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Abstract of the Dissertation 

Power Studies of Regression-Based Linkage Methods for Selected Sibpairs in the 

Presence of Epistasis 

by 

Chengrui Huang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2010 

 

Although the ubiquitousness of epistasis, or gene-gene interactions, is widely 

acknowledged, many commonly used quantitative-trait-locus (QTL) linkage analysis 

methods have been developed without explicitly modeling any dominance or epistasis 

effects. The power of regression-based linkage methods was investigated in this paper 

under a range of two-locus models of various degrees and types of epistasis.  

A quantitative trait is studied usually because of its association with some 

complex disease of interest. Therefore we introduced selection through disease affected 

probands, which has commonly been used in qualitative trait studies, into our QTL 

analysis, and compared it to random selection and selection based on individuals having 

abnormal quantitative trait values. 
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Chapter 1 Introduction 

One of the main purposes of genetic studies is to identify, or to map, genes 

that have effects on diseases, or disease-related quantitative traits, of interest. Linkage 

analysis is one of the statistical methods of gene mapping. By examining the patterns 

of allele-transmission from parent to offspring, or the patterns of allele-sharing by 

relatives, we can detect the cosegregation of the disease or trait gene and the marker 

gene with known position hence infer the relative position of the disease or trait gene 

(Sham 1998).  

In this thesis, a quantitative trait, together with a complex disease with which 

the trait is associated, are modeled under a general two-locus bi-allele epistatic and 

pleiotropic genetic framework. Two existing regression-based method, the original 

Haseman-Elston method and the modification by Sham and Purcell, are extended to 

detect epistasis. Simulated genotypes at three types of marker loci and simulated 

phenotypes, the quantitative trait values, are generated under random sampling and 

two selected samplings. The power to detect epistasis is compared across different 

linkage methods, types of marker, and sampling methods. 

The outline of this paper is as follows: background information and literature 

review, along with description of important concepts, definitions of terms, and 
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motivation and goal of our study, will be given this Chapter. In Chapter 2, we will 

describe the methodologies used in this paper. In Chapter 3, we will present the 

details of our simulation and study design. We will then analyze and interpret the 

results from our simulation study and draw conclusions in Chapter 4. Finally the 

limitations of our study and possible directions for future studies will be discussed in 

Chapter 5. 

 

1.1 Genetic Epistasis 

Most statistical tools were developed assuming an additive relationship 

between genotype and phenotype, and are effective in the analysis of simple, 

Mendelian diseases, such as sickle cell anemia, cystic fibrosis, Huntington’s disease, 

and early-onset Alzheimer’s disease (Culverhouse et al. 2004). But for most common 

human diseases with complex etiology, the search for susceptibility loci has been less 

successful. For example, although diabetes, depression, and schizophrenia are known 

to have large genetic components, traditional methods of genetic analysis in these 

diseases, however, have resulted in conflicting findings (Cordell 2002). One reason 

may be that so many genes are involved in a complex disease or trait that individual 

genes have effects that are too small to be detected even with a large sample. Another 

explanation is that there are substantial interactions between relatively few genes and 

between a major gene and environmental factors.  

In this paper we will focus on gene-gene interaction, or epistasis. Studies in 

model organisms, such as fruit fly and yeast, have confirmed the ubiquitousness of 

epistasis. In addition, recent studies in human and animals have identified loci that 
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interact significantly but have little or no effect at the margins (Evan et al. 2006). 

Therefore we can expect the power of the single-locus tests would be greatly reduced 

in this situation. However most of the widely-used genome-wide linkage or 

association analysis methods still assume single-locus model; i.e., the epistatic effect 

is negligible. One of the reasons that single-locus genome-wide searches are still a 

predominant practice lies in the practical difficulty in conducting even the pairwise 

genetic search. Namely a search involve n markers would entail nC2 = n!/[2!(n-2)!] 

pairwise comparisons. An intuitive alternative to lessen the calculation burden is to 

conduct the search in two stages: only the markers that have passed the threshold in 

single-locus tests are further investigated for two-locus interaction. However, if the 

epistatic loci have little or no marginal effect, they cannot to be detected with this 

strategy. Therefore the two-stage genome-wide search is still not as powerful as the 

exhaustive two-locus probe when loci interact (Evans et al. 2006). 

In this paper, we will examine the power of regression-based methods in 

detecting epistasis under several two-locus epistatic models. The goals are to see, 

firstly, if single-locus analysis can detect epistatic loci, and secondly how much, if 

any, statistical power can we gain if we use two-locus analysis, and thirdly to evaluate 

the power to detect epistasis between loci. 

 

1.2 Sampling Schemes 

The theoretical basis of a statistical analysis usually assumes that a sample of 

families is selected from a particular population at random. In practice however it is 

more common to first select a random sample of individuals in the population called 
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probands that are affected with a particular disease or have extreme quantitative trait 

values, and then select the probands’ family members.  

By selecting families through probands, we hope the sample can contain more 

information relevant to the disease or the trait of interest and therefore increase the 

statistical power in detecting the underlying genes. 

Many studies have shown that various methods for sample selection on the 

basis of trait values increase power over random sampling for detection of linkage 

with quantitative trait loci (QTLs). One could select sibling pairs in which one sibling 

having extremely high or low trait values (Carey and Williams 1991), or one could 

select relative pairs having discordant and/or concordant extreme phenotypes (Zhang 

and Risch 1996; Szatkiewicz and Feingold 2005). 

Usually we are interested in some quantitative trait because it is a critical 

measurement for the diagnosis of a disease (for example time to onset for breast 

cancer and Alzeimer’s disease) or a risk factor for some complex disease but with 

simpler etiology (for example hypertension is a major contributing factor in 

development of kidney failure) (Amos and de Andrade 2001). Because of these 

connections the trait and the disease may share some genetic components in common. 

Therefore we expect selection based on disease affected probands can yield higher 

power over random sampling for detecting QTLs and may have power comparable to 

selection based on trait value (Huang et al. 2009). 

Affected sib pair (ASP) data is commonly used in linkage analysis to detect 

disease loci (Elston et al. 2005), but is rarely applied on quantitative traits related to 

some diseases. Some promising applications of ASP in linkage analysis of QTLs can 
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be found in the literature (e.g. Huang et al. 2007), but an extensive comparison of 

power under different conditions is needed. This sampling method is called Disease 

Selected Sampling instead of ASP in this paper to avoid confusion. 

 

1.3 Gene-Model-Free Methods for Genetic Linkage 

Analysis 

Before we introduce the methods for linkage analysis we will first use the 

following diagram taken from the internet 

(http://genome.wellcome.ac.uk/doc_WTD020778.html) to explain the process of 

crossing over in meiosis and the principle of linkage analysis. 

 

The top part of this diagram shows a pair of chromosomes in a cell before 

meiosis, one inherited from the father (blue) and another inherited from the mother 

(red). During the meiosis a phenomenon called crossing over would happen where the 

genetic information contained in paternal and maternal chromosomes is shuffled, or 
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recombined. This is shown in the middle panel of the diagram. Finally the bottom 

panel shows the two haploid reproductive cells, or gametes, generated at the end of 

meiosis.  

Three genes, labeled A, B, and C, are also shown in the diagram. The capital 

letters represent the paternal alleles and the lower case letters represent the maternal 

alleles. Note that, when only A and B loci are considered, the haplotypes of the 

gamete are the same as the haplotype of the parental gametes (AB and ab). Such 

gametes are defined as non-recombinants with respect to the A and B loci. When the 

loci A and C are considered, however, the haplotypes of the gamete are neither one of 

the parental haplotypes (AC and ac) but a new combination of alleles (Ac and aC). 

Such gametes are referred to as recombinants with respect to the A and C loci. The 

recombination fraction between two loci, denoted as θ, is defined as the probability 

that a gamete is a recombinant. (Sham 1998) 

If two loci are far apart on a chromosome, one is equally likely to have the 

recombinant or the non-recombinant gametes. Therefore the recombination fraction 

equals ½. When two loci are physically close to each together, however, the crossover 

between them is less likely to occur. Hence we would expect the recombination 

fraction to be less than ½. The smaller the recombination fraction, the more tightly 

linked are the two loci. If the two loci are in “complete linkage”, then the 

recombination fraction equals zero. 

We assume that locus A in the above diagram is the disease or trait gene 

whose position is unknown and loci B and C are two marker genes whose positions 

are known. Based on our observation that the recombination occurs more frequently 
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between A and B then between A and C, we can map the position of locus A relative 

to markers B and C. 

There are two different categories of linkage analysis methods, gene-model-

based (or “parametric”) methods and gene-model-free (or “non-parametric”) methods. 

The first type of method relies heavily on the knowledge of the mode of inheritance 

and the specification of parameters of interest in a genetic model such as genotype 

mean and variance or penetrance values and the recombination fraction between two 

loci. Since the mode of inheritance and parameters of interest are often hard to 

determine, and model misspecification can have detrimental effects on gene-model-

based methods, in this paper we focus on the gene-model-free linkage methods. 

One of the key concepts in gene-model-free linkage analysis is allele-sharing, 

or specifically identity-by-descent. A pair of relatives are said to share one allele 

identical-by-descent (IBD) when that particular allele can be traced to a common 

ancestor. Since humans are diploid, i.e. we have a pair of each type of chromosome. 

The three possible numbers of alleles shared IBD at one locus are 0, 1, or 2; 

equivalently the IBD proportion can be 0, ½, or 1. Usually not all family members are 

available for study. Therefore the exact number of alleles shared IBD cannot be 

deduced unequivocally. But the probabilities of sharing 0, 1, and 2 alleles IBD can be 

deduced, and the expected IBD proportion can be estimated in this case. 

In this section, we give background information about some of the most 

commonly used gene-model-free linkage methods. We first introduce regression-

based methods and then likelihood-based methods. 
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1.3.1 Regression-Based Linkage Methods 

One of the most commonly used tests for linkage is the regression method 

proposed by Haseman and Elston in 1972 (Haseman and Elston 1972). This approach 

is conceptually simple and computationally convenient and is ideal for a fast 

preliminary linkage scan. 

The sample unit is a pair of siblings, or a “sibpair”. Let xij be the observed trait 

values for the ith sibling in sibpair j in a sample of n sibpairs, YDj = (x1j − x2j)
2 be the 

squared trait difference for sibpair j, and πj be the estimated expected proportion of 

genes IBD at the marker locus for sibpair j (i = 1, 2; j = 1, 2, … n), where π takes the 

values of 0, ½, or 1 if the marker is fully informative but can take intermediate values 

otherwise.  

The Haseman-Elston method regresses YD on π and tests for significant 

negative slope as indication of linkage. The interpretation for a negative slope is very 

intuitive if the tested marker is linked with the locus influencing the trait. The more 

genetic information shared in a sibpair the less difference in trait values we should 

expect in the sibpair. By assuming linkage equilibrium and no interaction between 

genes or between genetic and environmental factors, Haseman and Elston proved that 

the expectation of the slope if there is no dominance is given by 

 2

GE( β |π ) 2(1 2θ ) V= − − . (1-1) 

Here θ is the recombination fraction between the trait locus and the marker locus, and 

VG is the genetic variance. The same result will hold asymptotically when dominance 

is present. If the marker locus is in completely linkage with the trait locus, then θ = 0. 

If the marker locus is unlinked to the trait locus, θ = ½. Therefore a one-sided t-test of 
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negative slope is a test for the presence of both linkage (H0: θ = ½ vs H1: θ < ½) and 

a nonzero genetic variance component (H0: VG = 0 vs H1: VG > 0). 

The original Haseman-Elston method is generally criticized as having low 

power (Feingold 2002). One of the explanations lies in the fact that it discards the 

information in the squared trait sum in sibpair. Many investigators have tried to 

increase the power by incorporating this information into the regression framework. 

For example Drigalenko (1998) and Elston et al. (2000) changed the dependent 

variable to the mean-corrected trait product, which is the un-weighted sum of the 

squared trait difference and the mean-corrected squared trait sum, YSj = (x1j+x2j−2µ)
2
, 

where xij is the observed trait values for the i
th

 sibling in sibpair j in a sample of n 

sibpairs and µ is the population mean. A number of other modifications involve using 

different weighted average forms as dependent variable (Forrest 2001; Visscher and 

Hopper 2001; Xu et al. 2000; Sham and Purcell 2001).  

Cuenco and her colleagues conducted a comprehensive comparison of seven 

regression-based statistics, in addition to the original Haseman-Elston method, in 

terms of type I error, power, and robustness to parameter value misspecification, 

selected sampling, and violation of distributional assumptions (Cuenco et al. 2003). 

The modification proposed by Sham and Purcell was found consistently to have 

correct type I error, relatively high power, and more importantly, robustness to trait 

parameter misspecification in selected samples. Therefore it was recommended.  

In addition to the notation defined at the beginning of this section, let µ be the 

mean of the trait values in the population, σ
2
 be the variance in the population, zij be 

the standardized trait values for the i
th

 sibling in sibpair j, i.e. 
ij

ij

x µ
z

σ

−
= , and YSj = 
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(z1j + z2j)
2
 be the squared standardized trait sum for sibpair j. Sham and Purcell 

showed that the variances of YD and YS can be expressed as functions of the sibling 

trait correlation, ρ, under the normality assumption (Sham and Purcell 2001). They 

proposed to use the value of   

 = −
+ −

S D

2 2

Y Y
Y*

(1 ρ ) (1 ρ )
 (1-2) 

as the dependent variable, which is regressed on the IBD proportion, π. Then one 

should use the t statistic to test for linkage. Here a null hypothesis of a slope equals to 

zero is tested against an alternative that the slope is positive. 

Although these methods are derived under the assumption of normally 

distributed residual variance, the regression framework makes them robust to 

distributional assumption in the sense that the asymptotic null distributions of the test 

statistics do not depend on the distribution of the trait values or dependent variable 

used. These methods can also be easily extended to accommodate gene-gene and/or 

gene-environment interactions. 

 

1.3.2 Likelihood-Based Linkage Methods 

Another category of methods for linkage analysis is based on the likelihood 

function. Almsay and Blangero (1998) proposed a method to partition the phenotypic 

variance into its components arise from genetic, polygenetic, and environmental 

factors and so on and used the likelihood ratio statistic to test for linkage. This 

method has much higher power than that of the Haseman-Elston method under ideal 

conditions, but it is very sensitive to sampling selection and violation of distributional 
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assumptions (Allison et al. 1999). In addition, it is much more computationally 

intensive since the genetic variance component has to be estimated under the null 

hypothesis of no linkage and under the alternative hypothesis.  

Recently many methods have been developed based on score statistics in an 

attempt to retain to the robustness of the Haseman-Elston method and the high power 

of the likelihood ratio test under normality (Bhattacharjee et al. 2008).  

It would certainly be interesting to extend the existing methods based on the 

score test to incorporate epistasis. However, in this paper we choose to focus on 

regression-based methods for the following reasons in addition to the advantages 

listed in the previous Section. First of all, the original Haseman-Elston method and 

various modified methods are very intuitive. These methods are all based on the idea 

that the more alleles shared identical-by-descend (IBD) at the marker locus in a 

relative pair the smaller the squared difference of trait values it should be, if the 

marker is in linkage with the quantitative trait locus (QTL). Secondly the distribution 

of the t statistic used to test for linkage is well-characterized. Finally regression is 

much easier and faster to be implemented than estimating variance components from 

likelihood functions. 

 

1.4 Ascertainment Correction 

With the exception of the original Haseman-Elston method, all of the above 

mentioned methods use some or all of the trait parameters, namely the population 

values for the mean and variance of the quantitative trait, and correlation between 

siblings. Although these are nuisance parameters, with respect to the test of linkage, 
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they greatly influence the power (Bhattacharjee et al. 2008). They can be estimated 

fairly well in random samples. However since random sampling does not favor 

pedigrees with more linkage information, selected samples are more commonly used 

in practice. It is difficult to obtain unbiased and consistent estimates of these 

parameters from selected samples. Although it is possible to use population estimates 

from previous studies, we cannot be sure that populations in different studies have the 

same parameter values (Peng and Siegmund 2006). An alternative is to use the 

maximum likelihood estimates corrected for ascertainment. 

There are two ascertainment corrections to the maximum likelihood 

estimation of trait parameters. Elston and Sobel (1979) suggested using likelihood 

function conditioning on the event of ascertainment. Hopper and Mathews (1982) 

proposed to condition on the exact values of the probands. These corrections were 

proven to be asymptotically equivalent in both simulation and analytic studies 

(Andrade and Amos 2000; Peng and Siegmund 2006). However since the first 

correction involves calculation of the probability of ascertainment, sometimes it is 

hard to make sure the procedure is well-defined. Hence Peng and Siegmund suggest 

using the correction proposed by Hopper and Mathews, especially when the 

ascertainment procedure is unknown or ill-defined. The details of this method will be 

present in the next chapter. 
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Chapter 2  Methodologies 

In this chapter, we present the details on our extensions of two regression-

based methods, and the ascertainment correction used in our paper to obtain 

conditional maximum likelihood estimates (CMLE) of the trait parameter values. 

 

2.1 Two-Locus Pleiotropic Epistatic Model 

Let X be the quantitative trait variable. We assume the following general 

model 

 s nsX G e e= + +  (2-1) 

where G denotes the genetic effect, es denotes the environmental effects that are 

shared within family members, or shared residual component, and ens denotes the 

non-shared environmental effects. The polygene, a group of genes that together 

influence the trait, can be considered as a part of the shared environment within the 

family. Here we assume that there is no interaction between genetic and 

environmental factors, since it is not the focus of this paper.  

Let µ be the overall mean of the trait values in the population, and σ2 be the 

overall variance. We can partition the mean and variance into genetic and 



CHAPTER 2. METHODOLOGIES 

 

 

environmental components (Falconer 1981), but first we have to make several 

assumptions and describe the notation we use. 

We assume in this paper that there are only two main trait loci, locus A and 

locus B, and that they are unlinked to each other, bi-allelic, pleiotropic, and 

epistatic. This means that (1) these two genes segregate independently; (2) they each 

have two alleles; (3) at least one allele affects more than one phenotype, in this case 

both the value of a quantitative trait and the status of a disease; and (4) the effects of 

these two genes on the quantitative trait are not additive. Furthermore, random mating, 

Hardy-Weinberg equilibrium, and linkage equilibrium are assumed throughout. 

Let A1 be the minor allele, the less common allele, at trait locus A, and A2 be 

the more common allele, with allele frequencies p1 and q1 = 1− p1 respectively. 

Analogously the two alleles at trait locus B are denoted B1 and B2 with allele 

frequencies p2 and q2 = 1− p2 respectively. The allele A1 and B1 are modeled to be two 

of the alleles that increase both the trait value and the chance of developing the 

disease in this paper. 

Let gi be the genotypes at locus A with i copies of minor allele A1, gj be the 

genotypes at locus B with j copies of minor allele B1, and gij be the two-locus 

genotypes (i, j = 0, 1, 2). The genotype frequencies at locus A under Hardy-Weinberg 

equilibrium are as follow: 

 

2

A 2 1 1 1

A 1 1 2 1 1

2

A 0 2 2 1

Pr( G g A A ) p

Pr( G g A A ) 2 p q

Pr( G g A A ) q

= = =

= = =

= = =

 (2-2) 

The genotype frequencies at locus B can be calculated analogously. The two-locus 

genotype frequencies are given by  
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AB ij A i B jPr( G g ) Pr( G g ) Pr( G g )= = = =  (2-3) 

Since the two trait loci are also the disease genes in our paper, we also present 

how we model the disease. Let fij be the penetrance, or the conditional probability of 

developing the disease in individuals with genotype gij, i.e., 

 
ij AB ijf Pr( D | G g )= =  (2-4) 

To simplify our analysis we assume the allele A1 and B1 have equal and 

additive effects on the disease. Specifically we assume a baseline penetrance fb, and 

that having more copies of minor allele A1 and/or B1 linearly increases the chance of 

developing the disease by factor of fl. We impose two constraints, 0 < fl ≤ 0.25 and 0 

≤ fb ≤ 1−4 fl, to ensure 0 ≤ fij ≤ 1 for all i and j. All nine penetrance values under this 

assumption are listed in the following table. 

Table 2-1 Penetrance Values for the Disease Assuming Equal Additive Allelic Effects 

GB 

GA 
B1B1 B1B2 B2B2 

A1A1 f22 = fb + 4fl
 

f21 = fb + 3fl f20 = fb + 2fl 

A1A2 f12 = fb + 3fl f11 = fb + 2fl f10 = fb + fl 

A2A2 f02 = fb + 2fl f01 = fb + fl f00 = fb 

 

The disease prevalence or the probability of having the disease in the 

population is then obtained as  

 
2 2

ij AB iji 0 j 0
Pr( D ) f Pr( G g )

= =
= =∑ ∑  (2-5) 

If we assume that the minor allele frequencies are the same, i.e. p1= p2 = p, 

then the following equation about the disease prevalence, Pr(D), holds  

 b lPr( D ) f 4 pf= +  (2-6) 
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Furthermore if we set the baseline penetrance, fb, to be zero, we assume that 

susceptible genotypes are necessary to be affected and that individuals without any 

copy of minor allele at both disease genes have no chance in developing the disease. 

The disease prevalence in this case equals to 4pfl.  

By applying Bayes Theorem we can get the conditional probability of one’s 

genotype given that this individual is disease affected 

 
ij AB ij

AB ij

f Pr( G g )
Pr( G g | D )

Pr( D )

=
= =  (2-7) 

If we set fb = 0 and assume equal minor allele frequencies, then the 

conditional probabilities, Pr(GAB|D), does not depend on the disease penetrance at all, 

but solely on the allele frequencies as shown in the following table. 

Table 2-2 Conditional Probabilities of Genotype of Disease Affected Proband 

Assuming No Phenocopy and Equal Minor Allele Frequencies 

GB 

GA 
B1B1 B1B2 B2B2 

A1A1 p
3 

3p
2
q/2 pq

2
/2 

A1A2 3p2q/2 2pq2 q3/2 

A2A2 pq
2
/2 q

3
/2 0  

 

Comparing these conditional probabilities, Pr(GAB|D), with the unconditional 

ones in random samples, Pr(GAB), we can see that selecting samples through disease 

affected probands increases the probabilities of obtaining individuals with genotypes 

having at least one copy of a minor allele from either one of the pleiotropic loci, by 

factors of 1/4p to 1/p. Therefore we expect this selection scheme would result in a 

higher power over random sampling as the minor allele frequency p decreases.  

Following the notation of Tiwari and Elston (1997) and Purcell and Sham 

(2004), let 
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a1, a2 = the additive effects at locus A and locus B respectively; 

d1, d2 = the dominant effects at locus A and locus B respectively; 

aa = the interaction between the additive effects at the two loci; 

ad = the interaction between the additive effect at locus A and dominant effect at 

locus B; 

da = the interaction between the dominant effect at locus A and additive effect at 

locus B; 

dd = the interaction between the dominant effects at the two loci; 

and m be the mean effect. We can assume the residual components (es and ens) to 

have mean of 0 and, for convenience, follow normal distribution with variances 2

sσ  

and 2

nsσ  respectively. 

Let µij be the expected trait value given that the two-locus genotype is gij (i, j 

= 0, 1, 2). The expressions of these conditional trait means in terms of additive, 

dominance, and epistatic effects are given in the following table: 

Table 2-3 Partition of Expected Trait Values under Two-Locus Epistatic Model 

GB 

GA 

B1B1 B1B2 B2B2 

A1A1 m+a1+a2+aa
 

m+a1+d2+ad m+a1−a2−aa 

A1A2 m+d1+a2+da m+d1+d2+dd m+d1−a2−da 

A2A2 m−a1+a2−aa m−a1+d2−ad m−a1−a2+aa 

Source: Table II in Purcell and Sham (2004) Epistasis in quantitative trait locus linkage analysis: 

interaction or main effect? Behav Genet 34: 143-152 

 

The overall trait mean can be calculated by 

 
2 2

ij AB ij

i 0 j 0

E( X ) µ µ Pr( G g )
= =

= = =∑∑  (2-8) 



CHAPTER 2. METHODOLOGIES 

 

 

The overall variance of the quantitative trait value can be partitioned into three 

parts: genetic, shared residual between siblings, and non-shared residual 

 = = = + +2

T G S NSVar( X ) σ V V V V  (2-9) 

The genetic variance under this bi-allelic two-locus model can be further 

divided into components due to additive, dominant, and epistatic effects  

 = + + = + + + + + + +G A D I a1 a2 d 1 d 2 aa ad da ddV V V V (V V ) (V V ) (V V V V )  (2-10) 

or more specifically, variance due to the additive effect at locus A 

 
= − − + − − − −

+ − −

a1 1 1 1 1 1 1 2 2 1 1 2 2

2

2 2 1 1 2 2

V 2 p q [ a ( p q )d ( p q )aa ( p q )( p q )da

2 p q ad 2( p q )p q dd ]
 (2-11) 

variance due to the additive effect at locus B 

 
= − − + − − − −

+ − −

a2 2 2 2 2 2 2 1 1 1 1 2 2

2

1 1 1 1 2 2

V 2 p q [ a ( p q )d ( p q )aa ( p q )( p q )da

2 p q ad 2 p q ( p q )dd ]
 (2-12) 

variance due to the dominant effect at locus A 

 = − − +2 2 2

d 1 1 1 1 2 2 2 2V 4 p q [ d ( p q )da 2 p q dd ]  (2-13) 

variance due to the dominant effect at locus B 

 = − − +2 2 2

d 1 2 2 2 1 1 1 1V 4 p q [ d ( p q )ad 2 p q dd ]  (2-14) 

variance due to the interaction of additive effects at the two loci 

 = − − − − + − − 2

aa 1 1 2 2 2 2 1 1 1 1 2 2V 4 p q p q [ aa ( p q )ad ( p q )da ( p q )( p q )dd ] (2-15) 

variance due to the interaction between the additive effect at locus A and dominant 

effect at locus B 

 = − −2 2 2

ad 1 1 2 2 1 1V 8 p q p q [ ad ( p q )dd ]  (2-16) 

variance due to the interaction between the dominant effect at locus A and additive 

effect at locus B 
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 = − −2 2 2

da 1 1 2 2 2 2V 8 p q p q [ da ( p q )dd ]  (2-17) 

and variance due to the interaction between the dominant effects at the two loci 

(Tiwari and Elston 1997) 

 = 2 2 2 2 2

dd 1 1 2 2V 16 p q p q dd  (2-18). 

For two unlinked trait loci, the covariance of trait values between two siblings 

is given by 

 = + + + + + + + +a1 a2 d 1 d1 aa ad da dd
1 2 S

V V V V V V V V
Cov( X , X ) V

2 2 4 4 4 8 8 16
 (2-19) 

Furthermore, if we assume equal variance for the trait values in a sibpair, then 

we can obtain the population correlation by  

 1 2C ov( X , X )
ρ

Var( X )
=  (2-20) 

 

2.2 Extension of Haseman-Elston Method to Analysis of 

Two Marker Loci 

Let xs be the observed trait values for the s
th

 sibling in a sibpair (s = 1, 2), YD = 

(x1 − x2)
2 be the squared trait difference, hij be the probability, conditional on all the 

marker information available in the family, that two siblings share i marker alleles 

IBD at marker locus j, and πj be the expected proportion of genes IBD at the marker 

locus j, then 
j 1 j 2 j

1
π̂ h h

2
= +  (i = 0, 1, 2; j = 1, 2), where 

jπ̂  takes the values of 0, ½, 

or 1 if the marker is fully informative but can take intermediate values otherwise. Let 
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θj denote the recombination fraction between the quantitative trait locus j and the 

marker linked to it, and define 2 2

j j jψ θ (1 θ )= + − .  

Tiwari and Elston (1997) derived the expectation of the squared difference 

given the bi-allelic two-locus epistatic model 

 
D 1 2 11 12

1 1 2 2 1 11 2 12 1 1 2 2 1 12 3 11 2 4 11 12

ˆ ˆE(Y | π ,π ,h ,h )

ˆ ˆ ˆ ˆ ˆ ˆα β π β π δ h δ h γ π π γ π h γ h π γ h h

=

+ + + + + + + +
 (2-21) 

where  

= − + + − + + − +2

1 1 a1 d 1 2 aa da 2 ad ddβ 2( 1 2ψ )[V V ( 1 ψ )(V V ) ( 1 ψ ) (V V )]

 

= − + + − + + − +2

2 2 a2 d 2 1 aa ad 1 da ddβ 2( 1 2ψ )[V V ( 1 ψ )(V V ) ( 1 ψ ) (V V )]  

= − + − + −2 2

1 1 d 1 2 da 2 ddδ ( 1 2ψ ) [V ( 1 ψ )V ( 1 ψ ) V ]  

= − + − + −2 2

2 2 d 2 1 ad 1 ddδ ( 1 2ψ ) [V ( 1 ψ )V ( 1 ψ ) V ]  

= − − − + + +1 1 2 aa ad da ddγ 2(1 2ψ )(1 2ψ )[V V V V ]  

= − − − +2

2 1 2 ad ddγ ( 1 2ψ )( 1 2ψ ) [V V ]  

= − − − +2

3 1 2 da ddγ ( 1 2ψ ) ( 1 2ψ )[V V ]  

= − − −2 2

4 1 2 dd

1
γ (1 2ψ ) (1 2ψ ) V

2

 

 

If all of the dominance and epistatic variances are negligible, then all 

coefficients but βj would be close to zero, and βj would reduce to  

− = − − 2

j A j G2(1 2ψ )V 2(1 2θ ) V   

as given in the original Haseman and Elston regression (1972). 

If the variances due to any dominance effect at either loci (Vd1, Vd2, Vad, Vda, 

and Vdd) are negligible, then all of coefficients of the terms that involve h1j, namely δ1 

δ2 γ2 γ3 and γ4, would be zero. That is the epistatic model would reduce to  

 D 1 2 1 1 2 2 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆE(Y |π ,π ) α β π β π γ π π= + + +  (2-22) 

where  
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= − + −

= − + −

= − − −

1 1 a1 2 aa

2 2 a2 1 aa

1 1 2 aa

β 2(1 2ψ )[V (1 ψ )V ]

β 2(1 2ψ )[V (1 ψ )V ]

γ 2(1 2ψ )( 1 2ψ )V

 

Note that ψj = 1 if and only if θj = 0 (the marker locus and the trait locus are in 

complete linkage), and ψj = 0 if and only if θj = ½ (the marker locus is unlinked to the 

trait locus). So if both marker loci are unlinked to the trait loci, then all of these 

coefficients would be zero. 

Also note that γ1 can be rewritten as − − −2 2

1 2 I2( 1 2θ ) ( 1 2θ ) V  where VI is total 

two-locus epistatic variance. Therefore a one-sided t test for this negative slope is a 

combined test for θ1 = ½, θ2 = ½, and VI = 0.  

It is also important to note that the coefficient of the IBD proportion at a 

single locus (βj) consists of not only that variance arising from the main effects 

(additive and dominance) at that locus but also a proportion of variance attributable to 

epistatic effects when the marker locus is not in complete linkage with the trait locus. 

Therefore it is possible for the analysis of a single locus to detect QTL with epistasis 

effects even without explicitly modeling them. If that is the case then the additional 

power gain by fitting a two-locus model would be limited. (Purcell and Sham 2004) 

In this paper we regress the squared trait difference on the IBD proportions at 

two marker loci and their product ( 1 2
ˆ ˆπ π ). If a significant negative t value 

corresponding to the estimated regression coefficient 1γ̂  is obtained then the 

following combined null hypothesis is rejected: 

 0 1 2 I
1 1H : θ =  θ =  and  V = 0

2 2
 (2-23) 
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We also conduct a set of single regressions with only one IBD proportion in 

the model ( 1π̂ or 2π̂ ) to see how well the single-locus analysis performs in detecting 

epistatic genes. 

 

2.3 Extension of Sham-Purcell Method to Analysis of Two 

Marker Loci 

In addition to the original Haseman-Elston method, we also want to extend the 

modified regression method proposed by Sham and Purcell (2001). Specifically we 

regress the variable defined in (1-2) on the IBD proportions at two marker loci and 

their product; i.e. 

 S D
SP 1 1 2 2 1 1 22 2

Y Y
ˆ ˆ ˆ ˆY α β π β π γ π π ε

(1 ρ ) (1 ρ )
≡ − = + + + +

+ −
 

 

where YS is the squared sum of trait values in a sibpair and YD is the squared 

trait difference. The null hypothesis is the same as defined in (2-23). However, a 

significant positive t value is needed to reject the null hypothesis. A set of single-

locus regression analyses is also performed. 

As explained in Section 1.4, population trait parameters, such as mean, 

variance, and correlation, usually are unknown and need to be estimated. Therefore 

we conduct our regression using two sets of YSP, one with actual parameter values and 

the other with estimated parameter values. However, since this method is robust to 

trait parameter misspecification, we do not expect the power to be reduced 

substantially by using estimated values. 
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2.4 Conditional Maximum Likelihood Estimates (CMLEs) 

of Trait Parameter Values 

As explained in Section 1.4 we need to adjust our estimation for trait 

parameters in selected samples. In this section we derive the maximum likelihood 

estimators of the trait parameters conditional on the exact trait values of the probands 

(CMLEs).  

Without loss of generality, let X1 be the trait value of the proband and X2 be 

the trait value of the proband’s sibling. Assume that X1 and X2 follow a bivariate 

normal distribution with equal means and equal variances: 

2 2

1

2 2
2

X µ σ ρσ
~ N ,

X µ ρσ σ

     
             

 

where µ, σ
2
, and ρ are the overall trait mean, variance, and sibpair correlation in the 

population respectively, as defined in Section 2.1. 

The conditional distribution of the sibling’s trait value, X2, given the 

proband’s trait value, X1, is then a normal distribution with mean 1
µ ρ( x µ )+ − and 

variance 
2 2σ (1 ρ )− , i.e. 

2 2

2 1 1X | X N( µ ρ( x µ ),σ ( 1 ρ ))+ − −∼  

If we collect trait values from a sample of n independent (i.e. unrelated) 

sibpairs then the conditional likelihood is given by 

 

n 2
n 2i 1in 2 2 i 12

C 2 2

[ x ρx µ(1 ρ )]
L ( 2π ) [ σ (1 ρ )] exp{ }

2σ (1 ρ )

−− =
− − −

= − −
−

∑
 (2-24) 
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and its natural logarithm form is simply 

 

n 2

2i 1i2 2 i 1
C 2 2

[ x ρx µ(1 ρ )]n
ln L nln( 2π ) ln[ σ (1 ρ )]

2 2σ (1 ρ )

=
− − −

= − − − −
−

∑
 (2-25) 

To obtain the CMLEs we take the partial derivatives of the logarithm of the 

conditional likelihood function with respect to µ, σ
2
, and ρ and solve the derivative 

equations for µ, σ
2
, and ρ respectively. The equations to be solved are thus 

 

n

2i 1iC i 1

2

ˆ ˆˆ[ x ρx µ(1 ρ )]ln L
0

ˆˆµ σ (1 ρ )

=
− − −∂

= =
∂ +

∑
 (2-26) 

 

n2 2 2

2i 1iC i 1

2 4 2

ˆ ˆ ˆˆ ˆnσ (1 ρ ) [ x ρx µ(1 ρ )]ln L
0

ˆˆσ 2σ (1 ρ )

=
− − + − − −∂

= =
∂ −

∑
 (2-27) 

 
2 2 2

1i 2i 1i 2iC

2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ(1 ρ ) ( x µ )( x µ ) ρ[ ( x µ ) ( x µ ) ]ˆln L nρ
0

ˆ ˆˆρ 1 ρ σ (1 ρ )

+ − − − − + −∂
= + =

∂ − −

∑ ∑ ∑
(2-28) 

 

Here µ̂ , 2σ̂ , and ρ̂ denote the CMLEs of µ, σ2, and ρ respectively. 

From Equations (2-26) and (2-27) we can get the close-form solutions for the 

CMLE of µ and σ
2
: 

2 1

n 2

2i 1i2 i 1

2

ˆx ρx
µ̂

ˆ1 ρ

ˆ ˆ[ x ρx µ(1 ρ )]
σ̂

ˆn(1 ρ )

=

−
=

−

− − −
=

−

∑
 

However there is no close-form solution for the CMLE of ρ. We therefore have to use 

numerical method to obtain the CMLEs of all three parameters. 

In this paper we used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

minimization algorithm executed in one of the GSL functions. “This is a quasi-

Newton method which builds up an approximation to the second derivatives of the 

function using the difference between successive gradient vectors. By combining the 
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first and second derivatives the algorithm is able to take Newton-type steps towards 

the function minimum assuming quadratic behavior in that region.” (cf. GSL 1.12 

reference manual for more information) We inverted the sign of the log likelihood 

function to perform the maximization. 

 

2.5 Types of Marker Loci Evaluated 

In this paper we are interested in the power of the regression-based linkage 

analysis methods in the presence of epistasis when the marker loci are in complete 

linkage with the trait loci, i.e. zero recombination fractions between marker and trait 

loci. Three types of marker loci are studied in this paper: (1) Marker loci (bi-allelic) 

that are in fact the trait loci themselves. (2) Marker loci that are bi-allelic and in 

complete linkage with the trait loci. Examples of such loci are the single nucleotide 

polymorphisms (SNPs). (3) Marker loci that are multi-allelic and in complete linkage 

with the trait loci. 

Since the IBD number can be more easily deduced when the markers are 

highly variable than when they are bi-allelic, we expect the third type of markers 

would result in higher variability in the explanatory variable and therefore has higher 

power than that of the second type. The first type of markers intuitively is expected to 

result in the highest power of all. 
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2.6 Null Distribution of Test Statistic and Power 

Calculation 

Both the Haseman-Elston method and the Sham-Purcell method use the t 

statistic to test for a nonzero regression coefficient for π̂ ,  the estimated expected 

IBD proportion, and therefore test for linkage. However, if there are major QTLs, the 

distribution of the quantitative trait value is a mixture of normal distributions. The 

genetic modeling framework described in Section 2.1 is an example. The dependent 

variables used result in residuals that are not normally distributed. Thus we are not 

sure if the test statistic still has an asymptotically t distribution or standard normal 

distribution in large sample. One possible alternative would be to use a permutation 

test to obtain p-value for the observed test statistic value and test for linkage. The 

rationale is as follows:  

If the null hypothesis is true, a marker locus is not linked with a QTL, the IBD 

proportion at the marker loci would not be associated with the trait value. Then if we 

permute the order of the trait values, keep the order of the genotypes at the marker 

loci, and perform linkage analysis, then any significant linkage result should be 

obtained by chance. Hence we can obtain an empirical null distribution of the test 

statistic by sampling from the possible permutations and repeating the analysis on 

these permuted data. The empirical null distribution then can be used to estimate the 

empirical p-value for the test statistic value obtained from the original data. Details 

can be found in Section 3.2. 

Wan et al. (1997) used permutation tests on the Haseman-Elston method 

under single-locus model to test for linkage. The power values they obtained by using 
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the conventional t-test were not significantly different than those obtained by using 

permutation test. In another words, the null distribution of the t statistic in Haseman-

Elston method is well approximated by t distribution, or standard normal distribution 

in large samples.  

We conjecture that the distribution of the test statistic used in this study, t, 

under both the null and alternative hypotheses, is characterized by normal distribution 

especially in large samples. Specifically under the null hypothesis of no linkage we 

expect to observe the standard normal distribution. Under the alternative hypothesis it 

is expected to approximate the normal distribution with a non-zero mean and unit 

standard deviation. We will demonstrate in the Results Chapter that our conjectures 

are correct under the two-locus epistatic model. 

As illustrated in the following figure, once the alternative mean is known and 

the type I error rate, or significance level, is specified, one can readily calculate the 

expected power. Therefore instead of reporting power under a given significance 

level, we based most of our power analyses on the mean of the observed t statistic 

values in this paper. 
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Chapter 3 Simulation 

3.1 Data Generation 

We conducted a simulation study to compare the performance of the 

Haseman-Elston methods for sibpair data. Since the genotypes of the sibpairs are 

related, we also generated their parents’ genotypes to ensure this relationship. Hence 

the sampling unit in our paper is an independent nuclear family with both parents and 

a pair of siblings (i.e., a sibpair). The simulation procedure for one sampling unit, a 

nuclear family, is shown in Figure 3-1. 

The genotypes of all family members at two unlinked, bi-allelic, pleiotropic, 

and epistatic trait loci, A and B, were first simulated. The quantitative trait values of 

the sibpairs were then generated based on the simulated genotypes at trait loci. 

In addition to the trait loci we also generated two markers in linkage with each 

trait gene, where one is bi-allelic and the other is highly polymorphic. The bi-allelic 

marker linked with locus A was denoted as C and the polymorphic one was denoted 

as M. Their counterparts that linked with locus B were denoted as D and N 

respectively. We simulated a situation where there is no allelic association between 

the trait and marker loci, i.e. they are in linkage equilibrium, which means the 
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frequency of a gamete having haplotype, say AiCj, is equal to the product of the two 

allele frequencies (hij = piqj). 

We will explain the specific procedure for generating genotypes and trait 

values in Section 3.1.1 and 3.1.2 respectively and other details about the simulation in 

Section 3.3. The described procedure were repeated for nf (number of families in a 

sample, or sample size) multiplied by ns (number of simulations or replications) times 

to obtain the final dataset. 

 

Notation: loci A and B are quantitative trait loci (QTLs); loci C and D are bi-allelic markers linked to A 

and B respectively; loci M and N are multi-allelic markers linked to A and B respectively. 

 

3.1.1 Generating Genotypes at Trait and Marker loci 

The exact procedure varies a little depending on the sampling method. The 

three sampling methods considered in this paper are: (1) random sampling; (2) trait 

Part 1 Generate Genotypes for Parents and Sibpair 

θ θ 

A 

A 

C 

C 

M 

M 

θ θ 

B 

B 

N 

N 

D 

D 

Trait Values 

Generate sibpair’s genotypes 

at trait and marker loci 

Generate parents’ genotypes 

at trait and marker loci 

Part 2 Generate Trait Values for Sibpair 

Figure 3-1 Flowchart of Simulation Procedure for One Nuclear Family 



CHAPTER 3. SIMULATION 

 

 

truncated sampling, in which each family was selected through a proband that has 

an abnormally high quantitative trait value; (3) disease selected sampling, in which 

each family was selected through a disease affected proband.  

Generating Random Samples 

First we generated both parents’ genotypes at the trait loci and the marker loci 

as independent events since we assume linkage equilibrium. Each genotype can be 

considered as two independent parts: allele at paternal gamete and allele at maternal 

gamete. Therefore all the alleles can be assigned according to their population allele 

frequencies. For example to obtain the father’s genotype at trait locus A, we first 

generated a uniformly distributed random number, say w, in the range [0, 1). If 0 ≤ w 

< p1 then allele A1 was assigned. Otherwise p1 ≤ w < p1 + q1 = 1, then allele A2 was 

assigned. This random-number-based assignment method was used throughout this 

paper. 

We assume that markers M and N are highly polymorphic. That is, there could 

be a few dozen or even a few hundreds of different form of alleles at these loci. 

Unrelated individuals, such as the parents, are very unlikely to have the same alleles. 

Therefore I used M1 to denote the father’s allele at locus M in his paternal gamete 

regardless of the actual form of the allele, M3 to denote the father’s allele at locus M 

in his maternal gamete, M2 and M4 to denote the two analogous maternal alleles. The 

alleles N1, N2, N3, and N4 were defined in the analogous way for alleles at marker 

locus N.  

Then we generated the sibpair’s haploid genotypes, or haplotypes, based on 

their parents’ genotypes, first at the trait loci and then at the marker loci.  
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For example, to obtain the paternal allele at trait locus A, the allele inherited 

from the father, we referred to the father’s simulated genotype A(f)A(m), where A(f) 

denoted his paternal allele which can take the form of either A1 or A2 and A(m) denoted 

his maternal allele. The offspring can inherit either one of the alleles with equal 

probabilities.  

Once we randomly picked an allele at trait locus, the offspring would get the 

alleles in that gamete at the marker loci linked to the trait locus unless crossover 

occurred (see Section 1.3). For example if the offspring’s paternal allele was 

generated to be A(m), then s/he would obtain C(m) at locus C if the gamete s/he 

received was non-recombinant and C(f) if the gamete was recombinant, with 

probabilities 1 − θ and θ respectively. 

However if we cannot deduce whether the proband’s allele at the trait locus 

was inherited from the parent’s paternal or maternal gamete, i.e. if the parent’s 

genotype at trait locus was homozygous, then we assigned either one of the two 

alleles at the linked marker locus with equal probability. 

Generating Trait Truncated Samples 

The trait truncated samples were generated similar to the random samples 

except that only families with at least one offspring’s simulated trait value greater 

than a certain value were kept in the dataset. We kept simulating families until we 

obtained nf such families in each replicate. 

The threshold value used to select the trait truncated samples is set to be 1.645, 

the 95
th

 percentile for the standard normal distribution, or 1.645 standard deviation 

(SD) away from the population mean.  
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Generating Disease Selected Samples 

The order of simulation for disease selected samples differed from that of the 

random samples. We first generated the two-locus genotype at the trait/disease genes 

for the disease proband. We then generated the parents’ genotypes at the trait loci 

based on the proband’s genotype. The parents’ genotypes at marker loci were 

simulated as independent events as in the random samples, as were the genotypes for 

the proband’s sibling. Finally, based on the recombination fraction, the parents’ 

genotypes at the trait and marker loci, and the proband’s genotypes at the trait loci, 

we obtained the proband’s genotypes at that marker loci. 

The two-locus genotype for the proband at the trait loci was generated 

conditional on the disease status being “affected”. The conditional probability, 

Pr(GAB|D), was given in Equation (2-7) in Section 2.1.  

Based on the procedure described for random samples we can easily deduce 

the conditional probabilities of both parents’ genotypes at each trait locus (denoted as 

M) given proband genotypes. The conditional probabilities at locus A are tabulated in 

Table 3-1. The conditional probabilities at locus B can be done analogously with 

allele frequencies p2 and q2 replacing p1 and q1 in the table. 

 

Table 3-1 The Probability of Parents’ Genotype at Locus A Given Proband’s 

Genotype 

Pr(M | GA = A1A1) 

GM 

GF 

A1A1 A1A2 A2A2 

A1A1 p1
2 

p1q1 0 

A1A2 p1q1 q1
2
 0 

A2A2 0 0 0 
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Pr(M | GA = A1A2) 

GM 

GF 

A1A1 A1A2 A2A2 

A1A1 0 ½ p1
2 ½ p1q1 

A1A2 ½ p1
2
  p1q1 ½ q1

2
 

A2A2 ½ p1q1 ½ q1
2
 0 

Pr(M | GA = A2A2) 

GM 

GF 

A1A1 A1A2 A2A2 

A1A1 0
 

0 0 

A1A2 0  p1
2 p1q1 

A2A2 0  p1q1 q1
2
 

 

Once we generated the parents’ haplotypes at the trait and marker loci, we can 

generate the sibling’s haplotype as described earlier with the given recombination 

fractions between two loci.  

For the proband, since we had generated his/her genotype at trait loci, we 

would generate his/her genotype at marker loci as described for random samples. 

 

Calculating IBD proportions 

Once we generated all the genotypes, we could calculate the proportion of 

alleles shared identical by descent (IBD), or IBD proportions, at the trait and marker 

loci. 

Since the four alleles at each polymorphic marker locus can be distinguished 

from each other, the number of alleles shared IBD in a sibpair can be obtained by 

simply counting the matching alleles. The IBD proportion at these markers (denoted 

as πM and πN) then can be obtained by dividing the IBD number by 2. 
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However, since the IBD proportion cannot be deduced at a bi-allelic locus 

directly, the estimated expected values had to be calculated based on the given 

parents’ genotypes (or the mating type) and the given sibpair’s genotypes (or the 

sibpair type). The estimated value for π was then calculated as  

 ˆ  = E( ) = 0 * Pr(  = 0) + 0.5 * Pr(  = 0.5) + 1 * Pr(  =1)π π π π π  (3-1)   

In this paper the observable IBD proportion for polymorphic marker and the 

expected value for bi-allelic locus are used synonymously. 

Since the trait locus is bi-allelic, there are four types of mating for the parents. 

Analogously, there were four types of sibpairs. 

I. Both parents were homozygous at the trait locus, and the parents’ genotypes 

were the same: {11, 11} or {22, 22}; 

II. Both parents were homozygous at the trait locus, but the parents’ genotypes 

were different: {11, 22}; 

III. Both parents were heterozygous at the trait locus: {12, 12}; 

IV. One parent was heterozygous and the other was homozygous: {12, 11} or {12, 

22}. 

Given the parents’ and the sibpair’s genotypes, the probability of sibpair 

sharing a specific number of alleles IBD and the expected IBD proportion then can be 

unequivocally calculated using Table 3-2 below. The estimated IBD proportion at a 

bi-allelic locus can take either one of the five values (0, 0.25, 0.5, 0.75, or 1). Note 

that only heterozygous parents result in variability in the expected IBD proportion. 
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Table 3-2 Probability and Expectation of the IBD Proportion Based on the Mating 

and the Sibpair Type 

Parent’s 

Genotypes 

(Mating 

Type) 

Sibpair’s 

Genotypes 

(Sibpair 

Type) 

Pr(π= 0) Pr(π= 0.5) Pr(π= 1) π̂  

I. {11, 11} 

or {22, 22} 

I. {11, 11} or 

{22, 22} 
0.25 0.5 0.25 0.5 

II. {11, 22} III.{12, 12} 0.25 0.5 0.25 0.5 

III. {12, 12} 

I. {11, 11} or 

{22,22} 
0 0 1 1 

II. {11, 22} 1 0 0 0 

III. {12, 12} 0.5 0 0.5 0.5 

IV. {12, 11} 

or {12, 22} 
0 1 0 0.5 

IV. {12, 11} 

or {12, 22} 

I. {11, 11} or 

{22, 22}  
0 0.5 0.5 0.75 

III. {12, 12} 0 0.5 0.5 0.75 

IV. {12, 11} 

or {12, 22} 
0.5 0.5 0 0.25 

 

3.1.2 Generating Quantitative Trait Values 

The procedure for generating the sibpair’s quantitative trait values is the same 

regardless of the sampling scheme. The genetic model framework described in 

Section 2.1 was used throughout this paper. Specifically the trait value was generated 

from one fixed genetic effect and two random environmental (including polygenic) 

effects. A fixed value µij was assigned if the simulated two-locus genotype of the 

offspring was gij, i.e. having i copies of A1 allele and j copies of B1 allele (i, j = 0, 1, 

2). A random number drawn from the normal distribution with mean zero and shared 

residual variance 2

sσ  was assigned to both siblings. Two different random numbers 

were assigned to the siblings, both of which follow normal distribution with mean 
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zero and non-shared residual variance 2

nsσ . The summation of these three parts 

became the trait value of an offspring, X.  

The actual mean, the variance, and the correlation of the quantitative trait 

values in the population can be calculated using Equations (2-8) through (2-20) 

defined in Section 2.1. The population mean and variance then can be used to 

standardize the trait values 

2

X µ
Z

σ

−
=  

The dependent variables in regression, namely squared difference in original 

Haseman-Elston method, YHE and the one proposed by Sham and Purcell, YSP, then 

can be calculated as follow 

 = − 2

HE 1 2Y ( Z Z )  (3-2) 

 
2 2

1 2 1 2
SP 2 2

( Z Z ) ( Z Z )
Y

(1 ρ ) ( 1 ρ )

+ −
= −

+ −
 (3-3) 

where Zi is the standardized trait value of i
th

 sibling in a sibpair (i = 1, 2). This order 

is of no importance for random samples. For convenience we called the proband the 

first sibling and the other offspring the second sibling in trait truncated and disease 

selected samples.  

As explained in Section 1.4 we may not know the population trait parameter 

values. Therefore we also calculated 
SPY%  based on CMLEs defined in Section 2.4 

 
2 2

1 2 1 2
SP 2 2

( Z Z ) ( Z Z )
Y

ˆ ˆ(1 ρ ) ( 1 ρ )

+ −
= −

+ −

% % % %
%  (3-4) 

where  
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 i
i

2

ˆX µ
Z

σ̂

−
=%  (i = 1, 2). 

Here µ̂ , 2σ̂ , and ρ̂ are the CMLEs obtained by numerically solving Equations (2-26) 

through (2-28) explained in Section 2.4. 

 

3.2 Permutation Tests 

Since we only simulated data under the alternative hypothesis that the marker 

loci were closely linked to the epistatic trait loci, we used a permutation test to verify 

indirectly the distributional assumption about the test statistic under the null 

hypothesis.  

Specifically, for each replicate, we kept the order of the IBD proportions at 

the marker loci and randomly shuffled the trait values between families. Then 

Haseman-Elston and Sham-Purcell regressions were performed on the permuted data 

and the t statistic value was recorded. For each replicate, 1000 permutations were 

done. Therefore, for each t value obtained from the original dataset, there were 1000 

corresponding t values obtained from the permuted dataset. These “permuted t values” 

were then used as the empirical null distribution to obtain the empirical p-value for 

the original t value in this replicate.  

The empirical p-value was calculated as the percentage of permuted t values at 

least as extreme as the original t value. For the Haseman-Elston method, we test for a 

negative regression coefficient; i.e., lower tail test, “as extreme as” was defined to be 

“smaller”. For Sham-Purcell method we test for a positive regression coefficient; i.e., 

upper tail test, “as extreme as” was then defined to be “larger”. 
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3.3 Study Design and Simulation Settings 

Now that we have introduced our analysis methods and simulation procedures, 

we can summarize all the factors involved in our study design and present the specific 

settings and other details of the simulation.  

The following seven factors are modeled to affect the statistical power to 

detect linkage: [1] Epistatic Model (expected mean values given two-locus genotype) 

(M) [2] Minor Allele Frequency (P = 0.05, 0.10, 0.15) [3] Regression-Based Linkage 

Method (R = he: original Haseman-Elston, sp_tru: Sham-Purcell modification with 

actual trait parameter values, sp_est: with estimated parameter values) [4] Type of 

Analysis used to identify QTL (A = s: single-locus analysis, i: two-locus interaction 

analysis) [5] Type of Markers (L = t: trait gene, b: bi-allelic marker, m: multi-allelic 

marker) [6] Sampling Method (S = d: disease selected sampling, t: trait truncated 

sampling, r: random sampling) [7] Sample Size (N = 250, 500, 1000). Noted that 

factors R and L shared common samples. 

All of my simulations were generated under one genetic modeling framework 

described in the Section 2.1. By changing µij, the expected trait value given two-locus 

genotype being gij, different genetic models can be tested. Six models were 

considered in this paper. Specification of these models is shown in Table 3-3. Each 

matrix corresponds to the nine genotypes shown in Table 2-3 in Section 2.1. Note that 

except for Model 2 and Model 4 (in italic) all other models are symmetric, i.e., the 

effects of trait locus A and B are equal. In Model 2 and Model 4 the genetic effect 
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(additive, dominance, and epistatic) of locus A is designed to be greater than that of 

locus B. 

Table 3-3 Specification of Expected Trait Values Before Standardization 

Model 1 2 3 4 5 6 

µij 1  1  0 

1  1  0 

0  0  0 

1  1  0 

0  0  0 

0  0  0 

1  0  0 

0  0  0 

0  0  0 

1  1  1 

1  0  0 

0  0  0 

1  1  0 

1  0  0 

0  0  0 

0  1  1 

1  0  0 

1  0  0 

 

Like many other QTL studies, we focus on this set of models with limited trait 

mean values, namely 0 or 1, to allow easy comparison with binary disease models. 

There are 2
9
 = 512 possible two-locus binary models in total, 50 of which are unique 

(Li and Reich 2000). Here we considered the six that have occurred in a biological 

examples (cf. Neuman and Rice 1992). 

In Model 1 (dominant-dominant), a dominant minor allele must be present at 

both loci in order to increase the trait value. A binary trait example for this 

epistatic model would be the production of chlorophyll in corn plants.  

In Model 2 (recessive-dominant), the minor allele is recessive at locus A and 

dominant at locus B. The plumage color of chickens could be modeled by this 

epistasis.  

In Model 3 (recessive-recessive), a recessive minor allele must be present at 

both loci. This model can be used to explore the prelingual deafness.  

In Model 4, one locus has modifying effect on the other locus. All A1A1 

genotypes are at risk. However, the A1A2 genotype is only at risk only if B1B1 

genotype is present. 
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In Model 5, at least 3 minor alleles in total at two loci have to present to 

increase the trait value. This model can be used as a model for the kernel color 

in wheat. The trait takes value of 1 if kernel color is darkest red. 

In Model 6, the minor alleles at loci A and B are recessive. The epistasis is 

manifested by having the genotype A1A1B1B1 result in the same mean trait 

value as those without the minor allele. This is the two-locus epistasis model 

which has been proposed for handedness. 

As mentioned in Section 2.1, the two QTLs were also modeled to determine 

the status of a disease related to the trait. We assume that the baseline penetrance for 

the disease equals zero and that the penetrance increases linearly at the rate of 0.2 per 

disease susceptible allele, so that the disease penetrances of the nine genotypes at 

these two loci range from 0 to 0.8. The minor allele frequencies at four bi-allelic loci 

A through D (A and B being trait loci and C and D being loci linked to A and B 

respectively) were all set to be equal to a single value p and took values of 0.05, 0.1, 

or 0.15. These particular values were chosen to ensure that the disease prevalence is 

less than 15%, specifically 4% (when p = 0.05), 8% (when p = 0.1), or 12% (when p 

= 0.15). 

The population mean, variance, and correlation between siblings of the 

quantitative trait then can be calculated using Equations (2-8) through (2-20) defined 

in Section 2.1, and were used to standardize the trait value. Furthermore the 

proportion of the total trait variance accounted for by the two QTLs combined, the 

shared residual effect, and the non-shared residual effect was the same: 1:2:7 in all 

cases.  
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The regression-based linkage methods, the types of analysis, and the types of 

markers were explained in Chapter 2. The sampling methods were explained in 

Section 1.2 and in Section 3.1. 

For each of the three sampling methods, I generated 1000 simulations or 

replicates. Each batch of 1000 simulation consists of a sample of 250, 500, or 1000 

independent nuclear families (sample size N = 250, 500, 1000).  

The data generation and the Haseman-Elston regression were done using a C 

program that I wrote. Some functions in the GNU Scientific Library (GSL) 1.12 were 

used as well. The random number generator MT19937 by Makoto Matsumoto and 

Takuji Nishimura (described in the GSL reference manual) was used. The analysis 

was performed mostly in SAS and partly in R. 
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Chapter 4 Results 

4.1 Null and Alternative Distributions of the Test Statistic 

Before we conducted our power analyses, we sought to verify our conjectures 

stated in Section 2.6 about the distribution of the t statistic. First we will present the 

results from the permutation test described in Section 3.2.  

Specifically, we want to compare the p-values obtained by using t test 

(theoretical p-values) with the p-values obtained by using permutation tests (empirical 

p-values). The former assumes that the null distribution of the test statistic is standard 

normal. The latter requires no distributional assumptions about the test statistic. As an 

example, we show the results in Figure 4-1 with the following setting: number of 

simulations = 1000, number of permutations (only for the empirical p-values) = 1000, 

number of sibpairs per simulation = 500, epistatic model M = 3, minor allele 

frequency P = 0.05, sampling method S = trait truncated sampling, regression-based 

linkage method R = Sham-Purcell method with estimated trait parameter values, type 

of marker loci = trait gene itself, and type of analysis = two-locus interaction.  

We can see from the figure that the scatterplot of the p-values obtained by 

using t test is almost identical to that of the empirical p-values. The two-sample t test 
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result also suggests that the difference is not significant (p-value = 0.9581). This 

conclusion also applied to other settings (results not shown). 

Figure 4-1 Scatterplot of Theoretical p-values obtained by using t test vs. Empirical p-

values obtained by using permutation test 

 

Our results are consistent with the findings of Wan et al. (1997). They also 

concluded that the t test approximates the permutation test very well. Further we 

considered a number of complex two-locus epistatic models in this paper. These 

results thus indirectly verified our conjecture about the distribution of the test statistic 

under the null hypothesis of no linkage. 

To demonstrate that our conjecture about the alternative distribution of the test 

statistic is also correct, we conducted tests of normality on the t values obtained by 

using genotypic and quantitative trait data generated under the alternative hypothesis. 

Because, for the seven factors considered in this paper, there are over a thousand 

combinations. We show here the results for only one situation. The general 

conclusion applied for the rest of the cases (data not shown). 
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The results from all three normality tests, the Kolmogorow-Smirnow test, the 

Cramer-von Mises test, and the Anderson-Darling test (performed by UNIVARIATE 

Procedure in SAS) suggested that the normal distribution fits the observed t values 

fairly well (all p-values > 0.15). We can also see this from the histogram shown in 

Figure 4-2. 

The mean and standard deviation of the t values in this case are 6.14 and 1.58 

respectively. The standard deviation is a little bigger than what we conjectured in 

Section 2.6. However, if we consider all of the cases except for Epistatic Model 3 

with Minor Allele Frequency equals to 0.05
1
, then we can obtain that the median, 

mean, and standard deviation of the standard deviation of t values are 1.01, 1.19, and 

0.51 respectively. Thus a normal distribution with standard deviation of 1 is overall a 

good assumption for our data.  

Figure 4-2 Histogram of t value under Epistatic Model 1 with Minor Allele 

Frequency equals to 0.05, Sample Size equals to 500, and using Trait Loci as Markers, 

Trait Truncated Sampling Method, Sham-Purcell Method, and Two-Locus Interaction 

Analysis 

 

 

                                                 
1
 We exclude this setting because it produced two extreme outliers. 
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4.2 Robustness of the Sham-Purcell Method to Bias in 

Estimates of Trait Parameter Values 

In this paper we used the maximum likelihood method conditional on the 

proband’s trait value, discussed in Section 1.4 and 2.4, to estimate the trait parameter 

values for the Sham-Purcell method. Regardless of how well this method of 

estimation performs, we do not expect it to affect the power of the Sham-Purcell 

method under our two-locus epistatic and pleiotropic model for the large samples 

used in this paper (N ≥ 250).  

As explained in Section 2.6, given constant standard deviation with respect to 

model etc., the shift in the mean of the t statistic values under these alternative 

hypotheses and study designs can be translated to power once the significance level is 

specified. Therefore all power analyses in this chapter focus on the (shifted) mean of 

the t values.  

As an example, we compared the mean of the observed t values using the 

Sham-Purcell method based on estimated parameter values with that observed using 

the Sham-Purcell method based on true parameter values for analyses. We consider 

analyses based on three types of marker locus (L = b: bi-allelic; m: multi-allelic; t: 

trait gene), three sampling schemes (S = d: disease selected sampling; t: trait 

truncated sampling; r: random sampling), and two types of analysis (A = i: two-locus 

interaction; s: single-locus) under the epistatic Model 1 with minor allele frequency 

equals to 0.05, and sample size equals to 500. The results are summarized in Figure 

4-3. 
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Figure 4-3 Mean of t Values Obtained by using the Sham-Purcell Method under 

Epistatic Model 1 when Minor Allele Frequency equals to 0.05 and Sample Size 

equals to 500: Comparison of Results Using Estimates of Parameters with the True 

Parameter Values 

 

Notation: R: Regression-Based Linkage Method (R = est: Sham-Purcell method with estimated 

parameter values; tru: Sham-Purcell method with true parameter values); A: Type of Analysis (A = s: 

single-locus; i: two-locus interaction); S: Sampling Method (S = d: disease selected sampling, t: trait 

truncated sampling, r: random sampling); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait 

gene itself). 

As we can see the mean of the t statistic using the estimated parameter values 

(blue line) almost completely overlaps with the mean obtained using the true 

parameter values in the analysis (red line) regardless of the sampling method (S = d, t, 

r). In another words, using estimated trait parameter values does not affect the power 

of Sham-Purcell method at all even in selected samples (S = d or t).  

In fact this conclusion can be applied to all of the situations examined in this 

paper (results not shown in graph). ANOVA analysis with all seven factors listed in 

Section 3.3 also confirmed this conclusion from visual examination (F = 1.09, df = 1, 

p = 0.30). See detailed SAS output in Appendix A. 

Although we cannot obtain unbiased parameter estimates from selected 

samples (trait truncated samples, t, or disease selected samples, d), the statistical 

power appears to be unaffected in the cases we have considered. 
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4.3 Results for Six Epistatic Models 

Because the underlying genetic model is not a variable we can observe or 

control in real life, we conduct our analysis separately for each of the six models 

studied in this paper. To visualize the relative power under different settings we first 

draw a comparative graph of the mean of t statistic values for each genetic model 

(Figure 4-4 to Figure 4-9). As we explained in Section 2.6, a higher mean of t 

indicates higher statistical power. For ease of visual examination, we only show 

results obtained by using the Sham-Purcell method. The results obtained by using 

Haseman-Elston method were included in the analyses shown later in this chapter. 

Also shown in these figures are some percentages of variance components 

relative to the total two-locus genetic variance (VG) which, as we described in Section 

3.3, accounts for 10% of the total trait variance (VT) in all cases. All of the variance 

components were calculated by using Equations (2-10) through (2-18) defined in 

Section 2.1. The complete list of the percentages can be found in Appendix B. Note 

that the variance components are determined solely by two factors, the epistasis 

model and the minor allele frequency. 

 

4.3.1 Model 1 (dominant-dominant) 

In Model 1 the majority of the genetic variance consists of variance due to the 

interaction of additive effects at the two trait loci (Vaa) especially when the minor 

allele frequencies (P) are small. 
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We can see from Figure 4-4 that for all three sampling methods (S = d: 

disease selected sampling; t: trait truncated sampling; r: random sampling) we have 

six almost monotonically increasing lines as the sample size increases (N/250 = 1, 2, 

4) and as the type of markers changes (L = b: bi-allelic; m: multi-allelic; t: trait gene) 

for the 2 types of analysis (A = i: two-locus interaction; s: single-locus) and the 3 

minor allele frequencies (P/0.05 = 1, 2, 3).  

The effect of using different types of marker is noticeably large. Both bi-

allelic and multi-allelic markers results in a mean t of less than 2 with all but few 

exceptions. This translates to a power lower than 50% at any significance level 

smaller than 0.023, even though these markers are modeled to be in complete linkage 

(i.e. θ = 0) with the trait genes. On the other hand, when we use the trait genes 

themselves, the mean t can soar up to as high as 9, or 100% power, for both selected 

sampling methods. 

In most of the cases under Model 1, the disease selected samples (d) result in 

higher mean t values than those obtained by using the random samples (r), and almost 

the same as those obtained by using the trait truncated samples (t).  

We also notice that the single-locus analysis results in mean of t comparable 

to those using two-locus multiple regression analysis in most of the cases except 

when minor allele frequencies equal to 0.05. 

We can infer from the figure that there are some significant interactions 

between the explanatory factors. Therefore an ANOVA test including all six factors 

and their two-way interactions was conducted to quantify these relations. The 

notation we used for these six factors are: P = Minor Allele Frequencies (0.05; 0.10; 
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0.15); R = Regression Method (he: original Haseman-Elston method; sp_est: Sham-

Purcell method using estimated parameter values); L = Type of markers (b: bi-allelic; 

m: multi-allelic; t: trait gene); A = Type of Analysis (s: single-locus; i: two-locus 

interaction); S = Sampling Method (d: disease selected sampling; t: trait truncated 

sampling; r: random sampling); N = Sample Size (250; 500; 1000). The full output 

can be found in Appendix C.  

Five factors, except for A, type of analysis, have significant main effect 

(p<0.0001). All six factors have significant two-way interactions with at least one 

other factor (p<0.0001). I noted firstly that R, the regression-based linkage method, 

only interacts with L, the type of markers. Secondly L interacts with all five other 

factors and its main effect explains a majority of variance of the mean of t statistic 

values in terms of the total sum of square (43%). Finally all significant factors and 

their two-way interactions have p-value less than 0.0001. 



 

50 

Figure 4-4 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 1 (dominant-dominant) 

 

 

Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 2; 

3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size 

(N/250 = 1; 2; 4). VA: Additive Variance; VI: Two-Locus Epistatic Variance; Vaa: Variance due to interaction of additive effects at two loci. 

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).  
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4.3.2 Model 2 (recessive-dominant) 

In Model 2 the majority of the two-locus genetic variance consists of the 

epistatic variance due to the interaction of additive effect at one locus and dominant 

effect at the other locus (Vad ranges from 50% to 80% of VG). 

Overall we can see that the pattern shown in Figure 4-5 is somewhat similar to 

that in Figure 4-4. There are six almost monotonically increasing lines for each 

sampling method. Use of larger sample size and multi-allelic marker or trait loci 

increases power. Selected samples generally result in a higher mean t value than 

random samples.  

All main effects and two-way interactions are highly significant (p<0.0001) 

except the interaction between type of analysis and sample size (A*N), the interaction 

between type of analysis and regression-based linkage method (A*R), and interaction 

between sample size and minor allele frequency (N*P). 

We also notice that although the total epistasis (VI) also accounts for over 80% 

of the two-locus genetic variance when minor allele frequencies equal 0.05, the mean 

of t values is generally lower than 3 (Figure 4-5) which in turn is much lower than 

what we observed in Figure 4-4. 
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Figure 4-5 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 2 (recessive-dominant) 

 

 

Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 2; 

3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size 

(N/250 = 1; 2; 4). VA: Additive Variance; VI: Two-Locus Epistatic Variance; Vad: Variance due to interaction of additive effect at one locus and dominant effect 

at the other locus. 

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).  
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4.3.3 Model 3 (recessive-recessive) 

In Model 3, the majority of the two-locus genetic variance consists of the 

variance due to the interaction of dominant effects at the two loci (Vdd ranges from 

50% to 80% of VG in the cases considered). 

Although the total epistasis accounts for over 95% of the two-locus genetic 

variance, a great proportion of which is from the interaction between dominant effects 

at the two loci. The regression-based linkage methods have virtually no power at all 

in detecting this type of epistasis. 
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Figure 4-6 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 3 (recessive-recessive) 

 

 

Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 2; 

3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size 

(N/250 = 1; 2; 4). VA: Additive Variance; VI: Two-Locus Epistatic Variance; Vdd: Variance due to interaction of dominant effects at two loci. 

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).   
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4.3.4 Model 4 (one locus has modifying effect on the other) 

In Model 4, the majority of the two-locus genetic variance consists of the 

variance due to the dominant effect at two loci combined (VD ranges from 58% to 

over 80% of VG). 

Unlike Figure 4-4 or Figure 4-5, we can only see three almost monotonically 

increasing lines for each sampling method. 

Since the overall epistasis accounts for less than 15% of VG, i.e., less than 1.5% 

of the total variance of the trait, the two-locus interaction analysis naturally has no 

power in detecting epistasis.  

The single-locus analysis, on the other hand, results in very high mean of t 

statistic values, especially when the minor allele frequencies are low (P = 0.05), even 

though the additive variance is relatively small (less than 10%) in this case. 

All main effects are significant except for factor P, the minor allele frequency. 

Factor P and factor R, the regression-based linkage method, interact with one other.. 

Factor S, the sampling method, and N, the sample size, have significant two-way 

interactions with three other factors. Factors L, the type of markers, and A, the type of 

analysis, have significant two-way interactions with four other factors. See Appendix 

C for details. 
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Figure 4-7 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 4 (one locus has modifying effect on the other) 

 

 

Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 2; 

3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size 

(N/250 = 1; 2; 4). VA: Additive Variance; VD: Dominant Variance; VI: Two-Locus Epistatic Variance.  

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).  
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4.3.5 Model 5 (at least 3 minor alleles in total at two loci) 

In Model 5, the majority of the two-locus genetic variance consists of the 

variance due to the interaction of the additive effect at one locus and the dominant 

effect at the other locus (Vad) and the variance due to the additive effects at two loci 

(Vaa). 

The proportions of Vaa and Vad in this model, are between Model 1, where 

the majority is Vaa, and Model 3, where the majority is Vad. Interestingly the pattern 

of the mean of t values we observed in Figure 4-8 is also close to those in Figure 4-4 

and Figure 4-5. 

Again the six factors have significant main effects and some two-way 

interaction effects on the mean of t statistic values. See Appendix C for details. 
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Figure 4-8 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 5 (at least 3 minor alleles in total at two loci) 

 

 

Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 2; 

3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size 

(N/250 = 1; 2; 4). VA: Additive Variance; VI: Two-Locus Epistatic Variance; Vaa: Variance due to interaction of additive effects at two loci; Vad: Variance due 

to interaction of additive effect at one locus and dominant effect at the other locus.  

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).   
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4.3.6 Model 6 (recessive with no expression for A1A1B1B1) 

In Model 6, the majority of the two-locus genetic variance consists of the 

variance due to the dominant effect at the two loci combined (VD ranges from 70% to 

90% of VG). 

The epistasis, in this model, only accounts for less than 5% of the two-locus 

genetic variance, or less than 0.5% of the total variance of the trait. Thus it is not 

surprising to observe pattern similar to that of Model 4. The two-locus interaction 

analysis virtually has no power, and the single-locus analysis combined with selected 

sampling gives much higher power even though the additive variance is relatively 

small.  
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Figure 4-9 Mean of t Values of Three Sampling Method (d: disease selected sampling, t: trait truncated sampling, r: random sampling) 

under Model 6 (recessive with no expression for A1A1B1B1) 

 

 

 Notation: R: Regression-Based Linkage Method (R = sp_est: Sham-Purcell method with estimated parameter values); P: Minor Allele Frequencies (P/0.05 = 1; 

2; 3); A: Type of Analysis (A = s: single-locus; i: two-locus interaction); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample 

Size (N/250 = 1; 2; 4). VA: Additive Variance; VD: Dominant Variance; VI: Two-Locus Epistatic Variance. 

Note: all variance component values are shown in percentage of the total two-locus genetic variance (VG) which account for 10% of the total variance of the trait 

(VT).  
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4.4 Modeling the Mean of the Test Statistic Values in 

Terms of the Epistatic Variance Component 

Based on the visual examination described in the previous section, we can see 

that all of the factors discussed in this paper affect the power to detect epistatic genes. 

These factors have significant main effects and/or two-way interactions on the mean 

of t values.  

We also noted that the regression-based linkage methods considered in this 

paper have much higher power to detect epistatic variance due to interaction of 

additive effects (Vaa) than to detect epistatic variance due to interaction of dominant 

effects (Vdd). 

In this section, we will try to model the mean of t values obtained by using 

two-locus interaction analysis in terms of the following factors: (1) the epistatic 

variance due to interaction of additive effects, Vaa, (2) the type of markers, L, (3) the 

sampling method, S, (4) the regression-based linkage method, R, and (5) the sample 

size, N.  

The information contained in the two factors, the genetic model, M, and the 

minor allele frequency, P, appears to be represented by the variance component, Vaa. 

Hence in this section the variance component Vaa would be used in lieu of the factors 

M and P to model the mean of t values. 

As we can see from the previous section, the factor L (type of markers studied) 

has highly significant main effect and many significant two-way interactions with 
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other factors. Therefore we decided to fit separate regression lines for three types of 

markers evaluated in this paper.  

We first conduct the ANCOVA (analysis of covariance) including all four 

factors and all of the possible interactions. The epistatic variance component and the 

sample size were treated as quantitative variables, the remaining two factors were 

considered as categorical variables. The results indicated that the four-way and most 

of the three-way interactions are not significant. In the case of the analysis based on 

bi-allele markers, the main effects of Vaa, N, and S, and two-way interactions Vaa*N 

and N*S are significant. For the multi-allelic markers, the main effects of Vaa and N, 

the two-way interactions Vaa*N and Vaa*S, and the three-way interaction Vaa*N*S 

are significant. For the QTLs, the main effects of Vaa and N, and the two-way 

interactions Vaa*N and N*S are significant. We noted that the epistatic variance 

component, the sample size, and their interaction are significant for all three types of 

markers evaluated. We also noticed that the regression-based linkage method and its 

higher order interactions are not a significant factor in all three cases. The 

significance level of 0.10 was used for the above conclusions. Detailed SAS output 

can be found in Appendix D.  

Next we fit a general linear model with only significant main effects and 

interactions to the mean of t values for each type of markers. The regression 

coefficients are summarized in Table 4-1. The detailed SAS output can be found in 

Appendix E.  

By using the fitted general linear models we can obtain the fitted values for 

the mean of t values. Then, if a significance level is specified, we can calculate two 
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types of expected power, one obtained by using the observed mean t (denoted as 

Expected Power), another obtained by using the fitted mean t (denoted as Predicted 

Power). These two types of expected power then can be compared with the power 

observed from our simulation (denoted as Observed Power). Specifically, the 

observed power is obtained by counting, out of 1000 replications, the number of 

significant t values and then dividing by 1000.  

Table 4-1 Estimates of Regression Parameters in the fitted General Linear Models of 

the Mean of t Values for Three Types of Markers
2
 

L S Intercept Vaa N
†
 Vaa*N

†
 

t d 0.1276 2.2297 0.2476 0.9650 

t t 0.1276 2.2297 0.4056 0.9650 

t r 0.1276 2.2297 -0.1479 0.9650 

m d 0.0316 0.6763 0.0402 0.2967 

m t 0.0316 0.5628 0.0402 0.3014 

m r 0.0316 0.0177 0.0402 0.0051 

b d -0.0001 0.0407 0.0157 0.0265 

b t 0.0326 0.0407 0.0044 0.0265 

b r -0.0168 0.0407 0.0078 0.0265 

 Notation: L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene); S: Sampling Method (S 

= d: disease selected sampling, t: trait truncated sampling, r: random sampling); Vaa: Epistatic 

Variance Component shown in proportion of the two-locus genetic variance (VG) (0 ≤ Vaa ≤ 1); N
†
: 

Sample Size divided by 250 (N
†
 ≡ N/250 = 1, 2, 4). 

                                                 
2
 To ensure that the three continuous variables, the mean of t values, the epistatic variance component, 

and the sample size, are in the same scale, we use the proportion, Vaa/VG, ranging from 0 to 1, as the 

epistatic variance component value, and the sample size divided by250 as N
†
. This should not affect 

the significance of any factor. 
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For example, if we choose a significance level of 0.01 and use the general 

linear model for the trait loci only in predicting the power, we can acquire three 

columns of power values. The results are summarized in Figure 4-10. 

Figure 4-10 Scatterplots of Observed Power vs Expected Power Obtained by using 

Mean of t Values (in green, on the left) and Observed Power vs Predicted Power 

Obtained by using Fitted Values of Mean of t Values (in red, on the right) 

 

We see from Figure 4-10 that the green dots in the left plot lay more closely 

around the diagonal line than the red dots in the right plot do. By using the observed 

mean of t values we can obtain a very good estimate of the power value. The mean 

and standard error of the difference of the observed power minus the expected power 

are 3.78% and 0.52% respectively. If we use the fitted values from the estimated 

general linear model we would get a poorer estimate. The mean and standard error of 

the difference between the observed power and the predicted power are 3.48% and 

1.00% respectively. However, considering that this model only has four factors and 

two two-way interactions, and that we only use one epistatic genetic variance 

component (Vaa) to summarize the information contained in the genetic models, this 

result is fairly reasonable and is within expectation.  



CHAPTER 4. RESULTS 

 

 

We also noticed that the expected power values obtained by using the 

observed mean of t values are a little conservative when the observed power values 

are less than 50%, and the expected power values are a little liberal when the 

observed power values are greater than 50%. 

 

4.5 Conclusions 

The power of two regression-based linkage methods in detecting epistatic 

QTLs was evaluated in this dissertation. A two-locus epistatic and pleiotropic 

modeling framework was used in our simulation study. The two major QTL not only 

accounts for 10% of the total variance of a quantitative trait, but also increases the 

probability of developing a complex disease associated with the quantitative trait. We 

proposed a sampling method that selects families through the disease affected 

probands for QTL linkage analysis. Random sampling and another selected sampling 

based the extreme trait values were also included for comparison.  

Three types of markers closely linked to the epistatic QTLs were considered: 

bi-allele markers, multi-allelic markers, and QTL genes themselves. We simulated a 

situation where there is no allelic association, or no linkage disequilibrium, between 

the trait and marker loci. We thus evaluated the power to identify the QTLs in 

epistasis (single-locus analysis) as well as establishing the epistasis itself.  

The disease selected sampling method resulted in much higher power over 

random sampling, and, in some cases, even attained high power comparable to the 

trait truncated sampling, especially when the underlying epistasis is mostly due to the 

interaction of additive effects at the two QTLs. 
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The results of this simulation study suggested that by using the bi-allelic or 

the multi-allelic markers one has very little or no power in detecting epistasis even 

though these markers are in complete linkage with the QTLs (θ = 0). This may due to 

the fact that we simulated no allelic association (linkage disequilibrium) between the 

marker loci and the trait loci at all, or it may simply indicate low power for linkage 

analysis even to closely linked markers when genetic variance is only 10% of the total 

variance of the quantitative trait.  

We also noticed that the single-locus analysis, in most of the situations 

considered in this paper, can detect epistatic genes even when the additive effects are 

very small. 

Not surprisingly, a bigger sample size resulted in a greater power. A sample 

with 500 sibpairs would generally give acceptable power for epistasis detection, 

especially when selected sampling methods were adopted. 

Although we expected the power of the two-locus interaction analysis to be 

affected by the total epistatic variance (VI), we observed that the linkage methods are 

much more powerful in detecting epistasis due to the interaction of additive effects 

(Vaa) than in detecting epistasis due to the interaction of dominant effects (Vdd). 

Therefore we used only Vaa to summarize all the information in genetic models, and 

modeled the power with this epistatic variance component, together the sample size, 

the sampling method, and a few two-way interactions. The predicted power values 

had large variance, but gave unbiased estimates overall, compared with the observed 

power values. 
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Chapter 5 Future Work 

We realize that there are some limitations to our study which could be the 

possible directions for future research on linkage analysis of epistatic QTLs. 

First of all, the two regression-based linkage methods evaluated in this paper, 

the Haseman-Elston method and the Sham-Purcell method, can only be applied on 

sibpair data. To better analyze genetic information contained in larger sibship and/or 

general pedigree, it is important to also extend methods, such as those based on the 

score statistics, for epistasis models. In fact, there is some literature, for example, 

Tang and Siegmund (2002) and Wang (2003), addressing this issue. However, current 

studies had only focused on epistasis due to the interaction of additive effects (Vaa). 

It would be interesting to find methods that can better detect epistasis due to the 

interaction of dominant effects (Vdd). 

Secondly, we only used one set of disease penetrance values in our simulation. 

Since the disease selected sampling gave satisfactory results in most of the cases 

considered in this paper, it would be worth investigating to try different disease 

patterns and see how this would affect linkage analysis for QTLs.  

Thirdly, in this thesis, I fixed the ratio of two-locus genetic variance, shared 

residual variance, and non-shared residual variance to be 1:2:7, i.e. only 10% of the 
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total variance can be explained by the two epistatic genes. This may account for the 

low power for the closely linked markers. Therefore a reasonable next step could be 

to examine other situations where different variance proportions are adopted.  

Last but not least, we could also try to extend and evaluate the two regression-

based linkage methods to incorporate gene-environment interaction.
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Appendices 

A. ANOVA Output from SAS 
 

                              Class Level Information 

 

                       Class         Levels    Values 

                       M                  6    1 2 3 4 5 6 

                       P                  3    0.05 0.1 0.15 

                       N                  3    250 500 1000 

                       R                  2    sp_est sp_tru 

                       L                  3    b m t 

                       A                  2    i s 

                       S                  3    d r t 

 

                       Number of Observations Used        1944 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       15     1721.277024      114.751802     124.86    <.0001 

 Error                     1928     1771.861700        0.919015 

 Corrected Total           1943     3493.138724 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.492759      109.3696      0.958653       0.876526 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 M                            5     272.2397130      54.4479426      59.25    <.0001 

 P                            2       1.1542254       0.5771127       0.63    0.5338 

 N                            2     148.1561597      74.0780798      80.61    <.0001 

 R                            1       0.9989247       0.9989247       1.09    0.2973 

 L                            2     814.7846471     407.3923235     443.29    <.0001 

 A                            1     136.9403338     136.9403338     149.01    <.0001 

 S                            2     347.0030203     173.5015102     188.79    <.0001 

 
Notation: M: Genetic Model; P: Minor Allele Frequencies; N: Sample Size; R: Regression-Based 

Linkage Method (R = sp_est: Sham-Purcell method using estimated parameter values; sp_tru: SP 

method using true parameter values); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait 

gene itself); A: Type of Regression Analysis (A = s: single-locus; i: two-locus interaction); S: 

Sampling Method (S = d: disease selected sampling, t: trait truncated sampling, r: random sampling). 
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B. Percentages of Variance Components Relative to the Total 

Two-Locus Genetic Variance (Vg) of Six Genetic Models  
 

 
Model P VA(%) VD(%) VI(%) Vaa(%) Vad(%) Vdd(%) 

1 (dominant-dominant) 

1 1 0 

1 1 0 

0 0 0 

0.05 17.3121 0.4556 82.2324 78.0694 4.1089 0.0541 

0.10 30.2521 1.6807 68.0672 61.0908 6.7879 0.1886 

0.15 39.9217 3.5225 56.5558 47.7564 8.4276 0.3718 

2 (recessive-dominant) 

1 1 0 

0 0 0 

0 0 0 

0.05 1.1464 8.8073 90.0463 8.3559 79.6014 2.0890 

0.10 4.1953 15.4620 80.3427 13.8389 63.0440 3.4597 

0.15 8.6239 20.0681 71.0681 17.0363 49.7727 4.2591 

3 (recessive-recessive) 

1 0 0 

0 0 0 

0 0 0 

0.05 0.0475 0.4513 99.5013 0.9025 17.1476 81.4511 

0.10 0.3600 1.6202 98.0198 3.2403 29.1629 65.6166 

0.15 1.1481 3.2529 95.5990 6.5058 36.8662 52.2271 

4 (one locus has modifying effect on the other) 

1 1 1 

1 0 0 

0 0 0 

0.05 9.5787 82.5678 7.8535 0.6694 6.4382 0.7459 

0.10 18.5051 68.9636 12.5313 1.7783 8.5024 2.2506 

0.15 26.8902 57.8830 15.2268 2.6126 8.7620 3.8522 

5 (at least 3 minor alleles in total at two loci) 

1 1 0 

1 0 0 

0 0 0 

0.05 2.0052 8.0267 89.9681 16.0535 64.3898 9.5248 

0.10 7.1193 12.7005 80.1802 25.4010 38.7607 16.0185 

0.15 14.1824 14.8467 70.9710 29.6933 21.1860 20.0917 

6 (recessive with no expression for A1A1B1B1) 

0 1 1 

1 0 0 

1 0 0 

0.05 9.4761 90.0227 0.5013 0.0045 0.0864 0.4103 

0.10 17.8146 80.1655 2.0200 0.0668 0.6010 1.3522 

0.15 24.8867 70.5122 4.6011 0.3131 1.7744 2.5137 

 
Notation: P: minor allele frequencies; VA: Additive Variance; VD: Dominant Variance; VI: Two-Locus 

Epistatic Variance; Vaa: Variance due to interaction of additive effects at two loci; Vad: Variance due 

to interaction of additive effect at one locus and dominant effect at the other locus; Vdd: Variance due 

to interaction of dominant effects at two loci. 

Note: all variance components are shown in percentage of the total two-locus genetic variance (VG) 

which accounts for 10% of the total variance of the trait (VT).  
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C. ANOVA output from SAS 
 
Notation: P: Minor Allele Frequencies (P = 0.05; 0.10; 0.15); R: Regression-Based Linkage Method 

(R = he: original Haseman-Elston method; sp_est: Sham-Purcell method using estimated parameter 

values); L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); A: Type of Analysis 

(A = s: single-locus; i: two-locus interaction); S: Sampling Method (S = d: disease selected sampling, t: 

trait truncated sampling, r: random sampling); N: Sample Size (N = 250; 500; 1000). 

 
-------------------------------------- Model=1 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     629.7384426      12.3478126      64.27    <.0001 

 Error                      272      52.2599214       0.1921321 

 Corrected Total            323     681.9983641 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.923372      37.58369      0.438329       1.166274 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2      39.1512191      19.5756095     101.89    <.0001 

 R                            1       5.6721561       5.6721561      29.52    <.0001 

 L                            2     293.5144991     146.7572495     763.84    <.0001 

 A                            1       0.0236740       0.0236740       0.12    0.7258 

 S                            2      72.7768251      36.3884126     189.39    <.0001 

 N                            2      36.2485664      18.1242832      94.33    <.0001 

 P*R                          2       0.9914944       0.4957472       2.58    0.0776 

 P*L                          4      57.9402383      14.4850596      75.39    <.0001 

 P*A                          2       9.6761508       4.8380754      25.18    <.0001 

 P*S                          4       8.0394200       2.0098550      10.46    <.0001 

 P*N                          4       3.4922101       0.8730525       4.54    0.0014 

 R*L                          2       3.5009620       1.7504810       9.11    0.0001 

 R*A                          1       0.1438375       0.1438375       0.75    0.3877 

 R*S                          2       1.4432963       0.7216482       3.76    0.0246 

 R*N                          2       0.5821676       0.2910838       1.52    0.2217 

 L*A                          2      21.9402610      10.9701305      57.10    <.0001 

 L*S                          4      39.5333462       9.8833365      51.44    <.0001 

 L*N                          4      23.7258060       5.9314515      30.87    <.0001 

 A*S                          2       5.7363738       2.8681869      14.93    <.0001 

 A*N                          2       0.0063167       0.0031584       0.02    0.9837 

 S*N                          4       5.5996221       1.3999055       7.29    <.0001 
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-------------------------------------- Model=2 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     305.1851106       5.9840218      88.70    <.0001 

 Error                      272      18.3503987       0.0674647 

 Corrected Total            323     323.5355093 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.943282      34.16859      0.259740       0.760171 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2      24.2449975      12.1224988     179.69    <.0001 

 R                            1       4.5963055       4.5963055      68.13    <.0001 

 L                            2     111.9403402      55.9701701     829.62    <.0001 

 A                            1       1.0157935       1.0157935      15.06    0.0001 

 S                            2      54.7735979      27.3867990     405.94    <.0001 

 N                            2      21.2706526      10.6353263     157.64    <.0001 

 P*R                          2       1.7352473       0.8676237      12.86    <.0001 

 P*L                          4       7.4113875       1.8528469      27.46    <.0001 

 P*A                          2       4.2003528       2.1001764      31.13    <.0001 

 P*S                          4       7.9070319       1.9767580      29.30    <.0001 

 P*N                          4       1.1978710       0.2994677       4.44    0.0017 

 R*L                          2       2.3116521       1.1558260      17.13    <.0001 

 R*A                          1       0.2834418       0.2834418       4.20    0.0414 

 R*S                          2       1.5684785       0.7842392      11.62    <.0001 

 R*N                          2       1.2384895       0.6192448       9.18    0.0001 

 L*A                          2       5.3712214       2.6856107      39.81    <.0001 

 L*S                          4      33.8083036       8.4520759     125.28    <.0001 

 L*N                          4      12.9977719       3.2494430      48.17    <.0001 

 A*S                          2       1.9625775       0.9812888      14.55    <.0001 

 A*N                          2       0.0503690       0.0251845       0.37    0.6888 

 S*N                          4       5.2992275       1.3248069      19.64    <.0001 
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-------------------------------------- Model=3 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     28.68788337      0.56250752       7.24    <.0001 

 Error                      272     21.12060278      0.07764927 

 Corrected Total            323     49.80848615 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.575964      224.4957      0.278656       0.124125 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2      6.22269067      3.11134534      40.07    <.0001 

 R                            1      0.25138836      0.25138836       3.24    0.0731 

 L                            2      3.26214661      1.63107330      21.01    <.0001 

 A                            1      0.38917423      0.38917423       5.01    0.0260 

 S                            2      1.41925581      0.70962790       9.14    0.0001 

 N                            2      2.28786797      1.14393398      14.73    <.0001 

 P*R                          2      0.13482449      0.06741224       0.87    0.4209 

 P*L                          4      4.53640084      1.13410021      14.61    <.0001 

 P*A                          2      1.12967998      0.56483999       7.27    0.0008 

 P*S                          4      2.94363131      0.73590783       9.48    <.0001 

 P*N                          4      0.48022655      0.12005664       1.55    0.1891 

 R*L                          2      0.27826736      0.13913368       1.79    0.1686 

 R*A                          1      0.09265022      0.09265022       1.19    0.2757 

 R*S                          2      0.09086940      0.04543470       0.59    0.5577 

 R*N                          2      0.04609162      0.02304581       0.30    0.7434 

 L*A                          2      0.73350893      0.36675447       4.72    0.0096 

 L*S                          4      0.76422931      0.19105733       2.46    0.0457 

 L*N                          4      1.92591889      0.48147972       6.20    <.0001 

 A*S                          2      0.24013372      0.12006686       1.55    0.2149 

 A*N                          2      0.44918059      0.22459029       2.89    0.0572 

 S*N                          4      1.00974651      0.25243663       3.25    0.0126 
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-------------------------------------- Model=4 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     752.0137482      14.7453676      66.75    <.0001 

 Error                      272      60.0873915       0.2209095 

 Corrected Total            323     812.1011397 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.926010      44.62019      0.470010       1.053358 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2       0.9903141       0.4951570       2.24    0.1083 

 R                            1       7.3845988       7.3845988      33.43    <.0001 

 L                            2     144.5275743      72.2637872     327.12    <.0001 

 A                            1     240.5695903     240.5695903    1089.00    <.0001 

 S                            2      90.8300631      45.4150316     205.58    <.0001 

 N                            2      31.3445904      15.6722952      70.94    <.0001 

 P*R                          2       0.1452661       0.0726331       0.33    0.7201 

 P*L                          4       4.9972857       1.2493214       5.66    0.0002 

 P*A                          2       1.4054487       0.7027243       3.18    0.0431 

 P*S                          4       0.6492202       0.1623050       0.73    0.5690 

 P*N                          4       0.1844448       0.0461112       0.21    0.9335 

 R*L                          2       2.9937852       1.4968926       6.78    0.0013 

 R*A                          1       5.8239483       5.8239483      26.36    <.0001 

 R*S                          2       2.5961592       1.2980796       5.88    0.0032 

 R*N                          2       0.9508288       0.4754144       2.15    0.1182 

 L*A                          2      75.6426567      37.8213284     171.21    <.0001 

 L*S                          4      36.2094687       9.0523672      40.98    <.0001 

 L*N                          4      12.7931609       3.1982902      14.48    <.0001 

 A*S                          2      64.4314350      32.2157175     145.83    <.0001 

 A*N                          2      20.5460999      10.2730500      46.50    <.0001 

 S*N                          4       6.9978091       1.7494523       7.92    <.0001 
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-------------------------------------- Model=5 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     310.0553112       6.0795159      86.90    <.0001 

 Error                      272      19.0287005       0.0699585 

 Corrected Total            323     329.0840117 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.942177      33.51097      0.264497       0.789284 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2       8.3860159       4.1930080      59.94    <.0001 

 R                            1       5.0089345       5.0089345      71.60    <.0001 

 L                            2     132.2340066      66.1170033     945.09    <.0001 

 A                            1       2.5990093       2.5990093      37.15    <.0001 

 S                            2      53.0230364      26.5115182     378.96    <.0001 

 N                            2      21.1893163      10.5946582     151.44    <.0001 

 P*R                          2       0.5476569       0.2738284       3.91    0.0211 

 P*L                          4       2.1985356       0.5496339       7.86    <.0001 

 P*A                          2       2.2239862       1.1119931      15.90    <.0001 

 P*S                          4       2.6488987       0.6622247       9.47    <.0001 

 P*N                          4       0.2899681       0.0724920       1.04    0.3889 

 R*L                          2       2.9544369       1.4772184      21.12    <.0001 

 R*A                          1       0.0025167       0.0025167       0.04    0.8497 

 R*S                          2       1.5330993       0.7665497      10.96    <.0001 

 R*N                          2       1.1716042       0.5858021       8.37    0.0003 

 L*A                          2      18.4559325       9.2279662     131.91    <.0001 

 L*S                          4      34.3460240       8.5865060     122.74    <.0001 

 L*N                          4      14.2904506       3.5726127      51.07    <.0001 

 A*S                          2       1.6470082       0.8235041      11.77    <.0001 

 A*N                          2       0.3756208       0.1878104       2.68    0.0701 

 S*N                          4       4.9292534       1.2323133      17.61    <.0001 
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-------------------------------------- Model=6 -------------------------------------- 

 

                                 The ANOVA Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       51     273.4530398       5.3618243      60.71    <.0001 

 Error                      272      24.0211509       0.0883131 

 Corrected Total            323     297.4741907 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.919250      50.08308      0.297175       0.593364 

 

 

 Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

 P                            2      0.68690468      0.34345234       3.89    0.0216 

 R                            1      2.17810947      2.17810947      24.66    <.0001 

 L                            2     43.55148909     21.77574454     246.57    <.0001 

 A                            1     96.86983053     96.86983053    1096.89    <.0001 

 S                            2     28.93735568     14.46867784     163.83    <.0001 

 N                            2      9.81613701      4.90806850      55.58    <.0001 

 P*R                          2      0.06665721      0.03332861       0.38    0.6860 

 P*L                          4      2.05991031      0.51497758       5.83    0.0002 

 P*A                          2      1.43855450      0.71927725       8.14    0.0004 

 P*S                          4      0.39867342      0.09966835       1.13    0.3433 

 P*N                          4      0.13849420      0.03462355       0.39    0.8143 

 R*L                          2      0.87263446      0.43631723       4.94    0.0078 

 R*A                          1      1.90541987      1.90541987      21.58    <.0001 

 R*S                          2      0.83284620      0.41642310       4.72    0.0097 

 R*N                          2      0.27013557      0.13506779       1.53    0.2185 

 L*A                          2     34.40523501     17.20261751     194.79    <.0001 

 L*S                          4     12.23575058      3.05893764      34.64    <.0001 

 L*N                          4      3.78879081      0.94719770      10.73    <.0001 

 A*S                          2     22.68602198     11.34301099     128.44    <.0001 

 A*N                          2      8.09282697      4.04641349      45.82    <.0001 

 S*N                          4      2.22126227      0.55531557       6.29    <.0001 
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D. ANCOVA output from SAS 
 
Notation: L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); N: Sample Size (N 

= 250; 500; 1000); S: Sampling Method (S = d: disease selected sampling, t: trait truncated sampling, r: 

random sampling); R: Regression-Based Linkage Method (R = he: original Haseman-Elston method; 

sp_est: Sham-Purcell method using estimated parameter values); Vaa: Epistatic Variance due to the 

interaction of the additive effects at the two trait loci, shown in percentage relative to the total two-

locus genetic variance (VG). 

 
 

------------------------------------- Marker=b -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       23      0.45146719      0.01962901      10.35    <.0001 

 Error                      282      0.53482325      0.00189654 

 Corrected Total            305      0.98629045 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.457743      95.14335      0.043549       0.045772 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1      0.00581712      0.00581712       3.07    0.0810 

 N                            1      0.02488054      0.02488054      13.12    0.0003 

 Vaa*N                        1      0.01717461      0.01717461       9.06    0.0029 

 S                            2      0.01470424      0.00735212       3.88    0.0218 

 Vaa*S                        2      0.00226695      0.00113348       0.60    0.5508 

 N*S                          2      0.00955894      0.00477947       2.52    0.0823 

 Vaa*N*S                      2      0.00333360      0.00166680       0.88    0.4164 

 R                            1      0.00151160      0.00151160       0.80    0.3727 

 Vaa*R                        1      0.00117784      0.00117784       0.62    0.4313 

 N*R                          1      0.00268514      0.00268514       1.42    0.2351 

 Vaa*N*R                      1      0.00000006      0.00000006       0.00    0.9957 

 S*R                          2      0.00392691      0.00196345       1.04    0.3565 

 Vaa*S*R                      2      0.00069859      0.00034929       0.18    0.8319 

 N*S*R                        2      0.00121222      0.00060611       0.32    0.7267 

 Vaa*N*S*R                    2      0.00020506      0.00010253       0.05    0.9474 
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------------------------------------- Marker=m -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       23     29.95648644      1.30245593      52.51    <.0001 

 Error                      282      6.99417151      0.02480203 

 Corrected Total            305     36.95065795 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.810716      53.73368      0.157487       0.293087 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1      0.68630908      0.68630908      27.67    <.0001 

 N                            1      0.46537980      0.46537980      18.76    <.0001 

 Vaa*N                        1      0.99209359      0.99209359      40.00    <.0001 

 S                            2      0.07241106      0.03620553       1.46    0.2340 

 Vaa*S                        2      0.16023691      0.08011846       3.23    0.0410 

 N*S                          2      0.09157168      0.04578584       1.85    0.1598 

 Vaa*N*S                      2      0.26215461      0.13107730       5.28    0.0056 

 R                            1      0.00004553      0.00004553       0.00    0.9659 

 Vaa*R                        1      0.00672379      0.00672379       0.27    0.6030 

 N*R                          1      0.02118832      0.02118832       0.85    0.3561 

 Vaa*N*R                      1      0.00694712      0.00694712       0.28    0.5971 

 S*R                          2      0.00456470      0.00228235       0.09    0.9121 

 Vaa*S*R                      2      0.00181563      0.00090781       0.04    0.9641 

 N*S*R                        2      0.00756687      0.00378343       0.15    0.8586 

 Vaa*N*S*R                    2      0.00184382      0.00092191       0.04    0.9635 
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------------------------------------- Marker=t -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                       23     574.6120481      24.9831325      42.01    <.0001 

 Error                      282     167.6876983       0.5946372 

 Corrected Total            305     742.2997463 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.774097      57.36114      0.771127       1.344337 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1     17.42591647     17.42591647      29.31    <.0001 

 N                            1      8.15551348      8.15551348      13.72    0.0003 

 Vaa*N                        1     22.84752885     22.84752885      38.42    <.0001 

 S                            2      0.42099759      0.21049879       0.35    0.7022 

 Vaa*S                        2      2.54935313      1.27467657       2.14    0.1191 

 N*S                          2      3.20823828      1.60411914       2.70    0.0691 

 Vaa*N*S                      2      2.45749875      1.22874937       2.07    0.1286 

 R                            1      0.07340331      0.07340331       0.12    0.7256 

 Vaa*R                        1      0.23020270      0.23020270       0.39    0.5343 

 N*R                          1      0.63311351      0.63311351       1.06    0.3030 

 Vaa*N*R                      1      0.20169922      0.20169922       0.34    0.5608 

 S*R                          2      0.14676943      0.07338472       0.12    0.8839 

 Vaa*S*R                      2      0.07448037      0.03724019       0.06    0.9393 

 N*S*R                        2      0.31928953      0.15964476       0.27    0.7647 

 Vaa*N*S*R                    2      0.02427037      0.01213519       0.02    0.9798 
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E. Fitted General Linear Models 
 
Notation: L: Type of Markers (L = b: bi-allelic; m: multi-allelic; t: trait gene itself); S: Sampling 

Method (S = d: disease selected sampling, t: trait truncated sampling, r: random sampling); N
†
: Sample 

Size divided by 250 (N
†
 ≡ N/250 = 1; 2; 4); Vaa: Epistatic Variance due to the interaction of the 

additive effects at the two trait loci, shown in proportion of the total two-locus genetic variance (VG) 

(0≤ Vaa ≤ 1). 

 
 

------------------------------------- Marker=b -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                        7      0.39051280      0.05578754      27.90    <.0001 

 Error                      298      0.59577765      0.00199925 

 Corrected Total            305      0.98629045 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.395941      97.68589      0.044713       0.045772 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1      0.00581712      0.00581712       2.91    0.0891 

 N
† 
                           1      0.02488054      0.02488054      12.44    0.0005 

 S                            2      0.02859395      0.01429698       7.15    0.0009 

 Vaa*N
† 
                       1      0.01717461      0.01717461       8.59    0.0036 

 N
† 
*S                         2      0.01063751      0.00531876       2.66    0.0716 

 

 

                                              Standard 

        Parameter           Estimate             Error    t Value    Pr > |t| 

 

        Intercept       -.0167904228 B      0.01036695      -1.62      0.1064 

        Vaa             0.0407374277        0.02388216       1.71      0.0891 

        N
† 
              0.0078103719 B      0.00391834       1.99      0.0471 

        S         d     0.0166921429 B      0.01328175       1.26      0.2098 

        S         t     0.0493738198 B      0.01328175       3.72      0.0002 

        S         r     0.0000000000 B       .                .         . 

        Vaa*N
† 
          0.0264565951        0.00902661       2.93      0.0036 

        N
† 
*S      d     0.0078815710 B      0.00502003       1.57      0.1175 

        N
† 
*S      t     -.0034060063 B      0.00502003      -0.68      0.4980 

        N
† 
*S      r     0.0000000000 B       .                .         . 

 

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was 

      used to solve the normal equations.  Terms whose estimates are followed by the 

      letter 'B' are not uniquely estimable. 
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------------------------------------- Marker=m -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                        7     27.92274307      3.98896330     131.67    <.0001 

 Error                      298      9.02791488      0.03029502 

 Corrected Total            305     36.95065795 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.755676      59.38661      0.174055       0.293087 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1      0.68630908      0.68630908      22.65    <.0001 

 N
† 
                           1      0.46537980      0.46537980      15.36    0.0001 

 Vaa*N
† 
                       1      0.99209359      0.99209359      32.75    <.0001 

 Vaa*S                        2      0.53613479      0.26806740       8.85    0.0002 

 Vaa*N
† 
*S                     2      0.78001536      0.39000768      12.87    <.0001 

 

 

                                              Standard 

        Parameter           Estimate             Error    t Value    Pr > |t| 

 

        Intercept       0.0316358664        0.02715762       1.16      0.2450 

        Vaa             0.0176537786 B      0.13814533       0.13      0.8984 

        N
† 
              0.0402309993        0.01026461       3.92      0.0001 

        Vaa*N
† 
          0.0051246663 B      0.05221403       0.10      0.9219 

        Vaa*S     d     0.6940417965 B      0.17698655       3.92      0.0001 

        Vaa*S     t     0.5804546113 B      0.17698655       3.28      0.0012 

        Vaa*S     r     0.0000000000 B       .                .         . 

        Vaa*N
† 
*S   d    0.2915838293 B      0.06689463       4.36      <.0001 

        Vaa*N
† 
*S   t    0.2962793991 B      0.06689463       4.43      <.0001 

        Vaa*N
† 
*S   r    0.0000000000 B       .                .         . 

 

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was 

      used to solve the normal equations.  Terms whose estimates are followed by the 

      letter 'B' are not uniquely estimable.  
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------------------------------------- Marker=t -------------------------------------- 

 

                                  The GLM Procedure 

 

Dependent Variable: t_mean 

 

                                         Sum of 

 Source                      DF         Squares     Mean Square    F Value    Pr > F 

 Model                        5     512.6020843     102.5204169     133.90    <.0001 

 Error                      300     229.6976620       0.7656589 

 Corrected Total            305     742.2997463 

 

 

                 R-Square     Coeff Var      Root MSE    t_mean Mean 

                 0.690559      65.08926      0.875019       1.344337 

 

 

 Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

 

 Vaa                          1      17.4259165      17.4259165      22.76    <.0001 

 N
† 
                           1       8.1555135       8.1555135      10.65    0.0012 

 Vaa*N
† 
                       1      22.8475289      22.8475289      29.84    <.0001 

 N
† 
*S                         2     116.0802980      58.0401490      75.80    <.0001 

 

 

                                              Standard 

        Parameter           Estimate             Error    t Value    Pr > |t| 

 

        Intercept        0.127647707        0.13652863       0.93      0.3506 

        Vaa              2.229653578        0.46736613       4.77      <.0001 

        N
† 
              -0.147909726 B      0.05811857      -2.54      0.0114 

        Vaa*N
† 
           0.964961920        0.17664779       5.46      <.0001 

        N
† 
*S       d     0.395479562 B      0.04631094       8.54      <.0001 

        N
† 
*S       t     0.553496874 B      0.04631094      11.95      <.0001 

        N
† 
*S       r     0.000000000 B       .                .         . 

 

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was 

      used to solve the normal equations.  Terms whose estimates are followed by the 

      letter 'B' are not uniquely estimable. 


