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Abstract of the Dissertation

Classification with Partial Information for Bioinformatics and Text

Segmentation

by

Chang Zhao

Doctor of Philosophy

in

Computer Science

Stony Brook University

2009

Bioinformatics and text segmentation have attracted enormous research efforts in recent

years. Classification techniques, especially profile hidden Markov model (PHMM) and

conditional random field (CRF), are established computational vehicles in these two fields

for extracting useful information from the vast amount of data resulted from rapid progress

in molecular biology and ever increasing World Wide Web activities.

In this dissertation, we have developed techniques that exploit partial information to

overcome a number of significant limitations of extant PHMM and CRF techniques in

bioinformatics and text segmentation. Our work has advanced classification techniques in

these two fields along the PHMM and CRF directions.

Our research on classification in bioinformatics has been conducted in the context of

Toxin Knowledge Base (TKB), a comprehensive bioinformatics resource to detect poten-

tial virulent proteins. One of the most important research problems in TKB is to improve

the accuracy of predicting whether a protein is potentially virulent based on sequence ho-

mology and active site similarity.
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PHMM is recognized as the state-of-the-art for detecting sequence homology. Ex-

tant PHMM training approaches either use completely unaligned or completely aligned

sequences. The PHMMs resulted from these two training approaches present contrasting

trade-offs w.r.t. alignment information and the accuracy of the search outcome. Producing

the complete alignment information is a labor intensive process involving expensive struc-

tural analysis of entire sequences. We have developed a PHMM training technique that is

parameterized w.r.t. alignment information. Our technique can improve the accuracy of

PHMMs when training sequences are only partially aligned.

Current techniques for profiling 3-D biological structures with PHMM are restricted

in that they only deal with entire protein structures and cannot be applied to important

functional substructures such as active sites. We have expanded PHMM to profile protein

active sites for their similarity search. The core of our technique is a novel serialization

that captures certain conserved physico-chemical and structural features of active sites.

Although our sequential representation of active sites captures only partial information

about them, experiments show that our technique is practical.

In the field of text segmentation, one of the biggest limitations of existing CRF ap-

proaches is the need for manual labeling of training data, which is generally labor intensive

and time consuming. We have developed a CRF training technique that can eliminate the

manual work needed for labeling examples and automatically learn CRF from partial train-

ing information in structured reference data.

Our experiences show that our partial information exploiting techniques can improve

PHMM classification accuracy when completely aligned sequences are not available, ex-

pand PHMM applicability on 3-D structures, or eliminate manual work in labeling training

sequences for CRF.
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Chapter 1

Introduction

1.1 Classification in Bioinformatics and Text Segmenta-

tion

Recent advances in molecular biology have resulted in an enormous multitude of bi-

ological data, such as DNA sequences, RNA sequences, protein sequences, and protein

3-D structures. This has created the rich research area of bioinformatics centered around

applying information technologies to analyze these biological data. One of the most impor-

tant problems in bioinformatics is homology search, which identifies similarities between

nucleic or amino acid sequences and structures owing to shared ancestry. Another key

bioinformatics problem is gene finding, which identifies stretches of genomic DNA se-

quences that are biologically functional. This usually refers to protein-coding genes and

may also include other functional elements such as RNA genes and regulatory regions.

Text segmentation is the process of partitioning plain text strings into meaningful units.

An example is to divide a plain address text string into street number, street, zip code,

and state. Text segmentation is crucial to natural language processing and information

extraction from the World Wide Web.

1



CHAPTER 1. INTRODUCTION 2

Bioinformatics and text segmentation are two fields where classification is widely used.

The task of classification is to classify examples into given set of categories based on past

observations. For instance, homology search in bioinformatics is a classification problem

in that it predicts whether an input biological molecule (DNA, RNA, or protein) is a family

member given known members of that family. In the case of text segmentation, partitioning

an input text string into meaningful units amounts to classifying each word in the string into

predefined categories corresponding to what is meaningful.

Classification with human-crafted rules is labor-intensive and error prone. Researchers

have resorted to machine learning based classification approaches which automatically

learn classifiers from training examples and use them to accurately predict which category

an input example belongs to. Examples of machine learning based classification techniques

are decision tree [56], naive Bayesian classifier [69], maximum entropy classifier [54, 47],

hidden Markov model [53], and conditional random field [34].

In bioinformatics and text segmentation, classification usually involves sequence anal-

ysis tasks that assign a label from a predefined label set to each token in an input sequence,

where what constitutes a token is application-specific. For example, in bioinformatics ap-

plications a token is usually a letter denoting a nucleic or amino acid whereas in text seg-

mentation tokens can be words that are delimited by white spaces. We use the term “label-

ing” for such sequence analysis tasks in this dissertation. Usually in the labeling process,

the choice of one label affects and is affected by the choices of other labels.

Hidden Markov model (HMM) [53] and conditional random field (CRF) [34] are best-

known statistical models for labeling and widely used in bioinformatics and text segmen-

tation. Both are able to model the impact of previously chosen labels on the choices of

successive labels and are thus suitable for the aforementioned sequence analysis tasks. A

special form of HMM called profile hidden Markov model (PHMM) [18] has been intro-

duced for bioinformatics, whose structure is specialized to capture mutations and conserved

regions in biological molecules during evolution.
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Both HMM and CRF automatically learn classifiers from training examples and use

them to classify new examples. An HMM can be trained from a set of unlabeled se-

quences by Baum-Welch or from a set of labeled sequences by smoothed maximum like-

lihood frequency counting [53]. In contrast, CRF is usually trained only from labeled

sequences [12, 16, 59]. In bioinformatics, labeled sequences can be automatically derived

from a sequence alignment and used to train a PHMM [18].

Although PHMM and CRF have been the preferred statistical models in bioinformatics

and text segmentation, existing approaches have several significant limitations.

Extant PHMM training approaches either use completely unaligned sequences [28, 30]

or completely aligned sequences [20]. PHMMs trained from completely aligned sequences

have been shown to have a much higher degree of classification accuracy than those trained

from unaligned sequences. However, producing the complete alignment information is a

labor-intensive process involving expensive structural analysis of entire sequences. Partial

alignment information that could result in more accurate PHMMs when used in training is

ignored by these extant approaches.

Structure (and functional substructure) similarity search is a very important problem

in bioinformatics. However, it is less explored compared to sequence homology search.

Structures, like sequences, can be grouped into families based on their similarity. Most

existing techniques for detecting similarity in structures are based on pair-wise comparison,

which can fail to detect remote family members. Even though a profile based approach like

PHMM does not suffer from this remote member detection issue, its current use for 3-D

biological structures [3] is restricted in that it only deals with entire protein structures and

can not be applied to important functional substructures.

CRF is a dominant statistical model used in text segmentation. However, the training

of CRF needs manually labeled data [34, 59, 15, 39]. Because manual labeling of training

data is generally labor-intensive and time-consuming, the use of CRF in text segmentation

is considerably constrained.
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1.2 Our approach

In this dissertation, we focus on techniques that exploit partial information for training

PHMMs and CRFs in bioinformatics and text segmentation. Our techniques overcome the

limitations of existing approaches discussed in Section 1.1. They can significantly improve

PHMM classification accuracy when complete alignment information is not available, ex-

pand PHMM applicability on 3-D structures, or reduce manual work in labeling training

sequences for CRF.

1.2.1 Classification in Bioinformatics with PHMM

Our research on classification in bioinformatics has been conducted in the context of

the Toxin Knowledge Base (TKB). We have developed PHMM-based techniques to profile

protein sequences from partially aligned sequences and to profile protein active sites, which

are 3-D substructures in proteins that determine the functional properties of proteins.

1.2.1.1 Toxin Knowledge Base

Toxin Knowledge Base (TKB) [31] is a comprehensive bioinformatics resource to iden-

tify homologues of toxins, structural motifs of toxins and virulent factors in non-toxic pro-

teins. It includes processes for acquiring and structuring toxin data from a number of

sources including the web and prediction algorithms for detecting potential virulent pro-

teins based on the aggregated toxin data.

Just as any protein, toxin sequence homology usually indicates common ancestry and

thus similarity in functionality. For this reason, one important way of detecting potential

virulent proteins adopted by TKB is to search for homologues of toxins. PHMM is recog-

nized as a powerful technique for this task because it can probabilistically model protein

sequence families, capture the conserved features among family members, and can thus

detect more remote homologues. Improving accuracy of PHMM is an important research



CHAPTER 1. INTRODUCTION 5

problem in TKB.

Advances in recombinant DNA technology have opened up possibilities for hiding

the virulent domain of a toxin in an otherwise non-toxic protein. Such virulent chimeric

molecules can not be detected by sequence homology. TKB integrates several bioinformat-

ics and structural biology resources into a specially designed workflow to detect virulent

chimeric molecules. Specifically, TKB computes the putative active sites of any given pro-

tein and then predicts whether it is a virulent chimeric protein depending on whether the

putative active sites are similar to toxin active sites. Active sites, like sequences, can be

grouped into families based on similarity. The success of profiles in detecting remote se-

quence homology inspired us to explore the possibility of profiling active sites in proteins.

1.2.1.2 Profiling Protein Sequences with PHMM

Protein sequence homology search is an effective means of understanding the character-

istics of a new protein through comparison to other sequences with known rich biological

information. Because organisms from the same ancestor (i.e. belonging to the same fam-

ily) may have changed during evolution, profile based homology search [6, 26, 5, 20, 30]

is more favorable than pair-wise comparison [46, 62, 4, 50] because the profile of a family

captures the common features shared by family members and can thus detect more remote

homologues of the family members.

Profile hidden Markov model (PHMM) is recognized as a powerful technique for sta-

tistically profiling families of protein sequences. A PHMM is a specialized HMM with

insert, delete, and match states corresponding to insertion mutations, deletion mutations,

and conserved regions in proteins during evolution. The training of a PHMM for a protein

sequence family needs example sequences belonging to the family.

Most PHMM training approaches either use completely unaligned [28, 30] or com-

pletely aligned sequences [20]. PHMMs trained from completely aligned sequences have

been shown to identify remote homologues with a much higher degree of accuracy than
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those trained from completely unaligned sequences. However, producing the alignments is

a labor intensive process involving expensive structural analysis of proteins.

We have developed a PHMM based technique for profiling protein families from par-

tially aligned sequences [44]. Compared with completely aligned sequences where align-

ment information is available for each and every amino acid in training sequences, align-

ment information is only available for some amino acids in partially aligned sequences.

By exploiting the observation that partially aligned sequences give rise to independent sub-

sequences, the PHMM for the entire sequences is decomposed into sub-PHMMs corre-

sponding to those subsequences and then the parameters of the PHMM are composed from

parameters of the sub-PHMMs.

An interesting aspect of our technique is that it gives rise to a family of PHMMs which

are parameterized with regard to the alignment information and thus allows for learning

PHMMs that can trade the accuracy of remote homologue identification for labor needed

to produce alignment information.

1.2.1.3 Profiling Protein Active Sites with PHMM

Protein active site similarity search finds 3-D substructures in a protein that are similar

to the active sites of another proteins. It is a complementary means to sequence homology

search in understanding new proteins by comparing them with other known proteins.

State-of-the-art techniques for determining active site similarity [32, 55, 64] are based

on pair-wise comparison of active sites. Just like sequences, active sites can be grouped into

families whose members are related by similarity of their functions. Similar sites exhibit

variability in their physico-chemical and structural features. Pair-wise comparison based

techniques may use features that may not be common to all family members and hence

can fail to identify remote family members. In contrast, a profile based approach can catch

shared features among family members and can thus detect remote members.
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The success of PHMM in profiling sequences has inspired people to develop 3-D struc-

tural PHMMs. However, high-dimensional PHMMs are computationally intractable, as can

be derived by the intractability of high-dimensional hidden Markov models (HMMs) [37].

Researchers have resorted to serialized representations of 3-D structures. Current tech-

nique for profiling 3-D protein structures [3] with PHMM serializes amino acids according

to their order in 1-D sequence. It can not be applied to 3-D active site profiling because

amino acids in similar active sites may not be co-linear in their sequences.

We have developed a PHMM-based technique for profiling protein active sites [71]. To

be more specific, we have developed a novel serialization of 3-D active sites which does

not depend on order of amino acids in sequences. Sequences resulted from this serializa-

tion capture certain physico-chemical and 3-D geometric features of active sites. PHMM

parameters are then estimated using these sequences. While our sequential representation

of active sites captures only partial information about them, experimental results with our

technique suggest that it is effective in practice.

1.2.2 Automatic Text Segmentation with CRF

Text segmentation partitions input text strings into meaningful units. In the World Wide

Web, data (such as product, bibliographic and address data) exists as unstructured text

strings. They have to be segmented into structured records to facilitate efficient query

processing and analysis.

Conditional random field (CRF) is a discriminative probabilistic model that is gain-

ing acceptance as an effective computing machinery for text segmentation. Compared to

HMM, CRF eliminates the need to make any independence assumptions about the elements

in the input sequence.

A CRF model is characterized by a set of weighted vertex feature functions and edge

feature functions, whose weights are usually learned from labeled training data. Labeling
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can be a labor-intensive process. One can avoid the labeling step by using structured ref-

erence tables whose data domains and that of the input text data given for segmentation,

coincide. The reference table contains partial information for training the CRF in the sense

that edge features corresponding to the transitions between labels are missing.

Inspired by a recent work in [1] on their use for training HMMs, we have developed

a novel technique for automatic text segmentation with CRF [70]. Assuming sequences

to be segmented come in batches and sequences in a batch conform to the same attribute

ordering, we build CRF models for each attribute in the reference table, use them to decide

the attribute ordering of a batch of input sequences, derive labeled training data from the

reference table according to that ordering, train a global CRF model, and use the global

CRF model to segment the batch of input sequences.

1.3 Research Contributions

In this dissertation research, we have made the following contributions:

• We have developed Toxin Knowledge Base (TKB), the first comprehensive bioin-

formatics resource to identify homologues of toxins, structural motifs of toxins and

virulent factors in other proteins.

– We have developed processes for acquiring and structuring toxin data from a

number of sources including the web.

– We have developed prediction algorithms for detecting potential virulent pro-

teins based on the aggregated toxin data.

• We have improved PHMM-based approaches by leveraging partially aligned se-

quences to achieve higher classification accuracy when completely aligned sequences

are not available.
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– We have developed effective algorithms to decompose a PHMM into sub-

PHMMs according to partial alignment information and to compose the pa-

rameters of sub-PHMMs into the parameter of the PHMM.

– An important aspect of our technique is that it gives rise to a family of PHMMs

which are parameterized with regard to the alignment information.

• We have developed an original approach for profiling protein active sites with

PHMM.

– We have developed a novel serialization of three dimensional active sites in

proteins.

– Based on this serialization we have expanded traditional PHMMs designed for

profiling one dimensional sequences of residues to accommodate both physico-

chemical and three dimensional geometric features.

– An important aspect of our method is that it is able to detect remote members

of active site families by exploiting the commonality amongst the members

captured by profiling. In contrast non-profiling based methods (such as those

that rely on pair-wise comparisons as in SPASM [32]) are unable to do so.

• We have pioneered unsupervised text segmentation with CRF by exploiting struc-

tured reference data.

– Our technique is fully unsupervised in that, when a reference table whose data

domain coincides with that of input sequences is available, it eliminates the

need for manually labeled data, which are required by traditional CRF ap-

proaches.

– We have developed simple yet effective heuristics to construct labeled examples

from the reference table for training classifiers of reference table attributes.
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– We have developed practical algorithms to infer the attribute order shared by

a batch of input sequences using the attribute classifiers and to derive labeled

sequences from the reference table for training text segmentation CRF.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents an introduction

to protein structure, profile hidden Markov models and conditional random fields to set

the context for understanding this dissertation. Chapter 3 introduces the Toxin Knowledge

Base system and motivates the work in profiling proteins families from partially aligned

sequences as well as profiling protein active sites. Chapter 4 provides the technique de-

tails and experimental results of profiling protein families from partially aligned sequences.

Chapter 5 describes our serialized representation of protein active sites, the adaptation of

PHMM for profiling active sites, and our experimental results. Chapter 6 discusses our

solution to automatic text segmentation by exploiting reference tables as well as the ex-

perimental results. Chapter 7 concludes this dissertation by summarizing our work on

exploiting partial information for classification in bioinformatics and text segmentation ap-

plications.



Chapter 2

Preliminaries

In this chapter, we give an overview of protein structure, Profile HiddenMarkovModels

(PHMMs) and Conditional Random Fields (CRFs) to set the context for understanding the

rest of the dissertation. Specifically, knowledge about protein sequences in Section 2.1 and

PHMM in Section 2.2 is needed for understanding Chapter 3 and 4. Knowledge about pro-

tein active sites in Section 2.1 and PHMM in Section 2.2 is for Chapter 5. An introduction

to CRFs in Section 2.3 is needed for Chapter 6.

2.1 Protein Structure

The building blocks of proteins are twenty amino acids. Examples of these include

Alanine, Valine, Histidine, Glycine, etc. They are usually referred to by their symbolic (3-

letter and 1-letter) abbreviations e.g., the 3-letter ALA or the 1 letter A for Alanine, VAL

or V for Valine and so on.

All of the twenty amino acids have in common a central carbon atom (Cα) to which

are attached a hydrogen atom, an amino group (NH2), and a carboxyl group (COOH).

The rest of an amino acid, which is called the side chain, is different for different amino

acids. These terms are illustrated in Figure 2.1(a). Amino acids are joined end-to-end to

11
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Figure 2.1: (a) Schematic Diagram of an Amino Acid. (b) Polypeptide Chain.

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHES

LADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTT

QANKHIIVACEGNPYVPVHFDASV

Figure 2.2: Sequence of Bovine Ribonuclease

form a polypeptide chain when the carboxyl group of one amino acid condenses with the

amino group of the next to eliminate water and a peptide bond is formed, as shown in Fig-

ure 2.1(b). The N-terminus of a polypeptide is the end with its amino group NOT involved

in a peptide bond. The C-terminus is the end with its carboxyl group NOT involved in a

peptide bond. The list of all constituting amino acids in the chain of a protein in order

starting at the N-terminus and proceeding to the C-terminus is called the sequence of the

protein. Note that a protein may consist of multiple polypeptide chains. When denoting

amino acids by their 1-letter codes, a protein sequence is simply a string of letters taken

from the alphabet {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. For example,

the sequence of the protein BOVINE RIBONUCLEASE which we mention in Section 5.1

is denoted by the string in Figure 2.2.

The repeating units in a polypeptide chain are called residues. In Figure 2.1(b) the

elements within each “shaded triangular” area correspond to a residue. A residue is usually

referred to by its name or abbreviation followed by its position in the chain. For example,

H233 refers to the 233rd residue in a chain, which is a histidine.
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folding

active site

... ... ... ...

polypeptide chain 3D structure

Figure 2.3: Formation of an Active Site

The polypeptide chain of a protein folds in space to form the three-dimensional struc-

ture of the protein. The folding of the polypeptide chain typically creates a crevice or

cavity on the protein surface. This crevice, called an active site, contains a set of residue

side chains which might be far apart in the polypeptide chain. They are brought together in

the 3-D structure and are disposed in such a way that they can make noncovalent bonds only

with certain partners, which can be a protein, DNA, metal ion, etc. The 3-D structure of a

protein, especially the localized structure of its active site, determines the functional prop-

erties of the protein. Figure 2.3 sketches the formation of an active site. Note that a protein

can have several active sites. By examining the interaction of a protein and its binding

partner, the protein’s active site can be identified. Alternatively, active sites can be inferred

by computational tools such as MOE Active Site Finder [82] and Q-SiteFinder [36].

Figure 2.4 shows the active site of butolinum neurotoxin serotype E. It contains three

residues: H211, E212, and H215, represented by the sticks in the figure. It determines that

this protein has the function of binding a zinc ion which is represented by the ball in the

figure.

2.2 Profile Hidden Markov Model (PHMM)

A PHMM is a statistical learning-based technique for modeling DNA and protein se-

quences families. The underlying principles of PHMMs are based upon the mathematics
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Figure 2.4: Active Site of Botulinum Neurotoxin Serotype E(PDB ID: 1T3A)

of Hidden Markov Models [53] which have found wide applicability in bioinformatics and

text segmentation. An HMM is a probabilistic finite state automaton defined by a set of

states, a set of state transitions with probabilities assigned to them and a set of observation

symbols that are emitted in a state with certain probabilities. The sequence of states cor-

responding to a visible observation sequence is “hidden” and hence has to be estimated.

PHMMs extend the traditional notion of HMMs to model biological sequence families. In

this section, we briefly review PHMMs and their application in modeling biological se-

quence families. A more detailed discussion can be found in [18]. We remark that PHMMs

for modeling DNA and protein sequences mainly differ in the domain of emission symbols

used. So without loss of generality our review will describe PHMMs for protein sequences

only.

Protein sequences typically come in families. Members of a family have a common

ancestor and normally maintain the same or related function. Although they have diverged

during evolution through insertions and deletions, their functional residues are usually con-

served. A multiple alignment of family members reveals the relationship among them. For

example, in Figure 2.5 which is a segment of the multiple alignment of seven globin protein

sequences taken from [18], it is obvious that residues in some columns are more conserved

than in others. A simple rule to decide whether a column is conserved is that if more than
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HBA_HUMAN ...VGA--HAGEY...

HBB_HUMAN ...V----NVDEV...

MYG_PHYCA ...VEA--DVAGH...

GLB3_CHITP ...VKG------D...

GLB5_PETMA ...VYS--TYETS...

LGB2_LUPLU ...FNA--NIPKH...

GLB1_GLYDI ...IAGADNGAGV...

*** *****

Figure 2.5: A Segment from the Multiple Alignment of 7 Globin Protein Sequences

half of the sequences have a residue instead of a dash present in the column, then that col-

umn is conserved. In Figure 2.5, the columns marked with stars are conserved. The two

non-starred residues in GLB1 GLYDI correspond to insertions. If a sequence has a dash in

a conserved column, then it has undergone a deletion.

PHMMs are HMMswhose structures are specialized to capture such conserved residues

as well as insertions and deletions in sequence families. Figure 2.6 shows the structure of

a PHMM. The structure has a Begin state and an End state, denoted B and E respectively

in the figure, and a sequence of columns of states between B and E. Each column, from

1 to n, has three states - a match, insert, and delete state. These are denoted by Mi, Ii,

and Di respectively for the ith column. Intuitively, match states correspond to conserved

residues among sequences while insert and delete states correspond to divergence in se-

quences from a common ancestor due to insertions and deletions respectively. The insert

state I0 corresponds to insertions before the first matching residue in sequences. Observe

from Figure 2.6 that the structure of the model is parameterized only by the length of the

model, i.e., the number of columns of states.

The transitions in the model structure are fixed and corresponds to the underlying se-

mantics of matches, insertions, and deletions. In particular, a match state Mi can make

a transition to Mi+1, Ii and Di+1 respectively. An insert state Ii has transitions to Mi+1,

Di+1, and to Ii itself. A delete state Di has transitions to Mi+1, Di+1, and Ii. These state

transitions are also shown in Figure 2.6.
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Figure 2.6: PHMM Structure

For protein sequences, the emission symbols are the twenty amino acids. Match and in-

sert states emit residues while delete states are non-emitting silent states. The non-emission

of residues from delete states conforms to the semantics of these states – a residue in the

representation of the family is not observed in an individual sequence. The begin and end

states define the start and end markers of the model and consequently they do not emit

residues.

The parameters of a PHMM are usually learned from a set of sequences known as

members of a family. When the alignment of the sequences is given, computing the model

probabilities reduces to smoothed maximum-likelihood parameter estimation using the fre-

quency counts of transition and emission events. Figure 2.7 (taken from [18]) is a PHMM

of length 8. Emission probabilities are shown as bars opposite the different amino acids for

each match state, and the values of transition probabilities are indicated by the thickness

of the lines. The self looping transitions on the insert states are probability values given as

percentages. The emission probabilities are uniformly distributed among 20 amino acids

for all the insert states except I3 where the emission probabilities are 0.09 for amino acid

A and D and 0.045 for all the others.

When the alignment of the training sequences is unknown, learning PHMM parameters

is done with Baum-Welch’s [9] iterative algorithm which is a special case of the more

general Expectation-Maximization (EM) algorithm [17]. Starting from initial parameter
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Figure 2.7: An Example PHMM

values, the algorithm terminates after a fixed number of iterations or after a local maximum

has been reached. In each iteration, the current parameter values are used to first compute

transition and emission expectations (E step) which are then subsequently used to generate

the best possible parameter values for the next iteration (M step).

Given a PHMM model M profiling a family S and an input protein sequence x the

model determines if x is a member of S, i.e., is it similar to the members of S profiled

by M? At a high level this is done as follows: First, the best path (i.e., state sequence) is

computed using the well known Viterbi algorithm [53]. In particular, the Viterbi algorithm

efficiently computes a state sequence y′ that maximize the conditional joint probability

P (x, y|M), i.e., y′ = arg maxy P (x, y|M). For example, the best path for the sequence

“VGAHAGEY” and the model in Figure 2.7 is found to be Start→ M1 →M2 → M3 →
M4 → M5 → M6 → M7 → M8 → End. Next, we compute p(x, y′|M ′) where M ′ is

a random model that is identical to M in length and transition probabilities. However, the

emission probability for each emission symbol a is independent of the states, i.e., for all

match and insert states a always occurs with the same frequency qa. A choice for qa is the

frequency of the amino acid a occurring in a standard sequence database such as SWISS-

PROT [7]. Finally we compute the base 2 log-odds ratio log( P (x,y|M)
P (x,y|M ′)

) called the bit score.

If this score falls above a threshold then x is said to be a member of S. The threshold is a

global value and details on how it is determined appears in [79].
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2.3 Conditional Random Field (CRF)

Conditional Random Field (CRF) [34] is a probabilistic framework that can be used to

segment and label sequence data.

The input to the segmentation task consists of a sequence of tokens where what con-

stitutes a token is application-specific. For example, in bioinformatics application a token

is usually a letter whereas in the address segmentation problem tokens are words that are

delimited by white-spaces. We will therefore assume that there is an application-specific

tok function that maps any input to a token sequence. For example, tok(“1 2 3 conve-

nience store 144 Hempstead Tpke W Hempstead NY”) is the sequence of 11 tokens: [1, 2,

3, convenience, store, 144, Hempstead, Tpke, W, Hempstead, NY]. The length of a token

sequence is the number of tokens in the sequence.

For a token sequence [t1, . . . , tn], a token sub-sequence sub(i, j) is defined to be

[ti, ti+1, . . . , tj] for any 1 ≤ i ≤ j ≤ n. Note the tokens in a token sub-sequence are con-

tiguous. Therefore, for a token sequence of length n, the number of token sub-sequences is

n + (n− 1) + · · ·+ 1 = n(n + 1)/2.

Segmenting a token sequence [t1, . . . , tn] with CRFs amounts to assigning a label se-

quence [l1, . . . , ln] where each li (1 ≤ i ≤ n) is assigned to token ti from a predefined label

set. These labels correspond to attribute names. Therefore token sub-sequences might cor-

respond to instances of attributes. For example, the token sub-sequence [144, Hepmstead,

Tpke] corresponds to an instance of the attribute STREET.

In this dissertation, we use bold fonts to denote vectors, such as x for an input token

sequence, and y for a label sequence. Normal fonts denote scalars, such as x and y for a

single token and label respectively.

CRF is a discriminative model in the sense that it directly computes the conditional

probability distribution of label sequences y given a particular input token sequence x. In

contrast generative models such as HMMs compute a joint distribution over both label and
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1  2  3  Convenience  Store  144  Hempstead  Tpke  W  Hempstead  NY

COMPANY COMPANY COMPANY STREET STATECITY 

COMPANY COMPANY STREET STREET CITY

Figure 2.8: Vertex and Edge Features

token sequences. For example, for a given token sequence [1, 2, 3, convenience, store, 144,

Hempstead, Tpke, W, Hempstead, NY] shown in Figure 2.8, the conditional probability

of the label sequence [COMPANY, COMPANY, COMPANY, COMPANY, COMPANY,

STREET, STREET, STREET, CITY, CITY, STATE] will be computed by a CRF model.

The conditional probability distribution of label sequences given an input token se-

quence is defined by a set of features capturing transitions between labels as well as rela-

tions between a label and the corresponding token it is assigned to, the other tokens in the

neighborhood of this corresponding token, or even the entire token sequence.

Features capturing transitions between labels are called edge features. Examples of

such features are shown in Figure 2.8 using solid arrows, namely, the four transitions:

from COMPANY to COMPANY, one from COMPANY to STREET, two from STREET

to STREET, one from STREET to CITY, one from CITY to CITY, and one from CITY to

STATE.

Features capturing relations between the i-th label in a label sequence and the token se-

quence are called vertex features. Examples of such features are shown in Figure 2.8 using

dashed arrows. The vertex feature between the token NY and the label STATE denotes a

relationship. It could simply mean that a token NY is assigned the label STATE. It may

also mean that the label STATE is assigned to a token that consists of two upper case letter.

Note that vertex features are not mere mappings between a label and the token it is

assigned to, as is the case with emission symbols and states in HMMs. For instance, we

can have a dashed arrow between the token 144 and the second STREET label in the label
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sequence in Figure 2.8 denoting a feature capturing the relation that the previous token is a

number and the current label is STREET. Such relations are difficult to capture in HMMs.

We follow the notation in [39] in the rest of this section. CRF features are boolean

functions. Both edge and vertex features can be written as f(yi−1, yi,x, i) 7→ {0, 1} where
yi−1 is the (i − 1)-th label, yi is the i-th label, and x is the token sequence. The value of a

vertex feature function f does not depend on yi−1; however that of an edge feature does.

Let [[c]] be the indicator function whose value is 1 when the condition c is satisfied

and 0 otherwise. For the example shown in Figure 2.8, the edge feature for the transition

between STREET and CITY and the vertex feature for the relation between the word “NY”

and the label STATE can be written as follows:

f(yi−1, yi,x, i) = [[yi = CITY and yi−1 = STREET ]]. (2.1)

f(yi−1, yi,x, i) = [[xi is NY and yi = STATE]]. (2.2)

Let us denote the vector of all feature functions by f . A vector λ of real numbers with

the same length as f defines the weights of the feature functions.

The feature function vector f and the corresponding weight vector λ are used to de-

fine the conditional probability distribution over label sequences y given an input token

sequence x as follows:

P (y|x) =
1

Z(x)
e

P|x|
i=1

P|f|
j=1

λjfj(yi−1,yi,x,i). (2.3)

where |x| is the length of x, |f | is the number of feature functions, andZ(x) is a normalizing

factor equal to:
∑

y′

e
P|x|

i=1

P|f|
j=1

λjfj(y′
i−1

,y′
i,x,i).

Therefore,
∑

y′

P (y′|x) = 1
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{

<[Stony, Brook, NY], [CITY, CITY, STATE]>,

<[Port, Jefferson, NY], [CITY, CITY, STATE]>

}

Figure 2.9: A Small Set of Training Examples

Feature Function Weight

[[xi is Stony and yi = CITY ]] 0.44

[[xi is Brook and yi = CITY ]] 0.73

[[xi is Port and yi = CITY ]] 0.44

[[xi is Jefferson and yi = CITY ]] 0.73

[[xi is NY and yi = STATE]] 2.16

[[yi−1=CITY and yi = CITY ]] 0.29

[[yi−1=CITY and yi = STATE]] 2.06

[[start = CITY ]] 0.87

[[end = STATE]] 2.16

Table 2.1: Example CRF with Two Labels

for all label sequence y′ of token sequence x which means the conditional probabilities of

all possible label sequences for a given token sequence sum up to 1.

For a given token sequence x, CRFs compute the label sequence y with the highest

conditional probability P (y|x) as the best label sequence, i.e., arg maxy P (y|x). An im-

portant aspect of CRFs is to learn a CRF model from training data. Usually feature func-

tions are assumed to be given and therefore learning corresponds to estimating the weights

of feature functions. Details of CRF inference and learning algorithms can be found in the

seminal work of [34] as well as in [59, 51].

For an exposition of how CRFs segment token sequences, let us look at a simplified

example. CRFs are trained from labeled token sequences, i.e. the set of paired token and

label sequences {〈x1,y1〉, . . . , 〈xm,ym〉} (example see Figure 2.9).

Suppose we have trained a CRF model from the training data in Figure 2.9. The feature

functions and their weights are listed in Table 2.1. For this CRF, the length of the feature

function vector is 9, i.e., |f | = 9.
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Huntington NY F eF P (y|x)

CITY CITY 1.16 3.2 0.2%

CITY STATE 7.25 1408.1 94.7%

STATE CITY 0 0 0%

STATE STATE 4.32 75.2 5.1%

Table 2.2: Possible Ways of Labeling [Huntington, NY]

There are four possible label sequences (see the first two columns in Table 2.2 for the

token sequence x= [Huntington, NY]. The sum of their weighted feature functions, F =
∑2

i=1

∑9
j=1 λjfj(yi−1, yi,x, i) and conditional probability P (y|x) computed from Equa-

tion 2.3 are also listed in the third and fifth columns respectively of the table. For example,

the conditional probability of the label sequence [CITY, CITY] is 3.2/(3.2+1408.1+0+75.2)

= 0.2%. From the table we see that the best way of labeling [Huntington NY] is to assign

the label CITY to token Huntington and STATE to NY.



Chapter 3

Toxin Knowledge Base

3.1 Introduction

Proteins form the most diverse biological macro-molecules in nature. Toxins are a

class of proteins that are of prime importance because of their virulent nature – even a

small quantity can wreak havoc amongst large populations. Advances in recombinant DNA

technology have opened up possibilities for the production of bio-engineered pathogens on

scales that could make them into formidable weapons of bio-terrorism. Yet another risk

lurks in the form of chimeric molecules, in which the virulent domain of a toxin can be

hidden in an otherwise non-toxic protein and could thus thwart the existing techniques for

detecting toxins.

Hence, the study of toxins becomes crucial in order to build an effective defense against

such potent molecules. It is essential to recognize their virulence factors, understand their

reaction mechanisms, understand their inhibition mechanisms and also investigate whether

a non-toxic protein has a virulent domain hidden in it. Apart from these characteristics,

it is also important to understand the structure-function-and-genetic relationships between

various toxins and between toxins and proteins in general.

Performing physical wet-lab experiments to understand this class of proteins, given that

23
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a large number of toxins exist in nature, would be time consuming and expensive. Hence,

computational methods for building this knowledge have to be explored.

Public databases of biological macro-molecules have become very popular with the

biological community. For example the UniProtKB [85] , RCSB-PDB [78], NCBI [76]

have become valuable sources of knowledge for biologists in general. Apart from this,

there are several tools available, which can be used to analyze this vast biological data, and

obtain new information which may further our understanding about these diverse macro-

molecules. However easy-to-use systems that analyze this extensive knowledge to deduce

more knowledge are almost non existent.

In the past several years, we have been developing the Toxin Knowledge Base (TKB),

a bioinformatics resource to identify homologues of toxins, structural motifs of toxins and

virulent factors in other proteins. TKB includes processes for acquiring and structuring

toxin data from a number of sources including the web and prediction algorithms for de-

tecting potential virulent proteins based on the aggregated toxin data. The availability of

TKB helps speed-up research into adequate bio-defenses against potential biological war-

fare agents.

In this chapter, we will first introduce the architecture of TKB as well as its main com-

ponents in Section 3.2. Then we will describe the processes we have for discovery of

potentially virulent proteins in Section 3.3. After that we will summarize with further re-

search needed in sequence homology search and active site similarity search.

3.2 TKB System Architecture

The Toxin Knowledge Base (TKB) is a highly curated bioinformatics resource that

allows for classification, assimilation, synthesis, analysis and dissemination of knowledge

about toxins based on their structural and genomic information. It is envisioned as a large

repository of molecular information regarding toxins and other virulent factors. TKB’s
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salient features are listed below:

• It integrates several disparate off-the-shelf tools and public Web sites and incorpo-

rates them into a single workflow by plumbing together their inputs and outputs using

data extraction and mediation tools.

• It includes a flexible data acquisition system that incorporates algorithms and pro-

cesses that make it scalable in view of the rapidly growing information about pro-

teins.

• It includes engineered workflows for a number of common and uncommon tasks,

such as homology search and search for otherwise benign proteins that have the vir-

ulent domain of a known toxin hidden in them and thus have the potential to be

morphed into a toxin.

TKB is comprised of three major components: (1) A powerful data-acquisition/ admin-

istration system for direct deposition of data related to toxins, (2) a friendly curation system

for inserting and changing data of individual toxins as well as logging the changes, and (3)

an ad-hoc query and reasoning system to access and to analyze information. Figure 3.1

shows the system architecture of TKB showing the querying and reasoning subsystem, the

curation subsystem, and the data acquisition/administration subsystem. It also shows the

architecture of the system, from the user’s perspective. The toxin knowledge base essen-

tially is a data source which provides three kinds of interfaces to the user: one used to query

the knowledge base, one used to deposit/change information of individual toxins, and the

other used to update the toxin and homologue information in the knowledge base to reflect

changes in data sources.

The Query and Reasoning Interfaces facilitates the following:

• Toxin Search - Selective retrieval of toxin information.
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Figure 3.1: TKB System Architecture

• Homology Search - Finding toxins that are homologous to a given protein sequence.

• MuToxin - Determining whether a protein can be transformed into a toxin.

The Curator Interfaces is accessible only to users with administrative rights. It facili-

tates the following:

• Search and Curate: This involves assisting domain experts to curate toxin informa-

tion crawled from publicly available databases.

• Insert Toxin: This involves assisting domain experts to input information about newly

identified toxins.

The Administrative Interfaces is accessible only to users with administrative rights. It

facilitates the following:
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• User-initiated: This involves updating the knowledge base with batches of newly

identified toxins as well as synchronizing the knowledge base with data sources from

which toxin information has been harvested.

• Automated: This involves updating the knowledge base with new homologues and

their models for the toxins on a periodic basis, so as to keep the toxin knowledge

base up-to-date.

• User Approval: This allows a new user’s identity to be verified and approved for use

of the TKB.

The system has been developed entirely using Java, Java Server Pages (JSP), HTML

and XML/ XSLT technologies. Essentially organized into three layers (based on the Model

View Controller design pattern), the front end (view) of the system consists of interacting

JSP which are kept extremely functional. All the aspects of user views and definitions are

made using XSLT, which allows for a very flexible front end to be developed.

The controller objects are developed as Java Servlets, with ability to handle multiple

sessions, control opening and closing of new windows as and when required, pass session

control to JSP and retain information for further processing of user commands. The con-

troller objects do not generate any HTML artifacts except for some administrative logs that

are stored at the server end for monitoring the status of the system.

The model (back end) is implemented using Oracle 11G as the primary database, with

extensive support using XML. The database schema is very flexible in order to accom-

modate periodic changes that may be necessary because of the ever expanding knowledge

within the field of toxicology. We also provide here in Table 3.1 the current status of the

database and the various statistics as an estimate of the size of the database tables.
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Total Number of Toxins 1459

Number of Toxins with Structures 563

Total number of Homologues 138,982 (95 Homologues / Toxin)

Table 3.1: TKB Statistics

RCSB

Input

sequence

has

structure

MODELLER

Homologs Model

Structure

SPASM

Active Site

Templates

Sequence

Information

QUERY

TKB

BLAST

No

Yes

Figure 3.2: TKB Process for Discovery of Potentially Virulent Proteins

3.3 MuToxin Process

An important and interesting aspect of TKB is its ability to detect potential virulent

chimeric proteins. Specifically, TKB determines whether a given protein (1) resembles a

toxin at its active site and (2) whether residue substitutions at specific locations on the pro-

tein, can modify the protein into a toxin. To answer such queries, TKB integrates three

separate off-the-shelf bioinformatics and structural biology resources into a specially de-

signed workflow, which is depicted in Figure 3.2.

When the user provides an input protein sequence through the user interface (the top-left
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rectangle in the Figure 3.2), the structure of the input is retrieved from RCSB-PDB if it has

one and fed to the SPASM program [32]; otherwise the homologues of the input sequence

are collected using the BLAST tool [4, 5]. If one or more structures of the homologues

exist within the RCSB PDB structure database [78], models are built using the Modeler

program [57] and fed to the SPASM program. Based on the toxin active site information

available, the SPASM program superposes the structure/model against a database of active

site templates and compares them to find a possible match using a customized substitution

matrix score. If a match is found, it is evidence that the input protein resembles a toxin

in some fashion. Another output from the workflow is a table of substitution scores and

positions at which possible residue substitutions need to be made in order to achieve the

match. This provides information on whether the protein can be a potential chimera and

can hide a potentially toxic active site into a benign protein.

As an example, suppose the sequence of Endoglucanase E (Swissprot: P10477) is given

as the input sequence, the RMSD cutoff value is set to 2A, and the allowed substitutions

are set to Blosum-45 matrix with cutoff 2. This means that if a pair of residues (X,Y) has

a score greater than or equal to 2 in the Blosum-45 matrix then X can by substituted by Y

and vice versa. For such inputs, the process in Figure 1 above outputs three matches: the

first match is for Chitinase-3 like protein-1 (PDB: 1HJX) active site (GLY 181, LYS 182,

THR 184) with RMSD 1.34; the other two matches are both for Chitinase-3 like protein-

1 active site (ARG 144, LYS 147, GLN 148) with RMSD 1.84 and 1.52, respectively.

Details about the matches are also available. For example, the user can see that if ARG

181 of Endoglucanase E is mutated to LYS and SER 183 to THR, then Endoglucanase

E will possibly have an active site similar to the (GLY 181, LYS 182, THR 184) site of

Chitinase-3 like protein-1.

We have successfully used TKB to discover potentially mutable proteins. We briefly

discuss two such case studies, which is indicative of TKB’s capability to discover bio-

engineered proteins. The first one was to ascertain the similarity of the reaction mechanism
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Figure 3.3: Sequence Alignment of Botulinum E and Thermolysin

Length 421

Number of identical matches 56

Number of positive matches 88

Table 3.2: Botulinum E and Thermolysin Alignment Statistics

in Thermolysin and Botulinum neurotoxin Type E.

Thermolysin and Botulinum share a same motif HEXXH + E and it is speculated that

they have similar reaction mechanism. The sequence alignment between Thermolysin and

Botulinum neurotoxin serotyp E and statistics of the alignment is shown in Figure 3.3 and

Table 3.2, respectively.

Because the alignment between Thermolysin and Botulinum does not indicate that they

are closely related, one may conclude that they do not share any significant structural or

functional similarity. Structural alignment of the full structures of Thermolysin and Bo-

tulinum also fails to reveal the functional similarity between them. By concentrating on

the active sites, TKB is able to find that the active sites of Thermolysin and Botulinum are
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(a) Botulinum Active Site (b) Thermolysin Active Site

Figure 3.4: Similarity between active sites of Botulinum and Thermolysin

Length 696

Number of identical matches 74

Number of positive matches 94

Table 3.3: Chitinase-3 like protein-1 and Endoglucanase E Alignment Statistics

similar, as shown in Figure 3.4, and therefore predicts that Thermolysin can potentially be

mutated to function like Botulinum neurotoxin.

The second case study is the interesting discovery of the similarity of the reactive mech-

anisms of Endoglucanase E and Chitinase-3 like protein-1. (A literature search that we

conducted seems to indicate that this is not yet known.) A sequence comparison between

Endoglucanase E (Swissprot ID: P10477) and Chitinase-3 like protein-1 (PDB ID: 1HJX)

does not give a good indication about their similarity, as is shown in Figure 3.5. The statis-

tics of the alignment is shown in Table 3.3.

TKB discovers that a putative active site in Endoglucanase E is similar to the active site

of Chitinase-3 like protein-1, as shown in Figure 3.6 thereby revealing that Endoglucanase

E is potentially a candidate to be transformed to Chitinase-3 like protein-1.
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Figure 3.5: Sequence Alignment of Chitinase-3 like protein-1 and Endoglucanase E

(a) Chitinase Active Site (b) Putative Endoglucanase E Active Site

Figure 3.6: Similarity between active sites of Chitinase and Endoglucanase E
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3.4 Research Issues

TKB has provided an engineering solution to a widely acknowledged problem of an-

alyzing information from various resources by combining several off-the-shelf software

tools and developing an integrated work-flow that offers biologists with the ability to an-

alyze the nature of toxins. It also provides information to users if a non-toxin protein can

be potentially transformed into a toxin using simple substitution of amino-acid residues

at their active sites. It is also the single largest resource on information regarding toxins,

where biologists can easily synthesize and disseminate knowledge about toxins.

Apart from our engineering processes, our research effort has focused on the devel-

opment of methods to classify toxins into families based on profiles (using profile hidden

Markov models [20, 30]). These models take into account information about variations

even across distant homologues and can thus identify remotely related proteins and tox-

ins. We have also investigated methods to build profiles of structures to compare active

site information of proteins. The development of these methods of classification allows for

a faster decision system that can correctly predict whether an input protein is potentially

virulent.



Chapter 4

Protein Profiling with Partially Aligned

Sequences

4.1 Introduction

The success of genomic work on various species has resulted in an enormous multitude

of biological sequence information. This has created a rich research area centered around

the development of automated techniques for analysis of these sequences. An effective

means of understanding the characteristics of a new biological polymer from its sequence

is through homology – whereby the sequence is compared to other similar sequences with

known rich biological information. Another important application of homology search is

toxicology tools such as TKB [31, 84], for detecting potential virulent factors.

A number of techniques for homology search have appeared in the bioinformatics re-

search literature. Included among them are techniques based on pairwise comparison of

sequences using either dynamic programming as in Needleman-Wunsch [46] and Smith-

Waterman [62] or heuristic-based database search as in BLAST [4] and FASTA [50].

Detecting remote homologues often requires the use of additional information that is

34
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usually missing in techniques that do pairwise sequence comparison. One such source of

additional information is the knowledge that a set of sequences belong to a family i.e. they

are homologues of each other. The simplest way of using family information, as done in

FPS [23], is to perform multiple pairwise comparisons of the new sequence against the fam-

ily members and collect aggregate statistics over all the comparisons. More sophisticated

methods involve constructing a statistical profile of the family from its known member se-

quences. Profiles can be constructed only from the most conserved regions of sequences

belonging to the family, as in MEME [6] and PROTOMAT [26], or from sequences as in

PSI-BLAST [5] and profile hidden Markov models (PHMMs) [20, 30].

PHMMs are recognized as a powerful technique for probabilistic modeling of se-

quences of biological families. The two dominant approaches for training PHMMs differ

mainly in the way training sequences are utilized. At one extreme is training from com-

pletely aligned sequences where all the residues in every sequence are mapped to a col-

umn representation taking into account insertions and deletions. In contrast, (inexpensive)

training from completely unaligned sequences uses no such information. Not surprisingly,

PHMMs trained from completely aligned sequences (which we will refer to as A PHMMs)

have been shown to identify remote homologues with a much higher degree of accuracy

than those trained from unaligned sequences (which we will refer to as U PHMMs). How-

ever, producing the information about alignments is a labor intensive process involving

expensive structural analysis of entire sequences. The contrasting trade-offs at the two

ends of the alignment spectrum gives rise to the question: Can we develop techniques

for learning profile PHMMs that trade the accuracy of remote homology identification for

alignment information? Using the notion of partially aligned sequences where only parts

of sequences are aligned against each other, we formulate this problem as one of estimat-

ing PHMM parameters from such sequences. We will refer to PHMMs trained with such

partially labeled sequences as P PHMMs.

While the effort needed to derive complete alignment in principle is based on structural
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analysis of entire sequences, partial alignment knowledge can be obtained by doing such

an analysis over limited fragments of the sequences. Moreover, there exists databases like

PROSITE [21] which contain signatures of families. These signatures represent residues

which are conserved over sequences in the family. Consequently, they provide an inexpen-

sive means of obtaining partial alignment information for their respective families.

The essence of our approach for training PHMMs from partially aligned sequences

(referred to as P PHMM from now on) rests on the observation that a consecutive string of

unaligned residues between two aligned residues can be generated only from the sequence

of states lying between the match states for the aligned residues in the P PHMM structure.

Based on this observation, the algorithm decomposes P PHMM into sub-models whose

parameters are separately estimated and then composed together to produce the original

P PHMM parameters. The technique is parameterized w.r.t. the alignment information

in the sense that by varying the alignment information we can estimate the parameters of

PHMMs spanning the entire spectrum from aligned PHMM at one end to unaligned PHMM

(U PHMM) at the other end.

4.2 Techniques

Building P PHMMs rests on the use of partial alignment information to decompose

a PHMM structure into sub-models and compose parameters computed from these sub-

models into the PHMM’s parameters.

4.2.1 Partially Aligned Sequences

In a set of partially aligned sequences, alignment information is known only for a sub-

sequence of residues in every individual sequence in the set. This corresponds to a situation

between complete alignment and zero alignment. C1, C2, and C3 in Figure 4.1 show three

aligned columns in the ten sequences of the immunoglobin (ig) family. The alignment C1
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Figure 4.1: Partial alignment information for ten ig sequences

spans the residues A, V, L, I, L, A, K, V, M , and A in the ten sequences respectively and

is illustrated by the leftmost solid line. Similarly, the alignment C3 spans the Y residues

in each of the ten sequences as indicated by the rightmost solid line. As illustrated in C2,

where the residues S, D, F, T , and D in only the last five sequences are aligned, it is not

necessary that an alignment information has to cover all the sequences in the set. Observe

that in the first sequence, 1LTK, alignment information is known only for the subsequence

of two residues A (in C1) and Y (in C3). In the event of alignment being known for all the

residues in every sequence, partial alignment collapses to complete alignment while total

absence of any alignment information reduces to a set of unaligned sequences.

Given a set of partially aligned training sequences, a PHMM structure is built from

them ignoring the partial alignment information. As discussed in Section 2.2, the only pa-

rameter which has to be estimated in order to build PHMM structure is the model length.

We have used the simple heuristic of taking the average length of the sequences to estimate

the model length. For instance, for the ten ig family members in Figure 4.1, the model

length computed by averaging over the size of the ten sequences is 74. By the definition

of alignment, all residues aligned at a particular column are generated from the same state
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in the PHMM. We estimate this state by averaging over the positions of the residues, be-

longing to the alignment, in their corresponding sequences. For instance, for the alignment

C1 in Figure 4.1, the mean position where a residue in the alignment occurs in a sequence

is 12. Consequently, all the ten residues in C1 are generated from the match state M12.

Similarly, the ten residues in C3 and the five residues in C2 are generated from the match

states M65 and M21 respectively.

4.2.2 Model Decomposition

The key to using partial alignment information for estimating PHMM parameters is

the observation that a substring of unaligned residues between any two aligned residues

can only be generated from the sequence of states in model positions between those cor-

responding to the aligned residues. For instance, in the first sequence 1LTK in Figure 4.1,

the residues A (C1) and Y (C3) belong to match states M12 and M65. The substring of

unaligned symbols from R to K between the two aligned residues can be generated only

from states in model positions 13 to 64 and the insert state I12. This observation lets us

decompose the PHMM structure into sub-models where each sub-model generates sub-

strings from the original sequence. In what follows, we have ignored gaps in alignment

information for simplicity of exposition of our technique.

In our decomposition framework, aligned residues are generated from singleton match

states while substrings of unaligned residues are generated from PHMMs consisting of

states in sequences of consecutive positions in the original model. We construct these PH-

MMs, or sub-models, from the appropriate states in the original model and add begin and

end states to complete the sub-model structure. The PHMM P1 in Figure 4.2 illustrates an

example sub-model. During decomposition, for a sequence with aligned residues αn, αm

generated at match states Mi, Mj respectively and with the intermediate unaligned sub-

string αn+1 · · ·αm−1 generated from the sub-model P , transitions are created from Mi to



CHAPTER 4. PROTEIN PROFILING WITH PARTIALLY ALIGNED SEQUENCES 39

M
1

M
11

M
13

M
64

M
65

M
66

M
74

M
21

M
22

M
64M

20
M

13

D
1

D
11

D
13

D
64

D
13 D

20

D
66

D
74

D
22

D
64

I
1

I
11

I
13

I
0 I

12
I
64

I
65

I
66

I
74

I
13 I

20
I
12

I
21

I
22 I

64

B
1

B
2

B
3

B
4

B
5

E
1

E
2

E
3

E
4

E
5

M
12

P
1

P
2

P
3

P
4

P
5

B E

Figure 4.2: Decomposition of a 74 length PHMM structure using the partially aligned

sequences in Figure 4.1

P and from P to Mj . In the event of consecutive aligned residues (i.e. αm = αn+1), the

sub-model P does not exist and Mi directly transitions to Mj .

We illustrate the decomposition procedure on an initial PHMM structure, as shown in

Figure 2.6, with model length 74 using the ten sequences of the ig family and the partial

alignment information shown in Figure 4.1. The resultant sub-models created are illustrated

in Figure 4.2. In the sequence 1LTK, the first aligned residue A (C1) occurs at the match

state M12. The substring from the first residue I till the residue A before the alignment

column C1 can only be generated from a sub-model having states from initial model posi-

tions 0 to 11. The PHMM P1 in Figure 4.2 denotes such a sub-model. The second aligned

residue in 1LTK (C3) occurs at match state M65. The substring of unaligned residues be-

tween the C1 and C3 alignment columns can only be generated from the sub-model, P2,

with states from initial model positions 13 to 64. Observe that P2 also includes the insert

state in model position 12. The match state M65 is used for the aligned column C3 and the

sub-model P3 for the rest of the unaligned residues in the sequence. The sub-models are
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connected by transitions between B, the begin state in the original model, and P1, between

P1 and M12, M12 and P2, P2 and M65, M65 and P3, and finally between P3 and E, the end

state in the original model. The sub-models P1, P2, and P3 and the match states M12 and

M65 are reused for the next four sequences as they possess identical alignment information.

The last five sequences contain an additional column (C2) of residues aligned in the match

state M21. In NCA2 HUMAN1, the sequence of unaligned residues between C1 and C2

can only be generated from a PHMM with the states from original model positions 13 to

20 including I12. This sub-model is constructed in P4 and connected with transitions from

M12 and to M21. A separate sub-model, P5, is constructed for the unaligned residues be-

tween C2 and C3. The match state M65 and the sub-model P3 are reused for the rest of the

sequence. The last four sequences also follow a similar pattern as NCA2 HUMAN1.

Note that in the presence of gaps in partial alignment, instead of singleton match states,

we would have a single column of match, insert, and delete states with PHMM-style transi-

tions between them. Additionally, there would be transitions from a begin state to all three

and to an end state from each of them.

4.2.3 Parameter Composition

The essence of our composition technique is to estimate the original PHMM parame-

ters from expectations of transition and emission events computed from sub-models and

singleton match states.

Recall that a sub-model generates a set of unaligned residue substrings. For instance,

the sub-model P1 in Figure 4.2 generates the first eleven residues of all the ten ig family se-

quences shown in Figure 4.1. This allows individual sub-model parameters to be estimated

by Baum-Welch training.

Central to Baum-Welch parameter estimation is the computation of expectations of

transition and emission events. Given a sequence, we denote the transition expectation
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between states si and sj for the tth residue by ξt(si, sj). In a PHMM, si, sj are the delete,

insert, and match states and j is either i or i + 1. The transition expectation between si, sj

for the entire sequence is given by Asi,sj
=

∑t=N

t=1 ξt(si, sj), where N is the length of the

sequence.

The singleton match states corresponding to aligned columns generate a set of residues.

For instance, in Figure 4.2, M65 emits only the Y residue while M12 emits the residues

A, V, L, I, K, and M . The emission probabilities of residues in these match states are es-

timated by smoothed maximum likelihood frequency counting. Also, transition probabili-

ties between sub-models and neighboring match states and vice-versa are estimated using

a smoothed maximum likelihood approach. For instance, in Figure 4.2, if nM12,P2
and

nM12,P4
denote the number of sequences where transitions from M12 to P2 and from M12 to

P4 occur respectively, the probability of transition from M12 to P2, pM12,P , is computed as

nM12,P2
+1

nM12,P2
+nM12,P4

+2
.

The partial alignment information in a sequence can be such that:

1. Alignment occurs at the match states Mk and Ml, where k < i and j < l, for the

residues αn and αm respectively.

2. Alignment occurs at the match state Mi for the residue αn but not at Mi+1.

3. Alignment occurs at the match state Mi+1 for the residue αm but not at Mi (the

converse of the above).

4. Alignment occurs at both Mi and Mi+1 for residues αn and αn+1 respectively.

Given a sequence, these four scenarios influence the computation of transition expecta-

tions for the three kinds of states in a PHMM. Let AS1,S2
denote the transition expectation

between state S1 and S2. Apparently scenario 4 only contributes to AMi,Mi+1
which in this

case is just the count of the number of times a transition is made between the singleton
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Scenario 1 2 3

ADi,Di+1
BW N/A N/A

ADi,Ii
BW N/A BW

ADi,Mi+1
BW N/A AP

Di,EP
× pP,Mi+1

AIi,Ii
BW N/A N/A

AIi,Di+1
BW N/A N/A

AIi,Mi+1
BW N/A AP

Ii,EP
× pP,Mi+1

AMi,Ii
BW pMi,P ×AP

BP ,Ii
BW

AMi,Di+1
BW pMi,P ×AP

BP ,Di+1
N/A

AMi,Mi+1
BW pMi,P ×AP

BP ,Mi+1
AP

Mi,EP
× pP,Mi+1

Table 4.1: Transition Expectations

match states Mi and Mi+1. For the other three scenarios, Table 4.1 summarizes how the

transition expectations are estimated.

In Table 4.1, all entries marked by ’BW’ means that the expectation is estimated from

Baum-Welch on the appropriate sub-model. For example, the expectation ADi,Di+1
from

delete state Di to Di+1 for scenario 1 is given by
∑t=m−1

t=n+1 ξt(Di, Di+1).

Scenario 2 and 3 require considering a neighboring singleton match state. Let us work

out scenario 3 for ADi,Mi+1
. In such a situation, Di makes a transition to the end state EP

of the sub-model P which generates the unaligned substring preceding the aligned residue

in Mi+1. Thus ADi,Mi+1
is estimated as AP

Di,EP
× pP,Mi+1

, where pP,Mi+1
is the probability

of transition between P and Mi+1.

Finally, the sum of the expectations for any event over all the sequences are used to

estimate its probability using a smoothed maximum likelihood technique. For instance, the

probability of transition between Mi, Mi+1 is given by:

pMi,Mi+1
=

∑

AMi,Mi+1
+ 1

∑

AMi,Mi+1
+

∑

AMi,Ii
+

∑

AMi,Di+1
+ 3

where the summation denotes the cumulative value of the expectation over all the se-

quences.
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ID M
P PHMM U PHMM SAM TCOF. MME. RE

T F T F T F T F T F T F

ps00012 221 130 3 115 0 165 6 127 2 139 967 169 143

ps00475 80 70 8 71 6 72 2 66 0 60 851 57 11

ps00622 100 55 3 45 0 85 21 85 0 84 1225 77 4

ps00675 91 86 11 81 19 86 49 73 1 86 1412 70 138

ps01330 96 82 5 80 2 90 0 90 0 24 164 59 0

Figure 4.3: Experimental data with 15% training set on the 5 Prosite families

Emission expectations of residues in states are estimated from sub-models, by Baum-

Welch, and from singleton match states by frequency counting. Smoothed maximum like-

lihood is used to compute the emission probabilities from these expectations.

Note that in the presence of gaps, parameter composition would involve considering

the expectations of events in single columned match, insert, and delete states as well as

probabilities of transitions to and from their begin and end states, respectively, from other

sub-models.

4.3 Evaluation

Experiments were conducted to compare the performance of P PHMM against vanilla

PHMM (U PHMM), SAM which is a state of the art PHMM tool, an advanced multiple

alignment tool TCoffee, and metaMEME. Our approach was compared against TCoffee as

it can be used to generate a multiple alignment (from which a family model can be learned)

from partial alignments. Evaluation of performance was based upon comparison of recall

and precision metrics for these different models over the same set of protein families. The

effect of varying training set size as well as alignment information on the performance were

also investigated.
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4.3.1 Experimental Setup

Regular expression based signature information available for families in the PROSITE

database[21] were used to generate partially aligned sequences. Matches of a family’s sig-

nature in sequences which belong to it constitute the partial alignment information for these

sequences. To demonstrate the effectiveness of our technique in homology identification, 5

PROSITE families, each having at least 50 members, were chosen where RE-based pattern

signatures were not very effective in identifying family members. The first column in Fig-

ure 4.3 shows the families used while the second column shows the number of members of

each family in the Swiss-Prot database [7]. The models trained with P PHMM, U PHMM,

SAM, and TCoffee were used with hmmsearch of HMMER [20] to detect homologues in

Swiss-Prot while for metaMEME its own search tool, mhmms, was used. Default cutoff

values were used in both the cases.

4.3.2 Recall and Precision

Figure 4.3 tabulates the results of the experiments for the five models on the five families

using 15% of the members of each family as the training set. The columns T and F for each

model reflect the number of true and false positives respectively in the test set. Figure 4.4

and Figure 4.5 summarize the results w.r.t. precision and recall. Observe from Figure 4.4

that the precision of P PHMM is significantly better than metaMEME for all the families.

The recall of P PHMM is better than metaMEME for 3 of the 5 families as shown in

Figure 4.3. The precision of P PHMM is significantly better than SAM for ps00622 and

ps00675 while being comparable for the other 3 families. Figure 4.5 illustrates the recall of

P PHMM against U PHMM and TCoffee. P PHMM has better recall for 4 of the families

compared to U PHMM and, apart from ps00622, has better or similar recall compared to

TCoffee.
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Figure 4.4: P PHMM precision against SAM and metaMEME
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Figure 4.5: P PHMM recall against U PHMM and TCoffee

4.3.3 Effect of Varying Training Set

A desirable property of any supervised learning algorithm is the improvement in per-

formance with increased training. Figures 4.6 shows the change in recall with increas-

ing training set size for P PHMM, U PHMM, and metaMEME. Observe that for all the

four families the recall of P PHMM increases with training set size. In contrast, vanilla

PHMM or U PHMM does not always show a increase as evident in ps00012 and ps01330.

This is even more true for metaMEME which, in spite of having similar recall numbers as

P PHMM in Figure 4.3, does not demonstrate better performance with more training.
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Figure 4.6: Comparing recall of P PHMM with U PHMM and metaMEME for (a)

ps00012, (b) ps00475, (c) ps00622, (d) ps00675, and (e) ps01330

4.3.4 Effect of Varying Alignment Information

Since P PHMM training is parameterized w.r.t. the alignment information, experiments

were conducted to investigate whether increasing this knowledge results in concomitant
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Figure 4.7: Impact on P PHMM F-measure of varying alignment information for the 5

PROSITE families

improvement in performance.

PROSITE:

For the 5 PROSITE families alignment was varied by selecting different subsequences

from the match of the family’s signature on the training sequences. Figure 4.7(a) shows

the impact on F-measure1 when alignment is varied from 0 to 5 to 10 columns and finally

ending with the entire match (motif). Observe that, apart from ps00475, there is almost

no improvement in performance with increasing information from 5 columns to the motif.

This is due to the fact the motifs of these families, apart from that of ps00475, are substrings

rather than subsequences. Consequently, neighboring aligned columns are close to each

other and this makes the improvement in P PHMM parameters extremely localized.

Ig Family

Experiments on a different family, ig, lent more credence to the above hypothesis. 579

sequences belonging to the ig family and 400 non-ig sequences were used for this exper-

iment. The partial alignment information was obtained from a manual alignment of 10 ig

family member subsequences. Figure 5.1(b) shows a significant increase in recall, preci-

sion, and F-measure with increasing alignment. This is due to the larger spread between

aligned columns (observe distance between C1 and C3 in Figure 4.1).

1The harmonic mean of recall and precision
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Figure 4.8: Impact on P PHMM F-measure of varying alignment information for ig family

ID Members Aligned Columns

a.1.1.2 60 186

b.1.1.2 59 122

b.34.2.1 26 176

c.47.1.5 31 101

d.169.1.1 28 173

Figure 4.9: The 5 SCOP families

SCOP

The parameterized nature of the P PHMM algorithmwas also borne out by experiments

conducted on families from the SCOP [45] database. The SCOP database provides detailed

and comprehensive description of the structural and evolutionary relationship between pro-

teins. For the purposes of our experiments, we selected 5 SCOP families each having at

least 25 members. Multiple alignment of these families was derived from the PALI [77]

database which provides alignments of proteins in the SCOP database. Column 1 in Fig-

ure 4.9 lists the ids of these 5 families, while Columns 2 and 3 show the number of family

members and the number of aligned columns in their multiple alignment.

P PHMMs were trained for each of these 5 families. The training set size, for each

family, was fixed at a randomly chosen set of 25% of its total members. The amount of

alignment information was successively varied from the use of 0% (completely unaligned),
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Figure 4.10: Impact on P PHMM performance of varying alignment information for the

SCOP families (a) a1.1.2, (b) b1.1.2, (c) b.34.2.1, (d) c.47.1.5, and (e) d.169.1.1

to 20%, 40%, 60%, and 80% of the number of aligned columns in the multiple alignment

of the family. For instance, in the multiple alignment of the training sequences of family
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a.1.1.2, using a 20% alignment information corresponds to using the first 37 (recall from

Figure 4.9 that a.1.1.2 contains 186 aligned columns) columns as aligned with the remain-

ing columns being treated as unaligned. The test set for each of these families consisted

of all the 5179 domains from all the 1029 families in PALI release 2.3. Recall, precision,

and F-measure of homology detection were calculated for them. Figure 4.10 graphically

illustrates the impact on the three metrics with varying alignment information on all the

5 families. While all the 5 families show increase in the values of the three metrics with

alignment information, this is especially perceptible in the SCOP families c.47.1.5 and

d.169.1.1 in Figure 4.10(d) and (e) respectively.

4.4 Related Work

The idea of combining PHMMS has been explored by MetaMEME[22]. However, our

approach uniformly models both motif and non-motif regions as full PHMMs with match,

insert, and delete states. This leads to more precise results especially when motifs do not

cover significant portions of the sequences. Another closely related work is TCoffee[48]

which can be used to generate a multiple alignment (from which a family model can be

learned) from partial alignments.

There exist two bodies of homology search work that are related to our technique.

The first describes methods to improve PHMMs while the second describes methods for

homology search using motifs.

Among the works addressing the improvement of PHMMs, [61] introduces empirically

derived Dirichlet mixture priors into model construction so as to reduce the number of

training sequences needed. Eddy et al. [19] compensate biased representation in sequence

data sets by iteratively updating training sequence weights so that more weights are given

to divergent training sequences. A different class of approach, exemplified by ATP [40] and
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SVM-Fisher [29], incorporate negative training sequences to improve PHMM discrimina-

tion. ATP starts with estimating PHMM parameters from a multiple alignment of positive

training sequences and then adjusts transition probability parameters based on the paths

that positive training sequences and negative training sequences follow through the model.

SVM-Fisher maps protein sequences to vectors in a high-dimensional space and determines

a “good” separator plane in that space to separate the positive and negative training exam-

ples. All these PHMM improvement methods are orthogonal to our approach and in fact

can be incorporated to improve the performance of P PHMM.

PROSITE [21] is one of the earliest databases containing manually and semi-

automatically constructed motifs. Blocks+ [24, 25] is another comprehensive database

which also contains motifs that are automatically extracted by tools such as PROTOMAT

[26]. A motif can be represented as a regular expression and thus deciding whether a se-

quence contains it amounts to regular expression matching. Another form of motifs is

PSSM which requires programs such as BLIMPS [68] to match sequences against the mo-

tif. [11] describes a homology search approach where motifs are used as features to map se-

quences into vectors which are then classified using SVMs or nearest neighbor techniques.

MetaMEME [22] is another tool which combines PHMMs for motifs to build a PHMM for

the whole sequence. However, in contrast to metaMEME, our approach uniformly models

both motif and non-motif regions as full PHMMs with match, insert, and delete states. This

leads to more precise results especially when motifs do not cover significant portions of the

sequences.

It is worthwhile noting that tools such as ClustalW and TCoffee [27, 48], that auto-

matically generate multiple alignments from a set of sequences, can be used for partial

alignment information in our P PHMM framework. Furthermore, sophisticated model re-

finements as in SAM [30] can also be incorporated into our P PHMM for even better per-

formance.



Chapter 5

Protein Active Site Profiling

5.1 Introduction

Active sites are key areas in proteins’ three-dimensional structures. Biochemical reac-

tions at these sites with other proteins or other chemical substances cause the protein to

perform a function of one type or another.

A problem of significant importance in computational biology is this: Are active sites of

different proteins similar? i.e., do they share similar physico-chemical and geometric prop-

erties. Active sites with such shared properties may perform similar functions. Answer

to the aforementioned similarity question drives a number of important biological applica-

tions. For instance it can be used to predict the function of a protein with a substructure

similar to the active site of another protein whose function is known. Another important

application is toxicology tools such as the Toxin Knowledge Base (TKB) system that we

have developed [31, 84], for automated diagnosis of bioengineered pathogens. In such

pathogens the virulent domains of toxins can be hidden in otherwise non-toxic proteins.

Specifically, the active site of a non-toxic protein that is similar to that of a toxin, has the

potential to become toxic by suitably altering the residues in the site.

State-of-the-art techniques for determining active site similarity are exemplified by the

52
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SPASM tool [32, 83]. Its inputs include a protein’s structure; the 3-D coordinates of the

residues in the active site of another protein whose function is known, substitutions for

these residues and a RMSD (root mean square distance) cutoff value. SPASM attempts

to identify 3-D substructure(s) of the former protein that are isomorphic to the active site

within the specified RMSD cutoff.

There are two problems with the pairwise similarity testing approach embodied in

SPASM. Firstly, although there are general guidelines for choosing RMSD values such

as “If you use only a few residues (3-5), an RMSD less than one Å tends to be obtained

for similar arrangements of residues,”1 in general it is a laborious trial and error process.

However, the more serious problem is that similarity tests are done separately with one

active site at a time. Consequently, it does not exploit the common physico-chemical and

structural features that can exist amongst the family of active sites of proteins. A family

here means that the active sites of all of its members exhibit similar functionality and can

also include evolutionarily unrelated proteins that share no overall sequence or fold simi-

larities. Pairwise comparisons may use features that may not be common to all the family

members and hence can fail to identify family members, especially “remote”2 members.

For instance, SPASM fails to find the similarity between the active sites of BOVINE RI-

BONUCLEASE (PDB ID: 3RN3)3 and a variant of RIBONUCLEASE (PDB ID: 1RBC)

for reasonable RMSD cutoffs because atoms not directly related to the protein’s function

differ a lot in these two structures. Note however that a “profile” of the common features

in a collection of active sites belonging to a family would have revealed the irrelevance of

such atoms and hence would have been excluded as a shared feature. So a principal ben-

efit of profile based methods is that they capture the essential features shared by all of the

family members thereby making it possible to determine the similarity of remote members.

1 Å denotes an angstrom which is the distance measure between atoms. One angstrom is 1.0 × 10−10

meters.
2These are active sites that have few features in common with the other family members.
3PDB –http://www.rcsb.org – is the Protein Data Bank of 3-D protein structures uniquely in-

dexed by an ID
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Automated construction of active site family profiles to discern common features is

a fairly unexplored problem. In this dissertation we formulate a solution to this problem

inspired by the successful profile-based search methods for homologous protein sequences4

[49].

We adapt PHMM for profiling the three dimensional active sites in proteins. To begin

with, the adaptation requires choosing a representative set of active site features. Whereas

only residue types (such as Histidine, Glutanmate, etc) are used as features in PHMMs for

protein sequences we will now have to contend with the structural (i.e., geometric) features

of active sites also. So in addition to using the atoms’ types in the active site residues we

also use their distances from their center of mass as the structural features. Furthermore

these distances are assumed to be drawn from a probability distribution. Next we adapt the

training phase of PHMM to learn the parameters of this distribution and finally modify the

scoring phase to assign a similarity score to the input data.

5.2 Techniques

Adapting PHMMs for active site profiling is not entirely straightforward. Let us exam-

ine the underlying issues. Firstly, observe that PHMM is a sequential model in the sense

that it was developed to handle protein sequences which are simply 1-D strings of amino

acids. On the other hand active sites are 3-D structures. So the immediate problem is one of

serializing these 3-D structures in such a way that salient aspects of their physico-chemical

and geometric properties are still retained. Secondly, each state in a traditional PHMM

emits only one discrete symbol (i.e., an amino acid) at a time. For active sites these emis-

sions must include both physico-chemical features such as the discrete valued residue types

as well as geometric features. So emissions are tuples ranging over the physico-chemical

4A protein sequence is simply a linear string of amino acids that constitute the primary structure of a

protein. Sequences that are similar are referred to as homologues.
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and geometric feature set. A robust description of geometric configurations of active sites

is best done using continuous measures. Hence in contrast to traditional PHMMs where

only discrete probabilities of emission symbols are estimated we will now need to estimate

the joint distribution of physico-chemical and geometric features. In the rest of this section

we describe how we address these issues.

5.2.1 Serializing Active Sites

Since PHMM is a sequential model the task now is to identify a set of 3-D features and

serialize them. This serialization will represent the observation sequence corresponding to

an active site.

The primary issue in serialization is inventing an ordering for the sequence. For primary

protein sequences of amino acid chains this is simply the position of the residue in the chain.

For 3-D active sites there is no such obvious ordering. Let us first examine the desiderata

for such an ordering. Ideally, if a and b are two conserved atoms in one active site, a′ and

b′ are atoms in another active site corresponding to a and b, respectively, then the order of

a and b in the serialized sequence derived from the former active site should be consistent

with that of a′ and b′ in the sequence derived from the latter. A candidate for such an

ordering is the distance of the atoms in the active site from their center of mass. Given a set

of n atoms with coordinates (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn), their center of mass

is the expression:

(
1

n

n
∑

i=1

xi,
1

n

n
∑

i=1

yi,
1

n

n
∑

i=1

zi)

In other words the center of mass is the average over each of the coordinate positions

of the atoms. For illustration, suppose an active site contains only one residue D260 with

atoms whose coordinates are listed in the first four columns of Table 5.1. The 3-D coordi-

nate of their center of mass is (35.719, 107.377, 22.470). Distances of each atom from the

center of mass are shown in the last column of Table 5.1. The ordering of atoms arranged
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Atom Name X-Cord Y-Cord Z-Cord Distance

N 36.729 107.613 20.276 2.427

CA 35.813 107.722 21.395 1.133

C 36.031 109.051 22.149 1.732

O 37.157 109.446 22.496 2.519

CB 35.875 106.405 22.220 1.016

CG 34.949 106.290 23.394 1.622

OD1 33.858 106.833 23.442 2.169

OD2 35.341 105.659 24.387 2.602

Table 5.1: Example Active Site Atoms

in ascending order of their distances from the center of mass is: < CB, CA, CG, C, OD1,

N, O, OD2 >.

To capture physico-chemical feature, we adopt the atom classification in [43] which

classifies all non-hydrogen atoms in proteins into 40 classes according to the atom location

(side-chain or backbone), connectivity, and chemical nature. We denote the atom type

by ResidueName.AtomName, which can be unambiguously mapped to an atom type in

[43]. For example, the type of the first atom in Table 5.1 is represented by D.N.

As far as geometric feature is concerned, an obvious idea is to use an atom’s 3-D coor-

dinate. However, the coordinates of atoms from two active sites are comparable only after

those active sites are superposed. Typically, superposing algorithms take two point sets

with each point represented by its (x, y, z) coordinate, and perform rigid transformations

such as translation and rotation to minimize the RMSD of these two point sets. Since these

points are assumed to be typeless, any two points are always superposable. But the prob-

lem here is that superposed positions may not be compatible with the atom types at those

positions (e.g., in general nitrogen and oxygen atoms cannot be superposed). There are

tools such as SPASM [32] that allow users to define superposable atom types. The main

problem with this is that knowledge about what are superposable atom types varies from

family to family. A desiderata of geometric feature is that it be preserved under serializa-

tion. Features that use relative instead of absolute positions can satisfy such a requirement.



CHAPTER 5. PROTEIN ACTIVE SITE PROFILING 57

Observe that distances of atoms to their center of mass are relative quantities and hence can

serve as a geometric feature.

In summary, our feature set is the pair

〈AtomType, Distance To CenterOfMass〉,

where the first element is the physico-chemical feature and the second is the geometric

feature. The general form of an observation sequence corresponding to an active site fol-

lowing serialization using our feature set will be: 〈t1,d1〉, 〈t2,d2〉, . . ., 〈tn,dn〉 where n is

the number of atoms in the active site, ti is the atom type and di is the distance to the center

of mass for i = 1, . . ., n, and di < di + 1 for i=1, . . ., n-1. For our example active site, it is

〈D.CB,1.016〉, 〈D.CA,1.133〉, 〈D.CG,1.622〉, 〈D.C,1.732〉, 〈D.OD1,2.169〉, 〈D.N,2.427〉,
〈D.O,2.519〉, 〈D.OD2,2.602〉.

5.2.2 PHMM for Active Sites

When observation sequences of multiple active sites with similar function are put to-

gether, one can identify which atoms are conserved by aligning them. Figure 5.1 shows a

segment of the alignment of three similar active sites5 , namely, acetylcholinesterase (PDB

ID: 1ACE) with residues S200, E327, and H440 ; chymotrypsin (PDB ID: 1CHO) with

residues H57, D102, and S195; haloalkane dehalogenase (PDB ID: 2DHC) with residues

D124, D260, and H289. Although their constituting residues are different, all of them

perform similar catalytic function.

This alignment reveals that the consensus sequence has six atoms (see columns marked

by ’*’ in the figure). The atoms appearing in the non-starred columns are insertions. Ob-

serve also that the sequence of 2DHC goes through a deletion between the first match and

the third match; 1CHO goes through two deletions: one between the third match and the

fifth match and the other after the fifth match.

5Because of width constraints the sequences in the figure run over to multiple lines.
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2DHC <D.OD2,2.91> - -

1CHO <D.OD2,3.08> - <H.CB ,3.17>

1ACE <E.OE1,2.32><H.CD2,2.32><H.CB ,2.45>

* *

2DHC - <H.CA ,3.10><H.O ,3.20>

1CHO <D.CG ,3.22><H.CA ,3.63> -

1ACE - <H.CA ,3.31><E.CD ,3.46>

* *

2DHC <H.C ,3.46><D.CG ,3.47><D.OD1,3.50>

1CHO <H.C ,4.06> - -

1ACE <H.C ,3.94> - <E.OE2,4.06>

* *

Figure 5.1: A Segment of a Multiple Alignment

We can learn the PHMM parameters (transition and emission probabilities) from such

multiple alignments. However, it is labor intensive to come up with such a multiple align-

ment. One can also learn these parameters from unaligned sequences. First, the number of

match states (i.e. the length of the PHMM) is estimated by taking the average length of the

training sequences. Then the Baum-Welch algorithm is applied to estimate the transition

probabilities and emission probabilities.

We adapt this process for learning PHMM parameters from training data consisting

of unaligned serialized active site sequences belonging to a family. First, we estimate

the length of the PHMM from the training sequences. This is the average length of the

sequences. For example, the average length for the sequences in Figure 5.1 without the

dashes is six.

To learn the other two PHMM parameters, we modify the Baum-Welch algorithm.

Since emission symbols are pairs 〈atomtype, distance〉, we will need to compute the joint

distribution of these pairs for each state. Making the standard independence assumption

done in HMMs, namely, that the random variables in the joint distribution are independent,
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the probabilities of the atom types and their distances are computed separately. Let us de-

fine the probability of atom type t in a state as P (t) and the probability of the distance d

from center of mass as P (d). We calculate the emission probability P (b) of the emission

symbol b = 〈t, d〉 to be P (t)× P (d).

The distance from the center of mass is a continuous feature. We assume that its prob-

ability distribution is generated by a multivariate Gaussian distribution whose probability

density function is:

e−( (d−µ)2

2σ2 )

σ
√

2π

where d is the distance, µ is the mean and σ is the standard deviation of distances to the

center of mass. Suppose the distances to the center of mass from atoms that are emitted by

a state are d1, . . . , dm. We compute µ and σ at this state using the expressions:

µ =
1

n

n
∑

i=1

di

σ =

√

√

√

√

1

n

n
∑

i=1

(di − µ)2 + ǫ

The small constant ǫ is added so that σ is always positive even when n = 1.

Recall that we need 42 parameters to describe the emission distribution for each state.

Forty of these parameters correspond to the emission probabilities of the 40 atom types and

they must sum up to 1. The remaining two are µ and σ that represent the distribution of the

distances of atoms emitted from the state to their center of mass.

For a set of unaligned sequences, Baum-Welch algorithm iteratively updates the pa-

rameters of the model to increase the overall probability of the set of training sequences

to be generated by the model. We modify the Baum-Welch algorithm to take into account

the new emission parameter set and the joint emission probability. At each step of iter-

ation, we calculate the individual probabilities of atom type and distance from center of



CHAPTER 5. PROTEIN ACTIVE SITE PROFILING 60

mass and multiply these probabilities to get the joint probability. For a family of observa-

tion sequences of active sites, this modified Baum-Welch algorithm is used to estimate the

parameters of the PHMM that profiles this family.

Armed with a PHMM M trained on a family S of serialized active site sequences we

can now answer questions about similarity of active sites. To determine if a protein has

substructures similar to the active sites in S we proceed as follows: First we find candidate

substructures in the protein structure. This can be done with tools such as MOE Active Site

Finder [82] and Q-SiteFinder [36]. Then a serialized observation sequence is generated

for each candidate substructure. Those are the candidate observation sequences for the

protein. For each such observation sequence, we apply the Viterbi algorithm to compute the

probability of its most likely path in the PHMMM. To compute the probability of observing

a pair 〈t, d〉 at a state, the Viterbi algorithm computes the probabilities of observing atom

type t and distance d separately using the emission distribution parameters of that state,

and then multiply them to get the emission probability of the pair.

The step that remains is computation of the log-odds ratio (see Section 2.2 ). For the

PHMM M we define a random model M ′ whose length and transition probabilities are

identical to those in M . The emission parameters are assumed to be uniform for all the

insert and match states. These state-independent parameters are computed as follows:

1. The emission probability for atom type a is
∑

r where a∈r

q(r)
num of atoms in r

, where r is

a residue and q(r) is the frequency of r (see Section 2.2).

2. Randomly sample substructures from PDB, each of which contains the same number

of residues as the training examples.

3. For each such substructure, compute the center of mass and the distances of the atoms

to this center.

4. Compute the mean µ and the standard deviation σ over all distances and over all
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Protein Families Avg # of

Active Site

Atoms

Training

Set Size

Test Set

Size

# of Pos-

itive Test

Examples

# of Neg-

ative Test

Examples

Ribonuclease A 20 25 30 10 20

Ribonuclease T1 24 24 35 10 25

Eukaryotic Lysozyme 29 30 20 8 12

Prokaryotic Lysozyme 21 35 31 15 16

Nu:-His-Elec catalytic triad 24 103 105 40 65

Table 5.2: Data Statistics for Different Protein Families

Protein

Families

Avg # of Active

Site Atoms

Training Set

Size

Test Set

Size

# of Positive

Test Examples

# of Negative

Test Examples

sub1 20 18 32 12 20

sub2 22 20 35 15 20

sub3 26 15 22 10 12

sub4 28 18 25 13 12

sub5 24 21 21 11 10

Table 5.3: Data Statistics for Subfamilies of Nu:-His-Elec Catalytic Triad

substructures.

Armed with M and M ′, we can compute the bit score of an observation sequence in M

and decide similarity as was described in Section 2.2.

5.3 Evaluation

We implemented our PHMM-based profiling of active sites. In this section we report

on its experimental performance. It is organized into the following subsections: The ex-

perimental setup for the evaluation; the performance metrics measured; the experimental

results; and discussion of the results.

5.3.1 Experimental Setup

The evaluation was conducted over different sets of protein families detailed below.
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Protein Families

We developed PHMM profiles for five different protein families, namely, Ribonuclease

A, Ribonuclease T1, Eukaryotic Lysozyme, Prokaryotic Lysozyme, Nu:-His-Elec catalytic

triad. The Nu:-His-Elec family is further divided into five subfamilies according to the

residues that comprise the catalytic triads, which are Ser-His-Asp, Ser-His-Glu, Asp-His-

Asp, Ser-His-Trp, and Cys-His-Asn. They are denoted by sub1, sub2, sub3, sub4, and

sub5, respectively. We also built profiles for these five subfamilies.

Training and Test Data

We used 35, 34, 30, 35 and 153 members respectively of Ribonuclease A, Ribonuclease

T1,Eukaryotic Lysozyme, Prokaryotic Lysozyme and Nu:-His-Elec catalytic triad families.

For profiling the subfamilies we used 30, 35, 25, 31, 32 members of sub1, sub2, sub3, sub4,

and sub5 respectively.

The active sites per family were divided into two mutually exclusive training and test

sets. The active sites of a family included in the test set associated with the family were

labeled as positive test examples. For each family, we augmented its test set with a subset

of active sites belonging to other four families. These augmented active sites were labeled

as negative test examples.

Statistics associated with the experimental data used are listed in table 5.2 for the five

families and in table 5.3 for the subfamilies of Nu:-His-Elec catalytic triad.

From these statistics observe that on the average we used around 43 and 44 active sites

respectively for training and testing each family.

We built a separate PHMM per family. The parameters were learned using the training

set associated with the family. The global threshold for the log-odds ratio was set to 0.
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Figure 5.2: Precision Performance of (a) 5 Protein Families and (b) Subfamilies of Nu:-

His-Elec

5.3.2 Performance Metrics

We evaluated the PHMM with respect to three performance metrics: recall, precision

and f-measure 6 using the test data set constructed above.

Observe that an active site in the test data for a family was uniquely labeled as a positive

or negative test example. These labels are used to classify the similarity results produced by

PHMMon the test data into true positives, false positives, true negatives and false negatives.

Based on these classifications the recall/precision/F-measures are directly computed from

their definitions.

5.3.3 Experimental Results

The results of the experimental evaluation are shown in Figure 5.2, 5.3 and 5.4.

Figure 5.2(a) shows the precision performance for each of the protein families. They

range from 86% (for Ribonuclease T1) to 92% (for Ribonuclease A). Figure 5.2(b) shows

the precision performance for each sub-families of Nu:-His-Elec catalytic triad.

6Recall value for a protein family is defined as the ratio of correctly identified proteins (which are members

of the family) over the total number of family members present in the test set. For precision, the denominator

is taken as the total number of proteins (both positive as well as negative test examples) present in the test

which are identified as members of the family. F-measure is defined as the harmonic mean of recall and

precision
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Figure 5.3: Recall Performance of (a) 5 Protein Families and (b) Subfamilies of Nu:-His-

Elec
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Figure 5.4: F-Measure Performance of (a) 5 Protein Families and (b) Subfamilies of Nu:-

His-Elec

Figure 5.3(a) shows the recall performance for each of the protein families. They range

from 88% (for Ribonuclease T1 and Nu:-His-Elec catalytic triad ) to 90% (for Ribonu-

clease A and Eukaryotic Lysozyme ). Figure 5.3(b) shows the recall performance for the

subfamilies of Nu:-His-Elec catalytic triad.

We also calculated f-measure for each of the families. Figure 5.4(a) shows the f-

measure for each of the families. It ranges from 87% (for Ribonuclease T1) to 91% (for

Ribonuclease A). Figure 5.4(b) shows the f-measure performance for the sub-families of

Nu:-His-Elec catalytic triad.
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5.3.4 Discussions

The experimental performance suggests that PHMM-based methods described in this

report for determining similarity of active sites works well in practice. The PHMM con-

structed for each family exhibits reasonably high recall, precision and f-measure values. A

high degree of shared features by family members results in higher performance metrics.

For instance the active sites of Ribonuclease A shares many atom types along with their

geometric configuration. This is reflected by its high recall, precision and f-measures (90%,

92%, 91%). On the other hand the low degree of shared features observed in Ribonuclease

T1 has translated into low recall, precision and f-measure values (86%, 88%, 87%).

5.4 Related Work

We review here computational tools and techniques related to the problem of determin-

ing similarity of active sites.

On the tool front the best known system is SPASM [32, 83]. It takes the pair 〈 protein
structure, target active site 〉 as the input and finds substructures in the protein that are simi-

lar to the active site. As we had discussed earlier comparing a substructure to an active site

independently of other members of the active site’s family fails to exploit the commonality

amongst them. Consequently, it can fail to establish similarity with some family members,

especially remote ones. A profile based approach as we have done addresses this problem.

The idea of profiling active sites was first explored in the context of building the PRO-

CAT database [80, 67, 8], in which the term “functional template” was used for what we

refer to as the active site profile in this dissertation. In PROCAT, functional templates are

manually defined for several enzyme families. For example, it includes templates for Ri-

bonuclease A and the five subfamilies of Histidine-based catalytic triad (see Tables 5.2

and 5.3). These templates consist of only a subset of atoms in the active site residues.
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For instance, only the Oγ atom is included in the template for the Ser-His-Asp subfam-

ily. The decision of which atoms to include is done manually through close inspection of

the structures and functional mechanisms of all the proteins in the family. The template

so constructed captures the features shared by the family members. Th problem here is

that template construction is a manual process thereby limiting scalability. In contrast our

approach to “learn the templates” is highly automated.

A more recent work is Catalytic Site Atlas (CSA) [66, 74], a database documenting

enzyme active sites and catalytic residues present in enzymes with 3-D structures. The

active sites are labeled either original or derived. The former are extracted from scientific

literature while the latter are associated with proteins whose primary sequences are homol-

ogous to the primary sequences of proteins containing the original active sites. An original

active site and all of its derived sites constitutes a family. Templates with shared features

are again constructed manually for each family.

MultiBind is yet another recent work that takes a set of active sites and automatically

aligns all of them [60, 75]. The multiple alignment reveals what are the subset of atoms that

are conserved among all the active sites in the set. Firstly, this approach is not statistical

unlike ours. But the more important difference is that multiple alignment alone does not

provide any quantitative measure of how close an active site is to the aligned sites. Without

such measures it is not possible to algorithmically deduce similarity.

PHMMs were used for profiling entire protein structures in [3]. The 3-D structure

is serialized into a sequence of 3-D coordinates. In other words this work uses only one

geometric feature. Such an approach is useful for determining similarity of entire protein

structures whose superposition has the lowest RMSD value. As we had discussed earlier

(see Section 5.2.1) 3-D coordinates alone may not adequately capture the salient shared

features of the family. Good superpositions in terms of low RMSD values may produce in-

compatible atom types at the superposed positions. Factoring in both physico-chemical and

geometric features as is done in our approach can result in more accurate determinations
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of similarity and our experimental results seem to validate this hypothesis. Furthermore, as

discussed below, there is no correlation between similarity of entire structures as is done in

this work and active site similarity.

Finally, we remark that protein functions can also be predicted based on sequence ho-

mology or overall structure similarity. However it has been observed that there is no sig-

nificant correlation between conservation of sequences, structures and active sites [33].

Hence function prediction by detection of substructures in proteins that are similar to ac-

tive sites of proteins with known functions complement those based on sequence homology

and structural similarity methods.



Chapter 6

Automatic Text Segmentation with CRF

6.1 Introduction

Text segmentation is the process of converting information in plain text strings into

structured records. Given a schema consisting of n attributes and an input string, the prob-

lem of segmenting the input string can be informally defined as partitioning the string

into n contiguous sub-strings and assigning each sub-string a unique attribute from the

n attributes. For example, given the address schema consisting of the five attributes

〈COMPANY, STREET, CITY, STATE, PHONE〉 and the input string “1 2 3 Convenience

Store (516)538-0854 144 Hempstead Tpke W Hempstead NY”, the task of text segmenta-

tion is to convert the string into the address record: 〈1 2 3 Convenience Store, 144 Hemp-

stead Tpke, W Hempstead, NY, (516)538-0854〉.
In the World Wide Web, data (such as product, bibliographic and address data) exists

as unstructured text strings. They have to be segmented into structured records to facilitate

efficient query processing and analysis. Therefore accurate text segmentation methods are

important.

Extant techniques for text segmentation either use rules for identifying attributes in the

text or employ statistical models. Rule-based approaches require domain experts to create

68
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and maintain a set of rules for each application domain. It is difficult to anticipate all

possible variations in the text strings to be segmented and design rules accordingly. This

difficulty is further compounded by the presence of noise in the data. Therefore rule-based

approaches are neither scalable nor robust. In contrast statistical approaches automatically

learn a statistical model for each application domain. The variability and noise in the

input text data are elegantly dealt with by the statistical characteristics inherent in such

approaches.

Hidden Markov Model (HMM) [53] is a dominant statistical model used in text seg-

mentation. HMM is a generative model in the sense that it captures the probability distri-

bution of observations (e.g. the input strings in the case of text segmentation). There are

two main problems with HMM-based text segmentation. Firstly, in order to estimate the

distributions of observations HMMs will need to enumerate all possible observations. This

may not always be possible. Secondly, as articulated in [34], HMMs have to make strict

independence assumptions to achieve computational tractability and hence cannot capture

long-range dependences in the input data.

To address the above two shortcomings of HMMs, Conditional Random Fields (CRFs)

were introduced in [34] for sequential labeling problems. Note that text segmentation is

an application of this problem. There have been a number of recent works on CRFs (see

[59, 65, 52, 42, 38]). CRF is a discriminative model that directly computes the conditional

probability of a label sequences given an observation sequence. Therefore, it does not need

to capture the probability distribution of observations. The other important aspect of CRFs

is that they can capture long range dependence in data [34]. Implementations of CRFs have

been shown to out-perform generative models like HMMs [13, 58] for text segmentation,

especially when the data exhibits long range dependencies.

Text segmentation using statistical models are typically supervised, that is, the model is

supplied with manually labeled training data. This, in general, is a labor-intensive process.

Unsupervised learning techniques eliminate the need for manually labeled training data.
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BUSINESS STREET CITY STATE PHONE

1 Hour Auto Glass Inc 403 West St New York NY (212)691-3344

1 Hundred 60 4th St Auto 8412 164th St Jamaica NY (718)523-9018

10 Minute Oil Change 1156 Hempstead Tpke Uniondale NY (516)486-0060

A Salerno Realty Crop 11 Mill Rhinebeck NY (914)876-5551

Circuit City 111 E El Camino Real Sunnyvale CA (408)720-1043

Table 6.1: A Segment of a Reference Table

Recently a fully automatic, unsupervised text segmentation system is described in [1].

This system exploits structured reference tables consisting of clean tuples. In other words

the attributes in these tables are already labeled.

Table 6.1 shows a fragment of a reference table. Reference tables can contain a large

number of records thereby providing a rich source of labeled training data. Note that the

order in which the attributes appear in the table might be different from that in which

they appear in the input sequences. For example, the order in which attributes appear in

one bibliography data source may be [AUTHOR, TITLE, PUBLISHER, PAGE, YEAR]

while in another source it may be [ TITLE, AUTHOR, PUBLISHER, PAGE, YEAR]. So

an unsupervised text segmentation system will have to deal with differences in the attribute

order of the input sequences. Assuming that a batch of text sequences to be segmented share

the same total attribute order (e.g. publications in a researcher’s home page), the technique

in [1] first trains an HMM model for each attribute using the reference table data. Next

it uses these trained attribute recognition models to identify the best starting positions for

every attribute in every input sequence. Then it uses these positions to infer the common

total order. Finally the total order is used to construct a global HMM to segment the input

text data sequences.

Although CRFs have recently been used for text segmentation, they are by and large

supervised approaches. A recent work on CRF-based text segmentation [39] focuses on re-

ducing the training data using reference tables but does not completely eliminate their use.
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Inspired by the work in [1], we have developed a CRF-based unsupervised text segmenta-

tion technique using reference tables. Using CRFs for this problem poses some challenges.

The main difficulty is inferring the total order. In HMMs this is not an issue. Being a

generative model HMM can easily compute the marginal distribution of observations. In

particular suppose P (o) is the marginal distribution of an observation sequence o. Given

two substrings s1 and s2 and the attribute HMM trained to recognize instances of Attr,

we can readily determine which one is more likely to be an instance of Attr by simply

comparing P (s1) and P (s2).

Since CRFs do not model distributions of observations we will have to develop a new

technique for inferring the total order. In this chapter we present such a technique. We

introduce negative labels and include negatively labeled examples in the training of attribute

CRF models. An important aspect of our approach is the process underlying the generation

of these examples so as to ensure that the attribute CRF will assign low likelihood scores

to incorrect starting positions of an attribute in the input sequence.

6.2 Techniques

6.2.1 Reference Table

A reference table is a relational table whose columns, particularly column names,

correspond to labels that are to be assigned to tokens in test sequences. Let us assume

〈a1, a2, . . . , an〉 are the columns. We use columns and column names interchangeably. Our

method of exploiting the reference table for unsupervised text segmentation with CRF is

based on the observation that test token sequences usually come in batches with an attribute

order common to all the sequences in a batch. Examples include product data description

in an online vendor catalog such as OfficeMax and Staples.

Let {s1, s2, . . . , sm} denote a batch consisting of m test sequences with si being the
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i′th token sequence. Let us further assume that the common attribute order for this batch

is: a′
1 → a′

2 → · · · → a′
n where 〈a′

1, a
′
2, . . . , a

′
n〉 is a permutation of 〈a1, a2, . . . , an〉. The

overall idea of segmenting this batch is as follows:

1. We first build a CRF for each column ai(1 ≤ i ≤ n) of the reference table. We will

call it the attribute CRF. The training of attribute CRFs is fully automatic.

2. The attribute CRFs are used to compute the most likely starting position (in a proba-

bilistic sense) of an attribute instance in each test sequence.

3. The results obtained in the previous step are combined to infer the common order

a′
1 → a′

2 → · · · → a′
n of the sequences in the batch.

4. In the final step we derive labeled training examples from the reference table accord-

ing to the inferred common order and train a global CRF model for text segmentation

using the known techniques [34, 59].

From now on, we will refer to the attribute CRF corresponding to the attribute Attr by

Attr CRF.

The aforementioned process is illustrated by the following example. Figure 6.1 shows

a fragment of the search results returned by Yahoo Local in response to a query about

restaurants in the neighborhood of zip code 11790.

The first entry in Figure 6.1 starts with the name of a BUSINESS “B&DBar Restaurant

Supply Company”, followed by its PHONE “(631)689-0578”, STREET “10 Seville Ln”,

CITY “Stony Brook”, and STATE “NY”. The common order of the attributes for this search

result fragment is: BUSINESS→ PHONE→ STREET→ CITY→ STATE.

We assume that the search result is preprocessed and tokenized. Our task now is to

segment the four token sequences shown in Figure 6.2 and assign labels to the segments

from the label set {BUSINESS, PHONE, STREET, CITY, STATE}.
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Figure 6.1: Restaurant Addresses Presented in the Same Attribute Order

{

[B, &, D, Bar, Restaurant, Supply, Company, 631,

689, 0578, 10, Seville, Ln, Stony, Brook, NY],

[Yin, &, Yang, Restaurant, 631, 689, 8585, 2548,

Nesconset, Hwy, Stony, Brook, NY],

[Friendly’s, Restaurant, 516, 751, 3150, 201,

Hallock, Rd, Stony, Brook, NY],

[Country, House, 631, 751, 3332, Route, 25a, &,

Main, St, Stony, Brook, NY]

}

Figure 6.2: Example Test Token Sequences

An example reference table that can be used to segment token sequences like those in

Figure 6.2 is shown in Table 6.1. We use the reference table to automatically train the 5

attribute CRFs: one each for BUSINESS, STREET, CITY, STATE, and PHONE. Those

attribute CRFs will be deployed in tandem to infer the common attribute order in the batch
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{

<[1, Hour, Auto, Glass, Inc, 212, 691, 3344, 403,

West, St, New, York, NY],

[B, B, B, B, B, P, P, P, S, S, S, C, C, T]>,

<[1, Hundred, 60, 4th, St, Auto, 718, 523,

9018, 8412, 164th, St, Jamaica, NY],

[B, B, B, B, B, B, P, P, P, S, S, S, C, T]>,

<[10, Minute, Oil, Change, 516, 486, 0060, 1156,

Hempstead, Tpke, Uniondale, NY],

[B, B, B, B, P, P, P, S, S, S, C, T]>,

<[A, Salerno, Realty, Crop, 914, 876, 5551, 11,

Mill, Rhinebeck, NY],

[B, B, B, B, P, P, P, S, S, C, T]>,

<[Circuity, City, 408, 720, 1043, 111, E, El,

Camino, Real, Sunnyvale, CA],

[B, B, P, P, P, S, S, S, S, S, C, T]>

}

Figure 6.3: Example Training Data Derived from Reference Table

consisting of the sequences in Figure 6.1, namely: BUSINESS → PHONE → STREET

→ CITY → STATE. Then labeled training examples are derived automatically from the

reference table, Table 6.1, according to this inferred order (see Figure 6.3). For brevity,

we use B for BUSINESS, P for PHONE, S for STREET, C for CITY, and T for STATE. A

global CRF is then trained from the examples in Figure 6.3 and used to segment the token

sequences in Figure 6.2 using standard CRF techniques [34, 59].

The idea of exploiting reference tables for unsupervised text segmentation was first

explored in [1] using HMMs. Applying this idea to CRF is not entirely straight-forward.

In the following section we first discuss the challenges and then present our solution.

6.2.2 Attribute CRF

6.2.2.1 Issues in Training Attribute CRFs

Recall that the primary objective for building attribute CRFs is to infer the total order

of attributes that is common to all the test sequences in a batch. For each test sequence,



CHAPTER 6. AUTOMATIC TEXT SEGMENTATION WITH CRF 75

we compute the most likely starting position for its attributes. These positions impose a

local precedence relation ≺local on pairs of attributes. Specifically, we say that ai ≺local

aj whenever p and q are the most likely starting positions for a1 and aj respectively and

p < q. If ai ≺local aj in a majority of the test sequences then we say that ai precedes aj in

the common total order, denoted ≺global.

Thus, an attribute CRF for the attribute Attr should be able to identify the most likely

token sub-sequence corresponding to Attr’s occurrence in the test sequence. However,

training an attribute CRF to do such an identification is not as simple as taking all instances

of Attr in the reference table and training the Attr CRF model using standard CRF training

algorithms.

For an exposition of the underlying issues, let us revisit the example in Section 2.3 and

examine the training of CITY CRF. If we train it only from the attribute instances of CITY,

then no matter what the input token sequence is, the only way of labeling is to assign the

label CITY to every token. Therefore, the conditional probability of labeling the token sub-

sequence [Huntington] with CITY is the same as that of labeling [NY] with CITY, both of

which are 1. It is hence impossible to decide whether [Huntington] or [NY] is the more

likely instance of the attribute CITY.

In HMM-based attribute models as described in [1], this is not a problem. HMMsmodel

the joint probability P (x,y), x being the token sequence and y the label sequence. Note

that a label sequence corresponds to a state sequence in HMM terminology. The marginal

probability P (x)=
∑′

y P (x,y′), computed by the classic forward algorithm [53], can be

used for the purpose of deciding the best starting position of an attribute instance. Specif-

ically, given an attribute HMM trained from the instances of the attribute in the reference

table, deciding whether the token sub-sequence x1 or x2 fits the attribute better is simply

done by comparing their marginal probabilities P (x1) and P (x2), and picking the one with

the higher probability value.

In contrast CRF is discriminative model, i.e., given the token sequence x, it directly
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models the conditional probability P (y|x) of the label sequence y. Since CRFs do not

model probability distributions of observation (i.e. token) sequences, one cannot compute

their marginal probabilities. In particular
∑

y′ P (y|x) is always 1 no matter what x is and

therefore it cannot serve as a criteria for deciding which token sub-sequence best fits an

attribute.

6.2.2.2 Negative Labels: A Substitution for Marginalization

To solve the problem of using CRFs for identifying the most likely token sub-sequence

as an attribute instance, we introduce negative labels and include negatively labeled exam-

ples in the training of attribute CRF models.

We associate each attribute CRF with two labels – positive and negative. For example

the labels associated with the CITY CRF are CITY and ¬CITY. Instances of an attribute

in the reference table are assigned the positive label. So instances of CITY constitute the

positive examples for the CITY CRF.

We assign the negative label to instances of all the other attributes in the reference table.

So instances of BUSINESS, STREET, STATE and PHONE in Table 6.1 will be assigned

the label ¬CITY.
However, these alone will not suffice as negatively labeled examples. Recall that an

attribute CRF is required to choose from among all the token sub-sequences of a test se-

quence the most likely instance of the attribute. So for instance given the token sequence

[B, &, D, Bar, Restaurant, Supply, Company, 631, 689, 0578, 10, Seville, Ln, Stony, Brook,

NY], ideally CITY CRF should assign the label ¬CITY not only to tokens in the token

sub-sequence [10, Seville, Ln] which is an instance of STREET, but also to the three token

sub-sequences [Stony], [Stony, Brook, NY], and [Company, 631, 689, 0578, 10, Seville].

These are readily characterized by missing tokens (such as Brook in [Stony]) or with extra

tokens (e.g. NY and Selville in the second and third token sub-sequences respectively).

Therefore we should include different kinds of negative examples so that the attribute CRF
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By (Rule 1) [York]

By (Rule 2) [New]

By (Rule 3) [Inc, New, York], [St, New York],

[NY, New, York], [3344, New, York]

By (Rule 4) [New, York, 1], [New, York, 403],

[New, York, NY], [New, York, 212]

Table 6.2: Negatively Labeled Examples

can assign low attribute association likelihood to the token sub-sequences in the aforemen-

tioned cases.

Taking into consideration the discussion of the issues above, the process of generating

negatively labeled examples for an attribute CRF is as follows: Suppose Attr is an attribute.

A straightforward way to generate negatively labeled examples for Attr CRF is to simply

form all possible combinations of token sub-sequences from the reference table and elim-

inate those that are instances of Attr. Clearly this is an expensive proposition. Instead we

use the following simple but efficient heuristic rules:

• Rule 1: token sequences obtained by deleting the first token from any Attr instance.

• Rule 2: token sequences obtained by deleting the last token from any Attr instance.

• Rule 3: token sequences obtained by prefixing any Attr instance with the last token

of any instance of any attribute other than Attr.

• Rule 4: token sequences obtained by suffixing any Attr instance with the first token

of any instance of any attribute other than Attr.

Table 6.2 shows examples assigned the label ¬CITY. They are generated by the appli-

cation of the above heuristic to the first tuple in Table 6.1. The first column in Table 6.2

indicates the rule used to generate the sequences in the row.

The positive and negative examples generated by the process described above is used

to train an attribute CRF using well known CRF training algorithms [34, 59].



CHAPTER 6. AUTOMATIC TEXT SEGMENTATION WITH CRF 78

Armed with the trained CRF for an attribute say Attr, the probability of a token sequence

s being an instance of Attr is:
P (p|s)

P (p|s) + P (n|s) (6.1)

where P (p|s) is the conditional probability, computed by Attr CRF, for labeling all the

tokens in swith the positive label Attr and P (n|s) is the conditional probability for labeling
all the tokens in s with the negative label ¬Attr.

The idea of using negative examples in CRFs was first explored in [39]. But there are

two differences with our approach. Firstly, CRFs with negative labels in [39] are used to

define additional feature functions. Manually labeled examples, although fewer in number,

are still required. In our case, we use such CRFs to infer a total order of attributes shared

by a batch of test sequences, based on which we develop an unsupervised approach for

training CRFs from reference tables. Secondly, as described previously in this section, the

negative examples of our attribute CRFs are constructed subtly (see Rules 1, 2, 3 and 4) so

as to ensure that incorrect token sub-sequences are given a very low score.

6.2.3 Unsupervised Text Segmentation with Attribute CRF

Following [1], we also assume that the batch of test sequences share a common at-

tribute order. The first step in inferring this order is to compute, with attribute CRFs, the

most likely starting position (in a probabilistic sense) of an attribute instance in each test

sequence.

6.2.3.1 Computing Most Likely Starting Positions of Attribute Instances

We associate two vectors vk and scorek with the k-th test sequence in the batch

[s1, . . . , sm]. The test sequence si is denoted by [t(i)1, . . . , t(i)im ]. Given that a1, . . . , an

are the attributes in the reference table, both vectors have length n. The i-th element in vk

is the most likely starting position in the test sequence for attribute ai, and scoreki
denotes
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the probability of its likelihood. Algorithm BestStartingPosition is a sketch of how the most

likely starting positions are computed. In the algorithm [t(k)1, . . . , t(k)km
] denotes the test

sequence.

Algorithm BestStartingPosition

1. for i← 1 to n

2. do vki
← −1;

3. scoreki
← 0

4. for i← 1 to km

5. for j ← i to km

6. do s←[t(k)i, . . . , t(k)j ]

7. for l← 1 to n

8. do p←probability of s being an instance of attribute al by Equation 6.1 using

al’s attribute CRF

9. if p > scorekl

10. then

11. vkl
← i;

12. scorekl
← p;

Line 1 to 3 is initializing scorek and vk. Line 4-5 forms a loop over all token sub-

sequences of the test sequence. The token sub-sequence is assigned to s in Line 6. Line 7

loops over all attributes. Line 8-12 updates the most likely starting position in vk and the

associated probability in scorek for each attribute and each token sub-sequence.

6.2.3.2 Inferring the Common Total Order

For a batch of m test sequences, we say that ai ≺local aj in the k-th test sequence

if vki
< vkj

, otherwise aj ≺local ai. Once the best starting positions are computed by

Algorithm BestStartingPosition, we associate a global vote count votesi,j for each pair of

attributes ai and aj (1 ≤ i, j ≤ n and i 6= j). This vote count corresponds to the number
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of test sequences in which ai ≺local aj. If in a majority of test sequences ai ≺local aj holds

then we say that ai ≺global aj . The rationale is that, in most cases the attribute CRFs can

approximately recognize the correct starting position for an attribute among all possible

token sub-sequences of a test sequence. Notice that for each pair of attributes ai and aj ,

we either have ai ≺global aj or aj ≺global ai. This ≺global relation forms a directed graph.

When there is no cycle in the graph, we can find a total order of the attributes. When a

cycle exists, we break the cycle by removing an arbitrary edge in the cycle.

Algorithm InferOrder below sketches these ideas. In the algorithm, R is the ≺global

relation, S is the set of attributes, and LIST is a list that represents the total order of

attributes.

Algorithm InferOrder

1. for i← 1 to n

2. for j ← 1 to n

3. votesi,j ← 0

4. for k ← 1 to m

5. compute vk by Algorithm BestStartingPosition

6. for i← 1 to n− 1

7. for j ← i + 1 to n

8. if vki
< vkj

9. then votesi,j + +

10. else votesj,i + +

11. R←empty set

12. for i← 1 to n− 1

13. for j ← i + 1 to n

14. if votesi,j > votesj,i

15. then add ai ≺global aj to R

16. else add aj ≺global ai to R

17. S ←{a1, . . . , an}
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18. LIST ←empty list

19. repeat

20. if there is an attribute a so that there is no a′ ≺global a for any attribute a′ in R

21. then

22. append a to LIST

23. delete a from S

24. delete all a ≺global a′ for any attribute a′ from R

25. else there is a cycle in the precedence relation; break the cycle by removing an arbitrary

a ≺global a′ that is part of the cycle

26. until S is empty

Line 1-3 initializes votes. Line 4-10 computes votesi,j for each pair of attributes ai

and aj . Line 11 initializes R. Line 12-16 computes R, i.e., the≺global relation. Line 17 and

Line 18 initializes S and LIST , respectively. Line 19-20 finds the total attribute order.

There are more sophisticated ways of inferring the total order. For example, the prece-

dence relation is associated with probabilities in [1] and a brute-force search over all pos-

sible total orders is used to compute the most probable total order. A greedy algorithm for

deciding the total order is described in [35]. However, as we will show in Section 6.3.3.2 on

evaluation, our simple majority vote algorithm works well in practice. Note that cycles in

the precedence relation are broken arbitrarily. Interestingly, cycles were a rare occurrence

in our experiments.

We illustrate the algorithm with a simple example. The best attribute starting positions

computed by attribute CRFs for the four test sequences in Figure 6.2 is shown in Table 6.3.

In the first test sequence, we can see that STREET ≺local BUSINESS, STREET

≺local PHONE, STREET≺local CITY, STREET≺local STATE, BUSINESS≺local PHONE,

BUSINESS ≺local CITY, BUSINESS ≺local STATE, PHONE ≺local CITY, PHONE ≺local

STATE, and CITY ≺local STATE. The ≺local relation other sequences are determined sim-

ilarly. The number of sequences in which STREET ≺local BUSINESS holds is 1 while
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BUSINESS STREET CITY STATE PHONE

#1 5 4 14 16 8

#2 1 8 11 13 5

#3 1 6 9 11 3

#4 1 8 10 12 3

Table 6.3: Estimated Starting Positions

that of BUSINESS ≺local STREET is 3. Therefore for these two attributes, BUSINESS

≺global STREET. We do the same thing for other pairs of attributes. This leads to the

≺global relation R = { BUSINESS ≺global PHONE, BUSINESS ≺global STREET, BUSI-

NESS≺global CITY, BUSINESS ≺global STATE, PHONE≺global STREET, PHONE≺global

CITY, PHONE ≺global STATE, STREET ≺global CITY, STREET ≺global STATE, CITY

≺global STATE}. When applying Algorithm InferOrder, we first add BUSINESS to the

list LIST , then R = {PHONE ≺global STREET, PHONE ≺global CITY, PHONE ≺global

STATE, STREET ≺global CITY, STREET ≺global STATE, CITY ≺global STATE}. Then we

add PHONE to LIST . And so on and so forth. Finally the total order of attributes shared

by the batch of test sequences in Figure 6.2 is computed as BUSINESS → PHONE →
STREET→ CITY→ STATE.

6.2.3.3 Putting it All Together

We use the attribute order, determined in the previous step to generate labeled training

examples from the reference table. Specifically, for each row in the reference table, we

concatenate attribute instances according to that order to form a token sequence. Each

token is labeled with the attribute label associated with the column from where the token

is drawn. These labeled sequences are used to train a global CRF for segmenting the test

sequences.

As an example, Figure 6.3 shows the labeled training examples derived from the ref-

erence table in Table 6.1 according to the total order computed in the previous step, i.e.,
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BUSINESS→ PHONE→ STREET→ CITY→ STATE.

Unsupervised Text Segmentation

Once we get the labeled training examples, we use the standard training and inference

techniques described in [34, 59, 73] to train a global CRF and use it to segment the test

sequences in the batch (see Algorithm UnsupervisedSeg below).

Algorithm UnsupervisedSeg

1. Infer total order by Algorithm InferOrder (Section 6.2.3.2)

2. Generate labeled examples

3. Train a global CRF

4. Segment test sequences in the batch

In the last two steps, we can just use any standard CRF training and inferencing tech-

niques such as [34, 59, 51].

6.3 Evaluation

We implemented Algorithm UnsupervisedSeg, our structured-reference-tables driven

unsupervised text segmentation technique with CRFs. Our implementation extended the

freely available CRF source code [73]. In this section we report on its experimental perfor-

mance. We begin with the experiment setup.

6.3.1 Experimental Setup

We discuss here the datasets used for the experiments including training and test data.

Datasets

Table 6.4 lists the three different structured datasets that we used in our experiments,

namely, address, product and bibliographic data. The address and bibliographic data were
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Dataset Schema Source No. of Tuples

Address Name, Street, City, State, Zip RISE repository [81] 4300

Product Thickness, Manufacturer, Model,

RingType, Category, Quantity

Staples, OfficeMax,

and Office Depot

510

Bibliography Author, Title, Publisher, Page, Year personal .bib file [72] 80

Table 6.4: Datasets Used for Experiments

obtained from [81] and [72] respectively. The product data was extracted from the Web.

The data schema corresponding to the three datasets is shown in the second column of

Table 6.4.

Each dataset represents a structured reference table where individual columns represent

attributes. The entry in a particular column of the dataset represents an instance of the

attribute corresponding to that column. We use the attribute name to label its instances.

Observe that these reference tables serve as labeled training data.

Training and Test Datasets

Each of the three datasets were divided into two mutually exclusive sets: a training set

and a test set.

As noted above, the training data drawn from the structured reference table already

comes in labeled form. We trained a attribute CRF model for each attribute in a dataset.

Thus for the address dataset we build NAMECRF, STREET CRF, and so on To construct an

attribute CRF for say Attr we used two kinds of data - positive labeled data corresponding

to instances of Attr and negatively labeled data generated as described in Section 6.2.2.

For illustration: Consider the segment of the bibliographic reference table shown in

table 6.5. The text segments in the AUTHOR column constitute positively labeled examples

for the AUTHOR CRF. Instances of such examples will include S.W Zucker, P.N. Johnson

and G. Nelson, all drawn from the AUTHOR column.

Each column such as AUTHOR is augmented with another column ¬AUTHOR pop-

ulated with instances that are not in the AUTHOR column using the techniques described
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AUTHOR TITLE YEAR

S.W. Zucker. Childhood and Adolescence 1976

P.N. Johnson. Mental Models 1983

G. Nelson Systems programming 1991

Table 6.5: Bibliography Reference Table Fragment

in 6.2.2.2. The instances in ¬AUTHOR so constructed constitute the negatively labeled

example set for constructing the AUTHOR CRF. Examples of text segments labeled with

¬AUTHOR are: Childhood and Adolescence, 1976, Johnson, Zucker.

We set aside a fraction of the reference table data not used for training, as the test data

set. We choose a priori a consistent attribute order for all the sequences in the test set and

generate them from the reference table. So for instance, if the third row of Table 6.5 is used

to generate a test sequence, with the attribute order fixed as TITLE→AUTHOR→YEAR,

then the generated test sequence will be: <Systems programming G. Nelson 1991>.

6.3.2 Brute Force Segmentation

As is done in [1], Algorithm UnsupervisedSeg in Section 6.2.2 also assumes that there

is a consistent global total order among the attributes in the input (test) data sequences. To

assess the impact of this assumption we compare UnsupervisedSeg with BruteforceSeg, a

brute force text segmentation algorithm that makes no such assumptions.

Given a test sequence, BruteforceSeg tries all possible ways of labeling it in a brute-

force way. Suppose we have n labels to label a test sequence of m tokens. First, Bruteforce-

Seg divides the input sequence into i segments, with i from 1 to n. There are Ci−1
m−1 ways

of such segments. Then it chooses i labels from those n labels and permutes them. There

are P i
n permutations. Therefore in total there are

∑n

i=1 Cm−1
i−1 P i

n ways of labeling the input

sequence. Each labeling corresponds to a particular segmentation of the test sequence. For

each segmentation, the following computation is done: For each attribute CRF, Bruteforce-

Seg computes the conditional probability of labeling the corresponding sub-string with only
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positive labels.

We illustrate this with an example. For the segmentation which labels “Stony Brook” as

CITY and “NY” as STATE,BruteforceSeg computes the probability for “Stony Brook” with

the CITY CRF and for “NY” with STATECRF. After computation of individual conditional

probabilities from each CRF, joint probability value is computed. Assuming independence

among the attribute CRFs, an intuitive way of computing the joint probability of labeling

“Stony Brook” with CITY and “NY” with STATE is to take the product. However, we have

variable number of attributes and simply taking the product favors fewer attributes since

each probability is between 0 and 1. So, BruteforceSeg computes the geometric mean of

the probabilities returned by individual attribute CRFs as the joint probability. Once the

joint probabilities of attribute CRFs of all possible segmentations are computed, the one

with the highest joint probability is taken as the segmentation of the test sequence.

Note that, BruteforceSeg does not use the total order assumption. Therefore, it can

be used as a baseline system to measure the goodness of UnsupervisedSeg as is shown in

following subsection.

6.3.3 Experimental Results

We evaluated the performance of our algorithm with respect to three performance met-

rics: recall, precision and f-measure 1 . We report on the performance of:

• Algorithm UnsupervisedSeg with clean data, noisy data and varying training size,

• Algorithm InferOrder, and

• Algorithm BruteforceSeg and contrast it with UnsupervisedSeg.

1Recall value for an attribute Attr is defined as the ratio of tokens correctly assigned the label Attr over the

total number of instances of Attr in the test set. For precision, the denominator is taken as the total number

of tokens assigned the label Attr either correctly or incorrectly. The f-measure is calculated by taking the

harmonic mean of recall and precision.
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Segmentation Performance for Address Data
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Figure 6.5: Performance for Product Dataset

Segmentation Performance for Bibliography Data
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6.3.3.1 Performance of UnsupervisedSeg
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Figure 6.7: Accuracy of UnsupervisedSeg with Noisy Data

With Clean Data

Figure 6.4, 6.5, and 6.6 illustrate precision, recall and f-measure performance for each

of the attributes in address, product and bibliography dataset respectively.

For address dataset, precision value ranges from 99.18% (for City) to 100% (for State

and Zipcode). Recall performances range from 99% (for City) to 100% (for State and

Zipcode). F-measure value ranges from 99.09% (for City) to 100% (for State and Zipcode).

For product dataset, precision value ranges from 94.50% (for Model) to 100% (Quan-

tity). Recall performances range from 95% (for Model) to 100% (for Quantity) and f-

measure performances range from 95.44% (for Category) to 100% (for Quantity).

For bibliography dataset, precision performances range from 91.80% (for Author) to

100% (for Year). Recall value ranges from 89.98% (for Title) to 100% (for Year). F-

measure values range from 91.30% (for Author) to 100% (for Year).

These results suggest that unsupervised CRF-based text segmentation with reference

tables works well in practice. Uniform performance is observed over all the three datasets.

We also note that the experimental results are comparable to the unsupervised HMM-based

approach with reference tables in [1].

With Noisy Data
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Noise Type Noise Description Accuracy

Insertion Insert a random token 80.81

Deletion A randomly chosen token is deleted 92.63

Spelling A randomly chosen token is corrupted 87.83

Missing Replace randomly chosen attribute with null 96.08

Table 6.6: Performance of UnsupervisedSeg with Noisy Data

We characterize test data with missing attribute values, one or more insertion, deletion,

or spelling errors as noisy data [1]. Figure 6.7 shows accuracy (in terms of precision)

of UnsupervisedSeg for address, product and bibliography dataset with noisy test data.

Address and product datasets exhibit over 90% accuracy for any kind of noise present in the

test data while for bibliography dataset the accuracy is at least 88%. Table 6.6 summarizes

experimental results for each kind of noise. These results suggest that UnsupervisedSeg

works well even with noisy data and are comparable to those shown in [1].

With Varying Training Size

Figure 6.8, 6.9 and 6.10 show the relationship between training set size and perfor-

mance on address, product and bibliography dataset respectively. 20% of the dataset was

set aside for testing. From the remaining 80%, the size of the training data was increased

from 25% to 100% in steps of 25%. Observe the longer training times and accuracy im-

provement with training size increase. The CRFs trained from 80% of data have an F-

Measure of 99.1%, 99.3%, and 95.6% with training time of 25 minutes, 2 minutes, and

35 seconds for address, product, and bibliography respectively. Observe that, we can trade

training time for high accuracy.

To get a sense of how many training examples are needed to get a reasonable result, ob-

serve that 20% of training data amounts to 860, 102, and 16 examples for address, product

and bibliography dataset respectively.

For the address dataset, the training time is 6 minutes and the accuracy of the resulting

CRF in segmenting the test data is 98.7%. For the product dataset, the training time is 34
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Figure 6.8: Varying Training Set Size of Address Dataset (a) Running Time (b) F-Measure
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Figure 6.9: Varying Training Set Size of Product Dataset (a) Running Time (b) F-Measure
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Measure

seconds and the accuracy is also 98.7%. For the bibliography dataset, the numbers are 9

seconds and 94.6%. Therefore, we can achieve high accuracy even with a small number of

training examples (which are not manually labeled). So these results seem to indicate that
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Figure 6.11: Accuracy of InferOrder

training a highly accurate CRF is not necessarily time consuming.

6.3.3.2 Performance of InferOrder

We evaluated the accuracy as defined in [1] 2 of InferOrder, for all three datasets. We

took sets of sequences from each dataset. The size of each such set was varied from 10

to 50 tuples. Figure 6.11 shows the accuracy of our algorithm. Note that, our algorithm

exhibits high accuracy even for small batch size.

UnsupervisedSeg vs BruteforceSeg

Figure 6.12, 6.13, and 6.14 show their comparative performance. For all of the three

datasets, we get higher precision, recall and f-measure values with the UnsupervisedSeg.

On the average, its precision, recall and f-measure values are 98.2%, 98.4% and 98.3%

respectively. In contrast, BruteforceSeg achieves 96.20% precision, 96.3% recall and 96.2%

in f-measure.

Observe that, UnsupervisedSeg performs better than BruteforceSeg. This is because

the former can capture dependence between attributes actually present in the input data

sequences assuming a attribute total order common to all of them.

2Given test sequences with a consistent total order, accuracy is defined as the fraction of attributes whose

positions in the order were identified correctly
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Figure 6.12: Comparative Performance (Precision)
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Figure 6.13: Comparative Performance (Recall)
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Figure 6.14: Comparative Performance (F-Measure)

6.4 Related Work

The work described in this chapter is broadly related to rule based, and super-

vised/unsupervised statistical text segmentation research.

Rule-based Approaches
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Several rule based text segmentation works have been reported in the research literature

(see [2, 63] for example). They are typically based on manually specified rules for identi-

fying attribute instances in text. A limitation of such rule-based systems is that developers

need to specify these rules and they may vary for different applications. With the use of

reference tables our approach is fully automatic.

Statistical Approaches

Statistical based text segmentation approaches fall into two broad categories – super-

vised and unsupervised. The characteristic aspect of supervised methods, exemplified by

a number of works [13, 41, 14, 10, 34], is that the segmentation models are trained with

manually labeled training set. Among the dominant statistical models used for segmen-

tation are HMMs (e.g. the DATAMOLD system [13]), Maximum Entropy Models (e.g.

[41]) and Conditional Random Fields (e.g. [34]). A recent work on CRF-based text seg-

mentation [39] focuses on reducing the training data using reference tables. There are two

main differences of this work with our approach. First, CRFs with negative labels are used

to define additional feature functions in [39]. Manually labeled examples, although fewer

in number, are still required. In our case, we use such CRFs to infer a total order of at-

tributes shared by a batch of test sequences, based on which we develop an unsupervised

approach for training CRFs from reference tables. Second, the negative examples of our at-

tribute CRFs are subtly constructed (as described in 6.2.2.2) to ensure that incorrect token

sub-sequences are given a very low score.

Fully automatic unsupervised approaches to text segmentation is relatively less ex-

plored. Recently [1] describe CRAM, a fully automatic text segmentation system based

on HMMs. The training data in this work is drawn from structured reference tables, obvi-

ating the need for manual labeling. Our unsupervised text segmentation approach based on

CRFs coupled with reference tables is inspired by this work.
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In their work, reference tables are used to train HMM-based attribute recognition mod-

els (ARMs). The transition structures in ARMs require some knowledge of the application

domain. So different application domains may require changes to this structure. In CRFs

accommodating differences in application domain is accomplished by simply adding or

removing features.

But the fundamental difference between CRAM and our approach is in the nature of

the underlying statistical model. ARMs are based on HMMs which are generative mod-

els. Such models capture probability distributions of observations which are stored in their

states. To accommodate observations that were not seen in training CRAM uses a gen-

eralized dictionary, which is taxonomy of symbols such as words, numbers, delimiters,

etc. Building a generalized dictionary is dependent on the application domain. In contrast

CRFs are discriminative models, i.e. they do not capture the distribution of observations

and hence dictionaries are not needed.



Chapter 7

Conclusion

Bioinformatics and text segmentation have attracted enormous research efforts in re-

cent years. Classification techniques, especially profile hidden Markov model (PHMM)

and conditional random field (CRF), are widely used in these two fields to extract useful

information from the vast amount of data resulted from rapid progress in molecular biology

and ever increasing World Wide Web activities.

In this dissertation, we have made several important contributions to advance PHMM

and CRF based techniques in bioinformatics and text segmentation.

Our bioinformatics research has been performed in the context of Toxin Knowledge

Base (TKB), in which protein sequence homology search and protein active site similarity

search are among the most important research issues.

For protein sequence homology search, we have developed a parameterized technique

for learning PHMMs from partially aligned sequences. Our technique is based upon de-

composing a PHMM structure into sub-PHMMs and composing these sub-PHMMs’ pa-

rameters into those of the PHMM. Our experimental results show improved classification

accuracy over existing PHMM approaches when completely aligned training sequences are

not available.

For protein active site similarity search, we have developed computational techniques

95
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for statistically profiling active sites in proteins. Specifically we have adapted the successful

PHMM based approach for analysis of linear sequences to encode the profiles of 3-D active

sites from the same family. Our experience with our implementation indicates that it is

effective in practice.

For text segmentation, we have developed a novel technique to remove labeled training

for CRF models by exploiting reference tables. Assuming that a batch of input sequences

to be segmented conform to the same attribute ordering, we use attribute CRFs trained

from individual columns of a reference table to decide the ordering. Labeled training data

is then derived from the reference table based on that ordering. A global CRF model is

trained from the training data, which is used to segment all sequences in the batch. Our

experimental results show that our technique is highly accurate in text segmentation in

terms of both precision and recall measures.

In summary, we have developed innovative techniques to exploit partial information in

training classifiers for bioinformatics and text segmentation applications. We have shown

that these techniques are practical through experimental evaluations. Moreover, we have

demonstrated that partial information can be used to greatly improve PHMM classifica-

tion accuracy, expand PHMM applicability on 3-D structures, and reduce manual efforts

required to label training sequences for CRF.
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