Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Compiler-Assisted Software Model
Checking and Monitoring

A Dissertation Presented
by
Xiaowan Huang

to

The Graduate School

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in
Computer Science

Stony Brook University

December 2010

Stony Brook University
The Graduate School

Xiaowan Huang
We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend
acceptance of this dissertation.

Dr. Scott A. Smolka — Dissertation Adviser
Professor, Department of Computer Science

Dr. Radu Grosu — Dissertation Adviser
Associate Professor, Department of Computer Science

Dr. Scott D. Stoller — Chairperson of Defense
Professor, Department of Computer Science

Dr. Klaus Havelund
Senior Research Scientist, Jet Propulsion Laboratory, NASA

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

i1

Abstract of the Dissertation

Compiler-Assisted Software Model
Checking and Monitoring
by

Xiaowan Huang

Doctor of Philosophy
in
Computer Science

Stony Brook University
2010

In this dissertation we present a compiler-assisted execution-based software model
checking method targeting all languages that are acceptable by the compiler. We treat
the intermediate representation of the program under compilation as a language and
interpret it using a customized virtual machine. Our model checkers are based on this
intermediate representation level virtual machine and have full access to its states. We
implemented two model checkers: a stateless Monte Carlo model checker GMC? and
a bounded concrete-symbolic model checker using the dynamic path reduction algorithm
for reachability problems of linear C programs.

We also introduce the new technique of Software Monitoring with Controllable Over-
head (SMCO). SMCO is formally grounded in control theory, in particular, the supervi-
sory control of discrete event systems. Overhead is controlled by dynamically disabling
event interrupts, but such interrupts are disabled for as short a time as possible so that
the total number of events monitored, under the constraint of a user-supplied target
overhead, is maximized.

We have implemented SMCO using a technique we call Compiler-Assisted Instrumen-
tation (CAI). Benchmark shows that SMCO successfully controls overhead across a wide
range of target-overhead levels. Moreover, its accuracy monotonically increases with the
target overhead, and it can be configured to distribute monitoring overhead fairly across
multiple instrumentation points.

111

Contents

List of Figures
List of Tables
1 Introduction

2 Compiler-Assisted Instrumentation
2.1 GCC Intermediate Representation
2.2 Instrumenting GIMPLE
221 GCCPlug-in Architecture
222 GCClInternals o
223 PassManagers
2.3 GLua: Scripted Program Instrumentation
231 GLuaUsage
232 TheGLua API.
233 RelatedWork
2.4 GLuaProgram Instrumentation Tools
24.1 Control-Flow Graph Visualizer
242 TreeTracker
243 Function Duplicator
244 BasicBlockProfiler 0 L.
245 SymbolicExecutor Lo oL

3 Compiler-Assisted Software Model Checking
3.1 Overview of Software Model Checking
3.1.1 Abstract Software Model Checking
3.1.2 Concrete Enumerative Software Model Checking
3.1.3 Symbolic Software Model Checking
3.2 The GIMPLE Virtual Machine
321 GVMImplementation
322 TheGVMAPI

4 GIMPLE-based Monte Carlo Model Checker
41 Monte Carlo Model Checking
411 Buchi Automata.

iv

vii

viii

412 Random Lassos and Hypothesis Testing

41.3 The Monte Carlo Model Checking Algorithm

42 Monte Carlo Software Model Checking

421 TheMainRoutine.

422 TherLasso Random-LassoRoutine.

4221 HashTable

423 Routinesrinit andrNext

4231 ProgramState

4232 Routinerlnit oo oo o

4233 RoutinerNext,

424 Routineinterpret

43 ExperimentalResults o oL
Software Model Checking with Dynamic Path Reduction

5.1 Nondeterministic Conditional and SSAForm

5.2 DPR-Based Model Checking Algorithm

521 Global Search Algorithm

52.2 Weakest Precondition Computation

52.3 Learning From Infeasible Sub-paths

524 Pruning Unexplored Paths

52.5 Path Reduction Algorithm,

5.3 Implicit Oracle Enumeration using SAT

5.4 Experimental Evaluation 00 L.

Software Monitoring with Controllable Overhead

6.1 Target Specification Lo Lo oo
6.2 PlantModels e
6.2.1 HardwarePlant
6.2.2 SoftwarePlant.
6.3 Controllers e
6.3.1 Global Controller
6.3.2 CascadeController
6.3.2.1 Secondary Controllers.
6.3.2.2 Primary Controller.
6.4 Integer Range Analysis
6.5 ClockThread e
6.6 Controller Design o
SMCO Experimental Evaluation
701 Testbed e e
7.2 Workloads e e
73 RangeChecker. o o
731 GlobalController
732 CascadeController
733 Controller Comparison

734 MemoryOverhead 74

74 Controller Optimization 75
741 ClockFrequency 75

742 IntegrativeGain. 77

743 AdjustmentInterval o0 0L 79

75 Conclusion L 83

8 Conclusion and Future Work 84
8.1 Compiler-Assisted Techniques Conclusion 84
82 FutureWork 85
Bibliography 86

vi

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10
211
2.12

3.1
3.2
3.3

4.1
51

52

53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

The GCC architecture
Sample C Program and Corresponding GIMPLE representation
Architecture of GLua L L L
A GLuascript to count functions and prints their referenced variables . . .
A GLua script to traverse basic blocks and gimple statements
glua-help: a GLua script tolist GLua API
Sample Cprogram
Control-flow graph of functionsimple ()
TreeTracker
Sample Lua code doing function duplication
duplicated function simple ()o 00
basic block profiler script Lo Lo

The GVMPlugin
Architecture of GVM Lo
A GVM script to print static variable assignments ten times

Example lasso probability space.,

A sample C program (left), its SSA form (middle), and SSA graph repre-
sentation (right). Lo oo
A C program in SSA form (left), its graphical representation with a high-
lighted execution path (middle), and the remaining paths after learning
from the highlighted path (right).
An example control flow graph. L oo L oL

Plant (P) and Controller (Q) architecture.
Generic SMCO Architecture.
Automaton for the hardware plant P of one monitored object.
Automaton for the software plant P of all monitored objects.
Automaton for global controller.,
Overall cascade control architecture.
Automaton for secondary controller Q. L.
Timeline for secondary controller.
Automaton for the primary controller.,
SMCO architecture for range-checker

vii

6.11

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

range-checker adds a distributor with a call to the SMCO controller. The
distributed passes control to either the original, uninstrumented function
body shown on the left, or the instrumented copy shown on the right. . . 65

Event distribution histogram for the most updated variable (a) and 99"
most updated variable (b) in bzip2 . Execution time (z-axis) is split into
0.4 second buckets. The y-axis shows the number of events in each time

bucket. 69
Global controller with range-checker observed overhead (y-axis) for a range
of target overhead settings (z-axis) and two workloads. 71
Cascade controller with range-checker observed overhead (y-axis) for a range
of target overhead settings (r-axis) and two workloads. 72
Comparison of range-checker accuracy for both controllers with bzip2 work-
load. Variables are grouped by total number of updates. 73
Observed overhead for global controller clock frequencies with 4 different clock
frequencies and 2 workloads using range-checker instrumentation. . . . 76

Accuracy of global controller clock frequencies with 4 different clock frequen-
cies using range-checker instrumentation. Variables are grouped by to-
talnumberof updates. o oo oo 77
Local target monitoring percentage (my,) over time during bzip2 workload for
range-checker with cascade control. Results shown with target overhead

set to 20% for 4 different values of Ky and 3valuesof 7. 78
Observed overhead for primary controller K values using range-checker with
T = 400ms and four different K;values. 79
Observed overhead for an ad hoc cascade controller’s T values with 4 different
values of T and two range-checker workloads. 80

Observed monitoring percentage over bzip2 r ange- checker execution. The
percent of each adjustment interval spent monitoring for 2 values of 7.
The target monitoring percentage is shown as a dotted horizontal line. . . 81
Accuracy of cascade controller T values with 4 values of T" on the bzip2 work-
load using range-checker instrumentation. Variables are grouped by to-
tal number of updates. L oo 82

viil

List of Tables

4.1
4.2

51
52

7.1

Deadlock freedom for the symmetric and fair C implementation. 40
Running time of GMC? for TCAS. 41
Bounded model checking with DPR of Randomized MAX-3SAT 52

Bounded model checking with DPR of NFA for floating-point expressions. 52

range-checker =~ memory usage, including executable size, virtual mem-
ory usage (VSZ), and physical memory usage (RSS). 74

ix

Acknowledgments

I would like to gratefully and sincerely thank my two doctoral co-advisors, Profes-
sor Scott Smolka and Professor Radu Grosu, for their understanding, encouragement
and patience during my Ph.D. studies at Stony Brook University. I shall never forget
Scott’s willingness and patience to go through all my writings. And Radu was constantly
brilliant and instructive, correcting my errors and pointing out new research directions.
Without their support, I could not have done what I was able to do.

Thanks to the other two in my dissertation committee, Professor Scott Stoller and Dr.
Klaus Havelund. We have been working together in the SMCO project for more than a
couple of years. I thank them for their continuing guidance and inspiration.

Thanks to Justin Seyster and Sean Callanan, the two brilliant and diligent HCOS
group co-workers from the File System Lab. I feel honored to work with them. Both
of them are great implementers. Sean was always sharp and accurate at analyzing tech-
nical problems. Justin was the one who gave me the most help during the SMCO project.
He generously shared his thoughts with me whenever I had an obstacle. I cannot remem-
ber how many times I adopted his ideas and thus solved my problems. I will definitely
miss the opportunities to talk with him after I leave the department.

Ketan Dixit, my lab colleague for the last year and a half and co-worker in the SMCO
project, kindly helped me design experiments, run benchmarks, and collect tons of data.
I thank him for the hard work. It was a pleasant experience to work with him.

Tushar Deshpande, my another lab colleague. It was always fun to talk with him. We
shared research progress and exchanged ideas in different areas.

And thanks to my parents, for being all the time supportive and tolerant.

Chapter 1

Introduction

Model checking [16, 55, 10] is a widely used formal verification technique that, given a
model of a system, automatically verify if this model meets certain specifications. Tradi-
tional model checking is achieved by state-space exploration and restricted to the veri-
fication of properties of abstract automata-models. Software model checking [35, 59, 5],
however, specifically refers to directly performing model-checking on arbitrary software
without the effort of manually abstracting models, therefore holds the very potential to
close the gap between the programmer’s intent and actual product. Common software
model checking approaches fall into two kinds: automatic abstraction-based or concrete
execution-based. The execution-based approach usually relies on program instrumen-
tation, or rewriting, or virtual machine interception. Model abstraction and program
instrumentation are based on static analysis and require parsing the program source
at least into syntax level. Many features of modern programming languages, such as
object-orientation, dynamic dispatch, and high-order control flow, appear to be obstacles
to these approaches. Support from virtual machines, on the other hand, is restricted to
interpreted languages only.

We present a compiler-assisted, execution-based software model-checking technique
targeting all languages accepted by the given compiler. We treat the intermediate repre-
sentation of the program under compilation as an executable language and interpret it
using a customized virtual machine. Our model-checking method is based on this vir-
tual machine and has full access to its internal states. We have implemented two model
checkers: a stateless Monte Carlo model checker GMC? [39], and a bounded concrete-
symbolic model checker which uses dynamic path reduction [74] for reachability problems
of linear C programs.

GMC? is a software model checker for C based on the generic Monte Carlo model
checking algorithm [40]. Integrated with GCC, it takes the gimlified control-flow graph
of target program as input, as well as a C function representing the LTL property of in-
terest. GMC? interprets the GIMLPE statements during compilation. The target program
can contain concurrency primitives including process fork and POSIX message passing.
GMC? checks safety properties and liveness properties. In the case of safety properties,
the property function is called to check for property violations in the target program. In

the case of liveness properties, the property function is called to check if an accepting
state of the target program is visited infinitely often, viewing the target program as a
succinct representation of a Biichi automaton.

Dynamic path reduction (DPR) is a general algorithm to prune redundant paths from
the state space of a program under verification. It works in the context of the bounded
model checking of sequential programs with nondeterministic conditionals. The DPR
approach is based on the symbolic analysis of concrete executions. For each explored
execution path 7 that does not reach an abort statement, we repeatedly apply a weakest-
precondition computation to accumulate the constraints associated with an infeasible
sub-path derived from 7 by taking the alternative branch to an if-statement. We then use
a satisfiability modulo theory (SMT) solver to learn the minimally unsatisfiable core of
these constraints. By further learning the statements in 7 that are critical to the sub-path’s
infeasibility as well as the control-flow decisions that must be taken to execute these
statements, unexplored paths containing the same unsatisfiable core can be efficiently
and dynamically pruned.

The technique of runtime verification [24,7, 8, 19, 42, 41, 27] emerged in recent years
as a complement to exhaustive verification methods such as model-checking and theo-
rem proving, as well as incomprehensive solutions such as testing. It is a combination
of formal verification and program execution. Its objective is to ensure that a system sat-
isfies desirable properties at runtime; i.e., each computation of system under inspection
is observed and analyzed by a decision procedure called the monitor. In contrast to the
classical model checking approach, where a simplified model of the target system is ver-
ified, runtime verification is performed while the real system is running. Thus, runtime
verification or as it is sometimes referred to, passive testing, increases the confidence on
whether the implementation conforms to its specification. Furthermore, it allows a run-
ning system to reflect on its own behavior in order to detect its own deviation from the
pre-specified behavior.

In classic runtime verification, a system is composed with an external observer, called
the monitor, which is normally an automaton synthesized from a set of properties. Mon-
itors are triggered by events in the sense that every change in the state of the system in-
vokes the monitor for analysis. Therefore the drawback of this event-triggered runtime
verification is the potential overhead imposed on the system by the monitor in a short pe-
riod. Existing runtime verification frameworks, such as DTrace [14, 58] and DProbes [57],
let users insert probes into a production system at certain execution points. These tech-
niques have some limitations. One of them is that they are always on, meaning that
frequently occurring events can cause significant monitoring overhead. This raises the
fundamental question: is it possible to control the overhead due to software monitoring while
achieving high accuracy in the monitoring result?

To answer this question, in this dissertation, we introduce the new technique of Soft-
ware Monitoring with Controlled Overhead (SMCO) [48]. SMCO is formally grounded in
control theory, in particular, a novel combination of supervisory control of discrete event
systems[63, 1] and linear proportional-integral-derivative (PID) control[72] for continu-
ous systems. Overhead control is realized by disabling interrupts generated by moni-

tored events, and hence avoiding the overhead associated with processing these inter-
rupts. Moreover, such interrupts are disabled for as short a time as possible so that the
number of events monitored, under the constraint of a user-supplied target overhead oy,
is maximized.

To ensure the system is controllable, we instrument the application and the monitor so
that they emit events of interest to the controller. The controller catches these events, and
perform the control logic to control the monitor by enabling or disabling monitoring and
event signaling. SMCO uses a source-code instrumentation technique called compiler-
assisted instrumentation (CAI). CAl is based on a plug-in architecture of GCC [12]. The
CAI plug-ins can be dynamically loaded into GCC and then instrument target programs
by modifying various GCC internal data structures.

We applied SMCO to a number of monitoring problems. In this dissertation we
mainly discuss the case of integer range analysis, which determines upper and lower
bounds on the values of integer variables, in Section 7.3. We present our result in Chap-
ter 7, followed by discussion about SMCQO'’s ability to control overhead in a high event
rate system while retaining accuracy in the monitoring results.

The structure of the rest of this dissertation is as follows. Chapter 2 introduces the
compiler-assisted instrumentation technique, with our scripting instrumentation tool
GLua and its various application. Chapter 3 gives a general survey in software model
checking area and introduces a virtual machine implementation at compiler’s interme-
diate representation level (GVM). Chapter 4 discusses GMC?, the open source model
checker based on the generic Monte Carlo model checking algorithm. Chapter 5 explains
the dynamic path reduction algorithm for software model checking. Chapter 6 focuses
the control theory basis of SMCO. Chapter 7 evaluates performance of SMCO and an-
alyzes various controller optimization factors. Chapter 8 is the conclusion of compiler-
assisted technique and future work.

Chapter 2

Compiler-Assisted Instrumentation

Program instrumentation, as a technique to insert code fragments into target programs
without hardware support, is widely used in software debugging, testing, monitoring
and profiling. Typical program instrumentation techniques include:

e Source-level instrumentation. An additional parser is used to parse the target pro-
gram and locate the instrumentation spots. Almost all Aspect-Oriented Programming
(AOP) tools [52, 67, 2] fall into this category. AOP reads the target program, the
additional code (advice) that one wants to apply to existing model, and the speci-
tication of execution spots (pointcut) where advices shall be applied, then outputs
new versions of the program with instrumentation code inserted in. This process is
called code-weaving [65].

o Abstract-Syntax Tree (AST) level instrumentation. One example is the C Intermedi-
ate Language (CIL) [31, 60]. CIL is a simplified subset of C, as well as a set of tools
for transforming C programs into that language. CIL compiles all valid C programs
into a few core constructs with a very clean semantics. Its syntax-directed type sys-
tem makes it easy to analyze and manipulate C programs. Several other tools use
CIL as a way to have access to a C abstract- syntax tree.

e Compiler directly supported instrumentation, for example, the gnu gprof with sup-
port from the GCC compiler, which can inject profiling code at the beginning and
the end of functions and around the call sites by a command line option -pg.

All these software instrumentation techniques have some drawbacks. First of all, all
these approaches are code-oriented: they interpose on execution of specified instruction
in the code; events triggered by hardware or from environment (e.g., network packages)
can hardly be tracked. For AOP approaches, the code patterns of determining point-
cuts are usually limited into, e.g., before/after call sites, function front/ends, variable
assignments, and so on. Furthermore, any AOP tool is bounded with only one specific
language and requires a tedious re-implementation of program parser.

2.1 GCC Intermediate Representation

Program instrumentation in SMCO is facilitated by a technique called Compiler-Assisted
Instrumentation (CAI). CAl is based on a plug-in architecture for GCC [13, 12]. It can
separately compile instrumentation plug-ins as shared libraries, which are then dynam-
ically loaded into GCC. Plug-ins have read /write access to various GCC internal struc-
tures, including abstract-syntax trees (ASTs), control flow graphs (CFGs), three-address
code (GIMPLE statement), static single-assignment (SSA) and register-transfer language
(RTL). In August 2010, the plug-in architecture has been officially adopted into GCC
4.5 [32]. Based on the GCC compiler, CAI achieves the following advantages:

Versatility: Access to the full parse tree and control flow graph of a program allows in-
strumentation of a wide variety of code patterns with full type information; further-
more, CAl accepts any program in any language supported by the GCC compiler.

Accuracy: Instrumentation can be used in combination with full compiler optimization,
making results as close as possible to the uninstrumented program.

Speed: Compiler-assisted instrumentation makes monitoring functionality part of the
program itself.

CALI focuses on GCC whose architecture is illustrated in Figure 2.1. We now briefly
discuss each individual intermediate representation used by GCC and explain why the
GIMPLE intermediate representation is the most suitable level to be instrumented.

Middle End

Front End |

un-SSA —{ RTL

|

|

| \

: C++ AST Generic (11 GIMPLE [—+| SSA .

[[——nr ey i hae=l ———
| / | \ /I ==
| |Java AST N opt I ——
| pass N | machine| |
b e e e e e S e e e e e e | | | l| code ||

e | |

e i s

Back End

Figure 2.1: The GCC architecture

Abstract-Syntax Trees (AST) After parsing program source, compilers represent the pro-
gram as a collection of trees, namely the abstract-syntax trees. Each tree denotes the
syntactic structure of a function. Each node of the tree denotes a construct occur-
ring in the function. The syntax is “abstract” in the sense that it does not represent
every detail that appears in the real syntax. For instance, grouping parentheses are
implicit in the tree structure, and a syntactic construct such as an if-condition-then
expression may be denoted by a single node with two branches.

At the AST level, instrumentation can most easily detect common programming

idioms — such as use of iterators in a loop — without performing extra analysis.

GENERIC Form In GCC, the GENERIC [56] form simply provides a language-independent
way of representing ASTs, which differ from one programming language to an-
other. Some new tree nodes are added to this form. Certain information of spe-
cific language idioms, e.g., X++ in C/C++, are removed from generic form. The
GENERIC representation is used as the input to compiler’s middle-end.

GIMPLE Form GIMPLE [56] is a simplified GENERIC, in which various constructs are
lowered to multiple three-address statements. These statements take no more than
three operands (except function calls). For example, a GIMPLE assignment takes at
most two values and applies an operator on them to produce a third. GIMPLE
statements retains all the type information that was discovered during parsing,
and share the building blocks of the abstract-syntax tree representation, but much
are simpler to manipulate. Since the number of operands are limited, GIMPLE
statements can easily be written in the form of tuples. For instance, an assignment
Xx=a+l; canby represented as a 5-element tuple (GIMPLE_ASSIGN, x, +, a, 1)

The compiler pass which converts GENERIC to GIMPLE is referred to as the
gimplifier. The gimplifier works recursively, generating GIMPLE tuples out of the
original GENERIC expressions. This procedure is called lowering. To lower multiple-
operand GENERIC statements into three-address GIMPLE statements, the gimpli-
fier generates temporary variables for intermediate values; additionally, it simpli-
ties the control-flow structure by constructing a control-flow graph and replacing
more sophisticated structures with conditional gotos. Figure 2.2 shows a C program
and its corresponding GIMPLE representation.

1. int foo() { 1. int foo() {
2 int a, b; 2. int a, b, T1, T2, T3;
3 a = 5; 3. a = b5;
4. b =2 = bar(a), 4. T1 = bar(a);
5. if (@ > b) 5. b =2 * T1;
6 return a+(a *h); 6. if (@ > b) goto LO else goto L1
7 else 7. LO: T2 = a * D
8 return a; 8. T3 = a + T2
9. } 9. return T3;
10. L1: return a;
11. }

Figure 2.2: Sample C Program and Corresponding GIMPLE representation

Static Single Assignment (SSA) Form SSA form [23, 61] is a special GIMPLE represen-
tation in which every variable is assigned exactly once. Variables in the original
GIMPLE are split into versions, new variables typically indicated by the original
name with a subscript, so that every definition gets its own version.

Sometimes, flow of control makes it impossible to determine the most recent
version of a variable. In these cases, the compiler inserts an artificial definition for
that variable called PHI function or PHI node. This new definition merges all the
Incoming versions of the variable to create a new name for it. For instance,

1. if ()

2. al =5;

3. else if (...)

4. az2 =2

5. else

6. a3 =13

7.

8 # a4 =PHl <al, a2 a3>
9. return a_4;

Most of the tree optimizers rely on the data flow information provided by the
SSA form, including constant propagation, dead code elimination, global value
numbering, partial redundancy elimination, and register allocation.
Register-Transfer Language (RTL) The last part of the compiler work is done on a low-
level intermediate representation called the Register-Transfer Language. In this
language, the instructions to be output are described, pretty much one by one, in
an algebraic form that describes what the instruction does. RTL is close to assembly
code. It determines the kind of storage that each variable requires, then performs
register allocation and final instruction selection.

For program instrumentation, the GIMPLE intermediate representation is highly rec-
ommended because of its simplicity, flexibility, convenience and language independence.
The GIMPLE representation is designed for ease of manipulation by programmers [61].
GCC developers have already provided a rich API to manipulate GIMPLE statements [20].
In contrast, GENERIC form and RTL form are much more complicated. At GIMPLE level,
a function’s control-flow graph is ready for data-flow and control-flow analyses. Also the
three-address code form provides a very simple syntactic structure which reduces the
number of side-effects that must be considered when instrumenting. The fact that most
optimization passes are performed at the GIMPLE level gives developers more flexibility
whether or when to insert their own transformation pass. For example, running a virtual
machine at GIMPLE level usually prefers to be done prior to constant propagation op-
timization pass, so that it is easier to track which line of source code corresponds to the
virtual machine’s current program counter; if it runs after all optimization passes, then
one achieves maximum efficiency: least code to be executed.

2.2 Instrumenting GIMPLE

2.2.1 GCC Plug-in Architecture

Before GCC 4.5 was released, we extended GCC to support plug-ins by modifying the
GCC source code. This modification is small and does the following tasks:

e Compile libtool library Itdl into GCC and link GCC with -export-dynamic option.
This allows GCC to load external shared objects and allows a shared object to access
GCC interfaces.

e Add the compiler option -ftree-plugin=<filename> to allow users to specify plug-ins
and provide arguments to those plug-ins on the command line.

e Modify GCC’s optimization pass manager and set up several additional optimiza-
tion passes which will invoke functions that GCC finds in the loaded plug-ins. Two

7

new optimization passes are inserted at the beginning and end of translation for
each file, i.e., they are executed once per translation-unit. Other passes are called
once for every function in the program under compilation. The most commonly
used one is inserted right after the inter-procedural analysis pass, allowing the plug-
in to manipulate the GIMPLE representation of the current function, including the
control-flow graph.

Since the release of GCC 4.5, we ported our plug-in implementation to the new archi-
tecture. GCC 4.5 supports plug-in by nature and provides a rich plug-in API which offers
more flexibility and enforces code security. However, basic ideas of the two architectures
are similar. Hence the migration from our old architecture to GCC 4.5 is trivial.

2.2.2 GCC Internals

Instrumenting programs under compilation is all about manipulating GCC’s internal
data structures. Every GCC plug-in developer must have knowledge about those key
data structures and corresponding programming interfaces, which, unfortunately, is not
nicely documented.

From a plug-in developer’s view, the most important data structures in GCC are tree,
gimple statement, basic block, and function.

Tree Tree is the central data structure used by internal representation. A tree is a pointer
type. The object it points to may be of a variety of types. Every construct in the
program under compilation is a tree in GCC, e.g., identifiers, type definitions, con-
stant values, strings, expressions, statements, blocks, functions, or even container
data structures such as vectors and lists. For each type of the tree, there is a set of
macros and functions can apply. For example, for a tree denoting a function call
expression, there are macros or functions to get function name, function type and
a way to iterate all its parameters. Cautions are needed to manipulate trees since
applying wrong macros (functions) to a tree will cause compiler internal error.

Gimple Statements Gimple statements in GCC are tuples of different types and vari-
able length. The first element in gimple statement tuple is always its type. The
rest of this tuple depends on the type and operands of the gimple statement. For
example, for a conditional goto statement, the tuple contains these elements: the
type, the conditional expression, the label of the destination of then-branch, and
the label of the destination of else-branch. GCC provides API to traverse gimple
statements within a basic block or function, access any element in a gimple tuple,
and insert/remove a gimple statement into/from a sequence of gimple statements.

Basic blocks Basic blocks are straight-line sequences of gimple statements with only
one entry and only one exit. Each basic block has a unique identifier and denotes
one node in the control-flow graph. It may have multiple predecessors and multi-
ple successors. Connected basic blocks are linked by another data structure edges.
Edges represent possible control flow transfers from the end of some basic block A
to the head of another basic block B. GCC provides API to visit all basic blocks in a
CFG. The following snippet illustrates a common way to traverse all the statements

of the program in the GIMPLE representation.

basic_block bb;
FOR_EACH_BB(bb)

{
block_stmt_iterator si;
for (si=bsi_start(bb); !bsi_end_p(si); bsi_next(&si))
{
tree stmt = bsi_stmt(si);
print_generic_stmt(stderr, stmt, 0);
}
}

Function Every function data structure in GCC represents a corresponding function def-
inition in program source, if not inlined. A function has four core parts: the name,
the parameters, the result, and the body. GCC provides a global variable cfun ,
which is a pointer to a function data structure representing current function, as an
implicit parameter for all optimization passes. Starting from cfun , one is able to
track down till any tree node in any gimple statement.

2.2.3 Pass Managers

Code optimization in GCC occurs during any phase of compilation, however most op-
timizations are performed after the syntax and semantic analysis of the front-end and
before the code generation of the back-end. In other words, optimization mostly occurs
at middle-end upon GENERIC or GIMPLE form.

Passes are those procedures that GCC invokes to analyze or transform intermediate
representations. Typically one pass serves for one specific purpose, e.g., building control-
flow graph. GCC defines about 60 gimple optimization passes. When one turn on the
-O2 compiler flag, 53 gimple optimization passes will be invoked [33].

Results by one pass persists to the next pass. Some passes rely on the output of pre-
vious passes to proceed, e.g., all Tree-SSA passes require the build_ssa pass. This depen-
dency relation between passes are managed by GCC’s pass manager. Its job is to run all
of the individual passes in the correct order, and take care of standard bookkeeping that
applies to every pass.

The GCC plug-in architecture allows users to add their own custom passes without
patching and recompiling the GCC source code. The plug-in shared object shall export a
function called plugin_init that is called right after the plug-in is loaded. This func-
tion is responsible for registering all the callbacks required by the plug-in and do any
other required initialization. GCC’s plug-in API provides basic support for inserting
new passes or replacing existing passes. A plugin registers a new pass with GCC by
calling register_callback with the PLUGIN_PASS MANAGER_SETWRent and a
pointer to a struct register_pass_info object. GCC inserts the callback function
or replaces existing ones with it at any position in the chain of passes.

2.3 GLua: Scripted Program Instrumentation

Although the GCC plug-in architecture provides great convenience for the development
and maintenance of GCC expansions, the developers may still suffer from the complexity
of GCC internals. Though the GIMPLE intermediate representation is the simplest level
to manipulate, a plug-in developer still needs to directly deal with low-level GIMPLE
language, sometimes delve into the even more cumbersome tree nodes manipulations.
Writing a plug-in therefore requires quite a familiarity with GCC internals.

To address this problem, we developed GLua, a special GCC plug-in that reads and
executes user-specified script to facilitate plug-in development. GLua ’s architecture is
depicted in Figure 2.3.

Lus Sefipt I::> GLua Exccutable
Program 5 |:‘I > .
o ::> Gcl\gddle-end

Figure 2.3: Architecture of GLua

GLua is an idea to export the accesses of the most important GCC internal data struc-
tures to a light-weighted, easy-to-extend scripting language Lua [54]. Functionalities that
used to require a lot of coding, such as control-flow graph traversal, gimple statement
manipulation, tree node properties extraction, now turn into a few lines of Lua code.
We exported GCC’s tree, gimple statement, basic block, function data structures as four Lua
objects. Functions to access these GCC data structures turn to be Lua methods of corre-
sponding object, e.g., entryblock for the function object to retrieve the entry basic block.

Using GLua saves user from directly handling low-level data structures. Lua’s simple
procedural syntax and powerful data description facilities help C programmers to grasp
program logic better. Also a Lua script is much faster to write and easier to debug than a
C program.

2.3.1 GLua Usage

GLua is implemented as a plug-in that runs a Lua script when the plug-in’s pass get
chances to execute. Path of the Lua script and various arguments are passed to GLua via
command line. GLua also supports interactive mode. User can pause the execution and
talk with Lua virtual machine by entering Lua language statements, just like running
Python in a console.

This easiest case of invoking GLua is by command line arguments. By default, glua
accepts the following arguments.

e script=path/to/lua/script: specify Lua script to execute; default is gcclua.lua.

10

o ref-pass-name=name: specify a reference pass name; default is *all_optimizations.

e insert-[after|before|replace]: execute Lua script after/before or replace the referenced
pass; default is after.

e interactive: run in interactive mode.

In GCC 4.5, arguments passed to plug-in shall be prefixed -fplugin-arg- . There-
fore a typical command to invoke GLua is like as follows:

gccd.5 -¢c -g -0O2 test.c -fplugin=libgcclua.so
-fplugin-arg-script=duplicate.lua
-fplugin-arg-ref-pass-name=ccp -fplugin-arg-insert-before

GLua also provides a way to specify arguments via environment variables. Supported
environments variables are:

GCCLUA_SCRIPT = path/to/lua/script

GCCLUA _REF_PASS = name

GCCLUA_INSERT = [after|before|replace]
GCCLUA_INTERACTIVE = [false|true]: default is false.

With the environment variable settings loaded in a shell, a user can use a much short-
ened command line: only has to specify the path to the Lua script. Note if an environ-
ment variable argument conflicts with a command-line argument, GLua acknowledges
the command-line argument.

Once a Lua script is loaded by GLua, it tries to execute three global functions with
specific names declared in the script:

gcclua_pre This Lua function will be executed when the GLua plug-in is initialized. In
this function, a user usually initialize local variables or open log files.

gcclua_post This Lua function will be executed when the optimization passes have been
all finished. Typically this is the chance that a user can report synthesized results
or finalize a log file.

gcclua This Lua function will be executed once for each function, depending on user
specifications, before or after a particular reference optimization pass. GLua will not
pass any parameter to this function. However, it can access GLua’s global variable
cfun to get the handle of current function being investigated. Given the cfun object,
the user can track down to all its local variables, basic blocks, gimple statements,
etc.

The Lua script in Figure 2.4 shows an example of GLua script. This script counts the
number of functions in a source file and prints all their referenced variables.

2.3.2 The GLua API

Note that using GLua does not mean the users do not have to have any knowledges about
GCC internals at all. The users still need to know basic ideas of trees, gimples, and basic
blocks. However, they are now free from much detailed GCC internal macros and APIs.

11

local count

function gcclua_pre()
count = 0
end

function gcclua_post()
print("total functions:
end

", count)

function gcclua()
count = count + 1

local fn = gcc.cfun
print(fn);
local vars = fn:referenced()

print(referenced:’, #vars)

for

_, Vv in ipairs(vars) do

print(v, desc)

end
end

Figure 2.4: A GLuascript to count functions and prints their referenced variables

e tree object

artificial
operand(i)
iscomponentref
isconstructor
isarrayref
n_operands

codeinfo

ptr

type_decl

static

public

isptr

decl_initial

istype

code
type_cmp(another)

isfndecl

Respectively, these GLua objects supports the following methods:

tree is compiler-created artificial node.

if tree is an expression, return the i-th operand.

if tree is a pointer to a structure.

if tree is a structure variable initializer.

if tree is an array address.

if tree is an expression, return the number of its
operands.

return a tuple of four: (operand, tree code name, tree
code class, tree code length).

return the absolute address of tree.

if tree is a type declaration, return the name.

if tree is a static variable.

if tree is a public variable.

if tree is a pointer.

if tree is a variable declaration, return its initial value.
if tree is a type definition.

return the tree code number.

check if two trees are definition of the same type, e.g.,
unsigned int and size_t; throws an error if either of two
is not a type..

if tree is a function definition.

12

type_quals

isindirectref
isvardecl

type
isssaname
addressable

ssaname_oar

isdecl
decl_name

constant
readonly
volatile

decl_isexternal

iscmp
isref
isconstant
properties

e gimple object

ptr
basicblock

codename
n_operands

operand(i)
exprcode

location

if tree is a type, return a tuple of three boolean values:
(const, volatile, restrict), namely the type qualifiers.
if tree is an indirect reference, e.g., * p in C.

if tree is a variable declaration.

return the type of tree.

if tree is a temporary ssa (single static assignment)
name variable.

if tree is an addressable variable, i.e., can be used at
the left hand side in an assignment.

if tree is an ssa variable, return the actual variable be-
ing referenced.

if tree is a variable or function declaration.

if tree is a declaration, return the name of the object as
written by the user.

if the tree expression is constant.

if the type tree is const-qualified.

if the type tree is volatile-qualified.

if tree is declared externally.

if tree is a comparison expression.

if tree represents a reference.

if tree represents a constant value.

for any tree node, return a list of applicable proper-
ties and their values; user can iterate this list and find
out all available information of the tree. its usage is
shown in Section 2.4.2.

return the absolute address of gimple.

return the basicblock object containing this gimple.
return gimple’s code name in text form. ie., gim-
ple_assign, gimple_cond, ...

return the number of operands of gimple.

return the i-th operand of gimple.

if gimple is an assignment, return the right-hand side
expression operator code; if gimple is a conditional
statement, return the code to comparison expression.
return the location of gimple in a pair: (filename,
lineno).

13

tuple

e basicblock

ptr

index
prev
next
preds
succs
gslist
philist

loopdepth
insert_before(ref,
new)
insert_after(ref,
new)

o function

ptr
decl

entryblock
exitblock
referenced

params
n_basicblocks
basicblocks

returns variable length tuple according to type of
gimple. returned tuple can be either case of the fol-
lowing;:
- "gimple_assign”, 1hs, opcode, rhsl, rhs2
- "gimple_call”, lhs, fn, {args...}
- "gimple_cond”, lhs, opcode, rhs, true_label,
false_label
- "gimple_goto”, label
- "gimple_label”, label
- “gimple_nop”
- "gimple_phi”, result, {argl=from], ...}
- "gimple_return”, retval
- "gimple_switch”, index, {caselabels...}, de-
fault_label

return absolute address of the basicblock object.
return the index number of current basicblock.

return the previous basicblock in chain.

return the next basicblock in chain.

return the set of predecessors of current basicblock.
return the set of successors of current basicblock.
return the iterator of gimples in basicblock.

return the iterator of ¢-statements in basicblock. note
that a basic block may have several ¢-statements, and
they can only be accessed by ¢-statement iterators.
return loop depth of basicblock.

insert new gimple statement before reference state-
ment ref.

insert new gimple statement after reference statement

ref.

return absolute address of the function object.

return the function declaration tree object.

return the entry basicblock.

return the exit basicblock.

return a set of trees represents variables referenced by
this function.

return the list of function parameters as trees.

return the number of basic blocks in the function.
return the set of all basicblocks in the function.

14

n_edges return the number of edges.

edges return the set of all edges connecting basic blocks in
pairs: (src, dest).

name return the function name.

duplicate_body(makes another copy of function body (blocks except

tmpoar, dist) entry and exit along with their topology). it also adds

a distributor block to direct to two bodies. The dis-
tributor block is like the following:

int tmpvar;
tmpvar = dist();
if (tmpvar != 0)
goto <NEW_BODY>
else
goto <OLD_BODY>;

O, WNBE

if dist is NULL, line 2 is replaced by tmpvar = O ;
then it is the user’s duty to further populate the dis-
tributor block.

The Lua script in Figure 2.5 shows how to traverse and print all basic blocks and
GIMPLE statements in a function.

function gcclua()
local fn = gcc.cfun

print(fn);
local bb = fn:entryblock()
while (bb) do
local line = tostring(bb) .. " [’
for _, succ in ipairs(bb:succs()) do
line = line .. '# .. tostring(succ:index()) .. '’
end
print(line .. 'T)

for gs in bb:gslist() do
print(" "..tostring(gs))
end
bb = bb:next()
end
end

Figure 2.5: A GLua script to traverse basic blocks and gimple statements

Besides these objects, GLuasupports the following auxiliary functions or data mem-
bers. They are mostly used for program instrumentations.

filename filename of current translation unit under compila-
tion.
quit_compilation force GCC to quit compilation.

15

cfun

dump _stack
recursive_dump(
table)

static_vars
build_tmp _var(ty)
build_local var(ty,
name)
get_builtin_type(
typename)

build_string(str)
build_int_cst(n)

current function under work.

print Lua VM’s current stack frames.

a utility function to recursively print the content of a
Lua table.

return the set of all global variables.

make a temporary function local variable of type ty.
make a function local variable with specified name of
type ty.

get a tree representing the type specified by type-

name. currently GLua supports: “void”, “bool”,
“char”, "unsigned char”, ”short”, unsigned short”,
”int”, “unsigned int”, “long”, “unsigned long”, “long

long”, “unsigned long long”, “float”, “double”,
”void *”, ”char *”, ”int *”, "float *”, “double *”.

build a string constant.

build an integer constant.

build_function_decl(build a function declaration with specified return
ret_ty, name) type and function name, but with zero parameters.
build_gimple_assign(create a new gimple assignment statement: lhs =
lhs, op, rhs1, rhs2) rhsl op rhs2

build_gimple_call(create a new gimple function call statement: lhs =
lhs, fn_decl, args, fn_decl(args, ...)

)

Usage of these auxiliary functions are best shown in Figure 2.12, where we insert a
trace function at the beginning of every basic blocks except the entry block and the exit
block.

Due to the capability of introspection of a dynamic language, the users can always
use the program in Figure 2.6 to print out the entire GLua API.

function gcclua()
local libs = { "gcc",
"gcc_function”,
"gcc_basicblock”,

"gcc_gimple”,
"gcc_tree” }
for _, lib in ipairs(libs) do
print(’ * ' L dib oL *)

for k, v in pairs(_G[lib]) do
print(type(v), k)
end
print()
end
gcc.quit_compilation(0)
end

Figure 2.6: glua-help: a GLua script to list GLua API

16

2.3.3 Related Work

Although GLua is working on the cutting edge of GCC plug-in framework, it is not the
only known compiler-based program instrumentation technique. Almost at the same,
our research group developed InterAspect [65], an aspect-oriented instrumentation frame-
work, upon GCC plug-in infrastructure. InterAspect allows instrumentation plug-ins to
be developed using the familiar vocabulary of Aspect-Oriented Programming pointcuts,
join points, and advice functions. In AOP, a pointcut denotes a set of program points, called
join points, where calls to advice functions can be inserted by a process called weaving.
But unlike traditional AOP systems which implement a special AOP language to define
pointcuts, Inter Aspect provides a C API to do this.

InterAspect also supports customized instrumentation, where specific information about
each join point in a pointcut, as well as results of static analysis, can be used to customize
the inserted instrumentation. InterAspect’s API allows users to customize the weaving
process by defining callback functions that get invoked for each join point. Callback func-
tions have access to specific information about each join point; the callbacks can use this
to customize the inserted instrumentation, and to leverage static-analysis results for their
customization.

The benefits of InterAspect are obvious. It is based on GCC plug-ins and has access
to GCC internals, therefore allows users to exploit static analysis during the weaving
process. It simplifies program instrumentation by not having to be intimately familiar
with GCC internals. Furthermore it does not require knowledge to any AOP language; a
programmer with just C background can do.

Both based on GCC plug-in infrastructure and acting for GCC internals, GLua differs
from InterAspect by exposing GCC internals with Lua objects. Instead of C API. GLua’s
objects — tree, gimple, basicblock and function, are adopted from GCC’s notion, which
means GLua is not GCC-transparent. However, GLua objects offer more information and
programming flexibility than InterAspect. For example, GLua exposes all properties of
a tree node, and allows iterating basic blocks and GIMPLE statements in a function.
Utilizing Lua’s scripting power, GLua can easily realize InterAspect’s capability with less
coding.

As InterAspect is purposed to perform AOP-style program instrumentation, GLua can
be viewed more than a program instrumentation tool. Section 2.4 shows some applica-
tions of GLua used as debugger and profiler.

24 GLua Program Instrumentation Tools

Upon the GLua framework, we developed a series of tools to facilitate program instru-
mentation. These tools can also be considered applications of GLua.

24.1 Control-Flow Graph Visualizer

Control-Flow Graph Visualizer is inspired by the GIMPLE Development Environment (GDE) [25]
and LLVM [70]. The GDE tool consists of a GCC plug-in which extracts GCC’s interme-

17

diate representation and dump it in text form to a file, and a Java program which loads
the text file and visualize the CFG. GDE is interactive: CFG nodes are draggable inside
the visualizer window; tree properties are shown in side panel by clicking CFG nodes.
LLVM’s CFG visualizer is merely an optimization pass which collects CFG information
and dumps it as a plain-text graph description file (.dot), which can be converted to a
picture by graphviz [4].

Our CFG Visualizer is a GLua script which: (1) dumps CFG in XML form; (2) converts
the XML file to graphviz input language; (3) render it on screen. Figure 2.7 shows a sample
C program and Figure 2.8 its corresponding CFG rendering.

int simple(int x, int y) {
X *= 2;
y += 5;
if (x >=y)
return 1;
else
return O;

Figure 2.7: Sample C program

<basic block: 2>
x3=x2(D) *2;

y 5=y 40D +5;
if ®3>=y05)

ﬁwen xlise

<basic block: 3> <basic block: 4>
D.2704_6 = 1; D.2704_7 = 0;

N,/

<basic block: 5>
D.2704_1 = PHI <D.2704_6(3), D.2704_7(4)>
return D.2704_1;

Figure 2.8: Control-flow graph of function simple ()

Using CFG Visualizer facilitates debugging plug-in. As it shows the effect of instru-
mentation on screen, the developers gain insight into whether the instrumentation task
has correctly taken effect, without having to deploy and run instrumented program. It
also helps understand how GCC optimizes code at GIMPLE level.

18

2.4.2 Tree Tracker

When coding GCC plug-in, one of the challenging problems is accessing the tree node.
Applying macros on wrong types of trees will cause GCC to abort, with very vague error
message. The tree tracker provides a way to visually show the type, memory address,
and text description of a tree node, along with all properties the tree node may have. It it
shown as a two-column table with property names at the left column and the values of
the properties at the right column; see the three screenshot pictures in Figure 2.9.

File Edit Fle Edit File Edit

Ea N & | Nl o | o g

description fib description n description n

self (tree) ox2blofas7fboo self (tree) Ox2bl0fa575cc0 self (tree) 0x2b10f4573d10
tree_code function_decl tree_code parm_decl tree_code identifier_node
tree_code_class declaration tree_code_class declaration tree_code_class exceptional

dec|_abstract false decl_abstract false identifier_length 1

decl_align 8 decl_align 32 identifier_pointer n

decl_arguments<o> |(tree) Ox2blofas7scco decl_arg_type tree) 0x2bl0ede7dado

decl function_code <builtin> decl_context tree) 0x2b10f457fb00

decl_initial tree) 0x2bl0f44fc9co dec|_mede Simode

decl_mode Qlmode decl_name (tree) Ox2b10f4573d10

decl_name tree) 0x2b10f4573e18 dec|_size tree) 0x2bl0ede6bd50

decl_result tree) 0x2b10f453a780 decl_source_file test.c

decl_source_file test.c decl_source_line 4

decl_source_line 4 tree_addressable false

tree_asm_written false tree_type tree) 0x2bl0ede7d4do
tree_type tree) 0x2bl0ede95dcO

((tree) 0x2b10f457fbo0) ((tree) 0x2b10f457fb00).decl_arguments<0> ((tree) 0x2b10f457fb00).decl_arguments<0>.decl_name

(a) function declaration (b) first parameter (c) parameter name

Figure 2.9: Tree Tracker

Note that if the value of a property is an another tree node, then this tree node is
printed in blue color and click-able. In Figure 2.9, picture (a) is the function declaration
tree node of function int fib(int n) ; picture (b) is the parameter declaration of that
function; picture (c) is the name identifier of that parameter. Picture (b) is brought by
clicking the greyed area in picture (a) and picture (c) is brought by clicking the greyed
area in picture (b).

Tree tracker is bounded with GCC and requires no intermediate file dump. Its GUI
infrastructure is wxlua, a lua export of wxWidgets [68] library.

2.4.3 Function Duplicator

Function duplicator creates a copy of the body of every function to be instrumented. A
distributor block at the beginning of the function calls a user-specified external function
to determine which version of function body shall be executed: the original one or the
duplicated one. It is especially suitable for the cases that the user wants to dynamically
toggle instrumentation at runtime. For that the user can instrument only the duplicated
function body and use the external distributor function to switch between instrumented
and uninstrumented code. Figure 2.10 shows a typical code snippet doing function du-
plication. Figure 2.11 shows the effect after function duplication upon the C program
listed in Figure 2.7.

19

if dist_call == nil then
local tree_inttype = gcc.get builtin_type("int")
local tree_dist_call = gcc.build_function_decl(
tree_inttype, "distribute")
dist_call = gcc.build_gimple_call(nil, tree_dist_call)
end
fn:duplicate_body("__tmpvar__ ", dist_call)

Figure 2.10: Sample Lua code doing function duplication
<basic block: 10>

__tmpvar.__.0_13 = distribute ();
if (_tmpvar_ .0 13 !=0)

then else
<basic block: 2> <basic block: 6>
x3=x20D) *2; x8=x2D) *2;
y.5=y40D) +5; v 9=y40D) +5;
if (x3>=y.5) if ®x8>=y9)
then else then else

<basic block: 8>
D.2704_11 = 0;

<basic block: 7>
D.2704_10 = 1;

<basic block: 4>
D.2704_7 = 0;

<basic block: 3>
D.2704_6 = 1;

<basic block: 5> <basic block: 9>
D.2704_1 = PHI <D.2704_6(3), D.2704_7(4)> D.2704_12 = PHI <D.2704_10(7), D.2704_11(8)>
return D.2704_1; return D.2704_12;

Figure 2.11: duplicated function simple ()

2.4.4 Basic Block Profiler

GCC’s program profiling tool gprof [38] is limited at function level. However sometimes
profiling inside a function may give programmers more insight on where to further im-
prove program execution efficiency, for example, a frequently executed loop body. It may
also lead to a direction of so called profile-guided optimization (PGO) [49]. For example, in-
formation obtained by execution path profiling allows the compiler to put sequential ba-
sic blocks in a frequently executed path conjointly in the object file. Therefore their code
are more likely to appear in same memory page, thus improves CPU cache-hit chance.

Our basic block profiler is a good illustration of how to instrument program using GLua.
It inserts a visit_basicblock function at the beginning of every basic blocks. This
visit_basicblock function is defined at an external library which need to be linked
with the program being instrumented. It takes the function id and basic block index as
parameters:

void visit_basicblock(register int fn_id, register int bb_id)
The two parameters fn_id and bb_id are fixed values provided by GCC compiler

20

and passed to visit_basicblock as constants.

When the basic block is executed, visit_basicblock will record path information.
When program exits, the external library saves collected path information to disk file,
particularly an XML file in our implementation.

The main part of the basic block profiler script is listed in Figure 2.12.

function gcclua()
local fn = gcc.cfun
local bb = fn:entryblock()
while (bb) do
if bb "= fn:entryblock() and bb "= fn:exitblock() then
local tree_fnid, tree_bbid, tree_ voidtype
local tree_fndecl, gs_call

tree_fnid = gcc.build_int_cst(fn_id)
tree_bbid = gcc.build_int_cst(bb:index())
tree_voidtype = gcc.get builtin_type('void’)
tree_fndecl = gcc.build_function_decl(
tree_voidtype, 'visit_basicblock’)
gs_call = gcc.build_gimple_call(
nil, tree_fndecl, tree_fnid, tree_bbid)
for gs in bb:gslist() do
if gs:codename() "= ’'gimple_label’' then
if not bb:insert _before(gs, gs_call) then
print(... failed’)
end
break
end
end
end
bb = bb:next()
end
fn_id = fn_id + 1
end

Figure 2.12: basic block profiler script

2.4.5 Symbolic Executor

Symbolic execution is primarily use in model checking [17, 74]. It may also provides
informations that can not be achieved by compiler’s optimization passes or any static
analyzers. For example, symbolic execution can detect infeasible execution paths that
static analysis cannot find. Consequently, using the computation result from symbolic
execution, a compiler can perform more extensive dead-code elimination, leading to re-
duced code page size and improved cache-hit frequency.

Our symbolic executor is based on the SMT tool Yices [21]. To invoke Yices from Lua,
we developed a Yices Lua wrapper YicesLua. This wrapper library exports a part of Yices
C API and wrap it in Lua interface so that GLua can call Yices.

21

The symbolic executor takes the SSA-form control-flow graph and path branching
choices as input. The path branching choices indicates which branch to take when the
executor meets a conditional goto statement. If this path is feasible, the symbolic executor
answers yes; otherwise answers no and reports how far along the path did the execution
fail. Given the C program as follows:

int foo(int n) {
int x =1,y =7,

if (y>n) y-=n;

if (X <=y) X +=y;
else X = 2 *y-1;

if (x > 1) return 1,
else return O;

}

the symbolic executor outputs

function: int foo (int)

checking path 000: no, failed at depth:
checking path 010: no, failed at depth:
checking path 100: no, failed at depth:
checking path 110: no, failed at depth:
checking path 001: no, failed at depth:
checking path 011: yes

checking path 101: no, failed at depth: 2
checking path 111: yes

NWNWN

which means only paths {false, true, true} and {true, true, true} are feasible. So at the last
if-statement, only the then-branch is possible to be taken. Thus the program is function-
ally equivalent to

int foo(int n) {
return 1;

}

22

Chapter 3

Compiler-Assisted Software Model
Checking

3.1 Overview of Software Model Checking

The root of software model checking can be traced back to logic and theorem proving.
Initially the focus of program verification research was on manual reasoning, and the
development of axiomatic semantics and logics for reasoning about programs provided
a treated as logic objects [46, 26]. As the size of software systems grew, providing entire
manual proofs became too cumbersome. This situation leads to a trend toward automat-
ing program reasoning, and further broadened the scope of the automated techniques,
both in the scale of programs and in the variety of properties that can be checked.

In the Eighties, the researches of techniques and the development of accompanying
tools for automatic model checking for temporal logics [15, 62] provided much powerful
algorithmic tools for state-space exploration. Meanwhile the theory of abstract interpreta-
tion [22], as one of the static analysis techniques, established a link between the infinite
state spaces of real programs and the logical finite representations. More recently, tech-
niques of symbolic model checking with BDDs [55] or SAT-Solvers [10] further extended
program scale that can be handled.

Modern software model checkers appear to be combinations of these techniques that
traditionally classified as theorem proving, or model checking, or static analysis. More-
over, we tend to regard tools that perform throughout testing also as software model
checkers, as long as the most important characteristic of model checking is exhibited:
when a specification is found not hold, a counterexample is given.

3.1.1 Abstract Software Model Checking

For infinite state programs, concrete model checking may run out of resources and sym-
bolic reachability analysis may not terminate, or take an inordinate amount of time or
memory to terminate. Abstract model checking trades off precision of the analysis for
efficiency. In abstract model checking, reachability analysis is performed on an abstract
domain which captures some, but not necessarily all, the information about an execu-

23

tion, using an abstract semantics of the program [22]. A proper choice of the abstract
domain and the abstract semantics ensures that the analysis is sound (i.e., proving the
safety property in the abstract semantics implies the safety property in the original) and
efficient.

But in general abstract model checking is incomplete, i.e., the abstract analysis can
return a counterexample even though the program is safe. Therefore a technique called
refinement is needed to determine whether the counterexample is genuine, i.e., can be
reproduced on the concrete program. If the counterexample is spurious, we would addi-
tionally like to automatically refine the abstract domain, that is, construct a new abstract
domain that can represent strictly more sets of concrete program states.

Famous abstract model checkers include:

Slam The Slam [6] model checker introduced boolean programs, an imperative programs
where each variable is boolean, as an intermediate language to represent program
abstractions. A tool (called c2bp) implemented predicate abstraction for C pro-
grams. A tool called bebop performs symbolic execution upon the boolean program.
Finally, abstraction refinement was performed by a tool called newton, which im-
plemented a greedy heuristic to infer new predicates from the trace formula. Slam
was used successfully within Microsoft for device driver verification and devel-
oped into a commercial product.

Blast The Blast model checker [45, 9] implements an optimization of abstraction and re-
tinement called lazy abstraction. Its core idea is that the computationally intensive
steps of abstraction and refinement can be optimized by a tighter integration which
would enable the reuse of work performed in one iteration in subsequent iterations.
Lazy abstraction tightly couples abstraction and refinement by constructing the ab-
stract model on-the-fly,and locally refining the model on-demand. Blast is designed
for C.

3.1.2 Concrete Enumerative Software Model Checking

Algorithms for concrete enumerative model checking essentially traverse the graph of
program states and transitions using various graph search techniques. The term concrete
indicates that the techniques represent program states exactly. The term enumerative in-
dicates that these methods manipulate individual states of the program, as opposed to
symbolic techniques (described in Section 3.1.3), which manipulate sets of states.

Depending on whether the model checking algorithm maintains the set of reached
states and the set of reachable states in the frontier when traversing the graph, the con-
crete enumerative model checking algorithms can be divided into two categories: stateful
or stateless. For stateless search, non-determinism is employed to pick execution paths
without actually storing the set of visited states. Stateless concrete enumerative model
checkers are usually execution-based, meaning using the runtime system of a program-
ming language implementation to implement enumerative state space exploration.

Examples of concrete enumerative software model checkers are:

24

Verisoft The Verisoft [35] tool pioneered the idea of execution-based stateless model
checking of software. Verisoft takes as input the composition of several Unix pro-
cesses that communicate by means of message queues, semaphores and shared
variables that are visible to the Verisoft scheduler. The scheduler traps calls made
to access the shared resources, and by choosing which process will execute at each
trap point, the scheduler is able to exhaustively explore all possible interleavings
of the processes executions. Based on Verisoft, the author also published a work of
exploring very large state space using genetic algorithms [36].

Java Path Finder Java Path Finder (JPF) [43] is an execution-based model checker for Java
programs that modifies the Java virtual machine to implement systematic search
over different thread schedules. By the support from JVM it is possible to store
the visited states, which allows the model checker to use many of the standard
reduction-based approaches (e.g., symmetry, partial-order, abstraction) to combat-
ing state-explosion. As the visited states can be stored, the model checker can uti-
lize various search-order heuristics without being limited by the requirements of
stateless search. One can also use techniques like symbolic execution and abstrac-
tion to compute inputs that force the system into states that are different from those
previously visited thereby obtaining a high level of coverage. JPF has been used to
successfully find subtle errors in several complex Java components developed in-
side NASA and is available as a highly extensible open-source tool.

CMC CMC [59] is an execution based model checker for C programs that explores dif-
ferent executions by controlling schedules at the level of the OS scheduler. CMC
stores a hash of each visited state. In order to identify two different states which dif-
fer only in irrelevant details like the particular addresses in which heap-allocated
structures are located, CMC canonicalizes the states before hashing to avoid re-
exploring states that are similar to those previously visited. CMC has been used to
find errors in implementations of network protocols and file systems.

3.1.3 Symbolic Software Model Checking

While enumerative techniques capture the essence of software model checking as the
exploration of program states and transitions, their use in practice is often hampered
by severe state space explosion. This led to research on symbolic algorithms which ma-
nipulate representations of sets of states, rather than individual state, and perform state
exploration through the symbolic transformation of these representations.

The power of symbolic techniques comes from advances in the performance of con-
straint solvers that underlie effective symbolic representations, both for propositional
logic (SAT-solvers or BDDs) and more recently for combinations of first order theories
(SMT-solvers).

Restricted by the underlying constraint solver, symbolic software model checker usu-
ally can only handle linear programs. And it may also use concrete execution as a com-
plement of symbolic execution. Examples of know symbolic model checkers are:

DART DART [37] refers to directed automated random testing. It automatically tests
software by combining three main techniques: (1) automated extraction of the in-

25

terface of a program with its external environment using static source-code pars-
ing; (2) automatic generation of a test driver for this interface that performs random
testing to simulate the most general environment the program can operate in; and
(3) dynamic analysis of how the program behaves under random testing and au-
tomatic generation of new test inputs to direct systematically the execution along
alternative program paths. DART runs the program under test both concretely,
executing the actual program with random inputs, and symbolically, calculating
constraints on values at memory locations expressed in terms of input parameters.
The main strength of DART is thus that testing can be performed completely auto-
matically on any program that compiles — there is no need to write any test driver
or harness code. DART is developed by the same author of Verisoft.

CREST CREST [50, 11] is an automatic test generation tool for C. It works by insert-
ing instrumentation code (using CIL) into a target program to perform symbolic
execution concurrently with the concrete execution. The generated symbolic con-
straints are solved (using Yices [21]) to generate input that drive the test execution
down new, unexplored program paths. CREST uses several heuristic search strate-
gies, including one guided by the control flow graph of the program under test, to
speed-up exploring path space.

KLEE KLEE is essentially not a model checker but a symbolic virtual machine built on
top of the LLVM [70] compiler infrastructure. Its underlying constraint solver is
STP [30].

3.2 The GIMPLE Virtual Machine

Building a virtual machine at GCC’s GIMPLE representation level takes advantage of
the compiler’s capability of syntax parsing, type checking, and code optimization. Such
a virtual machine requires no program loading and instruction set design. GIMPLE is
regarded as the simplest form of GCC’s intermediate representation: all expressions take
at most two operands. Thus the GIMPLE statements can directly serve as the virtual
machine instructions.

Our GIMPLE Virtual Machine (GVM) is essentially a process virtual machine [66]: it
provides a virtual application binary interface (ABI); instruction interpretation is an emu-
lation of native code execution; and every guest process exclusively owns a virtual exe-
cution environment. Since GVM's instruction set architecture (ISA) is exactly the GIMPLE
statements whose operands are named memory locations (or constants), it is apparently
register-based. And also GVM is a low-level language virtual machine. Features of high-

level language, such as object-orientation and dynamic typing, will not be exhibited at
GIMPLE level.

3.21 GVM Implementation

We developed our GIMPLE Virtual Machine (GVM) as a GCC plug-in, as illustrated in
Figure 3.1.

GVM takes two inputs: (1) the control-flow graph set representing all functions in the

26

|

C/C++/Java |
_______ |
|

——————————— o GIMPLE
_________ parse/gimplify :

................... — >

GCC Middle-End

GIMPLE
=

GIMPLE
Virtual
Machine

Function Name [

—_————eee e e — —

Function Parameters ... (

GIMPLE Statements

al-=>5;
Tl = foo (a_1);
lo 2 = 2%TLp

Figure 3.1: The GVM Plugin

compilation unit; (2) user-specified main function name and its parameters. As depicted
in Figure 3.1, GVM consists of two parts: the GIMPLE instruction reader and the inter-
preter. GVM keeps a program counter indicating the position of next instruction. When
GVM is initialized, the program counter is set to the first GIMPLE statement in the suc-
cessor of entry basic block of the main function.

Since execution path will not diverge within a basic block, it is safe to feed all state-
ments in a basic block to the interpreter at once. Upon finishing executing all statements
in a basic block, the interpreter will calculate where is the next program counter and tell
the instruction reader.

GVM excessively employs the idea of memory segment. A memory segment is a table
of name/value mapping. Values in memory segments are variants: a union of char, int,
double and std::string, plus a type indicator. In GVM, the global memory is a memory
segment, the heap is a memory segment, and all stack frames are memory segments. A
stack is a vector of memory segments.

GVM supports function calls. Function calls and returns are as simple as push-
ing/popping elements in the memory segment vector, along with modifying the pro-
gram counter.

GVM supports malloc, free, pointer dereferencing, and point arithmetic. A memory
chunk created by malloc will be assigned a hidden unique name. A pointer variable’s
value is the name of the memory chunk in the heap memory segment. Pointer derefer-
encing is to get the value indexed by the pointer variable’s value.

GVM is built upon GLua. It is essentially an extension of the latter, as shown in Fig-
ure 3.2. Like GLua, GVM executes user-specified Lua scripts, in which the user has full ac-
cess to the GLua objects. GVM allows to access virtual machine internal state, read / write

27

interpreted program’s private memory space, pause, resume, reset or terminate interpre-
tation, or set callback functions at various break points.

GVM
Lua Seript |:>
GLua

Program
Source @ |:: >
‘ GCC Middle-end

Figure 3.2: Architecture of GVM

GVM has the following shortcomings. It does not support cross-file function call,
since GVM is bound to a GCC instance which handles only one compilation unit at a
time. It has very limited C library API support. It aims for multi-threading but currently
not implemented yet.

Another problem of GVM is variable indexing. Unlike other register-based virtual
machines, e.g., the Parrot Virtual Machine, which encodes function local variables into
numbers at compilation time and indexes instruction operands by numbers at runtime,
GVM has to index local variables by names, which is more expensive.

3.2.2 The GVM API

GVM is designed to be a program concrete-execution engine. Therefore it needs to pro-
vide a way to expose its internal status, and let the user to control its execution.

Much like GLua, GVM is implemented as a GCC plug-in and provides a Lua pro-
gramming interface. The GVM plug-in takes the following arguments:

e script=path/to/lua/script: specify a Lua script to execute; default is gum.lua.
e entry=name: specify the entry function; default is main.
e interactive: run GVM in interactive mode.

Typical command line to invoke GVM is like:

gccd.5 -¢c -g -0O2 test.c -fplugin=libgvm.so
-fplugin-arg-script=monte-carlo.lua
-fplugin-arg-ref-entry=main

Note if the script is not specified, GVM will not intervene the interpretation and the
user will not gain control forever. If the script is specified, GVM will turn to execute
a particular function called exec_gum defined in the script, instead of interpreting target
program. The user shall trigger GVM to start interpretation in its script.

GVM provides the following Lua API:

28

set_entry
interpret
resume
exit

reset

set_callback_gs(cb)
set_callback_bb(cb)

set_callback fn(cb)
clear_callback(cb)
globals

n_frames

frame(i)

frame_locals(i)
dump_frame(i)

read_var(i, var)

write_var(i,
val)

get_gs

var,

get_bb
get_fn
get_prev_gs

get_prev_bb

interactive

set the entry function by name.

trigger GVM to start interpretation.

resume suspended interpretation.

terminate GVM.

reset program counter to entry function and re-
initialize GVM.

set callback function cb at every gimple statement,
cb here is a Lua function.

set callback function cb at the beginning of every ba-
sic block.

set callback function cb at every function call.
unregister callback function cb.

get target program’s global variables.

get the number of stack frames.

get the name of function of the i-th stack frame. i
starts from 1.

get the local variables of the i-th stack frame.

print all variables and their values of the i-th stack
frame.

query the value of variable var in the i-th stack frame;
i == 0 means to query a global variable.

set the value of variable var in the i-th stack frame to
be val; i == 0 means a global variable.

get current gimple statement object, which is about to
be interpreted.

get current basicblock object.

get current function object.

get the gimple statement object which was just inter-
preted.

get previous basicblock along the execution path
within current function CFG.

go to interactive mode.

As an example, Figure 3.3 shows how to set and clear callback functions. Lua function
trace_static prints assignments to all static variables. Note that trace_static
unregisters itself when the counter reaches ten, meaning this script prints at most ten
lines of screen output.

29

local count;

function trace_static()
local gs = gvm.get_prev_gs()
if gs:codename() == 'gimple_assign’ then
local _, lhs = gs:tuple()
if Ins:static() then
local Ihs_name = tostring(lhs)
local val = gvm.read_var(0, lhs_name)
print(lhs_name, '=', val)
count = count + 1
if count == 10 then
gvm.clear_callback(trace_static)
end
end
end
end

function exec_gvm()
count = O;
gvm.set_callback _gs(trace_static)
gvm.interpret()

end

Figure 3.3: A GVM script to print static variable assignments ten times

30

Chapter 4

GIMPLE-based Monte Carlo Model
Checker

GMC? [39] is a software model checker for C based on the generic Monte Carlo model
checking algorithm [40]. It can be seen as an extension of Monte Carlo model checking
to the setting of concurrent, procedural programming languages. Monte Carlo model
checking is a technique that utilizes the theory of geometric random variables, statis-
tical hypothesis testing, and random sampling of lassos in Biichi automata to realize a
one-sided error, randomized algorithm for LTL model checking. To handle the func-
tion call/return mechanisms inherent in procedural languages such as C/C++, the ver-
sion of Monte Carlo model checking implemented in GMC? is optimized for pushdown-
automaton models. Integrated with GCC, GMC? takes the gimlified control-flow graph
of target program as input, as well as a C function representing the LTL property of in-
terest. GMC? interprets the GIMLPE statements during compilation. The target program
can contain concurrency primitives like in Verisoft [35]. In the case of safety properties,
the property function is called to check for property violations in the target program. In
the case of liveness properties, the property function is called to check if an accepting
state of the target program is visited infinitely often, viewing the target program as a
succinct representation of a Biichi automaton.

4.1 Monte Carlo Model Checking

Monte Carlo model checking performs random sampling of lassos in a Biichi automaton
(BA) to realize a one-sided error, randomized algorithm for LTL model checking. In
this section, we provide an overview of this technique. In Section 4.2, we show how
to extend this technique to hierarchic Biichi automata (HBA) in the context of software
model checking.

4.1.1 Biichi Automata

A Biichi automaton A = (3, Q, Qo, 6, I) is a five-tuple where: ¥ is a finite input alphabet; ()
is a finite set of states; Qo C (@ is the set of initial states; 5 C (Q x X x (@ is the transition

31

relation; F' C () is the set of accepting states. We assume, without loss of generality, that
every state of a BA has at least one outgoing transition, even if this transition is a self-
loop.

A sequence 0 = sy <% s; %, ..., where sy € Qp and foralli > 0, s; <5 5,4, € J is called
an infinite run of A if the sequence is infinite and a finite run otherwise. An infinite run
is called accepting if there exists an infinite set of indices J C N, such that for all i € J,
S; € F.

We say that o is ultimately periodic if there exist i > 0, [> 1 such that for all j > 0,
Si+j; = Si+jmodl- 1his means that o consists of a finite prefix s N os S followed
by the “infinite unfolding” of a cycle s; = --- “*5' s, The cycle is called simple if for
all0 < j # k <, siyj # si+x; i€, the cycle does not visit the same node twice. In the

tollowing, we shall refer to such a reachable simple cycle as a lasso, and say that a lasso
is accepting if its simple cycle contains an accepting state.

Let S be a concurrent system, Ag the BA encoding S’s state transition graph, and ¢
an LTL property. Using the tableau method, one can construct a Biichi automaton A,
accepting the same language as —¢ [34]. The LTL model-checking problem As = ¢ is
then naturally defined in terms of the emptiness problem for B = Ag x A.,, which
reduces to finding accepting lassos in B [71].

4.1.2 Random Lassos and Hypothesis Testing

Instead of searching the entire state space of B for accepting lassos, we successively gen-
erate up to M lassos of B on the fly, by performing random walks in 5. The walks are
uniform in the sense that they are generated by imposing a uniform distribution on the
outgoing transitions of the current state along the walk. If the currently generated lasso
is accepting, we have found a counter-example to emptiness, and stop.

To determine the number M of lassos we need to generate, we aim to answer, with
confidence 1—¢ and within error margin e, the following question: how many independent
lassos do we need to generate until one of them is accepting? The answer is based on the
theory of geometric random variables and statistical hypothesis testing. Let X be geometric
random variable parameterized by the Bernoulli random variable Z (defined below) that
takes value 1 with probability p, and value 0 with probability gz = 1 — pz. Intuitively,
pz is the probability that an arbitrary lasso of B is accepting.

The cumulative distribution function of X for NV independent trials of Z is: F'(N) =
P[X < N] =1- (1 —pz)". Requiring that F(N) = 1 — § yields: N = In(§)/In(1 — pz).
Given that p; is what we wish to determine, we assume for the moment that p; > e.
Replacing p, with € yields M = In(d)/In(1 — €) which is greater than N and therefore
P[X < M]>P[X < N]=1— 0. Summarizing:

pz>€e = PX<M>1-§ where M =1In(d)/In(1—¢) 4.1)

Inequation 4.1 gives us the minimal number of attempts M needed to achieve success
with confidence ratio J, under the assumption that p; > €. The standard way of discharg-
ing such an assumption is to use statistical hypothesis testing. Define the null hypothesis H,

32

as the assumption that p; > e. Rewriting inequality 4.1 with respect to H, we obtain:
PX <M|Hy)>1-96 (4.2)

We now perform M trials. If no counterexample is found, i.e., if X > M, we reject H,.
This may introduce a type-I error: H, may be true even though we did not find a counter-
example. However, the probability of making this error is bounded by ¢; this is shown in
inequality 4.3 which is obtained by taking the complement of X < M in inequality 4.2:

P[X > M|Hy] < § (4.3)

Because we seek to attain a one-sided error decision procedure, we do not consider type-
IT errors in our application of hypothesis testing: as soon as we find a counter-example,
we stop sampling and decide (with probability 1) that A = ¢.

4.1.3 The Monte Carlo Model Checking Algorithm

For a BA B, define the probability space (P(L),P), where L = L, U L,, is the set of all
lassos of B and L, and L, are the sets of all accepting and non-accepting lassos of B,
respectively. The probability P[o] of a lasso o = so°3...""3's, is defined inductively as
follows: P[so] = k=" if |Qo| = k and P[sp=3... " 5's,] = P[se=3...3%s, 1] - w[sp_1 5" 5,.]
where 7[s%s'] = m~Lif ss' € § and |§(s)| = m. That (P(L), P) is actually a probability
space is established in [40].

Probability of lassos Consider BA B of Figure 4.1. It contains four lassos, 11, 1244,
1231 and 12344, having probabilities 1/2, 1/4, 1/8 and 1/8, respectively. Lasso 1231 is

N
e@a

Figure 4.1: Example lasso probability space.

Lasso Bernoulli variable The random variable Z associated with the probability space
(P(L),P) of a Biichi automaton B is defined as follows: p; = P[Z = 1] = >, _; P[A,]
and gz =P[Z =0]=>_, ., P\

Lassos Bernoulli variable For the Biichi automaton B of Figure 4.1, the lassos Bernoulli
variable has associated probabilities p, = 1/8 and ¢, = 7/8.

Having defined Z, X and H,, we are now ready to present our Monte Carlo decision pro-
cedure for emptiness checking of Biichi automata, called MC? in [40]. MCMonsists of three
statements. The first uses inequation 4.1 to determine the value for M, given parameters

33

e and . The second statement is a for-loop that successively samples up to M lassos by
calling the random lasso (rLasso) routine, described in Section 4.2. If an accepting lasso
[is found, MCMdecides false and returns [as a counter-example. If no accepting lasso
is found within M trials, MCMlecides true, and reports that with probability less than 6,
poob xlasso MC? (BA B = (Z,Q,Qo,d,F), float 0<ed<1)

{
M =1Ind / In(l—e);
for (i=1; i <M, i++) if(rLasso(B)==(true,l)) return (false,l);
return (true,nil); / * P[X > M|Hpl < I,

Theorem 4.1.1 ([40]). Given a Biichi automaton B and parameters € and 9, if MCMreturns false,
then L(B) # (. Otherwise, P[X > M | Hy] < § where M =1n(0)/In(1 —¢)and Hy = pz > €.

MCMs very efficient in both time and space. The recurrence diameter of a Biichi automaton
B is the longest loop-free path in B starting from an initial state.

Theorem 4.1.2 ([40]). Let B be a Biichi automaton, D its recurrence diameter and M = In(0)/In(1—
€). Then MCMruns in time O(M D) and uses O(D) space.

In the worst case, D is exponential in |S| + || and thus MCKé does not improve on the
space complexity of a typical model checker. In practice, however, one can expect MCMo
perform much better than this.

4.2 Monte Carlo Software Model Checking

We have implemented a software model checker for GCC based on the generic Monte-
Carlo model-checking algorithm of Section 4.1. Our model checker, GMC?, is applicable
to any program written in one of the procedural languages supported by GCC, e.g., C.
Call this program the target program to be verified. GMC? also requires as input a pro-
cedure or function, call it the property function, representing the LTL property of interest.
The target program can contain concurrency primitives similar to those supported by
the Verisoft model checker [35]. In the case of safety properties, the property function
is called to check for property violations in the target program. In the case of liveness
properties, the property function is called to check if an accepting state of the target pro-
gram is visited infinitely often, viewing the target program as a succinct representation
of a Biichi automaton.

GMC? operates at the GIMPLE level and assumes that the target program and prop-
erty function have been compiled into CFGs. Let P be the array of CFGs corresponding
to the target program, one for each of its functions, and let be the CFG for the property
function. At the heart of GMC? is a CFG interpreter that traverses the CFGs in P using
GIMPLE'’s statement iterators and interprets the statements contained in the CFGs ac-
cording to their semantics. This allows GMC? to generate the random lassos of the target
program on the fly.

34

4.2.1 The Main Routine

Due to space considerations, we limit our discussion to the treatment of safety proper-
ties. Given an array of P of CFGs for the target C program, a CFG ¢ for the C function
encoding a safety property, and parameters e and §, GMC? successively generates at most
In(d)/In(1—e) random lassos of P; see Section 4.1. While generating a lasso, ¢ is called
to check whether or not ¢ is violated in the newly reached program state. If so, GMC?
stops and returns the counter-example path leading to the violating state. If all states of
all sampled executions satisfy p, GMC? stops and reports with confidence greater than
1—¢ that it rejects Hy = pz > e.

At the heart of GMC? is the rLasso routine for generating random lassos; rLasso
conducts a random execution of the CFGs in P by interpreting their (possibly concurrent)
C statements and checking for property violations.

4.2.2 TherLasso Random-Lasso Routine

In order to detect (global) lassos, the (concurrent) program state is stored in a hash table
ht each time a context switch occurs. This is for efficiency purposes: the alternative, less
efficient approach would be to store the program state after each statement execution.
To ensure the soundness of this approach, we assume that the time between context
switches is finite.

bool xlasso rLasso() / * global cfgarray P, cfg @ */
{
hashTbl ht = (); readylist ready = (; bool x state (f,s) = rInit();
while (s ¢ht) {
insert(ht,s); if (—-f) return (true,lasso(ht));
(f,s) = rNext(s); }
return (false,lasso(ht));
}

4.2.2.1 Hash Table

The ht hash table is optimized so that common information among global states is shared.
It is also hierarchic in the sense that all states belonging to a callee are linked to each other
so that they can easily be removed from ht when the callee returns.

The pseudo-code for the rLasso routine is given above. The first line sets ht and
ready to empty, and initializes the violation flag f and the current-state variable s by
calling routine rinit . The while-loop searches for (violating) lassos. If the current state
s isnotin ht , then it is a new state and is inserted in ht . If it is also violating, signaled by
—f being true, then a violating lasso was found, which is returned together with the cor-
responding flag to GMC?2. Otherwise, another random next state is generated by calling
rNext .

35

4.2.3 Routines rinit and rNext

Given a set V of typed variables, a valuation (or environment) of V' is a mapping of vari-
ables in V' to their type-correct values. If I and I are lists, and ¢ is a list element, we write
concat(l,I"), append(T, o) and rest(T) for the lists obtained by concatenating I' and I”,
appending o to T, and taking the rest of T, respectively, and we write I'(i) for the i-th
element of I'. If A is a stack and ¢ a stack element, then we write push(A, ¢), pop(4) and
A.¢ for pushing ¢ onto the stack, popping the stack, and for the topmost element on the
stack, respectively. If s is a statement, i.e., AST of a CFG, then s.a is a child of s.

4.2.3.1 Program State

The state £ = (x,T) of a concurrent C program consists of a valuation y of the shared
variables (channels and semaphores) and a list I of process states, one for each active
process. The list is ordered by the order of process creation. The state 0 = (k,0) of a
process has two components: the control state x and the data state 5. The control state
k = (7, v) consists of a function name v and a statement number v within ~. The data state
d = (m, 8,) consists of a heap 7, a valuation of global variables 3 and a frame stack A. Each
frame ¢ = (k, p) of A contains a return control state « to the caller CFG and a valuation p
for the local variables of the callee CFG.

4.2.3.2 Routine rinit

Execution of P starts in a random state £, defined as follows. All channels in y, are empty
and all semaphores are 0. The process-state list I'; contains only the state o, of the root
process. The control state x, of the root process has function main of P in v, and 0 in ;.

bool x prgState rInit() / * global cfgarray P, cfg @ */

{
sharedState X = Xo, procStates r = (; frameStack A= 0;
cfgNm ~ = main; stmNo v = 0; controlState k = (7,),

IclEnv p = po; forall(x €dom(P[~].param)) p[x] = random(P[~].param.type);
frame ¢ = (trap, p); push(A, ¢); dataState 0 = (7o, Bo, b);

procState o = (k,d); append(T, o); prgState r=(x0D)

if eval() return (tfrue, I) else return (false, I);

}

The data state d, of the root process consists of the empty heap 7,, valuation /3, of the
global variables, and stack frame A, with only frame ¢, of main pushed. This frame has a
predefined return control state trap (e.g. the stop point) and a valuation p, for the local
variables. The valuation of the formal parameters in p, is chosen randomly within their
corresponding range. Function eval evaluates a CFG in the current state and returns its
value.

36

bool x prgState rNext(prgState s)

{
[+ global cfgarray P, hashTbl h, CFG o, readylist ready */
int i = random(Jready|); int nxt = ready][i];
return interpret(s,nxt);

}

4.2.3.3 Routine rNext

Routine rNext randomly selects one of the ready processes and interprets it by calling
routine interpret , described next. It regains control when interpret reaches a concur-
rency statement, which requires a context switch.

4.2.4 Routine interpret

Routine interpret traverses the CFGs in P, using statement iterators succ , tsucc and
fsucc , and interprets each statement according to its semantics. Of particular interest
are the process creation and synchronization statements, which force a return whenever
a context switch is required, as well as function invocation and return statements, which
induce a hierarchic structure on the hash table.

Sinceinterpret may generate several states before it returns, it has to check whether
property ¢ is true in all of them. Properties to be checked may also be inserted in a
program, as assert(p) statements. The interpreter then checks whether predicate p is
true in the current state and returns with a violation if this is not the case.

The pseudo-code for interpret is given below. Its body is an infinite loop, which
according to the type of the current statement v within the current CFG P[y], undertakes
the actions defining the semantics of the statement. Due to space limitations, we consider
a representative susbset of statement types, which does not include heap and pointer
manipulation statements.

bool x prgState interpret(prgState z, int i)

{
[+ global cfgarray P, hashTbl ht, cfg v, readylist ready */

channels x = Z. x; procStates I = . T; procState o = TIi;
while (true) {

cfgNm ~ = 0. k. v; stmtNo v = 0. k. v;
frameStack A = 0. 4. A; globalEnv B8 = 0.9. 0

switch (P[~][v].type) of

if: /*ifegotot*/ {
v = (evallPl Il vlexp)) ? tsuce®l Il /) ¢ fsuce®l ANl o))
assert: /* assert(e) */ {

if (leval(P[~][v].exp)) return (false, £); v = succ(P[~I[v]); }
assign: /*x=rhs*/ {
if (P[7]l v].rhs.type == expr) { /*rhs==¢?*/

37

v = succ(P[Al)i (dp: APL I v]var] = eval(P[H][v]rhs); }

elseif (P[7][v].rhs.fnc == toss) { /*rhs == toss(e) */

v = succ(P[~I[v);

(A.p: B)IP[A1l v].var] = random(eval(P[~][v].rhs.exp)); }
elseif (P[][v].rhs.fnc == fork) { /*rhs == fork() */

v = succ(P[~I[vI); (d.p: B)IPL [v]var] = 0O;

append(I,((v, v).(= B3, 8))); (Ap: AP A vlvarl = | T]-1; }
elseif (P[v][v].rhs.fnc == recv) { /* rhs ==recv(c) */

¢ = P[A][v].rhs.chnl;

if (empty(x.c)) {append(x.c.swait,i); return (true, I); }

v = succ(P[~I vD); (A.p:)P A1 v]var] = fst(x-C.queue));

rest(x.c.queue); concat(ready, x.C.swait); x.C.swait = 0; ¥
else { /*rhs==1f(a)*/

a = eval(P[~][v].rhs.act); k= (v,),

= P[A][v].rhs.fnc); v = 0;
push(0,(K, pyo)); (Bp)PL ~lfpar] = a; ¥
return: /*returne*/ {

e = eval(P[~] v].exp); (~,v) = A. k; popLocal(ht); pop(b);
(8.p: BIPL A vlvar] = e ¥

send: /*send(ce)*/ {
¢ = P[~][v].rhs.chnl;

if (full(x.c)) {append(yx.c.rwait,); return (true, I); }
v = succ(P[~I[v]); append(x.c.queue,eval(P[Y[v].rhs.exp));
concat(ready, x.C.rwait); x.C.rwait = 0;

}
o= (v mp)y Til= o £=(xT0);

if (leval() return (false, X);

For the sequential intra-procedural group of statements, we discuss the interpretation
of if and (simple) assignment . The former evaluates the predicate in the current state
and branches to the appropriate location by modifying v. The latter evaluates the right-
hand side expression and updates the corresponding local environment A.p (within the
frame on the top of the frame stack) or global environment 3, on the location given by
the left-hand side variable, accordingly. By writing A.p : 8 we mean that both valuations
are considered and that A.p has precedence over 3; i.e., we first search the variable in the
local valuation.

The modeling and verification statements presented are toss and assert . For toss ,
the interpreter first evaluates the argument expression to obtain a value v, and then it
randomly generates a number within the range [0, v]. The obtained number is assigned
to the location given by the left-hand side variable, in either A.p or 3. For assert , the
interpreter checks whether the predicate is true in the current state. If this is not the case,
it returns false and X. Otherwise, it continues with the next statement by updating v.

The inter-procedural statements presented are call and return . For call , a new

38

frame ¢ = (k, p) is allocated on top of the frame stack A; « is the current control state;
p has the local variables of the target function + initialized accordingly by p, , and the
formal parameters evaluated in the current state. Control is then moved to the callee by
updating v and v accordingly. For return , the interpreter does the following. First, it
evaluates the return expression in a temporary variable. It then restores the control state
from the frame stack, pops the frame stack and erases all the states corresponding to the
callee from the hash table. Finally it assigns the temporary variable, to the location given
by the variable of the statement pointed to by the control state, in either A.p or .

The concurrency primitives considered so far include process creation, channels and
semaphores. For simplicity, we only discuss fork , send and recv . The other are treated
in a similar manner. The fork statement is handled by creating a new process (state)
in T which is identical to the current except for the value assigned to the variable on
the left-hand side of the fork assignment statement. This is zero for the child process
and the index in T' of the new process for the parent process. The send statement is
treated as expected. If the channel is full, the process is put in the send wait queue of
the corresponding channel, and control is returned to rNext . Otherwise, the message
expression is evaluated and appended to the channel. Moreover, the process waiting in
the receive queue of the channel is awaken, by moving it to the ready list. The recv
primitive is treated in a similar way.

4.3 Experimental Results

To assess the performance and scalability of GMC?, we compared it to Verisoft, a popular
software model checker from Lucent Technologies [35], on two C benchmarks: dining
philosophers and the Needham-Schroeder. Verisoft and GMC? were given the same C
source files as input, each of which can be downloaded from [69]. We also ran GMC? on
the TCAS benchmark. All GMC? experiments were performed on an Athlon 2600+ MHz
processor with 1GB RAM running Linux 2.6.5.

Dining Philosophers. For this classical synchronization problem, we used a faulty
symmetric but fair variant, where the number of philosophers varied from 4 to 16. The
safety property we checked was deadlock freedom. Our experimental results are given
in Table 4.1. The meaning of the column headings is the following: phi. is the num-
ber of philosophers; time is the execution time in mins:secs; ce.len is the length of the
counter-example found; states is the number of states Verisoft visited until finding an
error; transitions is the number of transitions that Verisoft traversed. The Verisoft exper-
iments were performed on Sun Sparc Ultra-5.10 server running SunOS 5.6. Our experi-
ence shows that the Athlon/Linux environment performs approximately 3.4 times faster
than the Sparc/SunOS environment.

Needham-Schroeder Protocol. This classic public-key protocol provides mutual au-
thentication for two parties, before they engage in a transaction. In 1995, Lowe first
reported a flaw in the protocol [53], by exhibiting an attack involving six message ex-
changes. Suppose A is the initiator, B is the responder and I is the intruder. Then the
attack is as follows: (i) A sends a nonce to I. (ii) I sends same nonce to B. (iii) B sends
the above received nonce and its new nonce to I. (iv) I sends the above received message

39

GMC? Verisoft
phi. || time | samples | celen. || time | states | transitions

4 0:00.07 2 12 0:00.61 16 37

6 0:00.11 4 12 0:16.60 | 773 1171
8 0:00.78 11 20 2:57.29 | 5431 8449
10 || 0:02.17 31 24 10:41 17908 31433
12 || 0:04.82 24 27 >2hr | N/A N/A
14 || 0:06.22 22 44 >2hr | N/A N/A
16 || 0:11.56 14 32 >2hr | N/A N/A

Table 4.1: Deadlock freedom for the symmetric and fair C implementation.

to A. (v) A validates the authenticity of I and sends the second nonce from the message
back to I. (vi) I sends this nonce back to B which now also validates I. We checked for
the existence of the above attack in a C implementation of the protocol we obtained from
Patrice Godefroid, who we greatfully acknowledge. GMC? found it in 6 hours and 37
minutes after having checked 10,682,639 lassos.

The same example and implementation was used in [36] to evaluate a novel genetic
algorithm. The time usage reported there is 2 hours and 33 minutes to find 3 errors,
which is superior to GMC? on this benchmark. They also attempted exhaustive and
randomized search algorithms on this C program, neither of which could find an error
in 8 hours. Their experiments were performed on a Pentium III 700 MHz processor with
256 MB RAM. Unfortunately, the genetic version of Verisoft is not publicly available, and
we could not reproduce this result on our own machine. Its superior performance might
be explained by the sequential nature of the protocol implementation, which essentially
executes only one round of a reactive system. In this round, the system either deadlocks,
produces a counterexample or it behaves correctly. Hence, lasso search seems to be less
useful in this case than applying genetic heuristics.

TCAS. The traffic alert and collision avoidance system (TCAS) is used on board all US
commercial aircrafts. It continuously monitors radar information to sense whether a
neighboring aircraft could become a threat by getting too close. Such an aircraft is said
to be an “intruder”, which is entering the protected zone. In this situation TCAS issues
a traffic advisory and estimates the time remaining until the two aircrafts reach the closest
point of approach. Such estimates are used to compute the vertical separation between
the two aircraft assuming that the controlled aircraft maintains its current trajectory. De-
pending on the results obtained, TCAS issues a resolution advisory (RA) suggesting the
pilot to climb or to descend.

We have verified the RA component from Georgia Techs Siemens suite [64], with re-
spect to the specifications in [18]. Each property is verified by checking the satisfiability
of two rules, with specific initial values for variables. The details of these rules, initial
conditions on values and the properties, can be found in [18]. Our experimental results
are presented in Table 4.2, where the meaning of the column headings is as follows:

40

GMC*

t 1
property rue bugs found \ time \ samples
Safe Advisory Selection ; ?Te (; 83? 1124778
Best Advisory Selection ; i (; 832 1220768
Avoid unnecessary crossing 1 Yes 001 00
2 Yes 0.03 180
No Crossing Advisory Selection ; iﬁ: 881 287
Optimal Advisory Selection ; i (; 852 1221778

Table 4.2: Running time of GMC? for TCAS.

property name; corresponding rule number; indication of whether or not GMC? found
a counter-example; time usage in seconds within which either a counter-example was
found or a predefined number of samples was reached; if a counter-example was found,
the last colum gives the number of samples taken to that point; otherwise it is the prede-
fined number of samples to be taken: 1,278 corresponding to = 0.1 and e = 1.8 x 107°.

41

Chapter 5

Software Model Checking with Dynamic
Path Reduction

Dynamic path reduction (DPR) [74] is a general algorithm to prune redundant paths from
the state space of a program under verification. It works in the context of the bounded
model checking of sequential programs with nondeterministic conditionals. Such pro-
grams arise naturally as a byproduct of abstraction during verification as well as be-
ing inherent in nondeterministic programming languages. Nondeterministic choice also
arises in the modeling of randomized algorithms.

The DPR approach is based on the symbolic analysis of concrete executions. For each
explored execution path 7 that does not reach an abort statement, we repeatedly apply
a weakest-precondition computation to accumulate the constraints associated with an
infeasible sub-path derived from 7 by taking the alternative branch to an if-statement. We
then use a satisfiability modulo theory (SMT) solver (Yices [21]) to learn the minimally
unsatisfiable core of these constraints. By further learning the statements in 7 that are
critical to the sub-path’s infeasibility as well as the control-flow decisions that must be
taken to execute these statements, unexplored paths containing the same unsatisfiable
core can be efficiently and dynamically pruned.

5.1 Nondeterministic Conditional and SSA Form

To illustrate the DPR approach to model checking, consider the C program of Figure 5.1(a).
Its first two conditional statements are nondeterministic, denoted by placing an asterisk
in the condition position. The property we would like to check is whether the program
can reach the abort statement. The initial values of variables X, y, z are 5, 8, 20, re-
spectively. Suppose the first executed path is 7 = (0,1,2,5,6, 7,10, 13). Executing the
program along this path avoids the abort statement and ends with the halt statement.
After executing this path, most existing model checkers will backtrack to Line 6 and ex-
plore the else-branch in the next execution. Since there are two nondeterministic choices
in the program, four executions are required to prove that it cannot be aborted.

Analyzing the execution trace m allows us to learn that the assignments x=5 and

42

X1=5,y1=871=20

foo SSA(){
foo() { 0 x1=5,y1=8,21=10;
0 x=5,y=8,z=10; 1 if (¥
1 if () 2 y2 =y1-L;
2 y=y-1; 3 else
3 else 4 y3=yi1+l;
4 y=y+L; 5 ya=ep(y2y3);
5 x=2*; 6 Xg =2%*Xy;
6 if (*) 7 if (*)
7 z=1z-1; 8 zo =271-1;
8 else 9 else
9 z=2z+1; 10 73 =271+1;
10 if (x>10) 11 z4 = p(22,23);
11 abort; 12 if (x2 >10)
12 else 13 abort;
13 halt; 14 else
} 15 halt;

—

Figure 5.1: A sample C program (left), its SSA form (middle), and SSA
graph representation (right).

x=2=Xx falsify the predicate x>10 which forces the third conditional to choose its else-
branch. We also learn that none of the assignments within the branches of the nonde-
terministic conditionals can make the predicate true. This allows us to prune all the
remaining paths from the search space. A DPR-based model checker would therefore
stop after the first execution and report that abort is not reachable.

5.2 DPR-Based Model Checking Algorithm

In this section, we present DPR-MC, our bounded model-checking algorithm with dy-
namic path reduction. Our presentation is carried out in stages, starting with a simplified
but transparent version of the algorithm, and with each stage incrementally improving
the algorithm’s performance. The model-checking algorithm we propose is tunable to
run either as a randomized Las Vegas algorithm or as a guided-search algorithm.

As defined formally below, a k-oracle is a bit string of length k representing a se-
quence of nondeterministic choices a program might make during execution. Suppose
we want to perform bounded model checking on a program up to search depth D, such
that within this D-bounded search space, each execution path contains at most k£ nonde-
terministic choices. In this case, the DPR-MCalgorithm repeats the following three steps
until the entire D-bounded search space has been explored: (1) Ask the constraint (SAT)
solver to provide a k-oracle. (2) Execute the program on that oracle; stop if an abort
statement is reached. (3) Use the constraint solver again to prune from the search space
all paths that are equivalent to the one just executed.

5.2.1 Global Search Algorithm

The core language we use for analysis is a subset of C, extended with one statement type
not present in C: nondeterministic conditionals. To simplify the analysis undertaken by

43

DPR-MC, we use the static single assignment (SSA) representation of programs. For ex-
ample, the SSA representation of the C program of Figure 5.1 (left) is shown in Figure 5.1
(middle). By indexing (versioning) variables and introducing the so-called ¢ function
at join points, this intermediate representation ensures that each variable is statically as-
signed only once. We leverage the SSA representation to interface with the satisfiability
modulo theory (SMT) solver Yices [21]. In this context, every statement (excepting state-
ments within loops) can be conveniently represented as a predicate. Looping statements
are handled by unfolding them up so that every execution path has at most & nonde-
terministic choices; i.e., a k-oracle is used to resolve the choices. We refer to the SSA
representation obtained after such a k-unfolding as the dynamic single assignment (DSA)
representation.

Suppose the program C' to be analyzed has at most £ nondeterministic conditionals
on every execution path. We call a resolution of these % conditionals a k-oracle. Obviously,
each k-oracle uniquely determines a finite concrete execution path of C. Let R be the set
of all k-oracles (resolvents) of C'. R can be organized as a decision tree whose paths are
k-oracles.

Algorithm 1 DPR-MC(PROGRAM C, INT k)

1: R = all k-oracles in C;

2: while R # () do

3: Remove an oracle R = (riry...7) from R;
4

5

ExecuteFollowOracle(R, R, k);
: end while
6: exit(“No bug found up to oracle-depth £”);

Algorithm 1 is the main loop of our DPR-MCalgorithm. It repeatedly removes a k-oracle
R from R and executes C' as guided by R. The algorithm terminates if: (1) execution
reaches abort within ExecuteFollowOracle , indicating that a bug is found; or (2) R
becomes empty after all oracles have been explored, in which case the program is bug-
free to oracle-depth k.

Note that Algorithm 1 employs a global search strategy. If the oracle removal is ran-
dom, it corresponds to a randomized Las Vegas algorithm. If the oracle removal is heuris-
tic, it corresponds to a guided-search algorithm. Obviously, the number of oracles is ex-
ponential in the depth £ of the decision tree R. Hence, the algorithm is unlikely to work
for nontrivial programs. We subsequently shall show how to efficiently store the decision
tree and how to prune oracles by learning from previous executions.

5.2.2 Weakest Precondition Computation

An execution path 7 = (s1,59,...,5,) is a sequence of program statements, where each
s; is either an assignment or a conditional. We write ¢, and cg for the then and else
branches respectively of a conditional statement c. For brevity, we sometimes refer to an
execution path simply as a “path”.

Definition Let X be a variable, € an expression, ¢ a Boolean expression, P a predicate,

44

and P[e/x| the simultaneous substitution of x with e in P. The weakest precondition
wp(m, P) of m with respect to P is defined inductively as follows:

Assignment: wp(x=e, P) = Ple/X]

Conditional: wp(if(c) 7, P) = PAc;wp(if(c) g, P) =P A-cC.
Nondeterminism: wp(if(*)r, P) =wp(iff(*) g, P) =P.
Sequence: Wp(si;s2, P) =wp(sy,wp(sz, P)) .

Given an execution path 7 = (sq, Sa,...,5,), we use * = s; to denote the i-th state-
ment of w, and 7/ = s, ..., s; to denote the segment of 7 between i and j. Assume now
that 7", the last statement of 7, is either ¢y or c¢g. If 7" = cp, then it is impossible for any
execution path with prefix 7'"~! to take the else -branch at 7". That is, any execution
path that has p as a prefix, where p' = 7°(1 < i < n) and p" # 7", is infeasible. Because of
this, we say that p is an infeasible sub-path.

Let p be an infeasible sub-path of length m where p™ is a conditional c. We use wp(p)
to denote wp(p™ !, ¢), and wp(p) = false as p is infeasible. According to Definition 5.2.2,
assuming that p contains ¢ < m conditionals in addition to ¢, we have:

wp(p) = N4 ANcy... Nc,) = false

where ¢ is p" transformed through transitive variable substitutions, and similarly each
¢; is a transformed deterministic predicate in s;: (¢;)7/p (1 <1 < t). More formally, given
a formula F, we use F”’ to denote the formula in wp that is transformed from F. The
definition is transitive in that both F' = F(e/v) and F’(es/v,) are transformed formulae
from F.

5.2.3 Learning From Infeasible Sub-paths

Upon encountering a new execution path, the DPR-MCalgorithm collects information
about infeasible sub-paths at deterministic predicates by using the weakest precondition
computation presented in the previous section. We now analyze the reasons behind the
infeasibility of such paths in order to provide useful information for pruning unexplored
execution paths.

Since wp(p) is unsatisfiable, there must exist an unsatisfiable subformula wp,s(p) that
consists of a subset of clauses {¢, ¢}, d, ..., ¢}

Definition A minimally unsatisfiable subformula of wp(p), denoted by mus(p), is a subfor-
mula of wp(p) that becomes satisfiable whenever any of its clauses is removed. A small-
est cardinality MUS of wp(p), denoted by smus(p), is an MUS such that for all mus(p),
|smus(p)| < [mus(p)].

In general, any unexplored paths that contain mus(p) are infeasible and can be pruned.
wp(p) can have one or more MUSes; as a matter of succinctness, we keep track of smus(p)
for pruning purposes.

Next, we need to identify which statements are responsible for p’s infeasibility and
thus smus(p).

45

Definition A transforming statement of a predicate c is an assignment statement s: v
= e such that variable v appears in the transitive support of c.

For example, the statement s1:x = y+1 isa transforming statement of the condition
¢ : (x > 0), since wp(sl,c) produces ¢ : (y + 1 > 0). Statement s2:y = z *10 is also a
transforming statement of ¢, since wp(s2,¢’) produces (z * 10 + 1 > 0). During weakest
precondition computations, only assignment statements can transform an existing con-
junct ¢ into a new conjunct ¢’. Branching statements can only add new conjuncts to the
existing formulae, but cannot transform them. Given an execution path 77 = s;,.. ., s;,
we use ts(77, ¢) C {s;, ..., s;} to denote the transforming statements for c.

Definition We define the explanation of the infeasibility of p to be the set of transforming
statements explain(p) = {s| s € ts(p, smus(p))}.

5.2.4 Pruning Unexplored Paths

In this section we use examples to illustrate how to prune the path search space based on
information obtained after learning.

The SSA form of the program of Figure 5.1 is represented graphically to its right. As-
sume the first explored execution 7 (highlighted in the figure) takes the then -branches
at the two nondeterministic if statements. We would like to learn from 7 to prove un-
explored paths. In the example, 7 = (1 = 5,y1 = 8,21 = 20, %,y = y1 — L,yy =
Yo, Lo = 2%, %, 29 = 21— 1, 24 = 29, ~(x2 > 10), halt), which implies the infeasible sub-path
p={(r1=5y1=28,21=20,%9s =y1 — L, ys = ya, Lo = 221, %, 20 = 21— 1, 24 = 29, 25 > 10).
According to Definition 5.2.2, we have:

wp(p) = (x1 =5) A (y1 = 8) A (21 = 20) A (true) A (true) A (2x; > 10) = false

The first three conjuncts come from the initial variable assighments and the next two
(true) come from the nondeterministic conditionals. The last conjunct 2z, > 10 is due
to the deterministic conditional z; > 10 and the assignment z, = 2x;. With a decision
procedure, we can decide smus(p) = (2z7 < 10) A (z; = 5). The explanation for p’s
infeasibility is explain(p) = {z1 = 5,22 = 2 * x1}. Therefore, we learned that any path
containing these two assignments will not satisfy x, > 10; that is, any execution that
contains explain(p) can only take the else -branch to the conditional z, > 10. Since all
the four possible paths contain explain(p), none can reach the abort statement, which
requires a path through the then -branch of the conditional z; > 10. Therefore, with
SMT-based learning, a proof is obtained after only one execution.

A question that naturally arises from the example is what happens if a variable as-
signed in explain(p) is subsequently reassigned? The answer is that if a variable is reas-
signed at s;, then s; will be included in explain(p) if it is considered part of the explana-
tion to p’s infeasibility. For example, consider the program foo2 which is the same as
program foo of Figure 5.1 except for an additional assignment = z + 1. The SSA form
of foo2 and its graphical representation is shown in Figure 5.2.4. Due to the new assign-
ment z = = + 1 on Line 11, we need to add z4 = ¢(x2,z3) on Line 12 to decide which

46

foo2 SSA(){
x1=5,y1=8,21=10; T ‘ E T ‘ E

0

1 if (¥ o _

5 v = y1_1; [y2_y1-1 } [y&ylﬂ} [y2—y1—1] [y3=y1+l]
3 else

4 y3 =y1+l;

5 ya=p(y2,y3);

6 X9 =2%*Xy;

7 if (%)

8 z2 =21-1;

9 else

10 73 =171 +1;
11 X3= Xo+1;

12 X4 = (p(XQ,Xg);
13 z4 = p(z2,23);
14 if (x4 >10)

15 abort;
16 else

17 halt;
}

Figure 5.2: A C program in SSA form (left), its graphical representation
with a highlighted execution path (middle), and the remaining paths after
learning from the highlighted path (right).

version of to use on Line 14. Assume the first execution, as highlighted in Figure 5.2.4,
ismo=(0:21 =501 =82 =10,1p : %,2:ys =141 — 1,5 : yy = 40,6 : wp = 221,77 : %,8 :
2o =21 — 1,121 24y = 29,13 : 24 = 29,14 : =(x4 > 10),15 : halt). From this, we can infer
the infeasible execution segment p, = (0: 21 =5,y1 = 8,20 = 10,17 : %2 :yo =y — 1,5
Yg = y2,6 1Ty = 21’1,77" k812 =21— 1,12 x4 = 19,13 : 24 = 22,14T P Ty > 10> Based
on an analysis similar to that used in the previous example, we have:

wp(p2) = ((x1 =5) A (11 = 8) A (21 = 10) A (true) A (true) A (2z, > 10)) = false

Although it results in the same smus(p2) = (221 < 10)A(z1 = 5) as smus(p;), the explana-
tion to smus(ps) is different: explain(ps) = {x1 = 5,29 = 221, x4 = z2}. As aresult, we can
prune fewer paths than in the previous example of Figure 5.1. Figure 5.2.4(right) shows
the remaining paths after pruning. Both of the remaining paths take the else -branch at
the second nondeterministic if statement, which will go through x4 = 3. They cannot
be pruned because neither path contains the statement x4, = x5 of explain(ps).

5.2.5 Path Reduction Algorithm

Algorithm 2 gives the pseudo-code that our DPR-MCalgorithm uses in order to drive
the execution of the program under verification along the path determined by a given
k-oracle R. If the current statement s; is an abort statement (Lines 3-4), an execution
with a bug is found and the algorithm terminates. If s; is a halt statement (Lines 5-6),
the current execution is completed. An assignment is performed if s; is an assignment

47

Algorithm 2 EXECUTEFOLLOWORACLE(k-ORACLE R, SET R, INT k)
1.1=7=0;
2: while true do
3: if s;== abort then
4 exit(“report bug trace (s1,...,s;)”);
5. else if s; == halt then
6 break;
7. elseif s; is an assignment then
8
9

Perform the assignment;
. elseif s; is a nondeterministic conditional then
10: if 7 == k break;

11: follow oracle R][j];

12: J+ -+

13: else if s, is deterministic conditional ¢ with value true then

14: LearnToPrune((sy, ..., s;_1, ~¢), R) if then -branch cannot reach abort ;
15: else if s; is deterministic conditional ¢ with value false then

16: LearnToPrune((si, ..., s;_1,c), R) if else -branch cannot reach abort ;
17: end if

18: i+ +;

19: end while
20: R =R —{R};

statement (Lines 7-8). If s; is a nondeterministic conditional (Lines 9-12), the algorithm
checks if the threshold £ has already been reached. If not, the algorithm follows the
branch specified by oracle R|[j] and increase the value of j by 1; otherwise the algorithm
breaks from the loop. If s; is a deterministic conditional ¢ (Lines 13-17), the value of ¢
is computed and the corresponding branch is taken. Meanwhile, SMT-based learning
is performed on the branch not taken, as shown in Algorithm 3, if the taken branch
cannot reach the abort statement. Finally, the completed execution is removed from the
unexplored oracle set (Line 20).

The SMT-based learning procedure is given in Algorithm 3. The meaning of, and rea-
son for, each statement, i.e., weakest-precondition computation, SMUS and transforming
statements, have been explained in previous sections.

Algorithm 3 LEARNTOPRUNE(INFEASIBLESUBPATH p, SET R)

: w=wp(p); // Perform weakest precondition computation

s = smus(w) // Compute smallest cardinality MUS

e = explain(s); // Obtain transforming statements

: R = prune(R,e); //Remove all oracles in R that define paths containing e

—_

LRSI

48

5.3 Implicit Oracle Enumeration using SAT

One problem with Algorithm 1 is the need to save in R all k-oracles when model check-
ing commences, the number of which can be exponential in k. In order to avoid this
complexity, we show how Boolean formulae can be used to symbolically represent k-
oracles.

Our discussion of the symbolic representation of k-oracles will be centered around
loop-unrolled control flow graphs (CFGs), which can be viewed as directed acyclic graphs
whose nodes are program statements and whose edges represent the control flow among
statements. We shall assume that every loop-unrolled CFG has a distinguished root node.
The statement depth of a loop-unrolled CFG is the maximum number of statements along
any complete path from the root. The oracle depth of a loop-unrolled CFG is the maximum
number of nondeterministic conditional nodes along any complete path from the root.

Figure 5.3: An example control flow graph.

Figure 5.3 depicts a typical loop-unrolled CFG, where each node in the CFG has a
unique index. Diamond-shaped nodes correspond to nondeterministic conditionals and
rectangles are used for other statement types. The statement depth of this CFG is 10.
As for its oracle depth, there are 7 nondeterministic conditionals divided into 4 levels
(indicated by dotted lines); i.e., its oracle depth is 4.

To encode the choice made along a particular execution path at each level, we in-
troduce the Boolean variables by, b9, b5 and b4, with positive literal b; indicating the then -
branch and negative literal —0; indicating the else -branch. For example, path (1,2,4, 6,9,
13,19, 22,25, 26) is captured by —b; A by A by A —by.

In general, a loop-unrolled CFG will have £ levels of nondeterministic conditionals,
and we will use k-oracles to explore its path space, with each k-oracle represented as
a bit vector of the form R = (by, b, ...,bx). As such, the valuation of Boolean variable
b; indicates an oracle’s choice along an execution path at level 7, and we call b; an oracle
choice variable (OCV). Such considerations lead to a symbolic implementation of the oracle

49

space in which we use Boolean formulae over b,(1 < ¢ < k) to encode k-oracles. For
example, the Boolean formula b;b,03b4 + —b1b2—b3 encodes two paths through the CFG
of Figure 5.3: (1,2,3,5,7,11,16,21,24,26) and (1,2,4,6,9, 14, 22,25,26). In order to use
modern SAT solvers, we maintain such Boolean formulae in conjunctive normal form
(CNF).

Algorithm 4 presents a SAT-based implementation of Algorithm 1. It maintains a
CNF B over kK OCVs {by, s, ..., b;}. Initially, B is a tautology; the while-loop continues
until B becomes unsatisfiable. Inside the while-loop, we first use a SAT solver to find a
k-oracle that is a solution of B, and then perform the program execution determined by
the oracle. Algorithm 4 is essentially the same as Algorithm 1 except that: 1) oracle R
and set R are represented symbolically by band B, respectively; and 2) function calls to
LearnToPrune (in algorithm ExecuteFollowOracle) are replaced by function calls
to SATLearnToPrune , whose pseudo-code is given in Algorithm 5.

Algorithm 4 DPR-SATMC(PROGRAM C, INT k)

: Let b;(1 < ¢ < k) be kK OCV variables, where £k is C’s oracle depth;
CNEF B = true;
while B is satisfiabledo
Obtain a k-oracle b = (b1bs . .. b;) which is a solution of B;
ExecuteFollowOracle(Z, B, k);
end while

exit(“No bug found up to oracle-depth £”);

—_

Let s be an assignment statement in an infeasible sub-path p. We define OC'V; to be the
conjunction of those signed (positive or negative) OCVs within whose scope s falls. Also,
given p’s set of transforming statements explain(p) = {s1,...,s:}, OCV (explain(p)) =
N_,OCVj,. Note that OCV (p) # false as all statements in explain(p) are along a single
path. Further note that explain(p) and OCV (explain(p)) can be simultaneously com-
puted with one traversal of p: if a transforming statement s in explain(p) is within the
scope of a nondeterministic conditional, then the conditional’s associated OCV variable
isin OCV,.

To illustrate these concepts, assume explain(p) = {1,4,22} in the loop-unrolled CFG
of Figure 5.3. Since node 1 can be reached from root node without going through any
conditional branches, OC'V; = true. Node 4 on the other hand is within the scope of the
else -branch of nondeterministic conditional node 2 and thus OCV,; = —b;. Similarly,
OCVay = —byby. Notice that the scopes of b; and b, close prior to node 22 and are therefore
not included in OC'V5,. Finally, OCV (p) = OCV; A OCVy A OC'Vay = —bybs.

Algorithm 5 is our SAT-based implementation of Algorithm 3. OCV (e) determines
the set of paths containing all statements in explain(p), and thus all paths that can be
pruned. Let OCV(e) = l; Aly A ... Al,,, where [; is a literal denoting b; or —b,. Adding
—0CV(e) ==l V=ly V...V =, to the CNF formula B will prevent the SAT solver from
returning any solution (k-oracle) that has been pruned. We refer to ~OCV (e) as a conflict
clause.

50

Algorithm 5 SATLEARNTOPRUNE(INFEASIBLESUBPATH p, CNF B)

1: w = wp(p); // Perform weakest precondition computation
2: s = smus(w); // Compute smallest cardinality MUS

e = explain(s); // Obtain transforming statements

b= 0CV(e); //Obtain OCV on which e depends

letb=10; ANly A ..., where [; is a literal for b; or —b;;
B:B/\(_'h\/_'lg\/...\/ﬁlm),'

Note that the added conflict clause may prune multiple oracles, including the one just
executed. Further note that when exploring a path by virtue of a given k-oracle, not all
OCVs may be executed. For example, if the k-oracle in question is b; —b,bsb, in Figure 5.3,
the actual execution path terminates after —b,. In this case, the added conflict clause is
(—by V bs) instead of (—by V by V —b3 V —by).

To further illustrate Algorithms 4 and 5, consider once again the program of Fig-
ure 5.1. Suppose that the first path 7; to be explored is the highlighted one in the figure.
In this case, the infeasible sub-path p; to be considered is the same as 7, except that the
then-branch of the final deterministic conditional is taken leading to the abort state-
ment. We then have that smus(p1) = (221 < 10) A (1 = 5) and the explanation for p;’s
infeasibility is explain(p;) = {x1 = 5, x2 = 2%z, }. Moreover, OCV (e;) = true as neither of
the statements in e; = explain(p) are in the scope of a nondeterministic conditional. The
resulting conflict clause is false and adding (conjoining) it to B renders B unsatisfiable;
i.e., all remaining paths can be pruned.

Consider next the program of Figure 5.2.4 and its highlighted execution 7,. As ex-
plained in Section 5.2, smus(p2) = smus(p;), where p, is the infeasible sub-path corre-
sponding to m. However, the explanation for smus(ps), explain(p:) = {x1 = 5,29 =
2x1, x4 = xo}, is different. Furthermore, OCV (e;5) = by, where ey = explain(ps), since the
assignment x4, = x5 is within the scope of the then -branch of the second nondeterminis-
tic conditional. We thus add conflict clause —b, to B, which results in the two remaining
paths after pruning illustrated in Figure 5.2.4(right), both of which take the else -branch
at the second nondeterministic conditional.

Theorem 5.3.1. (Soundness and Completeness). Let C' be a CFG that is loop-unrolled to state-
ment depth D, and let ¢ be a safety property, the violation of which is represented by an abort
statement in C. Then algorithm DPR-MCreports that the abort statement is reachable if and
only if C violates ¢ within statement depth D.

5.4 Experimental Evaluation

In order to assess the effectiveness of the DPR technique in the context of bounded model
checking, we conducted several case studies involving well-known randomized algo-
rithms. All results were obtained on a PC with a 3 GHz Intel Duo-Core processor with 4
GB of RAM running Fedora Core 7. We set a time limit of 500 seconds for each program
execution.

In the first case study, we implemented a randomized algorithm for the MAX-3SAT

51

| vars | clauses | paths | explored | pruned | time w DPR(s) | time w/o DPR(s) |

9 349 512 44 468 5.44 3.86
10 488 1024 264 760 13.77 7.61
11 660 2048 140 1908 9.67 15.58
12 867 4096 261 3835 14.53 30.59
13 1114 8192 1038 7154 49.61 70.10
14 1404 | 16384 965 | 15419 54.05 150.32
15 1740 | 32768 337 | 32431 25.58 300.80
16 2125 | 65536 2369 | 63167 49.32 Timeout
17 2564 | 131072 2024 | 129048 184.91 Timeout
18 3060 | 262144 1344 | 260800 175.34 Timeout
19 3615 | 524288 669 | 523619 110.14 Timeout

Table 5.1: Bounded model checking with DPR of Randomized MAX-3SAT

problem. Given a 3-CNF formula (i.e., with at most 3 variables per clause), MAX-3SAT
tfinds an assignment that satisfies the largest number of clauses. Obtaining an exact solu-
tion to MAX-3SAT is NP-hard. A randomized approximation algorithm independently
sets each variable to 1 with probability 0.5 and to 0 with probability 0.5, and the number
of satisfied clauses is then determined. In our implementation, we inserted an unreach-
able abort statement; as such, all paths have to be explored to prove the absence of any
reachable abort statement. Table 5.1 presents our experimental results for the random-
ized MAX-3SAT algorithm. Each row of the table contains the data for a randomly gener-
ated CNF instance, with Columns 1 and 2 listing the number of variables and clauses in
the instance, respectively. Columns 3-5 respectively show the total number of execution
paths, the number explored paths, and the number of pruned paths, with the sum of the
latter two equal to the former. Finally, Columns 6-7 present the run time with DPR and
the run time of executing all paths without DPR. From these results, we can observe that
DPR is able to prune a significant number of the possible execution paths. Furthermore,
the larger the CNF instance, the more effective dynamic path reduction is.

Benchmark With DPR Without DPR
length | valid | paths | explored | pruned | time(s) | explored | time(s)
13 yes 8192 22 8166 0.707 2741 0.085
14 yes 16384 28 16356 0.845 10963 0.144
18 yes | 262144 39 | 262105 2.312 175403 7.285
20 yes | 1048576 29 | 1048542 4.183 350806 6.699
21 yes | 2097152 26 | 2097097 4.202 175403 4.339
11 no 2048 15 2033 1.69 2048 10.027
13 no 4096 13 4083 0.52 4096 16.607
14 no 16384 8 16376 0.84 16384 53.358
20 no | 1048576 28 | 1048548 3.32 - | Timeout

Table 5.2: Bounded model checking with DPR of NFA for floating-point expressions.

52

In our second case study, we implemented an algorithm that uses a Nondeterministic
Finite Automaton (NFA) to recognize regular expressions for floating-point values of
the form [+]?[0 — 9] + \.[0 — 9]+. We encoded the accept state as an abort statement
and verified whether it is reachable. Table 5.2 contains our experimental results on nine
input sentences, among which five are valid floating-point expressions and four are not.
Columns 1 and 2 give the length of the input and whether or not it is accepted by the
NFA. Column 3 lists the total number of execution paths Columns 4-6 contain the results
using DPR, i.e. the number explored paths, the number of pruned paths and the run
time. Columns 7 and 8 list the number of explored paths and run time without DPR.
Note that in the case of a valid floating-point expression, the number of explored paths
without DPR may not be the same as the number of total paths since the accept state is
reached before exploring the remaining paths. As in the MAX-3SAT case study, we can
again observe a very high percentage of pruned paths, a percentage that grows with the
instance size.

53

Chapter 6

Software Monitoring with Controllable
Overhead

The controller design problem is the problem of devising a controller () that regulates the
input v to a process P (henceforth referred to as the plant) in such a way that P’s output
y adheres to a reference input x with good dynamic response and small error; see the
architecture shown in Figure 6.1.

reference _ | Controller § control | Plant plant
—_—— —
input x Q input v P outputy

Figure 6.1: Plant (P) and Controller (Q) architecture.

Runtime monitoring with controllable overhead can beneficially be stated as a con-
troller design problem: The controller is a feedback controller that observes the moni-
toring overhead, the plant comprises the runtime monitor and the application software,
and the reference input z to the controller is given by the user-specified target overhead
o;. This structure is depicted in Figure 6.2. To ensure that the plant is controllable, one
typically instruments the application and the monitor so that they emit events of interest
to the controller. The controller catches these events, and controls the plant by enabling or
disabling monitoring and event signaling. Hence, the plant can be regarded as a discrete
event process.

In runtime monitoring, overhead is the measure of how much longer a program takes
to execute because of monitoring. If an unmodified and unmonitored program executes
in time R and executes in total time R + M with monitoring, we say that the monitoring
has overhead M / R.

Instead of controlling overhead directly, it is more convenient to write the SMCO
control laws in terms of monitoring percentage: the percentage of execution time spent
monitoring events, which is equal to M/(R+ M). Monitoring percentage m is related
to the traditional definition of overhead o by the equation m=o0/(1+0). The user-

54

Plant
target Controller enable/disable | | Monitor < Instrumented observed
overhead o, monitoring l= Program overhead o
<<~

Figure 6.2: Generic SMCO Architecture.

specified target monitoring percentage (UTMP) m, is derived from o, in a similar manner;
i.e., my = O / (1 + Ot)'

The classical theory of digital control [29] assumes that the plant and the controller are
linear systems. This assumption allows one to semi-automatically design the controller
by applying a rich set of design and optimization techniques, such as the Z-transform,
fast Fourier transform, root-locus analysis, frequency response analysis, proportional-
integrative-derivative (PID) control, and state-space optimal design. For nonlinear sys-
tems, however, these techniques are not directly applicable, and various linearization
and adaptation techniques must be applied as pre- and post-processing, respectively.

The problem we are considering is nonlinear, because of the enabling and disabling
of interrupts. Intuitively, the interrupt signal is multiplied by a control signal which
is 1 when interrupts are enabled and 0 otherwise. Although linearization is one possi-
ble approach for this kind of nonlinear system, automata theory suggests a better ap-
proach, recasting the controller design (synthesis) problem as one of supervisory controller
design [63, 1].

The main idea of supervisory control we exploit to enable and disable interrupts is
the synchronization inherent in the parallel composition of state machines. In this setting,
the plant P is a state machine, the desired outcome (tracking the reference input) is a
language L, and the controller design problem is that of designing a controller (), which
is also a state machine, such that the language L(Q||P) of the composition of () and P is
included in L. This problem is decidable for finite state machines [63, 1].

Monitoring percentage depends on the timing (frequency) of events and the moni-
tor’s per-event processing time. The specification language L therefore consists of timed
words aq,ty,...,a;,t where each a; is an (access) event that occurs at time ¢;. Conse-
quently, the state machines used to model P and) must also include a notion of time.
Previous work has shown that supervisory control is decidable for timed automata [3, 73]
and for timed transition models [51].

Modeling overhead control requires however, the use of more expressive, extended
timed automata (see Section 6.2), and for such automata decidability is lost. The lack of
decidability means that a controller cannot be automatically synthesized. This however,
does not diminish the usefulness of control theory. On the contrary, this theory becomes
an indispensable guide in the design of a controller that satisfies a set of constraints. In
particular, we use control theory to develop a novel combination of supervisory and PID

55

control. As in classical PID control, the error from a given setpoint (and the integral
and derivative of the error) is employed to control the plant. In contrast to classical PID
control, the computation of the error and its associated control happens in our framework
on an event basis, instead of a fixed, time-step basis.

To develop this approach, we must reconcile the seemingly incompatible worlds of
event- and time-based systems. In the time-based world of discrete time-invariant sys-
tems, the input and the output signals are assumed to be known and available at every
multiple of a fixed sampling interval At¢. Proportional control (P) continually sets the
current control input v(n) as proportional to the current error e(n) according to the equa-
tion v(n) = ke(n), where n stands for nAt and e(n) = y(n)—x(n) (recall that v, z, and y are
depicted in Figure 6.1). Integrative control (I) sums the previous and current error and
sets the control input to v(n) =k > e(n).

In contrast, in the event-based world, time information is usually abstracted away,
and the relation to the time-based world, where controller design is typically done, is
lost. However, in our setting the automata are timed, that is, they contain clocks, ticking
at a fixed clock interval At. Thus, events can be assumed to occur at multiples of At, too.
Of course, communication is event based, but all the necessary information to compute
the proper control value v(t) is available, whenever an event is thrown at a given time ¢
by the plant.

We present two controller designs with different trade-offs and correspondingly dif-
ferent architectures. Our global controller is a single controller responsible for all objects
of interest in the monitored software; for example, these objects may be functions or
memory allocations, depending on the type of monitoring being performed. The global
controller features relatively simple control logic and hence is very efficient: its calcu-
lations add little to the observed overhead. It does not, however, attempt to be fair in
terms of monitoring infrequently occurring events. Our cascade controller, in contrast, is
designed with fairness in mind, as the composition of a primary controller and a set of
secondary controllers, one for each monitored plant.

Both controller architectures temporarily disable interrupts to control overhead. One
must therefore consider the impact of events missed during periods of non-monitoring
on the monitoring results. The two applications of SMCO we consider are integer range
analysis and the detection of under-utilized memory. For under-utilized memory detec-
tion, when an event is thrown, we are certain that the corresponding object is not stale.
We can therefore ignore interrupts for a definite interval of time, without compromising
soundness and at the same time lowering the monitoring percentage.

Similarly, for integer range analysis, two updates to an integer variable that are close
to each other in time (e.g., consecutive increments to a loop variable) are often near each
other in value as well. Hence, processing the interrupt for the first update and ignoring
the second, is often sufficient to accurately determine the variable’s range, while also
lowering monitoring percentage. For example, in the benchmarking experiments de-
scribed in Section 7.3, we achieve high accuracy (typically 90% or better) in our integer
range analysis with a target overhead of just 10%.

56

6.1 Target Specification

The target specification for a single controlled plant is given as a timed language L, con-
taining timed words of the form a4, t1, ..., a;,t;, where a; is an event and ¢; is the time at
which a; has occurred. Each plant has a local target monitoring percentage m;, which
is effectively that plant’s portion of the UTMP m;. Specifically, L contains timed words
ai,ti,...,a;t that satisfy the following conditions:

1. The average monitoring percentage m = (Ip,) / (t;—t1) is such that m <m,;, where
P 1s the average time taken by the monitor and controller to process an event.

2. If the strict inequality m < m;, holds, then the monitoring-percentage undershoot is
due to time intervals with low activity during which all events are monitored.

The first condition bounds only the mean monitoring percentage m within a timed word
w € L. Hence, various policies for handling monitoring percentage, and thus enabling
and disabling interrupts, are allowed. The second condition is a best-effort condition
which guarantees that if the target monitoring percentage is not reached, this is only
because the plant does not throw enough interrupts. As our benchmarking results of Sec-
tion 7.3 demonstrate, we designed the SMCO global and cascade controllers (described
in Section 6.3) to satisfy these conditions.

When considering the target specification language L and the associated mean mon-
itoring percentage m, it is important to distinguish plants in which all interrupts can
be disabled (as in Figure 6.3) from the other (as in Figure 6.4). Hardware-based execu-
tion platforms (e.g., CPU and MMU) and virtual machines such as the JVM belong to
the former category. (The JVM supports disabling of software-based interrupts through
just-in-time compilation.)

Software plants written in C, however, typically belong to the latter category, because
code inserted during instrumentation is not removed at run-time. In particular, as dis-
cussed in Section 6.2.2, when function calls are instrumented, the instrumented program
always throws function-call interrupts as.. Consequently, for such plants, in addition
to m, there is also an unavoidable base monitoring percentage m;, = kpy., where k is the
number of function calls.

6.2 Plant Models

This section specifies the behavior of the above plant types in terms of extended timed au-
tomata (introduced below). For illustration purpose, each hardware plant is controlled by
a secondary controller, and the unique software plant is controlled by the global controller.

6.2.1 Hardware Plant

Timed automata (TA) [3] are finite-state automata extended with a set of clocks, whose val-
ues are positive reals. Clock predicates on transitions are used to model timing behavior,
while clock predicates appearing within locations (states) are used to enforce progress
properties. Clocks may be reset by transitions. Extended TA are TA with local variables
and a more expressive clock predicate/assignment language.

57

v?en/i=1 v2di/i=0
| vy
k=0, i=1 running
[k, < MT]

stopped
[true]

[k,>p 1/ylac [i=11/y,'ac, k=0

monitor access
[k, <p,]

Figure 6.3: Automaton for the hardware plant P of one monitored object.

The hardware plant P is modeled by the extended TA in Figure 6.3. Its alphabet
consists of input and output events. The clock predicates labeling its locations and tran-
sitions are of the form k ~ ¢, where k is a clock, c is a natural number or variable, and ~
is one of <, <, =, >, and >. For example, the predicate k; < MT labeling P’s state run-
ning is a clock constraint, where £, is a clock and MT is the maximum-monitoring-time
parameter discussed below.

Transition labels are of the form [guard]In/Cmd , where guard is a predicate over
P’s variables; In is a sequence of input events of the form v7e denoting the receipt of
value e (written as a pattern) on channel v; and Cmdis a sequence of output and assign-
ment events. An output event is of the form y!a denoting the sending of value a on
channel y; an assignment event is simply an assignment of a value to a local variable of
the automaton. All fields in a transition label are optional. The use of ? and ! to denote
input and output events is standard, and first appeared in Hoare’s paper on CSP [47].

A transition is enabled when its guard is true and the specified input events (if any)
have arrived. A transition is not forced to be taken unless letting time flow would violate
the condition (invariant) labeling the current location. For example, the transition out of
the state monitor access in Figure 6.3 is enabled as soon as k; > p,,, but not forced until
ks > par. The choice is nondeterministic, and allows to succinctly capture any transition
in the interval [p,,, pas|. This is a classic way of avoiding overspecification.

P has an input channel v where it may receive enable and disable commands, denoted
en and di, respectively, and an output channel y; where it may send begin and end of
access messages, denoted ac and ac, respectively. Upon receipt of di, interrupt bit i is set
to 0, which prevents the plant from sending further messages. Upon receipt of en, i is set
to 1, which allows the plant to send an access message ac at arbitrary moments in time.
Once an access message is sent, P resets the clock variable k; and transitions to a new
state. At any time in the interval [p,,, py], P can leave this state and send an end of access
message y!ac to the controller.

P terminates when the maximum monitoring time M7, a parameter of the model, is
reached, i.e., when clock £, reaches value MT'. Initially, i =1 and k; =0.

A running program can have multiple hardware plants, with each plant a source

58

of monitored events. For example, a program running under our NAP detection tool
for finding under-utilized memory has one hardware plant for each monitored memory
region. The NAP detector’s controller can individually enable or disable interrupts for
each hardware plant.

6.2.2 Software Plant

In a software plant P, the application program is instrumented to handle, together with
the monitor, the interrupt logic readily available to hardware plants (see Figure 6.4).

A software plant represents a single function that can run with interrupts enabled or
disabled. In practice, the function toggles interrupts by choosing between two copies
of the function body each time it is called: one copy that is instrumented to send event
interrupts and one that is left unmodified.

instrumented program y !fc, k =0 instrumented program
(top level) f ! (wait for controller)
[true] -~ [true]

vm | cm=m, k,=0

_ instrumented program
lk, > p/ &cm=di] / y/!fc (choose function body)

tk, < pf]
[k, = F] o
[k, = pf & cm=ei] / y !fc
monitored program i
(. prog) ylac, k =0 monitored program
monitor access (execute function)

k, < p,] [k, <F]

T k,2p_1/ylac

Figure 6.4: Automaton for the software plant P of all monitored objects.

Whenever a function call happens at the top level state of P, the instrumented program
resets the clock variable k;, sends the message fc on y; to the controller and waits for its
response. If the response on vy is di, indicating that interrupts are disabled, then the
unmonitored version of the function body is called. This is captured in P by returning
to the top level state at any time in the interval [p/¢, p’°]. This interval represents the time
required to implement the call logic.

If the response on vy is ei, indicating that interrupts are enabled, then the monitored
version of the function body is called. This is captured in P by transitioning to the state
execute function within the same interval [p/°, p/¢].

Within the monitored function body, the monitor may send on y; a begin of access

59

event ac to the controller, whenever a variable is accessed, and transition to the state
monitor access. The time spent by monitoring this access is expressed with a transition
back to execute function that happens at any time in the interval [p,,, pa]. This transition
sends an end of access message ac on y; to the controller.

P terminates processing function f when the maximum monitoring time F', a param-
eter of the model, is reached; that is, when clock k; > F.

6.3 Controllers
6.3.1 Global Controller

Integrative control uses previous behavior of the plant to control feedback. Integrative
control has the advantage that it has good overall statistical performance for plants with
consistent behavior and is relatively immune to hysteresis, in which periodicity in the out-
put of the plant produces periodic, out-of-phase responses in the controller. Conversely,
proportional control is highly responsive to changes in the plant’s behavior, which makes
it appropriate for long-running plants that exhibit change in behavior over time.

x?mt / m=mt, k=0, p=0, t=0

y/2ac | t=t+k, k=0 [p/(t+p)>m] y?fc | vldi, t=t+k, k=0

variable ¢
access

ylac | p=p+k, k=0 [p/(t+p) <m,] y2fc | vlei, t=t+k, k=0

[true]

m=mt, k=0, p=0, T=0 y?fc | p=p+k, k=0

Figure 6.5: Automaton for global controller.

We have implemented an integral-like global controller for plants with consistent be-
havior. Architecturally, the global controller is in a feedback loop with a single plant rep-
resenting all objects of interest to the runtime monitor. The architecture of the global con-
troller is thus exactly that of Figure 6.2, which is identical to the classical plant-controller
architecture of Figure 6.1, except that in Figure 6.2, the plant is decomposed into the
runtime monitor and the software it is monitoring.

In presenting the extended TA for the global controller, we assume it is in a feedback
loop with a software-oriented plant whose behavior is given by the extended TA of Fig-
ure 6.4. This is done without loss of generality, as the global controller’s state machine
is simpler in the case of a hardware-oriented plant. The global controller thus assumes
the plant emits events of two types: function-call events and access events, where the for-
mer corresponds to the plant having entered a C function, and the latter corresponds to
updates to integer variables, in the case of integer range analysis.

The global controller’s automaton is given in Figure 6.5 and consists of three loca-
tions: top level, the function-call processing location, and the variable-access processing
location. Besides the UTMP m,, the automaton for the global controller makes use of the

60

following variables: clock variable %, a running total 7 of the program’s execution time,
and a running total p of the instrumented program’s observed processing time p. Vari-
able 7 keeps the time the controller spent in total (over repeated visits) in its top-level
location, whereas variable p keeps the time the controller spent in total in its function-
call and access-event processing locations. Hence, at every moment in time, the observed
overhead is o=p /7 and the observed monitoring percentage is m=p /(7 +p).

In the top-level location, the controller can receive the UTMP on channel z. The con-
troller transitions from the top-level to the function-call processing location whenever a
function-call event occurs. In particular, when function f is called, the plant emits an
fe signal to the controller along y; (regardless of whether access event interrupts are en-
abled for f), transitioning the controller to the function-call processing location along one
of two edges. If the observed monitoring percentage for the entire program execution is
above the UTMP m,, the edge taken sends the di signal along v, to disable monitoring
of interrupts for that function call. Otherwise, the edge taken enables these interrupts.
Thus, the global controller decides to enable/disable monitoring on a per function-call
basis. Moreover, since the enable/disable decision depends on the sign of the cumulative
error e =m—my, the controller is integrative.

The time taken in the function-call processing location, which the controller deter-
mines by reading clock k’s value upon receipt of an fc signal from the plant, is consid-
ered monitoring time; the transition back to the initial state thus adds this time to the
total monitoring time p.

The controller transitions from the top-level to the variable-access processing location
whenever a function f sends the controller an access event ac and interrupts are enabled
for f. Upon receipt of an @c event signaling the completion of event processing in the
plant, the controller measures the time it spent in its variable-access location, and adds
this quantity to p. To keep track of the plant’s total execution time 7, each of the global
controller’s transitions exiting the initial location updates 7 with the time spent in the
top-level location.

Note that all of the global controller’s transitions are event-triggered, as opposed to
time-triggered, as it interacts asynchronously with the plant. This aspect of the controller
model reflects the discrete-event-based nature of our PID controllers.

6.3.2 Cascade Controller

As per the discussion of monitoring-percentage undershoot in Section 6.1, some plants
(functions or objects in a C program) might not generate interrupts at a high rate, and
therefore might not make use of the target monitoring percentage available to them. In
such situations it is desirable to redistribute such unused UTMP to more active plants,
which are more likely to make use of this monitoring percentage. Moreover, this redis-
tribution of the unused UTMP should be performed fairly, so that less-active plants are
not ignored.

This is the rationale for the SMCO cascade controller (see Figure 6.6), which consists
of a set of secondary controllers ();, each of which directly control a single plant P, and a

61

SIS
SINENE
ls

Figure 6.6: Overall cascade control architecture.

primary controller P() that controls the reference inputs x; to the secondary controllers.
Thus, in the case of cascade control, each monitored plant has its own secondary con-
troller that enables and disables its interrupts. The primary controller adjusts the local
target monitoring percentage (LTMP) my, for the secondary controllers.

x?mlt / m =mlt, k=0

top ylac [vidi, 1=k k=0 [access ylac | p=k, ulk, d=p/m-p-t, k=0 [wait

[true] | [true] [k<d]

[k=d] [vlen, k=0

Figure 6.7: Automaton for secondary controller Q).

[Monitoring
Legend [Not Monitoring
Start Stop —Controller gets Start Stop Controller gets
[Monitoring (Monitoring T,and p, setsd, {Monitoring[Monitoring {Tz and p, setsd,
B P, d, w | » d,
Event - Event -4

Time

Figure 6.8: Timeline for secondary controller.

6.3.2.1 Secondary Controllers.

Each monitored plant P has a secondary controller), the state machine for which is
given in Figure 6.7. Within each iteration of its main control loop,) disables interrupts by
sending message di along v upon receiving an access event ac along y, and subsequently
enables interrupts by sending en along v. Consider the i-th execution of ()’s control loop,
and let 7; be the time monitoring is on within this cycle; i.e., the time between events vlen

62

and y?ac. Let p; be the time required to process event y?ac, and let d; be the delay time until
monitoring is restarted; i.e., until event vlen is sent again. See Figure 6.8 for a graphical
depiction of these intervals. Then the overhead in the i-th cycle is 0, =p; / (7; + d;) and
accordingly, the monitoring percentage of the i-th cycle is m; =p; / (p; + 7. + d;).

To ensure that m; = m;; whenever the plant is throwing access events at a high rate, @)
computes d; as the least positive integer greater than or equal to p;/my — (7; + p;). Choos-
ing d; this way lets the controller extend the total time spent in the i-th cycle so that its
m; is exactly the target my,.

To see how the secondary controller is like a proportional controller, regard p; as a
constant (p; does not vary much in practice), so that p;/m;—the desired value for the
cycle time—is also a constant. The equation for d; becomes now the difference between
the desired cycle time (which we take to be the controller’s reference value) and the actual
cycle time measured when event 7 is finished processing. The value d; is then equal to
the proportional error for the i-th cycle, making the secondary controller behave like a
proportional controller with proportional constant 1.

If plant P throws events at a low rate, then all events are monitored and d; =0. When
processing of ac is finished, which is assumed to occur within the interval [p,,, px], @
sends the processing time £ to the primary controller along channel u.

6.3.2.2 Primary Controller.

x?m | m=m/n, x!m, ..x!m,

| u?p,/ plil=plil+p,
| I[k=T]1 eczec+(mgt-§:p[i]/T), m,=m_/n+Ke , X,!m,,..., x Im

m,=m,, e =0, k=0, p=[0,...,0]

Ber X o k=0, p=I0,...,0]

Figure 6.9: Automaton for the primary controller.

Secondary controller () achieves its LTMP my; only if plant P throws events at a suf-
ticiently high rate. Otherwise, its mean monitoring percentage m is less than m;,. When
monitoring a large number of plants P; simultaneously, it is possible to take advantage
of this under-utilization of m;; by increasing the LTMP of those controllers); associated
with plants that throw interrupts at a high rate. In fact, we can adjust the my; of all sec-
ondary controllers @); by the same amount, as the controllers); of plants P; with low
interrupt rates will not take advantage of this increase. Furthermore, we do this every T
seconds, a period of time we call the adjustment interval. The periodic adjustment of the
LTMP is the task of the primary controller PQ).

Its extended TA is given in Figure 6.9. After first inputting the UTMP m, on z, PQ
computes the initial LTMP to be m,/n, thereby partitioning the global target monitoring
percentage evenly among the n secondary controllers. It assigns this initial LTMP to the
local variable m,;; and outputs it to the secondary controllers. It also assigns m; to local
variable m,,, the global target monitoring percentage (GTMP). P() also maintains an array
p of total processing time, initially zero, such that p[i] is the processing time used by
secondary controller (); within the last adjustment interval of 7" seconds. Array entry p|i]

63

is updated whenever (); sends the processing time p; of the most recent event a;; i.e., p|i]
is the sum of the p; that (); generates during the current adjustment interval.

When the time bound of 7" seconds is reached, P() computes the error e = mg —
> pli]/T, as the difference between the GTMP and the observed monitoring percent-
age during the current adjustment interval. P() also updates a cumulative error e., which
is initially 0, such that e, = e. 4 ¢, making it the sum of the error over all adjustment inter-
vals. To correct for the cumulative error, P() computes an offset K e, that it uses to adjust
my; down to compensate for over-utilization, and up to compensate for under-utilization.
The new LTMP is set to my;; =m,/n+ Ke. and sent to all secondary controllers, after
which array p and clock % are reset.

Because the adjustment P() makes to the LTMP m;, over a given adjustment interval is
a function of a cumulative error term e., primary controller P() behaves as an integrative
controller. In contrast, each secondary controller (); alone maintain no state beyond p;
and 7;. They are therefore a form of proportional controller, which respond directly as
the plant output changes. The controller parameter K; in PQ’s adjustment term Kje,
is known in control theory as the integrative gain. It is essentially a weight factor that
determines to what extent the cumulative error e, affects the local monitoring percentage
my. The larger the K; value, the larger the changes P() will make to m; during the
current adjustment interval to correct for the observed overhead.

The target specification language Lp is defined in a fashion similar to the one for the
secondary controllers, except that the events of the plant P are replaced by the events of
the parallel composition P, || P || ... || P, of all plants.

6.4 Integer Range Analysis

Instrumented Program

v

Controller

| | l '
activations events J J J J
------- fl g’ h i
4 v

Range Checker

Figure 6.10: SMCO architecture for r ange- checker .

We have implemented several SMCO applications, including an integer range-analysis
tool (range-checker), a memory staleness monitor (Non-Accessed Period Detector),
an object assignment tracker (C-DIDUCE), and a pointer validity checker (Bounds Checker).
In this thesis, we mainly discuss the integer range analysis application.

Integer range analysis [28] determines the range (minimum and maximum value) of
each integer variable in the monitored execution. These ranges are useful for finding

64

program errors. For example, analyzing ranges on array subscripts may reveal bounds
violations.

Figure 6.10 is an overview of range-checker , our integer range-analysis tool, which
is implemented by our CAI tools described in Chapter 2. Our range-checker instru-
mentation plug-in adds range-update operations after assignments to global, function-
level static, and stack-scoped integer variables. The Range Checker module (shown in Fig-
ure 6.10) consumes these updates and computes ranges for all tracked variables. Range
updates are enabled or disabled on a per-function basis. In Figure 6.10, monitoring is en-
abled for functions f and g; this is reflected by the instrumented versions of their function
bodies, labeled f’ and ¢/, appearing in the foreground.

if (controller("func")) goto L2; else goto L1;

' '

L1: L2:
while (i < len) { while (i < len) {
total += valuesil; total += valuesil;
i++; update_range("func:total", total);
} i++;
return total; update_range("func:i", i);
}
return total;

Figure 6.11: r ange- checker adds a distributor with a call to the SMCO controller. The distributed
passes control to either the original, uninstrumented function body shown on the left, or the instrumented
copy shown on the right.

To allow efficient enabling and disabling of monitoring, the plug-in creates a copy
of the body of every function to be instrumented, and adds instrumentation only to
the copy. A distributor block at the beginning of the function calls the SMCO con-
troller to determine whether monitoring for the function is currently enabled. If so, the
distributor jumps to the instrumented version of the function body; otherwise, control
passes to the original, unmodified version. Figure 6.11 shows a function modified by the
range-checker plug-in to have a distributor block and a duplicate instrumented func-
tion body. Functions without integer updates are not duplicated and always run with
monitoring off.

Because monitoring is enabled or disabled at the function level, the instrumentation
notifies the controller of function-call events. As shown in Figure 6.10, the controller re-
sponds by activating or deactivating monitoring for instrumented functions. With the
global controller, there is a single “on-off” switch that affects all functions: when mon-
itoring is off, the uninstrumented versions of all function bodies are executed. The cas-
cade controller maintains a secondary controller for each instrumented function and can
switch monitoring on and off for individual functions.

65

The controller and the range-checker ~ monitor are implemented as external func-
tions in shared object libraries which need to be linked with the instrumented program.
To do so we added compiling flags in target program’s makefile to specify the location of
library files. However the make process can remain intact. Also, note that the monitoring
functions defined in range-checker library does not actually take variable names and
scope as input, as shown in Figure 6.11. In fact at compilation time the range-checker
plug-in assigns each integer variable a unique id. The monitoring function takes the id
of integer variables as input, instead of their name string. range-checker ~ plug-in saves
the name-id mapping for later analysis.

Loading a share object allows the program to register at_exit functions. When pro-
gram exits, the af_exit function in range-checker library will be invoked to save the
collected range information into a disk file. We also developed a statistic tool to plot the
range-checker output and compute that accuracy of range-checking.

6.5 Clock Thread

As our controller logic relies on measurements of monitoring time, range-checker queries
the system time whenever it makes a control decision. The RDTSCinstruction is known
as the fastest and most precise timekeeping mechanism on the x86 platform. It returns
the CPU’s timestamp counter (T'SC), which stores a processor cycle timestamp (with sub-
nanosecond resolution), without an expensive system call.

However, we found that even RDTSCcan be too slow for our purposes. On our
testbed, we measured the RDTSCinstruction to take 45 cycles on average, more than
twenty times longer than an arithmetic instruction. With time measurements neces-
sary on every function call for our range-checker , this was too expensive. Our first
range-checker implementation called RDTSGinline for every time measurement, result-
ing in a 23% overhead even with all monitoring turned off.

To reduce the high cost of timekeeping, we modified the range-range-checker to
spawn a separate “clock thread” to handle its timekeeping. The clock thread periodically
calls RDTSCand stores the result in a memory location that range-checker uses as its
clock. range-checker can read this clock with a simple memory access. This is not as
precise as calling RDTSCdirectly, but it is much more efficient.

The frequency that clock thread calls RDTSCis adjustable and implemented as an in-
put parameter for range-checker . Apparently the more frequently that clock thread
calls RDTSCthe more precise the artificial clock will be. However experiments show high
clock thread frequency does not mean improvement on either the precision of SMCO'’s
overhead-control or the accuracy of range-checking. Choice of a good clock thread fre-
quency and its effect on range-checking accuracy is discussed in Section 7.4.1.

6.6 Controller Design

To implement and test the range-checker tool described in Section 6.4, we developed
two versions of controller, the global controller and the cascade controller, as described
in Chapter 6. The global controller consists of 180 lines of C code. The cascade controller,

66

whose logic is relatively more complex than the global controller, consists of 300 lines of
C code.

For differ controllers, the range-checker library varies correspondingly. For the
global controller, range-checker ‘s monitoring function only needs integer variables’
id and current value as input, because the global controller thinks the whole program is
a plant and treats all variable equally. In contrast, the cascade controller assigns a sec-
ondary controller to every function. All integer variables that belongs to one function are
supervised by same secondary controller. To keep track of controlling/monitoring cost
for every secondary controller, besides variable id and value, the function (secondary
controller) id is also required to be passed into cascade controller’s range-checker =~ mon-
itoring function.

Both controllers will spawn the clock thread for efficient timekeeping. When the con-
troller library is detached from target program, a flag is set to notify the clock thread to
gracefully exit itself.

67

Chapter 7

SMCO Experimental Evaluation

This chapter describes a series of benchmarks that together show that SMCO fulfills its
goals: it closely adheres to the specified target overhead, allowing the user to specify a
precise trade-off between overhead and monitoring effectiveness. In addition, our cas-
cade controller apportions the target overhead to all sources of events, ensuring that each
source gets its fair share of monitoring time.

Our results highlight the difficulty inherent in achieving these goals. The test work-
loads vary in behavior considerably over the course of an execution, making it impracti-
cal to predict sources of overhead. Even under these conditions, SMCO is able to control
observed overhead fairly well.

To evaluate SMCO'’s versatility, we tested it on two workloads, one CPU-intensive
and one I/O-intensive, and with our two different runtime monitors. Section 7.1 dis-
cusses our experimental testbed. Section 7.2 describes the workloads and profiles them
in order to examine the challenges involved in controlling monitoring overhead. In Sec-
tion 7.3, we benchmark SMCO’s ability to control the overhead of our integer range anal-
ysis monitor using both of our control strategies. Section 7.4 explains how we optimized
certain controller parameters.

7.1 Testbed

Since controlling overhead is most important for long-running server applications, we
chose a server-class machine for our testbed. Our benchmarks ran on a Dell PowerEdge
1950 server with two quad-core 2.5GHz Intel Xeon processors, each with 12MB L2 cache,
and 32GB of memory. The server was equipped with a pair of Seagate Savvio 15K RPM
SAS 73GB disks in a mirrored RAID. We configured the server with 64-bit CentOS Linux
5.3, using a CentOS-patched 2.6.18 Linux kernel.

For our observed overhead benchmark figures, we averaged the results of ten runs
and computed 95% confidence intervals using Student’s ¢-distribution. Error bars repre-
sent the width of a measurement’s confidence interval.

We tested our SMCO approach on two applications: the CPU-intensive bzip2 and an
I/O-intensive grep workload. The bzip2 benchmark is a data compression workload

68

from the SPEC CPU2006 benchmark suite, which is designed to maximize CPU utiliza-
tion [44]. This benchmark uses the bzip2 utility to compress and then decompress a
53MB file consisting of text, JPEG image data, and random data.

Our range-checker monitor, described in Section 6.4, found 80 functions in bzip2 ,
of which 61 contained integer assignments, and 445 integer variables, 242 of which were
modified during execution. The integer-update events were spread very unevenly among
these variables. The least-updated variables were assigned only one or two times during
a run, while the most updated variable was assigned 2.5 billion times.

7.2 Workloads

— 35 T T T T T T T
2 30 4
o
= 25 _
é 20 -
[2]
S 15 .
& 10 4
5 5 i
** 0 | | | | | |

0 10 20 30 40 50 60 70 80

time (seconds)
(a) Most updated variable

— 7 T T T T T
2 6 -
i)
= 5 _
E L |
2]
& 3T }
& 2r 4
5 1t i
** O | | | | |

0 10 20 30 40 50 60

time (seconds)
(b) 99" most updated variable

Figure 7.1: Event distribution histogram for the most updated
variable (a) and 99" most updated variable (b) in bzi p2. Exe-
cution time (x-axis) is split into 0.4 second buckets. The y-axis
shows the number of events in each time bucket.

Figure 7.2 shows the frequency of accesses to two different variables, the most up-
dated variable and the 99" most updated variable, over time. The data was obtained
by instrumenting bzip2 to monitor a single specified variable with unbounded over-
head. The monitoring runs for these two variables took 76.4 seconds and 55.6 seconds,
respectively. The two histograms show different extremes: the most updated variable
is constantly active, while accesses to the 99" most updated variable are concentrated

69

in short periods of high activity. Both variables, however, experience heavy bursts of
activity that make it difficult to predict monitoring overhead.

Our I/O-intensive workload uses GNU grep 2.5, the popular Linux regular expres-
sion search utility. In our benchmarks, grep searches the entire GCC 4.5 source tree
(about 543MB in size) for an uncommon pattern. When we tested the workload with the
Unix time utility, it reported that these runs typically used only 10-20% CPU time. Most
of each run was spent waiting for read requests, making this an I/O-heavy workload. Be-
cause the grep workload repeats the same short tasks, we found that its variable accesses
were distributed more uniformly than in bzip2 . Our range-checker reported 489 vari-
ables, with 128 actually updated in each run, and 149 functions, 87 of which contained
integer assignments. The most updated variable was assigned 370 million times.

7.3 Range Checker

We benchmarked the range-checker = monitor discussed in Section 6.4 on both work-
loads using both of the controllers in Section 6.3.1 and 6.3.2. Sections 7.3.1 and 7.3.2
present our results for the global controller and cascade controller, respectively. Sec-

tion 7.3.3 compares the results from the two controllers. Section 7.3.4 discusses range-checker ’s
memory overhead.

7.3.1 Global Controller

Figure 7.3.1 shows how the global controller performs on our workloads for a range of
target overheads (on the z-axis), with the observed overhead on the y-axis and the total
number of events monitored on the y2-axis for each target-overhead setting. With target
overhead set to 0%, both workloads ran with an actual overhead of 4%, which is the
controller’s base overhead. The base overhead is due to the controller logic and the added
complexity from unused instrumentation.

The dotted line in each plot shows the ideal result: observed overhead equals target
overhead up to an ideal maximum. We computed the ideal maximum to be the observed
overhead from monitoring all events in the program with all control turned off. Any
observed overhead above the ideal maximum is the result of overhead incurred by the
controller.

At target overheads of 10% and higher, Figure 7.2(a) shows that the global controller
tracked the specified target overhead all the way up to 140% in the bzip2 workload.
The grep workload (Figure 7.2(b)) showed a general upward trend for increasing tar-
get overheads, but never exceeded 9% observed overhead. In fact, at 9% overhead,
range-checker is already at nearly full coverage, with 99.7% percent of all program
events being monitored. The grep workload’s low CPU usage imposes a hard limit on
range-checker s ability to use overhead. The controller has no way to exceed this limit.
Confidence intervals for the grep workload were generally wider than for bzip2 , be-
cause I/O operations are noisier than CPU operations, making run times less consistent.

70

140 T T T T T T 30
overhead
events ------- .
120 - Tideal - - L2277 o
g 100 A
El = J2 @
2 5
5 80 - =
o]
5 4 15 =
2]
° 60 m 2
o 7]
P >
) 10 o
2 40 -
@]
20 3%
0 £]]]]]] 0
0 20 40 60 80 100 120 140
Target Overhead (%)
(a) bzip2
14 T T T T T T 14
overhead
events -------
12 1 ideal - - - - 112

Observed Overhead (%)
Events (billions)

0 1 1 1 1 1 1 0
0 2 4 6 8 10 12 14

Target Overhead (%)

(b) grep

Figure 7.2: Global controller with range-checker observed overhead (y-
axis) for a range of target overhead settings (x-axis) and two workloads.

7.3.2 Cascade Controller

Figure 7.3.2 shows results from experiments that are the same as those for Figure 7.3.1
except using the cascade controller instead of the global controller. The results were
similar. On the bzip2 workload, the controller tracked the target overhead well from 10%
to 100%. With targets higher than 100%, the observed overhead continued to increase,
but the controller was not able to adjust overhead high enough to reach the target because
observed overhead was already so close to the 120% maximum. On the grep workload,
we saw the same upward trend and eventual saturation with 9% observed overhead
monitoring 99.5% of events.

71

140 T T T : | : 25
overhead
events ------—-
120 + . T e
= ideal 1 20
e 100
3 m
2 [
T 80 15 o
E =
5 2
o 2]
° 60 8
g 10 g
2 40 i
° 5
20
0 B : ! | 1 1 | 0
0 20 40 60 80 100 120 140
Target Overhead (%)
(a) bzip2
14 ' ' ' . T . 1.4
overhead
events -------
12 igeal - - - - 110
g
? ~—~
S :
2 [}
g €
- g
2 L
0
o]
)
0] | 1 1 | | O
0 2 4 6 8 10 12 14

Target Overhead (%)
(b) grep

Figure 7.3: Cascade controller with range-checker observed overhead
(y-axis) for a range of target overhead settings (x-axis) and two workloads.

7.3.3 Controller Comparison

The global and cascade controllers differ in the distribution of overhead across differ-
ent event sources. To compare them, we developed an accuracy metric for the results
of a bounded-overhead range-checker run. We measured the accuracy of a bounded-
overhead run of the range-checker against a reference run with full coverage of all vari-
ables (allowing unbounded overhead). The reference run determined the actual range for
every variable.

In a bounded-overhead run, the accuracy of a range computed for a single variable is
the ratio of the computed range size to the range’s actual size (which is known from the

72

reference run). Missed updates in a bounded-overhead run can cause range-checker to
report smaller ranges, so this ratio is always in the interval [0, 1]. For a set of variables,
the accuracy is the average accuracy for all variables in the set.

100

80

60

40

Range Solver Accuracy (%)

20

Global - 100Hz
Cascaded - K=0.1 -------
MY B TR Y PR

10 100 1000 100001000001e+06 1e+07 1e+08 1e+09 le+10

0 M MY R T N TR TS N

of accesses (log)

(a) Non-cumulative

100 T ——
S s8or .
P
Q
g
3 60 -
Q
<
g
S 40 .
n
<3}
(o]
3
Y 20_ T
Global - 100Hz
Cascaded - K=0.1 ------—-
0 PRI S Y ST TN RS TrS RS UrS RS Rl B RS

10 100 1000 100001000001e+06 1e+07 1e+08 1le+09 le+10
of accesses (log)

(b) Cumulative

Figure 7.4: Comparison of range-checker accuracy for both controllers
with bzi p2 workload. Variables are grouped by total number of updates.

Figure 7.3.3 shows a breakdown of range-checker ‘s accuracy by how frequently
variables are updated. We grouped variables into sets with geometrically increasing
bounds: the first set containing variables with 1-10 updates, the second group containing
variables with 10-100 updates, etc. Figure 7.4(a) shows the accuracy for each of these sets,

and Figure 7.4(b) shows the cumulative accuracy, with each set containing the variables
from the previous set.

73

Exe Size \ V4 RSS
bzip2 (unmodified) 68.6KB 213KB 207KB

bzip2 (global) 262KB 227KB 203KB
bzip2 (cascade) 262KB 225KB 201KB
grep (unmodified) 89.2KB 61.4MB 1260KB
grep (global) 314KB 77.1MB 1460KB
grep (cascade) 314KB 78.2MB 1470KB

Table 7.1: r ange- checker memory usage, including executable size,
virtual memory usage (VSZ), and physical memory usage (RSS).

We used 10% target overhead for these examples, because we believe that low target
overheads represent the most likely use cases. However, we found similar results for all
other target overhead values that we tested.

The cascade controller’s notion of fairness results in better coverage, and thus better
accuracy, for rarely updated variables. In this example, the cascade controller had better
accuracy than the global controller for variables with fewer than 100 updates. As the
global controller does not seek to fairly distribute overhead to these variables, it moni-
tored a smaller percentage of their updates. Most dramatically, Figure 7.4(a) shows that
the global controller had 0 accuracy for all variables in the 10-100 updates range, mean-
ing it did not monitor more than one event for any variable in that set. The 3 variables
in the workload with 10-100 updates were used while there was heavy activity, causing
their updates to get lost in the periods when the global controller had to disable moni-
toring to reduce overhead.

However, with the same overhead, the global controller was able to monitor many
more events than the cascade controller, because it did not spend time executing the
cascade controller’s more expensive secondary controller logic. These extra events gave
the global controller much better coverage for frequently updated variables. Specifically,
it had better accuracy for variables with more than 10° updates.

Between these two extremes, i.e., for variables with 100-10° updates, both approaches
had similar accuracy. The cumulative accuracy in Figure 7.4(b) shows that overall, con-
sidering all variables in the program, the two controllers achieved similar accuracy. The
difference is primarily in where the accuracy was distributed.

7.3.4 Memory Overhead

Although range-checker does not use SMCO to control memory overhead, we mea-
sured memory use of our controllers for both workloads. Table 7.3.4 shows our memory-
overhead results. Here Exe Size is the size of the compiled binary after stripping debug-
ging symbols (as is common in production environments). This size includes the cost of
the SMCO library, which contains the compiled controller and monitor code. VSZ is the
total amount of memory mapped by the process, and RSS (Resident Set Size) is the total
amount of that virtual memory stored in RAM. We obtained the peak VSZ and RSS for
each run using the Unix ps utility.

74

Both binaries increased in size by 3—4 times. Most of this increase is the result of
function duplication, which at least doubles the size of each instrumented function. Du-
plicated functions also contain a distributor block and instrumentation code. The 17KB
SMCO library adds a negligible amount to the instrumented binary’s size. As few bi-
naries are more than several megabytes in size, we believe that even a 4x increase in
executable size is acceptable for most environments; this is more true these days, with
increasing amounts of RAM in popular 64-bit systems.

The worst-case increase in virtual memory use was only 27.4%, for the grep workload
with the cascade controller. The additional virtual memory is allocated statically to store
integer variable ranges and per-function overhead measurements (when the cascade con-
troller is used). This extra memory scales linearly with the number of integer variables
and functions in the monitored program, not with runtime memory usage. The bzip2
workload uses more memory than grep , so we measured in this case a much lower 6.6%
virtual memory overhead.

7.4 Controller Optimization

This section describes how we chose values for several of our control parameters in or-
der to get the best performance from our controllers. Section 7.4.1 discusses our choice
of clock precision for time measurements. Section 7.4.2 explains how we chose the inte-
grative gain and adjustment interval for the primary controller. Section 7.4.3 discusses
optimizing the adjustment interval for an alternate primary controller.

7.4.1 Clock Frequency

The control logic for our range-checker implementation uses a clock thread, as described
in Section 6.5, which trades off precision for efficiency. This thread can keep more precise
time by updating its clock more frequently, but more frequent updates result in higher
timekeeping overhead. Recall that the RDTSCinstruction is relatively expensive, taking
45 cycles on our testbed.

We performed experiments to determine how much precision was necessary to con-
trol overhead accurately. Figure 7.4.1 shows the range-checker = benchmark in Fig-
ure 7.3.1 repeated for four different clock frequencies. The clock frequency is how often
the clock thread wakes up to read the TSC.

At only 10Hz, the controller’s time measurements were not accurate enough to keep
the overhead below the target. With infrequent updates, most monitoring operations
occurred without an intervening clock tick and therefore appeared to take 0 seconds.
The controller ended up with an under-estimate of the actual monitoring overhead and
thus overshot its goal.

At 100Hz, however, controller performance was good and the clock thread’s impact
on the system was still negligible, incurring the 45-cycle RDTSCcost only one hundred
times for every 2.5 billion processor cycles on our test system. More frequent updates did
not perform any better and wasted resources, so we chose 100Hz for our clock update
frequency.

75

140

120

100

80

60

40

Observed Overhead (%)

20

0 20 40 60 80 100 120 140
Target Overhead (%)

(a) bzip2

Observed Overhead (%)

0 2 4 6 8 10 12 14
Target Overhead (%)

(b) grep

Figure 7.5: Observed overhead for global controller clock fre-
quencies with 4 different clock frequencies and 2 workloads using
range- checker instrumentation.

In choosing the clock frequency, we wanted to ensure that we also preserved SMCO's
effectiveness. Figure 7.4.1 shows the accuracy of the range-checker at 10% target over-
head using the four clock frequencies we tested. We used the same accuracy metric as
in Section 7.3.3 and plotted the results as in Figure 7.3.3. The range-checker accuracy
is similar for 100Hz, 1000Hz, and 2500Hz clocks. These three values resulted in similar
observed overheads in Figure 7.4.1. It therefore makes sense that they achieve simi-
lar accuracy, since SMCO is designed to support trade-offs between effectiveness and
overhead. The 10Hz run has the best accuracy, but this result is misleading because it
attains that accuracy at the cost of higher overhead than the user-requested 10%. Testing
these clock frequencies at higher target overheads showed similar behavior. Note that
the 100Hz curves in Figure 7.4.1 are the same as the global controller curves from the
controller comparison in Figure 7.3.3.

76

100 11 T
g 80 I fv/\‘\‘ o
> J L
© “:‘/
3 60 i 4
3] Ay il
< ¥
@ v i
2 s\ .
%) I
[} \ N (/
= Vo
5] L\ / 10Hz i
20 \
& \ 100Hz -------
\ 1000Hz --------
2500Hz v
0 P Y R R SRR B AT
10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
of accesses (log)
(a) Non-cumulative
100 T T T T T T
S
[5) I
g e
3 60 Fure. i
3 e
g ~
g
S 40 f .
%)
[
2
3 L 10Hz i
20 100Hz ——-----
1000Hz --------
2500Hz
0 PRI IRETERTArY TS ST NSRS SRS Ry S
1000 10000100000 1e+06 1e+07 1e+08 1e+09 1le+10

10 100
of accesses (log)

(b) Cumulative

Figure 7.6: Accuracy of global controller clock frequencies with 4 dif-
ferent clock frequencies using r ange- checker instrumentation. Vari-
ables are grouped by total number of updates.

7.4.2 Integrative Gain
The primary controller component of the cascade controller discussed in Section 6.3.2 has

two parameters: the integrative gain K; and the adjustment interval 7". The integrative
gain is a weight factor that determines how much the cumulative error e, (the deviation
of the observed monitoring percentage from the target monitoring percentage) changes
the local target monitoring percentage m;; (the maximum percent of execution time that
each monitored plant is allowed to use for monitoring). When K is high, the primary

controller makes larger changes to my, to correct for observed deviations.
The adjustment interval is the period of time between primary controller updates.

With a low T value, the controller adjusts m;; more frequently.
There are processes for choosing good control parameters for most applications of

77

control theory, but our system is tolerant enough that good values for K; and T can be
determined experimentally.

0.1 : 0.035
K=0.1 —— K=0.1 ———
0.09 [K=05 - : R 0.03 | KiZ0:5 e |
| K=1.0 -ooene | : Ki=1.0 Ao .
0.08 |- K=2.0 : K;=2.0
0.07 +) i - 0.025 , ’ 9

0.06 - ‘ - i o 0.02
0.05 |
0.04 |
0.03 |
002 | |
oo} i

0

my¢
!
my¢

0.015

7 0.01

0.005

0 50 100 150 200 250 0 50 100 150 200 250

time (second) time (second)
(a) T=0.4s (b) T =2s
0.02
K=0.1 —
0.018 |-K=05) |
K=1.0 --—------
0.016 M K=2.0 : 4

0.014 | - FEE.
0.012 | o ,
001 / T gl .
ooos | T T .
0006 [E
0004 | 7
0.002 | 7 .

my¢

0 50 100 150 200 250
time (second)

(c) T=10s

Figure 7.7: Local target monitoring percentage (m;;) over time dur-
ing bzi p2 workload for r ange- checker with cascade control. Results
shown with target overhead set to 20% for 4 different values of K and 3
values of T'.

We tuned the controller by running range-checker on an extended bzip2 workload
with a range of values for K; and 7" and then recording how the primary controller’s
output variable, my, stabilized over time. Figure 7.4.2 shows our results for four K;
values and three 7" values with target overhead set to 20% for all runs. These results
revealed trends in the effects of adjusting the controller parameters.

In general, we found that higher values of K increased controller responsiveness,
allowing m;; to more quickly compensate for under-utilization of monitoring time, but
at a cost of driving higher-amplitude oscillations in 1. This effect is most evident with T’
= 0.4s (see Figure 7.7(a)). All the values we tested from K; = 0.1 to K; = 2.0 successfully
met our overhead goals, but values greater than 0.1 oscillated wildly enough that the
controller had to sometimes turn monitoring off completely (by setting m;; to almost 0)
to compensate for previous spikes in my. With K; = 0.1 however, m,; oscillated stably
for the duration of the run after a 50-second warm-up period.

When we changed 7 to 2s (see Figure 7.7(b)), we observed that 0.1 was no longer the

78

140

120

100

80

60

40

Observed Overhead (%)

20

0 ! ! ! ! 1 1
0 20 40 60 80 100 120 140

Target Overhead (%)

Figure 7.8: Observed overhead for primary controller K values us-
ing r ange- checker with T' = 400ms and four different K values.

optimal value for K;. But with K; = 0.5, we were able to obtain performance as good as
the optimal performance with 7" = 0.4s: the controller met its target overhead goal and
had the same 50-second warmup time. We do see the consequences of choosing too small
a K;, however: with K; = 0.1, the controller was not able to finish warming up before
the benchmark finished, and the system failed to achieve its monitoring goal.

The same problem occured when 7" = 10s (see Figure 7.7(c)): the controller updated so
infrequently that it only completed its warm-up for the highest K value we tried. Even
with the highest K, the controller still undershot its monitoring percentage goal.

Because of its stability, we chose K; = 0.1 (with T" = 0.4s) for all of our cascade con-
trolled range-checker experiments with low target overhead. Figure 7.4.2 shows how
the controller tracked target overhead for all the K values we tried. Although K; = 0.1
worked well for low overheads, we again observed warmup periods that were too long
when target overhead was very high. The warmup period took longer with very high
overhead because of the larger gap between target overhead and the initial observed
overhead. To deal with this discrepancy, we actually use two K; values, K; = 0.1 for
normal cases, and a special high-overhead K for cases with target overhead greater
than 70%. We chose K = 0.5 using the same experimental procedure we used for K.

7.4.3 Adjustment Interval

Before settling on the integrative control approach that we use for our primary controller,
we attempted an ad hoc control approach that yielded good results for the range-checker
but was not stable enough to control the NAP Detector. We also found the ad hoc pri-
mary controller to be more difficult to adjust than the integrative controller. Though we
no longer use the ad hoc approach, the discussion of how we tuned it illustrates some of
the properties of our system.

Rather than computing error as a difference, the ad hoc controller computes error e
fractionally as the Global Target Monitoring Percentage (GTMDP, as in Section 6.3.2) di-

79

180

400 méec

160 |
140 |
120 |
100 |
80 -
60 -

Observed Overhead (%)

40 E

0 | 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Target Overhead (%)

(a) bzip2

Observed Overhead (%)

0 2 4 6 8 10 12 14
Target Overhead (%)

(b) grep

Figure 7.9: Observed overhead for an ad hoc cascade controller’s T
values with 4 different values of T and two r ange- checker workloads.

vided by the observed global monitoring percentage for the entire program run so far.
The value of ey is greater than one when the program is under-utilizing its monitoring
time and less than one when the program is using too much monitoring time. After com-
puting the fractional error, the controller computes a new value for m;, by multiplying it
by €f.

The ad hoc primary controller has only one parameter to adjust. Like the integrative
controller, it has an interval time 7" between updates to my;.

Figure 7.4.2 shows the range-checker ~ benchmark in Figure 7.3.2 repeated for four
values of T'. For the bzip2 workload (Figure 7.9(a)), the best results were obtained with
a T interval of 10 seconds. Smaller 7" values led to an unstable primary controller: the
observed overhead varied from the target and results became more random, as shown
by the wider confidence intervals for these measurements.

This result contradicts the intuition that a smaller 7" should stabilize the primary con-

80

160 T T T T T

140 10s ----—--- -
120 |r —

100 f —

Obs. Monitoring % within Intervals (%)

Time (seconds)

Figure 7.10: Observed monitoring percentage over bzip2
range-checker execution. The percent of each adjustment in-
terval spent monitoring for 2 values of T. The target monitoring
percentage is shown as a dotted horizontal line.

troller by allowing it to react faster. In fact, the larger 7" gives the controller more time
to correctly observe the trend in utilization among monitoring sources. For example,
with a short T', the first adjustment interval of bzip2 ’s execution used only a small frac-
tion of all the variables in the program. The controller quickly adjusted m;, very high to
compensate for the monitoring time that the unaccessed variables were failing to use. In
following intervals, the controller needed to adjust m;, down sharply to offset the over-
head from many monitoring sources becoming active at once. The controller spent the
rest of its run oscillating to correct its early error, never reaching equilibrium during the
entire run.

Figure 7.4.3 shows how the observed monitoring percentage for each adjustment in-
terval fluctuates during an extended range-checker run of the bzip2 workload as a
result of the primary controller’s m;, adjustments. With 7" = 0.4 seconds, the observed
monitoring percentage spikes early on, so observed overhead is actually very high at the
beginning of the program. Near 140 seconds, the controller overreacts to a change in
program activity, causing another sharp spike in observed monitoring percentage. As
execution continues, the observed monitoring percentage sawtooths violently, and there
are repeated bursts of time when the observed percentage is much higher than the target
percentage (meaning observed overhead is much higher than the user’s target overhead).

With 7' = 10 seconds, the observed monitoring percentage still fluctuates, but the
extremes do not vary as far from the target. As execution continues, the oscillations
dampen, and the system reaches stability.

In our bzip2 workload, the first few primary controller intervals were the most criti-
cal: bad values at the beginning of execution were difficult to correct later on. The more
reasonable 10 second 7" made its first adjustment after a larger sample of program ac-
tivity, so it did not overcompensate. Overall, we expect that a primary controller with a
longer T is less likely to be misled by short bursts or lulls in activity.

81

There is a practical limit to the length of 7', however. In Figure 7.9(a), a controller
with 7" = 20 seconds overshot its target overhead. Because the benchmark runs for only
about one minute, the slower primary controller was not able to adjust m;, often enough
to converge on a stable value before the benchmark ended.

100 e T T T T

Range Solver Accuracy (%)

20 F 400 msec .

0 PRI B PR B PR B PRTH PRTH PR
10 100 1000 10000 100000 1e+06 1e+07 1le+08 1e+09

of accesses (log)

(a) Non-cumulative

100 L L L L L B B

Range Solver Accuracy (%)

40 - h
20 F 400 msec -
2sec -
10sec --—------

ol v vy g
10 100 1000 100001000001e+06 le+07 1e+08 1e+09 le+10

of accesses (log)

(b) Cumulative

Figure 7.11: Accuracy of cascade controller T values with 4 values
of T on the bzi p2 workload using r ange- checker instrumentation.
Variables are grouped by total number of updates.

As in Section 7.4.1 we also tested how the choice of T affects the range-checker s
accuracy, using the same accuracy metric as in Section 7.3.3. Figure 7.4.3 shows the accu-
racy for the bzip2 workload using four different values for 7' with a 10% target overhead.
The accuracy results confirm our choice of 10 seconds. Only the 20 second value for T
yields better accuracy, but it does so because it consumes more overhead than the pri-
mary controller with 7" = 10 seconds. Tests with higher target overheads gave similar
results.

82

7.5 Conclusion

Our results show that in all the cases we tested, SMCO was able to track the user-
specified target overhead for a wide range of target overhead values. Even when there
were too few events during an execution to meet the target overhead goal, as was the
case for the grep workload with target overheads greater than 10%, SMCO’s controller
was able to achieve the maximum possible observed overhead by monitoring nearly all
events. We also showed that the overhead trade-off is a useful one: higher overheads
allowed for more effective monitoring. These results are for challenging workloads with
unpredictable bursts in activity.

Although our results relied on choices for several parameters, we found that it was
practical to find good values for all of these parameters empirically. As future work, we
plan to explore procedures for automating the selection of optimal controller parameters,
which can vary with different types of monitoring.

83

Chapter 8

Conclusion and Future Work

8.1 Compiler-Assisted Techniques Conclusion

In this dissertation we have presented compiler-assisted techniques including the GLua
as a program instrumentation tool and the GVM as a software concrete execution en-
gine. Traditionally, program instrumentation requires a tedious work of rewriting of a
new program parser. Some instrumenters seek to modify compiler source code, but only
for a specific purpose, like profiling or memory debugging. Based on the GCC plug-in
architecture, CAI provides an easy means of program instrumentation for general pur-
pose. It also allows user s to directly utilize compiler’s static analysis results. We further
present GLua, a scripted program instrumentation tool, to save users from dealing with
GCC internal data structures. Upon GLua, we developed several auxiliary tools to facili-
tate program instrumentation.

GVM is another example of how programmers can benefit from compilers. Based
on GIMPLE intermediate representation, GVM does not require an instruction set and
takes least effort to implement due to GIMPLE'’s simplicity. On GVM a user can have full
access to VM’s internal state. and control of interpretation of target programs.

We applied these techniques into our research projects. We use GVM as the concrete
execution engine in two execution-based software model checking approaches, GMC?
and DPR-MC. GMC? is the application of Monte Carlo model checking algorithm on C
program. It traverses program CFGs and interprets GIMPLE statements according to
their semantics. DPR uses GVM to compute concrete execution paths, and its results will
be passed to a symbolic solver. DPR learns from symbolic analysis of concrete path in-
formations and prunes unexplored paths as early as possible. Results show DPR prunes
a significant percentage of execution path and this percentage increases with case size.

In SMCO we use CAI to instrument controller and monitor facilities into target pro-
gram. Benchmark shows that SCMO controls overhead across a wide rage of target-
overhead levels; its accuracy is also satisfactory.

84

8.2 Future Work

In the future we will work to further improve GLua and GVM. There could be many
wonderful applications that GLua can make, e.g., something similar as Python’s decorator
syntax. GVM does not support many POSIX system calls and its multi-process scheduler
is still instable. Although GVM works well on most model checking target programs,
it is still problematic with general C programs, especially those with frequent pointer
manipulations.

85

Bibliography

[1] A. Aziz, F. Balarin, RK. Brayton, M.D. Dibenedetto, A. Sladanha, and A.L.
Sangiovanni- Vincentelli. Supervisory Control of Finite State Machines. In P.
Wolper, editor, 7th International Conference On Computer Aided Verification, volume
939, pages 279-292, Liege, Belgium, 1995. Springer Verlag.

[2] B. Adams, C. Herzeel, and K. Gybels. cHALO, stateful aspects in C. In ACP4IS
"08: Proceedings of the 2008 AOSD workshop on Aspects, components, and patterns for
infrastructure software, pages 1-6, New York, N, USA, 2008. ACM.

[3] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183-235, 1994.

[4] AT&T Research Labs. Graphviz, 2009. http://www.graphviz.org

[5] T. Ball, A. Podelski, and S. K. Rajamani. Relative Completeness of Abstraction Re-
finement for Software Model Checking. In Joost-Pieter Kaoen and Perdita Stevens,
editors, Proceedings of TACASO02: Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 2280 of LNCS, pages 158-172, Grenoble, France, April 2002.
Springer-Verlag.

[6] T.Ball and S.K. Rajamani. The SLAM toolkit. In CAV ‘01: Proceedings of the 13th In-
ternational Conference on Computer Aided Verification, pages 260-264. Springer-Verlag,
2001.

[7] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verication for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2009.

[8] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime
Verication. Journal of Logic and Computation, 20(3):651-674, 2010.

[9] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The Software Model Checker
Blast. In International Journal on Software Tools for Technology Transfer (STTT), pages
505-525, 2007.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems, pages 193—
207. Springer, 1999.

86

[11] J. Burnim and K. Sen. Heuristics for Scalable Dynamic Test Generation. In ASE "08:
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 443-446, Washington, DC, USA, 2008. IEEE Computer Society.

[12] S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with Modular GIMPLE
Optimizations. In Proceedings of the 2007 GCC Developers” Summit, Ottawa, Canada,
July 2007.

[13] S. Callanan, R. Grosu, X. Huang, S. A. Smolka, and E. Zadok. Compiler-Assisted
Software Verification Using Plug-Ins. In Proceedings of the 2006 NSF Next Gener-
ation Software Workshop, in conjunction with the 2006 International Parallel and Dis-
tributed Processing Symposium (IPDPS 2006), Rhodes Island, Greece, April 2006. DOI
10.1109/1PDPS.2006.1639579.

[14] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic Instrumentation of Pro-
duction Systems. In Proceedings of the Annual USENIX Technical Conference, pages
15-28, 2004.

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM TOPLAS, 8(2), 1986.

[16] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.

[17] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using Symbolic Execution
for Verifying Safety-Critical Systems. In ESEC/FSE-9: Proceedings of the 8th European
Software Engineering Conference held jointly with 9th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 142-151, New York, NY, USA,
2001. ACM Press.

[18] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using Symbolic Execution
for Verifying Safety-Critical Systems. In ESEC/FSE-9: Proc. 8th European Software
Engineering Conference, pages 142-151. ACM Press, 2001.

[19] S. Colin and L. Mariani. Run-Time Verication. Springer-Verlag LNCS 3472, 2005.
[20] The GCC Community. GCC Internals. 1988-2010.

[21] Computer Science Laboratory, SRI International. Yices, an SMT Solver. http:
/lyices.csl.sri.com

[22] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238-252. ACM, 1977.

[23] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems, 13(4):451-490, Oct 1991.

87

[24] M. D’Amorim and K. Havelund. Runtime Verification for Java. In Workshop on
Dynamic Program Analysis (INODA’05), March 2005.

[25] D.]J. Dean, S. Callanan, and E. Zadok. The Visual Development of GCC Plug-ins. In
Proceedings of the 2009 GCC Developers” Summit, Montreal, Canada, June 2009.

[26] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[27] Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime Verification of Safety-Progress
Properties. In S. Bensalem and D. Peled, editors, Proc. of the 9th International Work-
shop on Runtime Verification (RV’09), volume 5779 of LNCS, pages 40-59. Springer,
20009.

[28] L. Fei and S.P. Midkiff. Artemis: Practical Runtime Monitoring of Applications
for Errors. Technical Report TR-ECE-05-02, Electrical and Computer Engineering,
Purdue University, 2005. docs.lib.purdue.edu/ecetr/4/

[29] G.F. Franklin, J.D. Powell, and M. Workman. Digital Control of Dynamic Systems,
Third Edition. Addison Wesley Longman, Inc., 1998.

[30] V. Ganesh and D.L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In Com-
puter Aided Verification (CAV '07), Berlin, Germany, July 2007. Springer-Verlag.

[31] G.C. Necula, S. McPeak, S.P. Rahul and W. Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In Proceedings of the 11th
International Conference on Compiler Construction, pages 213-228, London, England,
2002. Springer-Verlag.

[32] GCC 4.5 Release Series Changes, New Features, and Fixes. http://gcc.gnu.org/
gcce-4.5/changes.html

[33] The GCC team. GCC Online Documentation, December 2005. http://gcc.gnu.org/
onlinedocs/

[34] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-fly Automatic Ver-
ification of Linear Temporal Logic. In Protocol Specification Testing and Verification,
pages 3-18, Warsaw, Poland, 1995. Chapman & Hall.

[35] P. Godefroid. Model Checking for Programming Languages Using VeriSoft. In Pro-
ceedings of the 24th ACM Symposium on Principles of Programming Languages, pages
174-186, 1997.

[36] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces Using Genetic
Algorithms. In TACAS, pages 266-280. Springer, 2002.

[37] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing.
SIGPLAN Not., 40(6):213-223, 2005.

88

[38] S.L.Graham, P. B. Kessler, and M. K. McKusick. Gprof: A Call Graph Execution Pro-
filer. In Proceedings of the 1982 SIGPLAN symposium on Compiler construction, pages
120-126, June 1982.

[39] R. Grosu, X. Huang, S. Jain, and S.A. Smolka. Open Source Model Checking. In
Proc. of SoftMC’05, the 3rd Workshop on Software Model Checking, July 2005.

[40] R. Grosu and S. A. Smolka. Monte Carlo Model Checking. In Proceedings of the 11th
Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2005.

[41] K. Havelund. Runtime Verification of C Programs. In Proc. of the 1st TestCom/FATES
conference, volume 5047 of LNCS, Tokyo, Japan, June 2008. Springer.

[42] K. Havelund and A. Goldberg. Verify your runs. 2008.

[43] K. Havelund and T. Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer, 2(4):366—
381, 2000.

[44]]J. L. Henning. SPEC CPU2006 Benchmark Descriptions. Computer Architecture News,
34(4):1—17, September 2006.

[45] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with
Blast. In Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN
2003), page 235239. Springer-Verlag, 2003.

[46] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of
the ACM, 12:576-580, 1969.

[47] C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21:666—-677, August 1978.

[48] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A. Smolka, S. D. Stoller, and
E. Zadok. Software monitoring with controllable overhead. International Journal on
Software Tools for Technology Transfer (STTT), 2010.

[49]]J. Hubicka. Profile Driven Optimisations in GCC. In Proceedings of the GCC Develop-
ers’ Summit, volume 216, pages 107-124. The GCC Community, 2005.

[50] J. Burnim and K. Sen. CREST, an Automatic Test Generation Tool for C. http://http:
/lcode.google.com/p/crest/

[51] P. JJRamadge and WM. Wonham. Supervisory Control of Timed Discrete-Event
Systems. IEEE Transactions on Automatic Control, 38(2):329-342, 1994.

[52] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of Aspect]. In Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 327-355. LNCS, Vol. 2072, 2001.

89

[53] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Proto-
col. Information Processing Letters, pages 131-133, 1995.

[54] lua.org. The Programming Luaguage Lua. http://www.lua.org

[55] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell,
MA, USA, 1993.

[56] J. Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions.
In GCC Developers Summit, 2003.

[57] R. Moore. Dynamic Probes and Generalised Kernel Hooks Interface for Linux. In
Proceedings of the 4th Annual Linux Showcase and Conference, pages 135-146, Atlanta,
GA, October 2000. USENIX Association.

[58] R. Moore. A Universal Dynamic Trace for Linux and other Operating Systems. In
Proceedings of the 2001 USENIX Annual Technical Conference, June 2001.

[59] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A Prag-
matic Approach to Model Checking Real Code. In Proceedings of the Fifth Symposium
on Operating System Design and Implementation (OSDI '02), pages 75-88, Boston, MA,
December 2002. USENIX Association.

[60] G. Necula. CIL - Infrastructure for C Program Analysis and Transformation, 2007.
http://manju.cs.berkeley.edu/cil

[61] D. Novillo. TreeSSA: A New Optimization Infrastructure for GCC. In Proceedings of
the 1st GCC Developers” Summit, Ottawa, Canada, May 2003.

[62] A. Pnueli. Temporal Semantics of Concurrent Programs. Theoretical Computer Sci-
ence, 13(1):44-60, 1981.

[63] P.J. Ramadge and W.M. Wonham. Supervisory Control of a Class of Discrete Event
Systems. SIAM J. Control and Optimization, 25(1):206-230, 1987.

[64] G. Rothermel and M. J. Harrold. Empirical Studies of a Safe Regression Test Selec-
tion Technique. Software Engineering, 24(6):401-419, 1998.

[65]]. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A. Smolka, S. D. Stoller, and
E. Zadok. Aspect-Oriented Instrumentation with GCC. In Proc. of the 1st International
Conference on Runtime Verification (RV 2010), Lecture Notes in Computer Science.
Springer, November 2010.

[66] J.E. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann, Jun, 2005.

[67] O. Spinczyk and D. Lohmann. The Design and Implementation of AspectC++.
Know.-Based Syst., 20(7):636-651, 2007.

[68] the wxTeam. wxwidgets, 2010. http://www.wxwidgets.org

90

[69] Stony Brook University. GCC Open-Source Software Model-Checking Tool Kit.
http://www.cs.sunysb.edu/"gmc

[70] The LLVM compiler infrastructure. http:/lvm.org

[71] M. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 332-344,
1986.

[72] Q.-G. Wang, Z. Ye, W.-]. Cai, and C.-C. Hang. PID Control For Multivariable Processes.
Lecture Notes in Control and Information Sciences, Springer, March 2008.

[73] H. Wong-Toi and G. Hoffmann. The Control of Dense Real-Time Discrete Event
Systems. In Proc. of 30th Conf. Decision and Control, pages 1527-1528, Brighton, UK,
1991.

[74] Z. Yang, B. Al-Rawi, K. Sakallah, X. Huang, S.A. Smolka, and R. Grosu. Dynamic
Path Reduction for Software Model Checking. In Proceedings of iFM'09, the 7th Inter-
national Conference on Integrated Formal Methods, pages 322-336. Springer, February
20009.

91

