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Abstract of the Dissertation

Hard X-ray Phase Contrast Microscopy
- Techniques and Applications -

by

Christian Holzner

Doctor of Philosophy

in

Physics

Stony Brook University

2010

In 1918, Einstein provided the first description of the nature of
the refractive index for X-rays, showing that phase contrast effects
are significant. A century later, most x-ray microscopy and nearly
all medical imaging remains based on absorption contrast, even
though phase contrast offers orders of magnitude improvements in
contrast and reduced radiation exposure at multi-keV x-ray ener-
gies.

The work presented is concerned with developing practical and
quantitative methods of phase contrast for x-ray microscopy. A
theoretical framework for imaging in phase contrast is put forward;
this is used to obtain quantitative images in a scanning microscope
using a segmented detector, and to correct for artifacts in a com-
mercial phase contrast x-ray nano-tomography system. The prin-
ciple of reciprocity between scanning and full-field microscopes is
then used to arrive at a novel solution: Zernike contrast in a scan-
ning microscope. These approaches are compared on a theoretical
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and experimental basis in direct connection with applications us-
ing multi-keV x-ray microscopes at the Advanced Photon Source
at Argonne National Laboratory.

Phase contrast provides the best means to image mass and ultra-
structure of light elements that mainly constitute biological mat-
ter, while stimulated x-ray fluorescence provides high sensitivity for
studies of the distribution of heavier trace elements, such as metals.
These approaches are combined in a complementary way to yield
quantitative maps of elemental concentration from 2D images, with
elements placed in their ultrastructural context. The combination
of x-ray fluorescence and phase contrast poses an ideal match for
routine, high resolution tomographic imaging of biological samples
in the future. The presented techniques and demonstration exper-
iments will help pave the way for this development.
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Introduction
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1.1 A Foreword

The presented thesis gives an account of various advances and novel methods
of phase contrast imaging in hard x-ray microscopy.

Chapter 1 introduces the basic physical concepts and techniques for imag-
ing with X-rays with a particular focus on the most important aspects re-
quired for the main part of this work. Chapter 2 discusses the theory of image
formation in scanning and full-field x-ray microscopes, and their respective
equivalence through the principle of reciprocity, which signifies the foundation
for a large part of the presented methods and advancements. Neither of the
two chapters include any parts of original work.

In Ch. 3 we will discuss the fundamental principles of phase contrast imag-
ing in scanning microscopes based on the far-field intensity distribution derived
in Ch. 2 and arrive at the qualitative method of differential phase contrast
imaging. From there we will develop two different methods of quantitative
reconstruction from differential phase contrast data: the integration method
and the filtering method. Each of the two approaches is discussed in detail
and applications to experimental data is shown. This is followed by a detailed
comparison of both methods including a potential way for their unification,
upon which parts of the comparison will be based. We conclude this chap-
ter by demonstrating an important application of quantitative phase contrast
imaging in connection with x-ray fluorescence microscopy. The original parts
of this work include the participation in the implementation of phase contrast
for hard x-rays [1], the derivation and realization of the integration method for
x-ray microscopy [2–4], the comparison of both reconstruction methods [5] and
the application to elemental concentration reconstruction in x-ray fluorescence
microscopy [6].

With Ch. 4 we present a novel method of phase contrast imaging for scan-
ning microscopy. By employing the principle of reciprocity we demonstrate
the first realization of Zernike phase contrast in a scanning microscope. We
discuss the basic principles of the technique and show first experimental re-
sults, followed by some initial applications to biological samples. The complete
chapter represents original work, of which parts are currently under review [7];
a detailed treatment of the biological applications will follow in the future.

In Ch. 5 we address the imaging artifacts common for Zernike type phase
contrast, which are due to the nature of how the contrast is formed. By
realizing the equivalence of full-field and scanned imaging as a result of the
principle of reciprocity, it is possible to apply the filtering method of Ch. 3 to
both scanning and full-field Zernike data and remove the artifacts by means
of image reconstruction. A brief discussion of Zernike artifacts is followed by
the necessary consideration to apply the filtering method to Zernike images.
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The chapter concludes with initial and preliminary reconstruction results, as
the advances have been recent. The original work includes the content of the
whole chapter [8].

The Appendix includes definitions, theorems and detailed derivations.

1.2 X-rays and Their Interaction with Matter

X-rays are part of the electromagnetic spectrum of radiation with wavelengths
ranging from 10 to 0.01 nm, or respective energies of 100 eV to 100 keV.

When using X-rays for imaging applications a common classification is done
as follows:

• Soft X-rays: E <∼ 1 keV; typical attenuation lengths of a few µm in
biological tissue;

• Medium-energy X-rays: 1 keV <∼ E <∼ 5 keV; attenuation length of
tens to hundreds of µm;

• Hard X-rays: 5 keV <∼ E <∼ 20 keV; attenuation length of mm and
stimulated x-ray fluorescence for a wide range of elements (see Sec. 1.2.4);

Energies above 20 keV are rarely used for x-ray microscopy applications.

1.2.1 Scattering Cross Sections

The primary interactions mechanisms of X-rays with matter in the range of
photon energies considered in this work are absorption, elastic (coherent or
Rayleigh) scattering and inelastic (Compton) scattering [9].

In the case of absorption, an X-ray photon is fully absorbed and ejects a
photo-electron from the atom in the material leaving the atom ionized; the
successive filling of the vacancy results in photo-emission of a characteristic
wavelength.

In elastic scattering the incident photon is deflected while preserving its
initial energy.

In inelastic scattering the energy and momentum between the photon and
the scattering electron is preserved. Part of the incident photon energy and
momentum are transferred to the electron, which scatters the photon off at an
angle with reduced energy.

The probability that an incident photon interacts with an atom in a sample
material is described by its total cross section σ, which can effectively be
interpreted as the target area as seen by the photon. In Fig. 1.1 we show

3



the cross sections for the above named interactions mechanisms of X-rays
with elemental carbon. Up to 103 eV incident x-ray energy, photo-electric
absorption is the dominating process. At an energy of 284 eV we can see the
characteristic K-shell absorption edge of carbon in the σab cross section. When
an incident photon exceeds the binding energy of an atomic level or shell, the
electrons from that shell can be ejected resulting in a sharp increase of the
absorption cross section. The study of absorption edges via spectroscopic
methods provide rich information about a samples chemical structure, but are
not considered in this work. We can see that Compton scattering is negligible
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Figure 1.1: X-ray interaction cross sections with elemental carbon; figure re-
produced from Kirz et al. [10].

in the soft X-ray region, whereas for hard X-rays, which are exclusively used
in this work, it becomes more relevant for the total interaction cross section.
However, it can be shown [11] that the effects of Compton scattering for x-ray
transmission imaging are negligible. By considering Compton’s formula for the
wavelength shift through inelastic scattering [12] we can see that the relative
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energy change of the scattered photon is given by

∆E

E
≈ −∆λ

λ
≈ E

mc2
θ2

2
, (1.1)

where θ is the scattering angle. Considering the largest scattering angles in
transmission x-ray imaging, given by the respective opening angle of the lenses
used (see Sec. 1.3.3), are on the order of 1 to 50 mrad, the respective relative
energy changes are on the order of 10−8 to 10−5. Hence, the energy change
in the forward direction is so small that one cannot tell the difference from
elastic scattering. Therefore, we will not further consider Compton interaction
for the remainder of this work.

1.2.2 Atomic Scattering Factors and Complex Index of
Refraction

The complex index of refraction n for X-rays, based on the high frequency
limit of classical dispersion theory, is commonly written as [13]

n = 1− δ − iβ = 1− na re

2π
λ2(f1 + if2) , (1.2)

where na is the atom number density and re the classical electron radius. The
complex oscillator strength or atomic scattering factor is given by (f1 + if2).
Based on this the real (δ) and imaginary (β) parts of the index of refraction
are given by

δ =
nareλ

2

2π
f1, and (1.3)

β =
nareλ

2

2π
f2 . (1.4)

These scattering factors are related to the cross sections for absorption and
elastic scattering by [10]

σabs = 2reλ f2, and (1.5)

σelastic =
8

3
πr2

e |f1 + if2|2 , (1.6)

which is valid for energies <∼ 1 keV. For higher energies the scattering factors
will depend on the scattering angle and relationships will be more complicated.
The presented work only considers the forward direction, because we only
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consider transmission imaging.
In Fig. 1.2 we show the energy dependence of scattering factors for carbon

and gold [14]. The real part of the atomic scattering factor f1, which describes
the phase shift induced on the X-ray wave field, varies slowly except near
absorption edges. On the other hand the imaginary part f2 describing absorp-
tion tends to decrease with the second power of the wavelength (λ2). Hence,
δ scales as λ2, while β scales at λ4. This has very practical consequences for
the importance of contrast mechanisms with X-rays, as will be described in
Sec. 1.4.1.

Wavelength (nm)
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f 1
, 
f 2

10
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1
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100001000100

f2

f2

f1

f1
Gold

Carbon

Figure 1.2: Atomic scattering factors for carbon and gold through data from
[14].

An important resource for tabulated values of f1 and f2 is given by Henke
et al. [14], where elements from Z = 1 up to 92 over an energy range of
50 eV to 30 keV are considered. The tabulated values are valid for the forward
direction and away from absorption edges. While f2 is measured directly by
absorption, the values for f1 are determined via the Kramers-Kronig relations
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(see e. g. Attwood [9])

f1(ω) = Z − 2

π
PC

∫ ∞

0

du
uf2(u)

u2 − ω2
(1.7)

and

f2(ω) =
2ω

π
PC

∫ ∞

0

du
f1(u)− Z
u2 − ω2

, (1.8)

where ω is the radial frequency of the wave field, Z the number of electrons per
atom and PC indicates to take the principal part of the integral after Cauchy.
This means that in fact f1 and f2 are not independent from each other. If one
is known across the whole energy range, the other can be deduced from these
relations.

For compound materials consisting of different elements the atomic scat-
tering factors are replaced by a weighted average of the constituents.

1.2.3 Wave Propagation and Specimen Function

We will describe the propagation of X-rays by considering a scalar wave field ψ.
A plane wave with amplitude ψ0 in the temporarily stationary case propagating
in free space along the z-direction is written as

ψ(z) = ψ0 exp(−ikz), (1.9)

where k = 2π/λ is the wave number. In a homogeneous material with index
of refraction n the propagating wave is given by

ψ(z) = ψ0 exp(−inkz) . (1.10)

With the definition of the index of refraction from Eq. 1.2 this can be expanded
as

ψ(z) = ψ0 exp(−ikz)︸ ︷︷ ︸
vacuum propagation

exp(+iδkz)︸ ︷︷ ︸
phase shift

exp(−βkz)︸ ︷︷ ︸
amplitude attenuation

, (1.11)

where we identify the first term as the free space propagation, the second term
represents the phase shift imposed onto the wave field by the material and the
third term is the amplitude attenuation. In Fig. 1.3 we compare free space
propagation with the case of traversing a material with refractive index n and
thickness t. Relative to the propagation in vacuum the wave field is attenuated
and phase shifted. Therefore, it is suggestive to describe the interaction of X-
rays with a sample by a multiplicative transmission function h which effects
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λvac

∆φmaterial with n = 1 − δ − i β

t 

λvac
λvac λmat

Figure 1.3: Wave propagation through vacuum and material with index of
refraction n = 1 − δ + i β. The wavelngth inside the material is given by
λmat = λvac/(1− δ).

an incoming wave field ψin by

ψout = hψin , (1.12)

to produce and outgoing wave field ψout, where the specimen function is given
by

h = exp(−βkt) exp(+iδkt) . (1.13)

This will serve as a basic relation for the remainder of this work when describ-
ing the influence of samples onto the x-ray wave field. The quantity h is called
the specimen (transmission) function.

1.2.4 X-ray Fluorescence

A significant application of the phase contrast techniques presented in this
work is in the context of x-ray fluorescence microscopy; therefore, we will have
a brief look at the basic principles of fluorescence. When an x-ray photon
is absorbed it will knock-out an electron from one of the absorbing atom’s
orbitals. In order for this to happen, the x-ray energy needs to be larger than
the binding energy of the corresponding electron. Many of elements core-
shell binding energies are of comparable or lower magnitude than hard x-ray
energies. The ejected electron will have a kinetic energy of the absorbed photon
energy minus its binding energy. This photo-ionization process is shown in
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Fig. 1.4(a).
The atom with this vacancy will relax back into its ground state through

transition of an electron from an higher orbital into the vacant state. The
successive release of energy will happen through one of two processes: in fluo-
rescence the energy is released in form of a photon of the corresponding energy
(Fig. 1.4(b)); instead the the energy can be transferred to a different electron,
which is ejected from the atom as an Auger electron (Fig. 1.4(c)). The prob-

Nucleus
+Ze

Photon 
(hν)

Photoelectron
(E = hν - EB)

K

M

L

Nucleus
+Ze

Fluorescent photon 
hν = E

L
 - E

K

K

M

L

Nucleus
+Ze K

M

L

a

b c
Auger
electron

Figure 1.4: Absorption and emission process illustrated in a simplified atomic
model. (a) Photo-ionization, (b) fluorescence and (c) Auger process.

ability that the relaxation occurs through the process of fluorescence and not
the Auger process is called fluorescence yield. In Fig. 1.5 it can be seen that
the yield is low for low-Z elements and high for high-Z elements. Figure 1.6
shows a similar plot of the yield in terms of photon energy below 10 keV, in-
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dicating also specific elemental K and L shell photo-ionization energies. From
both plots we can see that the yield for light elements, which mainly consti-
tute biological matter such as carbon, nitrogen and oxygen, are low, making
fluorescence detection of such structures challenging.
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Figure 1.5: Fluorescence yields for K, L and M shells as a function of atomic
number Z

The wavelength of the fluorescent lines observed from a given element is well
defined by the energy states of the atom and the selection rules for successive
transitions (see e. g. [9]). Tabulations of these values are available, such as
in the X-ray Data Booklet [15]. In x-ray fluorescence microscopy the sample
is irradiated with an x-ray beam and the emitted fluorescence spectrum is
collected with an energy dispersive detector. The elemental content of the
sample is then determined via the emission spectrum and the known and
tabulated values for emission lines.

1.3 X-ray Microscopy

Microscopy with X-rays is a complementary technique to imaging with visible
light and electrons. Due to its shorter wavelength, X-rays have the potential
for higher spatial resolution compared to visible light. The current state-of-
the-art resolution achieved with X-rays lies in the 10 nm range. At the same
time, novel techniques [16] in visible light microscopy are pushing its resolution
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Figure 1.6: Fluorescence yields of K and L shells as a function of photon
energy; indicated are the respective elemental photo-ionization energies.
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barrier beyond its diffraction limit. Electron microscopy achieves superior res-
olution down to 50 pm but requires thin samples due to the small penetration
depth of electrons and commonly requires staining or labeling methods for
biological structure visualization. In comparison, x-ray microscopy can image
thick specimens (e. g. whole cells) in states much closer to their natural en-
vironment. Furthermore, x-ray fluorescence without staining or labeling and
the ease of energy tunability for spectroscopic imaging give x-ray microscopy
a unique role compared to other microscopy techniques.

The field of x-ray microscopy using synchrotron radiation and zone plate
optics was established in the 1970s and 80s. At Göttingen University the
group of Günther Schmahl pioneered the full-field x-ray microscope [17], while
at Stony Brook University the group of Janos Kirz developed the scanning x-
ray microscope [18, 19]. Today many synchrotrons operate x-ray microscopes
from the soft to the hard x-ray range, with many applications in the biological,
medical, environmental and materials sciences (see Howells et al. [20] for a
recent overview).

1.3.1 Radiation Sources

A large number of dedicated x-ray facility storage rings operate around the
world1 and more are being built. While synchrotrons continue to thrive, devel-
opments of laboratory based sources and techniques have emerged that have
the potential to complement the heavily over-subscribed synchrotron facili-
ties. In fact, parts of the data presented in this work have been obtained via
a commercially available laboratory x-ray full-field microscope [21]. All other
experimental data for this work has been collected at the Advanced Photon
Source at Argonne National Laboratory.

At synchrotron facilities x-ray microscopes either utilize radiation produced
by bending magnet sources (high flux of photons per second, per bandwidth,
per solid angle), or undulator sources (high brightness, which is flux per source
area; hence improved coherence properties of the radiation). The book of
Attwood [9] gives a description of the sources characteristics for soft X-rays
and Mills [22] for hard X-rays.

1.3.2 X-ray Microscopes

Two types of transmission x-ray microscopes are routinely used today:

1. the full-field transmission x-ray microscope (TXM)

1see www.lightsources.org
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2. the scanning transmission x-ray microscope (STXM) .

In Fig. 1.7 in illustration of the basic imaging principle is shown. In TXM the
sample is illuminated by a condenser lens and a magnified image is formed by
an objective lens on a two-dimensional pixellated x-ray detector. TXMs work
well with incoherent illumination and therefore can operate at bending magnet
source beamlines. They are ideally suited for fast acquisition of images with
exposure times in the range of seconds, which makes them also well suited for
tomographic imaging applications. However, the field-of-view is limited and
the radiation dose delivered to the sample is high for good quality images due
to the inefficient objective lens collecting the sample information. Depending
on the resolution of the zone plate and the energy used, typical efficiency values
for zone plates range from 0.6% to 30%. In STXM the x-rays are focussed by

STXM: scanning transmission x-ray microscope

TXM: transmission x-ray microscope

bending
magnet
source

sample

condenser
zone plate

objective
zone plate

pixelated
detector

undulator
source with

monochromator

sample

objective
zone plate

detector

bright
field
cone

Figure 1.7: Schematic of basic imaging principals for TXM and STXM micro-
scopes.

an objective lens to a small spot, through which the sample is raster scanned.
The transmission signal is collected for each scan point and forms the image.
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In order for the zone plate to create a small spot and therefore deliver good
spatial resolution, it needs to be illuminated coherently, which is why STXM
are commonly operated at undulator beamlines. Image acquisition is slower
in STXM due to the raster scan approach; however, the field-of-view is easily
variable and the delivered dose to the sample is significantly reduced as the
majority of the radiation interacting with the sample is collected in the process,
merely limited by the detector size. An extension of STXM is the scanning x-
ray fluorescence microscope (SXFM), where off the optical axis the emitted x-
ray fluorescence spectrum is collected for each raster scan point, which enables
the elemental mapping of the specimen. The STXM and the SXFM can be
well combined into one instrument and can deliver complementary information
about the specimen.

1.3.3 X-ray Focussing Optics - Fresnel Zone Plates

Both the TXM and the STXM rely on the use of x-ray lenses. Common x-ray
focussing and lens optics are reflective, refractive and diffractive optics; for an
overview see Howells et al. [20]. Not all of them are image forming lenses
as required for the described microscopes and they come with various sets of
issues. All experiments described in this work use diffractive Fresnel zone plate
optics, of which in the following we will summarize their properties.

A Fresnel zone plate is a circular diffraction grating as depicted in Fig. 1.8.
In order to achieve constructive interference at the lens focus, the path dif-
ference to the focus from radiation passing through adjacent open zones has
to be λ times the diffraction order. Although higher diffractive orders can be
used in practice most common is the first order m = 1. The properties of
a zone plate are fully specified by three parameters2: diameter D, outermost
zone width drN and the wavelength λ. Other quantities of interest can then be
derived based on these parameters and are given in the following: the number
of zones N

N =
D

4 drN
, (1.14)

the focal length f

f =
D drN
λ

, (1.15)

and the numerical aperture

NA = αNA =
λ

2 drN
. (1.16)

2Not considering spherical aberration corrections, which depend on object position.
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Figure 1.8: Schematic of a Fresnel zone plate in front and cross section view.
Alternating transparent and opaque zones are arranged such that the path
difference between adjacent rings lead to constructive interference at the focal
spot.
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It can be shown that the transverse resolution for a diffraction limited focal
spot is

δt = 1.22 drN , (1.17)

which requires a uniform plane wave illumination of the zone plate. Note
that the outermost zone width alone specifies the diffraction-limited transverse
resolution, independent of the wavelength as long as drN >> λ. The intensity
distribution in the focal plane is referred to a point spread function. In fact,
the wave field in the focal plane in case of a plane wave illumination os given
by the Fourier transform of the lenses aperture (see [23]). The longitudinal
resolution along the optical axis is given by

δl = ± λ

2 (NA)2 = ±2 (drN)2

λ
. (1.18)

Zone plates are chromatic optics (the focal length is inversely proportional
to the wavelength) and therefore require monochromatic illumination. Specifi-
cally, the monochromaticity must be higher than the number of zones to avoid
chromatic blurring:

λ

∆λ
> N . (1.19)

Since the zone plate is a diffractive optic, the largest part of the illumination
passes through undiffracted. In order to isolate the first order diffracted focus
and arrangement of central stop and order-sorting-aperture (OSA) has to be
used (see Fig. 1.9.)

1.3.4 Image Contrast Mechanism with X-rays

In order to visualize the structure and features of a specimen we rely on differ-
ent methods of image contrast. In the following we briefly detail the different
contrast mechanism for microscopy with X-rays.

Absorption Contrast

From Eq. 1.11 we know that the intensity of X-rays after propagating through
a material with thickness t and index of refraction n (Eq. 1.2) is given by the
modulus squared of the wave amplitude

I(t) = |ψ(t)|2 = I0 exp(−2βkt) . (1.20)
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Figure 1.9: Isolation of first order focus through an arrangement of central stop
(here incorporated in the zone plate) and an order-sorting-aperture (OSA).
The required distance from the focus to the OSA determines the minimum
OSA diameter, and successively the diameter of the central stop. The central
stop should not cover more than half of the zone plates diameter in order to
not degrade to focal spot quality negatively.
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For practical purposes we define the attenuation coefficient µ

µ ≡ 2βk =
4πβ

λ
. (1.21)

The inverse attenuation coefficient is referred to as the 1/e penetration depth
of wavelength λ with optical constant β. When measuring the absorption
in transmission imaging, the specimen thickness is not known in most cases.
Instead the optical density is measured and is defined as

OD = − ln

(
I

I0

)
, (1.22)

where I0 is the intensity incident on the specimen and I is the intensity af-
terwards. Comparison of the previous equations yields for the optical density
OD = µ t.

A collected absorption image reflects the specimen’s absorption at each
point by

OD(r) = − ln

(
I(r)

I0

)
= µ(r) t(r) ; (1.23)

the contrast is therefore due to thickness variations and variations in the at-
tenuation coefficient. For thick specimens, where different materials lie on top
of each other, the transmission contrast will yield a projection through the
specimen. If z is the direction of the optical axis, one will measure

OD(r) =

∫ t

0

dz µ(r, z) . (1.24)

Phase Contrast

Instead of mapping the absorption of the specimen, one can also measure its
phase shift

∆φ = δ(r) · k · t(r) (1.25)

which is imposed onto the incident x-ray wave field through the specimen as
a function of specimen position r. For thick specimens, one measures

∆φ =

∫ t

0

dz δ(r, z) k (1.26)

in analogy to projected absorption. As x-ray detectors are sensitive only to
the intensity of the wave, and not to its phase, one must use indirect methods
that turn phase differences into an intensity variatons. Phase contrast is the
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key topic of this work and we will show different methods for imaging in phase
for full-field and scanning microscopes in the following chapters.

Fluorescence

The emission of fluorescence photons and their detection can be used to obtain
element specific images or maps of the specimen. The contrast in this case
comes from the identification of the elemental content of the specimen through
the collected fluorescence spectra. Note that in order to get a two dimensional
image of the element content the fluorescence needs to be collected in a raster
scanning way in order to attribute spatial location to the measured fluorescence
photons.

Dark Field

Instead of collecting the transmitted intensity through the specimen, in dark
field imaging only the total scattering signal is collected. Small structures will
scatter the incident radiation at large angles outside of the directly transmitted
beam mainly contributing to the dark-field signal. Sensitivity is therefore given
to structures that are small in size and edge features of specimen.

Other Modes of Contrast

A large set of other contrast modes is available for the visualization of specimen
features and characteristics, such as spectroscopy, labeling, etc., but these are
beyond the scope of this work.

1.4 Phase Contrast with X-rays and its Ap-

plications

1.4.1 Phase Versus Absorption Contrast

As we have seen in the previous section, transmission x-ray microscopes gener-
ally image the spatial distribution of the refractive index of the specimen;
that is, either its imaginary part in absorption contrast, or its real part in
phase contrast. Absorption contrast is generally straightforward to measure
due to the intensity sensitivity of available detectors. By comparison, phase
contrast requires indirect methods, which turn phase differences somehow into
detectable intensity differences. Why is it then still useful to measure phase
given the additional hurdles?
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As we have seen in Sec. 1.2.2 and Fig. 1.2 the real part of the atomic scat-
tering factor (connected with phase contrast) remains approximately constant
over a wide range of photon energies, while the imaginary part responsible for
absorption contrast falls off with the square of the wavelength. Hence phase
is the dominating contrast mechanism for transmission imaging at hard x-ray
energies. Figure 1.10 compares the number of photons required to visualize
a 50 nm protein structure in absorption and differential phase contrast (see
Sec. 3.1.2) at a signal-to-noise ratio of 5 (Rose criterion [24]), with far fewer
photons and therefore dose delivered to the sample for phase contrast. One
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Figure 1.10: Number of photons to visualize a 50 nm protein structure in
either air of water as a function of photon energy in respective contrast modes
of absorption and phase. Figure reproduced from [25].

can estimate in a simplified model that the number of photons to resolve a
structure at the same signal-to-noise ratio in absorption NAbs versus phase
contrast NPC scales as [25]

NPC

NAbs

=
β2

δ2
, (1.27)

where in the hard x-ray regime for typical specimens this ratio ranges from
10−2 to 10−6; giving phase contrast a clear advantage.
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1.4.2 Methods of Phase Contrast

The first phase contrast measurements in lens-based x-ray microscopes were
done by Schmahl et al. [26], using the Zernike technique [27] in a full-field mi-
croscope. More methods, including the Nomarski, interferometric, holographic
and propagation-based methods, are described in a recent review by Momose
[28]. In scanning systems, there have been demonstrations with configured
detectors as described above [29, 30], a wavefront profiler in combination with
a slit detector [31–33], aperture alignment [34], and the use of offset zone plate
doublets [35].

The presented work will consider phase contrast methods in scanning mi-
croscopy based on segmented detectors and Zernike phase contrast for full-field
and a newly developed scanning method [7].

1.4.3 Stony Brook Segmented Detector for Phase Con-
trast

It turns out that a low level of spatial sensitivity to the transmitted inten-
sity in a scanning microscope is enough to obtain phase contrast images.
Such a detector system for soft and hard X-rays has been developed at Stony
Brook University in the past [11, 36]. Figure 1.11 shows a photograph of the
complete detector system, which since has found applications across the syn-
chrotron community at several facilities including the Australian Synchrotron
(Melbourne, Australia), NSLS (Brookhaven, USA), APS (Agonne, IL) and
SOLEIL (Paris, France).

The segmented structure of the detector builds the basis for the qualitative
and quantitative phase contrast approaches discussed in Ch. 3. Figure 1.12
shows three of the segmentation geometries available for this detector system.
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Figure 1.11: Stony Brook segmented detector system.
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Figure 1.12: Segmented detector geometries; (a) 8, (b) 9 and (c) 10 segment
structure.
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Chapter 2

Image Formation and
Reciprocity
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This chapter deals with the treatment of image formation in the two major
direct imaging systems: scanning and full-field microscopes. First, the wave
field propagation employed in the successive treatment is discussed, resulting
in the main propagation expressions for wave fields between two planes (Eq.
2.5). A detailed description of the image formation process in the scanning
and full-field imaging systems is then laid out. We conclude the chapter by
highlighting the equivalence of both imaging systems, which will be of further
importance for the latter part of this work.

2.1 Wave Field Propagation

To propagate wave fields from one plane to another we use the Fresnel-Kirchhoff
diffraction integral [23, 37]. Figure 2.1 illustrates the coordinate space for the
propagation from the plane with coordinates r1 to a parallel plane r2 a dis-
tance z away. We consider the diffraction of monochromatic light by a finite

r1[ ] r2[ ]

r1

r2

r

a

(n;r)

z

Figure 2.1: Wave field propagation between two planes.

aperture Σ in an infinite opaque screen. The wave field ψ2 in the plane specified
by r2 due to a wave field ψ1 and the aperture Σ is given by the
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Fresnel-Kirchhoff / Rayleigh-Sommerfeld diffraction formula

ψ2(r2) =

∫

Σ

d2
r1

e−ikr

iλr
cos(n, r)ψ1(r1) , (2.1)

where r =
√
z2 + (r2 − r1)2 is the distance between a point in the aperture

and the observation plane and (n, r) is the angle between the normal to the
surface Σ and the distance vector r. Note, that the choice of sign in the expo-
nential term is a matter of convention with respect to the traveling direction
one chooses for the propagating fields. Furthermore, it is common to consider
an integral with infinite limits, where it is understood that ψ1 is identical to
zero outside of the aperture. The maximum linear extend of the aperture is
denoted by a.

Initial approximations

Some initial approximations to the above diffraction integral can be made if
we assume that the distance z between aperture and observation plane is much
greater than the maximal linear extend a of the aperture. Furthermore, we
will assume that in the observation plane only a finite region about the optical
axis is of interest, and that z is also much greater than the maximal linear
dimension of this region. With these assumptions the vectors n and r will be
nearly parallel and we can readily conclude cos(n, r) ≈ 1.

Similarly, these conditions can be applied to the distance r in the denomi-
nator, which will not differ much from z, so that we can simplify the weighting
function of Eq. 2.1 to be

e−ikr

iλr
cos(n, r) ≈ e−ikr

iλz
. (2.2)

Note, that the distance r in the exponent cannot be simply replaced by z, as
it is multiplied with a large number k, and consequently would lead to rapidly
varying phase errors exceeding 2π rad.

Fresnel approximation

Continuing simplifications can be obtained by considering specific approxima-
tions to the quantity r in the exponent, which is given by

r =
√
z2 + (r2 − r1)2 = z

√

1 +

(
r2 − r1

z

)2

. (2.3)
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Performing a binomial expansion of the square root1 and assuming that an
adequate representation is given through the first two terms we can write

z

√

1 +

(
r2 − r1

z

)2

≈ z

[
1 +

1

2

(
r2 − r1

z

)2]
(2.4)

which is commonly referred to as the Fresnel approximation. If the conditions
are fulfilled for this approximation to be valid, one is said to be in the Fresnel
regime of diffraction.

The resulting expression of wave propagation in the Fresnel regime is

ψ2(r2) =
e−ikz

iλz

∫
d2

r1 ψ1(r1) exp

(−ik

2z
(r2 − r1)

2

)
. (2.5)

The critical part of this approximation is that we replace spherical wavelets
with quadratic surfaces. For this to be valid, certain margins have to be
imposed on the sizes of the aperture, propagation distance and observation
region. A sufficient condition is

z3 >>
π

4λ
Max[(r2 − r1)

2]2 , (2.6)

which implies that the contribution to the next higher order term in the ex-
pansion is much less than 1 rad; for a more detailed discussion see Born and
Wolf [37] or Goodman [23]. As a general, statement one can say that the
considered field-of-view needs to be small for the Fresnel approximation to be
applicable.

Through writing Eq. 2.5 in a more explicit way we can identify a few more
characteristics of the expression

ψ2(r2) =
e−ikz

iλz
exp

(−ik

2z
r2

2

)∫
d2

r1 ψ1(r1) exp

(−ik

2z
r2

1

)
exp

(
ik

z
r2r1

)
,

(2.7)
where we can see that aside from pre-factors, ψ2 corresponds to a Fourier
transform of the function ψ1(r1) exp (−ikr2

1/(2z)) with frequency coordinates
f 2 = r2/(λz). Frequency coordinates such as f 2 in essence represent a wave-
length normalized diffraction angle and are usually referred to as spatial fre-
quencies; these quantities are often used in two-dimensional image analysis, as
they provide a description of the diffraction that is independent of the obser-
vation plane. However, note that the limiting conditions for the Fresnel and
other approximations need to be fulfilled; one cannot just simply consider any

1Expansion:
√

1 + x = 1 + 1
2x− 1

8x2 + ... |x| < 1
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specific plane.

Fraunhofer approximation

From Eq. 2.7 we can see that further simplifications can be applied when
considering more rigorous restrictions than those of the Fresnel approximation.
If the stronger Fraunhofer assumption is satisfied

z >>
kMax[r2

1]

2
, (2.8)

the quadratic phase factor of the integrand in Eq. 2.7 can be neglected to yield
the Fraunhofer approximation of the diffraction integral

ψ2(r2) =
e−ikz

iλz
exp

(−ik

2z
r2

2

)∫
d2

r1 ψ1(r1) exp

(
ik

z
r2r1

)
. (2.9)

Besides pre-factors the resulting wave field ψ2 is the direct Fourier transform
of the wave field within the aperture ψ1 with spatial frequencies f 2 = r2/(λz).
The region where this expression describes the diffraction appropriately is
called the Fraunhofer or far-field regime.

Note, that the conditions required for Eq. 2.8 to be fulfilled can be quite
severe; however, Fraunhofer diffraction can be observed at distances closer
than implied by Eq. 2.8 if the wave field illuminating the aperture is spherically
convergent. An example of this will be seen in Sec. 2.2 when considering the
image formation in a scanning microscope.

Fresnel number

The Fresnel number F provides a measure to identify the regime of the ob-
served diffraction; it is given by

F =
a2

λz
, (2.10)

where a is the maximal linear extend of the considered aperture. The classifi-
cation is done as follows [37]:

F >∼ 1 −→ Fresnel / near-field regime

F << 1 −→ Fraunhofer / far-field regime
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2.2 Scanning Image Formation

We now turn our attention to the image formation process in a scanning trans-
mission x-ray microscope (STXM). Figure 2.2 shows a schematic of the optical
arrangement in the microscope. A point-like source illuminates the zone plate.
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Figure 2.2: Schematic of scanning transmission x-ray microscope. Distances
between the respective planes, as well as the according coordinates, are indi-
cated.

In order to obtain a diffraction limited spot size and therefore resolution of
the microscope, the source must be sufficiently small and far away from the
objective zone plate, so that the lens is illuminated with a high degree of spa-
tial coherence [38]. The objective lens then focuses the radiation to a small
spot through which the sample is raster scanned. The transmitted intensity
for each scan displacement (rs) is recorded in a far-field plane from the focus
with a detector having a response R. The central stop in front of the objective
can be considered part of the lens.

The objective lens is a zone plate with diameter Do and outermost zone
width drN and hence a spatial cut-off frequency f cut−off

o = 1/(2 drN). To isolate
the first order focus (see Sec. 1.3.3) a central stop has to be used, which has a
diameter Dstop; its corresponding cut-off in spatial frequency space will then be
f cut−off

stop = (Dstop/Do) f
cut−off
o . The objective aperture is described by having a
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real pupil function

Po(f) =






0 : |f | < f cut−off
stop

1 : f cut−off
stop ≤ |f | ≤ f cut−off

o

0 : |f | > f cut−off
o

. (2.11)

The zone plate is assumed to be operated in its first diffraction order, where
its focal length is given by fo. If the zone plate consists of enough zones
its influence on the wave field can be considered to that of a thin lens and
therefore is described by a quadratic phase factor (see [9]), so that the total
transmission function of the zone plate is given by

t(r1) = Po(r1) exp

(
ik

2fo
r2

1

)
. (2.12)

Wave propagation to detector plane

In order to propagate wave fields between planes in the following, we will
use the Fresnel approximation of the diffraction integral of Eq. 2.5; note that
constant phase factors preceding the integrals will be left out as they will not
contribute to the final image.

We will assume the point source to be monochromatic and of amplitude
ψ0 at a point on the optical axis a distance d0 away from the zone plate; its
spatial distribution is described by a Delta-function ∆(r0). Propagation of
this wave field to the objective lens and multiplication with the zone plate’s
transmission function (Eq. 2.12) gives for the wave field ψ′

1 exiting the zone
plate

ψ′
1(r1) =

1

iλd0

∫
d2

r0 ψ0∆(r0) exp

(−ik

2d0
(r1 − r0)

2

)
Po(r1) exp

(
ik

2fo
r2

1

)
.

(2.13)
The wavefield ψ2 in the focal plane a distance d1 away is then given by

ψ2(r2) =
−1

λ2d0d1

∫
d2

r1

∫
d2

r0 ψ0∆(r0) exp

(−ik

2d0
(r1 − r0)

2

)

Po(r1) exp

(
ik

2fo

r2
1

)
exp

(−ik

2d1

(r2 − r1)
2

)
.

(2.14)

Satisfying the lens law
1

d0

+
1

d1

=
1

fo

(2.15)
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will cancel the quadratic phase factors in r1 and yield

ψ2(r2) =
−1

λ2d0d1

exp

(−ik

2d1

r2
2

) ∫
d2

r1

∫
d2

r0 ψ0∆(r0)Po(r1)

exp

(−ik

2d0
r2

0

)
exp

(
ik

(
r2

d1
+

r0

d0

)
r1

)
.

(2.16)

Now we perform the integral over r0 via the Delta-function and get

ψ2(r2) =
−1

λ2d0d1

ψ0 exp

(−ik

2d1

r2
2

) ∫
d2

r1 Po(r1) exp

(
ik

d1

r1r2

)
, (2.17)

which is the wave field in the focal plane.
The phase term quadratic in r2 can be left out given the following con-

sideration. With a zone plate of outermost zone width drN and consequently
a Rayleigh resolution of 1.22 drN, there will be no noticeable optical ampli-
tude at distances exceeding approximately five Rayleigh resolution lengths.
Therefore, one can limit the consideration within the [r2] plane to distances
|r2| < 5× 1.22 drN and the absolute value of the phase term then becomes

φ = 25 (1.22)2 dr2
N

π

λd1

. (2.18)

If we take typical experimental values for hard X-rays: drN = 100 nm at a
wavelength of λ = 0.121 nm (10 keV), then d1 is approximately 130 mm; the
resulting value is φ ≈ 2 × 10−3 << 1. Hence, we can neglect the quadratic
phase factor preceding the integral.

The wave field in the focal plane of the microscope is therefore

po(r2) ≡ ψ2(r2) =
−1

λ2d0d1
ψ0

∫
d2

r1 Po(r1) exp

(
ik

d1
r1r2

)
, (2.19)

which is often referred to as probe function po. Notice that the probe function
in essence is the Fourier transform of the objective pupil function

po(r2) = C F−1
r2
{Po(f1)} , (2.20)

with spatial frequency f 1 = r1/(λd1) and C some constant. In the focal plane
the probe function interacts with the specimen function h and the wave field
exiting the specimen is thus given by (see Sec. 1.12)

ψ′
2(r2) = h(r2) po(r2 − rs) , (2.21)

30



where rs is the scan displacement of the probe with respect to specimen. For a
detailed discussion of this expression to be valid we refer to the supplementary
material of Thibault et al. [39]. The wave field is then propagated a distance
d2 to the detector plane:

ψ3(r3; rs) =
i

λ3d0d1d2
ψ0 exp

(−ik

2d2
r2

3

)

∫
d2

r2 h(r2) po(r2 − rs) exp

(−ik

2d2
r2

2

)
exp

(
ik

d2
r2r3

)
;

(2.22)

similarly to Eq. 2.17 we can argue to neglect the quadratic phase factor in
r2 (the distance d2 is usually a multiple of d1, making the value of Eq.2.18)
even smaller). The quadratic phase factor in r3 preceding the integral can be
disregarded, as in the end we are only interested in the intensity of the wave
field in the detector plane, where then this phase factor will be canceled.

We have now arrived at the answer of interest, the wave field in the micro-
scopes detection plane

ψ3(r3; rs) =
iψ0

λ3d0d1d2

∫
d2

r2 h(r2) po(r2 − rs) exp

(
ik

d2
r2r3

)
, (2.23)

which is essentially the Fourier transform of the wave field exiting the specimen

Ψ3(f 3; rs) = C F−1
f3

{h(r2) po(r2 − rs)} , (2.24)

with f 3 = r3/(λd2) and C some constant; we write Ψ3 to indicate its formu-
lation in terms of spatial frequency, but there is no substantial difference to
ψ3.

Intensity in detector plane

In order to consider the intensity caused by Eq. 2.23 in the detector plane we
will expand its expression by inserting the probe function po

ψ3(r3; rs) =
iψ0

λ3d0d1d2

∫
d2

r2

∫
d2

r1 h(r2)Po(r1) exp

(
ik

d2
r2r3

)

exp

(
ik

d1

r1(r2 − rs)

)
,

(2.25)
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The intensity measured with a detector that has a response function R(r3) is
given by

I3(rs) =

∫
d2

r3R(r3) |ψ3(r3; rs)|2

=
|ψ0|2

λ6d2
0d

2
1d

2
2

∫
d2

r3R(r3)

∣∣∣∣
∫

d2
r2

∫
d2

r1 h(r2)Po(r1)

exp

(
ik

d1
r1(r2 − rs) +

ik

d2
r2r3

)∣∣∣∣
2

,

(2.26)

We can now further simplify this by expressing the specimen function in terms
of its spatial frequency content

h(r2) =

∫
d2

f 2H(f2) exp

(
2πif 2 r2

)
. (2.27)

Inserting this into the intensity yields

I3(rs) =
|ψ0|2

λ6d2
0d

2
1d

2
2

∫
d2

r3R(r3)

∣∣∣∣
∫

d2
r2

∫
d2

r1

∫
d2

f 2H(f2)Po(r1)

exp

(
ik

(
r1

d1

+
r3

d2

+ λf2

)
r2

)
exp

(
−ik

r1

d1

rs

)∣∣∣∣
2

;

(2.28)

integration over r2 will yield a Delta-function

∫
d2

r2 exp

(
ik

(
r1

d1

+
r3

d2

+ λf 2

)
r2

)
= |λ2d2

1|∆
(

r1 +
d1r3

d2

+ λd1f 2

)
,

(2.29)
with which we can perform the integral over r1. The intensity then will be

I3(rs) =
d2

1|ψ0|2
λ2d2

0d
2
2

∫
d2

r3R(r3)

∣∣∣∣
∫

d2
f 2H(f2)Po

(
d1

(
λf2 +

r3

d2

))

exp

(
2πif 2rs

)
exp

(
ik

r3

d2
rs

)∣∣∣∣
2

,

(2.30)

where the last phase factor containing r3 will cancel out, as it does not depend
on the integration over f2 and stands inside the absolute value. Now we
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expand the absolute value to yield the final result

I3(rs) =
d2

1|ψ0|2
λ2d2

0d
2
2

∫
d2

r3R(r3)

∫
d2

f2

∫
d2

f ′
2H(f2)H

∗(f ′
2)

Po

(
−d1

(
λf 2 +

r3

d2

))
P ∗

o

(
−d1

(
λf ′

2 +
r3

d2

))
exp

(
2πi(f2 − f ′

2) rs

)
,

(2.31)

In this form we can separate regarding an expression describing the image
formation in terms of scanning bilinear transfer functions (Bscan)

I3(rs) =
d2

1

λ2d2
0d

2
2

∫
d2

f 2

∫
d2

f ′
2 Bscan(f 2; f

′
2)H(f2)H

∗(f ′
2)

exp

(
2πi(f 2 − f ′

2) rs

)
,

(2.32)

and the optical system given by the bilinear transfer functions

Bscan(f 2; f
′
2) =

∫
d2

r3 |ψ0|2R(r3)Po

(
−d1

(
λf2 +

r3

d2

))

P ∗
o

(
−d1

(
λf ′

2 +
r3

d2

))
,

(2.33)

This result will become useful when we compare the scanning and full-field
image formation in Sec. 2.4.

2.3 Full-field Image Formation

This section discusses the image formation in a full-field transmission x-ray
microscope (TXM). In Fig. 2.3 a schematic of the optical components and
their arrangement is shown. An extended source is focussed by a condenser
zone plate to illuminate the specimen in the sample plane. An objective zone
plate images the sample onto a spatially resolving detector. Note that in
this configuration no central stop and order sorting aperture are needed for
the objective zone plate, as the 0th order light passing through the objective
will reach the image plane far away from the region where the actual image is
formed (see Fig. 2.3). The condenser is incoherently illuminated by the source,
which is desired to achieve a large field-of-view in the sample plane; see e. g.
Vogt [40] for a discussion of incoherence in the TXM.
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Figure 2.3: Schematic of full-field transmission x-ray microscope. Distances
between the respective planes, as well as the according coordinates, are indi-
cated.

The objective zone plate’s pupil function is given by

Po(f ) =

{
1 : |f | ≤ f cut−off

o

0 : |f | > f cut−off
o

, (2.34)

and acts as a thin lens with transmission function as given by Eq. 2.12, with
focal length fo. The condenser zone plate with pupil function Pc and focal
length fc does have a similar transmission function.

Wave propagation to detector plane

Wave fields between image planes will be propagated by the Fresnel approxi-
mation of the diffraction integral of Eq. 2.5, omitting constant phase factors.

The extended source will cause a wave field with amplitude distribution
ψ0(r0) in the condenser plane, the wave field exiting the condenser is given by

ψ′
0(r0) = ψ0(r0)Pc(r0) exp

(
ik

2fc
r2

0

)
. (2.35)

Since the condenser is incoherently illuminated, there is no phase correlation
in between different points within the condenser. In order to calculate the
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light distribution in the image plane a single point of the wave field exiting the
condenser is propagated through the imaging system, which successively leads
to an intensity distribution in the image plane. The total intensity distribution
due to all source points in the condenser is then obtained through integration
of the individual intensity distributions.

The wave field illuminating the sample is obtained by propagating Eq. 2.35
via the Fresnel propagator a distance fc

ψ1(r1; r0) =
1

iλfc
ψ′

0(r0) exp

(−ik

2fc
(r1 − r0)

2

)

=
1

iλfc
ψ0(r0)Pc(r0) exp

(−ik

2fc
r2

1

)
exp

(
ik

fc
r0r1

)
,

(2.36)

where we do not perform an integration over r0 in the propagator since we
are only considering one point in the incoherently illuminated condenser lens.
Note, that the actual plane the condenser focusses to is a distance dc away,
obtained by the lens law 1/d0 + 1/dc = 1/fc; however, the source distance
d0 is typically three orders of magnitude larger than the lens’ focal length,
making the above assumption valid to a very good degree. This way, the
quadratic terms in r0 between the propagator and the phase curvature of the
lens transmittance function cancel out.

Successively, this wave field is multiplied by the specimen function h to
yield the exit wave behind the sample, which is then propagated to the objec-
tive lens plane a distance d1 away, where it is multiplied by the objective lens
transmission function to yield to wave field exiting the objective

ψ′
2(r2; r0) =

1

iλd1

∫
d2

r1 ψ1(r1; r0) h(r1) exp

(−ik

2d1
(r2 − r1)

2

)

Po(r2) exp

(
ik

2fo
r2

2

)
.

(2.37)

From here, we propagate the wave field into the image plane a distance d2

away

ψ3(r3; r0) =
−1

λ2d1d2

∫
d2

r2

∫
d2

r1 ψ1(r1; r0) h(r1) exp

(−ik

2d1
(r2 − r1)

2

)

Po(r2) exp

(
ik

2fo

r2
2

)
exp

(−ik

2d2

(r3 − r2)
2

)
.

(2.38)

The objective lens is placed in the optical setup such that the lens equation
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1/d1 + 1/d2 = 1/fo is fulfilled, which will cancel the phase factors quadratic
in r2 in Eq. 2.38 and give

ψ3(r3; r0) =
−1

λ2d1d2
exp

(−ik

2d2
r2

3

) ∫
d2

r2

∫
d2

r1 ψ1(r1; r0) h(r1)Po(r2)

exp

(−ik

2d1
r2

1

)
exp

(
ik

(
r3

d2
+

r1

d1

)
r2

)
,

(2.39)

which is the answer of interest. Compared to the expression for the scanning
case (Eq. 2.23) there is no intuitive relation in terms of a Fourier transform
given.

Intensity in detector plane

However, through a few more considerations it will be possible to make Eq. 2.39
nicer to look at. We so far have only considered the wave field due to one
point of the condenser. The total intensity recored in the detector plane is
given through integration over all condenser points r0:

I3(r3) =

∫
d2

r0 |ψ3(r3; r0)|2

=
1

λ6f 2
c d

2
1d

2
2

∫
d2

r0

∣∣∣∣ψ0(r0)Pc(r0)

∫
d2

r2

∫
d2

r1 h(r1)Po(r2)

exp

(−ik

2

(
1

fc
+

1

d1

)
r2

1

)
exp

(
ik

fc
r0r1

)
exp

(
ik

(
r3

d2
+

r1

d1

)
r2

)∣∣∣∣
2

.

(2.40)

Let us consider the phase factor quadratic in r1. If the objective lens used
in the microscope has a sufficiently large numerical aperture, only a small
region around a point imaged from the sample plane will contribute to the
formed image of that point in the detector plane. This is the case because
a large numerical aperture lens will have a narrow point spread function and
give images of high resolution, as desired from an imaging system. Considering
a specific point rs

1 in the sample plane, the geometrical relation

rs
1

d1
= −rs

3

d2
(2.41)

relates it to its image point rs
3. Now, points farther than 5 Rayleigh resolution

distances away from rs
1 in the sample plane will not significantly contribute
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to the image; an argument similar to that of Eq. 2.18 can be made. Hence,
factors of r2

1 can be neglected from the expression of Eq. 2.40 leaving us with

I3(r3) =
1

λ6f 2
c d

2
1d

2
2

∫
d2

r0

∣∣∣∣ψ0(r0)Pc(r0)

∫
d2

r2

∫
d2

r1 h(r1)Po(r2)

exp

(
ik

fc
r0r1

)
exp

(
ik

(
r3

d2
+

r1

d1

)
r2

)∣∣∣∣
2

,

(2.42)

Similar to the case of scanning image formation, considering the specimen
in term of its Fourier spectrum will enable us to do some more simplifications

h(r1) =

∫
d2

f 1H(f1) exp

(
2πif 1 r1

)
. (2.43)

With this expression for the specimen function we obtain for the intensity

I3(r3) =
1

λ6f 2
c d

2
1d

2
2

∫
d2

r0

∣∣∣∣ψ0(r0)Pc(r0)

∫
d2

r2

∫
d2

r1

∫
d2

f1H(f1)Po(r2)

exp

(
ik

(
r0

fc
+

r2

d1
+ λf1

)
r1

)
exp

(
ik

r3

d2
r2

)∣∣∣∣
2

,

(2.44)

where a Delta-function can be identified
∫

d2
r1 exp

(
ik

(
r0

fc
+

r2

d1
+ λf 1

)
r1

)
= |λ2d2

1|∆
(

r2 +
d1r0

fc
+ λd1f 1

)
.

(2.45)
Therefore,

I3(r3) =
d2

1

λ2f 2
c d

2
2

∫
d2

r0

∣∣∣∣ψ0(r0)Pc(r0)

∫
d2

f1H(f1)

Po

(
−d1

(
λf1 +

r0

fc

))
exp

(
−ik

d1

d2

λf1r3

)
exp

(
−ik

d1

d2

r0

fc

r3

)∣∣∣∣
2

,

(2.46)

where the phase factor containing r0 will cancel when expanding the absolute
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value. Hence we get

I3(r3) =
d2

1

λ2f 2
c d

2
2

∫
d2

r0 |ψ0(r0)Pc(r0)|2
∫

d2
f1

∫
d2

f ′
1H(f1)H

∗(f ′
1)

Po

(
−d1

(
λf 1 +

r0

fc

))
P ∗

o

(
−d1

(
λf ′

1 +
r0

fc

))

exp

(
−2πi

d1

d2

(f1 − f ′
1) r3

)
,

(2.47)

Again we can perform a separation of the image formation and the optical
system

I3(r3) =
d2

1

λ2f 2
c d

2
2

∫
d2

f1

∫
d2

f ′
1 Bff(f 1; f

′
1)H(f1)H

∗(f ′
1)

exp

(
−2πi

d1

d2

(f 1 − f ′
1) r3

)
,

(2.48)

and

Bff(f 1; f
′
1) =

∫
d2

r0 |ψ0(r0)|2 |Pc(r0)|2 Po

(
−d1

(
λf1 +

r0

fc

))

P ∗
o

(
−d1

(
λf ′

1 +
r0

fc

))
.

(2.49)

2.4 Principle of Reciprocity

The principle of reciprocity was first introduced by Helmholtz [41]. It states
that if a wave is emitted from a source at point r1 and detected at point
r2, then the same signal in amplitude and phase would be detected at r1 if
the source be placed at r2. Helmholtz initially proved this for the scalar wave
equation, which includes electromagnetic waves in the paraxial approximation;
it has be shown that it also holds in the vector case [42] considering the relevant
polarisations.

In imaging theory the principle of reciprocity is reflected in the symmetry
of spatial variables in the Fresnel diffraction integral (Eq. 2.5). A direct conse-
quence of this principle is the equivalence of the scanning and full-field image
formation, as we will show in the following.

Let us repeat the expression for the intensities we have found for the scan-
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ning and full-field image formation

Iscan
3 (rs) =

d2
1

λ2d2
0d

2
2

∫
d2

f2

∫
d2

f ′
2 Bscan(f 2; f

′
2)H(f2)H

∗(f ′
2)

exp

(
2πi(f2 − f ′

2) rs

)
(2.50)

Iff
3 (r3) =

d2
1

λ2f 2
c d

2
2

∫
d2

f1

∫
d2

f ′
1 Bff(f1; f

′
1)H(f1)H

∗(f ′
1)

exp

(
−2πi

d1

d2
(f1 − f ′

1) r3

)
, (2.51)

with the corresponding bilinear transfer functions

Bscan(f 2; f
′
2) =

∫
d2

r3 |ψ0|2R(r3)Po

(
−d1

(
λf2 +

r3

d2

))

P ∗
o

(
−d1

(
λf ′

2 +
r3

d2

))
(2.52)

Bff(f 1; f
′
1) =

∫
d2

r0 |ψ0(r0)|2 |Pc(r0)|2 Po

(
−d1

(
λf1 +

r0

fc

))

P ∗
o

(
−d1

(
λf ′

1 +
r0

fc

))
. (2.53)

From this direct comparison of expressions we can identify the equivalence of
the scanning and full-field image formation processes, which is also illustrated
by Fig. 2.4. Note that the orientation of the full-field setup in the schematic has
been flipped in the horizontal as to make the identification of the equivalence
more eye-catching. Table 2.1 details the respectively equivalent quantities.
However, there are a few particularities which need further explanation. In
the scanning case the image is formed by raster scanning the probing wave
field with respect to the sample; the scan displacement rs denotes the position
of the probe on the sample and represents the actual image coordinate. In the
full-field case the image coordinate is the position in the respective detector
plane r3 and not directly a position on the sample. Yet, through the geometric
magnification r1/d1 = −r3/d2 the detector plane coordinate is directly related
to the sample plane coordinate r1. Therefore,

− d1

d2

r3 = r1 , (2.54)

which we can insert in the phase factor of the full-field image intensity Eq. 2.51.
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Figure 2.4: Schematic of (a) scanning and (b) full-field transmission x-ray
microscope. The equivalence between planes in the imaging systems are indi-
cated.
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Equivalence Scanning Full-field
detector - condenser R(r3) |Pc(r0)|2
distance sample to detector d2 condenser fc

sample plane r2 r1

distance sample to objetive d1 d1

objective plane r1 r2

objective pupil coordinates −d1

(
λf2 + r3

d2

)
−d1

(
λf 1 + r0

fc

)

distance objective to source d0 image d2

source - image r0 r3

Table 2.1: Equivalence of quantities between scanning and full-field image
formation

Henceforth, the phase factors of Eq. 2.50 and Eq. 2.51 will be identical, with
both containing the sample position coordinate

exp

(
2πi(f2 − f ′

2) rs

)
←→ exp

(
2πi (f1 − f ′

1)

(
−d1

d2
r3

)

︸ ︷︷ ︸
=r1

)
. (2.55)

In the scanning case a central stop within the objective pupil is required to
isolate the first or focus; this addition to the objective pupil function will result
in a modification of the lens’ modulation transfer function (e. g. as shown in
Fig. 4.11). This difference in frequency response needs to be kept in mind
when comparing the exact imaging behavior of the two microscopes [20], but
does not lead to substantially different images.

Furthermore, note that both microscopes are mathematically completely
equivalent for on-axis image points, where this equivalence is also given to a
very good approximation for image points near the optical axis for the full-field
case. Significant deviations will occur for image points that are far away from
the optical axis. For a detailed discussion of the equivalence between the two
microscopes including many particularities, we refer to work by Zeitler and
Thomson [43] and Sheppard and Wilson [44] and references therein; a more
detailed discussion is beyond the scope if this work.

By establishing the equality of the scanning and full-field microscope, we
have laid the foundation for the work discussed in Ch. 4 and Ch. 5.
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Chapter 3

Quantitative Reconstruction of
Scanning Differential Phase
Contrast
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In Sec. 2.2 a detailed treatment of the general image formation process
in a scanning x-ray microscope has been laid out. In the present chapter we
will extend on these results with particular emphasize towards phase contrast
imaging. The expression for the wave field in the detection plane (Eq. 2.23)
will serve as a starting point for our considerations. We will introduce the
concept of differential phase contrast (DPC) based on a refraction model.
While being a useful and important tool, DPC has some drawbacks due to the
nature of the contrast mechanism.

Two methods for the quantitative reconstruction of the specimen from
such DPC images are presented. The first is the integration method, which
applies a Fourier derivative technique to integrate directional phase gradients,
independent of optical imaging properties and image noise levels. The second
procedure, the filtering method is a deconvolution and Wiener filtering type
approach in the limit of a weak specimen. It takes into account the imaging
properties of the microscope and considers the inherent noise in the data. We
compare both methods in their performance of quantitative reconstruction of
scanning hard x-ray phase contrast data. It will be shown that both methods
are very similar and can be reconciled in a unified formalism. Subtle differences
due to different assumptions and approximations employed in both approaches
are discussed.

3.1 Intensity in the Detector Plane

Let us start by repeating a result we found while describing the image forma-
tion process in a scanning system (see Fig. 3.1). The wave field in the detection
plane ([r3]) of the microscope was found to be (Eq. 2.23)

Ψ3(f 3; rs) = C
∫

d2
r2 h(r2) po(r2 − rs) exp

(
i2πr2f3

)
. (3.1)

Remember for this to be valid that the detector needs to be placed in the
far-field with respect to the sample plane. The sample of interest is described
by the specimen function h; po is the wave field in the sample plane, i. e. the
probe, rs describes the scan displacement of the probe with respect to the
sample and f3 ≡ r3/(λ d2) is the spatial frequency for the detector plane.
What we actually measure is the intensity in the detection plane, which is
simply given by

I3(f3; rs) = |Ψ3(f3; rs)|2 . (3.2)

In the absence of a specimen, which means h(r2) = 1, and furthermore in-
serting the defining relation of the probe function po (Eq. 2.24) the expression
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Figure 3.1: Schematic of scanning transmission x-ray microscope.

for the intensity takes an intuitive form (at this point we can drop the scan
displacement coordinate, since no specimen is present)

I3(f 3) =

∣∣∣∣C
′

∫
d2

r2

∫
d2

f 1 Po(f 1) exp

(
i2πf 1r2

)
exp

(
i2πr2f 3

)∣∣∣∣
2

. (3.3)

This is a double inverse Fourier transform of the pupil function Po(f1) of the
objective lens. Performing two Fourier transforms in a row brings back the
original function up to a global phase factor and furthermore point mirrored
with respect to the origin of the coordinate system (for a derivation of this
property see Sec. A.2.1).

I3(f 3) =

∣∣∣∣F
−1{F−1{Po(f 1)}}

∣∣∣∣
2

=

∣∣∣∣Po(−f 3)

∣∣∣∣
2

(3.4)

The fact that the far-field image of the pupil is mirrored should come at no
surprise, since it is exactly what one expects from the imaging properties of a
converging lens, here derived in a Fourier optical treatment.

An example intensity distribution typical for a scanning x-ray microscope
is given in Fig. 3.2.
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Figure 3.2: Example far-field intensity distribution in a scanning microscope,
showing the typical annular structure which is due to the requirement of a
central stop for isolating the first order focus of the zone plate.

3.1.1 Refractive Model

Now we want to consider what happens if we introduce a specimen in the
sample plane; i. e. h(r) 6= 1. For simplicity, we will assume here that the
sample is a pure phase object, with no absorption towards the transmitted in-
tensity. This approximation agrees well with the experimental case of imaging
biological samples with hard X-rays. The specimen function then reads

h(r) = exp

(
iδ(r)kt(r)

)
≡ exp

(
iφ(r)

)
. (3.5)

In a refractive model analogous to fundamental optics, a phase object will
reflect the incoming light by an angle that is proportional to the phase gradient
of the object at the point of illumination [37].

αref =
1

k
∇φ , (3.6)

and the direction of reflection follows the direction of the gradient. The sit-
uation is depicted by Fig. 3.3 for the one dimensional case of a pure phase
object. A transparent prism (i. e. phase wedge in the y-direction) will reflect
the intensity in the y-direction. Note that the situation shown in the figure
is only valid for X-rays; the beam gets shifted away from the thicker part of
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Figure 3.3: Beam deflection in a scanning microscope with a wedge phase
object at the focus. In the absence of a phase gradient, the illumination after
the sample (dark grey) is not influences and; therefore, stays centered in the
detector plane. Introducing a sample with a phase gradient (here along the
y-direction) the illumination (light grey) behind the sample gets deflected in
the y-direction towards the top half of the detector.

the prism due to the fact that the object introduces a phase advance (see
Sec. 1.2), rather than a phase delay as would be the case for visible light,
where the reflection would be in the opposite direction.

Let us briefly consider the scale of the quantities involved in this angular
deflection, to get a feel for the effect. The numerical aperture of the objective
lens is usually on the order of mrad, the specimen phase shift (wedge angle)
is on the order of rad and the resulting deflection is typically on the order of
µrad.

3.1.2 Differential Phase Contrast

The inconspicuous circumstance that the intensity distribution gets shifted
by a phase gradient is an important fact, since now we are in position to
measure the phase structure of the specimen of interest and take advantage
of the superior signal-to-noise of phase compared to absorption contrast (see
Sec. 1.4.1).

All that is needed now is some spatial sensitivity to the intensity movement
in the detection plane. For the case given in Fig. 3.3, a detector with a response
function that is split along the horizontal direction in a top (T) and bottom
(B) half plane would be sufficient. With no specimen present, the intensity in
both half planes would be equal (IT = IB). Putting the linear phase wedge in
the focal plane as indicated in Fig. 3.3 will reflect the intensity towards the
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top half plane, leading to an increased intensity on the top versus the bottom
(IT > IB); where the resulting intensity shift is proportional to the phase
gradient. This lets us define a differential phase contrast (DPC) signal for the
vertical (y-direction)

DPCy = IT − IB (∝ ∇y φ) . (3.7)

For the very special case of a phase wedge, this signal would be constant,
since the sample has a constant phase gradient. Furthermore, note that with a
detector split in an upper and lower half plane we are only sensitive to gradients
along this particular direction, or to be more precise, to the projected phase
gradients along this direction.

In order to quantify arbitrary deflections of the intensity distribution, a
quadrant detector is the simplest choice. In the absence of a specimen, the
detector needs to be aligned symmetrically with respect to the illumination
annulus. As can be seen in Fig. 3.4 an arbitrary deflection (D) can be de-
composed into two orthogonal components Dx and Dy, to which we will be
sensitive to through the detector combinations (IL−IR) and (IT−IB), respec-
tively. Hence, a complete definition of differential phase contrast signals for

far-field illumination

Top

Bottom

x

y

quadrant detector

Left Right

seg 2 seg 1

seg 3 seg 4

}
}} }

D

Dx

DyDy

Dx

D

Figure 3.4: Arbitrary shift and quadrant detector.

each scan point can be given as follows:

DPCx =
IL − IR
Itotal

=
(I2 + I3)− (I1 + I4)

(I1 + I2 + I3 + I4)
∝ ∇x φ

DPCy =
IT − IB
Itotal

=
(I1 + I2)− (I3 + I4)

(I1 + I2 + I3 + I4)
∝ ∇y φ .

(3.8)
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Note that we divide the difference signals by the total detected intensity Itotal.
Normalizing the signal to the total intensity removes the effect caused by
source intensity variations and accounts for the local specimen absorption.
Even though we so far have treated phase-only specimens, which is a good
approximation for a large class of samples when imaging with hard X-rays,
absorption effects can still play a rold (albeit a small one). Through dividing
each scan point by the total intensity we effectively normalize the DPC signal
by the absorption image.

Other DPC signals are of course possible. With the quadrant detector, we
can be sensitive to diagonal gradients by looking at the signal differences of
segments 2 and 4 or segments 1 and 3. These additional signals can be helpful
for sample visualizations; however, mathematically no additional information
is gained.

We want to conclude this section by pointing out the implicit assumptions
and implications that have been made in the treatment of DPC so far. The
most important assumption for imaging DPC with a quadrant detector is that
the intensity in the detector plane is centro-symmetric, for obvious reasons;
but bear in mind that it not necessarily has to be even (see Sec. 3.1.4). Fur-
thermore, the sample is assumed to be completely contained within the depth
of focus, so that no differential absorption effects come into play. Also, the
observed quantities of absorption (βkt) and phase (φ = δkt) are assumed to
not vary across the focal spot size (see further discussions in Sec. 3.1.4). Of
course, DPC only works as long as there is a phase gradient present. Putting
a uniformly thick slap of transparent material at the focus will not have any
effect, since we are not able to measure absolute phase.

Bear in mind that for practical purposes the z-position of the quadrant
detector is not critical, as long as the illumination is fully contained within
the quadrants.

3.1.3 Fourier Optical Treatment of Intensity Shift

Lets have a more rigorous look at the behavior of the far-field intensity in the
presence of a specimen through a Fourier optics treatment. Our starting point,
will again be the intensity formed by the wave field (Eq. 2.23 or Eq. 3.1) in
the detection plane of a scanning microscope .

I3(r3; rs) = |Ψ3(r3; rs)|2 =

∣∣∣∣C
∫

d2
r2 h(r2) po(r2 − rs) exp

(
ik

d2
r2r3

)∣∣∣∣
2

.

(3.9)
This time we have omitted the use of spatial frequency coordinates by replacing
f 3 ≡ r3/(λ d2). The detector is supposed to be in the far-field, the specimen
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is described by h, the probe by po and the scan displacement vector by rs.
Without loss of generality we can choose rs =0.

The specimen function is given by (see Sec. 1.2)

h(r2) = exp

(
−β(r2)kt(r2) + iδ(r2)kt(r2)

)
≡ exp

(
ε(r2)

)
, (3.10)

Expanding the terms in the exponential in a Taylor series1 around the point
illuminated by the probe (without loss of generality chosen to be 0) gives

ε(r2) = ε

∣∣∣∣
0

+ε(1)

∣∣∣∣
0

r2 +O(r2
2)

= −
(
βkt
)∣∣∣∣

0

+i
(
δkt
)∣∣∣∣

0

−∇
(
βkt
)∣∣∣∣

0

r2 + i∇
(
δkt
)∣∣∣∣

0

r2 +O(r2
2) .

(3.11)

Inserting Eq. 3.11 into Eq. 3.9 and ignoring the second order terms for now
we get

I3(r3) = exp

(
−2(βkt)0

)∣∣∣∣C
∫

d2
r2 po(r2)

exp

(
−∇(βkt)0︸ ︷︷ ︸

→DAC

r2 + i ∇(δkt)0︸ ︷︷ ︸
→DPC

r2

)
exp

(
ik

d2

r2r3

)∣∣∣∣
2

.
(3.12)

The factor preceding the absolute value denotes the usual absorption contrast.
The gradient terms within the integral represent differential absorption con-
trast (DAC) and differential phase contrast (DPC) respectively. The role of
DAC will be discussed at a later point in Sec. 3.1.4. For now we can be content
with knowing that DAC is negligible as long as the ratio δ/β is large and the
probe small. Note that for hard X-rays δ/β is in the range of 10 to 1000 and
larger; in particular for biological specimens 1000 is common. When neglecting
DAC we can write for the intensity

I3(r3) = exp

(
−2(βkt)0

)∣∣∣∣C
∫

d2
r2 po(r2) exp

(
ik

d2
r2

(
r3 +

d2

k
∇(δkt)0

))∣∣∣∣
2

.

(3.13)

Aside from the leading absorption contrast factor, note that Eq. 3.13 is iden-
tical to the intensity of Eq. 3.9 in the absence of a specimen (h = 1) and with
a shift in the coordinate r3 → (r3 + d2

k
∇(δkt)0

)
. Hence, we can identify the

1Taylor expansion: g(x) =
∑
∞

n
g(n)(x)|x=x0

(x− x0)
n.
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resulting function as the non-specimen intensity shifted by an amount propor-
tional to the phase gradient (and attenuated through the specimen absorption)

I3(r3) = exp

(
−2(βkt)0

)
Ih=1
3

(
r3 +

d2

k
∇(δkt)0

)
. (3.14)

With this we have derived the predictions of the previously used simple re-
fractive model of Sec. 3.1.1 in a wave field treatment! Note that the resulting
angular deflection through the shift is in perfect agreement with the angle
given by Eq. 3.6, keeping in mind that the propagation distance from the focal
to the detector plane is d2.

To illustrate our findings, Fig. 3.5 shows three simulated intensity distri-
butions from different scan positions on a 5µm polystyrene sphere at 2.5 keV
x-ray energy. For all three distributions their respective center-of-mass posi-
tions are indicated by a small cross-hair. The strongest effect can be observed
in Fig. 3.5(c), where the intensity is shifted noticeably towards the bottom left.
The scan position is close the sphere’s edge for which the phase gradient is
rather large at this point compared to Fig. 3.5(d) with a dwell position closer
to the sphere center. Take notice of the fact that even for a scan position
outside the sphere Fig. 3.5(b), there is some effect on the intensity due to the
side lobes of the PSF; however, the effect is small and also does not shift the
COM of the distribution. We also want to point out that besides a shift, the
intensity gets redistributed within the annulus, this will be discussed in the
following.

3.1.4 Higher Order Terms and DAC

We will have a closer look at approximations that have been made in the
derivation of the previous section. The higher order terms that have been
left out in subsequent expressions following the Taylor expansion of Eq. 3.11
can be divided into the categories of even and odd powers of the focal plane
coordinate r2. Including all orders of the differential phase terms, Eq. 3.12
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Figure 3.5: Simulated intensity from different dwell positions on a 5µm
polystyrene sphere at 2.5 keV with a zone plate of 50 nm outermost zone width.
(a) Thickness profile of the sphere with dwell positions of subsequent subpanels
indicated; an inlay shows the far-field intensity in the absence of a specimen.
(b)-(d) Intensity in detector plane, all scaled to the same range; the large
cross-hairs indicate the spatial frequency origins. The small cross-hairs are
highlighting the center of mass for each intensity distribution. Dashed gray
circles indicate the outline of the intensity with no specimen present. The
spatial frequency at the pupil cut-off is 10(µm)−1.
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becomes

I3(f 3) =

∣∣∣∣

∫
d2

r2 po(r2) exp

(
i
∑

n

∇
2n(δkt)0r

2n
2

)

︸ ︷︷ ︸
≡G(r2)

exp

(
i
∑

n

∇
2n+1(δkt)0r

2n+1
2

)

︸ ︷︷ ︸
≡U(r2)

exp

(
i2πr2f 3

)∣∣∣∣
2

=

∣∣∣∣F
−1
f3

{
G(r2)U(r2)

}∣∣∣∣
2

,

(3.15)

where for the ease of discussion pre-factors have been left out and spatial fre-
quency coordinates f 3 ≡ r3/(λ d2) are introduced again. Furthermore, we will
still omit the DAC terms for now. Remember that in the absence of a spec-
imen I3(f3) is an even, centro-symmetric function with respect to the origin
(f 3 = 0) because po(r2) is supposed to be even and centro-symmetric. Note
that we refer to ”even” here only in a strict mathematical sense concerning
symmetry and not in a topological way. We have seen that through keep-
ing the first order term in the Taylor expansion the intensity gets shifted (see
Eq. 3.14) and hence is not a centro-symmetric function with respect to the ori-
gin anymore; i. e. its center of mass and center of symmetry are shifted, which
was the motivating factor in Sec. 3.1.2 to define differential phase contrast.

What are the effects of the other order terms of Eq. 3.15 that have been
neglected so far, on this center of mass shift? The quantity G identified in
the expression is an even function, while U is odd. Through the help of the
convolution theorem we can write for Eq. 3.15

I3(f 3) =

∣∣∣∣F
−1
f3

{
G(r2)U(r2)

}∣∣∣∣
2

= g(f3)⊗ u(f3) , (3.16)

where the respective Fourier transforms g and u inherit the respective sym-
metry properties: g is even and u is odd (see Table A.2). The convolution
of g ⊗ u will also be odd. Since g is an even function, it does not contribute
to any changes on the position of the center of mass or symmetry; it merely
redistributes intensity symmetrically around the shifted center. Hence g does
not contribute to any location changes on the center of mass and has succes-
sively no influence on the differential phase contrast signal. Therefore, we can
neglect all even orders in the Taylor series expansion of the phase terms and
write G(r2) = po(r2).

The odd function U is the sole source for the center of mass changes of the
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intensity. Its first term (n = 0) resulted in the notion of the intensity shift of
Eq. 3.14. The higher order terms of U further contribute to center of mass
changes. However, their effect can be argued as negligible due to the use of
a focussed probe, which restricts the contribution of these terms due to the
small values of r2.

The wave field simulations of Fig. 3.5 further illustrate the interaction of
the specimen with the beam, which results in an intensity shift but also gives
rise to intensity fringes. These fringes are the result of the higher order terms
of the preceding discussion and their effect on the center of mass location are
minimal.

We still need to consider the DAC terms of Eq. 3.12. As it has been
briefly argued before, the contribution from DAC to the integral governing the
intensity in the far-field plane is negligible if the ratio δ/β is large and the probe
small, making the DAC contribution much smaller than DPC. Particularly, the
DAC terms can be neglected if it does not vary appreciably across the probe
size. As 94% of the total intensity is located within the first four maxima of
the focal spot [37], the condition of an insignificant variation across the probe
size becomes [2]

exp

(
B4 drN |∇(βkt)0|

π

)
− exp

(−B4 drN |∇(βkt)0|
π

)
<< 1 , (3.17)

where B4 ≈ 13.324 is the fourth zero of the Bessel function and drN is the
outermost zone width of the zone plate (indicative of the numerical aperture).
As an example we can consider the situation of polystyrene at 2.5 keV x-ray
energy: presuming a constant β and examining the condition in terms of
a thickness variation, the requirement of Eq. 3.17 translates in a thickness
gradient limit of ∇(t)0 << 144, which is most likely only violated at the
sphere edges. Similarly, for gold at 2.5 keV we get ∇(t)0 << 1 and at 10 keV
it is ∇(t)0 << 20; hence DAC contributions can become significant. Recent
work by Thibault et al. [45] considers DAC contributions on an analytical
basis, where they arrive at conclusions supporting our findings. However, they
also find that if one takes effects of defocus into account, DAC contributions
can become significant enough to explore them as a dedicated mechanism of
imaging contrast.

3.2 Integration Method

As we have seen in a simple refractive model in Sec. 3.1.1, the intensity in
the far-field gets shifted in the presence of a phase gradient in the sample
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plane, which let to the definition of differential phase contrast (DPC) (Eq. 3.8).
The value of DPC for specimen visualization in particular for hard X-rays is
extremely high, since absorption contrast is usually negligibly low at these
x-ray energies as seen in Sec. 1.4. However, DPC images can be difficult to
interpret due to their differential nature. The images are only qualitative and
in addition have a directional dependence, which makes DPC not very useful
for quantitative interpretations.

In the following we will consider one way of reconstructing quantitative im-
ages from differential phase contrast data. But before getting into the recon-
struction scheme we will first need to establish a quantitative relation between
the intensity shift and the specimen phase gradient.

3.2.1 Phase Gradient Quantitation

Through Eq. 3.6 it was shown that the reflection angle is related to a phase
gradient, which was further validated by Eq. 3.14. We will restrict ourselves
now to a one-dimensional case of this fact:

αref =
1

k

dφ

dy
, (3.18)

where φ is the total phase advance. As usual for scanning x-ray microscopes
we consider an optic with a central stop. A sample with a phase gradient will
refract the beam, leading to a shift of the beam footprint on the detector,
shown in Fig. 3.6. We know that such a shift is small. Since we only consider
a one-dimensional case, a split detector with a top (T ) and bottom (B) half
is sufficient.

If a total intensity of Itotal is incident and uniformly distributed over the
pupil, then the intensity in each half plane will be IT = IB = Itotal/2 in the case
of no phase gradient present. If the beam is refracted by an angle αref , it will
be shifted on the detector by an amount of Dy = αref · d as illustrated by the
red area in Fig. 3.6; where d is the distance between sample and detector plane.
Given that fstop is the diameter of the central stop relative to the total pupil
diameter, outer and inner radius of the beam footprint on the detector are
αNA · d and αNA · d · fstop, respectively. The numerical aperture (see Sec. 1.3.3)
is the half opening angle of the zone plate

NA = αNA =
λ

2 drN
. (3.19)

Now, the intensity that is shifted from the bottom to the top half plane is
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Figure 3.6: Refractive model. The red area denotes the changes of intensity
in the top half of the detector.

given by the ratio of the red marked area to the total area, or

Ishift = Itotal
2Dy (1− fstop) d αNA

π(d αNA)2(1− f 2
stop)

= Itotal
2αref

π αNA (1 + fstop)
.

(3.20)

Following this, we get for the intensity in each of the two half planes

IT,B = Itotal

(
1

2
± 2αref

π αNA (1 + fstop)

)
. (3.21)

The difference between the top and bottom, which is indicative for differential
phase contrast as given by Eq. 3.8, then becomes

DPCy =
IT − IB
Itotal

=
4αref

π αNA (1 + fstop)
. (3.22)

Now we can connect the differential phase contrast signal with the phase gradi-
ent by solving above relation for dφ/dy with the help of Eq. 3.18 and Eq. 3.19:

dφ

dy
=
π2

4

(1 + fstop)

drN
DPCy , (3.23)

which is the quantitative relation we have been looking for. The relation for
dφ/dx is analogous.
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Note that an equivalent relation to Eq. 3.23, as it is used in [2], is given by

dφ

dy
=
π k (RZP +RCS)

4fo
DPCy , (3.24)

where RZP and RCS are the radii of the zone plate and central stop and fo is
its focal length.

An example of a phase gradient quantitation is given in Fig. 3.7, which
shows a cluster of 5µm diameter polystyrene spheres at 2.5 keV x-ray energy.
The imaging was done with a detector and illumination alignment shown in
Fig. 3.8, resembling an effective quadrant detector arrangement; hence making
above quantitation possible. Note that the far-field illumination is completely
contained within the inner quadrant structure of the detector.

420-2-4
gradient (rad/pix)

ba

5 µm

420-2-4

Figure 3.7: Quantified phase gradient images of polystyrene sphere cluster
in (a) x- and (b) y- direction; an inlay shows the corresponding absorption
image. Experimental details: 2.5 keV, steps 75 nm, ZP 160 µm, drN 50 nm, stop 40 µm,

quadrant detector arrangement as shown in Fig. 3.8.

3.2.2 One-dimensional Integration

With the quantitative relations of Sec. 3.2.1 we are now in the position to
quantitatively reconstruct the specimen phase shift. Of course, we could have
done a reconstruction much earlier, when we had realized that a phase gradient
causes a proportional shift to the intensity; however, this would have been a
qualitative reconstruction only, since we lacked a quantitative relation between
shift and phase gradient.

Naturally, the total phase shift can be obtained by a one-dimensional in-
tegration of Eq. 3.23 or Eq. 3.24:
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Figure 3.8: Detector configuration, far-field illumination and their respective
alignment. The arrangement corresponds to an effective quadrant detection.

δkt = φ =

∫
dj

dφ

dj
, (3.25)

with j substituting the direction of the phase gradient and respective integra-
tion direction.

Lets put this to use by applying it to measured differential phase contrast
data of the cluster of 5µm diameter polystyrene spheres, which is shown in
Fig. 3.7 and has been quantified via Eq. 3.23. Both images show a gradient
distribution that is symmetric around the origin reaching from approximately
−4 to +4 rad/pix. Note, that besides quantitation these images have been
normalized in a way following [2] in order to correct for detector misalignment
and beam drift. We imposed the condition that each row of Fig. 3.7(a) and
each column of Fig. 3.7(b) sums to zero (see Sec. 3.2.6).

Applying a one-dimensional integration to the phase gradient images yields
the results shown in Fig. 3.9. The one-dimensional integration of these im-
ages is performed on a row-by-row basis for the x-gradient image ∂xφ and a
column-by-column basis for the y-gradient image ∂yφ. Theoretically, it is ex-
pected that both images of Fig. 3.9 are equal, because they represent the same
quantity. However, differences are apparent. The streaks in both images are
a result of noise that is present in the data. The directional integration ac-
cumulates noise along the respective direction of integration, which naturally
differs between neighboring rows or columns. The sources of this noise are
various: photon shot noise, beam fluctuations, sample or detector vibrations,
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Figure 3.9: One-dimensional integration reconstruction of sphere cluster from
Fig. 3.7 with (a) the integrated phase of ∂xφ and (b) the integrated phase of
∂yφ. Noticeable in both images are streaks that follow the integration direction
and are a result of noise in the data.

misalignment, etc. and are difficult to quantify. The normalization treatment
as mentioned above for Fig. 3.7 reduces these noise effects partially, but can-
not completely eliminate them. Besides in appearance, the integrated images
also show quantitative differences with respect to the reconstructed phase shift
values. A pursuing discussion involving one-dimensional integration of DPC
images can be found in [11].

While images reconstructed in this way can be potentially useful, the results
are rather unsatisfactory. The higher the signal-to-noise ratio of the acquired
images, the better the results will be. However, note that the images of Fig. 3.7
are already of good SNR; similarly to Talbot-interferometrically obtained DPC
images [46], which also show this streaking effect when only integrated in one
dimension. There are, however, instances where 1d integrations yield good
results, when applied in connection with tomographic imaging as in the work
by Pfeiffer et al. [47] - the necessary redundancy in the information comes
then from the different projections.

3.2.3 Orthogonal Integration

Besides the simple approach of one-dimensional integration, more advanced
treatments exist. The reconstruction of gradient maps is a general physical
problem. A very common technique in observational astronomy and adaptive
optics is the Hartmann sensor, where reconstructions have used physical con-
straints to optimize orthonormal basis sets with least-square fitting methods
[48]. Alternative matrix techniques are computationally intensive [49, 50]. In-

58



stead we will follow a simple and elegant integration technique outlined below.
The following method was first introduced by Arnison et al. [51] and uti-

lizes the Fourier-derivative theorem (see Appendix A.2.2); we demonstrated its
applicability for scanning transmission x-ray microscopy [2]. By realizing that
we are dealing with two orthogonal gradient maps ∂xφ and ∂yφ of the specimen
phase shift φ that hold redundant information, we can use this to our advan-
tage by combining them in one complex function and write the derivatives in
terms of Fourier transforms by using Eq. A.9:

∂xφ(x, y) + i∂yφ(x, y) =

∫
dfx

∫
dfy 2πi(fx + ify) Φ(fx, fy) e2πi(fx x+fy y) .

(3.26)
Taking the Fourier transform of both sides of the equation, we get

F{∂xφ(x, y) + i∂yφ(x, y)} = 2πi(fx + ify) Φ(fx, fy) (3.27)

which we can solve for Φ and use an inverse Fourier transformation to obtain
the final result

φ(x, y) = F−1
x,y

{Ffx,fy

{
∂xφ(x, y) + i∂yφ(x, y)

}

2πi(fx + ify)

}
. (3.28)

This relation represents a simultaneous integration of two orthogonal gradient
maps and is often referred to as Fourier Integration Method. We will refer to
this technique for the remainder of this work simply as integration method.

3.2.4 Reconstruction Example for Integration Method

The integration method exploits the redundant information given through the
two orthogonal gradients and; therefore, has some inherent resistance to imag-
ing noise. Application of the integration method through Eq. 3.28 to the two
gradient maps of Fig. 3.7 leads to a reconstructed phase shift map shown in
Fig. 3.10. The result is a significant improvement to the previously obtained
one-dimensional integration attempts of Fig. 3.9.

In terms of quantitation we need to have a closer look. Figure 3.10 has
two color bars: the one on the left side in the image corresponds to the “raw”
reconstruction by just applying the integration method formula (Eq. 3.28)
to the gradient maps. The image scale on the right corresponds to a back-
ground corrected image, where we have subtracted the mean image value of
a background region (triangular area) from the total image. We apply this
background subtraction in order to give a reference region for the total image.
Within the background region the reconstructed phase shift is expected to
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Figure 3.10: Raw and background corrected integration reconstruction of
sphere cluster. Displayed is the real part of the integrated phase from Eq. 3.28.
The left color scale shows the image values for the raw integration reconstruc-
tion; the right color bar refers to the image obtained by subtraction of the
mean background value within the indicated triangular area from the total
image. The red line indicates the position of the sphere profile for Fig. 3.11.
The step appearance present in all spheres is likely due to residual solution
and further discussed by Fig. 3.11.

be zero. However, due to imperfections in the imaging process mostly in the
form of noise and a not completely even illumination, the non-specimen region
reconstructs in a non-ideal way.

In the case of background subtraction the resulting values are very close
to the theoretically expected phase shift of 5µm polystyrene spheres, which
is 2.41 rad at the sphere center and an imaging energy of 2.5 keV. A profile
through one of the spheres in Fig. 3.10 is shown in Fig. 3.11. First of all we
note that the diameter of the sphere is reconstructed properly as 5µm, which
can be seen from the horizontal axis showing the scan position. At the sphere
center the reconstruction value of the phase shift agrees perfectly with the the-
oretically expected. We already noted before that the spheres have a step-like
appearance inside. With the help of the profile we can understand this better.
Besides the reconstructed data values in Fig. 3.11, different sphere scenarios
and their respective projection profiles are shown. A simple sphere lying on a
surface is shown in black; the corresponding projection profile matches already
well with the measured data towards the outer part of the spheres at a radial
distance between 1.9µm and 2.5µm from the center. After that the recon-
structed sphere profile has a kink, which is likely due to residual solution that
dried underneath the sphere. Such a scenarios is shown in red; for the theo-
retical phase shift projection profile it was assumed that the material, which
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Figure 3.11: Phase shift profile through sphere of Fig. 3.10 on background
normalized scale including theoretical projection profiles through spheres with
different cross-section scenarios. Respective cross-section scenarios are shown
on right: normal sphere (black), sphere with pedestal (red), sphere with ex-
tended contact surface (green) and same sphere scaled to thickness maximum
of previous spheres (dashed-green). The position of the various sphere modi-
fications appear at a distance corresponding to 70% of the sphere radius from
the center.
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makes up this pedestal, is of comparable optical density. The profile of the
reconstructed data values follows this scenario nicely, in particular on the right
hand side. Other scenarios are shown in green, but their projection profiles
do not agree well with the reconstruction. While the pedestal scenario in red
describes the data the best, it is probably not the complete reality, which is
likely to be a more complex situation.

At this point we have obtained a good, quantitative reconstruction of the
phase shift δkt induced by the sphere cluster. Since we know that the sample
is made out of polystyrene (PS) and can determine its theoretical index of
refraction real part δPS from Henke et al. [14] to be 3.81 × 10−5. Together
with the x-ray energy we can determine a thickness map from the phase shift:

t [µm] =
δkt

δPSk
, (3.29)

which is shown in Fig. 3.12. Looking at the individual spheres in the figure
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Figure 3.12: (a) Thickness map from integration reconstruction of sphere clus-
ter including contour lines. (b) Line profile through sphere indicated in (a);
arrows indicate similar pedestals as described by Fig. 3.11.

we note that all compare well with each other; in particular in terms of their
quantitative thickness. The line profile of Fig. 3.12(b) also shows the pedestal
behavior that we have identified previously.

In the following we will discuss a few particularities and advanced topics
of the integration reconstruction process.

3.2.5 The Imaginary Part - Reconstruction Errors

The reconstructed phase shift φ = δkt is given by the real part of Eq. 3.28.
Non-zero elements in the imaginary part of Eq. 3.28, as shown by Fig. 3.13
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for the above sphere clutser reconstruction, reflect errors in the reconstruction
and can provide feedback for accuracy of the integrated phase. Leakage of
power from the real to the imaginary part can arise from contradictions in
the two orthogonal gradient maps. In the present example the imaginary part
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Figure 3.13: Imaginary part from the integration reconstruction of the sphere
from Sec. 3.2.4.

is approx. 12% of the real part and the contradictions occur mostly at the
edges of the spheres and pedestals underneath the spheres. At these positions
higher order terms and contributions from DAC (see Sec. 3.1.3) will become
noticeable. In particular for edge features in samples the theoretically expected
derivatives are infinite. The choice of smaller step sizes will mitigate the effects
of local contradictions and lessen the leakage into the imaginary part.

3.2.6 Gradient Normalization

In Sec. 3.2.2 the gradient images leading to Fig. 3.7 were normalized following
a procedure, which we mention in [2]. Here we want to briefly discuss the
motivation for such normalizations and the cases of isolated and non-isolated
specimens.

A detector misalignment will lead to a constant gradient offset that will
reflect itself in a global DC-offset of the resulting reconstruction for the phase
shift. Beam drift (motion of the beam on the time scale of the total image
acquisition) during the scan will change the alignment of the illumination
with respect to the detector that leads to a similar effect as the detector
misalignment, but on a subregion within the scan that will cause a local DC-
offset of the reconstruction. In order to reduce the effects of these experimental
conditions on the reconstruction process one needs to apply corrections to the
gradient images.
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For isolated specimens a convenient method is to require that each row
of a horizontal and each column of a vertical gradient image sum to zero.
This follows the notion of ”what goes up most come down” for a derivative of
an isolated object. We have observed that application of this normalization
greatly improves image reconstruction quality as can be monitored through
the imaginary part (see Sec. 3.2.5).

For non-isolated samples, i. e. either partially or completely filling the field
of view, the previous method is not applicable for obvious reasons. In such a
case a method following an approach by Menzel et al. [52], which they employ
to create von-Neumann boundary conditions can potentially prove useful. The
procedure requires to mirror each gradient image first in the horizontal, and
then the two resulting image together in the vertical. This way we duplicate
the image information four times and create an image of each gradient map
that is point symmetric with respect to its center. For these images we then
perform the above gradient normalization for isolated objects and then perform
the integration reconstruction for the two gradient maps as usual. From the
reconstructed image we can choose one of the four copies as our final result
(they are all identical). We have not tested this method extensively; however,
initial results look encouraging on partially isolated objects. Further and more
rigorous investigations are necessary.

3.2.7 Background Subtraction

The background normalization of Fig. 3.12 differs from Fig. 3.10, where we
subtracted a mean value of an isolated background region from the total image.
In Fig. 3.12 we chose to set the average of the perimetric values to zero. The
result of both normalization methods is comparable and equally justified.

Often observed in experimental cases were sinusoidal backgrounds along
the slow scanning direction as shown in Fig. 3.14(a). These are likely due
to drifts of the beam and / or the motors of the setup, changing the illu-
mination condition during the scan which results in an uneven reconstructed
background. Note that in this case a mere background subtraction as done in
a previous example would make the final result strongly dependent on the cho-
sen area. Certainly, a perimeter normalization is also not a good choice. Since
the background is to a good approximation constant along the x-direction, it
is suggestive to approximate its sinusoidal form along the y-direction. We can
do this by averaging its form in the direction within the dashed area, and then
use this average to reproduce a background image (see Fig. 3.14(b)). Succes-
sive subtraction from the image then yields a well-background corrected image
in Fig. 3.14(c).

Depending on the situation other methods can be suitable. In the case
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Figure 3.14: (a)Reconstructed phase shift of the freshwater flagellate Cryp-
tomonas without background correction. (b) Sinusoidal background images
produced by averaging the data in between the two dashed lines in (a) and
reproducing it to a complete image. (c) Background corrected image by sub-
tracting (b) from (a). Experimental details: 10.2 keV, steps 50 nm, ZP 160 µm, drN

100 nm, stop 40 µm, quadrant detector arrangement.
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of scans where the sample completely covers the field of view, the presented
approaches are of course not valid. A possible way out in such cases can
be the absorption image or the monitored incident illumination upstream of
the sample through an ion-chamber (to register the total intensity) and beam
position monitors. The analysis in these cases is more involved and beyond
the scope of our treatment here.

3.2.8 The Phase Part - Sample Identification

Besides the real part (R(δkt)) of the integration reconstruction, which rep-
resents the integrated phase, and the imaginary part (I(δkt)) indicative for
errors and contradictions in the reconstruction, we can also make use of the
phase (ω) of the reconstructed phase shift image;

(δkt) = R(δkt) + i I(δkt) = |(δkt)| eiω . (3.30)

Figure 3.15 shows the phase ω of the sphere cluster reconstruction from
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Figure 3.15: Phase of integration reconstruction from sphere cluster in
Sec. 3.2.4.

Sec. 3.2.4. We note that in the region of the image where no sample is present,
the phase ω jumps between ±π; only within the sample area the behavior of
ω is uniform. This should not come as a large surprise, because only where
a sample is present the resulting phase shift (δkt) is well defined and with a
phase ω of approx. 0.

This fact can potentially be used experimentally in order to automatically
identify sample and no-sample regions.
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3.3 Fourier Filtering Method

Now we will turn our attention to a different method of reconstruction for
phase contrast images. The following Fourier Filtering Method was initially
developed for scanning transmission electron microscopy [53–56] to retrieve
quantitative absorption and phase contrast images of the specimen with the
help of a segmented detector. This work has since been transfered and applied
to scanning x-ray microscopy [57], where it turns out to be very useful.

We will describe the essential parts of this method and its derivation in the
present section. A detailed mathematical derivation that includes all interme-
diate steps can be found in the Appendix C; for a complementary discussion
we refer to Hornberger [11].

3.3.1 Image Formation through Transfer Functions

Our starting point will again be, the wave field in the detector plane of a
scanning microscope

Ψ3(f ; rs) =

∫
d2

r h(r) po(r − rs) exp

(
i2πrf

)
, (3.31)

which we have seen on multiple occasions in the present chapter. Note, that
this time we have omitted indices of specific imaging planes and left out con-
stant pre-factors in order to simplify the notation for the successive treat-
ment. Generally we can do this since each particular quantity is intrinsically
connected with a certain plane in the imaging system. Furthermore, for a cor-
rect mathematical treatment and computational implementation all quantities
have to be setup on the same coordinate spaces.

By employing properties of Fourier transforms and the defining relation of
the probe function po (Eq. 2.19) above Eq. 3.31 can equivalently be written
as a convolution (see Eq. C.2)

ψ3(f ; rs) =

[
Po(−f ) exp

(
i2πrsf

)]
⊗f H(−f ) . (3.32)

To measure the intensity distribution caused by this wave field we use
a detector with separate segments (indexed by k) and respective response
functions Rk(f ). The signal recorded by any specific segment k is given by

sk(rs) =

∫
d2

f Rk(f) |ψ3(f ; rs)|2 . (3.33)
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The segmentation of the detector can be arbitrary. The quadrant detector
used in Sec. 3.1.2 is one possible realization. Albeit, there is no restriction
on the way of the spatial segmentation of the detector (one can either use
a specially designated segmented detector, or just a pixellated detector such
as a PAD or CCD), it can be useful for analysis purposes that each segment
has a corresponding opposite. We will keep the segmentation general for the
following derivation, as it will not have any advantage to restrict ourselves to
one particular configuration and; furthermore, we will see that configurations
other than a quadrant can lead to superior results.

We can expand |ψ3|2 into ψ3ψ
∗
3 and use Eq. 3.32 to arrive at the Fourier

transform of the recorded detector signals sk(rs) in terms of the probe dis-
placement rs

Sk(f s) =

∫
d2

f Rk(f )

[
Po(−f )P ∗

o (−f−f s)⊗fH(−f )H∗(−f−f s)

]
, (3.34)

see Appendix C.1 and Eq. C.11 for a derivation of this expression.
Our attention focusses now on the product HH∗ in Eq. 3.34. The specimen

function can without loss of generality always be written as

h(r) = 1 + hr(r) + ihi(r) , (3.35)

where hr,i are real functions. The specific form of h is of no further importance
at this point, as long as it is possible to write it in the previous form in terms
of hr and hi. The corresponding Fourier spectrum of Eq. 3.35 is then

H(f) = ∆(f ) +Hr(f) + iHi(f ) . (3.36)

Be aware that even though hr,i are real functions and can be viewed as the
real and imaginary parts of h (aside from the leading 1), their respective
Fourier transforms Hr,i are not the real and imaginary parts of H , but complex
functions by themselves.

By employing the expression of Eq. 3.36 for the specimen in Eq. 3.34 and
neglecting terms of order O(H 2

r,i ) (see Eq. C.14) we can arrive at

Sk(f s) = ∆(f s)Ck(0, 0,f s) +

+Hr(f s) [Ck(−1, 0,f s) + Ck(0, 1,f s)] +

+ iHi(f s) [Ck(−1, 0,f s)− Ck(0, 1,f s)] , (3.37)
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where

Ck(m,n, f s) =

∫
d2

f Rk(f)Po(mf s − f)P ∗
o (nf s − f ) (3.38)

are bilinear transfer functions [58] that represent the optical setup.
We can identify contrast transfers functions for the respective parts of the

specimen function Hr,i as follows

T (k)
r (f s) = Ck(−1, 0,f s) + Ck(0, 1,f s)

T
(k)
i (f s) = Ck(−1, 0,f s)− Ck(0, 1,f s) , (3.39)

so that the final result for the Fourier spectrum of the signal collected by the
individual segments k of the detector reads

Sk(f s) = ∆(f s)Ck(0, 0,f s) +Hr(f s)T
(k)
r (f s) + iHi(f s)T

(k)
i (f s) . (3.40)

We now have arrived at an expression for the image formation in terms of
transfer functions. This represents an important result since we have achieved
two important facts with Eq. 3.40: a linearization and separation of the formed
images with respect to the specimen contributions Hr and Hi (compare to
Eq. 3.34). Each of the two functions contributes to the final image through
their respective transfer function. This result serves as the basis for the filtering
reconstruction method.

3.3.2 Transfer Function Properties

Transfer functions, such as the ones identified in the previous section, are a
common tool in image formation theory and can prove particularly useful when
investigating certain behaviors and properties of imaging systems. An inher-
ent and central property of describing an image formation process in terms
of transfer functions is the separation of the imaging system (i. e. the opti-
cal setup) from the object that is imaged (as seen in Eq. 3.40). The transfer
functions, which are completely independent from the object and describe the
imaging system, allow the characterization of the imaging behavior. The liter-
ature on transfer functions is vast and contrast transfer functions for detector
configurations important for the presented work have been published before
[11, 36, 59–61]. Here we want to discuss some of the properties and char-
acteristics of the bilinear (Eq. C.18) and contrast transfer functions (CTF)
(Eq. 3.39) of the previous section, and give some examples.
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Absence of specimen

The bilinear transfer function Ck(0, 0,f s) is constant for all f s and represents
the measured intensity by segment k in the absence of a specimen.

Total spectral transfer and MTF

A convenient way to describe the total spectral transfer of the optical system
for the real and imaginary parts (hr,i) of the sample is given through

T tot
r,i (f s) =

∑

k

∣∣∣T (k)
r,i (f s)

∣∣∣ . (3.41)

The T tot
r,i (f s) do not allow the interpretation of specific images, but pose a

measure to describe and compare different optical systems in terms of their
total spectral coverage and transfer.

The real part total transfer function T tot
r is in its essence the same as the

modulation transfer function (MTF) of the imaging system.

Symmetry properties

A detailed derivation of the CTF symmetry properties can be found in Sec. C.2
of the Appendix. Assuming a real and symmetric pupil function Po the CTF
properties are as follows

• real part CTF (Tr):

– positive

– symmetric with respect to f =0

– identical for opposite segments

• imaginary part CTF (Ti):

– antisymmetry with respect to f =0

– opposite sign for opposite segments

– vanish for individual, symmetric segments

For a more detailed list of properties in particular with less restraints in the
pupil function we refer the reader to the Appendix (Sec. C.2).
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Imaging interpretations through symmetry properties

A few consequences from these symmetry properties and the respective imag-
ing interpretations can be made as follows. For the case of incoherent bright
field imaging (absorption imaging) all the segments of a detector are summed
up. From above symmetry properties we can see that all the contributions
from the imaginary part CTFs will cancel out. We will be left only with the
contributions from the real part CTFs summing up to T tot

r , which in turn
represents the MTF of a large-area detector configuration.

It has been stated in the past [11, 36] that displaying difference signals of
opposing segments, for which due to the symmetry only the imaginary part
CTFs and hence only hi will contribute information, allows to obtain phase
contrast information (as for example already seen before in Sec. 3.1.2). We
generally agree with this observation, but would like to point out possible
misconceptions of this interpretation. The notion that only the differencing
of segment signals allows observation of phase information assumes that all of
the specimens phase information is contained within hi, intrinsically implying
the weak specimen approximation

h = e−βkt+iδkt ≈ 1− βkt+ i δkt ≡ 1 + hw
r + i hw

i , (3.42)

This is a very limiting assumption which is not generally true compared to

h = e−βkt+iδkt = e−βkt cos(δkt) + i e−βkt sin(δkt) ≡ 1 + hr + i hi , (3.43)

where the specimen absorption and phase contributions are contained in both
functions hr and hi. Therefore, we generally also have phase contrast informa-
tion in hr. But why, from the transfer function point of view, is displaying dif-
ference signals advantageous to obtain phase contrast information? We believe
it inherently lies within the asymmetry of the imaginary part CTF response
for one segment, which gets further amplified through subtracting the in-sign
opposite CTF response from the opposing segment. This intensified asymmet-
ric response is key to obtain the specimen phase information because as we
have seen in Sec. 3.1.3, the influence of the specimen phase term redistributes
intensity asymmetrically around the zero spatial frequency center. In most
cases the intensity redistribution is subtle and will only be observable through
the imaginary part CTFs and hence differencing of segments. It has been
observed that in stronger phase shifting specimens already signals from indi-
vidual segments show phase contrast information. For very extremely phase
specimens we would expect that even the summation of opposing segments
(only real part CTF contributions) can give rise to phase contrast.
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Example transfer functions

Let us give an example of contrast transfer functions. In Fig. 3.16 we show the
real and imaginary part CTFs for the imaging situation given through Fig. 3.8
of the polystyrene sphere cluster discussed in Sec. 3.2. The illumination in
this case only covered the inner quadrant structure of the segmented detector
chip, which means that only the transfer functions from these segments will
contribute to the image formation process in this case. All segments that are
not illuminated have vanishing transfer functions (compare Eq. 3.39). Note
the symmetry of the CTFs for the individual segments as identified early in
the present section. The images are displayed in normalized spatial frequency
coordinate space; a spatial frequency of 1 corresponds to the pupil function
cut-off frequency (numerical aperture.) The transfer functions extend to a
normalized spatial frequency of 2 as expected for an incoherent imaging system.
The corresponding total real and imaginary transfer functions are shown in
Fig. 3.17. Note a particular attribute of the total imaginary part CTF at
and around the zero spatial frequency: the CTF values in this region are
zero, corresponding to no information transfer. Of course, we cannot measure
absolute phase shifts, which why it should come at no surprise that the CTF
at f =0 vanishes. However, the region in the vicinity of f =0 also shows little
to no transfer, which is a consequence of the quadrant detection scheme of this
setup. Note that the regions of low transfer within the CTF region resemble
a symmetry (”X” shape) in the directions of the four quadrant segments. In
the light of these observations we will in the following investigate different
detection schemes with a particular focus on their respective imaginary part
transfer behavior.

Different detector geometries

As established before, the total contrast transfer T tot
r,i can be used to describe

and classify different imaging systems regarding their transfer of information
from the real and imaginary parts of the specimen. At this point we would like
to consider a few detector scenarios. Note that the real part transfer functions
Tr are all positive and of even symmetry; hence, the total real transfer T tot

r

will be the same for all detector geometries as long as the detector segments
taken together cover the complete far-field illumination cone. The absorption
imaging properties therefore do not depend on the detector configuration.

In case of the imaginary part CTFs the total imaginary transfer, and there-
fore the phase contrast sensitivity, strongly depends on the detector layout.
In Fig. 3.18(a, c, e, g, i) we show five different detector scenarios, all of which
consider the same pupil function. Their respective total imaginary transfer
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Figure 3.16: Contrast transfer functions for the illumination of the polystyrene
sphere cluster of Fig. 3.8. Only segments that are illuminated have non-zero
transfer functions. Note the even and odd symmetry for the real and imaginary
part CTFs.
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Figure 3.17: Total contrast transfer functions for the illumination of the
polystyrene sphere cluster of Fig. 3.8

functions are depicted in Fig. 3.18(b, d, f, g, i). Images (a) and (b) represent a
simple quadrant geometry as seen before; (c) and (d) is a similar quadrant ge-
ometry that in addition has a division in the radial direction. The added finer
segmentation in the radial direction manifests itself in an improved coverage of
the frequency space through the transfer function in the radial direction (com-
pare (b) and (d)). Yet, regions of lower transfer along the diagonal direction
remain. Images (e) and (f) show an octant geometry, where the finer seg-
mentation in the azimuthal direction leas to a correspondingly more isotropic
response in the azimuthal direction in frequency space (compare (a) and (f)).
Combining the benefits of cases (c) and (e) leads to the a configuration of a
double quadrant structure of images (g) and (h), where the outer quadrant
has been rotated azimuthally by 45◦ with respect to the inner quadrant. This
results in a more even coverage of frequency space than all previous cases. In
comparison, an extreme case of segmentation in the form of a 256 element
pixelated detector is shown in (i) and (j). The spectral coverage of the rotated
double quadrant of case (g) and the pixelated detector of (i) are not drastically
different, yielding a comparable frequency response.

Of course, one can raise objection and demand to use the pixelated detector
since it gives superior information; however, practical experimental aspects
should also be taken into account. A largely pixelated detector system, with
fast read-out as desired for scanning type operation, is a complex and expensive
apparatus which in addition requires substantial data storage capacity. On the
other hand, a 8-segment detector is much easier to realize and is by far easier to
operate, significantly less expensive and requires drastically less data storage
space.
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Figure 3.18: Comparison of five different detector geometries and their respec-
tive total imaginary part transfer functions. The first and third row (a, c, e,
g, i) show the different detector response layouts including the pupil function
as a gray overlay. The pupil function is the same in all cases. The second and
fourth row (b, d, f, g, i) shows the T tot

i for each of the five detector cases.
Lines show the iso-contours of 10%, 50% and 90% of the maximum transfer
for the respective T tot

i .

75



A common objection for using a low segments number compared to a pixe-
lated detector geometry or CCD has been the fact that through the pixelation
one can determine the true center-of-mass shift of the illumination and with it
the true specimen phase gradient. However, the Fourier filtering reconstruc-
tion methods does not require or infer any phase gradient information from
the intensity shift in the far-field as necessary for the integration method. In-
stead, as we will see, the signal of all segments is used in an independent way
to reconstruct the specimen phase information. Therefore, we think the com-
parison of cases (g) and (i) of Fig. 3.18 and the conclusion that both give a
comparable and similar result is completely valid.

Different illumination alignment

With the rotated double quadrant structure we have identified a detector ge-
ometry that has a low number of segments and at the same time good contrast
transfer. An additional free parameter regarding the imaging properties is the
alignment of the detector with respect to the far-field illumination. When we
examined different detector geometries in Fig. 3.18 above the illumination was
the same in all cases. Let us now consider the situation of different illumination
conditions.

In Fig. 3.19 we show two different alignments of the rotated double quad-
rant. In alignment scheme 1 the beam illuminates all 8 segments, while in
alignment scheme 2 only the inner quadrant is illuminated, which effectively
corresponds to the quadrant detection of Fig. 3.16 and 3.17. Note, that the
different alignments are realized by scaling the pupil and leaving the detec-
tor fixed in spatial frequency space. One might think that alignment 2 has
a poorer areal spatial frequency coverage; i. e. it does not extend as far out
as alignment 1. However, this is not true, both cases cover the same spatial
frequency extend with respect to the pupil cut-off frequency (edge of pupil
function), which in essence determines the imaging properties of the system.
For the ease of comparison between both alignments we have chosen to affix
the spatial frequency coordinate system to the detector response.

Having clarified this alleged difference between alignment 1 and 2 we can
draw our attention to the qualitative differences of both. In the case alignment
1, where a radially divided segmentation is used to detect the illumination we
have already seen before that this reduces the areas of low transfer in the
imaginary part CTF. In the quadrant detection of alignment 2 we have larger
areas of little to no transfer. While this seemingly gives the advantage to
alignment 1, we will discuss a few points in the following, which makes the
choice less clear than it seems.

For a quadrant detection the actual size of the illumination on the detector
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is not important for the CTfs, as long as the illumination is fully contained
within the quadrant structure. However, in this case of double quadrant struc-
ture of alignment 1 the precise knowledge of the actual size of the beam on the
detector is more critical, as the transfer function will strongly depend on it.
Furthermore, this case will be strongly sensitive to a radial unevenness of the
pupil2, because the transfer functions assume an even radial illumination which
results in an equal weighting of information on the segments. On the other
hand, as we can already guess without having actually done a reconstruction
with segmented detector data, the alignment case 1 has the potential to yield
superior reconstruction results due to the improved frequency coverage3. In
the end it will be a compromise between how good the illumination conditions
are and what quality of reconstruction one hopes to obtain. A future develop-
ment of the technique can potentially be to incorporate measured illumination
profiles into the transfer functions.

As an example of the criticality to know the correct illumination on the
detector the imaginary part CTF of a particular segments of alignment scheme
1 in Fig. 3.19 highlights a specific detail. Around the zero spatial frequency
area we can observe a reversal on contrast transfer. If the correct illumination
size would be unknown and we were to reconstruct data obtained in alignment
scheme 1 with contrast transfer functions calculated for scheme 2, severe im-
ages distortions would be the consequence, as the calculated transfer functions
for scheme 2 do not correct for the contrast reversal in the low to intermediate
frequency region.

3.3.3 Fourier Filtering Reconstruction Derivation

Having described the image formation process in terms of transfer functions
and understanding their properties poses the basis for the subsequent analysis.
The following methods represents an inversion of the image formation process,
where all signals from individual segments are combined in an ideal way, to
determine the complex specimen function. Originally this approach was de-
veloped for scanning electron microscopy [53–56], but has since been applied
to scanned x-ray imaging [57], where the main focus lies on the true quan-
titative reconstruction and the inherent measurement noise treatment. The
approach is similar to a Wiener filter (see Appendix B) which is commonly
used in transfer function deconvolution in signal and imaging theory, and from
there also gets its name Fourier Filtering Method.

2As it often can be the case in experimental situations through lower efficiency of zone
plates to the outside, or unevenly illuminated zone plate

3One can consider it in a pictorial way: the more segments and therefore boundary
crossings the illumination covers the more redundancy the collected information contains.
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Figure 3.19: Comparison of different detectors alignment schemes for the ro-
tated quadrant detector. In alignment 1 all segments are covered by the il-
lumination, while in alignment 2 only the inner quadrant gets illuminated,
corresponding effectively to a simple quadrant detection.
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We will start by pretending that we have a reconstructed specimen function
in terms of a best guess for the specimen Fourier transform Ĥ(f ). We will

assume that this guess Ĥ(f) is formed in terms of the recorded images of the
individual segments Sk(f ) and individual weighting functions Wk(f )

Ĥ(f ) =
∑

k

Wk(f )Sk(f ) . (3.44)

It is these weighting functions we aim to derive, which will serve as a link
between the measured data and the specimen we hope to gain information
about. In order to simplify the notation for the remainder of this chapter we
will omit to include the subscript s for the scan displacement coordinate; all
quantities have to be defined on the same frequency space in any regard.

The error metric by which we measure the quality of the best guess Ĥ(f)
compared to the real specimen is given by the root means square error (RMS)

ǫ =

∫
df

〈∣∣∣Ĥ(f)−H(f)
∣∣∣
2
〉
, (3.45)

where we average over many measurements through an expectation value (〈〉).
This error has to be minimized for an optimal reconstruction. The minimiza-
tion of ǫ can be performed independently for all frequency values f due to the
fact that the integrand of Eq. 3.45 is real and positive for all spatial frequencies.
We perform the minimization through setting the integrands partial deriva-
tives with respect to the weighting functions to zero (see Appendix Eqs. C.38
and ) and henceforth obtain the condition

〈
S∗

k

(
∑

l

Wl Sl −H
)〉

= 0 , (3.46)

which has to be fulfilled for all segments k. The set of linear equations of
Eq. 3.46 for the filter functions Wk(f) can be solved analytically by substi-
tuting the Fourier spectrum of the individual segments in the weak specimen
approximation from Eq. 3.40

Sk(f) = Hr(f )T (k)
r (f ) + iHi(f)T

(k)
i (f ) +Nk(f ) for f 6= 0 and all k ,

(3.47)
where a spectral noise (Nk(f)) term for each segment has been added. The
zero spatial frequency contribution from the ∆-term of Eq. 3.40 will be handled
separately later. In order to arrive at a solution it is assumed that the noise
between different detector segments is uncorrelated, and that the real and
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imaginary parts of the specimen are uncorrelated as well, which constitutes an
additional part of the weak specimen approximation. The general solution is
given in the Appendix by Eq. C.52. These expressions can be further simplified
if the pupil function Po(f ) is real and centro-symmetric and each detector
segment k has an opposing segment k̄ such that Rk(f ) = Rk̄(−f ). Then the
filter functions take the form

Wk(f) =
T

(k)∗
r (f )

∑
l

∣∣∣T (l)
r (f )

∣∣∣
2

+ βr(f )
+

T
(k)∗
i (f )

∑
l

∣∣∣T (l)
i (f )

∣∣∣
2

+ βi(f)
for f 6= 0 and all k ,

(3.48)
where the noise terms are given by

β
(k)
r,i (f ) =

〈
|Nk(f )|2

〉

|Hr,i(f )|2
(3.49)

and are assumed to be of equal power for all segments β
(k)
r,i = βr,i and the

spectral noise Nk(f) to be the same for the real and imaginary parts.
Let us now consider the zero spatial frequency term that has been left out

following Eq. 3.46. The noise contribution for this term can assumed to be
zero, as it is the definition of noise to have an average of zero. Furthermore,
we will take the real part of the specimen function Hr(f = 0) to be small
compared to the ∆-term of Eq. 3.47. The specimen imaginary part spectrum
Hi(f = 0) does not need to be considered as its transfer function vanishes
for f =0 (see Eq. C.58). The resulting reconstruction filter will then be (see
Appendix C.3.4)

Wk(0) =
2 T

(k)∗
r (0)

∑
l

∣∣∣T (l)
r (0)

∣∣∣
2

+ βr(0)
. (3.50)

We have now obtained expressions for the sought after weighting or filter
functions Wk(f ) and; therefore can now reconstruct the specimen function
by a simple inverse Fourier transform of Eq. 3.44 to arrive at the real space
specimen function h(r)

h(r) = F−1{Ĥ(f )} = F−1

{∑

k

Wk(f )Sk(f )

}
. (3.51)

Normalization to background

From the beginning we set out to obtain a quantitative reconstruction of the
sample. In order to achieve this goal through Eq. 3.51 we have to pay specific
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attention to the scaling of quantities within the reconstruction process; in
particular to the values of the pupil function which mainly contributes to the
CTFs T

(k)
r,i (f ) contained within the filter functions Wk(f ). The integral of the

absolute values squared of the experimental pupil function in the absence of a
specimen represents the total number of incident photons, which in turn can
only be estimated from the final imaging process. Furthermore, one needs to
pay close attention in each step of the derivation that the total number of
photons is conserved. For reasons of practicality it is significantly easier to
use an arbitrarily scaled pupil for the calculation of the transfer and filtering
functions, and then go through the described reconstruction process. After
having obtained the final reconstruction for the specimen (Eq.3.51) the image
has to be normalized by the complex mean of a background region. In case
of non-isolated specimens that do not have a background region within the
field of view, one can choose a region within the sample for normalization
purposes; but one has to keep in mind that in this case the quantitation of
this reconstruction is then relative to this ”background” region.

Generic noise terms and filtering

A central part of the reconstructions filters of Eq. 3.48 are the noise parameters
β

(k)
r,i , which depend on the ratio of noise to specimen power. This ratio varies

for each experiment and sample imaged. Hence it is not possible to generate a
generally applicable reconstruction filter that can be used for all measurements.
One option is to choose a constant noise parameter value

β
(k)
r,i (f ) = const. for all f and all k , (3.52)

and tune this generic noise parameter to obtain the visually best reconstruc-
tion. This procedure is common in Wiener filtering approaches. Alternatively,
one can estimate the required quantities of noise and specimen power from the
data to generate an optimal and frequency dependent noise parameter β

(k)
r,i (f );

a recipe for this will be shown in the following.

Computation of reconstruction filters - frequency dependent noise

In order to obtain the optimal filter functions for the reconstruction process
we need to determine the real and imaginary noise terms

βr,i(f) =

〈
|N(f )|2

〉

|Hr,i(f)|2
. (3.53)

The noise power N can be assessed as follows. If the signal is sufficiently
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strong compared to detection dark noise and no other systematic sources of
noise (e. g. drifts and instabilities of the setup or beam) are present, photon
statistics is the dominating source of noise. Then there is no correlation of the
noise between scan displacement positions and we are dealing with a white-
noise power spectrum that is flat and isotropic. The magnitude of the noise
power can then be estimated via the radial power spectrum density (RPSD)
of the recorded image data, which is defined as

RPSD
{
Sk

}
(f) =

1

2πf

∫ 2π

0

dφf |Sk(f)|2 , (3.54)

where the integral is taken over the azimuthal angular range in spatial fre-
quency space and the resulting RPSD is a function of frequency magnitude
f . In Fiq.3.20 we show an example RPSD from experimental data. The data
itself will be discussed in the section following the current (see Sec. 3.3.4).
A decay to a flat line of the RPSD can be observed for spatial frequencies
exceeding the transfer of the microscope or alternatively where the specimen
does not have higher frequency content, whichever comes first. This flat line
represents the noise power of the data. For a conservative estimate to be used
in the reconstruction filters for

〈
|N(f )|2

〉
we choose the largest noise power

determined from RPSDs of all detector segments. Another possibility is to
choose the noise power individually for all segments and then use the general
filter function terms for the reconstruction; this has not been attempted as of
yet.

Since the specimen function Hr,i is not known, we also do not know its
power to form the noise parameter for Eq. 3.53. However, it is fair to assume
that the contrast is isotropically distributed over all spatial directions, then the
power |Hr,i(f )|2 can be well enough approximated by a RPSD. From Eq. 3.47
we can see that for frequencies where the signals dominate the noise

S̃k(f ) ≈ Hr(f )T (k)
r (f) + iHi(f )T

(k)
i (f ) for f 6= 0 and all k . (3.55)

In this form we can utilize the symmetry properties of the transfer functions
Tr,i to gain access to either the real Hr or imaginary part Hi of the specimen in
order to achieve the necessary RPSD power estimate for |Hr,i(f )|2. Therefore,

RPSD
{
Hr

}
(f) ≈ RPSD

{
S̃κr

}
(f)

RPSD
{
T̃ κr

r

}
(f)

(3.56)
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Figure 3.20: RPSD example from experimental data. The illumination con-
dition is shown in Fig. 3.23. The RPSDs of the five segments covered by the
far-field intensity are shown in the plot. Of the segments not illuminated by
the direct beam only the tail end is visible (pointed out by dashed circle), as
their power is orders of magnitude lower. The magnitude of the noise power
chosen is shown by the horizontal line. The maximal frequency transfer for
the data is 10 (µm)−1 corresponding to 50 nm in real space.

83



and

RPSD
{
Hi

}
(f) ≈ RPSD

{
S̃κi

}
(f)

RPSD
{
T̃ κi

i

}
(f)

, (3.57)

where κr,i resembles a specific combination of detector segment signals which
either only exhibit real or imaginary contrast transfer.

In order to realize Eq. 3.56 we remember from Sec. 3.3.2 the even symmetry
property of Tr, from which follows that a summation of all detector signals will
only have a real part transfer and so

S̃κr
(f) = F

{∑

k

sk(r)

}
. (3.58)

Similarly we can isolate a purely imaginary contrast transfer through comput-
ing difference images of opposing segments (anti-symmetric behavior of Ti) to
achieve

S̃κi
(f) = F

{∑

k,k̄

[sk(r)− sk̄(r)]

}
, (3.59)

where the sum is formed over pairs (k, k̄) of opposite segments. By having
formed the sums of Equations 3.58 and 3.59 we have isolated real and imag-
inary transfer-only signals as desired; i. e. we gained individual access of the
first and second term of Eq. 3.55 respectively. Note, that these signals still
contain both information from the optics through the CTFs and the specimen.
This is why in Equations 3.58 and 3.59 the contributions from the CTFs are
divided out to correct for the microscope transfer. Figure 3.21 shows example
RPSD plots for the previous calculations. As the specimen powers come into
the region where the noise is comparable, the corrected RPSDs (red lines) will
loose their meaning and diverge steeply upwards. For a large class of speci-
mens the signal decline with frequency can be well approximated by a power
law (linear fit in log-log scale). A power law fit for the real and imaginary
specimen RPSDs is shown in Fig.3.21. These fits will be used as input for
|Hr,i(f )|2 to estimate the noise parameters of Eq. 3.53. In cases where the
RPSDs do not show a mere linear decay, piecewise power law fits can be done
instead.

The respective noise parameters βr,i(f ) following the above derivation ob-
tained for the example data are shown in Fig. 3.22. Note that through the
previous derivation a radial form of βr,i(f) is derived. In order to obtain
image arrays for the noise parameters, the radial forms are simply revolved
azimuthally, since we assumed that the noise is distributed isotropically.
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Figure 3.21: RPSD plots for estimating the real and imaginary specimen power
by means of Equations 3.58 and 3.59. (a) Real part specimen power estimate
by means of Eq. 3.58. (b) Imaginary part specimen power estimate by means
of Eq. 3.59. Black lines resemble the signal RPSDs, while red are transfer
corrected signal RPSDs, representing the respective specimen power spectra.
Linear power fits to the corrected signal RPSDs shown by dashed lines.
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images.
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3.3.4 Reconstruction Example for Filtering Method

After having gone through the whole derivation of the filtering method includ-
ing the proper determination of the noise parameters for the filter functions we
now want to give an example of a filtering reconstruction from experimental
data.

We will consider a cluster of 5µm and 10µm diameter polystyrene spheres
imaged at 10 keV x-ray energy. The illumination alignment of the experiment
is shown in Fig. 3.23. Note that the far-field intensity of the pupil function

R (fk )

P (fo )

alignment

x

yf

f

Figure 3.23: Detector configuration, far-field illumination and their respec-
tive alignment for the experiment involving the 5µm and 10µm diameter
polystyrene sphere cluster.

cover the inner quadrant of the detector, as well as part of the central segment.
This alignment was chosen to take advantage of the increased frequency cov-
erage of the transfer functions when multiple segment boundaries are crossed,
as we have seen in Sec. 3.3.2. Hence this alignment does not resemble a mere
quadrant detection as necessary for the integration reconstruction method of
Sec. 3.2. Figure 3.24 shows differential phase contrast (DPC) images obtained
by forming difference images from opposing segments of the inner quadrant
structure of the detector.

It is important to note that these DPC images are only of qualitative nature
and do not have a quantitative meaning like the gradient images of Fig. 3.7.
Since no quadrant detection scheme was used, the gradient quantitation of
Sec. 3.2.1 is not applicable.

The proper noise treatment to obtain the noise parameters for the fil-
ter functions of this data has already been done at the end of the previous
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5 µm

a b

Figure 3.24: Differential phase contrast images of sphere cluster with 5µm
and 10µm diameter polystyrene spheres in (a) horizontal and (b) vertical
DPC Experimental details: 10 keV, steps 50 nm, ZP 160 µm, drN 100 nm, stop 40 µm,

detector arrangement as shown in Fig. 3.23.

Sec. 3.3.3. In Fig. 3.25 we show the transfer functions for the central seg-
ment (k = 1) and one of the quadrant segments (k = 1) of the detector for
the experimental situation. Note, that the imaginary transfer for the central
segment is zero as expected for a centro-symmetric segment. Even though we
are not dealing with a pure quadrant arrangement the transfer function for
the quadrant segment is similar to what we have seen before in Fig. 3.16. Ad-
ditionally, Fig. 3.25 shows the respective filter functions for the experimental
data.

Figure 3.26 shows the filtering reconstruction of the phase shift δkt of the
sphere cluster. A background subtraction as described in Sec. 3.2.6 has been
applied to the final reconstruction result. The theoretically expected phase
shift for 5µm and 10µm polystyrene spheres at 10 keV is 0.595 rad and 1.19 rad
respectively (via Henke data [14]). The quantitative result for the match these
theoretical values very well. The large sphere shows a reconstructed value
of 1.23 rad, which is slightly above the expected phase shift. However, only
a few pixel near the sphere center show this high value, which is likely a
remaining artifact of the background subtraction. The subtracted background
includes a horizontal line of increased phase shift going right through the
sphere center, as can be seen from the small inlay. All the small spheres have
reconstruction values ranging from 0.55 to 0.6 rad and with that are in excellent
agreement with the expected. Since the filtering method reconstructs the
complete specimen function, we can also consider the reconstructed absorption
of the sphere cluster, see Fig. 3.27(a). This is remarkable since the normal
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Figure 3.25: Transfer functions for the alignment shown in Fig. 3.23 (inlay
shows detector response functions) and the obtained filter functions for the
experimental data of the 5µm and 10µm sphere cluster. Filter function for
segment k = 3 is scaled to highlight the shape of the filter; actual minimum
and maximum values given in parentheses. Filter functions of other quadrant
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Figure 3.26: Filtering reconstruction of 5µm and 10µm sphere cluster. (a)
Reconstructed phase shift after subtraction of an uneven background. (b)
Reconstruction before background subtraction, also highlighting the area used
for subtracting the uneven background similar to Sec. 3.2.7.

90



absorption image before the reconstruction process shows no contrast at all
Fig. 3.27(b). In terms of quantitation of the absorption reconstruction we need
to be careful, where the numbers most likely cannot be trusted since the values
for βkt are expected to be on the order of 10−3 and; therefore, two orders of
magnitude away from image values. The expected signal to noise ratio in
the imaging process for the absorption part are approximately six orders of
magnitude different from the phase shift, which is most likely the cause for the
arbitrary values of the reconstruction we are seeing. But why is it then that we
are getting such a good image for βkt? For the filtering reconstruction process
βkt and δkt are two independent quantities (it is even explicitly assumed at
specific points in the derivation). However, the true real and imaginary parts
of the specimen contain information about both parts (e. g. see Eq. 3.43)
and the reconstruction process might transfer power from one quantity to the
other, but further investigations are required that are beyond the scope of this
work.
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Figure 3.27: Filtering reconstruction of 5µm and 10µm sphere cluster. (a)
Reconstructed absorption after subtraction of an uneven background. (b) Raw
absorption image as sum of all detector segments; shows no visible contrast.
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Interpretation of filtering reconstruction result

Through Eq. 3.51 we obtain the reconstruction result of the specimen hrecon

for the filtering method. In order to obtain the absorption and phase shift
terms βkt and δkt from hrecon it is suggestive to consider

βkt = ln (|hrecon|)

δkt = ln

(
hrecon

|hrecon|

)
,

(3.60)

as modulus and phase of the reconstruction. This is the way it has been done
in the past [11]. However, our investigations show that this is likely not the
correct interpretation. We propose to consider the reconstruction result as
follows

βkt ≡ Re (hrecon)

δkt ≡ Im (hrecon) ,
(3.61)

as the real and imaginary parts of the reconstruction hrecon. The reason for
this lies in the nature of the derivation for the reconstruction method, which
entails

1. a linearization and separation of hr and hi for the image formation pro-
cess in terms of transfer functions through omission of second order terms
(Sec. 3.3.1)

2. the assumption that hr and hi to be uncorrelated for the minimization
of the RMS error metric (Sec. C.3.1) .

The reconstruction process does not put specific restraints on the form of hr

and hi, as long as the specimen function can be written as h = 1+hr+i hi. Yet,
the above bullet points suggest that the specimen for the filtering reconstruc-
tion process needs to be considered in the full weak specimen approximation
of

h = e−βkt+iδkt ≈ 1− βkt+ i δkt ≡ 1 + hw
r + i hw

i , (3.62)

which implies the interpretation of Eq. 3.61.
Confirmation of our considerations is given through Fig. 3.28, where phase

shift images of the modulus and phase (Eq. 3.60) and real and imaginary
part (Eq. 3.61) interpretations are shown. Most noticeable is the difference in
the line profile through the large sphere in Fig. 3.28(c), where the phase shift
obtained from the phase of hrecon does not agree well with the theoretical phase
profile for the center part of the sphere. On the other hand the imaginary part
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Figure 3.28: Phase shift reconstruction of sphere cluster as interpretated via
(a) imaginary part of the reconstruction and (b) as the phase of the recon-
struction. (c, d) Line profiles through the respective images as indicated by
gree in (a) and red in (b). Theoretical phase shift profiles are indicated through
wide dashed lines.

93



of hrecon is on good agreement with the expected phase shift profile. A line
profile through two of the smaller spheres shown in Fig. 3.28(d) does not show
drastic differences for both interpretations; in fact they agree with each other
and the expected profile. This suggests that differences between both cases
are most prominent for the very low spatial frequencies (large bulk structures),
whereas for higher spatial frequencies differences will be less eminent.

Further evidence for our conclusion is given by Fig. 3.29, which shows the
absorption βkt of the sphere cluster from the real and modulus interpretation.
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Figure 3.29: Absorption reconstruction of sphere cluster as interpretated via
(a) real part of the reconstruction and (b) as the modulus of the reconstruction.
(c) Line profiles through the respective images as indicated by green in (a) and
red in (b).
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It has been a common misconception so far that the filtering method does
not perform well with the reconstruction of low spatial frequency objects,
making it less practical for quantitative analysis. This believe was supported
by observations of particularly large and thick objects not reconstructing as
quantitatively as expected. However, we know now that the reason for this
was an incorrect way of interpreting the reconstruction result, as demonstrated
above.

3.3.5 Specimen and Weak Specimen Approximation

The objective of the filtering reconstruction has been to gain quantitative phase
contrast information about the specimen. In the process of the derivation of
the reconstruction method, as well as the interpretation of its results, assump-
tions about the specimen function were made in various ways. Here we would
like to summarize these assumptions and briefly discuss their interconnection.

The specimen transmission function is defined as

h(r) = exp

(
−β(r)kt(r) + iδ(r)kt(r)

)
, (3.63)

which without loss of generality can be written as

h(r) = 1 + hr(r) + ihi(r) ; (3.64)

where in general hr and hi will contain information of both the specimens
absorption and phase

hr(r) = e−βkt(r) cos(δkt(r))− 1

hi(r) = e−βkt(r) sin(δkt(r)) .
(3.65)

Only in the form of the full weak specimen approximation the specimen infor-
mation is entirely separated

h ≈ 1− βkt(r) + i δkt(r) ≡ 1 + hw
r (r) + ihw

i (r) . (3.66)

In the form of Eq. 3.64 the specimen is used in Sec. 3.3.1 to formulate the
image formation in terms of transfer functions. During this process second
order terms O(H 2

r,i ) are neglected in order to achieve the linearization and
separation of Hr and Hi in the expression for the formed images of Eq. 3.40.
These second order terms in essence can be viewed as the dark-field contri-
butions of the imaging process, i. e. intensity that is scattered outside of the
main far-field intensity annulus. Within the filtering reconstruction method,
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segments that are not covered by the main beam have vanishing transfer func-
tions and successively do not contribute to the reconstruction. In the case
where the specimen is strongly scattering, giving a non-negleigble signal out-
side the main beam (dark-field) the reconstruction method will not perform
well as it does not know about this information. Hence, the dark-field signal
can be used as an indicator for the validity of the filtering method. One should
be aware that most biological specimen at hard x-ray energies do usually not
show significant dark-field signals.

When minimizing the RMS error in Sec. C.3.1 to solve for the filter func-
tions it is assumed that Hr and Hi are uncorrelated functions. This approxi-
mation inherently implies the weak specimen approximation of Eq. 3.66, since
only in this form hr,i (therefore, Hr,i) are independent and uncorrelated.

When interpreting the reconstruction results from the filtering method in
Sec. 3.3.4 it became evident that the real and imaginary parts of the recon-
structed function h give the superior qualitative and quantitative reconstruc-
tion results. This is a result of the two assumptions about the specimen
discussed in the previous two paragraphs and; furthermore, is supported by
the image interpretation through transfer functions discussed in Sec. 3.3.2.

Weak specimen classification

In his work Landauer discusses a criterion for the classification of weak spec-
imens [56, Ch. 3.2.2]. He defines a weak specimen in terms of the Fourier
transform of its specimen function: a specimen is weak if

H(f) = ∆(f ) +Hs(f ) where

∫

f 6=0

d2
f |Hs(f )|2 << 1 . (3.67)

This implies that the total energy that could be scattered by the specimen
outside the central beam is much smaller than the central beam.

Hornberger [11, Ch. 4.1.7] disregards this criterion through the argument
that Landauer’s condition can always be fulfilled for any specimen by embed-
ding it into a large transparent background and including this background
in the reconstruction. His argument [62] is motivated that by embedding the
specimen in a large background the ”average” specimen function (in real space)
becomes closer to 1, which means that its successive Fourier transform comes
closer to a Delta-Function. The more transparent (data value 1) background
is added in real space, the more power in Fourier space gets concentrated at
f =0, hence increasing the ratio of scattered to un-scattered signal.

We tend to disagree with Hornberger’s assessment that embedding a spec-
imen into a larger background and taking it as part of the reconstruction will
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always fulfill Eq. 3.67. We believe the motivation for Landauer’s reasoning
stems from considering the total integrated specimen power

∫
d2

f |H(f)|2 =

∫

f=0

d2
f |H(f)|2 +

∫

f 6=0

d2
f |H(f)|2

=

∫

f=0

d2
f |∆(f)|2 +

∫

f 6=0

d2
f |Hs(f )|2

= 1 +

∫

f 6=0

d2
f |Hs(f )|2 ,

(3.68)

where in the last step we used a defining relation of the ∆-function (see Ap-
pendix A.3). A transparent background will not add to the scattered signal
and; therefore, also not increase the contribution to the second term in the last
line of Eq. 3.68. Hence we believe Landauer’s criterion for a weak specimen of
Eq. 3.67 to be a valid one.

3.4 Comparison of Integration and Filtering

Method

With the integration method of Sec. 3.2 and the filtering method of Sec. 3.3,
we have presented two in their nature very different ways of quantitatively
reconstructing the specimen phase shift from scanned imaging. We now will
consider how both methods compare with one another. An obvious way of
doing so will be to directly reconstruct data and do a comparison based on the
reconstructed results, as will be done in Sec. 3.4.2. However, before directly
contrasting both approaches, we will start by introducing a novel formula-
tion of the integration method in terms of filter functions in Sec. 3.4.1. This
will help us in the interpretation of the imaging results and gain a more fun-
damental understanding of both approaches. Note, that a truly quantitative
comparison of both methods is only possible in the quadrant detection scheme,
since only then are the differential phase contrast images quantifiable to yield
phase gradient images.

3.4.1 Filter Functions for Integration Method

The reconstruction of the specimen function h by the Fourier filtering method
is (see Eq. 3.51)

h(r) = F−1{Ĥ(f )} = F−1

{∑

k

Wk(f )Sk(f )

}
, (3.69)
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where the signal of all segments Sk are combined in an ideal way through
weighting or filter functions Wk. The phase shift of the reconstructed specimen
is best represented by the imaginary part and the absorption by the real part
of the reconstructed function h (see Sec. 3.3.4).

The integration method on the other hand resembles an orthogonal inte-
gration of gradient images ∂x,yφ and reconstructs the specimen phase shift φ
by (see Eq. 3.28)

φ(x, y) = F−1
x,y

{Ffx,fy

{
∂xφ(x, y) + i∂yφ(x, y)

}

2πi(fx + ify)

}
, (3.70)

where a quadrant detection scheme is required to obtained quantitative phase
gradient images (see Sec. 3.2.1) from differential phase contrast (DPC) data
(see Sec. 3.1.2).

Both reconstruction approaches are very different in their nature. However,
through realizing the fundamentals of the integration method it is possible
to derive a filter function expression for Eq. 3.70 and, therefore, enable a
comparison between both methods on an analytical basis. In order to derive
the integration filter functions we will start by considering the defining relation
of the gradient images ∂x,yφ, which are given through the DPC definition of
Eq. 3.8 in connection with the quantitation of Eq. 3.23 as

∂xφ = C (s2 + s3)− (s1 + s4)

st

(3.71)

∂yφ = C (s1 + s2)− (s3 + s4)

st
, (3.72)

where sk is the real space signal of the segments in a quadrant arrangement,
st is the total intensity (i. e. absorption) and C is the constant resulting from
the quantitation. Through Fourier transformation of Eq. 3.70 and insertion of
the expressions from Eq. 3.72 we arrive at

Φ(f) =
C

2πi(fx + ify)
×

×
[
(−1 + i)F

{
s1

st

}
+ (1 + i)F

{
s2

st

}
+ (1− i)F

{
s3

st

}
+ (−1− i)F

{
s4

st

}]
.

(3.73)

In the case of weakly absorbing samples the total intensity, which is true for a
large class of specimens in the hard x-ray range, st will be negligible and can
be left out. At this point we have arrived at a filter function formulation of the
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integration method. Recalling F{sk} ≡ Sk we have arrived at a formulation
of the integration method in terms of filter functions (compare Eq. 3.69):

φ(r) = F−1{Φ(f )} = F−1

{∑

k

W int
k (f )Sk(f)

}
, (3.74)

with filter functions,

W int
1 (f ) =

C(−1 + i)

2πi(fx + ify)
W int

2 (f ) =
C(1 + i)

2πi(fx + ify)
(3.75)

W int
3 (f ) =

C(1− i)

2πi(fx + ify)
W int

4 (f ) =
C(−1− i)

2πi(fx + ify)
. (3.76)

With this result we have brought the integration and filtering method onto
equal footing. Note, that the integration filter functions are generally applica-
ble once the optical setup is determined (e. g. size of illumination on detector
required for quantitation of C); as they do not contain any other experimentally
varying quantities regarding noise like the Fourier filter functions do. Further-
more, the integration filters do not include any information on the imaging
properties of the optical setup.

We will exemplify the integration filters in the next section by means of a
specific example and directly compare and contrast them to the functions of
the filtering method.

3.4.2 Comparison Through Simulated Data

In the following we will compare the integration and filtering reconstruction
methods through simulated data.

Imaging simulations make it possible to explore a large variety of different
imaging situations in a controlled manner, which are often difficult to achieve
under experimental circumstances. The expression of wave field in the far-
field detector plane for scanning microscopes of Eq. 2.23 posses the means
to conveniently simulate arbitrary specimens and imaging situations. The
imaging conditions for the simulation are chosen to resemble a typical scanning
hard x-ray microscope setup: x-ray energy 10 keV, scanning step size 50 nm,
zone plate diameter 160µm, outermost zone width drN 100 nm, central stop
40µm and detector arrangement as shown in Fig. 3.30. The phase shift map
of the simulated specimen is shown in Fig. 3.31, where the lines in the image
indicate the positions of line profiles for the subsequent analysis. The specimen
phase shifts correspond the polystyrene imaged at 10 keV. The spheres shown
in the images are of 10, 5, 2, 1 and 0.5µm diameters corresponding to phase
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Figure 3.30: Detector configuration, far-field illumination and their respective
alignment for the simulation. The diameter of the far-field illumination on
the detector is 90% of the inner quadrant diameter. The alignment effectively
represents a quadrant detection scheme.

shifts of 1.19, 0.595, 0.238, 0.119 and 0.06 rad respectively. The linear and
radial chirped grating in the upper left corner of Fig. 3.31 are of a thickness
of 5µm or 0.595 rad. The linear chirped gratings in the upper right corner
correspond to 5µm thickness or 0.595 rad and 50%, 20%, 10% and 1% thereof.
The specimen was simulated with 105 photons per second per scan position
and Poisson statistic noise.

Reconstruction results of the integration and filtering methods are given
in Fig. 3.32 and will be discussed in detail for the remainder of the present
section.

Filter functions and RPSD comparison

Let us start the comparison of the two methods by considering the filter func-
tions used to obtain the reconstructions. In Fig. 3.33 we show the filter func-
tions for the lower right quadrant segment of the detector (see Fig. 3.30). Both
filter are of similar shape and have a dipolar structure along the −45◦ direc-
tion. Note that the Fourier filter shows additional arch-shaped structures in
the high spatial frequency range, which are not present in the integration fil-
ters. In the low spatial frequency range towards the center of the arrays both
filters show similar behavior, albeit that their detailed form is not exactly the
same the quantitative filter values agree match each other with slightly higher
values for the integration. This observation already poses a remarkable re-
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Figure 3.31: Phase map if the simulated specimen. The yellow lines indicate
the positions of line profiles taken through the reconstructions for analysis
purposes (see Fig. 3.32 through Fig. 3.40). Thicknesses of structures given in
the following correspond to polystyrene at 10 keV x-ray energy. Structures in
radians (thickness); spheres: 1.19, 0.595, 0.238, 0.119 and 0.06 rad (10, 5, 2,
1 and 0.5µm); linear and radial chirp in upper left: 0.595 rad (5µm); linear
chirp in upper right: 0.595 rad (5µm) and 50%, 20%, 10% and 1% thereof.
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Figure 3.32: (a) Integration and (b) filtering reconstruction from simulation
of the specimen given in Fig. 3.31.
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Figure 3.33: Filter functions of the reconstructions used to obtain images in
Fig. 3.32 for one of the quadrant detector segments (k = 3). (a) Integration
filter computed via Eq. 3.76 and (b) Fourier filter function; both are scaled to
±10 to highlight the shape. (c) Line profile through the filter functions of (a)
in green and (b) in red.
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sult. It so far has been believed that because of the vanishing values of the
contrast transfer functions for small f , the filtering method’s reconstruction
results should be poor for the low spatial frequencies (large and thick bulk
structures); giving the integration method an advantage. At least as far as the
filter functions are concerned, this is not the case. In the line profile shown in
Fig. 3.33(c) we can see that both filters match up in the low frequency range.

For the high frequencies the Fourier filter has an additional ”bump” (in-
dicated by circles), which is a characteristic feature that is due to the noise
treatment in the filtering method. In incoherent imaging, as it is the case
here, the microscopes contrast transfer response is not uniform across the spa-
tial frequency space, similar to what we have already seen through the transfer
functions (Sec. 3.3.2). This means that the presence of noise will effect the
spatial frequencies differently depending on their respective transfer strength
compared to the noise level. The highest spatial frequencies are usually influ-
enced most negatively through the noise. Since the Fourier filter is based on
a Wiener filtering type approach, it corrects the noise dominated high spatial
frequencies appropriately. This is a key difference to the integration method,
where no noise or imaging transfer treatment is included whatsoever and the
line profile of Fig. 3.33(c) supports this assessment. Therefore, it is to be ex-
pected that the filtering method will show better performance for high spatial
frequency structures. Please note that by considering the shape of the filter
functions we can gain insight into the behavior of the two different reconstruc-
tion methods, but we cannot understand the entire imaging process based on
this.

Further understanding can be obtained by considering the radial power
spectrum density (RPSD) of the input specimen and the reconstruction results
as shown in Fig. 3.34. As predicted by the filter functions considerations
above the integration and filtering method agree well with each other in the
low spatial frequency range; and also with the specimen. At around 6 (µm)−1

the two RPSDs start to drift apart, with the reconstructed power from the
integration method strongly decreasing, while the filtering method continues to
follow the expected values from the specimen up to approximately 9.5 (µm)−1.
The start of the divergence of both cases at around 6 (µm)−1 coincides with the
spatial frequency in Fig. 3.33(c) where the high frequency correction ”bump” of
the Fourier filter starts to pick up compared to the integration filter. An arrow
points at the region of largest disagreement of integration and filtering. This
substantiates the suspected behavior of the filtering method outperforming the
integration for the fine features further.

Let us now have a closer look at the actual reconstructed images of Fig. 3.32
through the line profiles indicated in the simulated specimen of Fig. 3.31.
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Figure 3.34: Radial power spectrum densities (RPSD) of the simulated speci-
men, the integration and filtering reconstruction. The spatial frequency cutoff
of the imaging process is indicated at 10 (µm)−1. The vertical line at 6 (µm)−1

indicates where the integration an filtering method start to divide.
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Line profiles through reconstructions

Figure 3.35 shows a profile through the large 10µm diameter sphere. The inte-
gration reconstruction is in excellent agreement with the theoretical specimen
value. The filtering method shows a lower reconstructed phase shift in the
region of the thickest part of the sphere with a value of 1.15 rad where 1.19 rad
would be expected, which is a 3% difference to the ideal. From the previous
considerations we would have expected the two methods to agree better for
such a low frequency object. What are the potential reasons for the disagree-
ment? First, a mere consideration of an imaging process in therms of spatial
frequency behavior cannot entirely describe the image results. Furthermore,
one should not that the filter functions of the integration method shown in
Fig. 3.33 have slightly higher maximal values than the Fourier filter. The
most severe reason is the fact that we are dealing with a quadrant detection
scheme (as is required for the integration method to be quantitative). We have
seen in Sec. 3.17 that the total imaginary contrast transfer function exhibits
a large area of low transfer in the vicinity of the zero spatial frequency. This
low transfer information prevents the filtering method from properly recon-
structing the lowest spatial frequencies. In the case of a more advantageous
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Figure 3.35: Line profile A through the specimen as indicated in Fig. 3.31 and
the respective integration and filtering reconstruction images of Fig. 3.32.

illumination alignment in terms of spectral transfer function coverage, we have
seen in Sec. 3.3.4 that the filtering method retrieved the proper phase profile
for a 10µm sphere from experimental data! Furthermore, simulations show
that when the illumination alignment is changed to a scheme covering more
than only the quadrant segments, the retrieved phase shifts for the large sphere
come closer to the theoretically expected. Simulation with an alignment equal
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to the case of the experimental sphere data reconstructed the phase of the
sphere to 1.18 rad.

The line profile shown in Fig.3.36 is taken through the 2µm and 5µm
spheres of the specimen. Both reconstructions are in agreement with the the-
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Figure 3.36: Line profile B through the specimen as indicated in Fig. 3.31 and
the respective integration and filtering reconstruction images of Fig. 3.32.

oretically expected phase shift in terms of shape and quantitation. Similar
observations can be made for the line profile of Fig. 3.37 through the 2µm and
0.5µm spheres. A general observation is that the filtering methods tends to
be more noisy in the background region and also across the features, which is
a hint that the performed noise analysis to obtain the Fourier filter functions
is not optimal.

After having considered exclusively low frequency objects we will turn our
attention now to the chirped grating in the upper half of the specimen. The
profile through parts of the radially chirped grating of Fig. 3.38 identify the
better high frequency performance of the filtering method. The gray lines
in the image represent the envelope of the fine features reconstructed by the
integration method, which clearly decrease as the frequency of the grating
increases, while at the same time the filtering reconstruction remains at a con-
stant level. The lower frequency features in the profile (wide grating bars)
show again the integration performing better. In the middle of the widest bar
(pointed out be the arrow) we can see a fall-off of the reconstructed phase
shift; as the structure of the specimen is constant in this region over an ex-
tended spatial range, no phase gradient is present, hence eliminating the phase
sensitivity of the method. This effect becomes more severe the more extend a
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Figure 3.37: Line profile C through the specimen as indicated in Fig. 3.31 and
the respective integration and filtering reconstruction images of Fig. 3.32.

region of constant phase shift is. In Fig. 3.39 we show the extreme case of the
reconstruction of high spatial frequency content. The line profile is taken right
at the edge of the radially chirped grating in the vertical direction, where the
theoretical phase gradient approaches infinity, i. e. step function. The integra-
tion method’s reconstruction result agrees with the specimen in terms of the
shape of the grating; however, its quantitative values is suppressed uniformly
by 20% along the line profile. The filtering method seems to have no problem
retrieving the grating qualitatively and quantitatively.

We conclude this discussion by considering two of the horizontally chirped
gratings of the specimen’s upper right part through Fig. 3.40. Shown are the
grating with 0.595 rad phase shift in (a) and 0.119 rad in (b). Both reconstruc-
tion results are in good agreement with the specimen, showing no difference
in terms of total phase shift sensitivity; in fact both method are almost iden-
tical for the 0.119 rad grating including a tendency to show increased negative
reconstruction values for the no-specimen region in between grating bars.
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Figure 3.38: Line profile D through the specimen as indicated in Fig. 3.31
and the respective integration and filtering reconstruction images of Fig. 3.32.
Gray lines indicate the envelope of the declining integration reconstruction
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Figure 3.39: Line profile E through the specimen as indicated in Fig. 3.31 and
the respective integration and filtering reconstruction images of Fig. 3.32.
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in Fig. 3.31 and the respective integration and filtering reconstruction images
of Fig. 3.32.
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3.5 Application of Quantitative Phase Con-

trast in X-ray Fluorescence Microscopy

The reconstruction methods described in Sec. 3.2 and Sec. 3.3 enable one to
obtain truly quantitative phase contrast images, beyond the qualitative nature
of differential phase contrast. In addition to this, the quantitative phase images
can have an extremely useful application in scanning x-ray fluorescence (XRF)
microscopy, as will be shown in the following.

3.5.1 XRF Microscopy and Its Weaknesses

The principle of x-ray fluorescence is laid out in Sec. 1.2.4 and the concept
of a scanning x-ray fluorescence microscope is discussed in Sec. 1.3.2. The
sample is scanned through focal spot of a focussing optic and for each scan
point the emitted XRF signal is collected with an energy dispersive detector
of the side from the optical axis. In order to excite a large range of elements,
XRF microscopy commonly operates at hard x-ray energies. Typical for ma-
terial science applications are energies up to 50, while for biological samples
energies usually range from 5 to 15 keV. XRF microscopy is an excellent tool
for mapping and quantification of elements down to trace amounts with sensi-
tivity better than several thousand atoms [63] with many applications in the
biological and medical sciences [64, 65].

However, there are some drawbacks of the technique. Bulk biological ma-
terial that constitutes the main biological structure of the specimen almost
exclusively contains light elements (H, C, N, O), which as we have seen in
Sec. 1.2.4 have a low fluorescence yield and; therefore, are extremely difficult
to image in fluorescence. Hence XRF microscopy does not yield images of the
biological ultrastructure of specimen and, so it is not possible to contextual-
ize the measured (trace) element content from the heavier elements with the
structural information from the lighter elements. Furthermore, at the required
x-ray energies to image in fluorescence the biological structure shows little to
no absorption contrast. Since the transmission signal in XRF microprobes is
not used it makes it an ideal candidate for combination with scanning trans-
mission x-ray microscopy and the discussed phase contrast methods of the
present chapter. We have already implemented and demonstrated the appli-
cation of differential phase contrast (DPC)in XRF microscopes, where it is
useful for sample localization and to put the measured elemental content into
the context of the biological structure [1]; so addressing one of the drawbacks
of XRF microscopy.

Through the help of standards the measured elemental signal of two di-
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mensional XRF images can be quantified to yield maps of elemental content
in terms of element mass per area. However, biological processes are driven
by concentrations (mass per volume) and not absolute amounts (as mass per
area). Here we propose to utilize the quantitative reconstructed phase contrast
images to provide the required projected thickness information to properly nor-
malize the element content images in order to obtain element concentration
images [6]. Of course, the reconstructed phase contrast images also contribute
to a better visualization of the biological structure and pose an improved way
of contextualizing the elemental content compared to the qualitative and direc-
tionally dependent DPC. We the following we will briefly discuss an example
of the proposed method; first in Sec. 3.5.2 the thickness images of a biologi-
cal sample is derived and then applied to XRF data in Sec. 3.5.3 to retrieve
elemental concentration images from two dimensional data.

3.5.2 Specimen Thickness Map

As we have seen in Sec. 3.2.4 that in principal it is possible to translate re-
constructed images of the specimen phase shift into thickness images (e. g. see
Fig. 3.12 and Eq. 3.29), given that the material and hence its δ is known.

In Fig.3.41 we shown the reconstructed phase images of a fixed and dried
freshwater algae cell of the type Cryptomonas images at 10 keV x-ray energy
and reconstructed through the filtering method, where the detector alignment
was the same as shown in Fig. 3.23. In order to translate this phase shift
images into a thickness map we need to know the materials real part of the
index of refraction δ to properly divide it out. For this we consider the fact
that biological specimen in general almost exclusively consist of protein, lipids,
nucleosomes, etc., all having phase shifts similar enough at hard x-ray energies
to not be distinguishable to first order at the abundance given in biological
cells. Hence we can safely assume to first order that biological samples consists
exclusively of protein with a given standard elemental distribution 48.6% H,
32.9% C, 8.9% N, 8.9% O and 0.6% S. at a density of 1.35 g/(cm)3. Together
with Henke data [14] the value at 10 keV will be δ = 2.99 10−6. With this
we can calibrate Fig.3.41 to a thickness map of protein (see right scale bar
in figure). The negative thickness values are a result of falsely reconstructed
background values in the image and do not appear on the cell inside.

3.5.3 Elemental Concentration Reconstruction

We are now in the position to use the reconstructed thickness map of Fig. 3.41
for elemental concentration reconstruction, simply by dividing measured and
standard calibrated XRF data and divide by the protein thickness. Figure 3.42
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Figure 3.41: Reconstructed phase shift of a fixed and dried freshwater flagellate
cell type Cryptomonas; calibration to thickness via the assumption that the
biological material consists of protein in the decomposition 48.6% H, 32.9% C,
8.9% N, 8.9% O and 0.6% S. Experimental details: 10 keV, steps 50 nm, ZP 160 µm,

drN 100 nm, stop 40 µm, detector arrangement as shown in Fig. 3.23.
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shows elemental content and concentration images of the selected elements Cu,
P and S. The left column in the figure displays the usually measured XRF
images in terms of elemental content (image values correspond to µg/(cm)2).
The right column shows the respective images from the content column divided
by the thickness map of Fig. 3.41. The elemental concentrations are displayed
in units of (per dry weight) meaning elemental mass per dry weight of protein,
instead of the protein volume; this just corresponds to a linear scaling of the
protein volume by its density.

The applicational importance of these results in two-fold. First, the recon-
structed concentration maps provide important clues for scientist when inter-
preting the elemental distribution from the two-diemnsional maps; in particu-
lar regarding questions of elemental co-localizations and potential biochemical
consequences. Second, quantitative conclusions can be drawn from the data,
including an independent measure of the total cell mass.

For each of the elements concentration reconstruction two global images
values are given. The ”integral part” represents the sum of the measured
elemental content divided by the total cell mass; the ”average” denotes the
average reconstructed concentration on a per pixel basis. From these number
we can see that the individual elemental contributions to the total cell mass
(and therefore its index of refraction) are on the low percentage range, justi-
fying the assumption that the main contributing factor to the objects index of
refraction is given through the soft material with negligible contribution from
the (trace) elements.

The proposed method of mass normalization of elemental content maps
through quantitative phase contrast images posses a significant advancement
for the data analysis from two-dimensional XRF microscopy. In case of XRF
tomography, where the three dimensional structure of the specimen is imaged,
the mass normalization is no longer required since the final XRF maps already
represent mass per volume images. However, the quantitative phase contrast
maps will still be of importance, as they depict the biological structure of the
specimen and allow the measured elements to be put in their ultrastructural
context.
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Figure 3.42: Measured and calibrated elemental content maps of Cu, p and S
(left column) and their respective concentration maps (right column) by mass
normalization of the content maps via Fig. 3.41.
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Chapter 4

Scanning Zernike Phase
Contrast Imaging
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The present chapter will discuss the implementation and realization of a
novel phase contrast imaging technique for scanning x-ray microscopes, which
will also have general applicability to scanning microscopy with other types of
radiation.

We will begin by reviewing Frits Zernike’s idea of phase contrast imaging
for full-field microscopy [27], which earned him the Nobel Prize in 1953. From
there the principle of reciprocity is employed to arrive at Zernike phase contrast
for scanning microscopy. On the example of hard x-ray scanning microcopy we
will describe the experimental implementation of this new method and discuss
its imaging properties. Similarly to the phase contrast methods described
in Ch. 3, scanning Zernike phase contrast can be an extremely useful tool for
complementary imaging in x-ray fluorescence microprobes; a few initial results
and potential applications in connection with x-ray fluorescence imaging will
be discussed.

4.1 Zernike Phase Contrast Principle

Zernike phase contrast (ZPC) is one of the most powerful methods of phase
imaging, since it produces images which are a direct representation of to the
phase changes introduced by the sample. It was first described by the Dutch
physicist Frits Zernike in 1935 [27] and was awarded the 1953 Nobel Prize in
physics. Zernike’s method is often simply referred to as the phase contrast
method.

Let us describe the principle of ZPC, in the style of the treatment by Born
and Wolf [37]. For this purpose we consider a transparent object in the form
of a one-dimensional phase grating with a specimen transmission function

h(x) = eiφ(x) , (4.1)

where φ(x) is a periodic function with period d. If we assume the magnitude
of φ to be small one can write

h(x) ≈ 1 + iφ(x) . (4.2)

Measuring the intensity of the light distribution caused by this phase grating
in an image plane, we simply would get

I(x′) = |h(x)|2 = 1 ; (4.3)

with x′ = xM and M the image magnification through the optical setup.
Hence, we would not be able to visualize the grating structure of the sample.
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Note, that in this treatment one is not considering potential propagation based
phase effects and their successive influence on the final image intensity.

Since h(x) is periodic and φ real and nummerically small compared to unity
we can develop the specimen function into the Fourier series

h(x) =
∞∑

j=−∞

Kj exp

(
2πijx

d

)
, (4.4)

where the coefficients are

K0 = 1 (4.5)

K−j = −K∗
j for j 6= 0 . (4.6)

The coefficients Kj describe the amplitude distribution in the focal plane
(Fourier plane) of the imaging objective lens1. Now, it was Zernike’s idea
to introduce a phase shifting structure in form of a thin phase plate in the
back focal plane of the objective. In this arrangement the 0th or central or-
der (j = 0) of the light is retarded (−) or advanced (+) with respect to the
diffracted orders (j 6= 0) by a quarter of a wavelength (see also Fig. 4.1 be-
low). This alters the amplitude distribution in the focal plane, which is now

described by the coefficients K̂

K̂0 = K0 e±iπ/2 = ±iK0 (4.7)

K̂j = Kj for j 6= 0 . (4.8)

The resulting light distribution in the image plane in this arrangement will be

ĥ(x) = ±i + iφ(x) , (4.9)

which now represents an amplitude grating compared to the previous phase
grating of Eq. 4.2. The successive intensity in the image plane is then

Î(x′) = |ĥ(x)|2 = 1± 2φ(x) . (4.10)

This results signifies the basic principle of Zernike’s method of phase contrast.
Phase changes that are induced by the sample are transformed into intensity
changes, where the intensity at any given point in the image plane is directly
proportional (asside from a global additive constant) to the phase change due
to the corresponding sample structure.

1In Ch. 2 we derived the fact that the light distribution in the focal plane of a lens
corresponds to a Fourier transform.
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An example of this principle is depicted in Fig. 4.1. The light illuminating
the object is divided into an undiffracted (0th order) and diffracted part. The
diffracted part carries the information about the object structure. A spatial
separation of these two components is achieved in the back-focal plane of the
objective lens, where a phase shifting ring imparts the predetermined phase
shift necessary for Zernike’s method onto the undiffracted part. The final phase

source annular
aperture condenser

sample

objective

phase
ring image

undiffracted light
diffracted light

Figure 4.1: Principle of Zernike phase contrast in a full-field microscope. In-
terference of undiffracted light (red) that will be phase shifted by the phase
ring with diffracted light (green) translates phase variations of the object into
intensity modulations in the image plane.

contrast image is formed by the interference of the phase shifted undiffracted
component with the (undisturbed) diffracted component, translating phase
modulations of the object into intensity variations in the image plane. As we
have seen through Eq. 4.10, for small phase shifts, these variations are due
and directly proportional to the differences in the real part (phase) of the
object’s index of refraction. Figure 4.2 shows example images from visible
light microcopy.

Given the nature of X-rays, where optically thicker structures cause positive
phase shifts, one distinguishes the two cases of Zernike phase contrast the
following way. In case of a phase retardation (−π/2) of the 0th order through
the phase plate, structures that are optically thicker will appear darker than
the mean illumination, and one speaks of negative or dark phase contrast. This
image representation closely matches conventional absorption contrast in its
appearance. For a phase advance (+π/2) through the phase plate, structures
that are optically thicker will appear brighter than the illumination mean, and
one calls this case positive or bright phase contrast. Note, that in the case of
visible light the above classification works vice versa.
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a b

Figure 4.2: Visible light images of a living tissue culture in (a) Zernike phase
contrast and (b) absorption contrast. The phase image shows a significant
improved visualization of the structures. Image reproduced from F. Zernike
[66]; no image scale given.

4.1.1 General Description

In the previous derivation of the Zernike phase contrast method, a rather sever
assumption was that the phase object is of periodic structure. However, it can
be shown that this is not a necessary requirement and the ZPC method works
equally for arbitrary structures. For the detailed derivation of this case we
refer to Born and Wolf [37, Ch. 8.6] and simply just state the result in the
following and discuss its consequences.

A general phase object is described by the transmission function

h(x) = eiφ(x) , (4.11)

with φ(x) an arbitrary but real function. A phase shifting mask (e. g. phase
plate or ring) is given through the transmission function

PR = t e±iα , (4.12)

with t as the transmission and α phase shift of the mask. It can be shown (see
[37, Ch. 8.6]) that this leads to an intensity in the image plane given by

I(x′) = C
[
t2 ± 2 t φ(x) sinα

]
(4.13)

where C is some constant.
Let us consider the consequences from this general result of Eq. 4.13. It

becomes immediately clear that the optimal phase shift α desired by the phase
shifting mask should be ±π as this maximizes the contribution of the term
containing the sample phase φ to the total intensity; i. e. sinα is maximal. In
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case of a non-absorbing phase plate (t = 1) the previous result of Eq. 4.13 is
reproduced. Furthermore, if the phase mask PR is partially absorbing with a
transmission coefficient t < 1, the ratio of the second to first term of Eq. 4.13
becomes ±φ/t, so that the contrast of the image is enhanced.

4.1.2 Improved Formula for Image Intensity in Zernike
Phase Contrast

As a word of caution we would like to draw attention to the fact that the
expression given in Sec. 4.1.1 for the image intensity in Zernike mode is not
generally valid. It is pointed out by Beleggia [67] that the derivation is only
justified in the case of a weak phase object approximation, where the majority
of the light passes through the sample undisturbed (0th order is by far the
largest contribution). If this is not the case the relation of Eq. 4.13 leads
to image inconsistencies. Furthermore, energy conservation is violated and
constant phases become can observable. A generalized expression is derived
by Bellegia [67] that surpasses the limitations and results in improved image
representations for the Zernike phase contrast method. However, a detailed
discussion of these issues is beyond the scope of this work.

4.2 Reciprocity - Zernike Phase Contrast in

Scanning X-ray Microscopy

The reciprocity theorem reflects the interchangeability of source and observa-
tion point for electromagnetic systems. As we have seen in Ch. 2, in the case
of imaging theory this principle is reflected in the symmetry of the variables
in the Fresnel-Kirchhoff diffraction integral for wave propagation [23, 37]. In
the microscopy community is has long been recognized that this signifies the
equivalence of scanning and full-field transmission microscopes, which we have
mathematically proven in Sec. 2.4. Based on this realization, the concept of
Zernike phase contrast in a scanning microscope was considered for visible
light by Wilson and Sheppard [68] and Siegel et al. [69] for X-rays. However,
to date, no detailed treatment or implementation has been reported, which
is why we believe our work [7] poses the first demonstration of Zernike phase
contrast in a scanning microscope.

Let us now consider the essence of Zernike imaging in a scanning arrange-
ment. Figure 4.3 illustrates the equivalence of full-field and scanning Zernike
imaging. In full-field imaging a condenser (commonly of annular shape) illumi-
nates the object of interest; the transmitted light (diffracted and undiffracted)
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Figure 4.3: Schematic of the equivalence of full-field and scanning Zernike
phase contrast imaging. Reading the image from left to right (considering the
blue labels) resembles the case of a full-field setup in Zernike mode. From
right to left (considering green labels) resembles the situation of a scanning
microscope with Zernike phase contrast capability.

gets collected by the objective lens to form an image in the detector plane.
A phase ring in the condensers conjugate plane (given through the lens law)
provides the necessary phase shift for Zernike’s method of phase contrast. In
the scanning case the propagation direction is reversed and the image point
takes the role of the source illuminating the objective lens, which then focuses
the light to a spot through which the sample is raster scanned. The detected
intensity for each point of the scan forms the image. To realize Zernike phase
contrast in this case a phase ring is placed in front of the objective, and sen-
sitivity to the objects phase modulation is then given by using an annular
detector in the conjugate plane of the phase ring. Note, that the principle of
phase advance and the subsequent sensitivity to the phase shift introduced by
the specimen is the same for both cases, which are theoretically completely
equivalent for on-axis image points.

4.2.1 Experimental Implementation with Hard X-rays

Following the scheme described by Fig. 4.3 we implemented the Zernike method
into the scanning hard x-ray side-branch beamline 2-ID-E [70] at the Advanced
Photon Source at Argonne National Laboratory.

X-rays from an undulator source are energy filtered via a Si(111) crystal
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monochromator. An additional beam splitting crystal is used to reflect part of
the main beam into the side branch line. The existing scanning fluorescence
setup was modified to accommodate the additional optical elements and realize
the required detector geometry. A schematic of all the optical components
used at the experimental end station for the experiment is shown inFig. 4.4.
The x-ray energy chosen for the experiment was 10 keV, which is a typical
value used for trace element mapping with x-ray fluorescence of life science
samples. The 10 keV X-rays were focused using a 160 µm diameter Fresnel
zone plate with outermost zone width of 100 nm and zone height of 1600 nm;
an arrangement of 40 µm diameter central stop (approx. 80 µm thick gold)
and 25 µm diameter order sorting aperture was used to isolate the first order
focus of the zone plate. The phase ring for Zernike’s phase contrast method
was fabricated by using electron beam lithography to pattern an annulus of
75 µm inner and 85 µm outer diameter on a silicon nitride window. Gold was
electroplated to a thickness of 3.52 µm.
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Figure 4.4: Schematic of the optical components for the scanning Zernike
implementation at beamline 2-ID-E at the APS. The effective distance of the
secondary source to the zone plate is larger than 15 m. In place of the annular
detector and stop, a visible light coupled CCD can be brought in the setup
to observe the far-field intensity distribution. Photographs of the setup are
shown in Fig. 4.5 and Fig. 4.6.
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Given the phase ring thickness and material, the phase of the X-rays pass-
ing through will be phase shifted by −π/2; therefore, the images will represent
negative Zernike phase contrast with optically denser structures appearing
darker in the final image.

The samples are placed in the focal plane of the zone plate and raster
scanned through the focus spot of the lens. In order to collect the emitted
fluorescence photons for each scan point, an energy dispersive detector (not
shown in schematic) was placed under 90◦ to the optical axis to minimize the
elastic scattering background and directly pointed at the focal spot of the x-
rays on the sample. In order to avoid shadowing of the fluorescence through
the sample holder, the sample stage is rotated by 15◦ around the vertical axis
with respect to the optical axis.

An annular detector in the far-field was used to record the projection of the
phase ring. The annular detector was realized through an existing 10-segment
detector [1]; Fig. 4.7(a) shows a schematic, highlighting the four segments that
were used to make up the annular detector. In Fig. 4.7(b) an image of the far-
field illumination pattern recorded with a scintillator-coupled CCD in place of
the segmented detector is shown. Both Suppl. Fig. 4.7(a) and 4.7(b) are of true
relative scale and illustrate how the detector was aligned to the illumination
pattern: the outer edge of the phase ring projection was matched with the
outer edge of the annular quadrant. Since the phase rings projection was
much smaller than the annular detector (see dimensions in Fig. 4.7(a), phase
ring inner edge) an additional stop was put in front of the detector to mask
it optimally to the projection of the phase ring and, therefore, eliminating the
detection of unwanted signal. The stop with a diameter of 160 µm was put at
a distance (s = 280 mm) from the sample, so as to have its diameter match
the inner diameter of the phase rings projection in this plane (see Fig. 4.4).

A scanning Zernike image represents the signal of the annular detector at
each raster scan point. Unless otherwise noted, images was recorded with a
step size of 100 nm and a dwell time per raster point of 100 ms. Absorption
images can be taken by performing a separate scan, where the phase ring
and stop are removed from the setup. In this case the sum of all 10 detector
segments represents the absorption image.

Given the focal length (f = 131 mm) of the zone plate and the necessary
distance of the detector to the zone plate (d = 1031 mm) to align the outer
edge of the phase ring with the annular detector, the position of the phase
ring in front of the zone plate (p = 151 mm) was chosen to fulfill the lens
equation 1/p+1/d = 1/f . Note, that the ideal detector to zone plate distance
would have been d = 1056 mm; however, d was chosen smaller to allow some
tolerance for small errors in alignment.
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Figure 4.5: Photograph (back view) of experimental scanning Zernike setup
detailed through the schematic in Fig. 4.4. Indicated are the positions of some
optical components.
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Figure 4.6: Photograph (top view) of experimental scanning Zernike setup
detailed through the schematic in Fig. 4.4.Indicated are the positions of some
optical components: phase ring, zone plate and sample plane.
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150 µm

segmented detector far-field illumination
a b

edge of illumination

phase ring

stop

phase ring outer edge

phase ring inner edge

Figure 4.7: (a) Schematic of the 10-segment detector chip used in the exper-
iment; the four segments that were used to realize the annular detector are
highlighted in darker grey. Also shown are approximate outlines of the far-field
illumination and the phase ring projection on the detector chip. (b) Far-field
illumination recorded with a CCD in place of the segmented detector, showing
the illumination region, the stop and phase ring. Both (a) and (b) are of true
relative scale.
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4.2.2 Experimental Results from Imaging of Test Struc-
tures

In order to evaluate the imaging properties for the proposed technique of
Zernike phase contrast in a scanning microscope, we will consider some exper-
imental results from imaging of known test structures. These test samples are
a standard Siemens star test pattern made from gold, polystyrene spheres and
a zone plate pattern out of plastic.

The Siemens star test pattern consists of a 700 nm thick gold structure
on a Si3N4 membrane. In Figs. 4.8(a) and 4.8(b) we show scanning images
obtained in Zernike phase contrast and absorption contrast respectively. The
images were acquired with a zone plate of 100 nm outermost zone-width and
thus a theoretical spoz size and Rayleigh resolution of 122 nm assuming a fully
coherent illumination of the zone plate and a large area detector for incoherent
detection. For a qualitative comparison, Figs. 4.8(c) and 4.8(d) show Zernike
and absorption images taken with a commercially available full-field x-ray
microscope at 8.04 keV [21]. Given the limitations of the laboratory instru-
ment the imaging resolution is limited to 100 nm due to chromatic aberrations.
While, of course, a direct comparison between the full-field and scanning data
is difficult due to varying experimental factors we can take note of two im-
portant facts. Firstly, the scanning Zernike image is in qualitative agreement
with its full-field companion in terms of feature visualization and appearance
compared to the respective absorption images. Secondly, both Zernike images
show a significantly improved contrast (scanning 17.3% and full-field 9.1%)
compared to the absorption images (scanning 4.1% and full-field 4.9%), as one
would expect from phase versus absorption imaging (see Sec. 1.4).

Before moving on to the next test structure, let us consider a few partic-
ularities of the data in Fig. 4.8. In the scanning experiment the resolution
was limited by the finite and asymmetric x-ray source size, which is larger in
the horizontal compared to the vertical direction (typical for third generation
synchrotron sources). As mentioned in Sec. 4.2.1 the experimental apparatus
is located at a side-branch line, where through a beam splitting crystal part
of the intensity of the main beamline is reflected into a side-branch arm; this
further worsens the beam properties in particular in terms of coherence and
stability. In addition, for the fluorescence capability of the microscope, the
sample is rotated by 15◦ around the vertical axis in order to avoid shadowing
of the x-ray fluorescence detector through the holder which places the sample
at the focal spot of the lens. Taking these aspects into consideration, we expect
there to be a difference in image resolution between the horizontal and vertical
direction, with the vertical feature resolution being superior. We can identify
this expected behavior in both the scanning Zernike and absorption images of
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Figure 4.8: Siemens star imaged through scanning and full-field x-ray imaging.
Zernike phase contrast in (a) scanning and (c) full-field microscopy; absorption
contrast for the two cases respectively (b) and (d). The starting line widths
of the respective spoke rings of the star pattern are indicated. The white line
in each image marks the position where the contrast was determined: Zernike
scanning 17.3% and full-field 9.1%; Absorption scanning 4.1% and full-field
4.9%. Experimental details for scanning data: 10 keV, steps 100 nm, ZP 160 µm, drN

50 nm, stop 40 µm, annular detector arrangement, phase ring ID 75 µm and OD 85 µm.

Experimental details for full-field data: Xradia nanoXCT labtool, large FOV mode, 8.04 keV,

pixel size 65 nm, ZP 320 µm, drN 30 nm.
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Fig. 4.8. This can be seen particularly well in the scanning Zernike image on
the second ring from the star center, where in the vertical direction one can
recognize the 100 nm line widths which are not visible in the horizontal.

Furthermore, we note that the absorption image in the scanning case is of
poor quality, which is likely due to a significant dark field contribution in the
acquired image signal. The absorption image is taken by removing the stop
and phase ring from the setup (see Fig. 4.4) and adding all detector segments
to represent the final image (see Fig. 4.7). In this case the central stop of
the setup will still shadow the central segment of the detector in addition
to large parts of the inner quadrant structure. These partially or completely
shadowed segments contribute to the absorption image, where in particular for
the smaller grating structures of the Siemens star, the dark-field contribution
to these segments is significant (as can be seen from considering individual
signals of segments - no images shown). This dark-field contribution is ”out-
of-phase” with the absorption part of the image, resulting in a resolution
degradation for the smaller features as can be observed in Fig. 4.8(c). The
dark-field contribution from the outermost segment plays a minor role as most
of this segment is covered by the far-field illumination pattern.
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Figure 4.9: (a) Scanning Zernike phase contrast image of a pair polystyrene
spheres with a diameter of 5 m. (b) Profile through the left sphere as indicated
in (a) by the vertical line. The arrow points to the approximate center of the
sphere. Experimental details: 10 keV, steps 100 nm, ZP 160 µm, drN 50 nm, stop 40 µm,

annular detector arrangement, phase ring ID 75 µm and OD 85 µm.

While the previous example of the gold Siemens star already gives some
impression on the imaging properties of Zernike phase contrast in scanning
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mode, the real advantages become apparent when imaging weakly absorbing
samples. For example from Ch. 3 we already know that polystyrene spheres
at hard x-ray energies show little to no contrast in absorption. In Fig. 4.9(a)
we show a scanning Zernike image of a pair of 5 µm diameter polystyrene
spheres imaged at 10 keV. Note, that these spheres are not visible in ab-
sorption contrast (no image shown). The spheres can be clearly identified
in the Zernike image, which gives a representation of the sample density. A
bright halo artifact, which is typical for Zernike phase contrast, can be seen
around the edges of the two spheres. Another artifact common for this imag-
ing method is illustrated by the line-out through the left sphere in the image
(Fig. 4.9(b)). Rather than decreasing to a minimum towards the center of the
sphere (indicated by the arrow), we note an increase in the image intensity
(in the literature this is often referred to as shade-off effect). Both artifacts,
which are due to the nature of how the contrast is formed (ring shaped phase
mask and aperture), are typical for Zernike phase contrast images and are a
consequence of the loss of low spatial frequencies in the image formation pro-
cess. While such artifacts are not desired, here they further demonstrate the
equivalence of the presented scanning Zernike phase contrast and the full-field
case. (See Ch. 5 for a detailed discussion of artifacts in Zernike phase contrast
and their possible removal.)

To conclude this section on imaging test structures Fig. 4.10(a) shows a
scanning Zernike phase contrast image of a plastic zone plate structure, which
is a ”negative” structure usually used in the metal plating production of x-ray
zone plates. A corresponding absorption image (Fig. 4.10(b)) of a subregion
has no noticeable contrast. In the line profile through the first column of
the scanning Zernike image a decrease in contrast with feature size can be
observed, confirming the imaging behavior as one would expect it from the
modulation transfer function for such an incoherent imaging situation [23].

4.3 Advanced Topics of Imaging in Scanning

Zernike Phase Contrast

In this section we will discuss some particularities and observations of scanning
Zernike phase contrast.
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  10 µm

Figure 4.10: (a) Scanning Zernike image of a plastic zone plate test struc-
ture; also shown is a line-out through the first image column. (b) Absorption
image of the region indicated in the Zernike image showing no noticeable con-
trast.Experimental details: 10 keV, steps 100 nm, ZP 160 µm, drN 50 nm, stop 40 µm,

annular detector arrangement, phase ring ID 75 µm and OD 85 µm.
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4.3.1 Equivalence of Scanning to Full-Field Zernike Phase
Contrast

Theoretically and mathematically, both cases are completely equivalent for
on-axis image points (see also Sec. 2.4 and works by Wilson and Sheppard
[44, 68]). For X-rays a minor technical difference will be the requirement of a
central stop (CS) in the objective pupil for scanning, which is not needed in the
full-field case. The CS modifies the shape of the modulation transfer function
(MTF) of the lens, as can be seen in Fig. 4.11. Through the central stop the
MTF is suppressed in the low and medium spatial frequency range. Towards
the higher frequencies one notes a small increase in the MTF value compared
to the case without CS. This difference in the MTF needs to be kept in mind
when directly comparing imaging results for full-field and scanning microscopy
with X-rays. However, the difference has no direct disadvantageous effects on
the imaging properties and is of a rather technical nature.
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Figure 4.11: Modulation transfer function of a circular lens with (red) and
without (black) a centrals stop present in the pupil (shown in inlay). Note
that this computation does not include a phase ring for either case.

Note that the complete equivalence of full-field and scanning only applies
to on-axis image points. Mathematical differences arise for image points that
are far away from the optical axis in full-field imaging; scanned imaging is by
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definition always on-axis.
Furthermore, in the Zernike mode it is very likely that there will be differ-

ences for very extreme imaging cases in terms of very strong absorbing and /
or phase shifting objects. Differences in the case of dark field (infinitely thick
phase ring) imaging are difficult to predict due to the non-linear and higher
order nature of this imaging mode. These aspects are beyond the scope of our
work, but pose interesting questions for future publications.

4.3.2 Phase Ring Placement

Through the experiment described in Sec. 4.2.2 we performed tests regard-
ing the placement of the phase ring along the optical axis. As mentioned in
Sec. 4.2.1 the phase ring was placed according to the lens law, so that it got
imaged onto the detector by the objective zone plate. We also considered
cases where the phase ring was brought significantly closer (up to p = 50 mm)
or further away (up to p = 250 mm) from its ideal position at p = 151 mm;
however, no noticeable differences in the imaging results were observed.

The relaxed positioning tolerance is associated with the fact that we are
dealing with an almost planar incident wave front (rays close to parallel to the
optical axis) upstream of the objective lens, attributed to a source far away
(> 15 m). As a consequence the rays that pass through the phase ring will hit
the detector correctly regardless of the phase ring position along the optical
axis.

In the full-field imaging case the phase ring position is much more restricted
due to a stronger converging wave field. Its positioning becomes more relaxed
when considering a smaller source size or equivalently a smaller field-of-view,
which results in a lower divergence of the 0th order wave field in the back-
focal region of the objective lens. It is important to note that for the on-axis
image point, the phase ring placement behind the objective does not matter,
since rays from the focal spot are parallel behind the lens. This condition is
similar to the above behavior observed in the scanning Zernike case where the
criterion for placement of the phase ring is very relaxed, due to the on-axis
imaging situation.

4.3.3 Transfer Functions for Scanning Zernike Phase
Contrast

Similarly to Sec. 3.3.1 the present imaging situation can be described through
transfer functions in the exact same way. Hence, in the scanning Zernike case
the Fourier spectrum of the signal collected by the annular detector segment
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is given through (compare to Eq. 3.40)

S(f s) = ∆(f s)C(0, 0,f s) +Hr(f s)Tr(f s) + iHi(f s)Ti(f s) , (4.14)

where Hr,i are the specimen contributions and s attributes the scan displace-
ment. The pupil function Po(f ) and detector response R(f), which contribute
to the transfer functions Tr,i(f) (definition see Eq. 3.39) and C(0, 0,f) (defi-
nition see Eq. C.18) are displayed in Fig. 4.12 for the scanning Zernike exper-
iment. The pupil function is given by

Po(f) =

{
1 area of no phase ring
0.5× e−iπ/2 area of phase ring

. (4.15)

Note two important differences to the treatment in Sec. 3.3.1. First, we

R (fk )

P (fo )

alignment

x

yf

f

with stop

with stop

Figure 4.12: (a) Transmission of the pupil function, the phase ring has ap-
proximately a transmission of t = 50% at 10 keV. (b) Alignment of phase ring
(grey) to annular detector response function; the inner diameter of the phase
ring projection was well matched to the annular detector response through
the help of the additional stop in the setup. As mentioned in Sec. 4.2.1 the
positioning of the detector along the optical axis was chosen as to allow some
tolerance for small errors in alignment. This is reflected in the fact that the
outer phase ring diamter does not match the annular detector; the mismatch
is estimated from calculations taking the experimental distances into account.

are dealing with a detector configuration that only has one segment - annular
segment (therefore also no indices k are present). Second, through the addition
of the phase ring the objective pupil function is no longer a real quantity. The
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latter results in the fact that the formerly real transfer functions Tr,i(f) become
generally complex. However, as it turns out for our special case of an annular
detector response, the transfer functions inherit the following properties

Tr = R(Tr) + i I(Tr)︸ ︷︷ ︸
≈0

= R(Tr)

Ti = R(Ti)︸ ︷︷ ︸
≈0

+iI(Ti) = iI(Ti) ,
(4.16)

leaving the real transfer function Tr a real function and the imaginary trans-
fer function Ti purely imaginary. Figure 4.13 shows the respective transfer
functions corresponding to the experimental situation of Fig. 4.12. Note, that
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Figure 4.13: Transfer functions for the scanning Zernike experiment. The line
profiles are taken through the center of each transfer function and are scaled
relatively to their individual maximum.

the transfer functions do not extend to the edge of the frequency grid as they
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usually do in scanning or incoherent imaging system. This does not come as a
surprise, since the annular detector which is supposed to match the phase ring
projection has a smaller numerical aperture as the pupil function. In the usual
case of conventional bright field imaging the pupil and detector functions have
the same numerical aperture, hence the frequency transfer functions extend
all the way to the edge (Nyquist frequency) of the frequency space.

From Sec. C.2 we know that for individual and symmetric detector seg-
ments and a symmetric pupil the imaginary transfer function Ti is zero. This
means that one cannot obtain any phase contrast information from the speci-
men, since all its phase information is contained in Hi and the corresponding
transfer of this information is absent because Ti = 0. The annular detector
for scanning type Zernike phase contrast is such a individual and symmetric
segment; however, through the addition of the phase ring to the pupil Ti 6= 0,
and consequently we can obtain phase contrast information about the sample
from this individual and symmetric segment. Removing the phase ring from
the setup will henceforth result in the loss of phase contrast information. We
will discuss this case in the following section.

4.3.4 Removal of Phase Ring

In order to further investigate the scanning Zernike imaging properties let us
consider the situation where we still use the annular detector to record the
image, but remove the phase ring from the setup (stop in front of detector
remains).

Figure 4.14(a) shows the same pair of polystyrene spheres from Fig. 4.9,
again in scanning Zernike phase contrast and also with the phase ring taken
out (Fig. 4.14(b)). A clear difference is noticeable; only the outlines of the
spheres with their edges are visible in the case without the phase ring. While
the Zernike images show a representation of the sample density, there is no
noticeable contrast to the sphere interior when no phase ring is present. Line
profiles through both images are shown in Fig. 4.14(c) further emphasizing the
absence of contrast to the sphere interior in the case without phase ring.

While by removing the phase ring almost no contrast to the latex spheres
was observable, the edges of the spheres were still somewhat visible. This hints
at a selective spatial frequency imaging behavior, where the imaging system is
only sensitive to a certain range of spatial frequencies (i. e. sample features).
In order to investigate this further Fig. 4.15 shows again the plastic zone
plate of Fig. 4.10 in Zernike phase contrast and this time also with the phase
ring removed (Fig. 4.15(b)). In addition a line profile through both images is
given. While for the Zernike case the contrast is constant and then falls off as
expected for an incoherent imaging system, the case without phase ring has
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Figure 4.14: (a) Scanning Zernike image from a pair of polystyrene spheres
(identical to Fig. 4.9a); (b) same pair of spheres imaged with the phase ring
removed from the setup, the scan area is identified in (a) with a dashed box.
(c) Line profiles through (a) (red) and (b) (green) as indicated in the images.
The arrow in panels (a) and (c) indicates the position of radiation damage to
the right sphere. (Note: (b) was imaged with a 50 nm step size, the image was
linearly scaled down to match a, which had a step size of 100 nm.)
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selective frequency response. The larger structures (low spatial frequencies)
have significant poorer contrast. In the intermediate region up to the smaller
features of the sample the contrast is comparable for both. However, despite
this similarity for both cases, arrows in Fig. 4.15 point to a few selected fine
features that are (among others) only resolved by the Zernike method. Also

  5 µm

a

b

c

Figure 4.15: (a) Scanning Zernike image of a subregion of the plastic zone plate
shown in Fig. 4.10 (rotated). (b) Same as (a) but with phase ring removed.
(c) Line profile through first image rows of (a) (black) and (b) (red).

remember from Fig. 4.10(b) that conventional absorption imaging showed no
noticeable contrast to the plastic zone plate features - some sort of phase
contrast sensitivity is therefore indicative.

There are a few hypotheses that could potentially explain the observed
imaging behavior. One hypothesis concerns the realization that in the case
where the phase ring is not present and we use the annular detector to record
the image, we have a limited conventional bright field imaging setup. Opposed
to the usual case where the total transmitted intensity (bright field cone) gets
collected as the image signal, we have an annular detector that only records a
subregion of the bright field intensity, which might cause the selective imaging
response. If we were to collect a different annular region of the bright field, the
imaging response should change accordingly. Unfortunately, we do not have
experimental data to support this claim as of yet. However, the detector plane
intensity simulation of Fig. 3.5 can illustrate the situation. Depending which
annular subregion of the far-field intensity is recorded in connection with the
spatial frequency content of the respective scan point (compare different scan
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points in the figure) a selective feature sensitivity should be expected.
From the transfer function point of view from Sec. 4.3.3 we would not

expect any phase contrast sensitivity because the corresponding imaginary
part transfer function Ti is zero in the case without phase ring. However, a
defocus effect could potentially explain the observed behavior, but requires
further investigations and experiments which are beyond the scope of this
work.

4.4 Application Scanning Zernike in X-ray Flu-

orescence Microscopy

Scanning Zernike phase contrast can prove particularly useful for x-ray fluores-
cence microscopy, similarly as the differential and quantitative phase contrast
methods we discussed in Ch. 3. In the following we will consider the possible
influence on the XRF images through the addition of the scanning Zernike
capability in form of the phase ring. The section will conclude with a few
biological imaging examples.

4.4.1 Influence on X-ray Fluorescence Imaging Proper-

ties

In the previous cases where we utilized phase contrast in combination with
scanning x-ray fluorescence microprobes no alterations to the optical setup
were made that could influence the XRF imaging properties. We simply uti-
lized the transmission signal, which otherwise would have been left unused.
Now the situation is different. The implementation of Zernike phase contrast
into a scanning microscope requires the addition of a phase ring in front of the
focussing zone plate. In which way this might alter the fluorescence imaging
performance needs to be investigated.

The intensity profile in the focal plane (point spread function) of the XRF
microprobe is the characteristic quantity to consider, since it defines the stim-
ulated x-ray fluorescence emission. In Fig. 4.16(a) we show the simulated
intensity point spread function (PSF) for a zone plate including a central stop
without and with a Zernike phase ring in place. If we consider the fractional
area of the total objective pupil which is shadowed by the partially absorbing
phase ring, the total intensity that gets focused by this objective and reaches
the focal plane is reduced by only 2%. We note that the intensity in the cen-
tral maximum of the PSF shown in the wave field simulation of Fig. 4.16(a)
is reduced by 9% compared to the case without phase ring. This is due to
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Figure 4.16: Effect of phase ring on x-ray fluorescence (XRF) imaging prop-
erties. a Computed PSF comparison with and without phase ring in linear
and logarithmic scale. The inlay shows the objective transmission profile of
the respective pupil functions. Experimental gold x-ray fluorescence signal of
a Siemens star test pattern b with and c without phase ring present.
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the redistribution of intensity into the side lobes of the PSF, giving rise to a
small (7%) DC offset of the scanning signal, which is similar to the experi-
mental background in most cases. Most importantly the shape of the central
peak, in particular the position of the first minimum is unchanged, leading to
no loss in imaging resolution. Figures 4.16(b) and 4.16(c) show experimental
gold fluorescence images with and without the phase ring in place of the same
gold star test pattern of Fig. 4.8. These fluorescence images are in very good
qualitative and quantitative agreement with what we would expect from the
PSF simulations. We do not see any noticeable effects in terms of image rep-
resentation and resolution. Furthermore, the counts of both images differ by
the predicted amount of approximately 9%.

Hence, we can conclude that the addition of the Zernike phase contrast
capability leaves the PSF of the XRF microprobe largely unmodified and thus
does not significantly compromise its trace element fluorescence optical re-
sponse.

4.4.2 Biological Imaging Examples

To illustrate the imaging capabilities of the scanning Zernike phase contrast
method for biological specimens also in connection with x-ray fluorescence
Fig. 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22 show various examples.

Mouse Fibroblast
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Figure 4.17: NIH 3T3 mouse fibroblast cell in (a) bright field and (b) differ-
ential interference contrast microscopy with visible light; the outlined area is
the respective region of the (c) scanning Zernike image. Experimental details for

scanning data: 10 keV, steps 100 nm, ZP 160 µm, drN 50 nm, stop 40 µm, annular detector

arrangement, phase ring ID 75 µm and OD 85 µm. Experimental details for visible light

data: 40X Leica objective.
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Figure 4.18: NIH 3T3 mouse fibroblast in (a) scanning Zernike and XRF of
(b) Cl, (c) P and (d) Zn. Experimental details for scanning data: 10 keV, steps 100 nm,

ZP 160 µm, drN 50 nm, stop 40 µm, annular detector arrangement, phase ring ID 75 µm and

OD 85 µm.
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Cardiac Mycocyte

20 µm

Figure 4.19: Scanning Zernike phase contrast image of a whole mouse cardiac
myocyte; the dashed region indicates the area of a successive scan shown in
Fig. 4.20. Experimental details for scanning data: 10 keV, steps 100 nm, ZP 160 µm, drN

50 nm, stop 40 µm, annular detector arrangement, phase ring ID 75 µm and OD 85 µm.
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a b

c

5 µm

Figure 4.20: Cardiac myocyte in (a) Zernike and (b) Zn XRF of a subregion of
Fig. 4.19. (b) Color addition image of (a) and (b); a yellow color indicates the
colocation of high (red) image values from (a) with high (green) images values
from (b). Experimental details for scanning data: 10 keV, steps 100 nm, ZP 160 µm, drN

50 nm, stop 40 µm, annular detector arrangement, phase ring ID 75 µm and OD 85 µm.
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Flagellate

a b c

  5 µm

Figure 4.21: Freshwater flagellate Cryptomonas in (a) Zernike, (b) P and (c)
S XRF respectively. Magnified subregions on (a) and (b) are separately scaled
from the main image to highlight features. Experimental details for scanning data:

10 keV, steps 100 nm, ZP 160 µm, drN 50 nm, stop 40 µm, annular detector arrangement,

phase ring ID 75 µm and OD 85 µm.
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  5.0 µm

a b c

Figure 4.22: Freshwater flagellate Cryptomonas in (a) Zernike, (b) Mn and (c)
Zn XRF respectively. Experimental details for scanning data: 10 keV, steps 100 nm, ZP

160 µm, drN 50 nm, stop 40 µm, annular detector arrangement, phase ring ID 75 µm and

OD 85 µm.
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Chapter 5

Reconstruction of Full-field and
Scanning Zernike Phase
Contrast
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Zernike phase contrast images suffer from artifacts due to the nature of how
the contrast is formed, which is typically through a phase shifting ring and a
corresponding annular illumination for full-field or detection for scanning. A
halo appearance around feature edges and a shade-off effect across extended
uniform regions are common in Zernike images. These artifacts can make
quantitative interpretations hard and lead to a shell-like and flat impression of
tomographic reconstructions from Zernike phase contrast data, making image
segmentation difficult.

By combining concepts from Ch. 3 and Ch. 4 we present a method to re-
move Zernike artifacts through a reconstruction technique, resulting in images
better suitable for quantitation and tomography. A brief explanation of the
origin of the Zernike phase contrast artifacts is followed by a discussion of the
reconstruction method; we conclude the chapter with initial reconstruction
results from full-field and scanning Zernike phase contrast data.

5.1 Artifacts of Zernike Phase Contrast

Zernike phase contrast is inherently associated with image artifacts; an exam-
ple of such is given by Fig. 4.9. The halo appearance around feature edges and
a shade-off across more uniform regions is a consequence of the finite width
and shape of the phase mask, which causes a loss of low spatial frequencies and
an over-emphasis of high spatial frequencies. Figure 5.1 identifies the location
where this loss of low spatial frequency information is best illustrated for both
the full-field and scanning Zernike phase contrast case.

In the full-field Zernike mode the back-focal plane of the objective lens
contains the phase shifting ring. Here, undiffracted light coming from the
specimen is phase shifted by the ring as illustrated by Fig. 5.2(a); light that is
diffracted by small features in the specimen (high spatial frequencies) does not
get phase shifted. For sample features with a low spatial frequency content
the light is not diffracted enough and at least partially overlaps with the phase
shifting mask (i. e. ring) and, therefore, gets erroneously phase shifted.

For scanning Zernike phase contrast we consider the detector plane of the
setup shown in Fig. 5.2(b), which displays the far-field illumination annulus
including the phase ring projection (also compare to Fig. 4.7). The phase con-
trast information in this case comes from the overlap of phase shifted light of
the 0th order pupil with non-phase shifted light from higher diffracted orders.
Remember from Ch. 4 that the recored signal in the far-field for scanning
Zernike corresponds to the area covered by the phase ring projection in the
0th order pupil. High spatial frequencies diffract the pupil, resulting in the
required interference of phase shifted light (from the diffracted pupil) and non-
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Figure 5.1: Identification of locations for the artifact interpretation in the
full-field (blue) and scanning (green) Zernike phase contrast modes.
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Figure 5.2: Artifacts.
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phase shifted light (from the 0th order). On the other hand, the low spatial
frequency information is reflected by a hardly diffracted pupil. So most of the
light collected by the annular detector is interference of phase shifted light
from the 0th order with phase shifted light from the diffracted order, causing
no significant image contrast.

The loss of low spatial frequencies is inherent to the Zernike phase con-
trast method and in an optimal situation would not be present in the case
of a infinitely thin width phase mask, which for practical reasons cannot be
realized1. It is common to realize Zernike phase contrast with a ring shaped
phase mask; however, differently shaped phase shifting structure, e. g. an ar-
ray of dots as done by Stampanoni et al. [71], has the advantage to reduce the
Zernike artifacts by a good amount.

5.2 Adaption of Fourier Filter Reconstruction

for Zernike Artifact Removal

By playing the reciprocity approach of Ch. 4 in the opposite way we can utilize
techniques from scanning for full-field imaging. The Fourier Filtering method
for reconstruction of differential phase contrast data of Sec. 3.3 in its essence
is an artifact removal process. Differential phase contrast images are a repre-
sentation of the sample where low spatial frequencies are suppressed, resulting
in an over-emphasis of high spatial frequencies, i. e. edge enhancement, which
in addition also has a directional dependence.

By realizing this, we can apply the filtering method to Zernike phase con-
trast images in order to remove the inherent artifacts. To do so, one needs
to pay attention to the respective roles of the optical components and their
equivalence in the two respective cases. In Ch. 2 the image formation of both
types of microscopes is discussed in detail and can be used as a roadmap for
translating the filtering method. The key points to realize are that the role
of the objective lens is the same in both cases, and so is the phase ring. The
condenser in the full-field mode becomes the detector in the scanning case. By
keeping these things in mind, one can directly apply the filtering method to
full-field imaging.

In order to simplify the implementation, one can combine the phase ring
with the objective pupil to one optical element for analysis purposes.

A further modification to the scanning filtering method will be the amount
of information at hand to do the reconstruction process. In our initial ap-

1An infinitely thin width phase mask will also require an infinitely thin width illumina-
tion, resulting in no photons actually illuminating the sample.
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proach of Sec. 3.3 we had information from multiple segments (e. g. 8 to 10,
or more), which are combined in the reconstruction process to yield the ab-
sorption and phase shift of the specimen. This situation corresponds to a
sufficiently determined problem; the amount of information through the col-
lected data is enough to extract the two unknown quantities. In the Zernike
case we only have one image (representative of one detector signal) and, there-
fore are facing an under-determined problem. An initial approach to address
this issue is a phase-only approximation. We will assume that the sample is a
pure phase structure, which successively reduced the number or unknowns to
one (phase) instead of two (phase and absorption). The image formation in
terms of transfer functions analogous to Eq. 3.40 then becomes:

Sk(f s) = ∆(f s)Ck(0, 0,f s) + iHi(f s)T
(k)
i (f s) , (5.1)

which is obtained by setting the real part specimen contribution Hr to zero.
This inherently also assumes the rigorous weak specimen approximation (see
Sec. 3.3.5). The filter function for the phase-only approximation then is given
by

W phase =
T ∗

i

|Ti|2 + βi
for f 6= 0 and all k; (5.2)

for a detailed derivation see Appendix C.3.5. Note that there is only one such
filter function, as we also only have one image or detector signal.

The noise parameter for the Zernike filtering method in the initial applica-
tion is simply chosen to yield the best visible result; future improvements of
the technique will include a way to determine a specimen and spatial frequency
dependent noise parameter as used in the scanning filtering method.

5.3 Reconstruction Examples

In Figs. 5.3, 5.4 and 5.5 we show some initial reconstructions of Zernike phase
contrast data. While the results include some encouraging aspect of removing
the Zernike artifacts and re-establishing the low spatial frequency information
many aspects remain that need to be addressed, including phase ramps prob-
ably due to misalignment (Fig. 5.4(d)) and proper noise treatment. In the
filtered scanning Zernike image of Fig. 5.5(c,d) we note that the low spatial
frequencies have been corrected in the center of the sphere; however, the halo
at the edges is not completely corrected, but washed out.

Filtered full-field Zernike
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10 µm

a b

c d

filtered ZernikeZernike

Figure 5.3: Oil shale embedded in epoxy. (a) Zernike phase contrast projection
and (c) slice through tomographic reconstruction. (b) Filtered Zernike and
(d) slice through tomographic reconstruction. Experimental details for full-field

data: Xradia nanoXCT labtool, large FOV mode, 8.04 keV, pixel size 65 nm, ZP 320 µm,

drN 30 nm.
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10 µm

10 µm

Zernike filtered Zernike Absorption

5 µm

Zernike filtered Zernike

a b

c d e

f g h

Figure 5.4: Bone stained with Os. (a) Zernike phase contrast projection and
(c, f) slice through tomographic reconstruction. (b) Filtered Zernike and (d,
g) slice through tomographic reconstruction; (e, h) slices through tomographic
reconstruction of absorption contrast data. Experimental details for full-field data:

Xradia nanoXCT labtool, large FOV mode, 8.04 keV, pixel size 65 nm, ZP 320 µm, drN

30 nm.
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Figure 5.5: Polystyrene spheres in scanning and filtered Zernike phase con-
trast. (a) Scanning Zernike with (b) respective line profile. (c) Filtered scan-
ning Zernike with (d) rspective line profile. Experimental details for scanning data:

10 keV, steps 100 nm, ZP 160 µm, drN 50 nm, stop 40 µm, annular detector arrangement,

phase ring ID 75 µm and OD 85 µm.
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Appendix A

Definitions and Theorems

This following chapter details the notations, definitions and theorems useful
for the presented work.

A.1 Notation

Here the notations used throughout this work are summarized.

Vectors are indicated through bold font, e. g. r, f , and can either
refer to two or three dimensions, depending on the context. The vectors
absolute value is written as the non-bold form of the corresponding letter,
e. g. r ≡ |r|.

Real space coordinates are expressed through the usual notation r =
(x, y, z).

Fourier space coordinates are given through f = (fx, fy, fz). Note
that these frequency coordinates do not contain a factor of 2π, opposed
to q = (qx, qy, qz) where q ≡ 2πf .

Fourier transforms are represented by F and the inverse transform by
F−1.

Real-space functions are denoted with lower-case letters (e. g. h),
and the corresponding Fourier-transformed function with the corre-
sponding upper-case letter (e. g. H).

Integrals run from −∞ to +∞ unless otherwise indicated.
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As it is common for imaging theory all functions are assumed to
be two-dimensional in planes perpendicular to the light propagation
direction, unless otherwise explicitly stated. The reduction to a one-
dimensional treatment is straightforward.

A.2 Fourier Transform and Relations

The forward Fourier transform of a function g(r) is given by:

F{g(r)} = G(f ) =

∫
d2

r g(r) e−2πif r . (A.1)

The corresponding inverse transformation is:

F−1{G(f)} = g(r) =

∫
d2

f G(f) e2πif r . (A.2)

A.2.1 Successive Fourier Transforms

What happens when performing successive Fourier transformations on a func-
tion in the following

Γ(f2) ≡ Ff2
{Ff1

{g(r)}} ? (A.3)

Subscripts in the Fourier transform operators indicate which frequency co-
ordinate the resulting function has after the transformation. Inserting the
definition Eq. A.1 we find

Γ(f2) =

∫
d2

f1

∫
d2

r g(r) e−2πif1 r e−2πif2 f1

=

∫
d2

r

∫
d2

f 1 g(r) e−2πif1 (r+f2)

=

∫
d2

r g(r) ∆(r − (−f 2))

= g(−f2) .

(A.4)

Where we have used the integral definition of the Dirac delta-function. The
result is again the original input function, yet mirrored in the coordinate space.
So performing four successive transforms resembles a unity operation

g(r) = F{F{F{F{g(r)}}}} . (A.5)
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This behavior is analogous for the inverse transform.

A.2.2 Fourier Derivative Theorem

Here we derive the Fourier transformations of derived functions and point out
the implications the result has towards performing derivatives and integrations
through Fourier transforms.

We will start with a function g(x) in one dimension that can be Fourier
transformed; the n-th derivative of this function can then be written as follows

∂(n)
x g(x) = ∂(n)

x

∫
df G(f) e2πif x =

∫
df (2πif)nG(f) e2πif x , (A.6)

which is the Fourier Derivative Theorem

F{∂(n)
x g(x)} = (2πif)nG(f) = (2πif)nF{g(x)} . (A.7)

There are two immediate implications from A.7, which have very practical
applications. First, we can perform integrations via Fourier transformations
by solving for the function g(x)

g(x) = F−1
x

{Ff{∂(n)
x′ g(x′)}

(2πif)n

}
. (A.8)

Second, we can perform derivatives via Fourier transformations as follows

∂(n)
x g(x) = F−1

x

{
(2πif)nFf{g(x′)}

}
. (A.9)

The extension of this to more dimensions is straightforward, as long as one
keeps track of which frequency variable corresponds to which real space vari-
able

∂(n)
x g(x, y) = ∂(n)

x

∫
dfx

∫
dfy G(fx, fy) e2πi(fx x+fy y)

=

∫
dfx

∫
dfy (2πifx)

nG(fx, fy) e2πi(fx x+fy y) .

(A.10)
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This immediately implies,

∇g(r) = ∇

∫
d2

f G(f ) e2πif r

=

∫
d2

f (2πif )G(f) e2πif r .

(A.11)

For a more detailed treatment see Gaskill [72, Ch. 7.3].
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A.2.3 Fourier Transform Properties and Symmetries

Here we summarize the basic properties of Fourier transforms in Table A.1.
Symmetry properties of Fourier transforms of complex functions are listed in
Table A.2.

Property Real space Fourier space
Linearity a · g(r) + b · h(r) a ·G(f ) + b ·H(f)
Symmetrya G(r) g(−f)
Scaling g(a · r) 1/|a|G(f/a)
Shift g(r − r0) exp(−2πir0f )G(f)
Modulation exp(+2πirf0) g(r) G(f − f 0)
Derivativeb ∂g(r)/∂x 2πifxG(f )

aIn other words, a double forward FT reproduces the original function, reflected about
the origin (see Appendix A.2.1 for a derivation of this property).

bsee Appendix A.2.2 for a derivation of this property and related consequences.

Table A.1: Fourier transform properties (after Brigham [73, Table 3.2]).

Real space g(r) Fourier space G(f)
Real Real part even, imaginary part odd
Imaginary Real part odd, imaginary part even
Real even, imaginary odd Real
Real odd, imaginary even Imaginary
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Imaginary and odd Real and odd
Complex and even Complex and even
Complex and odd Complex and odd

Table A.2: Fourier transform symmetries (after Brigham [73, Table 3.1]).
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A.2.4 Parseval’s Theorem and the Conservation of En-
ergy

Parseval’s theorem states
∫

d2
r |g(r)|2 =

∫
d2

f |G(f )|2 . (A.12)

When propagating wave fields through Fourier transforms, this can be under-
stood as the conservation of energy, or equivalently intensity or number of
photons.

A.2.5 Convolution and Convolution Theorem

The convolution c(r) of two functions g(r) and h(r) with respect to the vari-
able r is defined as

c(r) = g(r)⊗r h(r) =

∫
d2

r′ g(r′) h(r − r′) , (A.13)

which can equivalently be written as

c(r) = g(r)⊗r h(r) =

∫
d2

r′ g(r − r′) h(r′) , (A.14)

representing the symmetry of the convolution. It does not matter which of the
two functions is shifted with respect to the other.

The convolution theorem states that in Fourier space the convolution turns
into a simple multiplication, or

C(f ) = G(f) ·G = H(f) . (A.15)

The convolution of two inverted functions is straightforward to obtain by sub-
stituting a = −r:

g(−r)⊗r h(−r) = g(a)⊗r h(a)

=

∫
d2

r′ g(a− r′) h(r′)

=

∫
d2

r′ g(−r − r′) h(r′) . (A.16)
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A.2.6 Correlation and Correlation Theorem

The correlation z(r) of two functions f(r) and g(r) with respect to the variable
r is defined as

z(r) = g(r) ⋆r h(r) =

∫
d2

r′ g(r′) h(r + r′). (A.17)

Note that the correlation is equivalent to the convolution if either of the two
functions g or h is even. In the case of scanning x-ray microscopy, this is
usually true for the pupil and therefore for the probe function. The correlation
theorem states that

Z(f ) = G(f) ·H∗(f ), (A.18)

where H∗ is the complex-conjugate of H .
If g and h are the same function, z is usually called the autocorrelation

of g. For the case of different functions g and h, the term crosscorrelation is
used.

A.2.7 Discrete Fourier Transform

Data analysis and numerical simulations are usually carried out on a grid of
discrete data points (two-dimensional in the case of imaging), which represents
an approximation or sampled version of the “true” continuous quantity. We
use the following definition of the discrete 2-D forward Fourier transform:

G(u, v) =
1

NxNy

∑

x,y

g(x, y) exp

[
−2πi

(
ux

Nx
+
vy

Ny

)]
, (A.19)

where x, y and u, v are the indices of the data points in the real and Fourier
space arrays, respectively, and Nx, Ny are the numbers of data points in the
two dimensions. The inverse transform is then given by

g(x, y) =
∑

u,v

G(u, v) exp

[
+2πi

(
ux

Nx
+
vy

Ny

)]
. (A.20)

Note that G(0, 0) =
∑

x,y g(x, y)/(NxNy) is the mean value of the real space
array, also often called the DC value or offset (which stands for direct current
and stems from the Fourier analysis of electrical signals).

If ∆x and ∆y are the real space sampling intervals, the Fourier space

172



sampling intervals are given by

∆u =
1

Nx∆x
, and (A.21)

∆v =
1

Ny∆y
. (A.22)

For an even number of pixels in any dimension i, it is convenient to arrange
the data points in the Fourier transform array such that the frequencies are
given by

1

Ni∆i

(
−Ni

2
,−(Ni

2
− 1), . . . ,−1, 0, 1, . . . , Ni

2
− 1
)

(A.23)

such that the zero frequency is at the pixel just right and above of the center
(in the common convention of image processing, where zero is at the lower
left of the image). For an odd number of pixels, one would use the following
arrangement:

1

Ni∆i

(
−(Ni−1

2
), . . . ,−1, 0, 1, . . . , Ni−1

2

)
(A.24)

such that the zero frequency is right in the center. The frequency 1/(2∆i) is
called the Nyquist frequency.

The Fourier transform properties listed in Sec. A.2.3 all have an equivalent
in the discrete case, as do the convolution (A.2.5) and correlation (A.2.6).
Note, however, that the sampling procedure introduces some specific artifacts
like a band limit and an implicit periodicity. For details, the reader is referred
to the literature [73, 74].

With the definition of the discrete Fourier transform above, Parseval’s the-
orem (see Sec. A.2.4) takes the form

∑

x,y

|g(x, y)|2 = NxNy

∑

u,v

|G(u, v)|2 . (A.25)

An appropriate correction has to be made if Fourier transforms are used to
propagate wave fields and the total intensity (number of photons) is to be
preserved.

Discrete Fourier transforms can be computed quickly using Fast Fourier
Transform (FFT) algorithms (see, e. g., Brigham [73]). Implementations of
such algorithms are readily available for all major programming languages.
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A.3 The Dirac Delta-Function

In the theory of differential equations one is often confronted with questions
that require solutions which cannot be defined in the classical sense of func-
tions. The theory of distributions poses a way out if this dilemma by in-
troducing generalized functions called distributions, which have the required
differentiation and other properties necessary for solving these problems. One
of the most prominent distributions is the Dirac Delta-Function. It is often
referred to as impulse function and also represents an important concept in
Fourier analysis. The Delta-Function provides a mathematical representation
of infinitely small or short quantities with finite “strength,” like a point source.

Note that a general convention is to denote the Delta-Function with a
lower-case δ. However, in order to avoid confusion with the real part of the
refractive index (n = δ + iβ) we will use a capital ∆ throughout this work.

The Delta-Function is commonly defined through

∆(r − r0) = 0 for r 6= r0, and∫
d2

r ∆(r − r0) = 1. (A.26)

This means that its magnitude at r = r0 is generally undefined; but through
representations of bell-shaped curves and Lorentz-Functions its value in the
infinite proximity of the origin is infinity.

Its most important characteristic is the sifting property:

∫
d2

r ∆(r − r0) g(r) = g(r0) . (A.27)

By substituting g(r) = exp(2πirf) and r0 = 0 in this equation, we obtain the
inverse Fourier transform of the Delta-Function or

∫
d2

r ∆(r) e(2πirf) = e(2πi·0·f) = 1 . (A.28)

The corresponding forward transform is given by

∫
d2

r 1 · e(−2πirf) =

∫
d2

r e(−2πirf) = ∆(f) . (A.29)
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Appendix B

Wiener Filter
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The Wiener filter, which was first described by Levinson [75], is commonly
used to remove artifacts of the measuring process from noisy data, and the
quantitative amplitude and phase reconstruction method described in Ch. 3
and Appendix C is a simple extension of it. In the following we want to give
a brief outline roughly following Landauer [56]. Further information is given,
for example, by Gonzalez and Woods [24], Press et al. [76] or other books on
signal processing.

Assume that a “true” function h(x) is to be measured, but in the measuring
process it gets smeared out or corrupted (mathematically: convolved) with a
known instrument function t(x). Moreover, statistical noise described by a
function n(x) is added, so that the measured function is

s(x) = h(x)⊗ t(x) + n(x). (B.1)

Taking the Fourier transform and using the convolution theorem, we get

S(f) = H(f)× T (f) +N(f), (B.2)

where f is the Fourier variable and S(f), H(f), T (f) and N(f) are the Fourier
transforms of s(x), h(x), t(x) and n(x), respectively. t(x) is often called the
impulse response of the instrument, or the point spread function in an imaging
system (the image of a point, or delta function, object). Its Fourier transform
T (f) can be called the frequency transfer, or in incoherent imaging systems the
modulation transfer function (MTF). Note that in imaging the exact nomen-
clature also depends on whether the quantities describe amplitude or intensity.

If there was no noise, and if the frequency response T (f) did not have any
zeroes, we could obtain the true signal spectrum by a simple inverse filter:

H(f) =
S(f)

T (f)
. (B.3)

However, in practical applications, the frequency transfer can be quite low at
certain (usually high) frequencies so that the noise dominates the signal, and
the inverse filter would just amplify that noise. The Wiener filter calculates
an estimate

Ĥ(f) = W (f)× S(f) (B.4)

such that the root mean square (rms) error

ǫ =

∫
df

〈∣∣∣Ĥ −H
∣∣∣
2
〉

(B.5)

is minimized. W (f) is called the Wiener filter function. The brackets 〈〉
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indicate an expectation value which averages over many measurements of the
noisy data S. Since the integrand of Eq. B.5 is real and greater than or
equal to zero for all f , we can perform the minimization for each value of f
independently and omit the integral in the following. Substituting Eq. B.4
into Eq. B.5 and minimizing with respect to W , we obtain

∂ǫ

∂W
= 〈S∗ (WS −H)〉 = 0. (B.6)

Now we can subsitute Eq. B.2 into Eq. B.6, and if we assume that N and H
are uncorrelated, we get

W |H|2 |T |2 − |H|2 T ∗ +Wη = 0, where η =
〈
|N |2

〉
. (B.7)

We solve for W and substitute the result into Eq. B.4 to obtain the best
estimate of H(f) as

Ĥ =
T ∗

|T |2 + β
S, where β =

η

|H|2
. (B.8)

An alternative, but equivalent way to write this is

Ĥ =
|HT |2

|HT |2 + η

S

T
. (B.9)

How can we interpret this? If we look at Eq. B.9, we see on the very right
that first a simple inverse filter is applied to the measured data S. Then an
additional filter of the form

|HT |2

|HT |2 + η
(B.10)

is applied, which is close to one at frequencies where the power spectrum of
the transferred signal |HT |2 is large compared to the expectation value of
the noise power spectrum η, and close to zero at frequencies where the noise
dominates the transferred signal. In other words, the Wiener filter consists of
an inverse filter plus an additional filter which suppresses frequencies which
are dominated by noise.

To calculate the filter functionW , we need to separately estimate the power
spectra of the transferred signal |HT |2 and the noise η. In many practical cases,
this can easily be read from a plot of the power spectrum of the measured signal
|S|2 (see Fig. B.1). Usually one can see the power spectrum of the signal which
declines down to a noise floor at higher frequencies. The noise level can then
be extrapolated into the region dominated by the signal, and vice versa.
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� |N| 2 (extrapolated)
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Figure B.1: Estimation of the signal and noise power spectra for the calculation
of the Wiener filter; see text. Figure modified from Press et al. [76].

For a graphical illustration of the Wiener filter, in Fig. B.2 we plot the
Modulation Transfer Function (MTF) of an apodized lens, as is often used
in x-ray microscopy (see Sec. 1.3.3), as an example for a frequency transfer
function T . Also shown are Wiener filter functions of the form

W =
MTF∗

|MTF|2 + β
(B.11)

(compare Eq. B.8), where we have used a constant β instead of the true
frequency-dependent ratio of noise to signal spectrum. We can see that at high
frequencies, where the value of the MTF is small, the inverse filter (β = 0)
would boost the noise to infinity, making the result useless. As we increase β,
those frequencies are suppressed more and more, until (when β becomes too
large) the signal is overly suppressed. Often, instead of the more elaborate
power-spectrum estimation described above, one can just use this version of
the Wiener filter and adjust β interactively to yield the “visually best” results
[24].

The application of the Wiener filter to remove the effects of the zone plate
transfer function in a scanning transmission x-ray microscope was demon-
strated by Jacobsen et al. [77].
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Figure B.2: Graphical illustration of the Wiener filter. The scale on the right
is for the MTF (dashed curve), whereas the scale on the left is for the Wiener
filter functions. Compared to the inverse filter, the Wiener filter suppresses
frequencies with low transfer, which are dominated by noise. The correct value
of the noise parameter β is crucial for good quantitative results.
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Appendix C

Detailed Derivation of
Fourier-Filter Reconstruction
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The present chapter contains a detailed derivation of the Fourier filter-
ing reconstruction method. It is meant to complement Sec. 3.3 by giving a
complete treatment including all necessary intermediate steps. The derivations
steps closely follow [11], but also contain new observations and interpretations.

C.1 Image Formation in Terms of Transfer Func-

tions

Starting point is the far-field intensity distribution in the scannning microscope

Ψ3(f ; rs) =

∫
d2

r h(r) po(r − rs) exp

(
i2πrf

)
, (C.1)

omitting constant pre-factors and image plane indices.
Employing the defining relation of the probe function (Eqs. 2.19) and using

convolution, shift and symmetry theorems of Fourier transforms (see Appendix
A.2) we can rewrite Eq. C.1 as

Ψ3(f , rs) =

∫
d2

r h(r) po(r − rs) exp

(
i2πrf

)

= F−1{po(r − r0) h(r)}

= F−1{po(r − r0)} ⊗f F−1{h(r)}

=
(
F−1{po(r)} exp(2πir0f)

)
⊗f F−1{h(r)}

=
(
F−1{F−1{Po(f)}} exp(2πir0f)

)
⊗f

(
F−1{F−1{H(f)}}

)

=

[
Po(−f ) exp

(
2πir0f

)]
⊗f H(−f ) , (C.2)

which reproduces Eq. 3.32. Writing out the convolution integral for the result
of Eq. C.2 we get

Ψ3(f , rs) =

∫
d2

f 1 Po(−f − f1) exp[2πirs(f + f 1)]H(f1) , (C.3)

where we used the result for the convolution of inverted functions of Eq. A.16.
We now measure the intensity of this wave field with a detector that has

various segments k with respective response functions Rk(f) (e. g. segmented

181



or pixelated detector), so that the image recorded by a specific segment be-
comes

sk(rs) =

∫
d2

f R(f) |Ψ3(f , rs)|2 , (C.4)

where the scan displacement coordinate rs simultaneously is the image coor-
dinate. If not otherwise noted, the detector response Rk(f) will be one within
the sensitive area of the individual detector segment, and zero otherwise.

Now we expand |Ψ3(f , rs)|2 from Eq. C.4 into Ψ3Ψ
∗
3, which gives

|Ψ3(f , rs)|2 =

∫
d2

f 1 Po(−f − f1)H(f1) exp[2πirs(f + f1)] ×

×
∫

d2
f 2 P

∗
o (−f − f 2)H

∗(f2) exp[−2πirs(f + f 2)]

=

∫
d2

f 1

∫
d2

f2 Po(−f − f 1)P
∗
o (−f − f 2) ×

×H(f1)H
∗(f 2) exp[2πirs(f1 − f 2)] . (C.5)

We take the Fourier transform of Eq. C.4,

Sk(f s) =

∫
d2

rs sk(rs) exp(−2πirsf s) , (C.6)

and insert from Eqs. C.4 and C.5:

Sk(f s) =

∫
d2

rs

∫
d2

f Rk(f )

∫
d2

f 1

∫
d2

f2 Po(−f − f 1)P
∗
o (−f − f2)×

×H(f1)H
∗(f 2) exp[−2πirs(f 2 − (f 1 − f s))] . (C.7)

By recalling the Fourier transform of the Delta-Function (Eq. A.29) we can
replace

∫
d2

rs exp[−2πirs(f 2 − (f1 − f s))] = ∆(f 2 − (f 1 − f s)) . (C.8)

Now we can perform the integral over f2 in Eq. C.7:

∫
d2

f2 G(f2) ∆(f 2 − (f 1 − f s)) = G(f 1 − f s) (C.9)

(see Eq. A.27), where G(f2) represents all other remaining terms. Eq. C.7
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then becomes

Sk(f s) =

∫
d2

f Rk(f)

∫
d2

f1 Po(−f − f 1)P
∗
o (−f − f1 + f s)×

× H(f1)H
∗(f1 − f s) . (C.10)

We can identify the integral over f 1 as convolution integral (see Eq. A.16);
hence we can write

Sk(f s) =

∫
d2

f Rk(f )

[
Po(−f )P ∗

o (−f − f s)⊗f H(−f)H∗(−f − f s)

]
,

(C.11)
which reproduces Eq. 3.34.

Without loss of generality, the specimen function can always be written as

h(r) = 1 + hr(r) + ihi(r) , (C.12)

where hr,i are real. The Fourier transform of the specimen is then

H(f) = ∆(f ) +Hr(f) + iHi(f ) ; (C.13)

where a detailed discussion on the meaning of Hr and Hi and successive con-
sequences is given throughout Sec. 3.3 and in particular in Sec. 3.3.5. For the
derivation at hand it is only necessary that one is able to write the specimen
function in the foregoing way of Eq. C.13, which can be done without loss of
generality. The complex product of specimen functions in Eq. C.11 can then
be written as

H(f1) ·H∗(f 1 − f s) = ∆(f 1) ·∆(f1 − f s) +

+ ∆(f 1) [H∗
r (f 1 − f s)− iH∗

i (f 1 − f s)] +

+ ∆(f 1 − f s) [Hr(f1) + iHi(f 1)] + (C.14)

+Hr(f1)H
∗
r (f 1 − f s) +Hi(f1)H

∗
i (f 1 − f s)−︸ ︷︷ ︸

O(H 2

r,i
)

− iHr(f 1)H
∗
i (f1 − f s) + iHi(f 1)H

∗
r (f 1 − f s)︸ ︷︷ ︸

O(H 2

r,i
)

.

The crucial step at this point is that the terms of higher than first order
(O(H 2

r,i )) will assumed to be small compared to the terms containing Delta-
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Functions and; therefore, will be left out in the successive treatment. This
omission of terms is part of the weak specimen approximation.

Within this approximation we can rewrite Eq. C.11 in the following

Sk(f s) =

∫
d2

f Rk(f )

∫
d2

f1 Po(−f − f 1)P
∗
o (−f − f 1 + f s)×

× ∆(f 1) ∆(f 1 − f s) +

+

∫
d2

f Rk(f )

∫
d2

f1 Po(−f − f 1)P
∗
o (−f − f1 + f s)×

× ∆(f 1) [H∗
r (f 1 − f s)− iH∗

i (f 1 − f s)] +

+

∫
d2

f Rk(f )

∫
d2

f1 Po(−f − f 1)P
∗
o (−f − f1 + f s)×

× ∆(f 1 − f s) [Hr(f1) + iHi(f 1)] . (C.15)

In each of the three summands in this equation, we can perform the integral
over the respective delta function, where in the first term we choose to integrate
over the first one of the two delta functions (for the final result, it does not
matter which one we integrate over). Now the motivation becomes clear why
it was desired to neglect the O(H 2

r,i ) terms of Eq. C.14. When keeping those
terms one cannot get rid of an integral since they do not carry a Delta-Function
with them. After performing the integrations through the Delta-Functions we
get

Sk(f s) =

∫
d2

f Rk(f )Po(−f )P ∗
o (−f + f s) ∆(f s) +

+

∫
d2

f Rk(f )Po(−f )P ∗
o (−f + f s) [H∗

r (−f s)− iH∗
i (−f s)] +

+

∫
d2

f Rk(f )Po(−f − f s)P
∗
o (−f ) [Hr(f s) + iHi(f s)] ,(C.16)

where in the second summand we have used the fact that the Fourier trans-
forms of the specimen are conjugate symmetric functions, or

Hr,i(f s) = H∗
r,i(−f s) , (C.17)

because hr,i are real. (see also Table A.2). Note, that with Eq. C.16 we

184



have achieved a linearization of all the terms with respect to the specimen
contributions Hr and Hi.

Now we define the bilinear transfer functions

Ck(m,n, f s) =

∫
d2

f Rk(f )Po(mf s − f )P ∗
o (nf s − f) , (C.18)

so that the final result for the image recorded by detector segment k becomes

Sk(f s) = ∆(f s)Ck(0, 0,f s) +

+Ck(0, 1,f s) [Hr(f s)− iHi(f s)] +

+Ck(−1, 0,f s) [Hr(f s) + iHi(f s)]

= ∆(f s)Ck(0, 0,f s) +

+Hr(f s) [Ck(−1, 0,f s) + Ck(0, 1,f s)] +

+ iHi(f s) [Ck(−1, 0,f s)− Ck(0, 1,f s)] , (C.19)

whereby we have proven Eq. 3.40. For the term containing ∆(f s) in Eq. C.19
we implicitly take advantage of the fact that only the f s = 0 component can
contribute and is of interest. Because

Ck(m,n, f s =0) =

∫
d2

f Rk(f) |P (−f)|2 (C.20)

is independent of m and n; therefore,

∆(f s) · Ck(0, 1,f s) = ∆(f s) · Ck(−1, 0,f s) = ∆(f s) · Ck(0, 0,f s). (C.21)

The bilinear transfer function Ck(0, 0,f s) is constant for all f s and represents
the total intensity measured by detector segment k in absence of a specimen.

By defining the contrast transfer functions for the real and imaginary parts
of the specimen

T (k)
r (f s) = Ck(−1, 0,f s) + Ck(0, 1,f s)

T
(k)
i (f s) = Ck(−1, 0,f s)− Ck(0, 1,f s) , (C.22)

we can write Eq. C.19 as

Sk(f s) = ∆(f s)Ck(0, 0,f s) +Hr(f s)T
(k)
r (f s) + iHi(f s)T

(k)
i (f s) . (C.23)
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C.2 Derivation of Transfer Function Proper-

ties

In this section we will derive properties and symmetries of the transfer func-
tions introduced in Sec. C.1, which will play a key role in the further derivation
of the reconstruction method of Sec. C.3.

The bilinear transfer functions are defined as

Ck(m,n, f s) =

∫
d2

f Rk(f )Po(mf s − f )P ∗
o (nf s − f) , (C.24)

and the contrast transfer functions as

T (k)
r (f s) = Ck(−1, 0,f s) + Ck(0, 1,f s)

T
(k)
i (f s) = Ck(−1, 0,f s)− Ck(0, 1,f s) . (C.25)

Assuming that the detector response functions are real Rk(f) = R∗
k(f)

we can show that

Ck(0, 1,f s) =

∫
df Rk(f )Po(−f )P ∗

o (f s − f )

= Ck(0,−1,−f s)

=

[∫
df Rk(f)P ∗

o (−f )Po(f s − f )

]∗

= C∗
k(1, 0,f s)

= C∗
k(−1, 0,−f s) . (C.26)

Commonly, the detector response functions are real, so this is a rather general
correct than limiting assumption. This results in the following property for
the real contrast transfer function

T (k)
r (f s) = Ck(−1, 0,f s) + Ck(0, 1,f s)

= Ck(−1, 0,f s) + C∗
k(−1, 0,−f s) (C.27)
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and

T (k)∗
r (−f s) = C∗

k(−1, 0,−f s) + Ck(−1, 0,f s)

= T (k)
r (f s) , (C.28)

and similarly for the imaginary part transfer function,

T
(k)
i (f s) = Ck(−1, 0,f s)− Ck(0, 1,f s)

= Ck(−1, 0,f s)− C∗
k(−1, 0,−f s) (C.29)

and

T
(k)∗
i (−f s) = C∗

k(−1, 0,−f s)− Ck(−1, 0,f s)

= −T (k)
i (f s). (C.30)

This means that the real part contrast transfer functions T
(k)
r are conjugate

symmetric, while the imaginary part transfer functions T
(k)
i are conjugate an-

tisymmetric.
Assuming the pupil Po is real, then the contrast transfer functions will

be real as well (the detector response is always real). In this case, the real

part transfer functions T
(k)
r are symmetric, and the imaginary part transfer

functions T
(k)
i are antisymmetric.

In the case of a symmetric detector configuration, where each detector
segment k has an opposite segment k̄ such that Rk(f ) = Rk̄(−f ), then

Ck̄(−1, 0,f s) =

∫
df Rk̄(f )Po(−f s − f )P ∗

o (−f ).

Through a variable transformation f → −f , the integral over the whole fre-
quency plane will stay the same:

Ck̄(−1, 0,f s) =

∫
df Rk(f )Po(−f s + f)P ∗

o (f).

187



If the pupil is centrosymmetric such that Po(f) = Po(−f ), then

Ck̄(−1, 0,f s) =

∫
df Rk(f )Po(f s − f)P ∗

o (−f )

= Ck(−1, 0,−f s). (C.31)

The contrast transfer functions successively become

T (k̄)
r (f s) = Ck̄(−1, 0,f s) + C∗

k̄(−1, 0,−f s)

= Ck(−1, 0,−f s) + C∗
k(−1, 0,f s)

= T (k)
r (−f s)

= T (k)∗
r (f s) (C.32)

and

T
(k̄)
i (f s) = Ck̄(−1, 0,f s)− C∗

k̄(−1, 0,−f s)

= Ck(−1, 0,−f s)− C∗
k(−1, 0,f s)

= T
(k)
i (−f s)

= −T (k)∗
i (f s). (C.33)

Hence, for opposite detector segments in the case of a centrosymmetric pupil,
the real part transfer functions T

(k)
r are complex conjugates and the imaginary

part transfer functions T
(k)
i are negated and complex conjugates (if the pupil

is symmetric). If in addition the pupil is real, then the real part transfer
functions are identical for opposite segments, and the imaginary part transfer
functions are opposite in sign.

For a symmetric individual segment k meaning Rk(f ) = Rk(−f ) and
a symmetric pupil,

C∗
k(−1, 0,−f s) =

∫
df Rk(f )Po(f s − f )P ∗

o (−f )

and now use Po(f) = Po(−f )

=

∫
df Rk(f )Po(−f s + f)P ∗

o (f)
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transform variables f → −f ; and use Rk(f ) = Rk(−f )

=

∫
df Rk(f )Po(−f s − f )P ∗

o (−f )

= Ck(−1, 0,f s). (C.34)

By comparing with this result with Eq. C.30, we see that for a symmetric
segment the imaginary part transfer function T

(k)
i is zero!

C.3 Fourier Filtering Reconstruction Deriva-

tion

C.3.1 Error Minimization

The starting point for the derivation of reconstruction through the Fourier
Filtering Method is a best guess for the specimen function we hope to retrieve:

Ĥ(f ) =
∑

k

Wk(f )Sk(f ) . (C.35)

This best guess Ĥ contains the measured signals Sk weighted by filtering func-
tions Wk, where it is the objective to derive analytical expressions for these
filtering functions. Note, that in the following we drop the subscript s for the
scan displacement from the frequency variable because all quantities (speci-
men, pupil and detector response) must be calculated on the same frequency
space.

Now we consider the root mean square (RMS) error of a hypothetical re-
construction through this best guess

ǫ =

∫
df

〈∣∣∣Ĥ(f )−H(f)
∣∣∣
2
〉

︸ ︷︷ ︸
G

, (C.36)

where the expectation value 〈〉 averages over many measurements of the noisy
data Sk. For an optimal reconstruction this RMS has to be minimized. inte-
grand G of Eq. C.36 is real and greater than or equal to zero for all spatial
frequencies f . Therefore, we can disregard the frequency dependence and the
integral in the minimization process and consider the integrand G by itself,
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which is

G ≡
〈∣∣∣Ĥ −H

∣∣∣
2
〉

=

〈∣∣∣∣∣
∑

l

Wl Sl −H
∣∣∣∣∣

2〉

=

〈(
∑

l

Wl Sl −H
)(

∑

m

W ∗
m S

∗
m −H∗

)〉
(C.37)

We decompose the function Wk into their real W
(r)
k and imaginary W

(i)
k parts

in order to take the partial derivative for the minimization process. The partial
derivatives of the integrand G are given by

∂G

∂W
(r)
k

=

〈

Sk

(
∑

m

W ∗
m S

∗
m −H∗

)

+ S∗
k

(
∑

l

Wl Sl −H
)〉

=

〈[

S∗
k

(
∑

m

Wm Sm −H
)]∗

+ S∗
k

(
∑

l

Wl Sl −H
)〉

=

〈
2R
{
S∗

k

(
∑

l

Wl Sl −H
)}〉

(C.38)

∂G

∂W
(i)
k

=

〈
iSk

(
∑

m

W ∗
m S

∗
m −H∗

)
− iS∗

k

(
∑

l

Wl Sl −H
)〉

=

〈
i

[
S∗

k

(
∑

m

Wm Sm −H
)]∗
− iS∗

k

(
∑

l

Wl Sl −H
)〉

=

〈

−2iI
{

S∗
k

(
∑

l

Wl Sl −H
)}〉

. (C.39)

To minimize the RMS we set both of these partial derivatives to zero (for all
k). This means that the real and imaginary part of the quantity in braces {}
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must be zero, or

〈
S∗

k

(
∑

l

Wl Sl −H
)〉

= 0 for all k , (C.40)

In order to solve this expression for the filtering functions Wk, we substitute
for Sk the specimen-linearized form of Eq. C.23, which we obtained through a
weak specimen approximation.

Note, in the following treatment we will first omit the zero spatial frequency
contribution f = 0 component and therefore the ∆-term of Eq. C.23; we will
consider this term in Sec. C.3.4. In addition we add a term Nk(f ) which de-
scribes the spectral noise of the measurement process for each detector segment
k, so that the signal becomes

Sk(f) = Hr(f )T (k)
r (f ) + iHi(f)T

(k)
i (f ) +Nk(f ) for f 6= 0 and all k .

(C.41)
Furthermore, we use the expanded expression of Eq. C.13 for the specimen
function, also omitting the ∆-term because we do not consider the zero fre-
quency component for now. Taken this all together we arrive at the following
expression for Eq. C.40 (for simplicity omitting the frequency dependence)

0 =

〈(
H∗

r T
(k)∗
r − iH∗

i T
(k)∗
i +N∗

k

)
×

×
(∑

l

Wl

(
Hr T

(l)
r + iHi T

(l)
i +Nl

)
− (Hr + iHi)

)〉

for f 6= 0 and all k . (C.42)
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Expanding all the involved parenthesis gives

0 =

〈
|Hr|2 T (k)∗

r

∑

l

Wl T
(l)
r

〉
+ i

〈
H∗

r T
(k)∗
r

∑

l

WlHi T
(l)
i

〉

︸ ︷︷ ︸
=0 (Hr , Hi uncorrelated)

+

+

〈
H∗

r T
(k)∗
r

∑

l

Wl Nl

〉

︸ ︷︷ ︸
=0 (N , H uncorr.)

−
〈
|Hr|2 T (k)∗

r

〉
− i

〈
HiH

∗
r T

(k)∗
r

〉

︸ ︷︷ ︸
=0 (Hr , Hi uncorr.)

−

− i

〈
H∗

i T
(k)∗
i

∑

l

Wl Hr T
(l)
r

〉

︸ ︷︷ ︸
=0 (Hr , Hi uncorr.)

+

〈
|Hi|2 T (k)∗

i

∑

l

Wl T
(l)
i

〉
−

− i

〈
H∗

i T
(k)∗
i

∑

l

Wl Nl

〉

︸ ︷︷ ︸
=0 (N , H uncorr.)

+i

〈
Hr H

∗
i T

(k)∗
i

〉

︸ ︷︷ ︸
=0 (Hr , Hi uncorr.)

−
〈
|Hi|2 T (k)∗

i

〉
+

+

〈
N∗

k

∑

l

Wl Hr T
(l)
r

〉

︸ ︷︷ ︸
=0 (N , H uncorr.)

+i

〈
N∗

k

∑

l

Wl Hi T
(l)
i

〉

︸ ︷︷ ︸
=0 (N , H uncorr.)

+

+

〈
N∗

k

∑

l

Wl Nl

〉

︸ ︷︷ ︸
=0 for l 6=k (Nl, Nk uncorr.)

−
〈
Hr N

∗
k

〉

︸ ︷︷ ︸
=0 (H, N uncorr.)

−i

〈
HiN

∗
k

〉

︸ ︷︷ ︸
=0 (H, N uncorr.)

for f 6= 0 and all k. (C.43)

If we assume that the noise is uncorrelated between different detector seg-
ments k, that the noise is uncorrelated with the specimen function (this is the
definition of noise), and that the real and imaginary parts of the specimen
are uncorrelated, we can disregard many of the cross terms as noted in the
equation. We can also disregard the expectation value for all terms except the
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remaining noise term. Rearranging the remaining terms gives

0 = |Hr|2 T (k)∗
r

(
∑

l

Wl T
(l)
r − 1

)
+

+ |Hi|2 T (k)∗
i

(
∑

l

Wl T
(l)
i − 1

)

+Wk

〈
|Nk|2

〉
for f 6= 0 and all k .

(C.44)

The inconspicuous assumption that real and imaginary parts of the specimen
are uncorrelated is another part of the weak specimen approximation, which
is discussed in Sec. 3.3.5.

C.3.2 General Filter Functions

If we multiply Eq. C.44 by T
(k)
r / 〈|Nk|2〉 and sum over all k, we obtain

0 = |Hr|2
(
∑

l

Wl T
(l)
r − 1

)
∑

k

∣∣∣T (k)
r

∣∣∣
2

〈
|Nk|2

〉 +

+ |Hi|2
(
∑

l

Wl T
(l)
i − 1

)
∑

k

T
(k)∗
i T

(k)
r〈

|Nk|2
〉 +

∑

k

Wk T
(k)
r for f 6= 0 .

(C.45)

Now we define the following quantities:

β(k)
r =

〈
|Nk|2

〉

|Hr|2
β

(k)
i =

〈
|Nk|2

〉

|Hi|2
(C.46)

D(r) = 1 +
∑

k

∣∣∣T (k)
r

∣∣∣
2

β
(k)
r

D(i) = 1 +
∑

k

∣∣∣T (k)
i

∣∣∣
2

β
(k)
i

(C.47)

D(r,i) =
∑

k

T
(k)∗
r T

(k)
i

β
(k)
r

D(i,r) =
∑

k

T
(k)∗
i T

(k)
r

β
(k)
i

(C.48)

With those definitions, Eq. C.45 becomes

D(r)
∑

l

Wl T
(l)
r +D(i,r)

∑

l

Wl T
(l)
i = D(r) +D(i,r) − 1 for f 6= 0 . (C.49)
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Similarly, we can multiply Eq. C.44 by T
(k)
i / 〈|Nk|2〉 and sum over all k to

obtain

D(i)
∑

l

Wl T
(l)
i +D(r,i)

∑

l

Wl T
(l)
r = D(i) +D(r,i) − 1 for f 6= 0 . (C.50)

We now are at a position where above Eq. C.49 and Eq. C.50 form a set
of linear equations for

∑
l Wl T

(l)
r and

∑
l Wl T

(l)
i . This can be solved to yield

∑

l

Wl T
(l)
r = 1 +

D(i,r) −D(i)

D(r)D(i) −D(i,r)D(r,i)

∑

l

Wl T
(l)
i = 1 +

D(r,i) −D(r)

D(r)D(i) −D(i,r)D(r,i)





for f 6= 0. (C.51)

By substituting this back into Eq. C.44 we have obtained a general solution
for the reconstruction filters:

Wk =
D(i) −D(i,r)

D(r)D(i) −D(i,r)D(r,i)

T
(k)∗
r

β
(k)
r

+
D(r) −D(r,i)

D(r)D(i) −D(i,r)D(r,i)

T
(k)∗
i

β
(k)
i

for f 6= 0 and all k. (C.52)

C.3.3 Simplified Filter Functions

The general reconstruction filters of Eq. C.52 can be further simplified by
employing symmetry properties for transfer functions, which we obtained in
Sec. C.2. We will assume that the pupil function is real and centro-symmetric.
For the detector response we will assume that either each detector segment has
a corresponding opposite segment, or in case of an individual segment that it
is centro-symmetric. This covers a large range of possible detectors including
the quadrant detector, dedicated segmented detectors and pixelated layouts.

The term D(r,i) of Eq. C.48 contains of a sum over all detector segments.
Segments that are centro-symmetric have a vanishing imaginary part transfer
T

(k)
i and do not contribute to the sum. Considering opposite detector pairs
k and k̄ and assuming that both segments show the same noise spectrum, so

that β
(k)
r,i = β

(k̄)
r,i we get

D(r,i) =
∑

k,k̄

T
(k)∗
r T

(k)
i + T

(k̄)∗
r T

(k̄)
i

β
(k)
r

, (C.53)
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where the sum is taken over all pairs of opposite detector segments k and k̄.
Using Eqs. C.32 and C.33, one obtains

D(r,i) =
∑

k,k̄

T
(k)∗
r T

(k)
i − T (k)

r T
(k)∗
i

β
(k)
r

= 0 (C.54)

if the transfer functions are real, corresponding to a real pupil function. Simi-
larly, D(i,r) vanishes in this case. This simplifies the general expression for the
reconstruction filters of Eq. C.52 significantly in the following

Wk =
T

(k)∗
r

D(r) β
(k)
r

+
T

(k)∗
i

D(i) β
(k)
i

for f 6= 0 and all k. (C.55)

Furthermore, assuming that the noise is the same in all segments (β
(k)
r,i = βr,i),

we can substitute D(r) and D(i) back from Eq. C.47 to arrive at

Wk =
T

(k)∗
r

∑
l

∣∣∣T (l)
r

∣∣∣
2

+ βr

+
T

(k)∗
i

∑
l

∣∣∣T (l)
i

∣∣∣
2

+ βi

for f 6= 0 and all k . (C.56)

We can use this simplified version of the reconstruction filters if we keep in
mind that we need to have a real pupil, a specific detector configuration and
a noise that is the same for all detector segments.

C.3.4 Zero Frequency Term

We will now consider the zero spatial frequency contribution, which has been
left out of the consideration following Eq. C.40. The zero frequency term
of Eq. C.23 reads ∆(f s)Ck(0, 0,f s). For this term let us remember that
Ck(m,n, f =0) is a constant independent of m and n (see Eq. C.20). Conse-
quently,

Ck(0, 0,f =0) =
1

2
T (k)

r (f =0) (C.57)

and

T
(k)
i (f =0) = 0 (C.58)
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(compare Eq. C.22). Hence, this leaves for the detected signal of segment k at
f =0 the expression

Sk(f =0) = ∆(f =0)Ck(0, 0,f =0) +Hr(f =0)T (k)
r (f =0) . (C.59)

Following the requirement for the weak specimen approximation of Eq. C.14
we can safely assume that the second term of Eq. C.59 is negligible compared
to the term containing the Delta-function. Therefore, we can write

Sk(0) = ∆(0)
T

(k)
r (0)

2
. (C.60)

In Sec. 3.3 we have shown that

Wk(0) =
2 T

(k)∗
r (0)

∑
l

∣∣∣T (l)
r (0)

∣∣∣
2

+ βr(0)
. (C.61)

Assuming that the noise average βr(0) is zero1 we can substitute Eqs. C.60
and C.61 into our starting assumpption of a best specimen guess (Eq. C.35)
to find that

Ĥ(0) = ∆(0), (C.62)

which is consistent with the definition of the specimen function from Eq. C.13
and therefore validates the filter function for the zero spatial frequency of
Eq. C.61 (again assuming that Hr(0) is negligible against the delta-function
term). The imaginary part of the specimen function at f = 0 is irrelevant,
because

• due to the zero contrast transfer at f = 0, one could not trust any
reconstructed value anyway; and

• the f ! = 0 value of the specimen Fourier transform constitutes only
a constant phase offset across the whole image, and we can easily (in
fact, we have to) normalize the final result for a zero phase shift in the
background region.

Furthermore, since in the present case no assumption regarding the pupil
function or detector configuration have been made, the determined zero spatial
frequency contribution filters apply for both the general and simplified cases
of the filter functions.

1Remember that the zero frequency term in a Fourier transform or spectrum denotes
the total value (or, with appropriate scaling, the average value) of the corresponding real
space quantity; see Sec. A.2.7.
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C.3.5 Phase-Only Approximation

In the following we will consider the situation of a pure phase object and the
consequences on the filtering reconstruction process.

In the most rigorous form of the weak specimen approximation (where the
absorption information is solely contained in hr and the phase information in
hi) a phase-only object is characterized by Hr =0, leaving the spectrum of the
specimen function to be

H(f) = ∆(f ) + iHi(f) . (C.63)

In order to derive the filter functions for this case, we will pick up the
derivation of the general case of Eq. C.44 and set consequently Hr = 0. The
minimized error expression of Eq. C.44 then becomes

0 = |Hi|2 T (k)∗
i

(
∑

l

Wl T
(l)
i − 1

)

+Wk

〈
|Nk|2

〉
for f 6= 0 and all k .

(C.64)

Going through a similar treatment as in Sec. C.3.2 we multiply above expres-
sion with T

(k)
i / 〈|Nk|2〉 and sum over all k; together with definitions for β

(k)
i

(Eq. C.46) and D(i) (Eq. C.47) we get

0 =
∑

l

Wl T
(l)
r D(i) − (D(r,i) − 1) for f 6= 0 . (C.65)

Therefore,
∑

l

Wl T
(l)
r =

D(r,i) − 1

D(i)
for f 6= 0 . (C.66)

By inserting this result back into Eq. C.64 we obtain a solution for the phase
only filter function

W phase
k =

1

D(i)

T
(k)∗
i

β
(k)
i

=
T

(k)∗
i

∑
l

∣∣∣T (l)
i

∣∣∣
2

+ βi

for f 6= 0 and all k, (C.67)

where similarly to Eq. C.56 we have use in the last step that the noise in
all segments is the same. Note, that in the case of a detector with only one
segment, this step does not reflect an assumption but is a completely correct
statement.

The expression we found through Eq. C.67 for the phase-only filters look
identical to the second term of the previously found simplified filters (Eq. C.56).
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However, note that in the phase-only case the expression we found are the gen-
eral filter functions, no assumptions regarding the pupil or specific detector
configurations have been made.

The zero spatial frequency contribution for the phase-only filters is identical
to what we have found in Sec. C.3.4.
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