is linear in terms
of either the number of nodes or that of edges. As the purpose of the pre-
processing algorithms is to reduce the graph size, it is necessary to take this
metric into consideration.

• Computation time: Computation time is defined as the time needed for the
executable program compiled from the source code of the algorithm to finish
on the dedicated Linux server. Graph size alone is not sufficient to evaluate
the performance of the preprocessing algorithms as the time complexity of the
algorithms also depends on other factors such as the maximum in-degree of
the nodes. We use computation time to reveal how much time the algorithm
needs and how much time it can save compared to other algorithms. Since
the time is the virtual simulation time in NS2, the time unit is virtual as well.

Besides evaluating the performance of the preprocessing algorithms, we also
evaluate the gain of network coding when applied to a multicast network compared

36

to that using multicast trees. The multicast tree approach is a common way to
do multicast without network coding. A multicast tree is a Steiner tree spanning
the source node and the receivers [28]. Although traditional multicast routing al-
gorithms usually construct a single multicast tree, here we consider constructing
multiple edge-disjoint multicast trees to maximize the utilization of network band-
width of this approach. The approach of multiple multicast trees is widely used in
overlay multicast [29, 30]. Given a multicast network, the problem of finding the
maximum number of edge-disjoint multicast trees is called the Steiner tree pack-
ing problem and it had been shown to be NP-hard [31]. There are some works on
the approximation algorithms and the bound of approximation ratio, see, for exam-
ple, [32]. As the graphs discussed in this chapter have uniform link weights, we
can adopt a simple heuristic rule to find the maximum number of multicast trees:
The multicast trees are constructed in sequence: after a multicast tree is found, it is
deleted from the graph, then the next multicast tree is found on the remaining graph,
until no multicast tree exists. Although the simple heuristic does not guarantee an
approximation ratio, it simplifies the implementation and provides a practical way
to demonstrate the performance gap between these two schemes. As our goal is to
evaluate the performance gap instead of obtaining an accurate theoretical bound,
the simple heuristic is sufficient to satisfy our need.

We use NS-2 [33] as the network simulator. The network topologies we use
are the same random topologies as that generated in the previous simulations. The
source node sends data messages to all the receivers at a constant rate. To eliminate
the randomness caused by the random topologies, for each simulation, we generate
10 random topologies. We run the simulation on the10 random topologies and take
the average of the10 simulation results as the final result.

The simulations adopt following two performance metrics:

• Throughput: Throughput is defined as the service the system provides in one
time unit. We let the source node send messages at a constant rate. Each
message contains a sequence number which indicates its position in the mes-
sage stream. After a certain period of time, we stop the message stream. The
throughput is represented by the largest sequence number of the message that
is received by all the receivers.

• Bandwidth consumption: We defined the network bandwidth used to deliver
the messages as bandwidth consumption. As there are no control messages
involved in the delivery, the bandwidth consumption is only caused by data
messages. A data message going through one link contributes1 unit to the
bandwidth consumption.

37

2.5.2 Performance Evaluation of Preprocessing Algorithms

We first evaluate the performance of the preprocessing algorithms.
Fig. 2.6(a) shows the simulation results of the graph size under different net-

work sizes. The sizes of the random network topologies range from 20 to 100.
The multicast capacity is fixed at3. The number of the receivers is fixed at8. We
can see that the original algorithm has the largest number of nodes and edges. All
of the three preprocessing algorithms can effectively reduce the number of nodes.
The decrease is more evident when the network size is large. Among the three
preprocessing algorithms, the first weighted algorithm achieves the smallest num-
ber of nodes and edges. The performance of the greedy algorithm and the second
weighted algorithm is similar. When the network size is100, the first weighted al-
gorithm can reduce the number of nodes and edges by about40% compared to the
original algorithm.

Fig. 2.6(b) shows the computation time evaluation under different network
sizes. The original algorithm needs more time to complete than other three pre-
processing algorithms. An interesting observation is that the second weighted al-
gorithm needs the shortest computation time. This is another evidence that the
proposed hypergraph approach is sensitive to the maximum in-degree of the graph.
Compared to the original algorithm, the second weighted algorithm can reduce the
computation time by24% when network size is100.

Fig. 2.7(a) shows the evaluation of the graph size under different multicast
capacity (h) values. To compare the algorithms by the same criteria we use the
same network topology whose multicast capacity is4. The results forh = 2 or 3
are achieved by finding only2 or 3 edge-disjoint paths in the corresponding algo-
rithms. The network size is fixed at200. The number of receivers is fixed at8.
As the original algorithm does not process the graph before the transformation, the
numbers of nodes and edges remain the same under differenth values. Among the
three preprocessing algorithms, the first weighted algorithm achieves the smallest
number of nodes and edges, while the second algorithm has the largest number of
nodes and edges. With the increase ofh values, the difference between the original
algorithm and the preprocessing algorithms becomes smaller. This is because that
the size of subgraph increases ash increases.

Fig. 2.7(b) shows the computation time evaluation under different multicast
capacity (h) values. Similarly, the original algorithm needs more time to complete
than the three preprocessing algorithms. However, the second weighted algorithm
needs the longest computation time among the three preprocessing algorithms when
h = 2. Whenh increases, the second weighted algorithm achieves less computation
time than the greedy algorithm and the first weighted algorithm. It indicates that
it is preferred to use the second weighted algorithm whenh is large and use the
greedy algorithm or the first weighted algorithm whenh is small.

38

20
 40
 60
 80
 100

50

100

150

200

250

300

350

G
ra

ph
 s

iz
e

Network size

 Original

 Greedy

 Weighted 1

 Weighted 2

(a)

20
 40
 60
 80
 100

0

10

20

30

40

50

C
om

pu
ta

tio
n

tim
e

Network size

 Original

 Greedy

 Weighted 1

 Weighted 2

(b)

Figure 2.6:The performance comparison of the preprocessing algorithms under different
network sizes. (a) Graph size evaluation; (b) Computation time evaluation.

Fig. 2.8(a) shows the evaluation of the graph size under different group sizes,
i.e. the number of receivers. The graph size of the original algorithm remains con-
stant as the graph is always the whole network topology regardless of the group
size. When the group size is small, all the three preprocessing algorithms can ef-
fectively “compress” the graph. For example, the graph size is only about30% of
the original size after applying the preprocessing algorithms when the group size is

39

2
 3
 4

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

G
ra

ph
 s

iz
e

Multicast capacity (h)

 Original

 Greedy

 Weighted 1

 Weighted 2

(a)

2
 3
 4

0

10

20

30

40

50

60

C
om

pu
ta

tio
n

tim
e

Multicast Capacity (h)

 Original

 Greedy

 Weighted 1

 Weighted 2

(b)

Figure 2.7:The performance comparison of the preprocessing algorithms under different
h values. (a) Graph size evaluation; (b) Computation time evaluation.

5. With the increase of the group size, the “compression ratio” becomes smaller.
However, the graph size after applying the preprocessing algorithms is still much
smaller than the original graph size.

Fig. 2.8(b) shows the computation time evaluation under different group sizes.
The computation time increases with the increase of the group size for all the algo-
rithms. Regardless of the group size, the original algorithm needs the most compu-

40

tation time, and the second weighted algorithm needs the least computation time.
The derivative of the curve of the original algorithm is clearly greater than that of the
three preprocessing algorithms, which means that the increase of the computation
time of the original algorithm is faster than that of the three preprocessing algo-
rithms. Therefore, the larger the group size, the more computation time is saved by
the preprocessing algorithms. When the group size is30, the computation time of
the second weighted preprocessing algorithm is only half of the original algorithm.
Note that the percentage of saved computation time in this figure is higher than that
in Fig. 2.6. This is because that we adopted a larger network size to accommodate
larger group sizes in this simulation. The figures also indicate that the preprocess-
ing algorithms can effectively reduce the graph size especially when the ratio of the
group size to the network size is small.

2.5.3 Performance Evaluation of Network Coding on Multicast

In this subsection, we present our simulation results on the performance of net-
work coding compared to that of multiple multicast trees. We denote the multiple
multicast tree approach by MT and the network coding approach by NC.

Fig. 2.9shows the throughput evaluation under different group sizes whenh is 3
and4, respectively. Generally speaking, network coding achieves higher throughput
than MT. When the group size increases, the throughput of MT drops quickly be-
cause it is more difficult to find multiple edge-disjoint trees to span all the receivers.
On the other hand, the throughput of network coding becomes only slightly lower
with the increase of the group size. This is due to the increase of the average de-
lay from the source to the receivers as the group size increases. On average, the
throughput is increased by25% when applying network coding. Whenh increases,
both approaches achieve higher throughput.

Fig. 2.10shows the bandwidth consumption evaluation under different group
sizes. We can see that the original algorithm always consumes the most network
bandwidth because all the nodes and edges are used in the network coding assign-
ment construction. The greedy algorithm and the second weighted algorithm con-
sume similar network bandwidth which is about80% of that consumed by the orig-
inal algorithm. The first weighted algorithm consumes the least network bandwidth
when the group size is small, while the MT consumes the least network bandwidth
when the group size is large. This is because that when the group size is small, the
first weighted algorithm finds a small subgraph to construct the linear network cod-
ing assignment on. Thus the messages are only delivered on the subgraph. When
the group size is large, both the number of the delivered messages and the num-
ber of the multicast trees found by MT become smaller. As a result, the consumed
network bandwidth drops as well. For the three preprocessing algorithms, when

41

5
 10
 15
 20
 25
 30

100

150

200

250

300

350

400

450

G
ra

ph
 s

iz
e

Group size

 Original

 Greedy

 Weighted 1

 Weighted 2

(a)

5
 10
 15
 20
 25
 30

30

40

50

60

70

80

90

100

110

C
om

pu
ta

tio
n

tim
e

Group size

 Original

 Greedy

 Weighted 1

 Weighted 2

(b)

Figure 2.8:The performance comparison of the preprocessing algorithms under different
group sizes. (a) Graph size evaluation; (b) Computation time evaluation.

the group size increases, the network bandwidth consumption increases as well be-
cause more nodes and edges are involved in the coding. For the original algorithm,
the network bandwidth consumption drops slightly due to the minor decrease of the
throughput (the number of delivered messages).

42

2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

0

50

100

150

200

250

T
hr

ou
gh

pu
t

Group size (h=3)

 MT

 NC

(a)

2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16
17
18
19
20
21
22

0

50

100

150

200

250

300

350

T
hr

ou
gh

pu
t

Group size (h=4)

 MT

 NC

(b)

Figure 2.9:The throughput comparison between network coding and multiple multicast
trees under different group sizes. (a)h = 3; (b) h = 4.

2.6 Summary

Network coding is a promising technique to improve the resource utilization in
multicast networks. In this chapter, we have proposed a formal approach which can
transform a linear network coding problem in multicast networks into a graph the-
ory problem. Under such transformation, a valid linear network coding assignment
for a multicast network is mapped to a cover in a hypergraph satisfying some valid

43

2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

3200

3400

3600

3800

4000

4200

4400

4600

B
an

dw
id

th
 c

on
su

m
pt

io
n

Group Size

 MT

 Original

 Greedy

 Weighted 1

 Weighted 2

Figure 2.10:The bandwidth consumption comparison between network coding and mul-
tiple multicast trees under different group sizes.

code constraints. Given the minimum cut of the multicast network and the number
of receivers, an eligible cover can be found in polynomial time with the proposed
iterative refinement algorithm. In addition, the proposed preprocessing algorithms
can effectively reduce the network bandwidth consumption and the computation
time, which makes it practical to apply this approach to a large network. Our sim-
ulation results show that with the increase of the network size, more computation
time can be saved. For example, for a network with hundreds of nodes, about
40 − 50% of the computation time can be saved. Finally, the system with network
coding achieves25% higher throughput and less network bandwidth consumption
compared to the system with the multiple multicast tree approach.

44

Chapter 3

Peer-to-Peer File Sharing Based on
Network Coding

In the last several years, the Internet has witnessed tremendous increase of differ-
ent types of web-based applications, ranging from web-based file sharing to video
broadcasting/conferencing. Web-based applications have gained more and more in-
terests due to the flexibility and easy accessibility. Many such applications involve
one source (server) and multiple destinations (receivers). However, due to lack of
multicast support over the Internet, these applications usually suffer from the scal-
ability problem, which limits the number of receivers involved.Peer-to-peeris a
promising technology that can implement multicast at the application layer. By
incorporating peer-to-peer technology into web-based applications, the scalability
problem can be eliminated.

In this chapter, we consider applying peer-to-peer technology and network cod-
ing to file sharing services, in which a web server or a file server holds a file that is
requested by multiple clients (receivers). The topology of such an application can
be represented by a multicast network. When peer-to-peer technology is used, the
receivers help forward the file for each other besides receiving the file.

Peer-to-peer (overlay) networks are a perfect place to apply network coding due
to two reasons: the topology of a peer-to-peer network is constructed arbitrarily. It
is easy to tailor the topology to facilitate network coding; the nodes in a peer-to-
peer network are end hosts which can perform more complex operations such as
decoding and encoding than simply storing and forwarding messages. In [34], lin-
ear network coding was applied to application layer multicast, in which a rudimen-
tary mesh graph is first constructed, and on top of it a rudimentary tree is formed.
Then a multicast graph is constructed, which is a subgraph of the rudimentary mesh
and a supergraph of the rudimentary tree. The multicast graph constructed this
way is 2-redundant, which means that each receiver has two disjoint paths to the
source. By taking advantage of the 2-redundancy property of the multicast graph, a

45

light-weight algorithm generates a sequence of 2-dimensional transformation vec-
tors which are linearly independent. These vectors are assigned to the edges as their
edge functions. However, the paper did not discuss how to process dynamic joining
or leaving of peers, while dynamic membership is a common phenomenon in peer-
to-peer networks. Moreover, the 2-redundancy property limits the minimum cut of
the multicast graph, which in turn limits network throughput.

In [35], random network coding was applied to content distribution, in which
nodes encode their received messages with random coefficients. Compared to de-
terministic network coding, random network coding is inherently distributed. In
random network coding, nodes can determine the edge functions of its outgoing
edges independently by generating random coefficients for the edge functions. The
advantage of random network coding is that there is no control overhead to con-
struct and maintain a linear coding assignment among nodes. However, the global
encoding vectors of a receiver’s incoming edges may not be linearly independent.
In other words, a receiver may not recover the original messages even it receivesk
or more messages (herek is the multicast capacity of the multicast network). To
reduce the probability of failing to decode messages, it is required to encode over a
very large field. Another drawback of random network coding is the increased data
traffic. As there is no deterministic path for data delivery, all the nodes take part in
relaying the data to the receivers even if it is not necessary. As a result, the same
message may be transmitted through the same link multiple times.

In this chapter, we aim at providing an efficient and reliable file sharing service
over peer-to-peer networks by utilizing network coding. We call itPeer-to-Peer
FilE sharing based on nEtwork coDing, or PPFEED for short. We utilize a spe-
cial type of network with a regular topology calledcombination network. It was
demonstrated in [20] that when the network size increases, this type of network can
achieve unbounded network coding gain measured by the ratio of network through-
put with network coding to that without network coding. The basic idea of PPFEED
is to construct an overlay network over the source and the receivers such that it can
be decomposed into multiple combination networks. Compared to [34], our ap-
proach can accommodate dynamic membership and construct a much simpler over-
lay network topology in differentk values. Compared to [35], our network coding
construction scheme is deterministic, which means that the validity of the network
coding assignment is guaranteed. The data traffic is then minimized so that the
same messages are transmitted through an overlay link at most once. Also, system
reliability is improved dramatically with little overhead. In addition, PPFEED can
be extended to support link heterogeneity and topology awareness.

46

3.1 Deterministic Linear Coding over Combination
Networks

One of the advantages of network coding is that it can increase network through-
put by achieving multicast capacity.Network coding gainis defined as the ratio
of throughput with network coding to that without network coding. Clearly, it is
always greater than or equal to1. When applying network coding to a multicast
network, the gain depends on the topology of the multicast network. For example,
if the topology of a multicast network is a tree, i.e. the source is the root of the tree
and the receivers are the leaves of the tree, network coding gain is1. Intuitively, if
each receiver has roughly the same number of disjoint paths to the source, the more
overlap among the paths, the larger network coding gain can be achieved.

A combination network is a multicast network with a regular topology. The
topology of a combination network is a regular graph which contains three types of
nodes:source node, relay nodeandreceiver node. A combination network contains
a source node which generates messages,n relay nodes which receive messages
from the source node and relay them to the receiver nodes, andCk

n receiver nodes
which receive messages from the relay nodes. There aren links connecting the
source node to then relay nodes respectively. For everyk nodes out of then relay
nodes, there arek links connecting them to a receiver node. Since there are a total
of Ck

n different combinations, the number of receiver nodes isCk
n. The capacity of

each link is1. Fig. 3.1shows a combination network forn = 4 andk = 2, usually
denoted as aC2

4 combination network. For clarity, the nodes are arranged into three
layers: the first layer contains only one node, the source node; the second layer
containsn relay nodes; the third layer containsCk

n receiver nodes.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

Source node

Relay node

Receiver node

Figure 3.1:Combination networkC2
4.

Combination networks have good performance with respect to network coding
gain. It was proved [20] that network coding gain is unbounded when bothn andk
approach infinity. For aCk

n combination network, the multicast capacity isk as each
receiver node hask disjoint paths to the source node. This implies that to achieve

47

the multicast capacity in a combination network, the minimum subgraph to deploy
network coding is the entire topology of the combination network.

We have discussed the good properties of combination networks. The next issue
is how to find a valid linear network coding assignment on a combination network.
As mentioned earlier, existing network coding methods can be classified into two
categories: random method and deterministic method. Random network coding
[36] assigns random mixing coefficients to the edges. This method can only ob-
tain a valid network coding assignment with a probability less than1. In [16], a
polynomial deterministic algorithm was proposed to construct a valid linear coding
assignment for any multicast network. However, it is a centralized algorithm which
requires all the topology information in advance. Moreover, since it is designed
for general topologies, it involves many complex processes such as keeping track
of the paths between the source and the receivers and maintaining an extra array to
facilitate linear independence test. On the other hand, for a multicast network with
a regular topology like a combination network, it is possible to design a tailored
linear network coding assignment which takes advantage of the regular topology
to achieve both effectiveness and efficiency. In this chapter, we propose a simple
deterministic linear coding construction scheme which can guarantee a valid linear
network coding assignment and achieveO(1) time complexity.

Before we go into details of our linear network coding construction, we first de-
termine an appropriate value fork, which is the multicast capacity of a combination
network. On one hand, given the number of relay nodesn, the network coding gain
reaches its maximum whenk = n/2 [20]. On the other hand,k should not be too
large because a largek will increase the link stress and overhead. Therefore, as a
tradeoff, in this chapter we only consider combination networks withn = 4, k = 2
or n = 6, k = 3 where the network coding gain is1.5 and2, respectively. The
n andk determine the size of the combination network. As we will see later, the
size of the overlay network is independent of the size of the combination network.
If we apply the samen andk to different overlay networks of various sizes, the
performance difference is very small.

As mentioned earlier, constructing a valid linear network coding assignment is
equivalent to assigning each edge a global encoding vector such that the vectors of
the incoming edges of a receiver are linearly independent. Suppose the source hask
symbols to multicast to the receiver nodes. In aCk

n combination network, there are
a total ofn+kCk

n edges. The firstn edges connect the source node ton relay nodes
with global encoding vectorsV ′

1 , V
′
2 , . . . , V

′
n. For each relay node, there arekCk

n/n
outgoing edges connecting it tokCk

n/n receiver nodes. As each relay node has only
one incoming edge, the global encoding vector of its outgoing edge is the global
encoding vector of its incoming edge multiplied by a constant. Since the constant
does not change the linear independence property, we only consider the case that the

48

constant is1. Each receiver hask incoming edges whose global encoding vectors
arek vectors out of then vectorsV ′

1 , V
′
2 , . . . , V

′
n. For a receiver node to decode

the original messages, thek global encoding vectors must be linearly independent.
Thus the main issue is how to find a set ofn k-dimensional vectors such that every
k vectors of then vectors are linearly independent.

SupposeGF (q) is a given Galois field, where|GF (q)| = q, GF = {0, 1, 2, . . . , q−
1}, q ≥ n. We give the rules for the linear network coding assignment construction
for C2

n andC3
n combination networks as follows.

1. The linear network coding construction scheme forC2
n combination network

is to assign vectors(1, α1), (1, α2), . . . , (1, αn), whereα1, α2, . . . , αn are dif-
ferent symbols inGF (q), to n edges connecting ton relay nodes as global
encoding vectors. The global encoding vectors of the edge outgoing from one
relay node is the same as the global encoding vector of the edge incoming to
the relay node.

2. The linear network coding construction scheme forC3
n combination network

is to assign vectors(1, α1, α
2
1 mod q), (1, α2, α

2
2 mod q), . . . , (1, αn, α2

n

mod q), whereα1, α2, . . . , αn are different symbols inGF (q), to n edges
connecting ton relay nodes as global encoding vectors. The global encoding
vectors of the edge outgoing from one relay node is the same as the global
encoding vector of the edge incoming to the relay node.

We have the following theorem concerning the linear network coding assign-
ment.

Theorem 5 The proposed linear network coding assignment for combination net-
works is valid.

Proof1: Case 1:k = 2. For any two vectors (1,α), (1,β), we evaluate the determi-

nant of matrix

(
1 α
1 β

)
. We have

1 α
1 β

= β − α (3.1)

Sinceα 6= β, the determinant is not equal to0. We conclude that the two vectors
are linearly independent.

1Since the mod operation is distributive over addition and multiplication, we omitmod q in
the equations.

49

Case 2:k = 3. For any three vectors (1,α, α2 mod q), (1, β, β2 mod q) and

(1, γ, γ2 mod q), whereγ > β > α, the determinant of matrix




1 α α2

1 β β2

1 γ γ2


 is

1 α α2

1 β β2

1 γ γ2

= βγ2 + αβ2 + α2γ − α2β − αγ2 − β2γ

= βγ(γ − β) + αβ(β − α) + αγ(α− β + β − γ)

= (β − α)(γ − β)(γ − α) (3.2)

Sinceα 6= β 6= γ, the determinant is not equal to0. We conclude that the three
vectors are linearly independent.

3.2 Peer-to-Peer File Sharing Based on Network Cod-
ing (PPFEED)

In this section, we present the PPFEED scheme that provides a peer-to-peer file
sharing service over the Internet. We first give an overview of PPFEED and describe
the basic idea of constructing an overlay network composed of multiple combina-
tion networks and applying network coding on the overlay network. Then we go
into details by describing the processes of peer joining/leaving and data dissemina-
tion. Finally, we discuss some optimizations which can improve the reliability and
resilience of the system.

3.2.1 Overview of PPFEED

We assume that there is a server holding the file to be distributed. Peers interested in
the file form an overlay network through which the file is distributed. The construc-
tion of the overlay network is based on the idea of combination networks. Similar to
the combination networks, there are two system parametersn andk in the overlay
network. The server encodes the file inton different messages using the linear net-
work coding assignment given in the previous section. Thus anyk messages out of
then messages can be used to decode the original file. The peers are divided inton
disjoint groups and each group is assigned a uniquegroup ID. Each group of peers
is responsible for relaying one of then encoded messages. To accelerate the distri-
bution of the messages, peers in the same group are connected by an unstructured
overlay network according to some loose rules. Each peer in a group is connected
to at least otherk − 1 peers which are ink − 1 different groups respectively.

50

Although the topology is constructed based on combination networks, it is more
a mesh network than a multi-tree network. If we color peers withn different col-
ors, the entire overlay topology can be looked as a mesh with the constraint that
each peer must be connected to at leastk peers withk different colors. Therefore,
PPFEED enjoys the scalability and resilience of a mesh network. In section3.4, we
will quantify its performance through simulations.

Fig. 3.2shows an example of the overlay network constructed by PPFEED for
n = 3 andk = 2. There are three groups of peers which are colored in black,
blue and red, respectively. The colored links represent corresponding messages
with arrows pointing to the transmission directions. We can see that each peer has
at least two links with different colors pointed to itself. All the peers are able to
decode the received messages.

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

Source node

Peers

Figure 3.2:An example overlay network constructed by PPFEED.

The overlay links are added to the system on demand as new peers join the
system. There are two key issues in the overlay network construction: first, how to
connect the peers in the same group; second, how to connect the peers in different
groups.

The first issue involves how to distribute then messages in a scalable way.
When the number of peers is small, it is acceptable to connect all the peers to the
source node, i.e. the server. When the number of peers increases, the peers resort
to each other instead of the server to distribute the messages. Here we adopt some
loose rules similar to the unstructured peer-to-peer network Gnutella [37]: for a
newly joined peer, it is responded by a random list of the existing peers, and the
new peer creates connections with these peers. The reason is three folds. First, it
is resilient to peer join. A new peer can be connected to any existing peer. Second,
the overlay construction and maintenance overhead is low. There are no constraints
on the overlay topology as long as it is connected. If some peers leave the system,
it is convenient for the rest of the peers to reconnect through the server. Third, it is
easy to flood messages on the resulting overlay network.

The second issue involves how the peers receive otherk−1 messages to decode
the messages. As anyk different messages can be used to decode, we only need to

51

find k − 1 peers in different groups. Since there aren − 1 eligible groups, we first
connect the peer tok − 1 random peers in different groups. Then perform a local
topology adjustment to find thek − 1 peers such that the average latency between
the peer andk − 1 peers is minimized.

Some erasure codes, such as Reed-Solomon or Tornado, have similar property
to PPFEED in terms of decoding the original messages from a group of encoded
messages. In [38], the authors have applied Tornado code to reliable distribution of
bulk data to a variety of heterogeneous population of receivers. The erasure codes
encode the original messages into a sequence of encoded messages such that any
subset of the encoded messages can be used to reconstruct the original messages as
long as the size of the subset is sufficiently large. However, they have different ob-
jectives and applications. The erasure codes are designed to avoid retransmissions,
while network coding is used to improve system throughput. In some applications,
retransmissions may be impossible or undesirable. For example, in multicast ap-
plications, retransmission requests may greatly overwhelm the sender if the group
size is large. In satellite networks, where the back channel has high latency and
limited capacity, retransmission requests are costly and unreliable. With the erasure
codes, the sender can keep sending the sequence of encoded messages regardless of
whether the receivers receive them or not. As long as the receivers receive enough
encoded messages, they can extract the original messages from the received mes-
sages. On the other hand, network coding is applied when multiple flows share a
common link where the messages from different flows can be mixed together to
save bandwidth. Network coding can be applied to multicast networks or wire-
less networks where messages sharing common links can be encoded together to
improve system throughput.

As mentioned earlier, we consider the combination networks withn = 4, k = 2
orn = 6, k = 3 in this chapter. When we apply PPFEED to a large overlay network,
asn andk are fixed, the number of peers in the same group increases. Each peer
is still connected to the otherk − 1 peers in different groups. The scalability of
PPFEED is derived from the scalability of the overlay network composed of peers
within the same group. As described earlier, the overlay network is constructed by
some loose rules to accommodate scalability. Therefore, PPFEED can be applied
to overlay networks of various network sizes without performance degradation.

Next, we discuss how PPFEED works in more detail.

3.2.2 Peer Joining

We assume that the server is well-known whose IP address is known to all the peers
by some address translation service such as DNS. When a peer wants to retrieve a
file hosted by the server, it initiates a join process by sending a JOIN request to the

52

server.
The server keeps track of the number of peers in each group and maintains a

partial list of existing peers in the group and their IP addresses. The purpose of
maintaining a partial list instead of a full list is to achieve a balance between scal-
ability and efficiency. On one hand, when the network size is large, it is resource-
consuming to maintain a full list of peers in the server. On the other hand, if the list
is too short, it may cause much longer latency for new peers to join when the peers
in the list crash. Although the server is responsible for bootstrapping the peers, it
will not be the bottleneck of the system because once each peer receives the list, it
communicates with other peers for topology construction and data dissemination.
When the server receives a peer’s join request, it assigns the peer to a group such
that the numbers of peers in different groups are balanced. Then the server sends
the list of peers of that group to the joining peer and updates the number of peers in
that group.

After receiving the list of peers, the new peer will contact them and create over-
lay links with them. These peers are called intra-neighbors of the new peer because
they are within the same group. In contrast, the neighbors which are in different
groups are called inter-neighbors. The new peer asks one of its intra-neighbors
picked randomly to provide a list of its inter-neighbors. The new peer then takes
the list of peers as its inter-neighbors.

The topology of the peer-to-peer network can be considered as a combination
of multiple unstructured peer-to-peer networks, each of which is composed of the
peers within the same group. The topology within one group is arbitrary as long as
it is connected. The only constraint is on the edges between different groups. It is
required that each peer is connected to at leastk− 1 peers ink− 1 different groups
respectively.

3.2.3 Local Topology Adjustment

As the overlay topology is formed by always connecting the new peers to a random
list of existing peers in the network, the overlay links among peers may not be good
with respect to latency or link stress. To alleviate the performance degradation, we
optimize the overlay topology by a process calledlocal topology adjustment.

The idea of local topology adjustment is to replace the direct neighbors with
peers with better performance through a local search. Each peer periodically sends
QUERY messages to its neighbors. There are two types of QUERY messages: one
for intra-neighbor searching and one for inter-neighbor searching. Suppose peer
u sends out a QUERY message to one of its neighbors, say,v. After receiving
the QUERY message, nodev will send a RESPONSE message back tou and a
QUERY-2 message to each of its neighbors except foru. The RESPONSE mes-

53

sage includes a TIMESTAMP field which records the time when nodev sends the
RESPONSE message. After nodeu receives the message, it calculates the latency
betweenu andv by the difference between the time when the RESPONSE message
is received and the time indicated by the TIMESTAMP in the RESPONSE message.
The QUERY-2 message includes the IP address of nodeu. After a neighbor ofv,
say,w, receives the QUERY-2 message, it sends a RESPONSE-2 message to node
u. It also includes a TIMESTAMP field which records the time whenw sends the
RESPONSE-2 message. After nodeu receives the message, it calculates the latency
betweenu andw by the difference between the time when the RESPONSE-2 mes-
sage is received and the time indicated by the TIMESTAMP in the RESPONSE-2
message. If the latency betweenu andw is less than that betweenu andv, nodew
will replace nodev and become the neighbor of nodeu.

Fig. 3.3 illustrates an example for local topology adjustment. In the figure, an
overlay topology withn+2 nodes connected as a list. We use the distance between
nodes to represent the latency roughly. At the beginning, nodev1 is the neighbor of
nodeu. After n steps of local topology adjustment, nodew becomes the neighbor
of nodeu as the topology on the right shows.

u

v1 v2 v3

vn

w
u

v1 v2 v3

vn

w

Figure 3.3:Illustration of local topology adjustment.

Local topology adjustment is a distributed light-weight overlay topology opti-
mization process. It can detect a better neighbor after searching the nodes nearby
with a search radius of2. The process is done periodically as the topology evolves.
However, in some cases, local topology adjustment cannot find the best neighbor
with the shortest latency. Fig.3.4 shows one of these cases, where although node
u and nodew are close to each other, they cannot detect each other through local
topology adjustment. In Section3.3.2, we describe a landmark based solution to
solve this topology mismatch problem systematically.

54

u

v2

w

v3v1

Figure 3.4:An example that local topology adjustment does not work.

3.2.4 Peer Leaving

There are two types of peer leaving: friendly or abruptly. Friendly leaving means
that the leaving peer initiates a leaving process so that the system is aware of its
leaving and can make necessary updates accordingly. Abruptly leaving means that
the leaving peer leaves the system without any notification, mainly due to link crash
or computer crash.

For the friendly leaving, the leaving peer will initiate a leaving process by send-
ing LEAVE messages to both of its intra-neighbors and inter-neighbors. The leaving
of the peer may impair the connectivity between peers in the same group. To rebuild
the connectivity, the intra-neighbors will initiate the join process with the group ID
in the join request. After receiving a join request with a designated group ID, the
server temporarily acts as one of the intra-neighbors of the peer to guarantee the
connectivity. The topology is further adjusted by the local topology adjustment pro-
cess. Here the server acts as a connection “hub” for the peers that were connected
to the leaving peer. This may increase the data forwarding burden on the server
temporarily. Nevertheless, the situation will be improved after the local topology
adjustment process is completed. Moreover, it can achieve strong robustness with
little control overhead. For example, it can handle concurrent peer leavings. The
connectivity is rebuilt after the server receives all the join requests from the intra-
neighbors of the leaving peers.

After receiving the LEAVE message from the leaving peer, the inter-neighbors
will ask one of its intra-neighbors for a new inter-neighbor to replace the leaving
one. In addition, the leaving peer will also send a LEAVE message to the server.
This LEAVE message will make the server update the number of peers in the group.

For the abruptly leaving, peers send HELLO messages to its neighbors peri-
odically and maintain a HELLO timer for each neighbor. Receiving a HELLO
message triggers a reset of the corresponding HELLO timer. The neighbors detect
the abruptly leaving by the timeout of the HELLO timer. Similarly, intra-neighbors
initiate the join process after detecting the sudden leave. Inter-neighbors ask their

55

intra-neighbors for a replacement of the left peer. Moreover, one of the neighbors
is chosen to send a LEAVE message to the server on behalf of the abruptly leav-
ing peer so that the server can update the number of the peers in the group. To
minimize the selection overhead, we choose the inter-neighbor whose group ID is
next to that of the leaving peer to perform this task. For example, if we assume
the encoding vector for the group corresponding to the leaving peer is(1, α) (or
(1, α, α2 mod q)), inter-neighbor corresponding to the group whose encoding vec-
tor is(1, (α+1) mod n), or (1, (α+1) mod n, ((α+1) mod n)2 mod q)
is chosen.

3.2.5 Data Dissemination

Before sending out the file, the server needs to encode the file. The encoding is
over a Galois fieldGF (q). The file is divided into multiple blocks with each block
represented by a symbol inGF (q). The firstk blocks are encoded and then the
secondk blocks, and so on. In the case that there are not enough blocks to encode,
the file is padded with zero string. Assuming the field size isq(> n), eachk blocks
are encoded inton different messages using the linear network coding assignment
given in Section3.1. Therefore, anyk messages of thesen messages can be used to
decode the originalk blocks.

After encoding, the server sends the encodedn messages to the peers in then
groups respectively. The group ID and the encoding function form a one-to-one
mapping. Peers can learn which messages they receive based on the sender of the
messages: if the sender is the server, the messages correspond to the group ID of
the peer itself; if the sender is a peer, the messages correspond to the group ID of
the sender.

The peers forward all the messages they receive based on the following rules:
Rule 1. If the message comes from the server, the peer forwards it to all its intra-
neighbors and inter-neighbors.
Rule 2. If the message comes from one of its intra-neighbors, the peer forwards it
to other intra-neighbors except for the sender.
Rule 3. If the message comes from one of its inter-neighbors, the peer does nothing.

Peers forward messages in a push style, which means that the messages are
forwarded under the three rules as soon as they arrive at a peer. A peer decodes the
messages right after it receivesk different messages. Thus data dissemination is
fast and simple in PPFEED.

3.2.6 Improving Reliability and Resilience to Churn

Besides the throughput improvement, PPFEED can provide high reliability and high
resilience tochurnwhich refers to frequent peer joins or leaves. All we need to do

56

is to add a redundant overlay link for each peer.
In the previous subsections, each peer is connected tok−1 inter-neighbors. The

k−1 messages received from them plus the message received from the source or the
intra-neighbors should be sufficient to decode the original file blocks. However, no
links are100% reliable. In case that the messages are lost or damaged, the sender
has to retransmit the messages until they are received correctly. Clearly, retrans-
mission will cause longer latency, larger buffer size and reduce system throughput.
PPFEED can reduce the retransmission probability by introducing a redundant link
to each inter-neighbor. Now each peer is connected tok instead ofk − 1 peers
in different groups. If one of the links fails, the peer can still decode the original
file blocks based on the remainingk − 1 messages. The failure probability of this
scheme can be quantitatively analyzed as follows. Suppose each overlay link will
fail with probability1−p. In the old scheme, the peer fails to decode with probabil-
ity Pfailure = 1− pk−1, while in the improved scheme, the peer fails to decode with
probabilityP ′

failure = 1− (pk + k(1− p)pk−1). The ratio of the two probabilities is
Pfailure/P

′
failure = (1− pk−1)/(1− (pk + k(1− p)pk−1)). Fig. 3.5plots the curves

of the ratio for differentp values whenk = 2 andk = 3. We can see that when
p = 0.9, the failure probability of the old scheme is about 10 times of the improved
scheme.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

p

ra
tio

k=2
k=3

Figure 3.5:Failure probability ratio of the old scheme to the improved scheme.

Another advantage of connecting peers with more inter-neighbors than neces-
sary is that it can improve the system resilience to churn. The rationale is similar to
the reliability improvement. For example, if we connect a peer withk other peers,
it can tolerate one peer’s leave without affecting the download speed. Peers expe-
riencing unstable neighborhood should be connected to more than one redundant

57

inter-neighbors to alleviate the performance degradation.

3.3 Some Extensions

In this section, we extend the proposed scheme to support some extra features, such
as link heterogeneity and topology awareness.

3.3.1 Support Link Heterogeneity

Link heterogeneity is a common phenomenon in networks. In peer-to-peer net-
works, link heterogeneity refers to the fact that peers have different access link ca-
pability. Common access links include dial-up connections, ADSL and high speed
cable. The ratio of the link capacities of the fastest link to the slowest link can be
more than1000.

Due to the link capacity imbalance, if a peer with high link capacity is receiving
messages from a peer with low link capacity, its download speed is upper bounded
by the download speed of the low link capacity peer. In other words, the bandwidth
of the high link capacity peer is wasted.

We now consider how to maximize the utilization of link capacity of each peer.
Suppose the bottleneck is always on the access links. Thus we can construct as
many as possible overlay links connected to the peer as long as its access link ca-
pacity permits. As mentioned earlier, the overlay construction between the peers
in the same group is arbitrary. We take advantage of this property to construct an
overlay network such that the number of links of a peer is proportional to its link
capacity. For example, if a peer has much higher link capacity than other peers that
have low link capacities, the topology of the overlay network is a star with the high
link capacity peer in the center.

In practice, every peer first reserves link capacity for thek links that are used to
connect inter-neighbors. The list kept in the server includes the peers with higher
link capacities. Peers periodically send messages to the server that include their
remaining link capacities for the server to update the list.

3.3.2 Support Topology Awareness

Since overlay networks are logical networks on top of physical networks, the over-
lay links are logical links. Each logic link is composed of one or more physical
links. The overlay links are added arbitrarily as needed. As a result, the topology
of the overlay network may be different from the topology of the physical network.
Two nodes which are close to each other in the overlay network may be far away in
the physical network. Such topology mismatch may greatly increase thelink stress

58

and degrade the performance. Here link stress is defined as the number of copies of
a message transmitted over a certain physical link.

In Section3.2, we mentioned that peers can use local topology adjustment to
find peers with better performance than current neighbors. If we define the per-
formance to be the latency, then peers can dynamically adjust the local overlay
topology to alleviate the mismatch. However, a problem with this method is that its
convergence speed is slow and its accuracy is limited. We need a more efficient and
accurate method to minimize the mismatch. Here we propose atopology clustering
schemeby adopting the idea of the binning scheme introduced in [39] to construct
a topology aware overlay network.

In this scheme, the server is responsible for choosing some peers aslandmarks.
Each new peer will receive the list of landmarks before it receives the list of peers.
The new peer sends probe messages to the landmarks to learn the distances between
them and itself. The landmark peers are listed in an ascending order of distances.
The ordered list acts as the coordinate of the peer in the system. The coordinate
is sent to the server, then the server assigns the new peer a group ID based on its
coordinate. Peers with the same coordinates form a cluster. The heuristic rules
of assigning peers to groups are: each cluster has at leastk different groups; the
peers in the same group should span as few clusters as possible. The first rule is to
guarantee that peers can receive enough messages to decode within its cluster. The
second rule is to minimize the number of links across clusters. To implement this,
the server should keep track of the numbers of different groups in each cluster. After
receiving a peer’s join request and its coordinate, the server first checks whether the
corresponding cluster hask different groups. If yes, the peer is assigned to one of
the groups such that the numbers of peers of different groups are as balanced as
possible. Otherwise, the peer is assigned to a group which is different from the
existing groups in the cluster.

In addition, every two landmark peers should not be too close to each other. A
new peer cannot be a landmark if its coordinate is the same as one of the existing
landmark peers. A landmark peer is removed from the landmark peers if it has the
same coordinate as another landmark peer.

3.4 Performance Evaluations

In this section, we study the performance of PPFEED through simulations. We
compare our scheme with a peer-to-peer multicast system called Narada [12] and
a peer-to-peer file sharing system called Avalanche [35]. Narada first constructs an
overlay mesh spanning over all the peers. The overlay mesh is a richer connected
graph which satisfies some desirable performance properties. The multicast tree is
a spanning tree on top of the mesh and is constructed on demand of the source peer.

59

Avalanche is a peer-to-peer file sharing system based on random network coding.
We choose these two schemes as the comparison counterparts in order to evaluate
the benefit a tailored deterministic network coding brings.

The simulation adopts following three performance metrics:
Throughput: throughput is defined as the service the system provides in one

time unit. Here we let different systems transmit the same file, thus throughput
can be simply represented by the time consumed by the transmission. The shorter
the time consumed, the higher the throughput. We start transmitting the file from
time0. Then the consumed time is the time when the peers finish receiving the file,
denoted byfinish time.

Reliability: this performance metric is used to evaluate the ability of the system
to handle errors. We use thenumber of retransmissionsto characterize this ability.
A system with higher reliability will have a smaller number of retransmissions, and
thus higher throughput.

Link stress: link stress is defined as the number of copies of the same message
transmitted through the same link. It is a performance metric that only applies
to an overlay network due to the mismatch between the overlay network and the
physical network. We use it to evaluate the effectiveness of the topology awareness
improvement and the efficiency of the system.

We study the performance of the system in four different configurations:
(i) Baseline configuration. In this configuration, peers have uniform link capac-

ities, and overlay links are constructed randomly. The file is sent after the overlay
network is formed.

(ii) Dynamic peer join/leave configuration. In this configuration, peers have
uniform link capacities, and overlay links are constructed randomly. Peers join the
system during the file transmission and stay in or leave the system after download-
ing the whole file.

(iii) Heterogeneity configuration. In this configuration, peers have heteroge-
neous link capacities, and overlay links are constructed by taking into consideration
of link heterogeneity. The file is sent after the overlay network is formed.

(iv) Topology awareness configuration. In this configuration, peers have uni-
form link capacities, and overlay links are constructed by taking into consideration
of topology mismatch. The file is sent after the overlay network is formed.

The network topologies are random graphs generated by GT-ITM [27]. We
conducted the same simulations fork = 2 andk = 3. In the rest of this section, we
will omit the result fork = 2 when it is similar to that ofk = 3.

60

3.4.1 Baseline Configuration

In the baseline configuration, peers have uniform link capacities. The simulation
is divided into two steps. First, overlay construction period: A number of random
nodes are picked to join the system in sequence. Second, file transmission period:
The server sends the file to the overlay network.

0
 10
 20
 30
 40
 50

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

F
in

is
h

T
im

e

Sorted Peers

 PPFEED(k=2)

 PPFEED(k=3)

 Avalanche

 Narada

(a)

0
 10
 20
 30
 40
 50

22

24

26

28

30

32

34

36

38

40

F
in

is
h

T
im

e

Sorted Peers

 PPFEED(p=0.9)
 PPFEED(p=0.7)

 Avalanche(p=0.9)
 Avalanche(p=0.7)

 Narada(p=0.9)
 Narada(p=0.7)

(b)

Figure 3.6:Baseline configuration. (a) Finish time; (b) Finish time with link failures.

We plot the finish time curves of PPFEED and Narada in Fig.3.6(a). We
simulate PPFEED with differentk values as shown in the figure. The finish time

61

of nodes is sorted in an ascending order. It can be seen that the average finish time
of PPFEED is15 − 20% shorter than that of Narada and8 − 10% shorter than
Avalanche. We notice that the finish times of Narada has a larger variance than that
of Avalanche and PPFEED. This is because that in Narada, the two peers with the
biggest difference in finish time are a child of the root and a leaf, respectively. This
difference may be very large depending on the overlay topology. On the contrary,
Avalanche and our scheme construct a mesh to distribute the file. As a result, the
distance between the highest level peer and the lowest level peer is shortened. From
the figure we can see that the throughput of PPFEED is higher fork = 3 than that
for k = 2. This can be explained by the fact that whenk = 3, each peer is connected
to more peers. Thus the download capacity of peers can be better utilized.

Fig. 3.6(b) shows the finish time when we set the physical link failure prob-
ability to 1 − p. Note that the link failure probabilities of different physical links
are independent. In the analysis in Section3.2.6, we simply assumed that the link
failure probability of an overlay link is1 − p to simplify the analysis. However,
the link failure probabilities of overlay links are dependent due to sharing common
physical links. Here we use link failure probabilities of physical links to simu-
late real networks more accurately. We can see that the finish times of PPFEED
and Avalanche are much shorter than that of Narada. With the same link failure
probability, the finish time of PPFEED is slightly shorter than that of Avalanche.
Compared to the previous simulation result without link failure probabilities, the
increase of finish time is the least for Avalanche and the largest for Narada. The re-
duction of throughput is little for both Avalanche and PPFEED when physical links
are unstable.

The number of retransmissions is shown in Fig.3.7(a). As Avalanche does
not require retransmission, we only plot the curves for PPFEED and Narada. We
use colored dots to denote the numbers of retransmissions of peers. We can see
that Narada needs more retransmissions than PPFEED. The less thep is, the more
retransmissions are needed. The average number of retransmissions of PPFEED is
about5 whenp = 0.9 while that of Narada is about30. Both Fig. 3.6(b) and Fig.
3.7(a) reveal that PPFEED has a good fault tolerance ability.

Each packet in Avalanche is unique, the link stress of Avalanche is always1.
We compare the link stresses of PPFEED and Narada as shown in Fig.3.7(b).
When the number of peers is small, PPFEED and Narada have similar link stress.
However, when the number of peers is beyond100, the links stress of PPFEED is
less than Narada. The reason for this is similar to that for the larger finish time
variance of Narada. If we track a message in Narada, the paths it travels through
form a tree spanning all the peers. If we track a message in PPFEED, the paths it
travels through form a mesh spanning a portion of the peers (roughly peers if the
overlay network is well balanced, where1/n is for the peers within the same group,

62

0
 10
 20
 30
 40
 50

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 R

et
ra

ns
m

is
si

on
s

Peers

 PPFEED(p=0.9)

 PPFEED(p=0.7)

 Narada(p=0.9)

 Narada(p=0.7)

(a)

40
 60
 80
 100
 120
 140
 160
 180
 200
 220

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

Li
nk

 S
tr

es
s

Overlay Network Size

 PPFEED(k=2)

 PPFEED(k=3)

 Narada

(b)

Figure 3.7:Baseline configuration. (a) The number of retransmissions with link failures;
(b) Link stress.

(k − 1)/n is for the peers in different groups). Fewer overlay links will reduce the
probability that the same message travels through the same physical link. The link
stress of PPFEED is higher whenk = 3 thank = 2. Whenk is larger, the number
of peers in the same groups is reduced. On the other hand, each peer is connected
to more peers in different groups. As a result, the increased links between different
groups outnumber the reduced links due to the reduced group size. Thus the link
stress is increased.

63

3.4.2 Dynamic Peer Join/Leave Configuration

In this configuration, we allow peers to join and leave the system during the file
transmission to evaluate the system resilience to churn. The simulations are con-
ducted in two scenarios: First, we let peers join the system randomly and the file
transmission starts as long as there are peers requesting it. After receiving the file,
peers stay in the system; Second, the peers still join the system randomly. When a
peer successfully receives the file, it leaves the system right away. In both scenarios,
we calculate the finish time of a peer by the difference between the time it finishes
downloading the file and the time it joins the system.

Fig. 3.8(a) shows the finish time comparison when peers stay in the system af-
ter receiving the file. We can see that the average finish time of all three schemes
increases compared to the baseline configuration. For PPFEED and Avalanche,
this is due to the lack of peers which help forwarding the file. For Narada, this is
due to the join latency of peers. The increase of average finish time for Narada is
more than that of PPFEED or Avalanche, which indicates that peer-to-peer systems
achieve better resilience to dynamic joins than tree-based approaches. The peers
with different finish times are not evenly distributed as in the baseline configura-
tion. The number of peers with larger finish time increases. The largest finish time
for Avalanche is close to that of PPFEED. This is because PPFEED needs to down-
load the file fromk peers fromk different groups while Avalanche has no such
requirements.

Fig.3.8(b) shows the finish time comparison when peers leave the system af-
ter receiving the file. We can see that the average finish times of PPFEED and
Avalanche are increased by around15% while that of Narada is increased by around
50%. Tree-based approaches are extremely vulnerable to churn as each depar-
ture will disconnect all the downstream peers and the tree needs to be rebuilt.
Both PPFEED and Avalanche have similar resilience under the churn. However,
PPFEED achieves slightly higher throughput. It indicated PPFEED achieves great
resilience under dynamic peers join/leave. Although PPFEED adopts deterministic
network coding, the overlay topology in PPFEED is quite flexible. In addition, by
adding redundant links, the resilience can be improved dramatically.

3.4.3 Heterogeneity Configuration

Now we evaluate the ability of PPFEED to handle peers with heterogeneous link ca-
pacities. The random topologies generated by GT-ITM are flat random graphs with
high speed links. Peers are added to the nodes randomly with each peer connected
to one node by an access link and the access link is set to a certain link capacity.
We set the peers with heterogeneous link capacities such that1/3 with the highest
link capacities,1/3 with the lowest link capacities and1/3 with the medium link

64

0
 10
 20
 30
 40
 50

22

24

26

28

30

32

34

F
in

is
hi

 T
im

e

Sorted Peers

 PPFEED

 Avalanche

 Narada

(a)

0
 10
 20
 30
 40
 50

24

26

28

30

32

34

36

38

40

42

44

F
in

is
h

T
im

e

Sorted Peers

 PPFEED

 Avalanche

 Narada

(b)

Figure 3.8:Finish time of the dynamic peer join/leave configuration. (a) Peers stay in the
system after receiving the file; (b) Peers leave the system after receiving the file.

capacities. The highest link capacity is10 times of the lowest one.
Fig. 3.9(a) shows the finish time comparison of the heterogeneity configura-

tion between the overlay construction with heterogeneity consideration and without
heterogeneity consideration. We can see that the finish time with heterogeneity con-
sideration is much shorter than the baseline which does not consider heterogeneity.
However, the variance of the finish time is almost the same. It indicates that the

65

0
 10
 20
 30
 40
 50

17

18

19

20

21

22

F
in

is
h

T
im

e

Sorted Peers

 Baseline

 Heterogeneity

(a)

40
 60
 80
 100
 120
 140
 160
 180
 200
 220

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Li
nk

 S
tr

es
s

Overlay Network Size

 Baseline(k=2)

 Baseline(k=3)

 Heterogeneity(k=2)

 Heterogeneity(k=3)

(b)

Figure 3.9:Heterogeneity configuration. (a) Finish time; (b) Link stress.

peers with higher link capacities are helpful to increase system throughput, but they
cannot reduce the finish times of themselves.

Fig. 3.9(b) shows the link stress comparison. In contrary to the finish time, the
link stress with heterogeneity consideration is larger than that without heterogeneity
consideration. One reason is that the access links of the high capacity peers are
used by many other peers to construct overlay links. As a result, the messages
sent by a high capacity peer are more likely transmitted through the same physical

66

link. When the size of the overlay network is small, peers are distributed around the
network sparsely. The link stress is mainly determined by the positions of the peers.
In some cases, the link stress whenk = 2 is even greater than that whenk = 3.

3.4.4 Topology Awareness Configuration

We now study the performance of PPFEED when considering the physical network
topology during the overlay network construction.

Fig. 3.10(a) shows the finish time at different number of landmarks. The highest
curve is the same curve in the baseline configuration whenk = 3. We can see that
topology clustering reduces the finish time by about10% compared to that without
topology clustering. Increasing landmarks can increase the accuracy of topology
clustering, thus the finish time is shortened. We notice that the curve of the finish
time when the number of landmarks is8 has a staircase shape. This is because that
the peers in the same cluster may finish receiving the file at roughly the same time.
While the finish times between different clusters may be longer. When the number
of landmarks is12, the cluster size is reduced. Peers may not receivek−1 different
messages within the same cluster, thus the staircase disappears.

We set the physical link failure probability to1−p. Fig. 3.10(b) shows the num-
ber of retransmissions. Compared to the baseline configuration, the average num-
ber of retransmissions of the topology awareness configuration is slightly smaller.
Generally speaking, the improvement of topology clustering on the number of re-
transmissions is small. The main reason of the improvement is due to redundant
links.

One of the biggest advantages of topology clustering is to reduce the link stress.
From Fig.3.11, we can see that the link stress of the topology awareness configura-
tion is reduced by about37% compared to that of the baseline configuration when
the number of landmarks is12. With the increase of the overlay network size, the
difference is even bigger. Increasing landmarks makes the link stress smaller.

3.5 Summary

In this chapter, we have proposed a peer-to-peer file sharing scheme based on net-
work coding, PPFEED. The scheme can serve as a peer-to-peer middleware cre-
ated within the web services framework for web-based file sharing applications.
Compared to other file sharing schemes, the advantages of our scheme can be sum-
marized as follows. (a) Scalability. Files are distributed through a peer-to-peer
network. With the increase of the network size, the total available bandwidth also
increases. (b) Efficiency. The linear network coding construction scheme is deter-
ministic and easy to implement. There is no requirement for peers to collaborate

67

0
 10
 20
 30
 40
 50

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

F
in

is
h

T
im

e

Sorted Peers

 Baseline

 Topology(landmark=8)

 Topology(landmark=12)

(a)

0
 10
 20
 30
 40
 50

-5

0

5

10

15

20

25

R
et

ra
ns

m
is

si
on

 N
um

be
r

Peers

 Baseline(p=0.9)

 Baseline(p=0.7)

 Topology(p=0.9)

 Topology(p=0.7)

(b)

Figure 3.10:Topology awareness configuration. (a) Finish time; (b) The number of re-
transmissions.

to construct the linear network coding assignment on demand. All the peers need
is the mapping between the group ID and the encoding function, and this mapping
does not change with time. Compared to random network coding, the receiver can
always recover the original messages after receivingk different messages and the
data dissemination is more efficient as data messages are transmitted through the
same overlay link at most once. (c) Reliability. The redundant links can greatly

68

40
 60
 80
 100
 120
 140
 160
 180
 200
 220

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Li
nk

 S
tr

es
s

Overlay Network Size

 Baseline

 Topology(landmark=12)

 Topology(landmark=8)

Figure 3.11:Link stress of the topology awareness configuration.

improve the reliability of the system with little overhead. (d) Resilience. Churn is
a common problem in overlay networks. By adding redundant links, the negative
effect of churn is alleviated. (e) Topology awareness. Simulation results show that
the proposed topology clustering scheme can greatly reduce link stress and improve
throughput. (f) Heterogeneity support. In case that links have different link capaci-
ties, PPFEED can arrange the overlay topology to maximize the utilization of each
peer’s link capacity.

69

Chapter 4

Network Coding for Heterogeneous
Peer-to-Peer Streaming Systems

Live media steaming systems are important Internet applications and contribute a
significant amount of today’s Internet traffic. Like bulk data distribution systems,
live media streaming systems usually involve a server which hosts the media con-
tent and all the clients request the media content from the server. However, there
is a fundamental difference between them. Live media streaming systems require
real-time data delivery and can tolerate data loss to some extent. While bulk data
distribution systems require reliable data delivery and can tolerate delay to some
extent. As we will see later, this requirement difference leads to different consider-
ation in system design.

A naive way to implement such systems is to create a unicast connection be-
tween each client and the server. However, this approach scales poorly because
a surge of client population could easily overwhelm the media server’s resources
or bandwidth. Network layer multicast provides an efficient way for one-to-many
communication but its limited deployment on the Internet makes it impractical. A
new technology called CDN (Content Distribution Network) is applied to media
streaming. Usually CDN deploys a number of CDN servers at the edge of the Inter-
net and clients request media content from the closest CDN servers. CDN servers
have dedicated storage space and out-bound bandwidth to support high-quality me-
dia streaming. However, as CDN distributes the media server’s load only to multiple
CDN servers, it can only alleviate the scalability problem instead of solving it com-
pletely. In addition, CDN servers are expensive to deploy and maintain. For exam-
ple, users have to pay a subscription fee to watch streaming videos from CNN.com.
In recent years, peer-to-peer technology has been considered as a promising can-
didate for media streaming. Peer-to-peer systems build an overlay topology on top
of the physical network where the nodes, also known as peers, are the end hosts
owned by individuals or companies and the links between peers have only logical

70

meanings and are realized by finding a physical path connecting the two peers. The
flexibility of the overlay topology construction and the decentralized control of the
peer-to-peer network make it suitable for distributed applications.

When applied to media streaming systems, peer-to-peer technology can com-
pletely eliminate the scalability problem caused by the server-client transmission
model. Peer-to-peer media streaming systems employ the clients (peers) to help
forward the media content, that is, the systems leverage the upload bandwidth of
peers to distribute the media content. Peers forward the media content after they
receive it from the server or other peers. As most peers are individual computers
which are connected to the Internet through access links with limited bandwidth, a
practical peer-to-peer streaming system should meet the following requirements:

1. Accommodation of link heterogeneity. Most peers are individual computers
connected to the Internet through access links. Due to different access link
technologies (ADSL, Ethernet, Wireless LAN, etc), peers have diverse upload
and download bandwidths. The overlay topology should utilize the upload
bandwidths in an efficient way to meet different requirements of playback
quality by the pees.

2. Low end-to-end delay. Media streaming applications are real-time applica-
tions which are sensitive to end-to-end delay. The overlay topology should
allow peers to receive the media content within a limited latency after the
server sends it.

3. Adaptation to dynamic peers join/leave. Peers can join or leave the media
streaming system at will. As the join order is random, the overlay topology
may become far from the optimal one. The overlay topology should adapt
itself to the changing peers in the system.

There has been much work on peer-to-peer streaming systems in the literature
in recent years, see, for example, [11, 40, 41, 42, 43, 44, 45]. Based on the overlay
topology construction, these peer-to-peer streaming systems can be categorized into
two types: tree-based and mesh-based. Tree-based peer-to-peer streaming systems
build one or more trees rooted at the server. The media content flows from the
server to the peers along the trees. Multiple trees are employed to make use of the
uplink bandwidth of the leave peers. Mesh-based peer-to-peer streaming systems
build a loosely connected mesh where each peer establishes connection with several
neighbors. Peers exchange the availability information of the media content with
their neighbors and help each other to deliver the media content. Most of the works
take little or no consideration of huge diversity of the link bandwidth of peers.

With the rapid expansion of the Internet, more and more individual comput-
ers are connected to the Internet which become potential peers for peer-to-peer

71

streaming systems. Diverse and limited peer access link bandwidth is an important
characteristics when these individual computers join a peer-to-peer streaming sys-
tem. First, as different peers have different download bandwidths, it is desirable that
peers with higher download bandwidth receive the media content at a higher bit rate
while peers with lower download bandwidth receive the media content at a lower
bit rate. This is achievable through the media streaming encoding technology (e.g.,
MDC [46] and layered encoding [47, 48]). Besides, the overlay topology should
guarantee a path from the source to the peer with sufficient bandwidth. Second, the
limited uplink bandwidth should be utilized wisely so that the total downloading
rate is maximized.

In this chapter, we investigate the heterogeneity problem in peer-to-peer media
streaming system. We present our solution in two steps. First, we propose a topol-
ogy construction scheme to optimize the overlay topology construction for peer-to-
peer streaming systems with heterogeneous downloading requirements. Although
the scheme is designed for live peer-to-peer media streaming systems, the result
can also be applied to peer-to-peer content delivery or file downloading systems.
Second, we apply network coding to heterogeneous peer-to-peer media streaming
systems based on the proposed topology construction scheme.

4.1 Optimal Overlay Topology Construction for Het-
erogenous Peer-to-Peer Streaming Systems

As we mentioned earlier, the overlay topology for peer-to-peer streaming systems
can be divided into two types: tree-based and mesh-based. Tree-based peer-to-peer
streaming systems build one or more trees for the media content delivery transmis-
sion. The direction and the transmission rate of the media content are fixed by the
trees. Mesh-based peer-to-peer streaming system build a loosely connected mesh in
a sense that peers can switch from one neighbor to another any time as they want.
The direction and the transmission rate of the media content delivery depend on the
availability and current residual bandwidth. One thing needs to be clarified here is
that a scheme constructing a mesh overlay topology is still a tree-based scheme if
the mesh is formed by a union of multiple trees. In other words, the division of
whether a scheme is tree-based or mesh-based is dependent on the media content
transmission paths not on the resulting topology. Overall, tree-based approaches
provide more stable transmission paths while mesh-based approaches provide a
more flexible topology. For a heterogeneous peer-to-peer streaming system with
limited uplink bandwidth, we believe the tree-based approach is more suitable than
the mesh-based approach. Therefore, we will mainly discuss several typical tree-
based peer-to-peer streaming systems and introduce one mesh-based peer-to-peer

72

streaming system for completeness in this section.
DONet (Data-driven Overlay Network for live media streaming) [11] is a mesh-

based data-centric peer-to-peer media streaming system in which the media content
is transmitted on-demand. In DONet, peers are connected by randomly selected
links among them and adjacent peers are called partners. Each peer maintains a list
of partners and a buffer map which indicates the media content the peer contains.
Peers continuously exchange the buffer map with their partners. The key operation
in DONet is that every peer periodically exchanges buffer map with its partners
and retrieves the missing media content from its partners. A heuristic scheduling
algorithm is designed to determine the order and the supply partners of the media
content retrieval.

Next, we introduce two tree-based approaches which arrange the peers into a
hierarchical structure that implicitly defines the topology of the tree.

Developed by University of Maryland, NICE [40] is a project of designing a
cooperative framework for scalably implementing distributed applications includ-
ing peer-to-peer streaming systems over the Internet. The NICE protocol organizes
peers into a cluster hierarchy where each layer is composed of one or more clusters
of peers. For each cluster, a cluster leader is selected among the cluster members.
Each layer is composed of the peers which are the cluster leaders in the lower layer.
The size of a cluster is betweenk and3k − 1, wherek is a constant and set to 3
in the paper. The peers in a cluster are close to each other and the peer at the clus-
ter center is chosen as the cluster leader. The bottom layer contains all the peers
while the top layer contains only one peer. The cluster hierarchy implicitly defines
the media content delivery paths. When designing a peer-to-peer streaming system
over NICE, the server is the top peer. A multicast tree is built for media content
distribution in such a way that the root is the server and the parent of a peer is its
cluster leader.

One problem in the NICE protocol is that the cluster leader is responsible for
forwarding the media content to all the clusters it belongs to, so that in the worst
case, the cluster leader in the top layer forwards the media content toO(k logk N)
other peers, whereN is the number of peers in the system. ZIGZAG [41] is another
hierarchical peer-to-peer system which limits the out-degree of a peer by an upper
bound. ZIGZAG organizes the peers into a multi-layer hierarchical cluster which is
similar to the NICE protocol. The difference is that ZIGZAG introduces the concept
of associate headin the cluster hierarchy. Each cluster has a cluster head (similar
to the cluster leader in the NICE protocol) and a cluster associate head. The size of
a cluster is betweenk and3k, wherek is a constant andk > 3. ZIGZAG tries to
avoid the bottleneck in the NICE protocol by limiting the out-degree of the peers
in the distribution tree. The cluster associate head, instead of the cluster head, is
responsible for forwarding the media content to the cluster it belongs and obtaining

73

the media content from one peer in the upper layer. As a result, the degree of the
distribution tree in ZIGZAG is bounded by6k − 3.

Both of the above schemes construct a single tree for the media content delivery
which causes two problems: First, some peers, for example, the cluster leader in
NICE or the cluster head in ZIGZAG, are more important than other peers. Thus it
suffers point of failure problem; Second, the uplink bandwidth of the leaf peers is
wasted. Next, we discuss two schemes that employ multiple trees to alleviate these
problems.

SplitStream [29] is proposed to overcome the unbalanced forwarding load in
conventional tree-based approaches and the traffic stoppage in peer failure or sud-
den departure. The key idea in SplitStream is to split the media content inton
stripes and to multicast each stripe using a separate tree. Peers join different trees
to receive different stripes respectively. The goal of SplitStream is to construct a
forest of trees such that each peer is an interior node in one tree and a leaf peer in all
the remaining trees while minimizing the delay and link stress across the system.

Figure 4.1:Illustration of multiple distribution trees in SplitStream.

As Fig. 4.1shows, two trees are constructed to span the same set of peers. Each
peer, except the root, receives two stripes and forwards a strip twice. In this way,
the forwarding load is distributed among the peers evenly and a peer failure will
cause the data loss of at most one stripe at the downstream peers. When coupled
with some media encoding scheme, peers can always reconstruct the media content
with the quality proportional to the number of the stripes it receives. SplitStream
is similar to the scheme proposed in this section. But there are several differences.
SplitStream treats every peer equally without considering the heterogeneous access
link bandwidths. It focuses more on distributing forwarding load evenly around all
the peers. While the proposed scheme focuses on maximizing the satisfaction of
peers by treating peers differently with respect to their access link bandwidths.

More recently, a scheme to minimize the end-to-end delay in the overlay topol-
ogy of a peer-to-peer streaming system is proposed in [49]. It assumes that peers

74

have heterogeneous uplink bandwidths and uniform downloading rates. It first for-
malizes the problem into Minimum Delay Mesh problem (We will use MDM to
represent the scheme in the rest of the chapter). Then it proposes a power-based
distributed algorithm.Poweris defined between a child and its parent which is the
ratio between the parent’s residual uplink bandwidth and the delay from the child to
the root through the parent. The parent with higher power is preferred since it offers
higher bandwidth or less delay. When a new peer joins the system, it sorts the exist-
ing peers in a descending order of their powers and chooses the peers as its parents
from the beginning until its downloading rate requirement has been satisfied.

Our approach proposed in this section is also based on the idea of adopting
multiple trees for constructing overlay topology for peer-to-peer streaming system.
However, there are two critical differences distinguishing our approach from the
existing work. First, our approach does not require the tree to span all the peers as
required in SplitStream. Second, our approach does not require the downloading
rates of the peers to be uniform as required in MDM. Thus, our approach is much
more general than the previous schemes. The basic idea of our approach is to model
the peer-to-peer streaming system by a graphG on which we find maximum edge
disjoint trees as many as possible. As a result, our approach can be used for peer-to-
peer streaming systems where the downloading rate requirement is heterogeneous
and the uplink bandwidth of the peers is limited.

The main contributions of this section can be summarized as follows.

• Formalize the problem of optimal overlay construction for peer-to-peer stream-
ing system with heterogeneous downloading requirements. To the best of our
knowledge, this is the first work formalizing the problem. We show the hard-
ness of the problem through the comparison with a known NP hard problem
and present a greedy heuristic algorithm to solve it.

• Propose a distributed algorithm to construct the overlay topology under dy-
namic peer joining and leaving. The overlay topology can adapt itself to the
changing peers in the system.

• Evaluate the performance of proposed algorithms and conduct comparison
with other approaches through simulations. Simulation results show that our
algorithm achieves30% higher peer satisfaction and less link stress.

4.1.1 Problem Formalization

In a typical peer-to-peer streaming system, a streaming server hosts the media con-
tent and all the peers requesting the media content retrieve the streaming data from
the server directly or from other peers. As peers can be any computers connected to

75

the network, different peers have different access link bandwidths, which is called
link heterogeneity. Link heterogeneity is a common phenomenon in today’s Inter-
net. Any practical peer-to-peer streaming system should take link heterogeneity
into consideration. In this section, we consider the system where each peer has
asymmetric access links, which is common for the ISP providers nowadays. Each
peer downloads the media content throughdownlinkat a speed upper bounded by
the downlink bandwidth (BWdown), and uploads the media content throughuplink
at a speed upper bounded by the uplink bandwidth (BWup). The playback quality
of a peer is determined by the downloading rate of the peer (here we assume that
the peer always prefers to download the media content at a higher bit rate if the
downlink bandwidth permits. In the case that the downlink bandwidth is higher
than the required bit rate, we change the downlink bandwidth to the required bit
rate). We adopt the network model where all the peers are connected to a high
speed network core with their access links. The bandwidth bottleneck only lies
on the network edge, while the network core has sufficient bandwidth to transmit
data among different peers simultaneously. We formulate the network model into a
graphG = (V, E) as shown in Fig.4.2. For each peer, there are two artificial nodes
which are used to model the downlink and uplink respectively. The link between
the ingress artificial node is the downlink with bandwidthBWdown. The link be-
tween the outgress artificial node is the uplink with bandwidthBWup. The source
node representing the server has only an outgress node and the bandwidth of the
link between the source node and its outgress node equal to the uplink bandwidth
of the server. Each outgress node is connected to all the ingress nodes with suffi-
ciently large bandwidth except the ingress node corresponding to the same peer as
the outgress node.

As different peers have different downlink bandwidths, it is preferred that each
peer is able to download the media content at its maximum downloading rate, i.e.
BWdown. In peer-to-peer streaming systems, peers download the media content not
only from the server, but also from other peers. A mesh overlay is constructed
to represent the data flow among peers. To achieve the best playback quality and
utilization of access link bandwidth, the overlay topology must be constructed care-
fully to meet the streaming quality requirement and avoid bandwidth wasting.

We first discuss some issues that need to be considered in the overlay topology
construction. First, the uplink bandwidth of the server is the upper bound of the
downloading rate of all the peers. This is clear because a peer cannot download
the media content at a speed higher than the server can provide. Therefore, if the
downlink bandwidth of a peer is greater than the uplink bandwidth of the server, its
downlink bandwidth cannot be fully utilized. In the network model graphG, we
change the downlink bandwidth which is greater than the upper bound to the upper
bound. This change will not alter the resulting overlay topology. Another necessary

76

server peer ingress outgress

BWdown

BWdown

BWup

BWup

Figure 4.2: Illustration of the network model for heterogeneous peer-to-peer streaming
systems.

condition for all the downlink bandwidth to be fully utilized is that the total uplink
bandwidth is greater than the total downlink bandwidth. This is a necessary but not
a sufficient condition. Its insufficiency can be explained by the following example
as shown in Fig.4.3.

Suppose there are a total ofn + 1 peers in the system as shown in Fig.4.3(a).
The uplink bandwidth of the server is2. Peer1 has a downlink bandwidth of1 and
an uplink bandwidth of2n−1. The remainingn peers have downlink bandwidth of
2 and zero uplink bandwidth. Therefore, the total uplink bandwidth is2n + 1, and
the total downlink bandwidth is also2n + 1. Note that although the total downlink
bandwidth of then peers is the same as the total uplink bandwidth of the server and
the peers, it is impossible to construct an overlay topology which can transmit the
media content to all the peers at their maximum downloading rates. In the best case
as shown in Fig.4.3(b), only two peers (peer1 and peer2) can download the media
content at their maximum downloading rates, and all the remaining peers can only
download the media content at half of its maximum downloading rate.

We can see that the downlink bandwidth cannot be fully utilized even if there
is enough uplink bandwidth. Our goal is to maximize the utilization of downlink
bandwidth given the network model graphG. The overlay topology plays a critical
role in the utilization of downlink bandwidth. In the previous example, if the server
dedicates all its uplink bandwidth to a peer with a downlink bandwidth of2, then
all the peers except that peer cannot receive any media content through the server
or other peers. Given a network model graphG and an overlay topology, the down-

77

3

server peer

21 n+1

(a)

1

2 3 n+1

(b)

Figure 4.3: Illustration of the necessary but insufficient condition for overlay topology
for peer-to-peer streaming systems. (a) The bandwidth configuration of the server and the
peers. (b) The overlay topology to achieve the maximum total downloading rate.

loading rate of a peer is equal to the minimum cut between the source node and the
peer. Here the overlay topology includes not only the links between peers, but also
the bandwidth allocation on the links.

According to the above discussion, the problem of maximizing the utilization of
downlink bandwidth can be formalized as follows: Given a peer-to-peer streaming
systemG, construct an overlay topology such that the sum of the minimum cuts
between the source and each peer is maximized.

The problem formalization does not provide a clue in solving the problem. We
notice that although the overlay topology is a mesh, the media content delivery is ac-
tually through multiple trees. If we divide the stream into multiple unit substreams
such that one unit substream occupies one unit of bandwidth, the overlay topology
can be decomposed into multiple trees each of which represents a substream. Then
the downloading rate of a peer is equal to the number of trees connected to the peer.

78

If we define the length of a tree as the number of its nodes minus one, the total
downloading rate of a substream is equal to the length of the tree. Therefore, the
problem can be transferred to:

GivenG, find a set of edge disjoint trees rooted at the source node such that the
sum of the length of the trees is maximum.

We call it Maximum Downloading Rate problem (MDR). To show the hardness
of the problem, we first take a look at the steiner tree packing problem.

Steiner tree packing problem: Given a graphG, find the maximum number of
edge disjoint subgraphs that connect a given set of nodes.

It has been shown that steiner tree packing problem is an NP hard problem [32].
The difference between the MDR problem and the steiner tree packing problem
is that steiner tree requires each tree spans all the nodes in the given set, while in
MDR problem, the trees are allowed to span part of the peers as long as the total tree
length is maximum. In other words, the steiner tree packing problem is a special
case of the MDR problem. Therefore, the hardness of the MDR problem is no less
than that of the steiner packing tree problem, thus MDR is NP hard.

4.1.2 The Greedy Heuristic Algorithm

Due to the NP hardness of the MDR problem, as a starting point, in this section we
propose a greedy heuristic algorithm to find the maximum number of edge disjoint
trees given the network topologyG. It is a centralized algorithm which requires the
complete information on the peers and their access link bandwidth. As we know,
in practice, this information is dynamic and usually cannot be obtained in advance.
We will further propose a distributed algorithm to handle the dynamics of peers
in the next section. Nonetheless, the centralized heuristic algorithm serves as the
foundation for the distributed algorithm and the benchmark when we evaluate the
performance of the distributed algorithm in Section4.1.4.

The basic idea of the greedy heuristic algorithm is to pick out a maximum edge
disjoint tree from graphG one by one until there is no such a tree. Before we apply
the algorithm to graphG, we need to modify the graph by replacing each link of
bandwidthb with b parallel links each of which has bandwidth1. This modifica-
tion will not change the result of the algorithm. Therefore, each tree represents a
substream with bit rate of1. The receiving bit rate of a peer is equal to the number
of trees the peer is on. Each tree must be rooted at the source node. To ensure the
server transmits as many substreams as possible, the number of children of the root
is limited to one for each tree. Two factors are taken into consideration for the tree
construction. First, the height of the tree should be minimized. The height of the
tree determines the delay between the source and the peer. To minimize the height
of the tree, we should push the peers with higher uplink bandwidths to the source

79

node as close as possible. Second, fairness bandwidth allocation between different
trees should be maximized. When a peer receives the media content from several
different trees, the delays to the source along the trees may be different. The final
end-to-end delay from the source to the peer is determined by the worst case, i.e.
the longest delay among all the delays. One way to minimize the difference among
these delays is to minimize the difference of the tree heights, as the height of the
tree represents the longest end-to-end delay approximately. Fairness here means
that the uplink bandwidth should be shared among different trees in a fair manner.
As a result, the height difference among different trees is minimized. The fairness
is realized by a property of the peer calledfanout. Fanout is a value which is used
to evaluate the forwarding ability of a peer. The fanout of a peer is equal to (up-
link bandwidth)/(downlink bandwidth). The larger the fanout, the more children
the peer can have. We use fanout as the upper bound on the number of children a
peer can have in one tree. The reason is two folds. On one hand, if the number
of children is smaller than the fanout, some uplink bandwidth will be wasted defi-
nitely even if the downlink bandwidth is filled up with the substreams. On the other
hand, if the number of children is more than the fanout for one tree, it means that
the number of children is less than the fanout for another tree. This imbalance of
uplink bandwidth allocation contradicts the fairness principle.

Table 4.1 lists the pseudo-code of the greedy heuristic algorithm, where the
maximumtreesub-procedure is used to find a maximum tree in the residual graph
G′.

4.1.3 The Distributed Algorithm

The greedy heuristic algorithm works well if the information of the peers and their
access link bandwidths are given in advance. However, in practice, peers join or
leave the peer-to-peer system frequently which is known aschurn. Due to the fre-
quent churn rate, it is impossible for the server to run the greedy heuristic algorithm
every time when there is a peer joining or leaving. When a new peer joins the
system, it should be grafted to the system in an efficient and distributed fashion.
The topology mismatch is another issue when we design a practical peer-to-peer
streaming system. Here mismatch means that two nodes close to each other in over-
lay topology are far away in physical network topology or vice versa. The topology
mismatch should be minimized to reduce network bandwidth consumption and end-
to-end delay. As peers join the system in a random order, the mismatch between
the overlay topology and the physical network topology may become larger and
larger. A practical peer-to-peer streaming system should be able to adapt itself to
the changing overlay topology by alleviating the mismatch. In this section, we
propose a distributed algorithm which can handle the frequent peer join/leave in a

80

Table 4.1:Greedy Heuristic Algorithm

Greedy heuristic algorithm
Input : graphG.
Output : a set of maximum trees.
Begin:

Foreachpeerv in G
fanout(v) =

uplink bandwidth/downlink bandwidth;
Put peers in listl in a descending order of fanout;
G’ = G;
T = maximumtree(G’, l);
While T != NULL

output = output+T;
G’ = G’-T;
l = l-peers with no residual downlink bandwidth;
T = maximumtree(G’, l);

End

Maximum tree(G, l)
Input : graphG, list l.
Output : a maximum tree T.
Begin:
v = the first peer inl;
pointer = the second peer inl;
While pointer has not reached the end of listl

Do
If pointer has residual downlink bandwidth

Connectv with peerpointer;
pointer = pointer + 1;

Until peerv is connected tofanout(v) peers
or pointer reaches the end of listl;

v = v + 1;
End

81

distributed fashion and adjust the topology to alleviate the mismatch.

Peer Joining

We assume that the server is well-known whose IP address is known to all the peers
by some address translation service such as DNS. The server maintains a partial list
of existing peers in the system and their IP addresses.

The order of the peers in the list is determined by two factors: fanout and end-
to-end delay. As we discussed earlier, fanout represents a peer’s forwarding ability.
A peer with a larger fanout can have more children, so we need to move the peers
with larger fanout values to the server as close as possible in the tree. Similarly,
the end-to-end delay between a peer and the server represents the distance between
the peer and the server. To reduce the mismatch, it is reasonable to move the peers
with shorter end-to-end delay closer to the server. We use a tunable parameterα
to control the weights of these two factors. We letlevel = α ∗ fanout + (1 −
α)/end-to-end delay, wherelevel is a variable suggesting the position of the peer
in the trees approximately. The larger the value oflevel, the closer the peer should
be put to the server in the tree. The partial list maintained in the server is in an
ascending order oflevel to facilitate the join procedure. We will evaluate the impact
of the tunable parameter on the system performance in Section4.1.4.

When a peer wants to receive the media content, it initiates a join process by
measuring the delay between the server and itself. Then it sends a JOIN request
with the calculated value oflevel to the server. The server will respond with a
list of peers which are picked in the partial list. The picked peers have similar
level values as the joining peer. Compared to the schemes in which the server
responds with a random list of peers, the topology constructed by our scheme will
converge to the optimal topology much faster, as the new peer is already put at a
near-optimum position during the join procedure and less topology adjustment is
needed afterwards. The new peer will establish connections with the peers in the
list in a descending order of their values oflevel until its downlink bandwidth is
filled up.

It should be pointed out although the server is responsible for bootstrapping the
peers, it will not be the bottleneck of the system, because once each peer receives
the list of peers, it communicates directly with the peers for overlay topology con-
struction and media content dissemination.

Peer Leaving

We use simple peer leaving process to accommodate resilience and alleviate the
impact of churn. When a peer leaves the system, we do not reconfigure the topology

82

which will cause a lot control overhead and sometimes even streaming stoppage.
Instead, we let the disconnected peers to simply rejoin the system.

There are two types of peer leaving: friendly or abruptly. Friendly leaving
means that the leaving peer initiates a leaving process so that the system is aware of
its leaving and can make necessary updates accordingly. Abruptly leaving means
that the leaving peer leaves the system without any notification, mainly due to link
crash or computer crash.

For the friendly leaving, the leaving peer will initiate a leaving process by send-
ing LEAVE messages to both of the server and its neighbors (parents and children).
The leaving of the peer will cause the peers which are its descendants in the trees
to disconnect from the trees and lose some substreams. To reconnect these peers to
the trees, the children of the leaving peer will initiate the join procedure like a new
peer. For the parents of the leaving peer, they will free the uplink bandwidth used
by the leaving peer for the future use. Here the server acts as a connection “hub” for
the peers that are connected to the leaving peer. This may increase the processing
burden on the server temporarily. Nevertheless, it can achieve strong robustness
with little control overhead. For example, it can handle concurrent peer leavings.
When the server receives the LEAVE message, it will check whether the peer is on
the partial list and remove it from the list if it is on the list.

For the abruptly leaving, peers send HELLO messages to its neighbors peri-
odically and maintain a HELLO timer for each neighbor. Receiving a HELLO
message triggers a reset of the corresponding HELLO timer. The neighbors detect
the abruptly leaving by the timeout of the HELLO timer. After detecting the leaving
of the peer, the parents and the children will perform similar operations to that in
the friendly leaving. Besides, the parents will send LEAVE messages to the server
on behalf of the leaving peer so that the server can update the list.

Topology Adjustment

Peers join and leave the system in a random manner. According to the join pro-
cedure, a new peer is always a descendant of the existing peers after it joins the
system. As a consequence, the overlay topology is changing as the peers join and
leave and is dependent on the order of the peers joining and leaving. Due to the
randomness of the order of peer joining and leaving, the overlay topology may be
far from the one constructed by the greedy heuristic algorithm. We propose a topol-
ogy adjustment procedure to help the peer-to-peer system handle the dynamic peer
joining and leaving.

The intuition behind the adjustment procedure is to locate the peers whose po-
sitions do not match theirlevel values and move these peers to a proper position. It
is composed of three steps. (1) Step 1. The peer (We usev to denote the peer in the
rest of this section) sends a REQUEST message upstream along the tree towards the

83

root. The REQUEST message includes the value oflevel of v and a hop counter.
Each peer receiving the REQUEST message will forward it to its parent and add1
to the hop counter. The REQUEST message will stop when it reaches the root. (2)
Step 2. Each peer receiving the REQUEST will compare the value oflevel in the
message with its own value oflevel. If its own level is less than that in the message,
it will send a GRANT message back tov. The GRANT message contains its own
value oflevel, its parent, the residual uplink bandwidth of its parent and the value
of the hop counter. (3) Step 3. Ifv does not receive any GRANT message, it does
nothing. If v receives one or more GRANT messages, it will choose one peer to
be its new parent based on the following rules: sort the peers in a descending order
of their hop counts; select the first peer whose parent has non-zero residual uplink
bandwidth and take its parent as the new parent ofv. The peerv and the subtree
rooted atv will become a subtree of the new parent. If there is no such a peer whose
parent has non-zero residual uplink bandwidth, the peer checks itself to see if there
is any residual uplink bandwidth. If no, the peer does nothing. If yes, the peerv
will select the peer with the largest hop count and take its parent as the new parent.
As there is no residual uplink bandwidth of the parent, one child of the parent will
be replaced byv. The old child will become a child ofv. The rationale behind
the rules is to move the peer as close to the root as possible while minimizing the
disturbance to the existing tree structure.

4.1.4 Performance Evaluation

In this section, we study the performance of the proposed algorithms through sim-
ulations. We have implemented the proposed scheme in NS-2 [33]. The network
topologies used in the simulations are random transit-stub network topologies gen-
erated by GT-ITM software [27]. Peers are selected randomly from the stub net-
works and the bandwidth of the links in the transit network is set to be sufficiently
high (1000 Mbps in the simulations).

We compare our scheme with the MDM algorithm proposed in [49], as it is
the closest work to ours in the sense that both of the algorithms try to optimize the
overlay topology for peer-to-peer media streaming systems. The main difference is
that our scheme considers heterogeneous downloading rates while MDM assumes
a uniform downloading rate.

The simulation adopts following three performance metrics:
Satisfaction. Even though the overlay topology is carefully constructed, it is

inevitable that a peer may not receive the media content at its preferred bit rate. We
usesatisfactionto evaluate the extent the peer is satisfied with its received media
streaming bit rate. A peer’s satisfaction is defined as the ratio of the received media
streaming bit rate to its downlink bandwidth. In the simulation, we use the average

84

satisfaction of all peers to represent the satisfaction of the system.
End-to-end delay. This performance metric is used to evaluate the end-to-end

delay between the source and the peers. The end-to-end delay is measured along
the overlay links towards the source instead of the physical links. Since there are
usually multiple overlay paths towards the source, we use the delay of the longest
path as the end-to-end delay of the peer. Again, we average the end-to-end delay
of all peers in the simulations. Since the time is the virtual simulation time in NS2,
the time unit is virtual as well.

Link stress. Link stress is defined as the number of copies of the same message
transmitted through the same link. It is a performance metric that only applies to an
overlay network due to the mismatch between the overlay network and the physical
network. We use it to evaluate the effectiveness of the topology adjustment and the
efficiency of the system.

Satisfaction

We first compare the average satisfaction of peers under different sizes of the peer-
to-peer streaming system. We use the number of peers in the system to represent
the size of the system.

Fig. 4.4 shows the average satisfaction as we change the system size. We can
observe that the greedy heuristic algorithm demonstrates the best satisfaction and
the distributed algorithm outperforms MDM by about30% on the average. It sug-
gests that our scheme can make more efficient use of the uplink bandwidth of peers
than MDM. With the increase of the system size, the average satisfaction drops for
all the three schemes. This is due to the fact that when the trees become large,
the wasted uplink bandwidth of the leaf peers increases as well even though multi-
ple trees are employed. From the trend of the curves, we can see that our scheme
is more stable then MDM with the increase of system size. The decrease of the
satisfaction of the distributed algorithm is about26% while that of MDM is about
45%.

To examine the system performance under different access link bandwidth con-
straints, we let the ratio between the total uplink bandwidth and the total downlink
bandwidth equal to4, 2 and1, respectively. Fig.4.5(a) shows the simulation results.
We can see that the average satisfaction of the distributed algorithm is always higher
than that of MDM. Moreover, the average satisfaction of the distributed algorithm
when the total uplink bandwidth equals to the total downlink bandwidth is higher
than that of MDM when the total uplink bandwidth is 2 times of the total downlink
bandwidth. It indicates that the proposed scheme performs well especially when
the total uplink bandwidth is limited.

The tunable parameterα is another factor that affects the system performance.
Fig. 4.5(b) shows the average satisfaction under different values ofα and differ-

85

0
 100
 200
 300
 400
 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
vg

. S
at

is
fa

ct
io

n

System Size

 Greedy

 Distributed

 MDM

Figure 4.4:Average satisfaction under different system sizes.

ent access link bandwidth configurations. We can see that the average satisfaction
increases with the increase ofα. Whenα is small, end-to-end delay enjoys more
weight in the overlay topology construction. The resulting topology tends to have
a shorter end-to-end delay at the expense of the satisfaction. The slope, i.e., the
increasing rate of the average satisfaction, is greater whenα is small than that when
α is large. This can be used as a system design guide to find an optimalα value for
both satisfaction and end-to-end delay.

End-to-end Delay

The end-to-end delay is an important performance metric for peer-to-peer media
streaming systems. As we can see later, sometimes end-to-end delay and satis-
faction are two conflicting performance metrics and the best solution is a tradeoff
between these two metrics.

Fig. 4.6 shows the end-to-end delay under different system sizes. We can see
that with the increase of the system size, the end-to-end delay increases as well due
to the large tree heights. When the system size is small, the greedy heuristic algo-
rithm achieves the shortest end-to-end delay. As the system size becomes large, the
end-to-end delay of MDM is shorter than that of other two schemes. The reason is
that MDM is a scheme focused on minimizing the end-to-end delay. The advantage
of MDM is more obvious when the system size is large.

Now we investigate the impact of the parameterα on the end-to-end delay. As
shown in Fig.4.7, the end-to-end delay increases with the increase ofα. The ra-

86

up = 4 down
 up = 2 down
 up = down

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 S
at

is
fa

ct
io

n

Access Link Bandwidth Configurations

 Distributed

 MDM

(a)

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 S
at

is
fa

ct
io

n

 UP=4DOWN

 UP=2DOWN

 UP=DOWN

α

(b)

Figure 4.5:Average satisfaction evaluation. (a) Average satisfaction under different access
link bandwidth configurations; (b) Average satisfaction under different values ofα.

tionale behind this is similar to that of the results for satisfaction. As we put more
weight onfanout when we construct the overlay topology, the resulting end-to-end
delay becomes longer. When the uplink bandwidth constraint is tight, the increase
of the end-to-end delay is faster compared to that when the uplink bandwidth con-
straint is loose. This attributes to the larger tree height due to the limited uplink
bandwidth when the uplink bandwidth constraint is tight.

87

0
 100
 200
 300
 400
 500

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

 E
nd

-t
o-

en
d

D
el

ay

System Size

 Greedy

 Distributed

 MDM

Figure 4.6:Average end-to-end delay under different system sizes.

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

3

4

5

6

7

A
ve

ra
ge

 E
nd

-t
o-

en
d

D
el

ay

 UP=4DOWN

 UP=2DOWN

 UP=DOWN

α

Figure 4.7:Average end-to-end delay under different values ofα.

Link Stress

Link stress is an indicator of the efficiency of the overlay topology. Higher link
stress will cause higher delay and bandwidth wasting.

We first look at the link stress under different system sizes as Fig.4.8 shows.
With the increase of the system size, the link stress increases as well. The greedy

88

heuristic algorithm achieves the least link stress thanks to the complete peer in-
formation before the overlay topology construction. The link stress of MDM is
slightly higher than that of the distributed algorithm. This is because that although
the proposed distributed algorithm considers heterogeneous download rates while
MDM only considers a uniform downloading rate, many trees constructed in the
distributed algorithm have smaller heights as they do not span all the peers. As a
result, the probability that a packet passes the same physical link is reduced and the
link stress is reduced as well.

0
 100
 200
 300
 400
 500

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Li
nk

 S
tr

es
s

System Size

 Greedy

 Distributed

 MDM

Figure 4.8:Link stress under different system sizes.

Fig. 4.9 shows the link stress when we tune the parameterα. The impact of
parameterα on link stress is notable. With the increase ofα, link stress increases
remarkably. As mentioned earlier, a largerα means shorter end-to-end delay. While
the end-to-end delay is a good approximation of physical distance between two
peers. When the end-to-end delay is reduced, the mismatch between the overlay
network and physical network is reduced as well. The impact of the uplink band-
width constraint on link stress is small. When the uplink bandwidth constraint is
loose, the total download bandwidth is increased. However, this increase will not
cause the increase of the link stress, because it becomes more likely to find a peer
nearby to exchange the media content with.

89

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Li
nk

 S
tr

es
s

 UP=4DOWN

 UP=2DOWN

 UP=DOWN

α

Figure 4.9:Link stress under different values ofα.

4.2 Adaptive Network Coding for Peer-to-Peer Me-
dia Streaming Systems

Like peer-to-peer file sharing systems, peer-to-peer streaming systems are a per-
fect place to apply network coding. The paper in [50] gives a theoretical analysis
on how network coding can improve the performance of peer-to-peer streaming
systems. A random network coding scheme was proposed for peer-to-peer me-
dia streaming systems in [51]. The scheme focuses on utilizing random network
coding to simplify the scheduling algorithm for peers to exchange the media con-
tent. However, it does not consider peers’ heterogeneity in peer-to-peer streaming
systems. A network coding scheme based on layered encoding was considered in
[52] and [21] for media streaming systems. The scheme proposed in [52] was de-
signed for media streaming multicast networks while the scheme proposed in [21]
was designed for peer-to-peer streaming systems. Layered Coding (LC) [47] is a
multimedia encoding technique which encodes the media content into a base layer
and multiple ordered enhancement layers. The receiver can reconstruct the media
content if it receives the base layer and a subset of the enhancement layers. It is a
cumulative encoding technique in the sense that an enhancement layer can be used
for decoding only if the base layer and all the enhancement layers before it are re-
ceived by the receiver. The quality of reconstructed media content is proportional
to the layers used. In [52], the receivers are divided into several groups based on
their max-flow values to the source. Then a subgraph is constructed for each group
of receivers. Given a subgraph, a deterministic linear network coding scheme is

90

determined by the algorithm proposed in [16]. In [21], the authors used the overlay
construction algorithm proposed in [12] to construct a basic overlay network. Then
layered meshes are constructed for layered media content. Each mesh is responsible
for one layer of the media content. Peer join different meshes to receive different
layers of the media content.

In this section, we propose an adaptive network coding scheme which can op-
timize the bandwidth utilization in a heterogeneous peer-to-peer media streaming
system. The main differences between the existing schemes and our scheme are:
First, we use Multiple Description Coding (MDC) to encode the media content
instead of LC. MDC was first proposed to enhance the robustness of multimedia
data over unstable channels. The basic idea of MDC is to fragment a single media
stream into multiple independent sub-streams referred to as descriptions. In order
to decode the media stream, any description can be used. However, the quality im-
proves with the increase of the number of descriptions received. Here we use MDC
to encode the media content into multiple stripes which are equally important when
used to reconstruct the media content. The quality of the reconstructed media con-
tent is proportional to the number of stripes used. This leads to a great advantage
over LC in the sense that the peer can always reconstruct the media content as long
as it receives one or more stripes. While in LC, if the base layer is missing, the
media streaming has to stop. If an enhancement layer is missing, all the enhance-
ment layers after it are of no use which causes bandwidth wasting. Second, since
most peers are individual computers which are connected to the Internet through
access links, peers may have different bandwidth in practice. Our proposed scheme
aims at such practical networks by considering asymmetric access links where up-
link bandwidth and downlink bandwidth are bounded by a link capacity. This is
common for the ISP providers nowadays. Third, we use the overlay construction
algorithm described in the previous section to construct the overlay network. It is
optimized for heterogeneous peer-to-peer media streaming systems. While other
schemes usually adopt an existing general purpose overlay topology construction
algorithm. For example, the scheme in [21] used the algorithm proposed in [12].

Our scheme first encodes the media content into multiple stripes using MDC
(Multiple Description Coding) technology [46]. Then peers subscribe to a subset
of these stripes based on their downlink bandwidths. Network coding is performed
within one stripe. The playback quality of a peer is proportional to the number
of stripes it subscribes to. The overlay topology construction is also tailored to
optimize the bandwidth utilization of the peers’ access links. Although the scheme
is designed for live peer-to-peer media streaming systems, the result can also be
applied to peer-to-peer content delivery or file downloading systems. The main
contributions can be summarized as follows.

• Formalize the problem into a mathematical optimization problem.

91

• Propose an overlay topology construction algorithm which is tailored to het-
erogeneous peer-to-peer media streaming systems. The overlay topology can
maximize the bandwidth utilization of the access links.

• Propose an adaptive network coding scheme for heterogeneous peer-to-peer
media streaming systems. Our scheme can satisfy the heterogeneous down-
load requirements by encoding the media content into multiple stripes. Mean-
while, it achieves good scalability and resilience.

• Evaluate the performance of the proposed scheme and conduct comparison
with other approaches through simulations. Simulation results show that our
algorithm achieves higher peer satisfaction and throughput.

4.2.1 Problem Formalization

Without loss of generality, the topology of a peer-to-peer streaming system can
be modeled as a multicast network which can be represented by a directed graph
G = (V,E,C) whereV is the set of network nodes andE is the set of links each
of which connects two nodes. Each link can be represented by an ordered node
pair (v1, v2) wherev1, v2 ∈ V . v2 is called the head of the link andv1 is called the
tail of the link. The messages can only be transmitted fromv1 to v2. C is a real
non-negative functionC : E → R+ which maps each linke to a real non-negative
numberC(e) which is the transmission capacity of the link. The media content is
generated at a source nodes, s ∈ V and flows to a set of receiversR, R ⊆ V .

With the help of MDC, the media content is encoded into multiple stripes at the
source node before being sent out. In our model, we encode the media content into
k stripes each of which has the same bit rateb. The receiver can reconstruct the
media content with any subset of thek stripes. The playback quality of a receiver is
proportional to the number of stripes it receives. Without network coding, MDC is
realized by finding multiple disjoint multicast trees spanning the source and the re-
ceivers. Each tree is responsible for one stripe. With network coding, the bandwidth
can be further utilized by applying network coding to the flows in the same stripe.
It is possible to encode flows from different stripes. However, it requires decoding
in the relay nodes in addition to the receivers. Therefore, due to the complexity, in
this section we do not consider network coding between different stripes.

Suppose each stripe is distributed to the receivers through a subgraph (Given a
graphG = (V,E, C), a subgraphG′ can be defined asG′ = (V ′, E ′, C ′) where
V ′ ⊂ V,E ′ ⊂ E, C ′(e′) <= C(e′)). To apply network coding to the flows within
one stripe, the subgraph must be a mesh instead of a tree. This implies that we
should divide the stripe to multiple flows and transmit these flows along different
paths to a receiver in order to increase the probability for nodes to perform network

92

coding. The receivers subscribe to one stripe if they want to receive the correspon-
dent media content. The number of stripes a receiver subscribes to is upper bounded
by the bandwidth of its downlink divided byb. By subscribing to different numbers
of stripes, the utilization of heterogeneous downlink bandwidths can be maximized.

Our goal is to maximize the total receiving rate of all the receivers. Now the
problem is transformed to how the receivers subscribe to the stripes such that the
total receiving rate is maximized. Assuming that the subset of stripes receiverr
subscribes to isF (r), the problem can be formalized as a mathematical optimization
problem as follows:

maximize
|R|∑
i=1

|F (ri)| (4.1)

subject to∑

head(e)=v

xj
i (e)−

∑

tail(e)=v

xj
i (e) = σj

i (v),

∀ v ∈ V, ri ∈ R, j ∈ F (r), (4.2)∑
j

φj(e) <= c(e), (4.3)

where

σj
i (e) =




−b if v = s

b if v = ri

0 otherwise
(4.4)

φj(e) = Maxi{xj
i (e)} (4.5)

In the above,xj
i (e) is the flow rate on linke for receiverri on stripej. As

each stripe has the same bit rate, to maximize the total receiving rate is equal to
maximize the number of total stripes the receivers subscribe to. Equation (2) means
that only the source node can generate flows and only the receivers can consume
flows, while all the remaining nodes perform relaying. Equation (3) means that
flows from different stripes can not share the bandwidth, and the summation of
their bit rates can not exceed the link capacity. Equation (4) means that all the
stripes have a constant bit rateb. Finally, Equation (5) means that the flows from
the same stripe can share the bandwidth.

In addition to achieving the maximum throughput, we also want to maintain
fairness among receivers. Fairness is defined as follows: the receiver with a larger
max-flow value from the source node will receive no less stripes than the receiver
with a smaller max-flow value. Then the optimization problem can be rewritten by
adding one more constraint:

93

|F (ri)| ≤ |F (rj)| if max-flow(ri)≤ max-flow(rj)

4.2.2 Adaptive Network Coding for Heterogeneous Peer-to-peer
Media Streaming Systems

The solution to the above mathematical optimization problem requires centralized
processing with all the topology and bandwidth information available. In a large
scale distributed system such as the Internet, it is not scalable to deploy such a
centralized algorithm. To accommodate scalability, it is necessary to develop a
distributed algorithm implemented by network protocols. However, the problem
formalization provides some insights and guidelines leading to the distributed solu-
tion.

In this section, we propose a distributed adaptive network coding construction
scheme based on the discussion in the previous section.

Overlay Topology Construction

The first step is to construct an overlay network spanning the peers over which our
adaptive network coding scheme can be applied. This can certainly be achieved by
using some existing algorithms in the literature, such as those in [12, 53]. However,
as most of existing algorithms are of general purposes, we will use the previously in-
troduced overlay topology construction algorithm tailored for heterogeneous peer-
to-peer media streaming systems for efficiency purpose.

We still use fanout to evaluate the forwarding ability of a peer. The topology
construction heuristic is based on the observation that the probability that a peer
with a higher fanout relays media content to a peer with lower fanout is higher than
the reverse. Fanout can be roughly considered as the number of children in media
content relay. Therefore, if a peer has a higher fanout, it tends to have more children
to relay media content, which increases the probability that it relays media content
to other peers. The reason we use fanout instead of uplink bandwidth as the metric
of the peer’s forwarding ability is to minimize the average end-to-end delay from
the source to the receivers. If we track each single message (either in its original
form or in an encoded form), it is distributed through a tree. Assigning higher
priority to nodes with larger fanout can reduce the average tree height, therefore
reduce the end-to-end delay.

We adapted the proposed overlay topology construction algorithm slightly by
adding two more constraints.

1. Constraint 1: if the number of outgoing links is equal to2 ∗ fanout, no more
outgoing links are added;

94

2. Constraint 2: if the summation of the download bandwidth of a peer’s parents
is no less than twice of its download bandwidth, no more incoming links are
added.

The selection of the ratio value2 is based on our simulations, which achieves a
good tradeoff between system performance and computing complexity.

The pseudo-code of the overlay topology construction algorithm is listed in Ta-
ble4.2.

Table 4.2:Overlay Topology Construction Algorithm
INPUT: BWup(i), BWdown(i)
//BWup(i) andBWdown(i) are upload bandwidth and
//download bandwidth of nodei
OUTPUT: overlay topology
BEGIN

foreachnodei
fanout(i) = BWup(i)/BWdown(i);

Sort nodes in a descending order offanout into list q;
E = NULL;
foreachnodei in q
tail = i;
head = i + 1;
while head! = NULL

if
∑

j,(j,head)∈E BWdown(j) < 2 ∗BWdown(head)
E = E + (tail, head);

head + +;
if |Eout(tail)| == 2 ∗ fanout(tail)
//Eout(tail) = {l, l ∈ E, tail(l) = tail}

break;
END

Peer Joining

The media content is encoded into multiple stripes at the source node. As there is no
coding between different stripes, it is possible to decompose the network topology
graphG into multiple disjoint subgraphs each of which is corresponding to one
stripe. Therefore, when a peer joins the system, it will select some of the stripes to
subscribe to.

When a peer wants to receive the media content, it will send a JOIN request
to the source node. Upon receiving a JOIN request, the source node initiates a

95

process to determine the maximum flow between the source node and the joining
peer. There are many existing algorithms for this problem such as Ford-Fulkerson
algorithm proposed in [54] and push relabel algorithm proposed in [55]. Here we
adopt the push-relabel algorithm because it is more efficient and it is a distributed
algorithm.

We first give a brief review of the push-relabel algorithm. Given a graphG =
(V, E, C), a source nodes, s ∈ V and a destination nodet, t ∈ V , push-relabel al-
gorithm can find the maximum flow betweens andt. In the push-relabel algorithm,
each node is assigned aheightvalue and anexcessvalue. Height is used to control
the flow direction. A flow can only be pushed from a higher node to a lower node
between two neighbors. Although the difference between the flow entering a node
and the flow leaving a node is zero when the algorithm terminates (except nodess
andt), during the execution of the algorithm, the flow difference may be positive,
i.e., the flow entering a node is more than the flow leaving a node. We useexcess
to denote the amount of flow difference which is a non-negative value. The value
of a flow pushed between two neighbors can not exceed the residual bandwidth of
the link connecting the two neighbors. Initially, the source node has a height of|V |
and the destination node has a height of0. The height of a nodev (v 6= s, v 6= t)
is the number of hops along the shortest path froms to v. The excess of the source
node is infinity, i.e. initially the source node will push flow to its neighbor nodes as
much as possible. The excesses of other nodes are0. There are two operations in
the push-relabel algorithm: (1)pushoperation which is to push a flow from a node
with a larger height to one of its neighbors with a smaller height. The value of the
flow is the minimum of the excess of the node and the residual bandwidth of the
link over which the flow is pushed. When a flow is pushed over a link, an artificial
link connecting the same pair of nodes is added to the topology. The direction of
the artificial link is opposite to the link and the capacity of the artificial link is equal
to the value of the flow; (2)relabeloperation is used to update the height values of
nodes when no legal push operation can be done. If all the nodes except nodess
andt have0 excess, the algorithm terminates and the excess oft is the maximum
flow betweens andt. Otherwise, pick a node with positive excess and increase its
height such that it can push a flow to a neighbor.

The push-relabel algorithm is perfect for a distributed system as the flow is
determined gradually and locally between a pair of nodes. Thus, we adopt the
push-relabel algorithm in our system. Each link is associated with an information
vector which includes the following information: link capacity, the stripes which
have flows on the link and the bandwidths the stripes occupy, respectively. The
link information is used by a peer to decide which stripe to subscribe to and it is
collected when a push operation is performed. In particularly, in the push operation,
in addition to pushing the excessive flow from the higher node to the lower node, the

96

algorithm records the corresponding information which is carried along the flow.
When the algorithm terminates, the joining peer should have following infor-

mation:

1. The paths from the source to the peer,

2. For each link in a path, the stripes which are transmitted over it and the band-
widths occupied by them.

Based on this information, the joining peer selects the stripes to subscribe to.
The heuristic rules used for the selection are as follows:

1. Give higher priority to the stripes which have flows in at least one path.

2. Give higher priority to the stripes which occupy more paths.

3. Subscribe to as many stripes as possible.

The first two rules are quite straightforward, because subscribing to the stripes
that already have flows in the paths can maximize the utilization of the bandwidth
that is already used by the stripes. It is similar to grafting a new receiver to an
existing multicast tree in multicast routing. The last rule means that if there is
still residual bandwidth after subscribing the stripes based on the first two rules,
subscribe to new stripes to fill up the residual bandwidth.

In LC, there are different priorities assigned to different layers as well. For
example, the base layer is given the highest priority. However, the priority used
here is different from that used in LC. In LC, the priority is mandatory such that the
layer with lower priority is useless unless all the layers with higher priorities are
received. The priority is used to differentiate different layers. In our scheme, the
priority is not mandatory. Peers can choose stripes with lower priority instead of
higher priority to encode and every stripe is used to decode at the receivers. Priority
is used to improve the bandwidth utilization.

The pseudo-code for the stripe selection algorithm is listed in Table4.3.

Peer Leaving

When a peer leaves the system, it needs to leave the stripes it subscribes to. It
performs the leave procedure repeatedly for each stripe.

To leave a stripe, a peer first checks its position on the subgraph of the stripe.
There are two cases:

Case 1: It has no outgoing links. In this case, the leaving peer sends PRUNE
message to its parents (maybe more than one) such that they can delete the links
from the subgraphs.

97

Table 4.3:Stripe Selection Algorithm
INPUT: pathpi, link eij , link capacitycij , stripesfk

ij

and bandwidthbk
ij

//link eij is thejth link on pathpi

OUTPUT: stripes to subscribe to
BEGIN

foreachstripek
if bandwidthis enough(k)

Put stripek into a listl;
Sortl in a descending order of the number of paths the
stripe occupies;
foreachstripek in l

if bandwidthis enough(k)
foreachpathpi

Allocateb ∗ capk
i /

∑
i capk

i bandwidth to stripek;
END

bandwidthis enough(k)
BEGIN

foreachpathpi

foreach link eij

capk
ij = cij −

∑
k bk

ij + bk
ij ;

capk
i = minj{capk

ij};
if

∑
i capk

i ≥ b
return TRUE;

else
return FALSE;

END

Case 2: It has one or more outgoing links. In this case, the peer will notify
its children to rejoin the system. Meanwhile, it will send PRUNE message to its
parents.

Sometimes, peers may leave the system due to crash. In this case, it is impos-
sible for the leaving peer to notify its neighbors. To solve this problem, peers send
HELLO messages to its neighbors periodically and maintain a HELLO timer for
each neighbor. Receiving a HELLO message triggers a reset of the correspond-
ing HELLO timer. The neighbors detect the abruptly leaving by the timeout of the
HELLO timer. After detecting the leaving of the peer, the parents and the children
will perform the same operations discussed earlier.

98

Network Coding

We apply random network coding within each stripe. After encoding the media
content intok stripes, the source node sends each stripe by dividing it into groups
calledgenerations. A generation is a unit for network coding. Only messages
within the same generation can be encoded together by network coding. The source
node first performs random coding for messages in the same generation. The en-
coded messages are sent to the outgoing links over which the corresponding stripe
has flow.

The relay peers perform random coding when receiving the stripes of the media
content. As there is no coding between different stripes, peers only mix the flows
from the same stripe and the same generation. When a peer receives flows belong-
ing to the same stripe and generation from its parents, it mixes them up with random
coefficients generated from a large Galois field. The mixed flow is sent out only to
those outgoing links over which the stripe has flow. By doing this, it is guaranteed
that a peer will not receive the flow which is mixed with stripes it does not subscribe
to.

The peers decode the messages in the same generation once they receive enough
linearly independent messages from their parents. It will acknowledge the source
node of its successful receiving of the generation.

4.2.3 Performance Evaluations

In this section, we study the performance of the proposed scheme through simu-
lations. We have implemented the proposed scheme in NS-2 [33]. The network
topologies used in the simulations are random transit-stub network topologies gen-
erated by GT-ITM software [27]. Peers are selected randomly from the stub net-
works. The links between the stub networks and the transit network have 8Mbps
bandwidth on average. The bandwidth of the links in the transit network is set to be
sufficiently high (10,000 Mbps in the simulations) to simulate the network model
discussed in Section6.2.

We compare our scheme with a recently proposed scheme in [21], called LION,
as it is the closest work to ours. We use ANC (Adaptive Network Coding) to repre-
sent our scheme in the figures in the following.

The simulation adopts following three performance metrics:
Satisfaction: A peer may not receive the media content at its maximum rate

(downlink bandwidth). We usesatisfactionto evaluate the extent the peer is satisfied
with its receiving rate. A peer’s satisfaction is defined as the ratio of the received
rate to its downlink bandwidth. In the simulation, we use the average satisfaction
of all peers to represent the satisfaction of the system.

Resilience: Resilience is a performance metric used to evaluate the ability of the

99

system to handle peers’ dynamic join/leave called churn. We let the peers join and
leave the system during the time span. We assume that the uptime of a peer follows
Poisson distribution [56]. We evaluate the resilience by examining the throughput
under dynamic peer join/leave. Throughput is defined as the service the system
provides in one time unit. Here the service is the media content received by the
receivers. Due to the heterogeneity of the receivers, the receivers are receiving
the media content at different rates. We evaluate the volume of the media content
received by every receiver in a given time span. The throughput is equal to the
summation of the volumes of received media content by all the receivers divided by
the length of the time span.

Control Overhead: Control overhead is a performance metric used to evaluate
the efficiency of the scheme. It is measured by the number of control packets during
the time span. In particular, control overhead includes the packets generated by the
push-relabel algorithm and PRUNE messages, etc.

Satisfaction

We first compare the average satisfaction of peers under different sizes of the peer-
to-peer streaming system. We use the number of peers in the system to represent the
size of the system. To investigate the impact of the topology construction algorithm,
we compare the satisfaction using two different topology construction algorithms:
one is proposed in this section and the other is proposed in [12].

Fig. 4.10shows the average satisfaction as we change the system size. We can
observe that with the increase of the system size, the average satisfaction drops.
This is because that when the number of peers increases, the competition of the
bandwidth resource is more severe. Thus, it is more difficult to allocate the band-
width to satisfy every peer’s need. For both overlay topology construction algo-
rithms, our proposed scheme ANC performs better than LION regardless of the
system size. The advantage is greater when the system size is larger, which suggests
that ANC is more scalable than LION. When using the overlay topology construc-
tion algorithm proposed in this section, the satisfaction is increased by13%− 20%.

Resilience

In this subsection, we compare the resilience of the system under different sizes of
the system. Fig.4.11(a) shows the throughput comparison of the two schemes with
and without churn. We can see that the proposed scheme ANC achieves about18%
higher throughput than LION without churn and about48% higher throughput than
LION under churn. This can be explained by the fact that when churn occurs, the
probability that a peer misses the base layer in LION increases. Without the base

100

0
 100
 200
 300
 400
 500

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
ve

ra
ge

 S
at

is
fa

ct
io

n

Number of Peers

 LION

 ANC

(a)

0
 100
 200
 300
 400
 500

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
ve

ra
ge

 S
at

is
fa

ct
io

n

Number of Peers

 LION

 ANC

(b)

Figure 4.10:Average satisfaction evaluation. (a) Average satisfaction under system sizes
when using the overlay topology construction algorithm in LION; (b) Average satisfaction
under system sizes when using the overlay topology construction algorithm in this section.

layer, it is impossible for a peer to perform decoding. The advantage of MDC over
LC leads to the advantage of resilience of ANC over LION.

Since the uptime of the peers follows Poisson distribution, we useλ to denote
the mean uptime of peers. Fig.4.11(b) shows the simulation results when we set
the mean uptime to50, 250 and 500, respectively. The total simulation time is
1000 (in NS-2 time units). We can see that the shorter the mean uptime, the lower
the throughput. This is obvious as a shorter mean uptime implies a higher rate at
which the peers join or leave the system. Whenλ is smaller, the throughput is more
sensitive to the system size. This is because that a small system size limits the

101

optional paths during churn.

0
 100
 200
 300
 400
 500

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

T
hr

ou
gh

pu
t (

K
bp

s)

Number of Peers

 LION

 LION-churn

 ANC

 ANC-churn

(a)

0
 100
 200
 300
 400
 500

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

3800

3900

4000

4100

4200

T
hr

ou
gh

pu
t (

K
bp

s)

Number of Peers

 Lambda=50

 Lambda=250

 Lambda=500

(b)

Figure 4.11:Throughput evaluation. (a) Throughput under different system sizes when
peers join/leave dynamically; (b) Throughput under different system sizes and different
mean uptimes of peers when peers join/leave dynamically.

Control Overhead

In this subsection, we compare the control overhead of the system under different
sizes of the system. Fig.4.12(a) shows the curves of the control overhead of the
two schemes. With the increase of the system size, the control overhead increases
almost linearly for both schemes. The control overhead is mainly caused by the
join procedure of peers. As the number of peers increases, the number of control
packets increases proportionally as well. The control overhead of LION is slightly

102

more than that of ANC, because LION floods packets around the system to find
a maximum number of link-disjoint paths when building the layered mesh. Fig.
4.12(b) shows the impact ofλ on the control overhead. We can see that the control
overhead whenλ = 50 is much higher than that whenλ = 250 or λ = 500, while
the difference betweenλ = 250 andλ = 500 is small.

0
 100
 200
 300
 400
 500

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
on

tr
ol

 O
ve

rh
ea

d

Number of Peers

 LION

 ANC

(a)

0
 100
 200
 300
 400
 500

10000

20000

30000

40000

50000

60000

70000

C
on

tr
ol

 O
ve

rh
ea

d

Number of Peers

 Lambda=50

 Lambda=250

 Lambda=500

(b)

Figure 4.12:Control overhead evaluation. (a) Control overhead under different system
sizes; (b) Control overhead under different sizes and different mean uptimes of peers.

4.3 Summary

In this chapter, we have proposed a scheme to optimize the overlay topology for live
peer-to-peer streaming systems. One of the merits of the proposed scheme is that it

103

can make efficient use of the uplink bandwidth of the peers and satisfy the heteroge-
neous downloading rate requirements of the peers as much as possible. Compared
to other overlay topology construction schemes, the proposed scheme can handle
both heterogeneous uplink bandwidth and heterogeneous downlink bandwidth at
the same time. Peers with different downloading bandwidths can receive the media
content at different rates without bandwidth wasting. Besides, the distributed algo-
rithm constructs an adaptive overlay topology which can adapt itself to the changing
peers such that the end-to-end delay and link stress are minimized. Simulation re-
sults show that the proposed scheme outperforms MDM by about30% with respect
to the average peer satisfaction. In addition, the proposed scheme achieves less link
stress than MDM.

Thereafter, we have presented an adaptive network coding scheme for peer-to-
peer media streaming systems. Compared to other peer-to-peer media streaming
schemes, our scheme has the following advantages. (a) Heterogeneity support. As
most peers are individual computers connected to the Internet through heteroge-
neous access links, our scheme can maximize the bandwidth utilization of access
links and therefore maximize the total throughput of the system. (b) Resilience.
Churn is a common problem in peer-to-peer networks. With the help of MDC,
peers can reconstruct the media content with a subset of the stripes. (c) Scalability.
Media content is distributed through a peer-to-peer network. With the increase of
the network size, the total available bandwidth also increases.

104

Chapter 5

A Linear Inter-Session Network
Coding Scheme for Multicast

Most existing works on network coding in the literature focused on a single mul-
ticast session. For example, Li et al. [15] showed that linear network codes are
sufficient to achieve the multicast capacity. Kotter et al. gave an algebraic char-
acterization for a linear network coding scheme in [25]. They also gave an upper
bound on the field size and a polynomial time algorithm to verify the validity of
a network coding scheme. Ho et al. presented a random linear network coding
approach in [18, 36] in which nodes generate edge vectors randomly. The lin-
ear network coding scheme generated by this approach is not always valid. They
proved that the probability of failure isO(1/q) whereq is the size of the finite field.
In contrast to the random network coding, Jaggi et al. proposed a polynomial deter-
ministic algorithm in [16] which can construct deterministic linear network coding
schemes for multicast networks.

An extension to the network coding for a single multicast session is to apply net-
work coding to multiple concurrent multicast sessions, which is calledinter-session
network coding. The benefit of inter-session network coding can be demonstrated
by the example shown in Fig.5.1, where nodess1 ands2 are the respective sources
of the two multicast sessions and nodesr1 andr2 are the receivers of both multi-
cast sessions. We can see that edgec − d becomes a bottleneck if no inter-session
network coding is employed. Inter-session network coding can eliminate the bottle-
neck by encoding two messages received at nodec and send them along linkc− d
together. Bothr1 andr2 can recover the messages froms1 ands2.

However, although it is an extension of the single multicast session, inter-session
network coding is much more complex. Doughertyet al. [57] showed that linear
network coding is insufficient to achieve multicast capacity for multiple multicast
sessions. Liet al. [58] showed that there is no coding gain for an undirected graph.
Also, even we confine the encoding function to linear functions, it is a NP-hard

105

s2

c

d

r1 r2

s1

Figure 5.1:An example that inter-session network coding achieves higher throughput.

problem [25] to find such a linear network coding assignment. Wanget al. [51]
gave some preliminary work on inter-session network coding for two simple mul-
ticast sessions from a graph theory point of view. They proved an equivalent con-
dition under which there exists a linear network coding scheme for two multicast
sessions. Wu [59] applied random network coding to all the sessions after trans-
forming the network topology such that the source can only reach the receivers that
are interested in the source.

To the best of our knowledge, this is the first work that provides a practical
method to construct a linear network coding scheme for inter-session network cod-
ing and evaluate its performance. In this chapter, we will investigate inter-session
network coding by providing heuristic algorithms and conducting extensive sim-
ulations. We will propose an approach to identifying the situations where it is the
most profitable to do inter-session network coding and which sessions should be en-
coded together. Two metrics will be introduced to characterize the overlap among
sessions. The sessions are divided into multiple groups based on the metrics such
that the overlap among sessions in the same group is above a threshold. The inter-
session network coding is constrained within the same group. We will also propose
two heuristic algorithms, the deterministic algorithm and the random algorithm, to
construct the linear coding scheme on the divided groups.

5.1 Preliminaries

We model the network as a directed acyclic graph (DAG),G = (V, E), whereV is
the node set andE is the edge(link) set. An edgee can be represented by an ordered
node pair(x, y) wherex, y ∈ V . y is called the head of the edge andx is called the
tail of the edge. The messages can only be transmitted fromx to y.

Each node has one or more incoming edges and one or more outgoing edges
except that source nodes have no incoming edges and receivers have no outgoing

106

edges. Each edge, also called link, has a link capacity of1, which means that it can
only transfer1 unit of data at1 time slot. For a network with link capacities larger
than1, we transform the network based on the following rule: for each link with
link capacitylc (lc > 1), we replace the link withlc links such that each of them has
the same head and tail as the original link and has a link capacity of1. In the case
that a receiver has one or more outdoing edges, we add a virtual receiver to replace
it and multiple virtual links from the original receiver to the virtual receiver. The
number of the virtual links equals to the number of incoming edges of the original
receiver.

A multicast session is represented by a pair (s,M) wheres ∈ V represents the
source of the session, andM ⊂ V represents the set of receivers1. We assume
that there arek concurrent multicast sessions represented by (s1,M1), (s2,M2), . . . ,
(sk,Mk). For multicast session (si, Mi), the multicast capacity is denoted byCi,
and the transmission rate is denoted byri. Clearly,ri ≤ Ci. We call vectorπ =
(r1, r2, . . . , rk) a rate vector. A rate vector is achievable if it is possible to transmit
all the sessions at the respective rates in the rate vector. Theachievable rate region,
or rate regionfor short, is the set of all achievable rate vectors.

The inter-session network coding problem for multiple multicast sessions can
be described as follow:

Given a DAG,G = (V,E), and k multicast sessions, (s1,M1), (s2,M2), . . . ,
(sk,Mk), find the rate region for thek multicast sessions and a method to achieve
the rate region.

A special case of inter-session network coding is that each multicast session
constructs a network coding scheme for its own session. As the network coding is
only within the same session, we call it intra-session network coding. Intra-session
network coding is easy to implement. However, it is not the optimal solution in
most cases, because it can achieve the optimal rate region only if we can find a sub-
graph for each session such that these subgraphs are edge-disjoint and the multicast
capacity of the subgraph is no less than the multicast capacity of the correspond-
ing session. Apparently, this is difficult to achieve in general. In fact, the butterfly
network in Fig. 5.1 is an example that intra-session network coding is inferior to
inter-session network coding.

In this chapter, we are interested in solving the inter-session network coding
problem through linear network coding due to its simplicity and easy to implement
in hardware. As discussed earlier, linear network coding alone can not achieve the
optimal rate region. Thus, we focus on maximizing the rate region with linear inter-
session network coding. In particular, we are interested in answering following
questions:

• Question 1: Under what condition inter-session network coding outperforms

1We assumes /∈ M

107

intra-session network coding? We are especially interested in throughput im-
provement. As intra-session network coding is a special case of inter-session
network coding, the maximum rate region of inter-session network coding
is no less than that of intra-session. Therefore, the maximum throughput of
inter-session network coding is no less than that of intra-session.

• Question 2: How much can inter-session network coding improve the per-
formance compared to intra-session network coding? We are interested in
quantifying the benefit brought by applying the inter-session network coding.
We believe the benefit is a function of some factors which leads to the next
question.

• Question 3: What are the main factors that affect the performance? We are
interested in finding the factors which dominate the benefit of inter-session
network coding. These factors are then taken into consideration when con-
structing a practical inter-session network coding scheme.

5.2 Heuristic Algorithms for Linear Inter-Session Cod-
ing for Multicast

In this section, we propose heuristic algorithms for constructing a linear network
coding scheme to achieve a near optimal rate region. To fully examine the be-
haviors and properties of inter-session network coding, we propose two heuristic
algorithms: one is deterministic and the other is random.

A naive way to apply inter-session network coding to multiple sessions is to
combine all the sessions into one “big” session. The source node of the big ses-
sion is an artificial node connecting to the original source nodes of the multiple
sessions, and the receivers of the big session are the union of the receivers of the
multiple sessions. Then an intra-session linear network coding is applied to this
big session. However, this naive solution can hardly improve the performance, or
even worsen the performance. This is because different sessions have messages
destined to different sets of receivers. When considered as one big session, the
probability a receiver receives a message it is not interested increases, which causes
more wasting of bandwidth. To avoid such situation, we divide the sessions into
groups and perform intra-session network coding within each group. The selection
of group is performed carefully such that the benefit of inter-session network cod-
ing overwhelms the overhead. We adopt two metrics for the group division. We
first describe the two metrics.

108

5.2.1 Two Metrics for Session Division

The goal of mixing different sessions is to increase the throughput by eliminating
the bottlenecks caused by shared links of different sessions. If there are no shared
links between two sessions, inter-session network coding is not necessary or even
impossible. Therefore, we have the following heuristic rule for the algorithm: ses-
sions that overlap more will benefit more from inter-session network coding.

Now the problem becomes how to characterize the overlap among sessions. We
expect to find a method to quantify the shared links among sessions in order to
determine which group of sessions should be considered together. Before we dive
into the details, we introduce a notion calledfield to facilitate our presentation. A
field is a function which maps a session to a subgraph of the network topology.
Recall that given a multicast session (si,Mi), it is always possible to findCi edge-
disjoint paths from the source to any of the receivers. Thus, there are a total of
Ci|Mi| such paths. Afield is formally defined as follows:

field(si) = G′(V ′, E ′) where

V ′ = {v′|v′ ∈ one of theCi|Mi| paths},
E ′ = {e|e ∈ E, head(e) ∈ V ′ andtail(e) ∈ V ′} (5.1)

Each session has its own field. It is one of the subgraphs over which the session
can achieve the multicast capacity through network coding. Fields may overlap, that
is, a link may belong to multiple fields. Now we can quantify the overlap among
sessions by adopting the following two metrics:

• Overlap Ratio (OR): the overlap ratio measures the overlap by the percentage
of the overlapped links between two sessions. Suppose the two sessions are
si and sj. The overlap ratio of the two sessions can be calculated by the
following function:

OR(si, sj) =
CL(si, sj)

|E ′(si)|+ |E ′(sj)| − CL(si, sj)
(5.2)

whereCL(si, sj) represents the number of common links offield(si) and
field(sj), and|E ′(s)| represents the number of links infield(s). From the
definition, we can see that this metric gives a higher priority to the sessions
that have the most common links.

• Overlap Width (OW): the overlap width measures the overlap by the percent-
age of the overlapped paths between two sessions. Here the paths refer to the
edge-disjoint paths in the field. The overlap width of the two sessions can be

109

calculated by the following function:

OW (si, sj) =

∑Ci

m=1

∑Cj

n=1 Pmn

CiCj

(5.3)

wherePmn = 1 if the mth path infield(si) shares one or more links with
thenth path infield(sj) or Pmn = 0 otherwise. From the definition, we can
see that this metric gives a higher priority to the sessions that have the most
number of paths crossed.

We use a tunable parameterδ (0 ≤ δ ≤ 1) as a threshold. If eitherOR(si, sj)
or OW (si, sj) is greater thanδ, we put session (si, Mi) and (sj, Mj) into the same
group. After checking all the sessions, we can divide the multiple sessions into
several groups with each group composed of one or more sessions. The groups
are disjoint with each other. Now we can apply network coding to each group
respectively.

5.2.2 The Deterministic Algorithm

The deterministic algorithm constructs the linear network coding scheme by assign-
ing a fixed edge vector to each edge. The edge vectors are designed such that the
receiver can recover the original messages based on its received messages. With-
out inter-session network coding, nodes can only mix the messages generated by
the same source. If inter-session network coding is permitted, nodes can mix the
messages from different sources. We introduce a parameter calledmixability to
describe the maximum number of sessions that are permitted to be mixed together.
If mixability = 1, inter-session network coding degenerates to intra-session net-
work coding. If mixability = k, all the sessions are considered as one unified
session and the network coding scheme is constructed on the unified session. We
will evaluate the effect ofmixability on the performance in Section5.3.

As discussed earlier, the multicast sessions are divided into different groups
such that groups are disjoint with each other. All the sessions within the same group
are considered as one unified session. The union of the sources forms the sources of
the unified session. The union of the receiver sets of the sessions forms the receiver
set of the unified session. We add one artificial source node connected to all the
sources to simplify the linear network coding construction. Now the inter-session
network coding for multiple sessions is transformed to an intra-session network
coding for the unified session. There are several existing methods to construct a
deterministic linear network coding scheme for a single multicast session. Here we
adopt the method proposed in [60] for each group of sessions respectively. Given
a group, we first preprocess the graph to find a minimum subgraph which has the

110

same multicast capacity as the original graph. This preprocessing can greatly reduce
the graph size to be processed. The subgraph can be looked as the union of the fields
of the sessions in the group. Usually a field of a session is a subgraph which is much
smaller than the whole graph. Then we can apply the hypergraph based approach
in [60] to the subgraph to find a valid linear network coding scheme.

5.2.3 The Random Algorithm

The linear network coding scheme can be constructed not only in a deterministic
way, but also in a random way. In random linear network coding, nodes mix the
received messages and assign random coordinates to the edge vectors. Receivers
keep receiving the encoded messages until they have enough independent messages
to decode. In a random linear network coding without inter-session network coding,
nodes can only mix messages generated by the same source. With inter-session
network coding, nodes can mix the messages from different sources.

If there is no constraint for a node to mix and forward messages, that is, nodes
always encode all the messages they receive and send to all the outgoing edges,
the receivers will eventually be able to decode the original messages, since the
sources will keep sending the messages until all the receivers decode the messages
successfully. However, this method is inefficient as it mixes all the sessions and
treats them as one session. To avoid this problem, we divide the sessions into groups
in a similar way to that used in the deterministic algorithm. Only messages within
the same group can be encoded together, and nodes should obey the following rules:

1. If a node receives a message which contains the information generated by a
source that does not belong to the group and the sessions whose fields include
the node, the message should be discarded;

2. Encode the received message with other messages in the same group and send
to all the outgoing edges.

Based on the above two rules, we constrain the messages generated from one
source within its corresponding group. The reason is two folds. First, the receivers
whose corresponding session is outside the group will never receive messages from
the group. Thus the receivers can collect a sufficient number of independent mes-
sages to decode in a shorter time. Second, the messages will not flow aimlessly and
the network bandwidth is saved.

5.3 Performance Evaluations

We have conducted extensive simulations to evaluate the performance of the pro-
posed algorithms when the inter-session network coding is employed. In this sec-

111

tion, we present our simulation results and compare different approaches.

5.3.1 Simulation Setups

We use NS-2 [33] as the network simulator. The network topologies are generated
by GT-ITM software [27] which is a degree-based Internet structural topology gen-
erator. Each topology consists of1000 nodes with an average node degree of 2 to
10 depending on the simulation scenario. Both the source nodes and the receiver
nodes are selected randomly. Any node can not be a source node and a receiver
node at the same time.

The simulation includes two parts. First, we implement the intra-session net-
work coding and use it as a benchmark. We compare the two heuristic algorithms
with the benchmark under different situations. Second, we study the behaviors of
the inter-session network coding by tuning the parameters:mixability andδ.

The simulation adopts the following two performance metrics:

• Throughput: Throughput is defined as the service the system provides in one
time unit. Each node maintains an incoming buffer for each incoming edge
and an outgoing buffer for each outgoing edge. The size of the buffer is1.
All the source nodes keep sending messages to the next node as long as the
corresponding incoming buffer is not full. Each message contains a sequence
number which indicates its position in the message stream. After a certain
period of time, we stop all the message streams. The number of delivered
messages is represented by the largest sequence number of the message that
is received by all the receivers. The throughput of the system is the average
of these numbers.

• Bandwidth consumption: We defined the network bandwidth used to deliver
the messages as bandwidth consumption. As there are no control messages
involved in the delivery, the bandwidth consumption is only caused by data
messages. A data message going through one link contributes1 unit to the
bandwidth consumption.

5.3.2 Performance of Inter-Session Network Coding

We first compare the heuristic algorithms with the intra-session network coding in
some general scenarios.

Multicast Capacity

Figure5.2(a) shows the throughput evaluation under different multicast capacities
(average multicast capacity of all sessions). There are five curves which represent

112

the deterministic algorithm usingOR metric (denoted by “Determ, OR”), determin-
istic algorithm usingOW metric (denoted by “Determ, OW”), random algorithm
usingOR metric (denoted by “Random, OR”), random algorithm usingOW metric
(denoted by “Random, OW”), and intra-session network coding (denoted by “Intra-
session”), respectively. From the figure, we can see that both the deterministic al-
gorithm and the random algorithm achieve higher throughput than the intra-session
coding. It indicates that inter-session network coding can achieve better throughput
than intra-session network coding. If we adoptOW metric, the throughput of the
deterministic algorithm is about30% higher than that of the intra-session coding.
Also, the throughput of the deterministic algorithm is higher than that of the random
algorithm. This is due to the possibility of failing to decode with random coding.
We can see that with the increase of the multicast capacity, the throughput increases
as well. The algorithm with metricOW performs better than that with metricOR
with respect to the throughput. This can be explained from the definitions of the
two metrics.OR emphasizes the shared links between sessions, in which the ses-
sions with most common links are encoded together.OW emphasizes the crossed
paths, in which the sessions with most crossed paths are encoded together. The
throughput is determined by the bottleneck of the system. Encoding the sessions
with most crossed paths together implies that the bottleneck is relaxed to the maxi-
mum extent. The gap between the heuristic algorithms and the intra-session coding
becomes larger with the increase of the multicast capacity. It indicates that the
system benefits more from the inter-session coding when the multicast capacity is
larger due to the higher possibility to encode different sessions together.

Figure5.2(b) shows the bandwidth consumption evaluation under different mul-
ticast capacities. As the figure shows, the bandwidth consumption increases with
the increase of the multicast capacity. The deterministic algorithm achieves lower
bandwidth consumption than the random algorithm. We observe that the bandwidth
consumption of the deterministic algorithm is slightly higher than that of the intra-
session coding. This can be explained by the mechanism of inter-session network
coding. For the sessions in the same group, the messages are encoded and trans-
mitted together on bottleneck links which are shared by sessions. To this end, the
traffic is reduced. On the other hand, for receivers to recover the original mes-
sages, it is inevitable to generate more messages for the receivers to decode the
messages, which increases the traffic. However, these messages are usually trans-
mitted through some relatively lightly loaded links. Based on the simulation, the
increased traffic is slightly higher than the saved traffic. Given that inter-session
network coding can increase the throughput by about30% compared to the intra-
session network coding, the minor increase in bandwidth consumption on some
lightly loaded links is quite acceptable. We can also see that the algorithm with
metricOR saves more network bandwidth than the algorithm with the metricOW .

113

SinceOR maximizes the shared links between the sessions encoded together, data
packets are delivered only once on the shared links, which reduces the bandwidth
usage. It indicates that metricOR is more suitable for applications where network
bandwidth is scarce and expensive.

2
 3
 4
 5
 6
 7
 8

600

700

800

900

1000

1100

1200

1300

T

hr
ou

gh
pu

t

Multicast capacity

 Determ, OR

 Determ, OW

 Random, OR

 Random, OW

 Intra-session

(a)

2
 3
 4
 5
 6
 7
 8

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

B
an

dw
id

th
 c

on
su

m
pt

io
n

Multicast capacity

 Determ, OR

 Determ, OW

 Random, OR

 Random, OW

 Intra-session

(b)

Figure 5.2:The performance comparison under different multicast capacities. (a) through-
put; (b) bandwidth consumption.

From the above discussion, we can see that if we adopt metricOR instead of
metricOW , the bandwidth consumption can be saved. On the other hand, adopt-
ing OW can achieve higher throughput thanOR. This is a general observation

114

throughout the entire simulation. Since throughput is generally a critical perfor-
mance metric in most networks and the difference of bandwidth consumption be-
tween metricOR and metricOW is small, in the rest of the simulation figures, we
will draw the curve of metricOW only for clarity. Thus, by the deterministic (ran-
dom) algorithm, we refer to the deterministic (random) algorithm adopting metric
OW .

Session Size

Figure5.3 shows the throughput and bandwidth consumption under different ses-
sion sizes (the session size is the number of receivers in the session). We let all
the sessions have the same group size. As the figure shows, with the increase of
the session size, the throughput drops sharply. This is because that a larger session
size increases the possibility of overlap between sessions. The interference caused
by overlap will drag the throughput down. However, the drop rate of the heuristic
algorithms is lower than that of the intra-session due to the inter-session network
coding.

We can also see that the bandwidth consumption increases when the session
size increases. The bandwidth consumption of the random algorithm is highest and
it increases dramatically when the session size is greater than8. This is due to the
increased possibility of failing to decode the messages at the receivers.

From the above simulation results, we can draw the following conclusions: the
deterministic algorithm achieves higher throughput than the random algorithm and
the intra-session network coding (specifically, about13% higher than the random
algorithm and30% higher than the intra-session network coding). The random algo-
rithm has the highest bandwidth consumption (specifically, about35% higher than
the deterministic algorithm and45% higher than the intra-session network coding).

5.3.3 Inter-Session Network Coding Parameters

There are two important tunable parameters in the simulation of the inter-session
network coding:mixability and the thresholdδ. Mixability is used to limit the
maximum number of sessions which are encoded together. Whenmixability = 1,
the system degenerates to the intra-session network coding. The thresholdδ is used
to control the condition under which the sessions can be encoded together. When
the threshold is high, the possibility to encode different sessions is low. In this sub-
section, we will examine how these two parameters affect the system performance
through simulations.

115

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

600

700

800

900

1000

1100

1200

1300

1400

1500

T
hr

ou
gh

pu
t

Session size

 Determ

 Random

 Intra-session

(a)

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

B
an

dw
id

th
 c

on
su

m
pt

io
n

Session size

 Determ

 Random

 Intra-session

(b)

Figure 5.3:The performance comparison under different session sizes. (a) throughput; (b)
bandwidth consumption.

Mixability

Figure5.4(a) shows the evaluation for the throughput and bandwidth consumption
under differentmixability values. We can see that the throughput of both the de-
terministic algorithm and the random algorithm experiences a rise followed by a
drop. During the rise period, the deterministic algorithm has a steeper slope which
indicates that the deterministic algorithm exploits the inter-session coding better
than the random algorithm whenmixability is small. However, whenmixability

116

is greater than6, the throughput of the deterministic algorithm drops dramatically
with the increase ofmixability. The throughput of the random algorithm achieves
its maximum whenmixability is around9 after which it drops slowly. When the
mixability is large, the throughput of the random algorithm is higher than that of
the deterministic algorithm.

At first glance, this performance degradation of heuristic algorithms may be
surprising, since one may expect that the throughput of the inter-session network
coding should not lower than that of the intra-session network coding. However,
this is due to the fact that when two sessions with a large difference in their multi-
cast capacities are encoded together, the average throughput of these two sessions is
lower than that when only the intra-session network coding is used. This is because
that if the two sessions have a large difference in multicast capacities, the session
with a greater multicast capacity is dragged down by the other session as the ca-
pacity of the shared link is divided into half in inter-session coding instead of being
allocated according to the different rate requirements by sources.

Based on this observation, we revise the heuristic algorithms by limiting the
difference between the greatest multicast capacity and the smallest one in the same
group. To do this, we compare their multicast capacities before we calculate the
OR or OW metric for two sessions. If the difference is large than a specific value
(denoted byρ), no overlap metric is calculated, and these two sessions will not be
put into one group. Otherwise, whether the two sessions are put into one group is
based on the overlap metric. The determination of the optimal value ofρ depends
on the average session size of the two sessions. The larger the session size, the
smaller the optimal value ofρ. It indicates that if two sessions have a large average
session size, it is more critical to have a small multicast capacity difference. The
reason is that the throughput degradation due to the multicast capacity difference is
more severe in this case as it involves more receivers when the session size is large.

Figure5.4(b) shows the simulation results based on the revised algorithms. As
an example, we plot the figure for the case when the average session size is16
andρ = 4. We can see that now the throughput always increases asmixability
increases although the increase rate is slower than the previous simulation. It indi-
cates that the improved algorithm can eliminate the throughput degradation due to
the large multicast capacity difference.

Figure5.5shows the bandwidth consumption under different mixability values.
With the increase of the mixability, the bandwidth consumption increases slightly.
When the mixability is large, bandwidth consumption stays at the same level. This
indicates that whenmixability is greater than8, the group division remains the
same.

117

2
 4
 6
 8
 10

900

1000

1100

1200

1300

1400

T
hr

ou
gh

pu
t

Mixability

 Determ

 Random

(a)

2
 4
 6
 8
 10

1000

1050

1100

1150

1200

1250

1300

1350

T
hr

ou
gh

pu
t

Mixability

 Determ

 Random

(b)

Figure 5.4:The performance comparison under differentmixability values. (a) through-
put without considering the multicast capacity difference; (b) throughput considering the
multicast capacity difference.

Threshold δ

Figure5.6(a) shows the throughput when we tune the thresholdδ from 0.1 to 0.9.
As can be seen, the throughput drops as the threshold increases. The throughput
drops faster whenδ is greater than0.4. This is because that whenδ is large, the
possibility that overlapped sessions are encoded together becomes smaller. Whenδ

118

2
 4
 6
 8
 10

7000

8000

9000

10000

11000

12000

13000

B
an

dw
id

th
 c

on
su

m
pt

io
n

Mixability

 Determ

 Random

Figure 5.5:The bandwidth consumption comparison under differentmixability values.

is small, the throughput drops slightly, which indicates that the number of sessions
affected by the threshold is small. It implies that for most of the sessions, the value
of overlap metric is greater than0.4.

Figure5.6(b) shows the bandwidth consumption under different threshold val-
ues. The bandwidth consumption decreases with the increase ofδ. This is another
evidence that the traffic becomes less when the inter-session coding possibility is
smaller.

From the above simulation results, we can draw the following conclusions: With
the increase ofmixability, both the throughput and the bandwidth consumption
become higher; With the increase ofδ, both the throughput and the bandwidth con-
sumption become lower. When designing an inter-session network coding scheme,
it is necessary to consider all the influential parameters:mixability, δ andρ.

5.4 Summary

Network coding is a promising technique to improve the resource efficiency for
multicast networks. In this chapter, we have investigated the linear inter-session
network coding for multicast. The contribution of this chapter is three folds. First,
we proposed a practical inter-session network coding scheme for multicast and im-
plemented in NS-2. Second, we introduced two different metrics to characterize
the benefit of inter-session network coding with each metric having its own appli-
cation targets. Third, we studied the performance of inter-session network coding
from both the deterministic coding and random coding perspectives. Our simula-

119

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

600

800

1000

1200

1400

T
hr

ou
gh

pu
t

Threshold

 Determ

 Random

(a)

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

6000

8000

10000

12000

14000

B
an

dw
id

th
 c

on
su

m
pt

io
n

Threshold

 Determ

 Random

(b)

Figure 5.6: The performance comparison under differentδ values. (a) throughput; (b)
bandwidth consumption.

tion results show that the inter-session network coding outperforms the intra-session
network coding by about30% in terms of throughput in most cases. In addition, the
deterministic algorithm achieves higher throughput and less bandwidth consump-
tion than the random algorithm.

120

Chapter 6

A Service-Centric Multicast
Architecture and Routing Protocol

As we mentioned in1, traditional multicast is implemented in network layer through
multicast routing protocols running on routers. Network layer multicast has not
been deployed in reality due to some technical and non-technical reasons. As a
result, scalable and efficient support for multicast communication remains to be a
critical and challenging issue in networking research. In this chapter, we reexamine
the technical issues in existing multicast protocols and present a new angle to solve
these problems.

The main concern of a multicast routing protocol is how to efficiently and effec-
tively construct multicast trees and how to manage multicast sessions. For network-
wide multicasting, a network can be modeled as a graph with the nodes representing
the routers and the edges representing links between routers as shown in Fig.6.1(a).
The internal structure of a generic router is showed in Fig.6.1(b). In the rest of the
chapter, we will use “router” and “node” interchangeably.

Traditional multicast protocols construct and update the multicast tree in a dis-
tributed manner, which causes two problems: first, since each node has only local
or partial information on the network topology and group membership, it is difficult
to build an efficient multicast tree; second, due to the lack of complete information,
broadcast is often used when transmitting control packets or data packets, which
consumes a great deal of network bandwidth.

Quality-of-Service (QoS) is another important issue in constructing multicast
trees, as many multicast applications are QoS-sensitive. For example, real-time
audio/video stream requires bandwidth/delay guarantees. Constructing a multicast
tree that can satisfy multiple QoS constraints is difficult and in fact is NP-hard.
Thus, heuristic algorithms are usually developed to find an approximation solution.
A heuristic algorithm should achieve a good balance between the optimality of the
multicast tree and the time complexity of the algorithm.

121

LAN

(b)

Routing and
arbitration

Switch

In
pu

t c
ha

nn
el

s

O
ut

pu
t c

ha
nn

el
s

Router

(a)

Figure 6.1:(a) An example of a WAN; (b) Internal structure of a generic router.

In this chapter, we address the problem of providing efficient and flexible multi-
cast services and constructing a delay constrained minimum cost multicast tree for
dynamic multicast groups.

6.1 Preliminaries

We first introduce some existing multicast routing protocols and multicast tree con-
struction algorithms. Then we analyze the drawbacks and present the motivation of
our work.

6.1.1 Existing Multicast Routing Protocols

There have been extensive research and development activities in the area of mul-
ticast routing in recent years, see, for example, [2, 3, 4, 5, 6, 7, 8, 28, 61, 62, 63,
64, 65, 66]. Multicast routing protocols can be categorized into two types: Short-
est Path Tree (SPT) based multicast routing protocols and Shared Tree (ST) based
multicast routing protocols.

SPT-based protocols build a separate multicast tree for each (source, group) pair
rooted at the source. DVMRP (Distance-Vector Multicast Routing Protocol) [3] and
MOSPF (Multicast Extensions to Open Shortest Path First Protocol) [?] are SPT-
based protocols. In DVMRP, the multicast tree is built by “flooding-and-pruning.”
When a source router has multicast packets for a specified group, it first floods the
packets throughout the network; then the routers that do not belong to the group
will respond a prune message back to the source router. After this “flooding-and-
pruning” process, a SPT multicast tree is constructed which connects the source

122

router to each destination router by the shortest delay path. When there is a newly
joining/leaving group member or the topology changes, DVMRP relies on the in-
stant membership joining information and the periodical membership updating in-
formation to maintain a dynamic multicast tree. MOSPF makes use of the feature
of OSPF (Open Shortest Path First Protocol) [63] that each router keeps the net-
work topology and link state information to construct the SPT multicast tree. MO-
SPF extends OSPF by adding a new type of packet, group-membership-LSA packet
which pinpoints the locations of all group members. Whenever a host joins/leaves a
group, this information is distributed by flooding a group-membership-LSA packet
throughout the network. Based on the information of the network topology and the
group membership, each router can build an identical multicast tree for a (source,
group) pair.

On the other hand, ST-based protocols create one tree for the entire group, that
is shared by all the sources. The shared tree is rooted at a core router that is pub-
licized to all sources by some mechanism. Core-Based Tree (CBT) [5], Protocol-
Independent Multicast Sparse Mode (PIM-SM) [6], and Simple Multicast (SM) [64]
are ST-based protocols. In CBT, each group has a corresponding core which is a
router chosen by some election mechanism or hash function. The multicast tree is
rooted at the core which is shared by all the sources. The shared multicast tree is
constructed as follows: Each host that wants to join the group sends a join message
along the shortest path to the core; the join message stops at the core or a router
which is already on the tree; then the core or the router sends an acknowledgement
to the joining host along the same path that becomes a part of the tree after the
joining host receives the acknowledgement. Once the multicast tree is established,
a source can transfer the packet by first sending the packet to the core and then the
core sends the packet to group members along the multicast tree. PIM-SM proto-
col is quite similar to CBT, but it also allows to create a source-based shortest-path
tree on behalf of their attached group members. Thus, PIM-SM is a hybrid routing
protocol in a strict sense. SM protocol extends CBT with a major difference that
SM identifies a multicast group by the combination of the core node address and
the multicast address, and thus eliminates the need for the uniqueness of multicast
address across the Internet.

6.1.2 Existing Multicast Tree Construction Algorithms

A multicast tree spans the source and all the group members involved in the mul-
ticast communication. It plays a crucial role in multicast. Since data is delivered
along the multicast tree, the end-to-end delay, network bandwidth usage and delay
jitter are mainly determined by the multicast tree. Though any tree that spans the
source and all the group members could be a multicast tree, it is always preferred to

123

find a multicast tree with minimum cost. In this chapter, tree cost is defined as the
sum of link cost of all the links in the tree.

Finding a multicast tree with minimum cost is called Steiner tree problem and
it is a well-known NP-hard problem [67, 68]. Many heuristic algorithms have been
proposed. Kou, Markowsky and Berman proposed the KMB algorithm in [69],
which achieves the best approximation ratio among all proposed algorithms. In
KMB algorithm, the network is abstracted as a complete graph in which each node
represents the source or one of the group members and the cost of the edge equals
the lowest cost among all paths connecting the two nodes. KMB finds the minimum
spanning tree of the complete graph by using Prim’s algorithm [24]. Then each
edge in the spanning tree is replaced by the original path in the network. If the
replacement causes a loop, KMB constructs the minimum spanning tree for the
resulting graph. Finally, the leaf nodes that are neither source nor group member
are deleted.

Kompella, Pasquale and Polyzos proposed the KPP algorithm [70] that extends
KMB to support delay constraint. KPP takes two link parameters into account: link
cost and link delay. The delay constraint requires that the end-to-end delay should
be less than a threshold∆. KPP constructs a near minimum cost tree in which the
delay between every two nodes (source or group member) is less than the threshold.

In [71], Sriram, Manimaran and Murthy proposed the Controlled Rearrange-
ment for Constrained Dynamic Multicasting (CRCDM) algorithm to construct a
delay constrained minimum cost multicast tree. The CRCDM algorithm is based
on a concept called Quality Factor (QF) that represents the usefulness of a por-
tion of the multicast tree to the overall multicast session. It first constructs a delay
constrained multicast tree. When after some joining/leaving operations the QF is
below a threshold, the algorithm rearranges the multicast tree to minimize the tree
cost without violating the delay constraint.

6.1.3 Problems in Existing Approaches and Our Contributions

In general, SPT-based multicast routing protocols have three problems. First, SPT-
based multicast routing introduces the scalability problem for a large network in
terms of routing table storage since routers need to store routing information for
each (source, group) pair. Second, adopting DVMRP or MOSPF wastes a large por-
tion of the network bandwidth due to flooding, although in different ways. Third,
the multicast trees generated in DVMRP or MOSPF are shortest path trees, which
may not be the lowest cost multicast trees. ST-based multicast routing protocols
have been proposed to overcome the scalability and bandwidth wasting problems.
However, the ST-based multicast routing protocols introduce new problems. First,
the multicast communication from a source to a multicast group may not be very

124

efficient in most cases in terms of multicast tree cost and communication delay due
to the shared multicast tree. Secondly, the elected core has the same architecture as
any other routers in the network, thus has limited computing and packet forward-
ing capability. Moreover, the ST-based approach may cause traffic jam around the
core, since the packets from multiple sources may reach the core simultaneously.
The traffic concentration will further cause the problems of packet loss and longer
communication delay. Finally, it cannot tolerate any failure of the core.

Among the existing multicast tree construction algorithms, although KMB al-
gorithm constructs a minimum cost multicast tree which achieves the best approxi-
mation ratio, it does not consider any delay constraint. KPP takes both tree cost and
delay constraint into consideration, but the delay constraint in KPP is unnecessarily
tight that it requires the delay between every two nodes (source or group member)
is within the threshold. Moreover, both algorithms can only construct the multicast
tree for static multicast groups. CRCDM can construct a dynamic minimum cost
multicast tree which satisfies the delay constraint. However, since the CRCDM al-
gorithm relies on a delay constrained minimum cost unicast routing algorithm, its
time complexity is relatively high.

Our work in this chapter is motivated by the need of an efficient, flexible multi-
cast architecture that can optimize the multicast tree while maintaining a relatively
low overhead including both network bandwidth and the computing and storage
resources in routers. In this chapter, we propose a service-centric approach for
multicast communication, in which there are one or more powerful routers in each
domain which handle most of multicast-related tasks. This approach can provide
better efficiency and flexibility for two reasons: first, the powerful routers possess
all the information on the network, such as network topology, link delay, link cost
and group membership, thus it can adopt a more sophisticated algorithm to build
an efficient multicast tree without increasing the network bandwidth usage; second,
since the multicast tree constructing algorithm is run only on the powerful routers,
it is convenient to modify the algorithm if the requirements of the multicast appli-
cations change while other routers in the domain do not need to know the change.

We also design a multicast routing protocol (SCMP) corresponding to the pro-
posed multicast architecture. SCMP is an intra-domain multicast routing protocol
which takes advantage of both the shared tree approach and the centralized process-
ing fashion. A powerful router acts as the control unit and the root of the multicast
tree for all the groups in the domain. A potential problem is that the traffic around
the m-router is much more congested than the rest of the network. However, there
is no traffic jam around the m-router for the following three reasons: first, the m-
router is designed to process simultaneous many-to-many communication requests
efficiently; second, the links connected to the m-router have more capacity and
higher speed than the other links; third, SCMP can build a SPT tree for a specific

125

source on demand. The multicast tree is computed in the powerful router and dis-
tributed around the domain with as little overhead as possible by the self-routing
packets. SCMP adopts the DCDM algorithm to construct a delay constrained dy-
namic multicast tree with minimum cost. The end-to-end delay between the source
and any group member is bounded by a threshold. Group members can join or
leave the group at any time during the multicast session. By taking advantage of
two precalculated optimal unicast paths between any two nodes, it can achieve a
good tradeoff between tree optimality and time complexity of the tree construction.

Although both DCDM and CRCDM construct delay constrained minimum cost
multicast trees, they are different in many aspects. First, CRCDM is focused on the
multicast tree rearrangement after nodes leave, while DCDM is focused on the non-
rearrangeable multicast tree construction. Second, CRCDM relies on an existing
delay constrained minimum delay unicast routing algorithm to find the graftpath,
while DCDM finds the graftpath by itself. Third, the unicast routing algorithm
used in CRCDM is a complex distributed algorithm which incurs long join latency
and high computational load, while DCDM uses a simple centralized heuristic rule
to find a sub-optimal graftpath in linear time complexity. Due to introducing the
m-router, a centralized algorithm with less complexity is feasible and preferred.

6.2 The New Multicast Architecture

The proposed multicast architecture consists of three components: the specially
designed powerful routers, the group and session management protocol and the
multicast routing protocol. In this section, we first give an overview of the new
multicast architecture, and then describe the three components separately.

6.2.1 Overview of the New Multicast Architecture

The proposed multicast architecture and protocol are based on the concept ofservice-
centric multicast routing. Instead of treating each router equally as in existing multi-
cast architectures, the new multicast architecture has two different types of multicast
routers, which we callmaster multicast router(or m-router) andintermediate mul-
ticast router(or i-router). An i-router functions as an ordinary multicast router for
forwarding multicast packets; while an m-router is responsible for more complex
service-related tasks such as multicast session and group membership management,
routing scheme control, transmission bandwidth management, and traffic schedul-
ing and performs some service specific functions. The m-router integrates multiple
routers, each of which can serve more than one multicast groups. Each m-router
should be owned by an ISP (Internet Service Provider), who provides multicast ser-
vices, so that the ISP centralizes most of service-related tasks on the m-router to

126

alleviate the burden on the Internet. An ISP may own more than one m-router in the
Internet for serving its customers in different geographic regions. Fig.6.2 shows
the m-routers and i-routers in the Internet. For simplicity, we assume that one do-
main owns only one m-router in this chapter although our approach can be easily
extended to multiple m-routers per domain. An i-router can adopt any multicast-
capable switching fabric. For an m-router, we need to develop a special type of
switching fabric. In general, we can consider an m-router has multiple input ports
and multiple outputs ports and each of its input/output links has sufficiently high
bandwidth.

m-router

LAN

i-router

The Internet

m-router

Figure 6.2:Illustration of m-routers and i-routers in the Internet.

A typical multicast communication is realized as follows. For each multicast
group, the m-router dynamically assigns one of its output ports to the group, and
a multicast tree rooted at the output port is built to reach members of the group
via some i-routers which are non-root nodes of the multicast tree. The multicast
tree is generated in the m-router in response to the JOIN/LEAVE message and then
distributed around the domain. When transmitting a multicast packet, if the source
router is the m-router itself, or it is on the multicast tree already, the packet is
sent along the multicast tree; if the source router is a router which is not on the
multicast tree, the source router first sends its packet to the m-router, then the m-
router forwards the data along the multicast tree.

6.2.2 Design of the m-Router

The m-router plays a very important role in the multicast architecture because it
handles most multicast related tasks and it is the root of the multicast trees. To
avoid traffic jam around the m-router, it is required that the m-router is capable of

127

handling multiple multicast tasks simultaneously and forwarding heavy multicast
traffic efficiently. Fig.6.3shows the sketch of the internal structure of an m-router,
which has ann× n switching fabric.

m m
In

pu
t

B
uf

fe
rs

O
ut

pu
t

B
uf

fe
rs

n x n
Switching

Network

Memory

Network Processor

Database

Figure 6.3:A sketch of the internal structure of an m-router.

Many tasks in the m-router, such as managing multicast group membership,
generating multicast trees, scheduling, routing and transmission, are relatively in-
dependent, which can be performed in parallel. Thus, the m-router can adopt a
multiprocessor or a cluster computer architecture. MMC Networks’ NP3400 pro-
cessor [72] and Motorola’s C-port network processor [?] are examples of the
routers with multiple processors.

Efficient hardware support from the underneath switching fabric with multi-
cast capability is the key for the m-router to provide various multicast services and
handle heavy multicast traffic. There has been a lot of work concerning multicast
switching fabric designs in the literature [73]-[74]. Recall that in various multicast
applications, for a multicast connection, a source may or may not belong to the
multicast group. Also, there may be several multicast connections from different
sources to the same multicast group, which can be referred to asmany-to-many
communication. We denote a many-to-many communication as(S,M), whereS is
the set of sources andM is the set of multicast group members. To support mul-
tiple such many-to-many communications in the Internet, the multicast switching
fabric can be designed by adopting the concepts from the conference switching net-
works [75], but the switching fabric of the m-router is required to support more
general communication patterns and make fully use of the multicast trees built in
the Internet.

An illustration of the m-router switching fabric interconnecting with the Internet
is shown in Fig.6.4. By adopting the sandwich network structure [75, 76, 77, 78],

128

PN CCN DN

The Internet

The Internet

Figure 6.4:Illustration of an m-router switching fabric interconnected with the Internet.

then × n switching fabric consists of threen × n subnetworks, permutation net-
work (PN), connection component network (CCN) and distribution network (DN).
Among them, the PN and the DN are permutation networks, which have the func-
tions of keeping inputs/outputs in some order for the CCN and performing load-
balance for the m-router in the Internet. The CCN realizes the connections of mul-
tiple sources by “merging” them in a reversed tree rooted at an output, which is
then linked through the DN to the root of the corresponding multicast tree in the
Internet. This way, the multiple sources can share one multicast tree via the con-
nections in the CCN. However, as it should be, sources to different multicast groups
are never be connected in the switching fabric. The CCN in the switching fabric of
the m-router functions as connecting links coming from different sources to a link
leading to the root of the multicast tree.

The network topology for the CCN is a modified version of a self-routing mul-
tistage network with low hardware cost, such as an omega network or an indirect
binary cube network [74]. It has fan-in capability so that reversed trees can be
established for different sources to share a corresponding multicast tree in the Inter-
net. The fan-in capability can also be used for synthesizing multiple simultaneously
arrived input data in a conference service. The data synthesis varies in conference
applications with different service requirements. It is the responsibility of an ISP
to define and implement the data synthesis features for its offered conference ser-
vices. The CCN can provide an architectural support for the connectivity within a
many-to-many communication and for the privacy among different many-to-many
communications, using the lowest hardware cost and the minimum routing time in
a switching network. That is, for any mutually disjoint many-to-many communica-
tions (S1,M1), (S2,M2), . . ., (Sk,Mk) with

∑k
i=1 |Si| ≤ n it is required to findk

mutually disjoint reverse trees with the numbers of leaves being|S1|, |S2|, . . . , |Sk|,
respectively, in a self-routing multistage network.

129

6.2.3 Multicast Group and Session Management Protocol

We expect the new architecture would still maintain the user-transparency property
for multicast group information, and be compatible to existing protocols. We use
an existing protocol, Internet Group Management Protocol (IGMP) [2], to manage
the process of a host computer joining or leaving a multicast group in the subnet.
IGMP is used by hosts to register their dynamic multicast group membership. It
is also used by routers to discover these group members. In IGMP, one of the
routers connected to the same subnet is called the designated router (DR) which
is selected among the routers in the same subnet to do some jobs on behalf of
the subnet. In IGMP, the DR is responsible for sending Host Membership Query
messages to discover which groups have members on their subnet. Hosts respond
to a Query by generating Host Membership Reports, reporting each group they
belong to on the network interface from which the Query was received. Thus, the
group membership is transparent to end-users regardless of they are in the group or
outside the group. However, unlike DVMRP and CBT where no routers have the
complete group membership information and MOSPF where every router knows
all the membership information, in the new architecture only the m-router knows
all the group membership information. This feature of the new architecture makes
more sense, because the group membership information should be easily accessible
by the ISP for possible accounting and billing purposes, and the information should
not be accessed by other parties.

The m-router acquires group membership information from i-routers as follows.
Whenever an i-router finds out that a host in its resided subnet joins a new group,
or all members in its subnetwork quit from an existing group, the i-router sends a
unicast message to the m-router to inform the group membership change. Thus, the
m-router collects group membership information passively and dynamically. Since
the m-router is responsible for managing the multicast groups, it should be able
to issue a multicast address for a new multicast group, revoke a multicast address
from an abandoned multicast group, and publish the multicast addresses for existing
multicast groups.

For managing multicast sessions, the m-router is responsible to start a new mul-
ticast session, to tear down an expired multicast session, and to check, track and
record the multicast traffic in the corresponding multicast session. Since the life-
time of a multicast session depends on its multicast service requirements, multicast
session management follows the service-related requirements and policies. The
m-router also keeps track of all the membership on-off information for multicast
scheduling/routing and for accounting/billing purposes.

Because the m-router is the sole entity for managing the multicast groups and
multicast sessions, it should have abilities for outsiders to query proper information
about multicast groups and sessions in the m-router. All the service-related infor-

130

mation will be kept in a database on the m-router. As SCMP is an intra-domain
multicast routing protocol, which means the number of hosts is limited by the do-
main size, the information maintained in the m-router will not increase with the
expanding Internet.

6.2.4 Multicast Routing Protocol (SCMP) - An Overview

Having described the multicast architecture, in this subsection, we give a brief
overview of its corresponding multicast protocol SCMP. The details of this protocol
will be presented in the next section.

We assume that the Internet consists of a number of autonomous systems or
domains, where each domain is under the administrative control of a single entity.
Besides a multicast routing protocol, each domain also runs a unicast routing proto-
col. SCMP is an intra-domain multicast protocol that constructs the multicast tree
within the domain in which a link state unicast routing protocol is running.

The multicast routing protocol for the proposed architecture is expected to sat-
isfy the following requirements:

• Allow any sophisticated network-wide routing algorithms to be used for con-
structing multicast trees;

• The computing effort for multicast trees is centralized at the m-router, saving
the computing resource of other routers;

• Multicast routing information is transmitted only through the i-routers on the
multicast tree, and does not affect the rest of the Internet.

In SCMP, the m-router’s IP address is known to all the routers in the domain
in advance. This can be realized by putting the IP address of the m-router in every
router’s configuration file. After a router is notified by one host in its subnet that it
wants to join or leave a group, the router sends a JOIN/LEAVE request message to
the m-router indicating the group ID and the IP address of the router. The m-router
keeps track of all the group members in the group. When the m-router receives
such JOIN/LEAVE request message, it updates the multicast tree according to the
change of the group membership. A network-wide routing algorithm is run on the
m-router to generate a multicast tree for a given multicast group. This is achievable
because the m-router has all the group membership and global network topology
information.

The multicast tree is generated in the m-router based on the collected topology
and membership information. After the multicast tree is generated in the m-router,
it should be physically formed in the domain. The routers on the tree should update
the routing table according to the generated multicast tree. SCMP uses a special
type of packet, TREE packet, to accomplish this. Each TREE packet contains the

131

complete information about a subtree of the multicast tree. The m-router is respon-
sible to generate the original TREE packets. The i-router receives a TREE packet
which represents a subtree rooted at the i-router itself. After receiving the TREE
packet, the i-router sets the routing table according to the information in the TREE
packet, and sends a new TREE packet to each i-router which is the child of the
i-router in the multicast tree. The procedure is performed recursively on the mul-
ticast tree until it reaches the leaf routers. The resulting multicast tree is a shared,
bi-directional tree rooted at the m-router.

The reasons for running a network-wide routing algorithm at the m-router and
passing the multicast tree information along the tree are the following. A routing
algorithm that constructs a near optimal multicast tree usually has higher time com-
plexity. Thus, it should be run only once network-wide, and should be run by the
router with more computing power. It is not necessary to run the same algorithm
for the same multicast tree repeatedly on many i-routers with less computing power.
On the other hand, the packet size of the TREE packet is comparable to that of the
packet containing the multicast membership information, thus it will not increase
the message payload much. Besides, the information is transmitted only through the
i-routers on the multicast tree, and all the routing-related operations are performed
only once during a multicast session.

When a source sends a packet to a group, if the source is not on the tree, the
multicast packet is encapsulated in a unicast packet and sent to the m-router first
(Note that the IP address of the m-router is known to all the routers in advance).
The m-router decapsulates the packet and forwards it along the tree as a multicast
packet. If the source is on the tree, the packet can be forwarded along the tree
directly because the tree is bi-directional. Fig.6.5shows an overview of the SCMP.

6.3 Multicast Routing Protocol (SCMP)

In this section, we give the detailed descriptions of the new multicast routing pro-
tocol. We first provide some terminologies.

6.3.1 Terminologies

Each router on the multicast tree has anupstreamwhich is the parent router of
the router. The root of the tree (m-router) has noupstream. Each router on the
tree has adownstreamwhich is a set of routers and interfaces. The routers in the
downstreamare the child routers of the router. The interfaces in thedownstream
are the interfaces of the router that are connected to the subnets in which there is
at least one host belonging to the group. A multicast routing entry is a triple with

132

subnet

m−router

1

3

4

5

5

6

i−router

host

m−router

2

1. IGMP query

2. IGMP report
3. Join request

4. Generating the tree

5. Tree construction

6. Data flow

Figure 6.5:Overview of the SCMP protocol.

three fields: (group id, upstream, downstream). If a router is on the multicast tree of
a group, “group id” is the identification of the group, “upstream” is theupstreamof
the router, and “downstream” is thedownstreamof the router. The multicast routing
table is composed of one or more multicast routing entries.

6.3.2 Member Joining

When a host wants to join a group G, it sends an IGMP report message identifying
the group id,gid, in response to the designated router DR’s IGMP query message.
When the DR receives an IGMP report for groupgid, it checks whether it is on
the multicast tree of groupgid first. This is done by checking whether there exists
a multicast routing entry whose “group id” isgid. If there exists such a multicast
tree, it checks whether the interface connected to the host is included in the “down-
stream” of the multicast routing entry. If not, add it to the “downstream.” If the
interface is the first interface added to the “downstream,” the DR will send a JOIN
message to the m-router. Although the multicast tree does not need to be updated,
the m-router needs this information for possible accounting and billing purposes.

If the DR is not on the multicast tree, it sends a JOIN message to the m-router
indicating thegid and the IP address of the DR. At the same time, the interface
from which the IGMP report message is received is marked so that it will be added
to the “downstream” of the multicast routing entry which will be set up when the
DR receives the TREE packet later. A timer is set and the DR will resend the JOIN
message if the TREE packet is not received before the timer expires.

The pseudo-code of the member joining procedure is shown in Table6.1.

133

Table 6.1:Member Joining Procedure
input : group idgid, interfaceinf .
output: JOIN message.
algorithm :
if there exists a multicast routing entry whose group id field isgid

if inf is not in the multicast routing entry
addinf to downstream of the routing entry;

if inf is the only interface element in downstream
send JOIN message to m-router;

else
store (gid, inf) for creating the multicast routing entry in the future;
send JOIN message to m-router;

end

6.3.3 Member Leaving

When the last group member of a subnet sends an IGMP leave report to the DR, the
DR removes the interface from the “downstream” of the routing entry first. After
that, the DR checks whether it becomes the leaf node of the multicast tree. A router
is a leaf node of the multicast tree when thedownstreamof the router is null. If the
DR is not a leaf node, there are two cases: (1) There is at least one interface element
in the downstream. In this case, no action is needed; (2) All the elements in the
downstreamare routers. In this case, although the multicast tree remains the same,
the DR should send a LEAVE message to the m-router for possible accounting and
billing purposes.

If the DR is a leaf node after receiving the IGMP leave report, in addition to
sending a LEAVE message to the m-router, it also sends a PRUNE message to the
upstreamrouter so that theupstreamrouter will no longer forward the multicast
packet to it. Similarly, if theupstreamrouter finds that itself is a leaf node, it
triggers another PRUNE message to itsupstreamrouter. This PRUNE message
will continue until it reaches a non-leaf router. If the DR receives data packet after
it leaves the group, it triggers a retransmission of the LEAVE message and the
PRUNE message.

The pseudo-code of the member leaving procedure is shown in Table6.2.

6.3.4 Constructing the Multicast Tree at the m-Router

The multicast tree is constructed in the m-router before it is physically formed in
the domain. As discussed earlier, whenever a host wants to join or leave a group, a
JOIN or LEAVE message will be sent to the m-router and then the m-router updates

134

Table 6.2:Member Leaving Procedure
input : group idgid, interfaceinf .
output: LEAVE message and PRUNE message.
algorithm :
removeinf from downstream of the multicast routing entry;
if downstream becomes NULL

send a PRUNE message to upstream router;
send a LEAVE message to m-router;

else
if all the elements in downstream are routers

send a LEAVE message to m-router;
end

the multicast tree. SCMP adopts the DCDM algorithm to update the multicast
tree. Next we describe the DCDM algorithm. We first give some terms used in
the description.

For each pair of nodes in the network, there exists a path that has the least
cost among all the paths connecting these two nodes, and we usePlc to denote
this path. Similarly, for each pair of nodes in the network, there exists a path that
has the shortest delay among all the paths connecting these two nodes, and we use
Psd to denote this path. Once the network is given, we can precalculate these two
paths for every pair of nodes and store them for future routing. Theunicast delay
between two nodes is the delay of pathPsd. The unicast delay of a group member
is the unicast delay between the group member and the m-router which is denoted
asul. For any group member, there is a unique path on the tree connecting the
group member to the m-router. Themulticast delayof the group member is the
delay of the unique path and is denoted asml. The longest multicast delay of all
group members is thetree delay. The upstream router is denotes as US and the
downstream set is denoted as DS.

Problem formalization

We first formalize the problem considered in the DCDM algorithm. The problem
is called Delay Constrained Dynamic Steiner Tree-Nonrearrangeable (DCDST-N)
problem which adds delay constraint to the DST-N problem in [79].

A point-to-point communication network can be represented by an undirected
graphG(V,E), whereV is the set of nodes andE is the set of edges. The nodes in
V represent the routers in the network. The edges inE represent the communication
links connecting the routers. Two positive real functions are defined onE:

135

• link cost function(LC : E → <+): link cost is determined by the utilization
of the link. It denotes the cost to use the link. The higher the utilization, the
higher the link cost.

• link delay function(LD : E → <+): link delay is defined as the sum of the
perceived queueing delay, transmission delay and propagation delay over the
link.

The two functions will not change with time. SupposeP is a path inG which
is composed of linksei, i = 1, 2, . . . , p. The cost and the delay of the pathCost(P)
andDelay(P) are defined as follows:

Cost(P) =

p∑
i=1

LC(ei), andDelay(P) =

p∑
i=1

LD(ei)

In a multicast communication session, there is a source nodes ∈ V and a group
member setM ⊆ V . s is the node corresponding to thesourcethat generates
the data. The nodes inM , called group member nodes, correspond to thegroup
members that receive the data.s may or may not be inM . A multicast treeT is a
tree in graphG such thatT spanss ∪M . We useT v andT e to represent the node
set and edge set ofT , respectively. The tree cost is defined by the sum of the link
cost in the tree.

Cost(T) =
∑
e∈T e

LC(e)

The nodes in set(T v − s ∪M) are called relay nodes. They are used to relay data
from the source node to group member nodes.

Let v be a node in set(T v−s), there must exist only one simple path connecting
s to v such that all the links in the path are inT e. We useP t(v) to represent this
path.

A multicast requestri is a pair(vi, ρi), vi ∈ V, ρi ∈ {add, remove}. Request
ri can be viewed as nodevi requesting to join (ρi = add) or leave (ρi = remove) the
multicast session.R is a sequence of multicast requestsR = {r1, r2, . . . , ri, . . . , rn}.
Corresponding toR, there are a sequence of member setsM r and a sequence of
multicast treesT r. M r = {M1,M2, . . . , Mi, . . . , Mn}, whereMi = {vk|∃k, 1 ≤
k ≤ i, rk = (vk, add) and∀j, k < j ≤ i, vj 6= vk} andT r = {T1, T2, . . . , Ti, . . . , Tn},
such thatTi spanss ∪Mi.

The DCDST-N problem can be described as follows: Given a graphG, a source
nodes, two link functionsLC and LD, a threshold∆ and a multicast request
sequenceR, construct a sequence of multicast treesT r such that
1. Delay(P t(v)) ≤ ∆, ∀v ∈ Mi;
2. The tree cost is minimum among all the possible trees;
3. if ρi = add, Ti−1 ⊆ Ti; if ρi = remove, Ti ⊆ Ti−1.

136

Adding a group member node to the multicast tree

A host can join the multicast session anytime when it wants to receive data from the
source by issuing a multicast requestri in whichρi = add. The initial multicast tree
includes only the source nodes, i.e. T v

0 = {s} andT e
0 = φ. Suppose a multicast

treeTk is formed afterk multicast requests have been processed, whereT v
k is the

node set andT e
k is the edge set. Now nodev wants to join the multicast session.

Tk+1 is the multicast tree after nodev joins. There are two cases:
Case 1: v ∈ T v

k . In this case, nodev is already on treeTk. The multicast tree
remains the same, that is,Tk+1 = Tk andMk+1 = Mk ∪ {v}.

Case 2: v /∈ T v
k . In this case, nodev is not on treeTk. Suppose the size of

T v
k is l. For each node inT v

k , there are two precalculated paths connectingv to this
node: Plc andPsd. Thus there are totally2(|V | − 1) paths connectingv to other
nodes. These paths are sorted in an ascending order of their cost. The path list is
checked from the beginning one by one until a path which connectsv to the current
tree and satisfies the delay constraint is found. Suppose the path found isP , which
connects nodev to nodeg on the tree.g is called thegraftnode, andP is called
thegraftpath. P is then added to the tree, that is,Tk+1 = Tk ∪ P .

The pseudo-code of the procedure for adding a member node to the tree is given
in Table6.3.

Fig. 6.6gives an example of the multicast tree construction by using the DCDM
algorithm. Fig.6.6(a) is the network topology. The numbers on the link represent
(link delay, link cost). Node0 is the m-router. Nodes4, 3 and5 represent three
group member nodesg1, g2 and g3, respectively. Supposeg1 is the first group
member to be added. The algorithm finds a shortest delay path connecting the m-
router andg1, which is0 → 1 → 4, and the tree delay is3 + 9 = 12. Now g2 wants
to join the group. The unicast delay ofg2 is 2 which is less than the current tree
delay12. Thus, there are two nodes forg2 to graft on, node0 and node1. If node0
is chosen, the multicast delay ofg2 is 2 and the tree cost is increased by6. If node
1 is chosen, the multicast delay ofg2 is 3 + 3 + 4 = 10, the tree cost is increased
by 3. Thus, choosing node1 will not increase the current tree delay while the tree
cost is minimized at the same time. The final tree is0 → 1 → 4 and1 → 2 → 3,
as shown by the solid lines in Fig.6.6(b).

One issue we need to deal with in the multicast tree construction is to eliminate
loops. Supposeg3 wants to join the group afterg1 andg2 join the group. The unicast
delay ofg3 is 4 + 7 = 11, which is less than the current tree delay12. If node2
is chosen as the graft node, the multicast delay will be3 + 3 + 7 = 13, which is
greater than12. Thus, the graft node should be node0. As shown in Fig.6.6(c),
after path0 → 2 → 5 is added to the tree, a loop0 → 1 → 2 → 0 is formed.

In order to remove the loop, before thegraftpath is added to the tree, every
node in thegraftpath must be checked whether it is already inT v

k . If it is in the

137

Table 6.3:Procedure of Adding a Member Node
input : G, v andTk.
output: Tk+1.
algorithm :

if v ∈ T v
k

Mi+1 = Mi + {v}
else
mincost = MAX;
//MAX is the largest number in the system
for each nodet in T v

k

if Delay(Plc(t, v)) + Delay(P t(t)) ≤ ∆
if Cost(Plc(t, v)) < mincost
mincost = Cost(Plc(t, v));
graftpath = Plc(t, v);
graftnode = t;

else ifDelay(Psd(t, v)) + Delay(P t(t)) ≤ ∆
if Cost(Psd(t, v)) < mincost
mincost = Cost(Psd(t, v));
graftpath = Psd(t, v);
graftnode = t;

Tk+1 = Tk ∪ graftpath
end

tree, prune the tree as if it is a leaf node and update theP t path for all the nodes in
the downstream set of the node. The only exception is that the upstream of the node
is in thegraftpath. The pseudo-code of the procedure is given in Table6.4. In the
example, the algorithm prunes the tree upstream from node2 until it reaches node
1. The final tree is0 → 1 → 4, 0 → 2 → 5 and2 → 3, as shown by the solid lines
in Fig. 6.6(d).

We can also see that the loop removing procedure will not break the delay con-
straint. Consider the example in Fig.6.6(c). Since node0 is thegraftnode, we
have

Delay(0, 2) + Delay(2, 5) ≤ ∆ (6.1)

Delay(0, 1) + Delay(1, 2) + Delay(2, 5) > ∆ (6.2)

If (6.2) is false, the algorithm will choose node2 as thegraftnode. From (6.1) and
(6.2), we have

Delay(0, 2) < Delay(0, 1) + Delay(1, 2) (6.3)

Since links(0, 1), (1, 2) and(2, 3) belong toTk, we have

138

0

4
5

2

3

1

(3,6)

m−router

(9,3)

(2,6)

(4,1)

(4,5)

(3,2)

(7,2)

(a)
g1

g3

g2

0

4
5

2

3

1

(3,6)

m−router

(9,3)

(2,6)

(4,1)

(4,5)

(3,2)

(7,2)

(b)
g1

g3

g2

0

4
5

2

3

1

(3,6)

m−router

(9,3)

(2,6)

(4,1)

(4,5)

(3,2)

(7,2)

(d)
g1

g3

g2

0

4
5

2

3

1

(3,6)

m−router

(9,3)

(2,6)

(4,1)

(4,5)

(3,2)

(7,2)

(c)
g1

g3

g2

Figure 6.6:Example of using the DCDM algorithm. (a) Network topology; (b) Multicast
tree afterg1 andg2 are added; (c) A loop is formed afterg3 is added; (d) Multicast tree after
g3 is added.

Delay(0, 1) + Delay(1, 2) + Delay(2, 3) ≤ ∆ (6.4)

From (6.3) and (6.4), we have

Delay(0, 2) + Delay(2, 3) ≤ ∆

Deleting a group member node from the multicast tree

When a host quits the multicast session, there are also two cases:

139

Table 6.4:Loop Removing Procedure
input : G, v, Tk, graftpath andgraftnode.
output: Tk+1.
algorithm :

//Assumegraftpath = (g0, g1, . . . , gj)
//whereg0 = graftnode, gj = v
Tk+1 = Tk;
for each nodegi(i > 0) on pathgraftpath

if gi ∈ T v
k

δ = Delay(P t(gi))−Delay(P t(gi−1))−Delay(gi−1, gi);
for each noded in DS(gi)
Delay(P t(d)) = Delay(P t(d)) + δ;

if US(gi) 6= gi−1

Prune(gi);
//Function Prune() is used to prune the tree
//which will be discussed in the next section.

Tk+1 = Tk+1 + link(gi−1, gi);
end

Case 1: The host is a leaf node of the multicast tree. In this case, prune the tree
towards the upstream of the host recursively until it meets a branch or a node which
is in Mk.

Case 2: The host is not a leaf node of the multicast tree. Then it is simply
deleted fromMk, andTk+1 = Tk.

Table6.5gives the pseudo-code for the member deleting procedure.

Table 6.5:Procedure of Deleting a Member Node
input : G, v andTk.
output: Tk+1.
algorithm :
Tk+1 = Tk;
if v has no child
m = v;
while US(m) /∈ Mk ∩ US(m) has the only childm
Tk+1 = Tk+1 − link(m,US(m));
m = US(m);

Tk+1 = Tk+1 − link(m,US(m));
Mk+1 = Mk − v;

end

140

Correctness and performance of the algorithm

We have the following lemma concerning the existence of the multicast tree.

Lemma 1 A delay constrained multicast tree exists if and only if for each node
m ∈ M , Delay(Psd(s,m)) ≤ ∆.

Proof: If a delay constrained multicast tree exists, there must be at least one path
from source nodes to each group member nodem whose delay is less than∆.
Since the delay ofPsd(s,m) has the shortest delay among all the paths connecting
s to m, it must be less than∆. On the other hand, if for allm ∈ M , Psd(s,m) is less
than∆, then the tree consisting of these shortest delay paths is a delay constrained
multicast tree.

Theorem 6 The DCDM algorithm finds a delay constrained multicast tree if and
only if a delay constrained multicast tree exists.

Proof: First, if the algorithm finds a delay constrained multicast tree, clearly, a
delay constrained multicast tree exists. On the other hand, if a delay constrained
multicast tree exists, from Lemma1 we haveDelay(Psd(s,m)) ≤ ∆,∀m ∈ M .
When a new group member nodev joins the group, it will check2l paths which in-
cludePsd(s, m). Therefore, it can always find a path satisfying the delay constraint,
that is, the algorithm can always find a delay constrained multicast tree.

The DCDM algorithm is easy to implement and has low time complexity. Its
most time-consuming part is to compute the two pathsPlc andPsl between each
pair of nodes. This can be preprocessed off-line after the topology is given. For
each newly joining node, the on-line time complexity isO(|V |+ |T v|) where|V | is
the number of nodes in the network and|T v| is the number of nodes in the old tree.
The following theorem summarizes this result.

Theorem 7 The time complexity of the DCDM algorithm isO(|V | + |T v|), where
|V | is the number of nodes in graphG and|T v| is the number of nodes inT v.

Proof: The two paths,Plc and Psd, between every pair of nodes are calculated
by Dijkstra algorithm in advance. So there are totally(|V | − 1)2 paths calculated
off-line. For each node, the2(|V | − 1) paths are sorted based on their link cost.
DCDM spends most of the time processing multicast requests. For a multicast re-
quest whereρi = remove, the time to prune the multicast tree isO(|T v|). For a
multicast request whereρi = add, DCDM needs to do three things: finding the
graftnode; adding thegraftpath; and removing the loop if necessary. The time
to find thegraftnode is O(|V |) as2(|V | − 1) paths are checked in order. Since
the longest length of thegraftpath is less than|V |, the time to add thegraftpath
to the multicast tree isO(|V |). Removing the loop includes updating pathP t for

141

the nodes in the downstream set and pruning the upstream node recursively. Since
each node is either updated or pruned at most once, the time to remove the possi-
ble loop isO(|T v|). Thus, the total time of the DCDM algorithm isO(|V |+ |T v|).

When the m-router receives a JOIN message, it takes one of the following two
actions.

1. If the source node is on the multicast tree already. The m-router simply puts
a tag on that source node indicating that the node is a group member.

2. If the source node is not on the multicast tree, the m-router adds an appropri-
ategraftpath to the tree which connects the source node to the old tree as
shown in the DCDM algorithm above.

When the m-router receives a LEAVE message, it removes the node from the
group. If the node becomes a leaf node, the tree is pruned towards the upstream
router until it reaches a group member or a node that has more than one downstream
routers. This guarantees that the tree in the m-router is consistent with the actual
tree in the network. The actual prune operation is accomplished by the leaving
member sending the PRUNE message upstream hop by hop.

Until now we assume SCMP builds a tree rooted at the m-router. Actually,
to alleviate the burden of the m-router, SCMP can build an SPT tree upon the re-
quest of the source. In this case, the m-router is still responsible for collecting
the JOIN/LEAVE messages and computing the multicast tree. But the tree is dis-
tributed from the source node instead of the m-router which will be discussed in the
following subsection.

6.3.5 Forming the Multicast Tree in the Network

After the m-router constructs the multicast tree, it should distribute the tree in the
domain so that the i-routers on the tree can update their routing tables and forward
the multicast data packets correctly. This is completed by the multicast tree forming
process.

In order to minimize the protocol overhead, we adopt the self-routing scheme
proposed in [80] for a self-routing multicast network in which multicast routing is
realized by the tag attached to the packet. For a random topology network, we can
similarly use such self-routing packets to construct the multicast tree. We call this
type of packet TREE packet.

A TREE packet includes all the information about a tree. The length of the
TREE packet is a variable which depends on the size of the tree. The format of the
TREE packet is described in Table6.6.

142

Table 6.6:Format of TREE Packet
Number of the downstream routers

IP address of the downstream router 1
Length of subpacket 1
Subpacket 1

IP address of the downstream router 2
Length of subpacket 2
Subpacket 2

. . .

The format of the subpacket is the same as the format of TREE packet. This
recursive packet structure reflects the recursive structure of the tree. “Subpacketi”
includes all the information about the tree rooted at “downstream routeri.”

The TREE packet is a self-routing packet, which means that the routers forward
the TREE packet according to the information in the TREE packet itself. When
a router receives a TREE packet from its upstream router, it updates its routing
table based on the information in the packet and sends new TREE packets to its
downstream routers if any. The first TREE packet is generated in the m-router
based on the multicast tree. Since the m-router is the root of the multicast tree, each
downstream router of the m-router is the root of a subtree. The m-router builds
a TREE packet for each subtree. Then the m-router sends these TREE packets to
the corresponding downstream routers and the downstream routers are added to the
“downstream” of the routing entries. When an i-router receives a TREE packet, the
TREE packet should include the information of the subtree which is rooted at the
i-router itself. The “upstream” of the route entry is set to be the router from which
the TREE packet is received. The TREE packet is split into several smaller TREE
packets each of which represents a subtree rooted at one of the downstream routers.
Then each of the smaller TREE packets is sent to the corresponding downstream
router after the downstream router is added to “downstream” of the route entry.
After all the TREE packets reach the leaf routers, the tree is formed in the network.

The pseudo-code of the TREE packet processing algorithm in i-routers is showed
in Table6.7.

Now let’s look at an example. Suppose the m-router has three downstream
routers. Fig.6.7shows the multicast subtree rooted at node2.

Here we use node id to represent the address of the router. The m-router
generates three TREE packets for its three downstream routers respectively. The
TREE packet for node2 is (3; 4, 1, 0; 5, 7, 2, 7, 1, 0, 8, 1, 0; 6, 4, 1, 9, 1, 0), where3
means node2 has three downstream routers;(4, 1, 0) means the first downstream
router is node4, the length of subpacket representing the subtree rooted at node

143

Table 6.7:TREE Packet Processing Algorithm
input : TREE packet.
output: updated routing entry and new TREE packets.
algorithm :
upstream = IP address of the router from which the TREE packet is received;
for each downstream routerds in the TREE packet

addds to thedownstream of the routing entry;
extract the subpacket corresponding tods from the TREE packet;
send the subpacket as a new TREE packet to theds;

end

m−router
0

1 3

2

4 5 6

9

8710

subtree rooted
at node 1

subtree rooted
at node 3

Figure 6.7:Forming the multicast tree using TREE and BRANCH packets.

4 is 1, the subpacket is(0); Similarly, the second downstream router is5, the
length of subpacket representing the subtree rooted at node5 is 7, the subpacket
is (2, 7, 1, 0, 8, 1, 0), and so on. When node2 receives this TREE packet, it sets the
“upstream” to the m-router and splits this TREE packet into three TREE packets:
(0), (2, 7, 1, 0, 8, 1, 0) and(1, 9, 1, 0). Then sends them to nodes4, 5 and6 and adds
nodes4, 5 and6 into the “downstream” of the routing entry. The multicast rout-
ing entry in node2 after processing the TREE packet isgid 1 4, 5, 6 . When
receiving the TREE packets, node4 will add the interface marked after receiving
the IGMP report message into the “downstream” of the routing entry, then it sets
“upstream” to node2; node5 will continue to split the TREE packet into two TREE
packets which are both(0) after updating the routing entry; node6 will send TREE
packet(0) to node9 after updating the routing entry. Finally, after nodes7, 8 and9
receive the TREE packets and update the routing entries, the tree forming process
is completed.

144

Clearly, whenever a new router joins a group, a TREE packet will be triggered
in the m-router if the tree is changed. If the change is small, using a TREE packet
containing the whole tree structure is too expensive. Thus, we use a new type of
packet, called BRANCH packet, to update a minor change. A BRANCH packet
consists of a branch of the tree from the m-router to the new group member.

The format of the BRANCH packet is simple. It is composed of a sequence
of routers that are on the path from the current router to the new group member in
order. When an i-router receives a BRANCH packet, it deletes itself from the head
of the path, sets the “upstream” as the router from which the packet is received, adds
the next router on the path to the “downstream” of the routing entry and forwards
it to the downstream router. For example, in Fig.6.7, if node10 wants to join the
group, the m-router generates a BRANCH packet(2, 4, 10) and sends it to node
2. Node2 then updates the routing entry, deletes itself from the packet and sends a
BRANCH packet(4, 10) to node4, . . . , until node10 receives the BRANCH packet
(10), it adds the marked interface to the “downstream” and sets the “upstream” to
node4.

In the case of building an SPT tree, the original TREE packet is generated by
the m-router. Then it will be sent to the source node where it is distributed around
the domain by a similar way discussed above.

Handling unstableness of the network

When a link fails or a router crashes, the tree should be able to recover in time.
In some existing multicast protocols, a downstream router sends a JOIN message
to its upstream router periodically. Once the upstream router does not receive the
message before timeout, it deletes the downstream router from the downstream of
the routing entry. Then the leaf router will try to find another path to graft on the
tree. This method may generate a lot of JOIN messages. In our protocol, the routing
entry is soft-state in the sense that it should be refreshed periodically or be removed
due to timeout. There is a timer attached to each routing entry. Only receiving a
packet can refresh the timer. When it times out, the corresponding routing entry
is deleted automatically. When an i-router on the multicast tree crashes, all the
downstream routers will not receive packets for a while. After the m-router detects
the crash, it determines whether a TREE packet or a BRANCH packet is needed and
recovers the tree. The routing entry of the old tree will be deleted due to timeout.
One possible problem is that what we should do if there is no packet for a long time.
In this case, the m-router issues a dummy packet to refresh the forwarding state in
the i-routers on the tree.

145

6.3.6 Forwarding Multicast Packets

The multicast tree constructed is a bi-directional tree. It means that the multicast
packet can be transmitted in both directions on the tree. The multicast packet is
not only forwarded to the downstream routers, but also forwarded to the upstream
router when necessary. Since we assume the link is symmetric, the delay of a path
in both directions is the same, thus the optimality of the multicast tree will not be
impaired.

All the i-routers are configured to know the IP address of the m-router. When
a source router has a multicast packet to send, it first checks whether it is on the
multicast tree. If it is on the multicast tree, it sends the packet to the upstream router
and all the downstream routers. If the source is not on the tree, it encapsulates the
packet into a unicast packet and sends it to the m-router. The m-router decapsulates
the data, puts it in a multicast packet and forwards the packet according to the
routing entry.

Table 6.8:Multicast Packet Forwarding Algorithm
input : multicast packet.
output: forwarded packet.
algorithm :
incoming = the router from which the multicast packet is received;
if incoming is the upstream router

forward the packet to all the downstream routers;
else

if incoming is one of the downstream routers
forward the packet to upstream router;
forward the packet to all the downstream routers
exceptincoming;

else
drop the packet;

end

When forwarding the multicast packet, the i-router considers both the upstream
router and the set of downstream routers as a single set, say,F . If an i-router
receives a packet, it checks whether the packet comes from a router in setF . If yes,
then forwards the packet to other routes in setF . If no, it drops the packet. The
packet forwarding algorithm is described in Table6.8.

Let’s look at the example in Fig.6.8, where the solid lines represent the multi-
cast tree and the green arrows represent the data flow. Suppose node1 has a packet
to send as shown in Fig.6.8(a). Since node1 is not on the tree, it will encapsulate
the data into a unicast packet and send it to node0. Node0 then decapsulates the
packet and forwards it to nodes2 and3. Node3 forwards it to nodes4 and5. On

146

the other hand, in Fig.6.8(b), if node3 has a packet to send, since it is on the tree
already, it will send the packet to nodes0, 4 and5 at the same time. Then node0
forwards it to node2 and all the group members receive the packet.

0

1
3

2

4

5

(b)

m−router
0

1
3

2

4

5

(a)

m−router

Figure 6.8:Forwarding the multicast packet along a bi-directional multicast tree.

6.4 Performance Evaluations

We have implemented the newly proposed multicast protocol along with three ex-
isting protocols on the NS-2 [33] simulator and conducted extensive simulations to
evaluate the protocol. In this section, we compare the multicast trees constructed
by our protocol and other protocols, and the maximum end-to-end delay, protocol
overhead and data overhead of the protocols.

6.4.1 Multicast Trees

A random network topology is generated with each link assigned a random link
delay and a random link cost. A set of group members are randomly picked from
the nodes in the topology. We use different algorithms to construct the multicast
tree for the same set of group members and compare the multicast tree afterwards.
The comparison metrics aretree delayandtree cost.

We compare the DCDM algorithm with other four existing algorithms, KMB,
DVMRP, MOSPF and CBT. CRCDM was not implemented due to its dependence
on a high complexity unicast routing protocol. Since the multicast tree constructed
by DVMRP or MOSPF is determined not only by the set of group members but
also by the source node, we assume that the source node is the same node as the
core in CBT. Under this assumption, the multicast trees constructed by these three
algorithms (DVMRP, MOSPF and CBT) are identical because all of the trees are

147

composed of the shortest delay paths between the core/source and the group mem-
bers. Therefore, in the simulation we only implemented CBT, KMB and DCDM.

The simulation model we used is similar to that used in [81]. Nodes in the graph
are placed randomly in a rectangular coordinate grid by generating uniformly dis-
tributed values for theirx andy coordinates. The size of the rectangular is32, 767
by 32, 767. x andy are random integers between0 and32, 767. For every pair
of nodesu andv, the probability that there exists an edge connectingu andv is
P (u, v) = β ∗ e

−d(u,v)
αL , whered(u, v) is the Manhattan distance betweenu andv.

Let (xu, yu) be thex andy coordinates of nodeu and(xv, yv) be thex andy coordi-
nates of nodev, thend(u, v) = |xu−xv|+ |yu− yv|. L is the maximum Manhattan
distance between any two nodes, which is2 ∗ 32, 767. α andβ are two tunable pa-
rameters. Increasingα increases the number of edges between far away nodes and
increasingβ increases the degree of each node. The link cost of an edge is equal
to the Manhattan distance between the two nodes, and the link delay of an edge is
equal to an uniformly distributed random variable between0 and the link cost of
the edge.

In our simulations, the total number of the nodes in the topology is 100, the
group size increases from 10 to 90 by 10 at each step,α = 0.25, andβ = 0.2. Each
simulation was run 10 times with different random generator seeds. We plot the
figure based on the average of the 10 values obtained from the 10 simulations.

Fig. ?? shows the simulation results. We set the delay constraint into three
levels: tightest, moderate and loosest. The tightest level means that the delay con-
straint cannot be tighter, or there is no multicast tree satisfying the delay constraint.
The loosest level means that all possible multicast trees can satisfy the delay con-
straint. Fig. 6.9(a), (b) and (c) show the tree delay comparison under the three
levels respectively. Fig.6.10(a), (b) and (c) show the tree cost comparison under
the three levels respectively.

We first compare the tree delay. From the figures we can see that no matter
what level the delay constraint is, the tree delay of DCDM is much shorter than
that of KMB. As the group size increases, the tree delay of DCDM is relatively
stable and increases a little, while the tree delay of KMB oscillates intensely. This
is because KMB tries to minimize only the cost and does not consider the delay at
all. CBT always achieves the shortest tree delay. When the delay constraint is in
the tightest level, DCDM can achieve the same tree delay as CBT. When the delay
constraint relaxes, DCDM will try to minimize the tree cost without violating the
delay constraint. Therefore, the tree delay of DCDM is a little longer than that of
CBT, but as will be seen shortly, its tree cost is much lower.

Now we compare the tree cost. We can see that as the group size increases, the
tree cost of the three algorithms increases too. The tree cost of CBT is the highest,
while the tree cost of KMB is the lowest. DCDM achieves the tree cost between

148

0
 20
 40
 60
 80
 100

20000

30000

40000

50000

60000

70000

80000

90000

T
re

e
D

el
ay

Group Size

 DCDM

 KMB

 CBT

0
 20
 40
 60
 80
 100

20000

30000

40000

50000

60000

70000

80000

T
re

e
D

el
ay

Group Size

 DCDM

 KMB

 CBT

(a) (b)

0
 20
 40
 60
 80
 100

20000

30000

40000

50000

60000

70000

80000

90000

T
re

e
D

el
ay

Group Size

 DCDM

 KMB

 CBT

(c)

Figure 6.9:Tree delay comparison. (a), (b) and (c): delay constraint is tightest, moderate
and loosest, respectively.

CBT and KMB, and it is closer to that of KMB. The differences between the tree
cost of any two algorithms increases when the group size increases. When the delay
constraint is looser, the gap between DCDM and KMB is obviously smaller than
that when the delay constraint is tighter. When the delay constraint is in the loosest
level and the group size is small, the tree costs of DCDM and KMB are almost the
same.

In our simulations, we also change the location of the m-router to see how it
affects the tree cost. We observe that since the set of group members and the join
order of group members are changing, there is no such location of the m-router
that it has the best performance under all conditions. However, we find that there
are some heuristics for placing the m-router to achieve good performance in most
cases:

149

0
 20
 40
 60
 80
 100

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

T
re

e
C

os
t

Group Size

 DCDM

 KMB

 CBT

0
 20
 40
 60
 80
 100

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

T
re

e
C

os
t

Group Size

 DCDM

 KMB

 CBT

(a) (b)

0
 20
 40
 60
 80
 100

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

T
re

e
C

os
t

Group Size

 DCDM

 KMB

 CBT

(c)

Figure 6.10:Tree cost comparison. (a), (b) and (c): delay constraint is tightest, moderate
and loosest, respectively.

• Rule 1:For each node, calculate the average delay between the node and all
the other nodes. Choose the node with less average delay.

• Rule 2:Choose the node with a larger node degree.

• Rule 3:Choose the node lying on the path whose delay is equal to the delay
diameter of the graph.

6.4.2 Network-Wide Performance

Besides comparing the multicast trees, we implemented SCMP and other three
protocols (DVMRP, MOSPF and CBT) on the NS-2 simulator to compare their
network-wide performance. The following metrics are compared.

150

Data overhead: The network bandwidth used by data packets. A data packet
going through one link contributeslc units to the data overhead, wherelc is the link
cost of the link.

Protocol overhead: The network bandwidth used by protocol packets. A pro-
tocol packet going through one link contributeslc units to the protocol overhead,
wherelc is the link cost of the link.

Maximum end-to-end delay: The maximum delay experienced by the packets
from the source to the group members.

Three different network topologies are used for performance comparison. One
is the ARPANET, and the other two are random topologies generated by GT-ITM
software [27]. The network size of each random topology is50 and the average
node degrees of the two random topologies are 3 and 5 respectively. There is a
source node sending one multicast packet per second. The group size varies from 8
to 40 and the group members are picked randomly. The total simulation time is 30
seconds.

Data overhead

We compare the data overhead of the four protocols in Fig.6.11. In the figure, we
can see that SCMP always has the lowest data overhead among all four protocols,
and CBT and MOSPF have higher but relatively closer overhead to SCMP, while
DVMRP has much higher data overhead. This is caused by the fact that DVMRP
floods the packets frequently when it starts to construct the tree or the timer in a
leaf router is expired. The data overhead of the other three protocols is close to
each other. Of the three protocol, MOSPF has the most data overhead, and SCMP
has the least data overhead. As the group size increases, the difference between
SCMP and MOSPF and CBT increases too. This superiority is more obvious when
the average node degree is around 3. As can be seen, the data overhead is strongly
correlated to the multicast tree cost. The trends of the curves of the two metrics are
very similar.

Protocol overhead

As Fig. 6.11 shows, the protocol overhead increases as the group size increases
except for DVMRP. DVMRP shows an inverse ratio when the group size increases.
If the X axis is extended longer enough, DVMRP would be the one with the least
protocol overhead. Since DVMRP adopts “flooding and pruning” algorithm, the
more the group members, the less the prune messages. It is a dense mode multicast
protocol, which means that it is only suitable for the domain in which most nodes
are group members. MOSPF has the steepest curve. In MOSPF, whenever a group

151

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

D
at

a
O

ve
rh

ea
d

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

D
at

a
O

ve
rh

ea
d

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(a) (b)

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

D
at

a
O

ve
rh

ea
d

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(c)

Figure 6.11: Group size versus data overhead. (a) ARPANET; (b) Random topology
network with average node degree 3; (c) Random topology network with average node
degree 5.

member wants to join or leave the group, the DR will flood a group-membership-
LSA packet throughout the domain to make all the routers updated, which generates
a great deal of protocol packets. SCMP and CBT have the lease protocol overhead.
The difference between the two protocols is so small that we have to replace theY
axis with log Y to separate the two curves, which is shown in Fig.6.12(b) and (c).

When the group size increases, the protocol overhead of SCMP is a little bit
more than that of CBT. In our simulation, we did not simulate the core selection
process of CBT which is a sophisticated and relatively open problem. However,
whatever the selection mechanism CBT chooses, it will certainly induce some pro-
tocol overhead. When we do not take the core selection into consideration, CBT
has a little less protocol overhead than SCMP. This is because CBT only needs
to send an acknowledgement packet from the graft node to the newly joining node

152

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

0

1000

2000

3000

4000

5000

6000

7000

8000

P
ro

to
co

l O
ve

rh
ea

d

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

100

1000

10000

Lo
g(

P
ro

to
co

l O
ve

rh
ea

d)

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(a) (b)

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

100

1000

10000

Lo
g(

P
ro

to
co

l O
ve

rh
ea

d)

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(c)

Figure 6.12:Group size versus protocol overhead. (a) ARPANET; (b) Random topology
network with average node degree 3; (c) Random topology network with average node
degree 5.

when performing the join operation, while SCMP always needs to send a BRANCH
packet from the m-router all the way to the newly joining node.

Maximum end-to-end delay

We now consider the maximum end-to-end delay with different group sizes. Fig.
6.13shows the maximum end-to-end delay of the four protocols for the three net-
work topologies. We can see that the delay of SCMP and CBT is very close and is
slightly longer than the SPT-based protocols. This is because that in SPT-based pro-
tocols, data packets are delivered from the source node to group members directly,
while in SCMP or CBT, packets are sent to the core router first if the source node
is not on the tree. We can also observe that the difference in delay becomes smaller

153

when the group size or the node degree increases. However, as we pointed out
earlier, SPT-based protocols have the scalability and bandwidth wasting problems,
which have been seen clearly in their data overhead and protocol overhead.

10
 20
 30
 40
 50

0.00

0.25

0.50

0.75

1.00

1.25

M
ax

im
um

 E
nd

-t
o-

en
d

D
el

ay

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

10
 20
 30
 40
 50

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ax

im
um

 E
nd

-t
o-

en
d

D
el

ay

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(a) (b)

10
 20
 30
 40
 50

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

M
ax

im
um

 E
nd

-t
o-

en
d

D
el

ay

Group Size

 SCMP

 CBT

 DVMRP

 MOSPF

(c)

Figure 6.13:Group size versus maximum end-to-end delay in seconds. (a) ARPANET; (b)
Random topology with average node degree 3; (c) Random topology network with average
node degree 5.

6.5 Summary

In this chapter, we have proposed a service-centric multicast architecture and an
efficient and flexible multicast routing protocol SCMP. Compared to existing mul-
ticast architectures, the new architecture has following advantages: (1) By con-
centrating most multicast routing and service-related tasks in the m-router, routing
efforts on other routers can be greatly reduced and the bandwidth wasting in the rest
of the Internet can be avoided; (2) The new architecture can adopt any sophisticated
network-wide routing algorithms in the m-router to construct a near optimal multi-
cast tree, which makes it easier to be adapted to various applications with different
QoS requirements; (3) ST-based protocols suffer the traffic concentration problem

154

around the core, while the m-routers in the new architecture are specially designed
powerful routers to efficiently handle heavy network traffic, which can greatly alle-
viate the problem; (4) Another common problem of ST-based protocols is the single
core failure problem. In the new architecture, since the m-router is owned and ad-
ministrated by the ISP, it is easy to install a hot standby system, in which there is a
secondary m-router besides the primary m-router. The primary and the secondary
m-routers run simultaneously. The data is mirrored to the secondary m-router in real
time so that both m-routers have identical information. When the primary m-router
fails, the secondary m-router will take over the job automatically. Our simulation
results demonstrate that the new SCMP protocol outperforms other existing proto-
cols. The DCDM algorithm can dynamically adjust the multicast tree such that the
tree delay and tree cost are minimized at the same time. In particular, SCMP has the
least amount of data overhead among the four protocols. The protocol overhead of
DVMRP and MOSPF is much higher than SCMP and CBT. Although the protocol
overhead of CBT is a little bit less than SCMP, this is partially because of the sim-
plification of the core selection process of CBT in the simulation. As for tree delay,
we can see that SCMP and CBT are very close and their delay is slightly longer
than the SPT-based protocols due to the fact that they use shared multicast trees.
However, as we pointed out earlier, SPT-based protocols have the scalability and
bandwidth wasting problems, which can be clearly seen in their data and protocol
overhead. Therefore, overall we believe the newly proposed SCMP protocol is a
promising alternative for providing efficient and flexible multicast services over the
Internet.

One potential problem is the feasibility of the new architecture. Generally
speaking, little work is needed for the ISPs to upgrade their network to support
SCMP, the process is reliable and the billing system is easy to manage. To deploy
SCMP within a domain, for the hardware part, the ISPs need to connect an m-router
into the network; for the software part, the software in the other routers should be
upgraded. As there is little work done in the i-routers, a small software patch is
sufficient for the software upgrade. This software upgrade can be done at once or
gradually depending on the network size or the reliability requirements. In the case
of gradually upgrade, only part of the i-routers run SCMP and they communicate
through tunnels. The multicast tree is built on these i-routers only. By running
BGMP [82] in the border routers, SCMP can cooperate with other multicast routing
protocols in other domains to build a multicast tree across multiple domains. As the
m-router contains all the information of multicast sessions and group members, it
is easy for the ISPs to provide services with different requirements and charge them
accordingly.

155

Chapter 7

A Peer-to-Peer Tree Based Reliable
Multicast Protocol

Because the Internet provides best effort service only and the receivers may have
different bandwidths and processing abilities, it is necessary to design a multicast
transport layer to provide reliable multicast over the Internet. Like its unicast coun-
terpart, Transmission Control Protocol (TCP), a reliable multicast protocol should
possess the functions such as packet loss detection and recovery, ordering and flow
control. However, having multiple receivers makes the reliable multicast vastly
different and much more complex than TCP. First, in unicast, the receiver uses pos-
itive acknowledgements (ACK) or negative acknowledgements (NACK) to inform
the sender its current status, while in multicast, many ACK/NACK messages pro-
duced by all the receivers will overwhelm the sender and congest the links around
the sender, which is called “acknowledge implosion” [83]. Second, it is difficult to
adapt the data transmission rate of the sender to the different data reception rates of
the heterogenous receivers. Third, the wide range of requirements of the multicast
applications makes it impossible to design a one-fit-all reliable multicast protocol
[84]. On the other hand, most multicast applications are real-time applications,
such as media streaming and audio/video conferencing, which have strict require-
ments on QoS, especially on delay jitter [85], and it is essential to minimize the
retransmission delay when the data is lost in such applications.

There has been a lot of work on reliable multicast in the literature, see, for ex-
ample, [86, 87, 88, 89]. In general, reliable multicast protocols are classified into
sender-initiated, receiver-initiated and tree based protocols. In sender-initiated pro-
tocols, the sender maintains the states of all the receivers. The receivers send ACK
messages to the sender indicating the correct reception of packets. A missing ACK
message is caused by either a lost data packet, a lost ACK or a crash of the receiver.
The sender retransmits the lost packet by multicast when it does not receive the
ACK messages before timeout. Sometimes NACK messages are used to speed up

156

the retransmission. An example for a sender-initiated protocol is Xpress Transport
Protocol (XTP) [90]. In receiver-initiated protocols, it is the receivers’ responsibil-
ity to detect packet loss. When a receiver detect a wrong checksum, a skip in the se-
quence number or a timeout while waiting for the packet, it sends a NACK message
to the sender and the sender multicasts the lost packets in response to the NACK.
It is non-deterministic since the sender is unable to decide when all the receivers
have received the packet successfully. Some receiver-initiated protocols multicast
NACK messages to all receivers to avoid redundant NACK messages. An example
for a receiver-initiated protocol is PGM [91] and an example for a NACK-avoidance
receiver-initiated protocol is [84]. Both of the sender-initiated protocols and the
receiver-initiated protocols suffer the acknowledge implosion problem. Tree based
protocols arrange all the receivers into a hierarchy called the ACK tree which is
responsible to collect acknowledgements and retransmit lost data packets. Each re-
ceiver sends ACK/NACKs to its parent node only, collects the ACK/NACKs from
its child nodes and is responsible for retransmitting lost data packets to its child
nodes. By limiting the degree of the ACK tree, we can make it possible that no
node is overwhelmed by ACK/NACKs.

RMTP (Reliable Multicast Transport Protocol) [92] and TMTP (Tree-based
Multicast Transport Protocol) [88] are two typical tree based reliable multicast pro-
tocols. RMTP provides sequenced, lossless delivery of bulk data from a sender to
a group of receivers. In RMTP, receivers are grouped into a hierarchy of local re-
gions, with a Designated Receiver (DR) in each local region. Receivers send ACK
messages to the DR of its local region, then DRs send ACK messages to the DRs in
the upper level. The sender is the DR on the top level. DRs cache the data and re-
spond to retransmission requests in the local region. For example, Fig.7.1shows a
possible ACK tree built on the multicast tree in RMTP. The rectangles represent the
receivers and the filled ones are the designated receivers each of which is responsi-
ble to retransmit packets to one or several other receivers. In TMTP, the ACK tree
is calledcontrol tree. Typically, in TMTP the receivers in the same subnet belong
to a domain and a single domain manager acts as the parent of other receivers in the
domain.

However, since both protocols build the ACK tree based on the multicast tree,
this causes the following problems. First, the eligible ACK tree may not exist. In
the ACK tree of RMTP, the parent of a receiver must be the ancestor of the receiver
in the multicast tree. In an extreme case, all the receivers have to choose the sender
as their parent. Thus, the protocol degenerates to a receiver-initiated protocol. It
is even worse when there are some constraints, as it may be impossible to find
an eligible ACK tree under the constraints. Second, since the parent and child in
the ACK tree is the ancestor and descendant in the multicast tree, there must be
some correlation among their data loss probabilities. For example, if the data is lost

157

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

Source Router Designated Receiver

Multicast treeReceiver

ACK tree Local region

Figure 7.1:ACK tree in RMTP.

before reaching the parent, the child will not receive the data definitely. If the child
sends the NACK message to the parent, it will not receive the retransmitted data
because the parent is also requesting the data. Third, the superposition of the ACK
tree and the multicast tree increases the traffic on the same links, thereby increases
the probability of congestion.

In this chapter, we propose a new reliable multicast protocol which can mini-
mize retransmission delay and overcome the problems discussed above. The pro-
posed protocol takes advantage of both the tree based approach and the peer-to-peer
technique. Our protocol constructs a logical ACK tree independent of the multicast
tree. In our protocol, any two receivers can be the parent node and child node in
the ACK tree. Fig.7.2(b) shows a possible ACK tree given the receiver set is the
same as in the Fig.7.2(a). Intuitively, the average retransmission delay can be de-
creased greatly. To take advantage of the flexibility of the ACK tree construction,
a receiver uses a heuristic function to choose another receiver as its parent. The
heuristic function is designed to minimize the retransmission delay. The child node
sends ACK/NACK messages to the parent node and receives retransmitted packets

158

from the parent node. The price for the improved retransmission delay is the in-
creased complexity of window management in the window based flow control. We
use a state transition diagram to describe the operations of the sender and the re-
ceivers. The sender can only send data packets whose sequence numbers are in the
window, and receivers can only accept data packets whose sequence numbers are
in the window. The window in the parent node will not advance unless the parent
node receives all the ACK messages from its child nodes. Under the window based
flow control mechanism, the receivers can maximize their receiving rate satisfying
the retransmission requirements of its children.

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

Source Router

Multicast tree ACK tree

ReceiverDesignated Receiver

(b)(a)

Figure 7.2:Illustration of ACK tree in reliable multicast protocol. (a) ACK tree in RMTP;
(b) ACK tree in our protocol.

7.1 Preliminaries

We assume that our reliable multicast protocol is deployed in the service-centric
multicast architecture proposed in [93] along with the multicast routing protocol
SCMP. The service-centric multicast architecture provides flexible and efficient
multicast service by processing most multicast related tasks in a powerful router,
which is calledm-router. The m-router collects JOIN requests, builds the multicast
tree and distributes the tree information around the network, while other routers in
the network only need to perform minimum functions for routing. One reason for

159

adopting this multicast architecture is that the architecture provides the centralized
service which our protocol can use to construct the ACK tree with little protocol
overhead. Another reason is that the ACK tree information can be distributed along
with the multicast tree information which saves the network bandwidth. The sender
in our protocol is always the m-router in the architecture. However, our reliable
multicast protocol is not restricted to the multicast architecture in [93]. It can be
used in any network running a link state unicast routing protocol.

We also assume that each data packet has a sequence number which represents
its order in the data stream. The receivers detect data loss or out of order based
on the sequence number of the received data packets. To simplify the presentation,
we use “packetn” to represent “the data packet whose sequence number isn” and
“packet less thann” to represent “the data packet whose sequence number is less
thann.”

We useparentACK to represent the parent of a receiver in the ACK tree. Simi-
larly, we usechildACK to represent a child of a receiver in the ACK tree. For any
receiver, there is a unique path on the multicast tree connecting the receiver to the
m-router. The delay of this path determines how soon the receiver will receive the
data packet after the m-router sends it. We denote this unique path bypathm, the
length of the path bypathlenm, and the delay of the path bydelaym.

7.2 Peer-to-Peer Tree Based Reliable Multicast Pro-
tocol

In this section, we will first give an overview of the proposed protocol. Afterwards,
we will describe the operations for both the source and the receivers in details.

7.2.1 Protocol Overview

Under the service-centric multicast architecture, the m-router has the full knowl-
edge of the network topology and the receivers. The ACK tree is constructed dy-
namically in a similar way the multicast tree is constructed. However, the multicast
tree is a physical tree while the ACK tree is a logical tree. Each receiver keeps the
IP address of itsparentACK . The physical links of the ACK tree are determined by
unicast routing. Upon receiving a JOIN request from a new receiver, the m-router
will graft it to both the multicast tree and the ACK tree. An existing receiver on the
ACK tree is selected as theparentACK of the new receiver. The selection is based
on a heuristic function to be described in the next section. To save bandwidth, the
m-router encapsulates theparentACK information in the packet used for construct-
ing the multicast tree. After receiving theparentACK information, the new receiver

160

sends ACKJOIN to theparentACK and theparentACK adds the new receiver as a
childACK .

The data packets flow along the multicast tree first. Once a receiver detects
data loss, it will use the ACK tree to recover. The receiver experiencing data loss
sends the NACK message which includes a sequence numbern and a bitmap. All
the packets less thann are received correctly up to now. The length of the bitmap
is a variable and the bitmap indicates whether the packets following packetn are
correctly received or not. The parent retransmits the lost packets by unicasting
according to the bitmap if the required packets are in its buffer.

When the physical links are unstable or the sending rate of the sender exceeds
the processing ability of the receiver, our protocol uses window based flow control
to inform the sender to lower its sending rate. Ideally, all the windows should
advance at different but close speeds. When some receiver is experiencing data
loss, its window will stop advancing which triggers the stop of the window in its
parentACK . This chain effect finally stops the window in the sender and then the
sender stops sending data packets.

7.2.2 Constructing the ACK Tree

Before we give the details of the ACK tree construction, we first introduce a new
term. For any two receiversu andv, the two pathspathm(u) andpathm(v) may
have some common links. Since there is no loop in the multicast tree, the number
of the common links can be calculated by tracing the two paths from the m-router
until they ramify. We usecommonlink(u, v) to represent this number. Generally,
the larger thecommonlink(u, v), the more correlation between the data loss prob-
abilities of the receiversu andv.

When a new receiver joins the group, any node on the ACK tree is a candidate
for theparentACK of the receiver. The following is some heuristics for selecting
parentACK :

• Rule 1: the delay between the receiver and itsparentACK should be mini-
mized.

• Rule 2: thedelaym(parentACK) should be less than the sum of thedelaym

(receiver) plus the delay betweenparentACK and the receiver.

• Rule 3: thecommonlink(parentACK , receiver) should be minimized.

Rule 1 is intuitive as the delay between the receiver and itsparentACK deter-
mines the delay of the ACK/NACK messages and the retransmitted data packets
between them. Minimizing the delay helps to minimize the retransmission delay.
However, the retransmission delay is affected not only by this delay, but also by the

161

probability that theparentACK has the required data packets in its buffer. Rules 2
and 3 are trying to maximize this probability. Rule 2 guarantees that the data pack-
ets will reachparentACK earlier than the NACK from the receiver. Rule 3 is to
minimize the correlation of the data loss probabilities between the receiver and its
parentACK . If such correlation is strong, that is to say a data packet which is lost
before arriving at the receiver is very likely lost before arriving at itsparentACK ,
then it is very likely thatparentACK does not have the required packets when re-
ceiving the NACK from the receiver.

It is difficult to find a perfectparentACK satisfying all the three rules. In fact,
these three rules contradict each other in some cases. Here we give a preference
heuristic function which takes all the three rules into consideration.

P (u, v) =





delay(u, v) ∗ edelaym(v)−delaym(v)−delay(u,v)∗
commonlink(u, v) ∗ (1/pathlenm(u) + 1/pathlenm(v))

if delaym(v) + delay(u, v)− delaym(v) ≥0

MAX if delaym(v) + delay(u, v)− delaym(v) < 0

whereu is a candidate forparentACK andv is the new receiver,delay(u, v) is the
delay betweenu andv, andMAX is a very large number. The m-router calculates
the preference values for each candidate and choose the candidate with the lowest
preference value as theparentACK .

7.2.3 Loss Recovery and Flow Control

Loss recovery and flow control both strongly depend on a data structure - window.
Suppose data packets consist of a stream in an ascending order of sequence num-
bers. A window is a span of continuous sequence numbers. The length of the
window iswindow size. The first sequence number determines the position of the
window.

A receiver uses both ACK and NACK to inform itsparentACK its current status.
Each ACK includes a sequence numbercurrent seqno, which indicates that all the
packets less thancurrent seqno are received correctly and the receiver is waiting
for the packetcurrent seqno. Thecurrent seqno is always in the window. Each
NACK includes a sequence numbercurrent seqno and a bitmap. The sequence
number has the same meaning as in ACK. The bitmap is stored in the window and
indicates whether the packets after packetcurrent seqno are correctly received or
not. TheparentACK retransmits the lost data packets according to the bitmap.

All the windows advance at their own speeds until they reach the end of the data
stream. A window will not advance until some conditions are satisfied. Based on
these conditions, we divide the nodes into three types:senderwhich is the root node
of the ACK tree,i-receiverwhich is the inner node of the ACK tree andl-receiver

162

which is the leaf node of the ACK tree. Each type of nodes take different actions
when receiving ACK/NACKs. We describe each of them next.

Operation of the Sender

The window in the sender1 is shown in Fig.7.3. The packets colored in red are
sent already. current seqno is the sequence number of the packet the sender
is about to send next.last acked is the least sequence number among all the
ACK/NACKs collected from thechildACK of the sender. After the sender sends

window

last_acked current_seqno

Figure 7.3:The window in the sender.

a data packet, it increases thecurrent seqno by 1. The sender will keep sending
data packets until the window is full, and at this time,last acked+window size =
current seqno. When the sender receives ACK/NACKs from achildACK , it will
update thelast acked if necessary. The increase of thelast acked results in the ad-
vance of the window. For example, if thelast acked is increased bym, the window
advancesm packets as well, wherem is an integer between0 andwindow size.
When the window is full, the sender will stop sending data packets. It checks the
window periodically and resumes to send data packets after the window advances.

Operation of the I-Receiver

The i-receivers are the most complicated nodes among the three types of nodes
because they have to do three things simultaneously: receiving the multicast data
through the multicast tree, sending ACK/NACKs to theirparentACK and collecting
the ACK/NACKs from theirchildACK . To simplify the presentation, we use a state
transition diagram to describe the operation of the i-receiver. We use four states to
represent the status of an i-receiver. Each i-receiver must be in one of the states.

• S1: the i-receiver does not detect any packet loss or out of order, and the
window is not full.

• S2: the i-receiver detects packet loss or out of order, and the window is not
full.

1Here the sender is the source node.

163

• S3: the i-receiver does not detect any packet loss or out of order, and the
window is full.

• S4: the i-receiver detects packet loss or out of order, and the window is full.

The state transition diagram is shown in Fig.7.4.

S1 S2

2

S3 S4

65

8

3

9

10

7

4

1

3. receive a packet larger than current_seqno but within the window

5. last_acked increased and largest_seqno is within the window

1. last_acked increased

4. all lost packets are received

6, 8 & 9. receive a packet beyond the window
7. all lost packets are received and current_seqno>last_acked
10. all lost packets are received and current_seqno<=last_acked

2. expected packets are received and the window is full

Figure 7.4:State transition diagram of i-receiver.

Ideally, if there is no packet loss or out of order, all the receivers will stay in
S1. The window is as shown in Fig.7.5, wherelast acked is the same as in the
sender,current seqno is the sequence number of the packet that the i-receiver is
expecting to receive, the packets colored in red are received correctly already, and
largest seqno is the largest sequence number of the received packets. When the
i-receiver receives packetcurrent seqno, bothcurrent seqno andlargest seqno
increase by 1. The window advances when thelast acked increases after receiving
ACK/NACK from a childACK .

window

last_acked current_seqno
largest_seqno

Figure 7.5: The window of i-receiver in stateS1 when last acked is less than
current seqno.

In Section7.2.2, we used rule 2 to ensure that the data packets reach theparentACK

before the NACK from achildACK . But when theparentACK is experiencing a
much heavier congestion than thechildACK , the window in theparentACK will lag
behind the window in thechildACK . As a result, thelast acked in parentACK will
become larger thancurrent seqno. This case is shown in Fig.7.6.

164

current_seqno
largest_seqno

window
possible last_acked

Figure 7.6:The window of i-receiver in stateS1 whenlast acked is equal to or greater
thancurrent seqno.

In this case, the window is empty. The only condition that the window will
advance is the i-receiver receives packetcurrent seqno. After current seqno
catches up withlast acked, the last acked will dominate the window advance-
ment again.

If one receiver receives a packet whose sequence number is larger thancurrent seqno,
two cases are possible.

Case 1: If the packet’s sequence number is within the window, the receiver’s
state transits fromS1 to S2. The window is as shown in Fig.7.7. largest seqno is
updated to the received packet’s sequence number. The bitmap is a bit string with
lengthlargest seqno−current seqno+1, and it indicates whether the packets be-
tweencurrent seqno andlargest seqno are received correctly or not, where “1”
means the packet is received correctly and “0” means the packet is lost or dam-
aged. The i-receiver sends NACK containingcurrent seqno and the bitmap to its
parentACK .

last_acked current_seqno largest_seqno

window
bitmap

Figure 7.7: The window of i-receiver in stateS2 when last acked is less than
current seqno.

Similarly, if last acked is larger thancurrent seqno, the window is as shown
in Fig.7.8.

Case 2: If the packet’s sequence number is beyond the window, the receiver’s
state transits fromS1 to S4. The window ofS4 is shown in Fig.7.9. largest seqno
is still updated to the received packet’s sequence number. But this time the bitmap
only includes the packets betweencurrent seqno and the right end of the window
due to the limitation of the window size. If the window advancesm packets after
updatinglast acked, the length of the bitmap increases bym and the values of the

165

bitmap

window

current_seqno largest_seqno

possible last_acked

Figure 7.8:The window of i-receiver in stateS2 whenlast acked is equal to or greater
thancurrent seqno.

newm bits are set to 0.

bitmap
window

possible largest_seqno
last_acked current_seqno

Figure 7.9: The window of i-receiver in stateS4 when last acked is less than
current seqno.

Similarly, when last acked is larger thancurrent seqno, the window is as
shown in Fig.7.10. Now the bitmap includes the whole window of packets.

window

bitmap

current_seqno possible largest_seqno

possible last_acked

Figure 7.10:The window of i-receiver in stateS4 whenlast acked is equal to or greater
thancurrent seqno.

If there is no data loss or out of order, but thelast acked is not updated in time
due to that achildACK is experiencing data loss, the window in theparentACK will
become full shortly and the state will transit fromS1 to S3. The window inS3 is
shown in Fig.7.11. In this case, the i-receiver will stop increasingcurrent seqno
even it receives packetcurrent seqno. However,largest seqno will be updated in
a similar way to other three states.

When the i-receiver is inS2, there are two situations resulting in a state tran-
sition: if the i-receiver receives a data packet beyond the window, the i-receiver
transits fromS2 to S4; or if the i-receiver receives all the lost packets recorded

166

window

last_acked current_seqno
largest_seqno

Figure 7.11:The window of i-receiver in stateS3.

in the bitmap, the i-receiver transits fromS2 to S1. When the i-receiver is in
S3, it transits toS1 if last acked is increased due to receiving ACK/NACK, or
to S4 if it receives a data packet beyond the window. When the i-receiver is in
S4, its largest seqno may be much larger beyond the window. The i-receiver
transits toS2 only if the last acked is increased and the window advances fur-
ther enough thatlargest seqno lies in the window again. Iflargest seqno is
equal tolast acked + window size (it should be thatlargest seqno is equal to
current seqno + window size − 1 in the case thatlast acked is no less than
current seqno) and all the lost packets recorded in the bitmap are received cor-
rectly, the i-receiver transits fromS4 toS3 (it should beS1 in the case thatlast acked
is no less thancurrent seqno).

We summarize the packet processing algorithm for i-receiver in pseudo-code in
Table7.1.

Operation of the L-Receiver

The l-receivers are similar to the i-receivers except that the l-receivers have no
childACK . As they do not need to collect ACK/NACKs,last acked is always equal
to current seqno − 1. There are only three states for an l-receiver:S1, S2 andS4.
The state transition diagram is shown in Fig.7.12.

S1

S4

S2

1
2

3

1. all lost packets are received
4

5
6

2. receive a packet beyond the window
3-6. same as i-receiver

Figure 7.12:State transition diagram of l-receiver.

167

Table 7.1:Packet Processing Algorithm for i-receiver (Part I)
Input : packet.
Output : State transition, ACK/NACK.
Packet Processing Algorithm:
//We omit the “break” in the switch statements for easy reading.
switch (type of thepacket)

casedata packet:
//suppose the sequence number of the data packet isseqno

switch (current state)
caseS1:

if packet is the expected packet
increasecurrent seqno andlargest seqno by 1;
if window is 3/5 full

send ACK;
if window is full

state changes toS3;
else ifseqno > current seqno andpacket is within the window

updatelargest seqno and bitmap;
state changes toS2;
send NACK;

else ifpacket is beyond the window
updatelargest seqno and bitmap;
state changes toS4;
send NACK;

caseS2:
if packet is beyond the window

updatelargest seqno and bitmap;
state changes toS4;
send NACK;

else ifseqno > current seqno andpacket is within the window
updatelargest seqno and bitmap;

else ifpacket is betweencurrent seqno andlargest seqno
update bitmap;

else ifpacket is the expected packet
updatecurrent seqno and bitmap;
if all the lost packets are received

state changes toS1;
send ACK;

caseS3:
if packet is beyond the window

updatelargest seqno;
state changes toS4;

168

Table 7.2:Packet Processing Algorithm for i-receiver (Part II)
caseS4:

if packet is beyond the window
updatelargest seqno if necessary;

else ifseqno > current seqno andpacket is within the window
update bitmap;

else ifpacket is the expected packet
if last acked < current seqno

updatecurrent seqno and bitmap;
if all the lost packets are received

state changes toS3;
else

updatecurrent seqno and bitmap;
if all the lost packets are received

state changes toS1;
send ACK;

else
state changes toS2;
send NACK;

caseACK packet:
updatelast acked if necessary;
if window advances

if current state isS3

state changes toS1;
if current state isS4 andlargest seqno is within the window

state changes toS2;
caseNACK packet:

updatelast acked if necessary;
if window advances

if current state isS3

state changes toS1;
if current state isS4 andlargest seqno is within the window

state changes toS2;
retransmit the lost data packets if necessary;

End

169

7.2.4 Timers

Our protocol uses different timers to improve robustness and performance. There
are three types of timers: poll timer, NACK timer and status timer.

Poll timer is scheduled in the sender when the window is full. When the timer is
timeout, the sender checks whether the window advances. If the window advances,
the sender resets the timer and resumes sending data packets. If the window is still
full, the sender reschedules the timer.

When a receiver detects data loss, it sends an NACK to itsparentACK immedi-
ately. Although this helps to decrease the retransmission delay, it may waste a lot of
bandwidth. For example, the “lost” packet is not really lost, it simply experiences
a longer delay than the packet after it. In this case, the NACK is redundant and un-
necessary. We use the NACK timer to avoid such situation. Every time the receiver
detects data loss, it schedules an NACK timer. If the packet is still missing when
the timer is timeout, the receiver then sends out the NACK.

Status timer is used by achildACK to periodically send status information to its
parentACK . When the timer is timeout, the receiver will send an ACK or NACK
based on its current status. If the receiver is in statesS1 or S3, it will send an ACK;
if it is in statesS2 or S4, it will send an NACK.

7.3 Theoretical Analysis

7.3.1 Protocol Correctness

A protocol is consideredcorrect if it is shown to be bothsafeand live [94]. For
a reliable multicast protocol to be live, no deadlock should occur at any receiver
or the sender. In reliable multicast protocols, deadlock happens when a receiver
requests a retransmission of a packet which is deleted due to the buffer size limit.
For a reliable multicast protocol to be safe, all the data packets should be delivered
to the higher layer at any receiver in a finite time. To address the correctness of
our protocol, we assume the nodes never fail during the multicast session and both
ACK and NACK messages are transmitted without loss or error.

Theorem 8 Peer-to-peer tree-based reliable multicast protocol is safe and live.

Proof: Suppose the height of the ACK tree ish. The proof proceeds by induction
onh.

For the case in whichh = 1, the protocol reduces to a non-hierarchical receiver-
initiated reliable multicast protocol. For each (sender, receiver) pair, according to
the protocol description, the sender will not advance its window until it receives
ACK from the receiver, i.e. the packet is stored in the sender’s window until the

170

receiver notify the sender about its successful reception. This guarantees that the
receiver will receive all the missing packets in a finite time(we ignore the probability
that the packet is lost indefinite times). As the sender will not delete the packet until
the receiver responds ACK, no deadlock is possible.

For h > 1, assume the theorem holds for anyt < h. We want to prove it holds
for t = h. Consider a subtree of the ACK tree which includes all the nodes whose
height is at mostt − 1. By the inductive hypothesis, the protocol is live and safe
in the subtree, i.e. the nodes in the subtree receive the packet in a finite time and
no deadlock occurs at any node of the subtree. For the rest nodes of the ACK tree,
each of them has a node in the subtree as itsparentACK . TheparentACK will not
advance its window until it receives all ACKs from itschildACKs which are the
leaf nodes of the ACK tree. Therefore, the leaf nodes are guaranteed to receive the
packet in a finite time without deadlock. In conclusion, the protocol is live and safe
in the ACK tree.

7.3.2 Maximum Throughput Analysis

To analyze the maximum throughput of the protocol, we adopt the same model as
used in [95] which focuses on the processing requirement of each packet rather than
the communication bandwidth requirement. Accordingly, the maximum throughput
is the inverse of the average per-packet processing time. We analyze the average
per-packet processing time at the sender, the i-receiver and the l-receiver respec-
tively and deduce the maximum throughput by locating the bottleneck. Before we
delve into the analysis, there are three assumptions to make. First, similar to the
previous section, we assume both ACK and NACK messages are transmitted with-
out loss or error. Second, the out degree of the ACK tree is bounded by a constant
B. Third, each data packet is transmitted from the sender to the receiver with loss
probabilityη and the loss probabilities between different receivers are independent.
The assumption of probability independence is also used in analysis of other tree-
based reliable multicast protocols in [89]. However, the peer-to-peer tree based
reliable multicast protocol is the most consistent with this assumption as the ACK
tree is independent from the multicast tree.

Throughput of the Sender

We first considerX, the per-packet processing time required to successfully trans-
mit a packet to all receivers at the sender. It can be expressed as following:

X = (first transmission) + (multiple retransmission) + (receiving ACK/NACK)

= ΣM
m=1(Xp(m)) + ΣL1

i=1(Xh(i)) + ΣL2
i=1(Xk(i)) (7.1)

171

whereXp(i) is the time taken to transmit the packet for theith time, Xh(i) is the
time taken to process theith ACK message andXk(i) is the time taken to process
the ith NACK message.M is the number of transmissions that the sender has to
send before all the receivers receives the packet successfully.L1 is the number of
the ACK messages received andL2 is the number of the NACK messages received.
Taking expectation, we have

E(X) = E(M)E(Xp) + E(L1)E(Xh) + E(L2)E(Xk) (7.2)

After the sender sends the packet for the first time,Bη of its children will not receive
it successfully. The sender has to retransmit the packet to theseBη children. After
the retransmissionBη2 of its children will not receive it successfully, and so on.
Thus the expectation ofM is

E(M) = B + Bη + Bη2 + . . . = B/(1− η) (7.3)

The number of children that receive the packet successfully after the first transmis-
sion isB(1− η). Thus the expectation ofL1 is

E(L1) = B(1− η) (7.4)

After the first transmission,Bη of the children will respond NACK messages due
to the unsuccessful reception of the packet. After the first retransmission,Bη2 of
the children will respond NACK messages due to the unsuccessful reception of the
packet and so on. Thus the expectation ofL2 is

E(L2) = Bη + Bη2 + . . . = Bη/(1− η) (7.5)

Substituting equation (3), (4) and (5) into equation (2), we have

E(X) = B/(1− η) ∗ E(Xp) + B(1− η) ∗ E(Xh) + Bη/(1− η) ∗ E(Xk)

= O(B/(1− η)) (7.6)

Throughput of the L-receiver

We useY l to denote the per-packet processing time required for an l-receiver. We
have

Y l = (packet reception) + (sending ACK/NACK)

= Yp + Yh + ΣL3
i=1Yk(i) (7.7)

172

whereYp is the time taken to process packet reception.Yh is the time taken to send
ACK message andYk(i) is the time taken to send theith NACK message.L3 is the
number of NACK messages the l-receiver send before successful reception of the
packet. Take expectation, we have

E(Y l) = E(Yp) + E(Yh) + E(L3)E(Yk) (7.8)

The l-receiver receives the packet successfully after one retransmission with prob-
ability η(1 − η), i.e. the l-receiver sends one NACK message with probability
η(1 − η). Similarly, the l-receiver sends two NACK messages with probability
η2(1− η) and so on. Thus we have

E(L3) = η(1− η) + 2η2(1− η) + 3η3(1− η) + . . . = η/(1− η) (7.9)

Substituting equation (9) into equation (8), we have

E(Y l) = η/(1− η) ∗ E(Yk) + E(Yp) + E(Yh)

= O(η/(1− η)) (7.10)

Throughput of the I-receiver

We useY i to denote the per-packet processing time required for an i-receiver. It
can be expressed as following equation

Y i = (packet reception) + (sending ACK/NACK) +

(receiving ACK/NACK) + (multiple retransmission)

= Yp + Yh + ΣL3
i=1(Yk(i)) +

ΣM
m=2(Xp(m)) + ΣL1

i=1(Xh(i)) + ΣL2
i=1(Xk(i)) (7.11)

Take the expectation and substitute the previous results, we have

E(Y i) = E(Yp) + E(Yh) + E(L3)E(Yk) +

(E(M)− 1)E(Xp) + E(L1)E(Xh) + E(L2)E(Xk)

= O(η/(1− η) + B/(1− η)) = O((B + η)/(1− η))) (7.12)

Throughput of the System

Let the throughput at the sender, the l-receiver and the i-receiver beΛs, Λl andΛi

respectively. The throughput of the systemΛ is

Λ = min{Λs, Λl, Λi} (7.13)

173

From equation (6), (10) and (12) it follows that

1/Λ = O((B + η)/(1− η)) (7.14)

Therefore, the throughput of the system decreases when the data loss probability in-
creases or the out degree of the ACK tree increases. Ifη is a constant, the throughput
of the system is of the order of a constantB and independent of the size of group
members.

7.4 Performance Evaluations

We have implemented our protocol on the NS2 simulator and evaluated the perfor-
mance through simulations. For comparison purpose, we also implemented RMTP
[92] and another protocol, which can be considered as a simplified version of our
protocol. Considering [92] does not specify how to find the DR in each local region,
we implement RMTP by assigning an existing group member to be the DR for a
new group member. Specifically, in our simulation, after a new group member joins
the multicast session, the group member nearest to the new group member along the
multicast tree is assigned to be the DR. In the variation protocol, all the receivers
send ACK/NACKs directly to the sender. Compared to the original protocol, the
variation protocol does not have a hierarchical structure for loss recovery and flow
control, and the height of the ACK tree in the variation protocol is always 2. We
focus on two metrics: average retransmission delay and throughput. The retrans-
mission delay is the time experienced by a receiver from it sends out an NACK
message until it receives all the required data packets. The throughput is defined as
the number of packets the sender has sent before the simulation completes, which
is equal to thecurrent seqno of the sender.

The network topologies are generated by GT-ITM [27]. Nodes are picked ran-
domly to join a multicast group. The sender sends data packets at a constant rate as
long as the window is not full. The simulation time is 50 seconds. There are two
tunable parameters: packet drop probabilityp and the window sizewindow size.
Each link drops the data packets independently and randomly with probabilityp.

Fig.7.13(a) shows the average retransmission delay under different group sizes.
We can see that the average retransmission delay of our protocol is much shorter
than that of RMTP and the variation protocol no matter what the group size is.
The average retransmission delay of the variation protocol increases slightly as the
group size increases. On the other hand, as the increase of the group size, both
the average retransmission delay of our protocol and that of RMTP decrease. This
is because that when the group size increases, the number of theparentACK can-
didates increases too. It is more likely to find an eligibleparentACK close to the

174

5
 10
 15
 20
 25

0.8

1.0

1.2

1.4

1.6

1.8

A
ve

ra
ge

 R
et

ra
ns

m
is

si
on

 D
el

ay

Group Size

 Our Protocol

 RMTP

 Variation Protocol

(a)

5
 10
 15
 20
 25

35

40

45

50

55

60

T
hr

ou
gh

pu
t

Group Size

 Our Protocol

 RMTP

 Variation Protocol

(b)

Figure 7.13:Performance comparison under different group sizes. (a) Average retrans-
mission delay vs. group size; (b) Throughput vs. group size.

receiver. When the group size becomes large enough, the average retransmission
delay almost remains constant.

Fig.7.13(b) shows the throughput under different group sizes. As can be seen,
the throughput of our protocol is greater than that of RMTP or the variation proto-
col. When the group size increases, the gap between our protocol and the other two
protocols becomes larger. The throughput of all the three protocols decreases as the
group size increases. But the throughput of our protocol decreases at a much lower
pace. When the group size becomes large enough, the decrease of the throughput is
slim and the throughput of our protocol is around 20% higher than that of RMTP.
From these observations, we can see that our protocol scales well when the group

175

size increases.

5
 10
 15
 20
 25
 30

10

20

30

40

50

60

T
hr

ou
gh

pu
t

Window Size

 Our Protocol

 RMTP

(a)

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

0

10

20

30

40

50

60

70

T
hr

ou
gh

pu
t

Data Drop Probability

 Our Protocol

 RMTP

(b)

Figure 7.14:Performance comparison of tree-based protocols(1). (a) Throughput vs. win-
dow size; (b) Throughput vs. packet drop probabilities.

Previous simulation demonstrates that tree based reliable multicast protocols
outperform non-hierarchical protocols in terms of average retransmission delay and
throughput. Here we compare the two tree based protocols by tuning the two pa-
rameters: window size and data drop probability. Fig.7.14(a) and (b) shows the
throughput under different window sizes and data drop probabilities respectively.
Our protocol always achieves higher throughput than RMTP. The advantage re-
mains constant when the window size is larger while it is more obvious when the
data drop probability is higher. This is because the correlation of the ACK tree and
the multicast tree in RMTP make it more vulnerable to data drop probability.

Now we variate the group size while tuning the parameters to observe the through-
put of our protocol. Fig.7.15(a) shows the throughput under different window sizes.

176

5
 10
 15
 20
 25
 30

10

20

30

40

50

60

T
hr

ou
gh

pu
t

Window Size

 Group Size=10

 Group Size=20

 Group Size=30

(a)

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

10

20

30

40

50

60

70

T
hr

ou
gh

pu
t

Data Drop Probability

 Gruop Size=10

 Gruop Size=20

 Gruop Size=30

(b)

Figure 7.15:Performance comparison of tree-based protocols(2). (a) Throughput vs. win-
dow size; (b) Throughput vs. packet drop probabilities.

We can observe that as the increase of the window size, the throughput increases
as well. The throughput when the group size is 10 is better than that when the
group size is 20 or 30. The two curves of group size is 20 and 30 interweave with
the increase of the window size. It means that the group size has little impact on
throughput when it is large enough.

Fig.7.15(b) shows the throughput under different packet drop probabilities. We
can see that as the increase of the packet drop probability, the throughput decreases.
Still, the throughput when the group size is smaller is better than that when the
group size is larger. However, this advantage diminishes when the packet drop

177

probability is high enough.

7.5 Summary

we have proposed a peer-to-peer tree based reliable multicast protocol. Compared
to existing reliable multicast protocols, our protocol can avoid the acknowledge
implosion and minimize the retransmission delay therefore increase the system’s
throughput. Constructing the ACK tree in a peer-to-peer fashion makes our proto-
col transparent to routers and easy to deploy. In the proposed window based loss
recovery and flow control scheme, the window in the child node can advance faster
than the window in the parent node, which can greatly increase the throughput. Our
simulation results show that the new protocol can achieve good scalability. Its av-
erage retransmission delay and throughput are much better than another tree based
reliable multicast protocol RMTP and a variation non-hierarchical reliable multi-
cast protocol. In the new protocol, the throughput increases when the window size
increases or the drop probability decreases, and the throughput differences between
different group sizes are marginal.

178

Chapter 8

Conclusions and Future Work

In this thesis, we have discussed a wide range of topics on multicast and network
coding. All the topics are centered on improving the performance of group com-
munication over a large scale network.

Since Ahlswedeet al. laid down the theoretic foundation of network coding on
multicast in [13], there have been a lot of research on network coding, especially
on linear network coding. We aim to solve a series of minimal linear network
coding problems with a unified approach in Chapter2. With the help of hypergraph,
we transform a linear network coding problem in multicast networks into a graph
theory problem. Under such transformation, a linear network coding assignment
for a multicast network is mapped to a cover in a hypergraph satisfying some valid
code constraints. Given the minimum cut of the multicast network and the number
of receivers, an eligible cover can be found in polynomial time with the iterative
refinement algorithm. In addition, we proposed preprocessing algorithms which
can effectively reduce the network bandwidth consumption and the computation
time, which makes it practical to apply this approach to a large scale network.

In Chapter3 and Chapter4, we investigate the performance improvement of
applying linear network coding to peer-to-peer systems. The peer-to-peer systems
are suitable for network coding as the overlay topology is constructed arbitrarily.
Therefore we can construct the overlay topology in favor of network coding. For
peer-to-peer file sharing systems discussed in Chapter3, we focus more on through-
put and reliability. The proposed peer-to-peer file sharing scheme PPFEED utilizes
combination networks as its topology prototype. Peers encode and decode with a
simple efficient linear coding function. The redundant links can greatly improve the
reliability and resilience of the system with little overhead.

Compared to peer-to-peer file sharing systems, peer-to-peer media streaming
systems have different concerns which are discussed in Chapter4. For peer-to-
peer streaming systems, we are more concerned about end-to-end delay and link
heterogeneity. Therefore we designed an overlay construction scheme which can

179

optimize the overlay topology for live streaming systems. One of the merits of
the proposed scheme is that it can make efficient use of the uplink bandwidth of
the peers and satisfy the heterogeneous downloading rate requirements of the peers
as much as possible. The topology construction is dynamic such that it can adapt
itself to the changing peers and minimize the end-to-end delay and link stress at
the same time. After the overlay topology is formed, an adaptive network coding
scheme for peer-to-peer media streaming systems is proposed and applied on it.
The scheme takes advantage of the overlay topology and media encoding scheme
MDC to encode the media content into multiple stripes. Peers subscribe a subset
of the stripes based on their capability and network coding requirements. Peers
with different download bandwidths can receive the media content at different rates
simultaneously.

Inter-session linear network coding is a challenging topic on network coding. In
Chapter5, we examined the linear inter-session network coding for multicast which
involves multiple simultaneous multicast sessions. We introduced two performance
metrics to characterize the benefit of inter-session network coding with each metric
having its own application targets. The sessions are divided into different groups
based on the metrics. Linear network coding, both deterministic and random, is per-
formed between sessions within the same group. The simulation results show that
the inter-session network coding outperforms the intra-session network coding by
about30% in terms of throughput in most cases. Moreover, the deterministic algo-
rithm achieves higher throughput and less bandwidth consumption than the random
algorithm.

In the last two chapters, we focused on network layer multicast. In Chapter
6, we proposed a service-centric multicast architecture and an efficient and flex-
ible multicast routing protocol SCMP. It is in contrast with traditional distributed
multicast protocols. We argue that centralizing multicast functions in multiple pow-
erful routers will not impair the scalability of the system. Instead, the system can
benefit a lot from the service-centric architecture. By concentrating most multicast
routing and service-related tasks in the m-router, routing efforts on other routers
can be greatly reduced and the bandwidth wasting in the rest of the Internet can
be avoided. The centralized processing make it easier to deploy a sophisticated
network-wide routing algorithm with complex QoS requirements. The simulation
results show that SCMP protocol achieves the least data overhead and much lower
protocol overhead than DVMRP and MOSPF.

We examined the transportation layer design for multicast in Chapter7. Reli-
able multicast protocol is much more complex as it involves multiple receivers with
different receiving rates and packet loss probabilities. ACK tree is a viable solution
for reliable multicast. Existing solutions make the ACK tree dependent on the mul-
ticast tree which is inefficient in most cases. In extreme cases, it can degenerate to a

180

receiver-initiated protocol. We proposed a peer-to-peer tree based reliable multicast
protocol which can avoid the acknowledge implosion and minimize the retransmis-
sion delay. The ACK tree is constructed in a peer-to-peer fashion, which makes our
protocol transparent to routers and easy to deploy. The simulation results show that
the new protocol achieves good scalability. It achieves 20% higher throughput than
RMTP and much shorter average retransmission delay.

To devise a practical scheme for scalable and efficient group communication
over a large scale network is an interesting yet challenging task which involves
several research fields, such as multicast, peer-to-peer systems and network coding.
The following topics are some open issues which shed light on our future work.

• How to handle network unstableness and fluctuation? Network is unstable
due to many reasons. The network nodes or links may fail, the end-to-end de-
lay may vary, the network traffic may get congested around a certain area. To
handle this situations, some fault tolerance mechanism is needed. A common
way is to find an alternative when the network is experiencing such a fluc-
tuation. This requires data redundancy or link redundancy. In peer-to-peer
systems based on network coding, it is readily to achieve link redundancy as
network coding benefits from link redundancy by itself.

• We are interested in building a seamless group communication support sys-
tem across the network. Due to the increasing popularity of wireless networks
and mobile devices, it is critical to apply network coding to wireless networks
and make the inter-operation as efficient as possible.

• It is desirable to extend the service-centric multicast architecture to support
multiple m-routers. Multiple m-routers can make the system more scalable
and reliable as the load can be distributed to these m-routers and the m-routers
can be backup for each other. This demands a load balance mechanism and
a coordinating mechanism between the m-routers. The multicast protocol
SCMP is designed as an intra-domain routing protocol. We believe it has
the potential to support inter-domain multicast routing efficiently. We are
interested in conducting more research on this topic.

181

Bibliography

[1] S. Deering. Multicast routing in a dategram internetwork. Master’s thesis,
Stanford University, 1988.

[2] Internet group management protocol, version 2 (IGMPv2), 1996.

[3] D. Waitzman and C. Partridge.Distance vector multicast routing protocol,
Nov. 1988.

[4] J. Moy. Multicast extension to OSPF, 1994.

[5] B. Cain A. Ballardie and Z. Zhang.Core based trees (CBT version 3) multicast
routing, 1998.

[6] S. Deering et al.Protocol independent multicast-sparse mode (PIM-SM): mo-
tivation and architecture, 1998.

[7] J. Nicholas A. Adams and W. Siadak.Protocol independent multicast - dense
mode (PIM-DM): protocol specification, 2004.

[8] S. Banerjee and B. Bhattacharjee. A comparative study of application layer
multicast protocols. 2001.

[9] M. Yang and Y. Yang. An efficient hybrid peer-to-peer system for distributed
data sharing.IEEE Trans. on Computers, to apear.

[10] Bittorrent. http://www.bittorrent.com.

[11] B. Li X. Zhang, J. Liu and T.-S. P. Yum. Coolstreaming: a data-driven over-
lay network for efficient live media streaming.Proc. IEEE INFOCOM 2005,
2005.

[12] S. Seshan Y.H. Chu, S.G. Rao and H. Zhang. A case for end system mul-
ticast. IEEE Journal on Selected Areas in Communication, Special Issue on
Networking Support for Multicast, (8), 2002.

182

[13] S.Y.R. Li R. Ahlswede, N. Cai and R.W. Yeung. Network information flow.
IEEE Trans. Information Theory, 46:1204–1216, 2000.

[14] C. Fragouli and E. Soljanin.Network Coding Applications. Now Publishers
Inc, 2008.

[15] R.W. Yeung S.Y.R. Li and N. Cai. Linear network coding.IEEE Trans. Infor-
mation Theory, 49:371–381, 2003.

[16] P. Chou M. Effros S. Egner K. Jain S. Jaggi, P. Sanders and L. Tolhuizen.
Polynomial time algorithms for multicast network code construction.IEEE
Trans. Information Theory, 51:1973–1982, 2005.

[17] T. Ho and D.S. Lun.Network Coding: An Introduction. Cambridge University
Press, 2008.

[18] R. Koetter D. Karger M. Effros J. Shi T. Ho, M. Medard and B. Leong. A
random linear network coding approach to multicast.IEEE Trans. Information
Theory, 52:4413–4430, 2006.

[19] R. Koetter K. Bhattad, N. Ratnakar and K.R. Narayanan. Minimal network
coding for multicast. Proc. IEEE International Symposium on Information
Theory, 2005.

[20] C.K. Ngai and R.W. Yeung. Network coding gain of combination networks.
IEEE Information Theory Workshop, pages 283–287, Oct. 2004.

[21] Q. Zhang Z. Zhang J. Zhao, F. Yang and F. Zhang. Lion: Layered overlay
multicast with network coding.IEEE Trans. Multimedia, pages 1021–1032,
October 2006.

[22] M. Yang and Y. Yang. A hypergraph approach to linear network coding in
multicast networks.IEEE Trans. Parallel Distrib. Syst., to apear.

[23] R. Koetter J.K. Sundararajan, M. Medard and E. Erez. A systematic approach
to network coding problems using conflict graphs.Proc. of the UCSD Work-
shop on Information Theory and its Applications, February 2006.

[24] C.E. Leiserson T.H. Cormen and R.L. Rivest.Introduction to algorithms. MIT
Press, 1990.

[25] R. Koetter and M. Medard. An algebraic approach to network coding.
IEEE/ACM Trans. Networking, 11(5):782–795, 2003.

183

[26] C. Fragouli and E. Soljanin. Information flow decomposition for network
coding. IEEE Trans. Information Theory, 52:829–848, 2006.

[27] Gt-itm. URL http://www.cc.gatech.edu/projects/gtitm .

[28] P. Paul and S.V. Raghavan. Survey of multicast routing algorithms and pro-
tocols. Proc. 15th International Conference on Computer Communication,
2002.

[29] A.-M. Kermarrec A. Nandi A. Rowstron M. Castro, P. Druschel and A. Singh.
Splitstream: high-bandwidth multicast in cooperative environments.Proc.
ACM SOSP 2003, Oct. 2003.

[30] H.J. Wang V.N. Padmanabhan and P.A. Chou. Resilient peer-to-peer stream-
ing. Proc. IEEE ICNP, 2003.

[31] J. Cheriyan and M.R. Salavatipour. Hardness and approximation results for
packing steiner trees.Algorithmica, 45(1), 2006.

[32] M. Mahdian K. Jain and M.R. Salavatipour. Packing steiner trees.14th ACM-
SIAM Symp. on Discrete Algorithms, 2003.

[33] The network simulator - ns-2. URLhttp://www.isi.edu/nsnam/
ns/ .

[34] B.C. Li Y. Zhu and J. Guo. Multicast with network coding in application-
layer overlay networks.IEEE Journal on Selected Areas in Communication,
September 2004.

[35] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content
distribution. IEEE INFOCOM 2005, March, 2005.

[36] J. Shi M. Effros T. Ho, M. Medard and D.R. Karger. On randomized network
coding. Proc. Annual Allerton Conference on Communication, Control, and
Computing, 2003.

[37] Gnutella protocol development, the gnutella v0.6 protocol.Available:
http://rfc-gnutella.sourceforge.net/developer/index.html, 2003.

[38] M. Luby J.W. Byers and M. Mitzenmacher. A digital fountain approach to
asynchronous reliable multicast.IEEE Journal on Selected Areas in Commu-
nication, October 2002.

[39] R. M. Karp S. Ratnasamy, M. Handley and S. Shenker. Topologically-aware
overlay construction and server selection.IEEE INFOCOM 2002, June, 2002.

184

http://www.cc.gatech.edu/projects/gtitm
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

[40] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable application layer
multicast.Proc. ACM SIGCOMM 2002, Aug. 2002.

[41] K. Hua D. Tran and T. Do. Zigzag: an efficient peer-to-peer scheme for media
streaming.Proc. IEEE INFOCOM 2003, April 2003.

[42] V. Goebel K. Skevik and T. Plagemann. Evaluation of a comprehensive p2p
video-on-demand streaming system.Computer Networks, (4), 2009.

[43] B. Botev D. Xu M. Hefeeda, A. Habib and B. Bhargava. Promise: peer-to-peer
media streaming using collectcast.Proc. 11th ACM international conference
on Multimedia, November 2003.

[44] D. Xu B. Bhargava M. Hefeeda, A. Habib and B. Botev. Collectcast: a peer-to-
peer service for media streaming.ACM/Springer Multimedia Systems Journal,
October 2003.

[45] N. Magharei and R. Rejaie. Understanding mesh based peer-to-peer stream-
ing. Proc. ACM NOSSDAV 2006, 2006.

[46] V.K. Goyal. Multiple description coding: Compression meets the network.
IEEE Signal Processing Magazine, September 2001.

[47] A. Vitali and M. Fumagalli. Standard-compatible multiple-description coding
(mdc) and layered coding (lc) of audio/video streams.Internet Draft - Network
Working Group, July 2005.

[48] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming.Proc. ACM NOSS-
DAV 2003, 2003.

[49] Y.T.H. Li D. Ren and S.H.G. Chan. On reducing mesh delay for peer-to-peer
live streaming.Proc. IEEE INFOCOM 2008, April, 2008.

[50] C. Feng and B. Li. On large-scale peer-to-peer streaming systems with net-
work coding. Proc. 16th ACM International Conference on Multimedia, Oc-
tober, 2008.

[51] C. Wang and N.B. Shroff. Intersession network coding for two simple multi-
cast sessions.Proc. Annual Allerton Conference on Communication, Control,
and Computing, September 2007.

[52] N. Sundaram and P. Ramanathan. Multirate media streaming using network
coding. Proc. 43rd Allerton Conference on Communication, Control, and
Computing, September 2005.

185

[53] A-M. Kermarrec M. Castro, P. Druschel and A. Rowstron. Scribe: A large-
scale and decentralised application-level multicast infrastructure.IEEE Jour-
nal on Selected Areas in Communication, Special Issue on Networking Sup-
port for Multicast, October 2002.

[54] L. Ford and D. Fulkerson. Maximal flow through a network.Canadian J.
Mathemat., pages 399–404, 1956.

[55] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow
problem.Proc. 18th Annual ACM Symposium on Theory of Computing, pages
136–146, 1986.

[56] H. Balakrishnan D. Liben-Nowell and D. Karger. Analysis of the evolution of
peer-to-peer systems.Principles of Distributed Computing, July 2002.

[57] C. Freiling R. Dougherty and K. Zeger. Insufficiency of linear coding in
network information flow.IEEE Transactions on Information Theory, pages
2745–2759, August 2005.

[58] Z. Li and B. Li. Network coding: the case of multiple unicast sessions.Proc.
Annual Allerton Conference on Communication, Control, and Computing,
September 2004.

[59] C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis with network cod-
ing. Fourteenth IEEE International Workshop on Quality of Service (IWQoS),
2006.

[60] M. Yang and Y. Yang. Constructing linear network code for multicast based
on hypergraph.Proc. IEEE Globecom 2007, November 2007.

[61] L.H. Sahasrabuddhe and B. Mukherjee. Multicast routing algorithms and pro-
tocols: a tutorial.IEEE Network, 14:90–102, 2000.

[62] P. Francis T. Ballardie and J. Crowcroft. Core based trees (cbt): an architecture
for scalable inter-domain multicast routing.ACM Sigcomm, pages 85–95,
1993.

[63] J. Moy. OSPF version 2, 1998.

[64] R. Perlman et al.Simple multicast: a design for simple, low-overhead multi-
cast, 1999.

[65] S. Deering.Host extensions for IP multicasting, Aug. 1989.

186

[66] S. Keshav and S. Paul. Centralized multicast.Proc. 7th Annual International
Conference on Network Protocols, 1999.

[67] E. Aharoni and R. Cohen. Restricted dynamic steiner trees for scalable multi-
cast in datagram networks.Proceedings of IEEE Infocom, April 1997.

[68] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H.Freeman, 1979.

[69] G. Markowsky L. Kou and L. Berman. A fast algorithm for steiner trees.Acta
Informatica, 15:141–145, 1981.

[70] J.C. Pasquale V.P. Kompella and G.C. Polyzos. Multicast routing for multi-
media communication.IEEE/ACM Trans. Networking, pages 286–292, June
1993.

[71] G. Manimaran R. Sriram and C. Murthy. A rearrangeable algorithm for the
construction of delay-constrained dynamic multicast trees.IEEE/ACM Trans.
Networking, (4):514–529, Aug. 1999.

[72] Np3400, 2000. URLhttp://www.mmcnet.com .

[73] Y. Yang and G.M. Masson. Nonblocking broadcast switching networks.IEEE
Trans. Computers, (9):1005–1015, September 1991.

[74] S. Yalamanchili J. Duato and L.M. Ni.Interconnection Networks: An Engi-
neering Approach. Morgan Kaufmann Publishers, 2002.

[75] Y. Yang. A new conference network for group communication.IEEE Trans.
Computers, (9):995–1010, 2002.

[76] Y. Yang and G.M. Masson. Broadcast ring sandwich networks.IEEE Trans.
Computers, (10):1169–1180, October 1995.

[77] L.J. Cowen J.F. Houlahan and G.M. Masson. Hypercube sandwich approach
to conferencing.Journal of Supercomputing, (3):271–283, 1996.

[78] Y. Du and G.M. Masson. Strictly nonblocking conference networks using
high-dimensional meshes.Networks, (4):293–308, July 1999.

[79] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem.SIAM
J. Discrete Math., 4(3):369–384, 1991.

[80] Y. Yang and J. Wang. A new self-routing multicast network.IEEE Trans.
Parallel and Distributed Systems, (12):1299–1316, 1999.

187

http://www.mmcnet.com

[81] B. Waxman. Routing of multipoint connections.JSAC, pages 1617–1622,
Dec. 1988.

[82] Y. Rekhter and T. Li.A Border Gateway Protocol 4 (BGP-4), 1995.

[83] B. Rajagopalan. Reliability and scaling issues in multicast communication.
Proc. ACM SIGCOMM 1992, 1992.

[84] et al. S. Floyd. A reliable multicast framework for light-weight sessions and
application level framing.IEEE/ACM Trans. Networking, (6):784–803, 1997.

[85] M.H. Ammar X. Li and S. Paul. Video multicast over the internet.IEEE
Network Magazine, pages 46–60, April 1999.

[86] J.W. Atwood. A classification of reliable multicast protocols.IEEE Network,
(3):24–34, 2004.

[87] G. Parulkar C. Papadopoulos and G. Varghese. Light-weight multicast ser-
vices (lms): A router-assisted scheme for reliable multicast.IEEE/ACM Trans.
Networking, (3), June 2004.

[88] J. Griffioen R. Yavatkar and M. Sudan. A reliable dissemination protocol for
interactive collaborative applications.Proc. ACM Multimedia, pages 333–344,
1995.

[89] B.N. Levine and J.J. Garcia-Luna-Aceves. A comparison of reliable multicast
protocols.Multimedia System, (5):334–348, 1998.

[90] W.T. Strayer. Xpress transport protocol (xtp) specification, version 4.0b.Tech-
nical Report, XTP Forum, June 1998.

[91] S. Lin T. Speakman, D. Farinacci and A. Tweedly. Pgm reliable transport
protocol specification.Internet draft (draft-speakman-pgm-spec-04.txt), 2000.

[92] J. Lin and S. Paul. Rmtp: A reliable multicast transport protocol.IEEE
INFOCOM 1996, pages 1414–1424, 1996.

[93] Y. Yang, J. Wang, and M. Yang. A service-centric multicast architecture and
routing protocol.IEEE Trans. Parallel Distrib. Syst., 19(1):35–51, 2008.

[94] D. Bertsekas and R. Gallager.Data Networks. Prentice Hall, 1992.

[95] D. Towsley S. Pingali and J. F. Kurose. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols.IEEE JSAC, 15(3):398–406,
April 1997.

188

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Peer-to-peer and Application Layer Multicast
	1.2 Network Coding for Multicast Networks
	1.2.1 Linear Network Coding for Multicast
	1.2.2 Deterministic Network Coding vs. Random Network Coding

	1.3 Thesis Outline
	1.4 Thesis Contributions

	2 A Hypergraph Approach to Linear Network Coding in Multicast Networks
	2.1 Problem Formalization
	2.2 An Iterative Refinement Algorithm for Finding an Eligible Cover
	2.3 Extensions to General Minimal Network Coding Problems and Generalizations
	2.4 Preprocessing Algorithms
	2.4.1 Greedy Preprocessing Algorithm
	2.4.2 Weighted Preprocessing Algorithms

	2.5 Performance Evaluations
	2.5.1 Simulation Setups
	2.5.2 Performance Evaluation of Preprocessing Algorithms
	2.5.3 Performance Evaluation of Network Coding on Multicast

	2.6 Summary

	3 Peer-to-Peer File Sharing Based on Network Coding
	3.1 Deterministic Linear Coding over Combination Networks
	3.2 Peer-to-Peer File Sharing Based on Network Coding (PPFEED)
	3.2.1 Overview of PPFEED
	3.2.2 Peer Joining
	3.2.3 Local Topology Adjustment
	3.2.4 Peer Leaving
	3.2.5 Data Dissemination
	3.2.6 Improving Reliability and Resilience to Churn

	3.3 Some Extensions
	3.3.1 Support Link Heterogeneity
	3.3.2 Support Topology Awareness

	3.4 Performance Evaluations
	3.4.1 Baseline Configuration
	3.4.2 Dynamic Peer Join/Leave Configuration
	3.4.3 Heterogeneity Configuration
	3.4.4 Topology Awareness Configuration

	3.5 Summary

	4 Network Coding for Heterogeneous Peer-to-Peer Streaming Systems
	4.1 Optimal Overlay Topology Construction for Heterogenous Peer-to-Peer Streaming Systems
	4.1.1 Problem Formalization
	4.1.2 The Greedy Heuristic Algorithm
	4.1.3 The Distributed Algorithm
	4.1.4 Performance Evaluation

	4.2 Adaptive Network Coding for Peer-to-Peer Media Streaming Systems
	4.2.1 Problem Formalization
	4.2.2 Adaptive Network Coding for Heterogeneous Peer-to-peer Media Streaming Systems
	4.2.3 Performance Evaluations

	4.3 Summary

	5 A Linear Inter-Session Network Coding Scheme for Multicast
	5.1 Preliminaries
	5.2 Heuristic Algorithms for Linear Inter-Session Coding for Multicast
	5.2.1 Two Metrics for Session Division
	5.2.2 The Deterministic Algorithm
	5.2.3 The Random Algorithm

	5.3 Performance Evaluations
	5.3.1 Simulation Setups
	5.3.2 Performance of Inter-Session Network Coding
	5.3.3 Inter-Session Network Coding Parameters

	5.4 Summary

	6 A Service-Centric Multicast Architecture and Routing Protocol
	6.1 Preliminaries
	6.1.1 Existing Multicast Routing Protocols
	6.1.2 Existing Multicast Tree Construction Algorithms
	6.1.3 Problems in Existing Approaches and Our Contributions

	6.2 The New Multicast Architecture
	6.2.1 Overview of the New Multicast Architecture
	6.2.2 Design of the m-Router
	6.2.3 Multicast Group and Session Management Protocol
	6.2.4 Multicast Routing Protocol (SCMP) - An Overview

	6.3 Multicast Routing Protocol (SCMP)
	6.3.1 Terminologies
	6.3.2 Member Joining
	6.3.3 Member Leaving
	6.3.4 Constructing the Multicast Tree at the m-Router
	6.3.5 Forming the Multicast Tree in the Network
	6.3.6 Forwarding Multicast Packets

	6.4 Performance Evaluations
	6.4.1 Multicast Trees
	6.4.2 Network-Wide Performance

	6.5 Summary

	7 A Peer-to-Peer Tree Based Reliable Multicast Protocol
	7.1 Preliminaries
	7.2 Peer-to-Peer Tree Based Reliable Multicast Protocol
	7.2.1 Protocol Overview
	7.2.2 Constructing the ACK Tree
	7.2.3 Loss Recovery and Flow Control
	7.2.4 Timers

	7.3 Theoretical Analysis
	7.3.1 Protocol Correctness
	7.3.2 Maximum Throughput Analysis

	7.4 Performance Evaluations
	7.5 Summary

	8 Conclusions and Future Work
	 Bibliography

