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Abstract of the Dissertation

Heterogeneous Object Scalar Modeling and Visualization Using

Trivariate T-splines

by

Hao Huang

Master of Science

in

Computer Science

Stony Brook University

2010

Volume modeling has become an important research topic. For many years

people have been focusing on modeling homogeneous solid object. Because of

the rapid hardware and technological development in volumetric data acqui-

sition during the past decade, effectively modeling heterogeneous volumetric

objects or datasets becomes imperative in solid modeling and 3D graphics.

A heterogeneous model consists of a solid model and a number of spatially

distributed material attributes. Heterogeneous object scalar modeling focuses

on representing and capturing a broad range of complex appearances in solid

model. Discrete representations such as voxels and regular or irregular grids

have been predominating in scientific visualization and finite element analysis

for the last thirty years. Prior state-of-the-art in continuous representations

include B-splines, triangular splines and simplex splines, however, they either

lack of local adaptivity and refinement, and hierarchical structure, or have

irregular domain and the process of choosing partitioning into simplices is

extremely hard. To overcome these problems, in this paper we advocate a

continuous representation scheme for heterogeneous material modeling which

built upon trivariate scalar T-splines, whose domain is principal-axis-aligned

regular and control grids/lattice permit T-junctions. By using trivariate T-

splines, lines of control points need not traverse the entire control grid and

local adaptivity and refinement can be obtained. Moreover, heterogeneous
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volumetric objects can be adaptively refined in a hierarchical manner (hier-

archical refinement) by this scalar modeling method. In addition to object

modeling and material representation, we also design a volume rendering al-

gorithm via ray-casting. Since trivariate T-splines afford a continuous repre-

sentation, we can benefit from this precise and compact mathematical formu-

lation that will facilitate the modeling and visualization tasks in engineering

applications. Several techniques, such as empty space skipping, intersection

refinement, adaptive sampling, and attribute integrating are proposed to get

both efficient and accurate visualization results. We conduct experiments that

have demonstrated the utility of our trivariate scalar T-splines in modeling,

graphics, and visualization.
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Chapter 1

Introduction

1.1 Problem Statement

Volume modeling has been an important research subject in 3D graph-

ics and visualization. In solid modeling field, for more than three decades

researchers have been mainly focusing their effort on modeling homogeneous

solid object [36, 58, 21, 34, 39, 55], which typically have only geometric data or

whose characteristics or properties are uniform on and inside the whole model.

During the past decade, the rapid advancement of specialized hardware

devices and their effective integration with volumetric data acquisition tech-

niques have engendered exciting research for heterogeneous volumetric object

modeling and visualization. Heterogeneous objects comprise different con-

stituent materials and can exhibit continuously-varying material composition

and microstructure, which usually represent results of physical simulations,

geological and medical datasets, digital prototypes in CAE environments.

In such scenario, material composition can be controlled at different regions

within modeled object so as to achieve desirable material property to meet

diverse modeling, design, and display requirements. Moreover, heterogeneous

objects can fulfill the critical functional requirement since they can synthe-

size different distribution and achieve various properties of multiple materials

in one monolithic component. In addition, heterogeneous objects can over-

come traditional material limitations such as material incompatibility (stress

1
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concentration, non-uniform thermal expansion, etc.). Motivated by the above-

mentioned advantages, heterogeneous objects are being adopted in the design

of high efficiency engines, ceramic turbine components, biomaterials, mould

and die tools for industrial use [28, 37, 50, 41, 55].

1.2 Literature Review

Various modeling schemes have thus far been proposed to support the

creation of different graded material of heterogeneous models. Pratt [39] once

discussed the pros and cons of different representation schemes. Recently

Kou and Tan [25] have compared the advantages and disadvantages of various

representation schemes. Modeling of multidimensional point sets with multiple

attributes was discussed in [35].

A non-manifold B-Rep scheme was used in [27] to subdivide an object

into components made of unique materials. Each component is homogeneous

inside and has an assigned index of material. A more general object model

proposed in [26] was designed to include all the characteristics and attributes

of an object. The model of attributes is a collection of functions mapping

the object geometry to several attributes. The object model, combining the

point set and attributes models, is represented by a trivial fiber bundle. Dis-

crete representations such as voxels and regular grids have been predominating

in scientific visualization and finite element analysis for the last thirty years,

mainly because of their simplicity and direct connection with data acquisition.

Some researchers adopted voxel-based representation in which the modeling

space is divided in to small cells and each cell has unique geometrical and mate-

rial representation [23, 34, 11]. Voxel arrays in volume modeling and graphics

can be considered as attribute models with the default geometry represented

by a bounding box. Constructive Volume Geometry (CVG) [9] combines ge-

ometry and attributes in a systematic manner. The model was presented as

algebra of 3D spatial objects utilizing voxel arrays and continuous scalar fields

for representing both geometry and photometric attributes (opacity, color,

etc.). Siu and Tan [51] introduced the concept of ”grading source” and ma-

terial composition function to represent heterogeneity. Explicit mathematical
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functions like linear, parabolic or exponential were used to describe material

variation. Implicit mathematical functions were used to address heterogeneity

in many representations [45, 7, 50, 53]. Rvachev et al [45, 7] generated inverse

distance weighing interpolation with R-function and distance fields. Kumar

et al [27, 28] proposed a set based approach with separate sets representing

geometry model and attribute model respectively. The intersection of these

two sets represented the object. Adzhiev et al [1] proposed constructive hy-

pervolume model based on function representation which is used to represent

multidimensional point sets and heterogeneous attributes. An r-m sets-based

method was proposed in [28], which handles heterogeneous objects by using

r-sets as the basis of representing the geometry and material distribution. A

mesh based method was reported in [23, 22], which employs four-node iso-

parametric quadrilateral elements to model the material distributions. An

implicit function-based method was proposed in [6, 7] which parameterizes

the space by distances from the material features. Some methods used by

researchers are feature-based methodology [54, 42, 30] and axiomatic design

methodology [8]. On standardization of heterogeneous object representation,

Patil et al [40, 38] suggested information model to represent heterogeneous

object for ISO 10303.

B-spline-based methods [57, 21, 31, 41, 42, 60] model the object het-

erogeneity by specifying scalar/vector values of a set of control points and

interpolating them with the B-spline shape functions. Some researches [43] on

heterogeneous object modeling showed that B-spline-based method has excel-

lent representation coverage due to the large number of control points. On

the other hand, the large degrees of freedom make it inconvenient to edit the

model. Hence, intuitive and efficient heterogeneous object modeling method

was needed for designing a B-spline based heterogeneous object model, which

could alleviate the inconvenience induced by the large number of design vari-

ables [47]. Qian and Dutta [41] proposed B-spline tensor solid representation

for heterogeneous material representation. The method was applied for design-

ing and the analysis of a turbine blade, by using heterogeneous B-spline lofting

[42, 60]. Schmitt [48] proposed a volume sculpting scheme with multiresolution
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capability based on trivariate B-spline functions to define both object geome-

try and material attributes. In recent work [5], an application of heterogeneous

B-spline tensor product modeling, namely heterogeneous B-spline fairing and

heterogeneous B-spline fit, was developed, and heterogeneous surface models

were created for the proximal femur, skull and mandible slices using this ap-

proach. Besides the above approaches, most recent research also includes the

level-set based method [55] and trivariate simplex splines-based method [20].

The ideas of volumetric texturing and rendering were also applied in

[31, 34] to model volumetric distribution of attributes. Gradient material

distribution represented by scalar functions was combined in [34] with a BRep

model of object’s 3D geometry. Trivariate NURBS splines were used in [48]

to represent both geometry and attributes.

Besides modeling, volume visualization (rendering) is also a main driving

force that guides the research direction on heterogeneous materials. In Muller’s

paper [32], different volume rendering techniques were presented illustrating

their fundamental features and differences as well as their limitations. Rossl

[44] developed a new approach to reconstruct and visualize non-discrete mod-

els from uniform-gridded volume samples. In particular, they used quadratic

trivariate super splines defined over regular grids with a uniform tetrahedral

partition. In 2009, Finkbeiner [2] demonstrated that non-separable box splines

deployed on body-centered cubic lattices are suitable for fast evaluation on

present graphics hardware. Therefore, they developed the linear and quintic

box splines using a piecewise polynomial form as opposed to their already-

known basis form. The paper written by Hua et.al [19] documents a powerful

heterogeneous solid modeling paradigm for representing, modeling, and ren-

dering of multi-dimensional, physical attributes across any volumetric objects,

and its technical core is founded up simplex splines.

1.3 Objectives and Contributions

For a B-spline curve, the finer control for details can be gained through

knot insertion which is a local refinement process and restricts the influence of
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the control point to a local area. For a tensor-product B-spline surface and vol-

ume, however, knot insertion is not a local process because the insertion of one

knot into the existing knot vector causes creation of new control points along

the entire row or column. Forsey [16] firstly proposed Hierarchical B-splines,

where a single control point can be inserted without propagating an entire row

or column of control points, in order to get hierarchical refinement. In 1995 he

extended Hierarchical B-splines to multiresolution surface reconstruction [17].

Certain modeling methods (also see [61]) enable designers to create a complex

smooth surface of arbitrary topology whose geometric details can be added by

refining the patches wherever necessary. However, these splines (also includ-

ing triangular splines) may not be regular and the process is not a true local

refinement while introducing additional, unnecessary control points in nearby

regions. Simplex splines [20] have local adaptivity, but its domain is irregular,

so the process of choosing the partition into simplices is extremely hard.

To overcome these problems, T-splines [49] was introduced whose domain

is principal-axis-aligned while the grids/lattices permit T-junctions. T-spline

can be thought of as a NURBS surface for which a row of control points is

allowed to terminate without traversing the entire surface, which create T-

junctions. By using T-junction, individual control points can be inserted only

where they are needed to provide additional control, or to create a smoother

tessellation. In other words, T-splines have the ability to eliminate superfluous

control points and perform true local refinement. Furthermore, T-splines sup-

port merging of several B-spline surfaces that have different knot vectors into a

single gap-free model. Thus, T-splines inherit all of the respective strengths of

B-splines/NURBS while eliminating most of their weaknesses. In 2006, Yang

et al. [59] studied the evolution of T-spline level sets (i.e, implicitly defined

T-spline curves and surfaces). In [13] the authors not only used particles on

the evolving surface with a goal to discretize the evolution equation, but also

discussed volume and range constraints which can be added to the framework.

However, these approaches do not focus on representing heterogenous solid

objects.

In this paper, we strongly advocate a continuous representation scheme

for heterogeneous material solid modeling, which is built upon trivariate scalar
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T-splines with the following contributions:

• Our continuous representation scheme for heterogeneous material

modeling admits a regular structure, and its principal-axis-aligned na-

ture matches perfectly with data acquisition formats and data processing

architecture on standard graphics hardware. The compact mathematical

formulation with a regular structure accelerates all the data management

and processing tasks in real-world applications.

• Our method can afford real local refinement since individual control

point can be inserted in order to provide finer control over any region

of interest via trivariate T-splines. Heterogeneous volumetric objects

can be adaptively refined in a hierarchical manner (i.e., hierarchical

refinement) by this scalar modeling method.

• The modeling, processing, and visualization pipeline is streamlined and

accelerated because all the intermediate T-spline computations are rele-

vant and can be reused throughout various stages.

• We develop novel visualization techniques for trivariate T-splines. Vol-

ume ray-casting can be formulated in a close-form by integrating the

rendering equation with T-spline basis functions. Several practical tech-

niques such as empty space skipping, intersection detection and refine-

ment, adaptive sampling, and attribute integration enable high-fidelity

visualization in an efficient way.

1.4 Thesis Outline

We begin Chapter 2 by briefly reviewing basic modeling techniques such

as parameterization (hyperpatch), then comes the basic knowledge of B-spline

and T-splines. In Chapter 3, we describe common themes in advanced material

models using trivariate scalar T-spline volume modeling, that includes least-

squares fitting on trivariate scalar T-splines. Experimental results are also

shown and analyzed at the end of this chapter. Then in Chapter 4 we introduce

methodology such as volume classification, volume ray-casting and detailed



7

techniques to do volume rendering on trivariate scalar T-spline. Finally in

Chapter 5, a general review and conclusion is drawn.



Chapter 2

Knowledge on B-splines and

T-splines

2.1 Parameterization

Parametric representation is the most general way to specify surfaces and

volumes. Besides modeling and remeshing, parameterization techniques have a

wide variety of applications including texture mapping, detail transfer, fitting

and morphing. Most of researches focus on ”patch gluing” where a certain

level of smoothness along the patch boundaries is desired.

Hyperpatch is a continuous mathematical functional representation of

patch bounded collection of points with three parameters, which can be rep-

resented as

x = x(u, v, w), (1)

y = y(u, v, w), (2)

z = z(u, v, w), (3)

where u, v and w are parametric variables.

When this equation is used to represent not only geometry but also ma-

terial information, the parameters (u, v, w) vary within a certain domain in

the parametric UVW -area. The first partial derivatives with respect to the

8
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parameters are usually denoted as ~ru, ~rv and ~rw, and similarly for the higher

derivatives, ~ruu, ~rvv, ~rww, ~ruv, ~ruw, ~rvw.

Suppose the geometry of a point p is give by p = {x, y, z}t So hyperpatch

can be also used to represent material composition; denote material parameter

as m:

p = x, y, z,m, [u, v, w] ∈ [0, 1], (4)

where all the elements x, y, z, and m are functions of (u, v, w). The vector m

represents the material distribution within the geometric solid,

m = {m1,m2, ...,mn}.

where mi is a scalar to describe the material fractions of the ith material at

a point (u, v, w), n is the number of materials. Scalar mi can be replaced by

any material property such as color, density, elastic modulus etc. depending

upon the application area can be suitable modified.

2.2 B-spline Curve

A degree n B-spline curve (see Figure 1) can be decomposed into a se-

quence of degree n Bezier curves that join automatically with cn−1 continuity.

The parameter values at which the Bezier curves meet are referred to as knot

values. The sequence of knot values in a B-spline curve is referred to as a knot

vector.

A piece-wise polynomial B-spline C(u) can be represented as the linear

combination of the basis functions weighted by the components of control

points:

C(u) =
n∑
i=0

Ni,p(u)pi, (5)

where n is the number of control points, Ni,p(u) are the pth degree B-spline

basic functions, given by the recurrence relation:
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Ni,0(u) =

1 if ui ≤ u ≤ ui+1,

0 otherwise,

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p−1 − u
ui+p−1 − ui+1

Ni+1,p−1(u), (6)

where ui are the knot values satisfying the relation ui ≤ ui+1, and

U = {u0, u1, u2, ..., un+p+1}

is the knot vector.

Figure 1: B-spline.

By fixing one of the knot values, we are assigning a parameterization

to the curve. By changing the fixed knot value, it is possible to change the

parameterization of the curve. Every edge of a cubic B-spline control polygon

(except the first and last edge) corresponds to a Bezier curve and each vertex

of the control polygon corresponds to a starting and ending point of a Bezier

curve. There is also an end-condition knot interval needed before the first

control point.

Uniform cubic B-splines are those cubic B-splines with uniform knot-

vector. The blending function can easily be precalculated, and is equal for

each segment in this case. If every control point there is a corresponding

weight, we can represent a rational B-spline curve as the following equation:
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C(u) =

∑n
i=0wiNi,p(u)pi∑n
i=0wiNi,p(u)

. (7)

A NURBS (non-uniform rational B-spline) curve is defined by its order,

a set of weighted control points, and a knot vector (whose knot intervals are

not necessarily all equal in size). NURBS curves are generalizations of both

B-splines and Bezier curves, the primary difference being the weighting of the

control points which makes NURBS curves rational (non-rational B-splines are

a special case of rational B-splines).

2.3 B-spline Tensor Product Surface and Solid

Volume

The equation for B-spline surface is quite similar to the equation for B-

spine curve, just switch from one parameter component to two parameter com-

ponents. By means of tensor products, B-spline surfaces can be constructed

starting from a bidirectional net of (n+ 1)× (m+ 1) control points and knot

vectors (n for u direction and m for v direction) as follows:

S(u, v) =
n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v)pi,j. (8)

A bivariate surface can be obtained by this equation over the two inde-

pendent parameters u and v, where pi,j are control points of the heterogeneous

surface. Ni,p(u) and Nj,q(v) are the p-th degree and q-th degree B-spline ba-

sis functions defined in u and v directions respectively. There are two knot

vectors for a B-spline surface, one corresponding to the u direction and one

corresponding to the v direction. Similar to NURBS curves, a NURBS surface

is a B-spline surface whose control points have weights attached to them and

whose knot intervals are not all equal.

The equation of the gradient at any point p(u, v) along the direction u

represented as pu and along direction v represented as pv, can be expressed as

follows.
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pu(u, v) =
n∑
i=1

m∑
j=1

Nu
i,p(u)Nj,q(v)pi,j, (9)

pv(u, v) =
n∑
i=1

m∑
j=1

Ni,p(u)N v
j,q(v)pi,j. (10)

Equation (8) is mostly used for geometry representation, but can be also

used for defining material modeling along the parametric variables u and v.

Here the equations (9) and (10) are used for obtaining material gradient in

parametric directions u and v respectively. These material gradients may be

used for finite element mesh generation.

We can extend B-spline volume equation (with three different parameters)

as modeling tool to represent a point in a solid volume:

M(u, v, w) =
n∑
i=0

m∑
j=0

l∑
k=0

Ni,p(u)Nj,q(v)Nk,r(w)pi,j,k, (11)

where pi,j,k are control points for the solid volume, p, q, r are the order of the

B-spline basis functions Ni,p(u), Nj,q(v), Nk,r(w), in the direction of u, v, w

respectively, which are similar to the bivariate B-spline surface, and defined

by the knot vectors of

U = {u0, u1, u2, ..., un+p+1},
V = {v0, v1, v2, ..., vm+q+1},
W = {w0, w1, w2, ..., wl+r+1}.

.

2.4 T-splines

If we want to refine a B-spline curve, we can use knot insertion, which

is a local refinement because the influence of the new points are restricted in

a local area. But if we want to refine a tensor-product B-spline surface or

volume, knot insertion is not local at all because if one knot is inserted into a
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Figure 2: Global Refinement and Local Refinement.

surface or volume, new control points should also be created along the whole

row or column (see Figure 2(a)).

T-spline surface are a generalization of non-uniform B-spline surfaces. T-

spline control grids permit T-junctions, which allow lines of control points to

only traverse part of the control grid (see Figure 2(b)). A T-spline control

grid is called a T-mesh. Figure 3 shows an example of a simple T-mesh. The

T-junctions are marked with red dots.

Figure 3: Simple T-mesh.

The formulation for a T-spline surface is

T (u, v) =

∑n
i=0Bi(u, v)pi∑n
i=0 Bi(u, v)

, (12)

where pi represent control vector/scalar in multidimensional space and Bi(u, v)

are T-spline basis functions corresponding to control point pi and formulated

by
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Bi(u, v) = Ni(u)Ni(v), (13)

Bi(u, v, w) = Ni(u)Ni(v)Ni(w), (14)

wi = [wi0, wi1, wi2, wi3, wi4]

where Ni(u) , Ni(v) are the cubic B-spline basis functions associated with

the knot vectors ui = [ui0, ui1, ui2, ui3, ui4] and vi = [vi0, vi1, vi2, vi3, vi4] respec-

tively. The knot vectors ui and vi are extracted from the T-mesh neighborhood

of pi.

Figure 4: T-mesh.

The parameterization of a T-spline is represented by knot intervals, with

a knot interval being assigned to each edge in the T-mesh. Figure 4 shows a

portion of a T-mesh in (u, v) parameter space with di and ei representing the

knot intervals.

There are two rules that a T-spline must follow. First, the sum of the knot

intervals on one side of a face must be equal to the sum of the knot intervals on

the opposite side of the face. For example, in Figure 4, e2 + e3 = e5 + e6 = e7,
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and d3 + d4 = d6. The second rule is that if T-junction on one edge of a face

can be legally connected to a T-junction on the opposite side of the face, that

edge must be included in the T-mesh. An edge can be legally connected if the

sums of the knot vectors on the opposite sides of the newly created faces are

equal. For example, an edge would need to be added to split face if e2 = e5

and e3 = e6.

2.5 T-NURCCs

T-NURCCs (Non-Uniform Rational Catmull-Clark surfaces with T-

junctions) are a superset of both T-splines and Catmull-Clark surfaces. One of

the most important aspects of T-NURCCs is that they allow non-valence four

control points called extraordinary points. Local refinement can be obtained

in the neighborhood of an extraordinary point.

The surfaces created by Catmull-Clark algorithm (using bi-cubic uniform

B-spline surfaces) are called Catmull-Clark surfaces. Local refinement can be

performed around extraordinary points in Catmull-Clark surfaces. Normal

Catmull-Clark surfaces only provide global refinement, which increases the

number of control points exponentially. However, T-NURCCs can do this in

a much better way. Similar to T-splines, T-NURCCs provide finer control by

only individual control points insertion. Hence control points are only added

linearly but not exponentially.

An important aspect of T-junctions is that they allow T-splines to be

locally refinable, meaning that individual control points can be inserted in

order to provide finer control over details. For example, when modeling a face

it is desirable to have more control for modeling the nose than for modeling

the forehead. This is shown by the head models in Figure 5, where there are

many more control points to model the nose than to model the forehead.

2.6 Materials Representation

By many literatures (e.g. [31]), materials can be represented either with

the same order, dimensions or knot vectors as geometric representation (just as
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Figure 5: Head Models (a) Using NURBS and (b) Using T-spline [49].

what we introduced in Equation (8) and (11)), or totally different. In this case,

all aspects of the materials representation are independent of the geometric

trivariate representation. The only requirement is that all the volumes (both

geometry and materials) share the same parametric domain,

A(u, v, w) =
n∑
i=0

m∑
j=0

l∑
k=0

Ni,p2(u)Nj,q2(v)Nk,r2(w)Api,j,k. (15)

This representation has two major advantages. First, material represen-

tation can be decoupled from geometric representation, which means a model

with complicated geometries but simple materials, or simple geometries but

complicated materials can be represented at the resolution that best suits

them. Hence it can save a large cost in storage and computation time. Sec-

ond, it can provide a robust representation for a model contain moderate

noise, which is very usual in measured data. Hence, compared with polygonal

meshes, or higher dimensional analogues such as voxels, splines are a terse

representation and can be a smooth function with fewer control points.



Chapter 3

Trivariate Scalar T-spline

Volume Modeling

3.1 T-spline Volume Modeling

We now use trivariate T-spline volume for heterogenous attribute (scalar)

representation. In order to reduce the computational cost when calculating

intersection between ray and modeled volume later, UVW parameterization

coordinates ([0, 1]3) are set linearly correlative to the XY Z geometry coordi-

nates. To do this, we compute a minimum bounding box first. Axis-aligned

bounding box is usually a suitable box that enclose the whole model com-

pletely. The minimum bounding box for a given model is its minimum box

subject to the constraint that the edges of the box are parallel to the (Carte-

sian) coordinate axes. It is simply the Cartesian product of intervals, and each

of which is defined by the minimal and maximal value of the corresponding

coordinate for the points in the model. So the minimum bounding box is

defined by xmin, xmax, ymin, ymax, zmin, and zmax. Mapping between UVW

coordinates and XY Z coordinates is given as follows:

17
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u =
x− xmin

xmax − xmin
, (16)

v =
y − ymin

ymax − ymin
, (17)

w =
z − zmin

zmax − zmin
. (18)

However, we must point out that visualization is carried out in XY Z coordi-

nates, and the inverse mapping should be done before we visualize models on

the display device.

We can easily extend T-splines/T-NURCCs to three dimensions of T-

spline volumes. First, a three dimensional space version of a T-mesh, called

T-lattice, can be defined as a tiling of rectangular cells in R3. A single (control)

point can be inserted to T-lattice by adding T-junctions point. Compared to B-

spline volume, the refinement is locally controlled instead of globally controlled

without the creation of an entire row of control points. A local knot coordinate

system can be easily imposed onto a T-lattice by using knot intervals. We

choose an origin for the parameterization where all the parameters equal to 0.

Then we assign each edge in the first direction a r knot value, each edge in the

second direction a s knot value and each edge in the third direction a t knot

value. Each of the knot values will also collectively participate to form a sum

of knot intervals. By doing this, specific knot coordinates have been assigned

to each control point.

When we finish building a knot coordinate system onto a T-lattice, we

can deduce knot vectors ui, vi, wi for each basis function. The edges on

three different directions are called u-edge, v-edge and w-edge respectively. A

T-junction is a vertex shared by one edge in some direction and two edges

in other directions at the same time. For example, P1 in Figure 6(a), P2

in Figure 6(b) are both T-junctions. If a T-lattice is simply a rectangular

parallelepiped with no T-junctions, the T-spline volume reduces to a NURBS

volume. In each minimal cell, the sums of knot intervals in the same directions

must be equal, which is similar to T-mesh. Thus for the cell in Figure 6(a)

and 6(b) in the vertical direction we have
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Figure 6: Examples of T-lattice.

L1 + L2 = L3 + L4 = L5 = L6 in F igure 6(a), and

L1 = L2 = L3 + L4 = L5 + L6 in F igure 6(b).

Figure 7: Illegal Edge (a) and Legal Edge (b) in T-lattice.

Every edge must be a cell edge. In Figure 7(a) e0 is not an cell edge

therefore it is not a valid edge either. But e1 in Figure 7(b) is a valid edge

because it is a cell edge. Based on Section 2.4 and 2.5, each Pi is calculated

using basis functions Bi(u, v, w) in UVW coordinates. And each basis function
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is defined in terms of knot vectors ui, vi, wi. For example, the knot coordinates

of Pi are (ui1, vi1, wi1). If we consider a ray origins from (ui1, vi1, wi1) and goes

along axis u, the ray can be represented asR(a) = (ui1+a, vi1, wi1) in the UVW

parameter space. Then ui2 is the u coordinates of the first edge intersected by

the same ray. The other knots in v and w direction can be found similarly.

T-spline volume enforces continuity in the whole parametric volume. The

sum of knot intervals in the same direction in the same cell must be equal,

and each edge must be an edge of at least one cell. It is easy to prove that

any octree-subdivided lattice satisfies the above rules, and hence, is a valid T-

lattice [52]. Therefore, we use octree-subdivided lattice as T-lattice directly.

In material attribute representation, the aspects of each attribute (e.g., order,

dimension of the control mesh and knot vectors) can be set independently with

other material attributes. The only requirement is that all the representations

share the same parametric domain (u, v and w).

However, parameterizations almost always introduce distortion in either

angles or areas, and a good mapping in application is the one which minimizes

these distortions in some sense. The readers are referred to [15, 14] for ex-

cellent surveys. For our method in the paper, we use least-squares fitting for

parameterization purpose.

3.2 Least-Squares Fitting on Scalar Trivariate

T-splines

Linear least-squares fitting on splines is a well-researched and very pop-

ular topic. Related literatures span across several areas such as linear alge-

bra [15, 14] and performing matrix operations effectively [15, 14]. This section

introduces linear least-squares fitting and its application to trivariate T-splines.

In general, least-squares fitting is a mathematical procedure for finding

the best-fitting function to a given set of points by minimizing the sum of the

squares of the offsets (”the residuals”) of the points from the function. That

is, given a spline function f(p0, p1, ..., pm; qi), we adjust the control points

(p0, p1, ..., pm), in order to minimize the squared-distance from the function to
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sample data (every pi represents the parameterization coordinates ui, vi, wi of

every control point). The mathematical representation in the discrete case is

given as follows:

R =
n∑
i=0

[Qi − f(p1, p2, ..., pm; qi)]
2 =

n∑
i=0

r2, (19)

where Qi are the n discrete

(scalar) samples corresponding to f(p1, p2, ..., pm; qi), where the model func-

tion f is decided by m control points p1, p2, ..., pm. The sum of the squares of

the offsets is used instead of the offset absolute values because this allows the

residuals to be treated as a continuous differentiable quantity.

Now we apply this general framework to trivariate T-spline volume using

LSCM (Least Squares Conformal Maps [29]). Suppose p = (p1, p2, ..., pm) are

the control points (scalar) of T-lattice, and each Qi and pi represent a set

of scalar (m1
ui,vi,wi

,m2
ui,vi,wi

, ...,md
ui,vi,wi

) in a certain position in UVW coordi-

nates, the T-spline volume is

M(u, v, w) =

∑m
i=0 Bi(u, v, w)pi∑m
i=0Bi(u, v, w)

. (20)

We want to minimize the summation of distance between data scalar points

Q = Q1, Q2, ..., Qn (m < n) and the volume M(u, v, w):

Dsqua−dis(p1, p2, ..., pm) =
n∑
i=1

(M(ui, vi, wi)−Qi)
2. (21)

Here (ui, vi, wi) is the parameterization of Qi. Then the energy function is

augmented with an additional term:

Dadd(p1, p2...pm) =
n∑
i=1

(M2
uu(ui, vi, wi) +M2

vv(ui, vi, wi) +M2
ww(ui, vi, wi)

+ 2M2
uv(ui, vi, wi) + 2M2

uw(ui, vi, wi) + 2M2
vw(ui, vi, wi)). (22)

So the optimization problem reduces to the minimizing of the following energy

Denergy(p1, p2, ..., pm) = Dsqua−dis(p1, p2, ..., pm) + σDadd(p1, p2, ..., pm). (23)
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Here σ is a non-zero constant and usually between 0.001 to 0.1. In this way

we cast the fitting process as a global optimization problem with this energy

function that measures the deviation of the approximation from the origi-

nal data. In order to obtain control points, we can solve the linear system

ATAQ = ATP (the solution is also for Equation (20)), where the coefficients

of the m × n matrix A are given by ak,i = Bi(uk, vk, wk). Just as Equation

(23) the linear system can be changed to

(AT + σ(AT
uuAuu + AT

vvAvv + AT
wwAww

+2AT
uvAuv + 2AT

uwAuw + 2AT
vwAvw))Q = ATP, (24)

where the coefficients of the m × n matrix Auu, Avv, Aww, Auv, Auw and

Avw are the second-order derivatives:

Biuu(uk, vk, wk), Bivv(uk, vk, wk), Biww(uk, vk, wk),

Biuv(uk, vk, wk), Biuw(uk, vk, wk), Bivw(uk, vk, wk).

Equation (23) can give us the control points of our trivariate scalar T-spline

volume.

In heterogeneous model scalar fitting, the parameters must be assigned

very carefully, because the poor parameterization causes distorted unnatural

materials, especially near the boundary between different materials, where

being called ”mutation”. To achieve tolerance within certain threshold, we

use a similar approach to the one used by Weiss et al. [56], which was origi-

nally developed for reverse engineering. When local material attributes have

large fitting-errors even after parameters are refined, the system automatically

inserts knots to increase the degrees of freedom for fitting by splitting the re-

gion at the center of region. More details about T-spline knot-insertion can

be found in [4]. Then, a T-spline volume is calculated again with updated

parameters. The above steps are iterated until the fitting error falls below

a predefined threshold value. In our experiments, this method successfully

generates natural and smooth parameterization with a few iterations (typi-

cally less than 5). In this way models can be obtained that exhibit excellent

accuracy to conciseness trade-offs.
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3.3 Experimental Results and Analysis

We introduce our experimental results in this section. A prototype system

is implemented on a PC with 3.5GHz P4 CPU and 4GB RAM. The system

is written in C++ and OpenGL. Figure 8 illustrates the trivariate T-spline

heterogeneous scalar fitting method applied to Fuby model. We first conduct

the material attributes fitting, with the red color indicating its fitting error

larger than 1%. Figure 9 illustrates the trivariate T-spline heterogeneous scalar

fitting method applied to Tooth model. The red parts highlight regions where

the opacity fitting error larger than 1%.

Figure 8: Color Fitting Error on Fuby Model.

As seen in Figure 8 and Figure 9, the parametric materials of the Fuby

model and Tooth model have a very salient color/opacity fitting error (colored

in red) on the material boundary. In other words, the significant fitting errors

mainly lie on the mutation part. With the trivariate T-splines knot insertion

and the refinement technique we documented above, we can refine the para-

metric domain easily according to the point distribution and sharp features.
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Figure 9: Opacity Fitting Error on Tooth Model.

We can also resample the point data, and get more sample points on the ma-

terial boundary, in order to get a more precise model. Furthermore, since our

method is based on trivariate T-splines, we can easily perform cutting and

patching work, which is usually a main advantage when using T-splines. Ta-

ble 1 summarizes the statistics of the performance of our color/opacity fitting

algorithm in three models.

Figure 10 and Figure 11 show another two simpler models and significant

color/opacity fitting error (red part).

Table 1 shows the statistics of the performance of our color/opacity fitting

algorithm on the above four model.
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Figure 10: Opacity Fitting Error for Dice Model.

Figure 11: Color Fitting Error for Particle Model.
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Table 1: The Statistics of Data Fitting.
Dataset Tooth Fuby Dice Particle
Datasize 1003 2563 203 323

Control Points 1.2 ∗ 105 2 ∗ 106 8 ∗ 102 3.5 ∗ 103

Max Color Fitting
Error

1.35% 2.17% 0.11% 1.77%

Average Color Fit-
ting Error

0.09% 0.19% 0.01% 0.12%

Max Opacity Fit-
ting Error

2.01% 1.28% 0.79% 0.24%

Average Opacity
Fitting Error

0.07% 0.10% 0.16% 0.02%

Running Time (s) 121.7 1017.2 12.5 35.3



Chapter 4

Heterogeneous Scalar

Visualization

4.1 Introduction of Ray-casting

Volume rendering is a technique used to display a 2D projection of a 3D

discretely sampled data set on the screen. It has been developed to overcome

problems of the accurate representation of parametric volume with many dif-

ferent material attributes, here we only use RGBA (for red, green, blue, alpha).

A direct volume renderer requires every sample value to be mapped to opac-

ity and a color. This is done with a transfer function which can be a simple

ramp, a piecewise linear function or an arbitrary table. Once converted to an

RGBA value, the composed RGBA result is projected on correspondent pixel

of the frame buffer. The way this is done depends on the rendering technique.

Many rendering techniques have been developed during the last five decades

(see Figure 12).

Ray casting is one of these methods, which uses ray-surface intersection

tests to computes 2D images from 3D data sets so it can provide results of very

high quality, usually considered to provide the best image quality. Ray-casting

considers the model along arbitrary ray r, which is generated for each desired

image pixel:

27
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Figure 12: Common Methods in Volume Rendering.

r = r(t) : t 7−→ q0 + tr0, t ≥ 0, (25)

where q0 ∈ IR3 is the position of the viewer and r0 ∈ IR3 is the (normalized)

viewing direction determined as the difference of the current pixel position in

the projection plane and q0. Using a simple camera model, the ray starts at

the center of projection of the camera (usually the eye point, which is q0 here),

and passes through the image pixel on the imaginary image plane floating in

between the camera and the model to be rendered. Firstly, we need to clip

the ray by the boundaries of the object model. Hence our goal is to find

the smallest parameter t∗ ≥ 0 therefore q∗ = r(t∗) is the point closest to

the viewer position. A standard ray-casting algorithm generates rays through

all pixel positions, examines the model along each ray in order to find the

closest intersection point q∗ with the surface. Finally, the gradient for proper

visualization value at the current pixel position is evaluated.
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Figure 13: Volume Classification.

4.2 Volume Classification

In some applications it is very useful to segment a volume dataset into

various components based on the similarity of material attributes, so that each

component can be processed separately.

We usually conduct volume segmentation before volume rendering. One

of the most familiar technique is known as thresholding. A ”seed” is usually

planted in a part of volume which is interested to users, and then it can

grow until it fills the region encompassed by an isosurface of a given threshold

value. During the process, all points inside this part should be labeled. Here

we introduce a secondary storage of volume with identical dimensions, which

is used to store labels indicating which feature is present at the corresponding

points in the volume.

The whole volume model could consist of several feature parts, and some-

times there would be overlapping area among different parts generated by

thresholding. Figure 13 shows the eye ball, conoid and a rugate surface in

different colors yet these features have identical or overlapping ranges of grey-

level data values. These area can be removed by eroding or shrinking the

connected features. Thresholding sometimes might not identify the whole
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parts of a given feature. We can solve this problem by using more ”seeds” at a

suitable position. For instance, in Figure 13 air = 0, eyeball = 1, conoid = 2

and rugate surface = 3.

4.3 Volume Ray-casting

In our paper, we use volume ray casting (sometimes called volumetric ray

casting or volume ray marching), which is classified as image based volume

rendering technique, as the computation emanates from the output image,

not the input data as is the case with object based techniques. Volume ray

casting, which processes volume data, is different from simple ray casting,

which only processes surface data.

The technique of volume ray casting can be derived directly from the

rendering equation. The first few steps are the same as simple ray casting

technique, which aims on finding the closest point on the model surface to the

viewer position along a certain ray. But in volume ray casting we should also

find the farthest point on the model surface that ray exits from. Moreover, we

will sample the ray between the closest and farthest points at regular intervals

throughout the volume. The data is interpolated at each sample point in a

standard volume ray casting algorithm, the transfer function applied to form

an RGBA sample, the sample is composite onto the accumulated RGBA of

the ray, and the process repeated until the ray exits the volume.

Since it needs accuracy, which means a lot of calculations, volume ray

casting provides results of very high quality at the price of long runtime, usually

it is considered to be both the best and the slowest technique.

Here we introduce volume ray casting algorithm in three basic steps (also

see Figure 14):

1. Raycasting. For every pixel of the final 2D projection image, a ray r

is generated from the position of viewer to this pixel, and go through

the whole volume model. As mentioned in Section 4.1, a ray could

be represented as q0 + tr0, t ≥ 0. In our implementation, q0 can be

represented as u0, v0, w0 since we are using the UVW parameterization
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Figure 14: Three Basic Steps of Volume Ray Casting.

coordinates. As mentioned in Section 3.1, in order to save the calculation

time, u, v, w are set linearly correlative to x, y, z respectively. Because

only in this way can we keep the ray formulas still in linear format, which

are much easier to calculate the coordinates of the intersection points.

At this stage we can firstly skip most of the empty area in T-lattice

(details in Section 4.4.1), and then focus on the rest parts to find the

first and the last volume position being touched by the ray (details in

4.4.2).

2. Sampling. In volume ray casting, we should not only find out the inter-

section positions of ray and volume, but also trace along the ray direction

into the volume, to sample the inside points as well. Standard volume

ray casting technique samples the ray at regular intervals throughout

the volume until it exit the model. And because the volume points are

discrete and not necessarily aligned along the ray, trilinearly interpo-

lations are usually used to sample the final point from its surrounding

data points. In this paper, we will calculate the sample points exactly

and accurately based on the advantage of our modeling using trivariate

T-spline. So we can get material attributes of a certain point accurately

instead of interpolating using data points surrounding the sample points.

Moreover we will sample the points along the ray at adaptive intervals

instead of regular intervals in order to save computational cost (details
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in Section 4.4.3).

3. Integrating. The shaded information, i.e. color and opacity is computed

for each sampling point during sampling process. After all the sample

points have been shaded, they are integrating along the ray, resulting

in the final (materials) attributes for the pixel that is currently being

processed. This process is derived directly from the rendering equation

and is very similar to blending many information of different points into

one point (voxel shown on the screen). Details can be checked in Section

4.4.4.

4.4 Details in Implementation

4.4.1 Space Skipping for Empty Regions

In its standard use, any casted ray is traversed and executed across the

entire bounding volume of the data set, including all the regions with zero

alpha (i.e., totally opaque) or irrelevant attributes (i.e., totally empty) along

the ray. To improve, we shall skip opaque and/or empty regions so that the

only part for display purpose includes those relevant regions with meaningful

opacity.

We mentioned in Section 3.1 that the bounding box is exactly the T-

lattice box of the volume model, and it is obvious that blocks in T-lattice do not

actually re-arrange the volume. Here we will only focus on the boundary blocks

(i.e., blocks containing the boundary of the volume model) for calculating

intersections. In this way a ray-box intersection involves less computation and

hence speeds up the process. We assign each block a flag to indicate whether

they are ”active” or not. Here ”active” means that the ray would probably

intersect with the volume part inside the block. For each block, min-max

values in three directions (u, v and w) are simply stored in an additional data

structure for culling purpose. When a new ray is generated, blocks are culled

against the ray using their min-max information and a range query [10] which

can determine whether they are ”active” or not. For each ray, we know which

block would be penetrated, and we set them as ”active” and those would not
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be intersected as ”inactive”. After we get all the ”active” blocks, we put a

seed inside the ”active” area and let it ”grow” in all directions, once it hit the

”inactive” blocks it stop growing in that direction and the last ”active” block

is marked as boundary block. One important fact is that sometimes there are

more than two boundary blocks that are intersected by one ray, which means

the ray could pass through a region of interest twice or more. Hence for each

ray we examine all the boundary blocks for intersection detection. In this way

we only focus on the intersections inside boundary blocks and skip the other

ones.

Figure 15: Octree Subdivision

4.4.2 Intersection Detection and Refinement

Many literatures [3, 43, 12, 33, 24] have discussed the rendering issue

for spline models. The intersection point of a ray and the volume must be

calculated iteratively because the underlying T-spline volume is modeled by

a multivariate rational polynomial. The Newton method generally converges

very fast and is well suited if the initial guess is close to the final solution.

In Section 4.4.1 we introduced the concept of boundary blocks of trivariate

T-spline models in order to skip empty or opaque space. We only focus on the

domain part where the opacity is in (0,1). Now suppose we already know a

block would be intersected by a given ray. We adaptively subdivide the block

into parts during the preprocessing step. This subdivision is done by halving

the volume along the u, v or w axis (just like the octree structure, see Figure
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15). Subdivision will be repeated until the data point density of each part is

below to a threshold. By intersecting the ray with these parts we get very

good initial points for the following iterative formulation based on the Newton

method. We use the following formula to find the intersection point:

p0 = q0 + t0 ∗ ~r0. (26)

We now need to compute the coefficients t′ for p0 in order to obtain the first

approximate values of enter point u0, v0, and w0, and we can get

u0 − u
u− u

= t′, (27)

v0 − v
v − v

= t′, (28)

w0 − w
w − w

= t′, (29)

where u, v, w denote the first intersection and u, v, w denote the last intersec-

tion. Next we use u to describe v and w as v = V (u) and w = W (u). Now

O(u, v, w), which denoted as the opacity in pu,v,w, can be changed to O′(u).

Suppose we are now finding the enter point penter, and O′(u) = 0. We can

set a coefficient ς small enough to let O′(u) = ς. The solution of this formula

is the intersection of the ray and the volume surface. Next we calculate the

partial derivative of this formula to compute a new approximation point. The

whole iteration continues until two succeeding points differ less than a given

threshold ε, which is calculated by the maximum of the differences between

u, v and w values. In this way we can get the enter point penter, and the exit

point pexit of the ray could be calculated in a similar way.

There exists special case where the iteration cannot terminate, which only

appears when rays fail to intersect with the model inside the boundary block,

as a result the iteration cannot converge, and we make use of the following

strategies:

• We set a threshold H as the maximum number of iterations. If the

convergence criteria are not met in few than H iterations, we assume

that the ray does not intersect with this part of the model.
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Figure 16: Intersection Detection on Coolball.

Figure 17: Intersection Detection on ColorLoop.
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• The following way to handle the miss-hit ray is that we suppose the

intersection probably lies inside the domain of a neighboring block when

the iteration leaves the u, v, w domain of the current block. So we check

the border of the domain to see whether the iteration approaches to the

solution from that side. If we still can not find the iteration point inside

the domain in the next iteration step we assume that the ray fails to

intersect with any part of the neighbor.

Using these two rules, we can identify all the rays which do not intersect with

the actual model of current interest.

We conduct intersection detection by using T-splines and discrete point

cloud for comparison. Figure 16 and Figure 17 show the different result be-

tween them. Figure 16a shows the result from discrete point cloud. Compared

to Figure 16b using trivariate T-splines, the result is far away from precise,

which is because from discrete point cloud we cannot get the accurate inter-

section. In Figure 17, we can also see by using intersection detection with

trivariate T-splines (Figure 17a), visualization quality is improved.

4.4.3 Adaptive Sampling

There is a tradeoff between quality and computation cost during sampling

in ray-casting. If we select more sample points, the more accurate the visual-

ization result would be, but the more computation would be needed. Since our

volume object is modeled by trivariate T-splines, the representation is contin-

uous. If we want the visualization result as accurate as possible (especially

that we do not want to miss any silhouette), we can set the interval arbitrarily

small in order to get more sample points. However, it would lead to an huge

number of samples and the computation cost is extremely large. Here we use

adaptive sampling to get a good tradeoff between quality and computation

cost, we use the following formula:

pi(u, v, w) = q0 + ti~r(u, v, w) (30)

to calculate the point position along each ray inside the model. Parameter

ti needs to be set between tenter and texit (here we suppose that the ray only
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intersect with the volume model once, and the process is similar if the ray

intersects twice or more). penter and pexit of the ray can be detected using

the method explained in Section 4.4.2. Other points along the ray inside the

model can be easily obtained by simply calculating the proportion between

tenter and texit using Equation (29).

After the actual intersections on the model boundary penter and pexit have

been detected, we start to sample points along the internal ray segment. Dif-

ferent from the standard way to sample points with a fix interval, here we use

three different sampling intervals, τ0, τ1 and τ2, which descend gradually (we

are currently using sampling intervals τ1 and τ2 as a constant multiple of τ0,

τ1 = τ0/5 and τ2 = τ0/10). The first sampling interval τ0 is used inside the

part where materials are almost homogeneous. The other two sampling inter-

vals τ1 and τ2 are used to improve the quality near material boundary. We do

not detect the material boundary explicitly because the cost is tremendous.

Instead, we compute the average data fitting error for the points inside a small

sphere each time. Here we set up two thresholds δ1 and δ2:

• If the fitting error is smaller than δ1, we use τ0.

• If the fitting error is equal to or larger than δ1 but smaller than δ2, we

use τ1.

• If the fitting error is equal to or larger than δ2, we use τ2.

For quality control purpose, τ0, δ1, and δ2 are all set by the user. In our current

implementation, we set δ1 and δ2 based on color fitting error (here we neglect

opacity fitting error) for each model. Parameter δ1 is set as the average color

fitting error and δ2 is set as the mean value of average and maximum color

fitting error of the whole model.

Using the approach here, we can see that a fastest computation speed can

be obtained when using τ0 as the sampling rate. And slower speed is used in

material boundary with guaranteed accuracy. This way we can get a better

tradeoff between quality and computational cost.

We test our adaptive sampling on two models. By using adaptive sam-

pling, the samples of the right pictures (running time is 30s) are 25% less than
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the left one (using uniform sampling, running time is 37s) in Figure 18. But

the samples of the right pictures (using adaptive sampling, running time is

54s) just 12% less than the left one (using uniform sampling, running time,

running time is 61s) in Figure 19, because the model used here is not smooth

and uniform as the model used in Figure 18. The similarity of both images

in Figure 18 and Figure 19 indicates that visual quality is preserved in the

adaptive, reduced sampling.

Figure 18: Adaptive Sampling on Cube A.

Figure 19: Adaptive Sampling on Cube B.
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4.4.4 Attribute Integrating

Volume rendering enhances visualization of imaged model by providing

semi-translucent rendering. In our paper the object is visualized by integrat-

ing material attributes along the path of each casted ray. Users can use the

thresholds (opacity, color, or brightness) to control the visualization effect of

rendering. Here we assume each sample along a given ray has only two material

attributes, color C̃i and opacity α̃i:

(C̃0, α̃0), (C̃1, α̃1), ..., (C̃N , α̃N) C̃i ∈ [0, 1]3, α̃i ∈ [0, 1],

where the first sample is set as a point right before penter, the last sample is

background (black and fully opaque) and set right after pexit. An approxima-

tion of the volume rendering equation using the emission-absorption model [46]

is employed to achieve pre-integration:

I(r) =

∫ r

0

q(t)e−σ(0,t)dt, (31)

where I is the intensity at r along a ray, r ∈ [0, B] (r = B is the background

location), the emission function q(t) describes the photons emitted by the

volume along the ray, and the absorption function σ(0, t) can be viewed as the

optical depth defined as

σ(t1, t2) =

∫ t2

t1

κ(τ)dτ, (32)

where κ is the opacity function. In order to compute the integral equation,

the interval [0, B] includes all the sampling points derived from Section 4.4.3

and two additional points on the two sides as t0 = 0 and tN = B.

Now we use an n-point Gaussian Quadrature rule [18] as an approximation

of the definite integral, by using a weighted sum of function values at specified

points within the domain of integration:

I(t) =
N∑
k=0

qi∆te
−

∑i−1
j=0 κj∆t =

N∑
k=0

qi∆t
i−1∏
j=0

e−κj∆t, (33)

which matches the α-compositing formula:

Cb
a =

∫ b

a

q(t)e−σ(a,t)dt =
b∑
i=a

αiCi

i−1∏
j=a

(1− αj) (34)
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and the voxel opacity αi is

αi = 1− e−σ(ti,ti+1). (35)

Equation (33) and (34) can be rewritten into a recursive front-to-back com-

positing equation:

C̃k = ˜Ck−1 + (1− ˜αk−1)Ck, (36)

α̃k = ˜αk−1 + (1− ˜αk−1)αk, k = 1, 2...N − 1, (37)

where C̃k is the pixel color, α̃k is the pixel opacity, and C̃0 = C0, α̃0 = α0.

We apply this framework to each ray cast into the volume, so the color and

opacity of each voxel is computed in the front-to-back order. In this way we

can terminate the ray as soon as the composite transparency falls below a

threshold. This is also called ”early ray termination”.

Figure 20 and Figure 21 show experimental results of our volume rendering

algorithm on two models.
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Figure 20: Volume Rendering on StarCloud

Figure 21: Volume Rendering on Polychrome



Chapter 5

Conclusion

In this paper, we have detailed the algorithm to represent and visualize a

heterogeneous model using trivariate scalar T-splines.

Most of research use B-splines and simplex splines to model heterogeneous

objects. However, knot insertion is not a local process in B-splines and it will

increase the number of control points exponentially, hence B-splines only have

global refinement. Simplex splines can perform local refinement, however,

its domain is irregular and hence the process of choosing partitioning into

simplices is hard.

To overcome these problems, trivariate T-splines are used in this paper to

build up heterogenous material representation. Since control grids/lattice of

permit T-junctions, lines of control points need not traverse the entire control

grid and we can do not only local refinement but also more smooth merging on

the heterogeneous models. T-spline has principal-axis-aligned regular domain

and is a more efficient way to model object. Also, heterogeneous volumet-

ric objects can be adaptively refined in a hierarchical manner (hierarchical

refinement) by this modeling method.

Moreover, we have also advocated a framework to render trivariate T-

spline volume via ray-casting, adaptive sampling, and accurate intersection.

Since trivariate T-splines afford a continuous representation, we greatly bene-

fit from this precise and compact mathematical formulation that will facilitate

the modeling and visualization tasks in various graphics applications. We use

42
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several technique, such as empty space skipping, adaptive sampling, intersec-

tion refinement and attribute integrating to get both efficient and accurate

models.

Finally experimental results have started to show great promise of our

trivariate scalar T-splines in graphics, visualization, and engineering design.
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