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Abstract of the Dissertation

Analysis of Load Distribution Strategies for Signature Search

and Join Operation in Distributed Computing Systems

by

Yuntai Kyong

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2010

Divisible Load Theory(DLT) provides an optimal criterion for scheduling compu-

tational load in distributed computing system with commumincaiton cost. Divisible

load is characterized by its infinite divisibliity, where computational load can be ar-

bitrarly partitioned and there is no dependecny between partitioned load. Such a

model is applicable where a large amount of data with little or no locality needs to be

processed. Such data is readily found in the research community in simulating and

processing scientific experiment such as particle accelearators, astronomical visual

data and genome data. The arbitrary divisibility property of the load and the opti-

mum criterion developed in the DLT literature leads to tractable algebraic solution

for a given network architecture and load distribution policy. In the DLT literature,
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the divistible load is characterized by its computation and comunication intensity,

which specify the speed of computing and the cost of transferring the load. The so-

lution for optimal load distribution exists for many variety of network architectures

with scheduling policies. In the second chapter, a method of deriving the computing

capacity of a computing cluster consisted of a large number of computers using DLT

is examined. Instead of assuming that the whole load is available to the computing

cluster, we consider a case where multiple types of loads are streamed in a stationary

manner to the cluster with specific incoming rate for each load. In this work, we

assume a bus network architecture where computing nodes are connected to a single

dispatcher using a shared communication channel. In the third chapter, the closed

form solution is derived for the expected search time of kth signature in the data set.

This work is the extension of [1], where the expected time of single signature search

is obtained. The work is extended to consider the search time of kth signature in the

divisible load with arbitrary statisitcs of the location of the signature. The work also

includes a method to speed up the signature search time by rearranging the load before

distributing to the processor. The operation model assumed here is the linear search

of signature in the load but it opens up a new aveune for further research issues when

other operation models are considered. Another typical operation is the relational

operation between records when a large amount of structured records is modeled as

divisible load. In the forth chapter, analysis of distributed of join operation using

divisible load theory is presented. The performance of Distributed Sort-merge join

and Inner-Loop join operations are analyzed with with DLT and the theoretical max-

imum number of processors that can be utilized is derived. The analysis allows both
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performance prediction and the development of efficient database algorithms.
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Chapter 1

Introduction

Divisible load is a type of load for computation which can be arbitrarily partitioned

and processed among a number of processors and links. There is no dependency

among partitioned loads. Notably, the computational time and communication time

remain proportional to the amount of partitioned load although non-linear compu-

tation time is considered in [2]. The paradigm of divisible load theory, as presented

in [3] and [4], is well suited to numerous applications where large amount of inde-

pendent data is processed in multiple computing processors. Such data models are

easily found in large science project such as particle accelerators such as the Large

Hadron Collider (LHC) [5] of European Organization for Nuclear Research(CERN).

The amount of data collected during experiments is about 700 megabytes per sec-

ond (MB/s). This huge amount of data is distributed to multiple computing site

with multiple tiers, where chunks of data are distributed to multiple sites that are

geographically dispersed with non-negligible communication delay. This approach

is called Grid Computing and divisible load theory is well suited to this as it take
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communication cost into account as well as computation time. The software of Grid

computing, called middleware, is now used extensively for various scientific research

projects such as analyzing extraterrestrial signal of Search from Extraterrestrial In-

telligence(SETI) [6], where radio telescope data is downloaded to personal computers

for which computing time is volunteered. Such data does not exhibit interdependence

between partitioned data and is processed by same the operation so it can be well

modeled as divisible load.

Without a constraint to match a specific processor to a specific load because of the

divisibility property, the main focus in this research area has been how to distribute

load in a way to finish computation of total load as fast as possible. The optimal

distribution criterion is rigorously proved and presented in [7]. The criterion is for a

minimum time solution all the processors must stop computing at the same instant.

Under this criterion, a large amount of work has been published for various archi-

tectures of networks with different scheduling strategies. In [8] closed form solutions

are derived for bus and tree networks. Star networks are also examined in [9]. As

an extension to single level tree network, in [10], the problem of sequencing of oper-

ations and its closed form solutions is presented on arbitrary processor trees. In [11],

applying divisible load theory on hypercube architectures are considered.

Scheduling strategies with multi-installment have been proposed in order to make

computation start earlier than in the single-installment case. In [12], multi-installment

of load distribution is studied in tree network. Also, a multiple job environment is

discussed in [13] and [14], where a bus network architecture is assumed.

In the early phase of research in this area the focus are on the single-source

2



scheduling case. However, in a typical grid system, there are numerous computing

sites that submit their computing load to grid system. In [15] and [16], the scheduling

problem of divisible load with multiple sources is considered. In [16], the closed form

of the solution of scheduling divisible load from multiple sources are derived.

The study of divisible load often sheds light on the architectural issue of distributed

computing system. When sequencing is not allowed for a given network architecture

optimal arrangements of processors are required for the optimal solution. Also, as

the theory can incorporate non-negligible communication cost, the location of the

computing process is important in minimizing overall finish time. In [17], optimal

sequencing and arrangement is examined for the computing process in single-level

tree networks. In [18], the load sequencing problem is considered in the context of

minimizing monetary cost.

With non-negligible communication cost, adding processors to the system does

not linearly translate into the enhancement of performance, i.e shorter finish time

of the computing operation. Performance limits for distributed computing system

are derived in [19]. In [20], the performance limits is studied for a two dimensional

network.

Apart from deriving theoretical performance bound and optimal solution, system

constraints such as start-up delay, limited size of buffers and release time have been

studied as well. In [21], the effect of start-up delays in bus network is discussed.

Reference [22] deals with the case with arbitrarily processors release time, while [23]

studies scheduling strategies on multi-level tree networks with buffer constraints.

Divisible load theory found good applications in wireless sensor network, where
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data generated by sensor nodes need to be collected to central node fur further pro-

cessing. Sensor data is well modeled to divisible load as dependency between data

from different sensors have little or no dependency. In [8], the load sharing problem

of network sensors in bus network architectures is studied.

In Chapter 2, the capacity of computing clusters is derived using divisible load

theory. When large amounts of data is generated such as the rate of 700 megabytes

per second from the LHC, the storage of data itself is a big challenge and initial

data processing before analysis is required. Such data often needs to be processed

in real-time to unburden storage requirements. However, processing such a large

volume of data in one computing processor is often prohibitively costly. We examine

a case where steady state data is arrives at a load dispatcher which is connected to

bus network with other computing processors. In the DLT literature, it is usually

assumed that whole amount of load to distribute is readily available. In this work, it

is assumed that the size of load is not known beforehand but only their incoming rate

is specified. Based on divisible load theory, the capacity of the computing clusters

are derived for multiple types of load where each type of load has different incoming

rate and computation intensity. That is, for the same size of loads of different type,

the computation time is different for the same speed of the processor. The derived

result can serve as a guideline of capacity planning of the computing cluster and the

theoretical upper bound of the capacity. The solution is derived with a deterministic

model without buffer constraints. The actual distribution mechanism and the effect

of the stochastic nature of incoming load is left for future study.

In Chapter 3, the evaluation of search time of multiple signatures in flat file
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database is presented. Large sets of structured data such as database records can

be modeled as divisible load when the size of records are small enough compared

to the total size of records under consideration. Such database system has been

used in aerospace application. In [24], database system is considered as the heart of

integrated avionics systems and [25] discussed real time database system for avionics.

Ko and Robertazzi in [1] apply the divisible load theory analytically to find a distinct

pattern or signature in flat file records for the first time. In this work, flat file records

are assumed as it is a natural choice for initial data processing [26]. In their work,

closed form solution for the search time of a single signature is derived for both single

level tree network and linear network. Also, the equivalent search time for multiple

signature is derived. In this work uniform distribution of the signature in the dataset

is assumed as it is feasible model of distribution of signature in large database as

discussed in [27]. The third chapter of this thesis is the extension of this work in two

ways. First, a closed form solution for search time of kth signature among multiple

signature is derived using order statistics [28] for arbitrary probability distribution

as to the location of the signatures. Secondly, a method of to speed up the signature

search time when the distribution is not uniform is presented. The procedure is

developed and simulated and, with a highly skewed distribution, it is shown that

performance improvement can be significant.

In Chapter 4, an analysis of distributed join operations using DLT is presented.

In this chapter, DLT is applied to two popular join operations, Sort-Merge Join and

Hash Join, to find the optimal speed up for a given number of distributed processors

and its performance bound.
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In Chapter 5, the dispatch strategies in multiple robot environment is examined

for the delivery type application. We employed a path-based model where the mobile

robots follow the predefined path between locations for the delivery requests. A

strategy based on generating minimum additional distance for each request for robot

movement is proposed.

Finally, Chapter 6 concludes the thesis and discussion on the future works are

presented.
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Chapter 2

Capacity Analysis of Computing

Cluster with Divisible Load

2.1 Introduction

We examine how the capacity of a cluster of processors can be obtained using Divis-

ible Load Theory(DLT) when the different types loads, differentiated with different

incoming rate and computational instantly, are streamed to the cluster. The calcu-

lated capacity can be utilized as a policy to decide when a new stream of load can be

accepted to the cluster. Also, it will serve as a theoretical bound of the total capacity

of the cluster We also present load distribution algorithm with DLT criterion and

discuss the effect of the stochastic nature of incoming rate of load.
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2.1.1 System Model

We consider a case when multiple sites submit to a computing cluster over network

large amount of divisible load. We assume that the load is generated with specific

deterministic rate and transfered to the computing cluster.

Controller

P1 PmP2

Loads

B1 B2 B1

Processors

Processor
Buffers

Figure 2-1: System Model

We further assume that basic information unit is a load contained in a fixed small

size packet. In DLT literature, the total amount of load is known and set to 1 and

the fraction of load distributed to each processor is calculated with the objective of

minimizing total processing time. It is found that in order to minimize the finish

time, the load has to be distributed to processors in a way that they stop computing

at the same time. The following list is the summary of the system model.

• Information Unit: packet

• Packet size is small and constant

• Unknown total amount of load
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• m processors, P1,P2,. . . ,Pm, with inverse computing speed w1, w2,. . . ,wm with

having dimension sec
packet

• Bus network with inverse speed z ( sec
packet

)

• Controller maintains a separate buffer for different loads.

• n types of loads arrive to controller (L1, . . . , Ln)

• Each load is specified with Ri, T
i
cp and common Tcm.

– Ri is the inverse of incoming rate with dimension sec
packet

– T i
cp specifies the computational intensity of Li

– Tcm specifies the communication intensity of loads

• Local buffer for each process Bj for Pj, j = 1, . . . , m

• The capacity of each buffer is given as the number of packets it can retain

2.2 Scheduling Loads with Unknown Size

2.2.1 Homogeneous Processing Speed with One Load

1
0

m
0

2
0

1
0wTcp

m
0w Tcp

2
0w Tcp

P1

P2

Pm

I0

1
1

m
1 Communication

Computation

C0

Figure 2-2: Initial Load Distribution for Homogeneous Processors
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In this section, we consider a case when the speed of the processors are all equal

and there is only one type of load specified with its inverse incoming rate R and its

traffic intensity Tcp.

For an load with R and Tcp, the speed of bus should be able to support incoming

rate 1
R
. For an arbitrary size of load γ, incoming rate 1/R decides the total time, T ,

to receive it.

T = γR

The time T ′ to distribute the load over the bus network is,

T ′ = zγTcm

Therefore, in order for the bust network to support incoming rate 1/R, T ′ ≤ T ,

T ′ = zγTcm ≤ γR = T

R ≥ zTcm (2.1)

In Fig. 2-2, the load arrived during an arbitrary length of period I is first stored

in the local buffer of each processor and its computation starts at the same time

at the end of I. The incoming load is dispatched to each processor, in a way that

the computation of the fraction of the load arrived during I by each processor stops

at the same time following the optimally criterion of Divisible Load Theory. In the

figure C denotes the computation time of the load. As (2.1) is satisfied, the load

10



can be distributed to the processor without being buffered in controller. However the

distributed fraction has to be stored in the local buffer, Bi, of each processor before

being computed.

m
0w Tcp

1
1

m
1

I1

P1

P2

Pm

1
1w Tcp

2
1w Tcp

m
1w Tcp

C1

2
0w Tcp

1
0w Tcp

Figure 2-3: Load Distribution during I1

Since the rate of load distribution during I is same as the incoming rate, provided

that (2.1) is satisfied,

α

I
=

1

R
, (2.2)

where α denotes total amount of load arrived and distributed during the interval I.

When the speed of processors are all equal, the load needs to be equally distributed

for each processor to compute its fraction during the same amount of time. Therefore,

C =
α

m
wTcp (2.3)

From (2.2) and (2.3),

C =
wTcp

mR
I (2.4)

When wTcp

mR
= 1, C = I. In this case, the incoming rate of load exactly matches

11



computation rate of load. The load can be scheduled optimally in a sense that when

the total amount of load is known and scheduled the computation is finished at the

earliest time.

When wTcp

mR
> 1, C > I, which is the case when the aggregate computation rate is

less than the incoming rate of load. During C, the amount load arrived is α ∗ C
I

=

α ∗ wTcp

mR
. In this case, the amount of load that need to be stored by local buffer keeps

increasing. With a finite size of buffer, this load cannot be scheduled.

When wTcp

mR
< 1, C < I, which is the case when the aggregate rate of computation

exceeds the incoming rate of load. In this case, the computational resource is available

and the incoming rate of load can be increased up to the point when wTcp

mR
= 1.

In order for a load specified with {R, Tcp} to be scheduled, the following condition

should be satisfied,

Tcp

R
≤ m

w
(2.5)

wTcp

mR
Schedulability Utilization

Case I = 1 Yes 100%
Case II < 1 Yes < 100%
Case III > 1 No ·

Table 2.1: Schedulability and Optimality of Loads

TABLE 2.1 summarizes the condition of of schedulability and utilization depend-

ing on the value of wTcp

mR
.

Calculation of I, C and αj

Fig. 2-4 describes the periodic scheduling of a single type of load on the processors

with same speed. With the same processing speed, the batch is equally distributed

12
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m
k+2

1
k+2

Ik+2 = Ik+1

1 kk

cp

k II
mR

wT
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Figure 2-4: Load Distribution for Ii, i ≥ 2

to each processor and for each interval the amount of load to be processed remains

same.

αj =
I

mR
, j = 1, . . . , m, i ≥ 1

C =
wTcp

mR
I

(2.6)

I can be chosen arbitrarily but bounded by the size of local buffer. The load arrived

during I and distributed to Pj cannot exceed the size of the local buffer, Bj. With

homogeneous processor case,

I

mR
≤ Bj, 1 ≤ j ≤ m (2.7)

Also increasing I also increases the response time of the system.
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2.2.2 Non-Homogeneous Processing Speed and One Load

In this subsection, we examine when the speed of processors are not same. By equating

total load distributed during and interval Ik to the load arrived in the same period,

α

I
=

1

R
, (2.8)

where α =
∑m

j=1 αj .

In order for all the fractions of the loads arrived during I to be computed during

a same duration C on each processor Pj ,

αjwjTcp = C, j = 1, . . . , m (2.9)

By summing up the all the fractions,

α =

m∑
j=1

αj =

m∑
j=1

C

wjTcp
= C(

1

w1Tcp
+

1

w2Tcp
+ · · ·+ 1

wmTcp
)

Using (2.8),

I

R
=

C

Tcp
(

1

w1
+

1

w2
+ · · ·+ 1

wm
) (2.10)

C =
Tcp

R
(

1

w1
+

1

w2
+ · · ·+ 1

wm
)−1I =

Tcp

RW
(2.11)
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where we denote W for the sum of inverse speed of each processor:

W =

m∑
j=1

1

wj
(2.12)

When Tcp

RW
≤ 1, C ≤ I, and the load can be scheduled.

When the speed of processors are all same, the condition is reduced to the previous

case:

C =
wTcp

mR
I

Calculation of αj, 1 ≤ j ≤ m

We set I = C0 and using (2.9) and (2.11), αk
j is obtained as,

αj =

1
wj

W

I

TcpR
, j = 1, . . . , m,

and C follows from (2.11).

I can be arbitrary chosen but bounded by the size of local buffers.

αj =
1/wj

W

I

TcpR
≤ Bj , j = 1, . . . , m (2.13)

From this,

I ≤ Bj
W

1/wj
TcpR (2.14)
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2.2.3 Schedulability of Multiple Divisible Loads

So far, we have considered the case where there is only one load. In this subsection,

we examine the schedulability of multiple loads if their respective arrival rate, Ri,

and, their computation intensities, T i
cp, are all different. We also assume that the

processing speed of processors are all different.

Ik

1(1)w1Tcp
1 

1(2)w1Tcp
2

1(n)w1Tcp
n

Ik+1

2(1)w2Tcp
1 

2(2)w2Tcp
2

2(n)w2Tcp
n

m(1)wmTcp
1 

m(2)wmTcp
2

m(n)wmTcp
n

1(1) m(n)

P1

P2

Pm

Figure 2-5: Scheduling Multiple Loads

With multiple loads (Ri, T
i
cp), the aggregate incoming rate needs to be supported

by the communication bus,

R1 + R2 + · · ·+ Rn ≥ zTcm, (2.15)

when there are n loads to be scheduled as shown in Fig. 2.2.3.

Given that this condition is satisfied, for an interval I, the amount of portion from

each load is obtained as,

α1R1 = α2R2 =, . . . , = αnRn = I, (2.16)

where αi indicates the amount of portion to be distributed during I from the load i,

Li.

16



Let αi
j be the amount of load distributed to Pj from Li in the interval I. Then,

αi =

m∑
j=1

αi
j . (2.17)

If we let Cj be the computation time of the load arrived during I of Pj, we have

C1 =

n∑
i=1

αi
1w1T

i
cp

C2 =
n∑

i=1

αi
2w2T

i
cp

. . .

Cm =

n∑
i=1

αi
mwmT i

cp.

For optimal distribution, we set C = C1 = C2 = · · · = Cm.

Also, from (2.16) and (2.17),

I =
m∑

j=1

αi
jRi, i = 1, .., n

One optimal distribution can be found by forcing each load to be computed during

same amount of time. For the load ith load,

17



αi
1w1T

i
cp = Ci

αi
2w2T

i
cp = Ci

. . .

αi
mwmT i

cp = Ci,

where Ci denotes the amount of time during which the fraction from the first load

distributed to Pj is computed. Using above equations, we can obtain the fraction for

each processor from the ith load,

αi
j =

Ci

wjT i
cp

(2.18)

Summing up the fraction of Li distributed to each processor,

αi =
m∑

j=1

αi
j =

Ci

T i
cp

m∑
j=1

1

wj

(2.19)

Since αi = I
Ri

,

Ci =
T i

cp

WRi
I, (2.20)

where W =
∑m

i=1
1
wi

.

When the time of computation of each load is same for all the processors as we

enforced, the total computation time of the load arriving during I on every processor

18



is given as,

C =
n∑

i=1

Ci, (2.21)

Using (2.20),

C =

n∑
i=1

Ci =
I

W

n∑
i=1

T i
cp

Ri
(2.22)

From this we derive the schedulability condition for multiple load cases,

C

I
=

n∑
i=1

T i
cp

WRi
(2.23)

This collection of loads can be scheduled when,

n∑
i=1

T i
cp

WRi
≤ 1 (2.24)

When the computation intensity and the incoming rate are all same for n loads, the

previous equation is reduced to

n
Tcp

WRi
≤ 1

n ≤ WR

Tcp
=

mR

wTcp

(2.25)

where we can see that the maximum number of loads that the system can support is

mR
wTcp

.

When there were (n−1) loads scheduled, the following two conditions should have
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been satisfied to one more load to be scheduled:

n−1∑
i=1

Ri ≤ zTcm (2.26)

and,
n−1∑
i=1

T i
cp

WRi

≤ 1 (2.27)

With a new load with Rn and T n
cp, the following conditions should be satisfied,

n−1∑
i=1

Ri + Rn ≤ zTcm

Rn ≤ zTcm −
n−1∑
i=1

Ri

and,

(

n−1∑
i=1

T i
cp

Ri
+

T n
cp

Rn
)W−1 ≤ 1

n−1∑
i=1

T i
cp

Ri
+

T n
cp

Rn
≤W

T n
cp

Rn

≤W −
n−1∑
i=1

T i
cp

Ri

Load Distribution

From (2.18) and (2.20),

αi
j =

I

Ri

1
wj

W
(2.28)
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I is upper bounded by the size of local buffer of each processor. For Pj, from

n∑
i=1

αi
j ≤ Bj (2.29)

n∑
i=1

I

Ri

1/wj

W
≤ Bj

I ≤ Bj

1/wj

W∑n
i=1 1/Ri

(2.30)

which can be plugged into (2.28) to get actual amount of load fraction for each Li

and Pj.

2.3 Load Distribution Mechanism

The load distribution calculated with (2.28) only specifies how much load should be

distributed from which load and to which processor during I, but it does not specify

when the fraction should be distributed to the processors.

Let us define the ratio of load distributed to Pj to the total load from Li during

Ik, where Li denotes the ith load.

f i
j =

αi
j∑m

j=1 αi
j

=
αi

j

αi
=

1/wj

W
(2.31)

Since this ratio is calculated with a fixed but an arbitrary length of I, this ratio

remain constant for any subinterval within I ′. During I ′ within I, the amount of load
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to be distributed from Li to Pj is,

βi
j = f i

j ∗ βi, (2.32)

if βi is the amount of load from Li during I ′ and βi
j is the amount of its fraction

distributed to Pj .

This property holds any subinterval in I. If we let I l be subinterval within I

and 1 ≤ l ≤ L, where L is the number of subintervals in I, I =
∑L

l=1 I l. When

deterministic arrival rate is assumed, at the end of each subinterval, the amount of

data from each load can be obtained. From

1

Ri

=
αi(l)

I l
=

αi

I
, (2.33)

We have

αi(l) =
I l

I
αi, i = 1, . . . , n. (2.34)

If the distribution is made according to the ratio f i
j , at the end of I l,

α
i(l)
j = f i

jα
i(l) (2.35)

When the load is distributed according to the radios f i
j at the end of each subin-
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terval,

αi =

m∑
j=1

L∑
l=1

αi(l) =

m∑
j=1

L∑
l=1

f i
jα

i(l) (2.36)

=

m∑
j=1

f i
j

L∑
l=1

αi(l) (2.37)

=
m∑

j=1

f i
jα

i = αi. (2.38)

where we use
∑m

j=1 f i
j = 1 and (2.35).

One approach for distribution is split each packet into j pieces and distribute

to j processors according to f i
j , which involves additional processing overhead and

diminish effective communication speed z due to the overhead of protocol stacks also it

is not plausible to separate small amount of data. We assume in this work, individual

packet cannot be divided. That is, the packet is basic unit of divisible load.

2.3.1 DLT based dispatching policy

In the previous subsection, with deterministic incoming rate of each load, the distribu-

tion ratio f i
j remains constant and load arrived during any duration can be distributed

to processors according to these ratios in order to obtain optimal distribution. In this

subsection, instead of considering load during a subinterval, which involves additional

buffering of incoming load, we examine a policy for dispatching an incoming packet

instantaneously to processors based on DLT criterion. In our policy, each packet,

when it arrives to a controller, is instantly dispatched to a processor that balance the

current load distribution ratio, f i
j , in a greedy fashion. Our approach is different from

23



the traditional dispatching policy of scheduling server farm as it does not depend on

the state of buffer of each processor or the processor is not decided randomly.

I Current Interval Period
f[i] Pre-calculated distribution ratio

D[i,j] Record the number of packets sent to Pj from Li

α[i] Count the number of arrived packets in the current period

Table 2.2: Operation Table for Packet Dispatching Algorithm

TABLE II describes the operation tables that the controller maintains to be used

in the distribution mechanism. At the beginning of every interval I, D[i, j] and α[i]

are reset to zero. For every packet arrived from Li, α[i] is increased by one. When

the mechanism decides to send the packet to Pj , D[i, j] is incremented. f [j] is the

recalculated distribution ratio for each Pj. For now, I remains constant for every

interval.

Algorithm 1: Load Distribution Mechanism

Input: Packet p Arrived from Li

α[i]← α[i] + 1

For each j ∈ [1, .., M ], f ′i
j ← D[i,j]+1

α[i]

j = argj min(|f i
j − f ′i

j |)

Send the packet to Pj

D[i, j]← D[i, j] + 1

Algorithm 1 is invoked whenever an packet is arrived to the controller at instant

t. Whenever it is invoked, the controller decides to which processor the packet should

be dispatched in a way that the actual load distribution is as close as possible to

the pre-calculated load distribution ratio fk
j(i). Algorithm 1 choose a processor Pj
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when the packet is dispatched to it, the difference between actual and theoretical

distribution ratio is minimized with Pj . When the j is chosen as to minimize the

difference between f i
j and f ′i

j , if there is tie, j is arbitrarily chosen.

2.4 Effect of Non-deterministic Incoming Rate

DLT was developed with deterministic model. This remains valid when the total

amount of load is known and the rate of computation remain constant. However,

when considering multiple incoming streams of load, the arrival rate is hard to stay

deterministic especially when they are submitted using network. This section we ex-

amine how the non-deterministic nature of incoming rate Ri affects the total capacity

of the system. We choose I sufficiently large so that Ri remains constant within an

interval.

R̃i = Ri(1 + δi). (2.39)

We also assume that
∑

k δk
i ≈ 0 over the sufficiently large number of intervals and

δk
i � 1.

When the load is distributed according to the prescribed incoming rate, from

(2.31),

αi
j = αi

∗f
i
j =

I

Ri
∗ f i

j (2.40)
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Actual computation time C̃j for Pj is obtained as,

C̃j =

n∑
i=1

I

R̃i

T i
cp

W
(2.41)

=
I

W

n∑
i=1

T i
cp

Ri(1 + δi)
(2.42)

As it can be seen, the computation time remains same for all the processors as Ri

varies. It is because the variation of incoming rate equally affects the computation

time of each processor. C̃j = C̃.

Ik+1

Ek-1 Ek

kC
~

Ik

1

~
kC

Figure 2-6: Timing Diagram For for Computation Time with Non-Deterministic In-
coming Rate

In Fig. 6, we subscript the intervals. Ik+1 is the next interval of Ik. Also C̃k denotes

the computation time for the load arrived during Ik. When the computation for the

load arrived ruing Ik is not finished during the next interval Ik+1, the computation

time is extended into the next period. We denote this excessive computation time

as Ek. Ek depends on the previous excessive computation time Ek−1 and current

computation time C̃k. Therefore, we have

Ek = Ek−1 + C̃k − Ik+1 (2.43)
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Assume that δk
i does not depend on k. If we let Xk = C̃k − I. Then,

Xk =

(
1

W

n∑
i=1

T i
cp

Ri(1 + δi)
− 1

)
I (2.44)

Xk =

(
Y

W
− 1

)
I (2.45)

where

Y =
n∑

i=1

T i
cp

Ri(1 + δi)
(2.46)

If we set E0 = 0,

Ek =

k∑
i=1

Xi (2.47)

Whenever Ek <= 0, the additional buffer is emptied and the process parasitically

reset. Therefore, we can let subscript k indicate the number of period since the last

time when the additional buffer is empty. We need to find the statistics of Ek which

specifies the excessive buffer size that needs to be provided for a given δi. When the

statistics of δi is known, that of Xi is also known. From this statistics, the statistics

of maxk Ek can be obtained. We assume that maximum excessive time E is given

for the system which is obtained from the size of local buffers, since the load that is

calculated within excessive time, should be stored in the buffer.
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Figure 2-7: Utilization versus inverse incoming rate of load R. Tcp = 1, w = 1

2.5 Evaluation and Analysis

2.5.1 Utilization of Homogeneous System

Fig. 7 shows the relationship between inverse rate of incoming load and the utilization

of the system for various number of processors with fixed traffic intensity Tcp and

inverse computing speed, w, of the processors. As the number of processors increases,

the system can accommodate more incoming load.
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Figure 2-8: Utilization versus Computation Intensity Tcp. R = 0.1, w = 1
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Fig. 8 shows the linear relationship between the utilization of the system against

the computation intensity(Tcp).

2.6 Conclusion and Future Work

The computation capacity of the computing clusters is derived for the bus network

with communication delay. As the deterministic incoming rate of loads is assumed,

actual capacity is lower than the theoretical capacity obtained. Analysis of the effect

with stochastic arrival rate and effective distribution mechanism is remained as future

work.
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Chapter 3

Signature Search Time and Load

Distribution Strategy for

Minimizing Signature Search Time

in Divisible Load

3.1 Introduction

A “signature” is a data pattern of interest in a large data record. Large sets of

structured data such as database records can be modeled as divisible loads when

the size of records are small enough compared to the total size of records under

consideration. The search for signatures occurs in radar and sensor data processing.

Such database system has been used in aerospace applications. In [24], database
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systems are considered as the heart of integrated avionics systems and [25] discussed

real time database system for avionics. Divisible load theory was introduced by [29]

and [30] and, also independently in [31] as “large-grained parallelism”. Ever since its

introduction, divisible load theory has served as an effective modeling tool for data-

intensive applications [7] [32] [3] and a large amount of work has been published for

various network structures including linear networks [33], bus networks [34], single and

multi level tree-networks [35] [36] [37], mesh networks [38] [39], hypercubes [40] and

arbitrary graphs [41] with different constraints such as different release times, buffer

constraints [42], communication start-up costs and time-varying network capacity.

Also, various distribution strategies have been studied including multi-installment of

load distribution [43]. In [44], [45] and [46], scheduling strategies without knowledge

of network resources are examined. In [47] signature searching is investigated on

bus networks experimentally. Ko and Robertazzi in [1] applied divisible load theory

analytically to find a distinct pattern or signature in flat file records. In this work,

flat file records are assumed as it is a natural choice for initial data processing [26].

A closed form solution for the average search time of a single signature is derived for

both a single level tree network and a linear network. In [1] a uniform distribution of

the signature in the dataset is assumed as it is a feasible model of the distribution of

signatures in large database as discussed in [27].

This paper consists of two parts. First, a closed form solution for expected search

time of the kth signature among multiple signature is derived using order statistics [28]

for arbitrary probability distributions modeling the location of the signatures. Sec-

ondly, a method to speed up the expected signature search time when the distribution
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of the signatures is not uniform is presented. The procedure is developed and sim-

ulated and it is shown that performance improvement can be significant when the

signatures are highly concentrated in a certain region of the load.

3.2 System Model

3.2.1 Network Model

P0 P1 P2 PM
L1 L2 LM

Figure 3-1: Model of Linear Daisy Chain Network with Communication Links.

P1 P2 P3 PM

L1

L2
LM

P0

L3

Figure 3-2: Model of Single Level Tree Network with Communication Links.

We consider signature search time on two network models using divisible load

theory. Fig. 3-1 describes a linear daisy chain model and, in Fig. 3-2, a single level

tree network model is described. In this second network model, one root processor,

P0, is connected to the rest of the processors via links. In both models, the load

is originated from P0. Communication links connected to Pj are shown as Lj. The

notation used in this paper is summarized in TABLE 3.1. Here αi is the optimal
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αi Fraction of entire processing load as-
signed to ith processor

wi Constant that is inversely proportional
to computation speed of ith processor

zi Constant that is inversely proportional
to communication speed of ith link

Tcp Computation intensity: time taken to
process a unit load on ith processor
when wi = 1

Tcm Communication intensity: time taken
to communicate a unit load over link li
when zi = 1

Si Processing start time of ith processor
βi Fraction of load that is processed dur-

ing Si and Si+1

|βi| The size of βi

l(βi), u(βi) The lower and the upper boundary of
βi

αi
j The fraction of load distributed to Pi

taken from βi

|αi
i| The size of αi

j

l(αj
i ), u(αj

i ) The lower and the upper boundaries of
αj

i

Table 3.1: Summary of notation for Divisible Load Theory
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fraction of load distributed to processors and links, calculated with divisible load

theory using the rest of system parameters, wi, zi, Tcp and Tcm, which are given as

constant values as system parameters. For the scheduling policy for a single level tree

network, we consider only the single-installment case, where communication of the

load to each processor takes place only once for each processor. We also assume that

the originating node also computes the load. It is also assumed that a child can only

begin processing its load fraction after it receives it in entirety. Furthermore, each

processor is equipped with front-end processor for off-loading communication, so they

can send the fractions of load to other processors while computing its own fraction.

A closed-from solutions for the load distribution (αi) and the expression for the finish

time (makespan) appear in [7] and [1] and are reproduced in the next subsection.

3.2.2 Divisible Load Modeling

The solutions for the optimal load fraction to distribute to each processor and the

starting time and the finish time of processing distributed load by each processor is

obtained using recursive equations in [7].

P0

P1

Pm

P2

Pm-1

S0 S1 S2 S3 Sm-1 Sm Tfinish

0 z1Tcm

0w0Tcp

0 1 z2Tcm

1w1Tcp

0 1 2 z3Tcm

2w2Tcp

0 m-1 zmTcm

m-1wm-1Tcp

mwmTcp

Figure 3-3: Timing diagram for load distribution on a linear daisy chain network

Fig. 3-3 and Fig. 3-4 show timing diagrams of load distribution for linear daisy
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2z2Tcm

1w1Tcp

3z3Tcm

2w2Tcp

mzmTcm

m-1wm-1Tcp

mwmTcp

Figure 3-4: Timing diagram for load distribution on a single level tree network with
single installment

chain network model and single level tree network model, respectively. It is shown

that the processing time of the ith processor is given as αiwiTcp and the load commu-

nication time is the amount of load to transfer multiplied by constant factor ziTcm.

For example, in Fig. 3-4, the amount of time to transfer α1 to P1 is given as α1z1Tcm.

As the optimum criterion of divisible load theory states, the computation time has

to be finished at the same instant by all processors, Tfinish, by each processor. This

criterion is intuitively reasoned in [7] - while distributing arbitrarily divisible loads,

one should keep all the processors utilized until the last moment. If all processors do

not stop at the same time, certainly the load can be transferred to idle processor to

improve the solution. A rigorous proof of this optimum criterion for various network

models is presented in [7]. With this constraint, M recursive equations can be written

for each network model as,

αiwiTcp = (1−
i∑

j=0

αj)zi+1Tcm + αi+1wi+1Tcp,

i = 0, 1, . . . , M − 1,

(3.1)
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for the linear daisy chain network model and

αiwiTcp = αiwiTcp = αi+1zi+1Tcm + αi+1wi+1Tcp,

i = 0, 1, . . . , M − 1,

(3.2)

for the single level tree network model. Each set of recursive equations, along with

a normalization equation, form a system of (M + 1) linear equations with (M + 1)

unknowns, {α0, α1, . . . , αM}. The normalization equation is given as,

M∑
i=0

αi = 1, (3.3)

for both network models. The starting time, Si, of ith processor, Pi, is determined

Network Model S0 Sm (m = 1, . . . , M)

Linear Daisy Chain 0
m−1∑
j=0

[(
1−

j∑
k=0

αk

)
· zj+1Tcm

]

Single Level Tree 0

m∑
j=1

αj · zjTcm

Table 3.2: Time to Start Searching

by communication time of the load to the previous processors, from P0 to Pi−1 and

Pi itself. The starting time for each network model is given in [1] and reproduced in

TABLE 3.2.
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3.3 Expected Time of Searching For Multiple Sig-

natures

3.3.1 Problem Description

We define a set of random variables {Xi} that describes the positions of K signatures

in the dataset with the normalized size 1. We assume that the positions of the

signatures have a certain distribution,

{Xi} ∼ F, (3.4)

where F is joint CDF defined on [0, 1]K. We denote Yk as a random variable describing

the amount of time to find the kth signature. The objective of the first part of this

paper is to find the expectation value of Yk.

3.3.2 Uniform Distribution with Single Installment

When {Xi} are independent and identically distributed random variables with uni-

form distribution, Xi ∼ U(0, 1), i ∈ [1, K]. The position of the kth signature is given

as X(k), the kth order statistics of {Xi}. The E[Yk] can be expressed as,

E[Yk] =

M∑
m=0

E[Y|Am]Pr(Am), (3.5)
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where Am denotes the event when the kth signature is found on Pm. For the single

installment case, we have,

Pr(A0) = Pr(0 ≤ X(k) ≤ α0)

Pr(Am) = Pr(

m−1∑
j=0

αj ≤ X(k) ≤
m∑

j=0

αj), m ∈ [1, M ].

(3.6)

Given that the kth signature is found on Pm,

Ym|Am = gm(X(k)|Am)

= (X(k)|Am −
m−1∑
i=1

αi)wmTcp + Sm,

(3.7)

where gm(·) is the transformation function presented in [1], which takes the position

of a signature as an argument and gives the signature search time depending on

which processor the signature is found. Here, Sm denotes the starting time of Pm as

described in TABLE 3.2 and (X(k)|Am−
∑m−1

i=1 αi) is the offset of the position of the

kth signature from the beginning of load fraction distributed to Pm.

The kth order statistics of the uniform distribution follows the Beta distribution,

X(k) ∼ B(k, K + 1− k). (3.8)

If we denote fk,K(x) as its PDF, given that X(k) is on Pm, the conditional distri-
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bution of X(k) is given as,

X(k)|Am ∼ fk,K(x)∫ γm

γm−1
fk,K(x)dx

=
fk,K(x)

Iγm(k)− Iγm−1(k)
, γm−1 ≤ γm,

(3.9)

where the limits of the integration γm−1 and γm are
∑m−1

j=0 αj and
∑m

j=0 αj , re-

spectively. We set γ−1 = 0 for convenience. Ix(k) is the shorthand notation for

Ix(k, K + 1− k), which is the CDF of Beta distribution, fk,K(x).

Ix(k, K + 1− k) =

∫ x

0

fk,K(ζ)dζ (3.10)

It follows Iγ−1 = I0 = 0. Taking the expectation of (3.7),

E[Ym|Am] = (E[X(k)|Am]−
m−1∑
i=0

αi)wmTcp + Sm. (3.11)

From (3.9),

E[X(k)|Am] =

∫ γm

γm−1
xfk,K(x)dx

Iγm(k) − Iγm−1(k)
, (3.12)

From (3.6),

Pr(Am) =

∫ γm

γm−1

fk,K(x)dx

= Iγm(k)− Iγm−1(k).

(3.13)

Using theses results into (3.5), we have an expression for the expected time for
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finding kth signature out of K signatures:

E[Yk] =
M∑

m=0

((∫ γm

γm−1
xfk,K(x)dx

Iγ(k)− Iγm−1(k)
− γm−1

)
wmTcp + Sm

)

∗ (Iγm(k)− Iγm−1(k)).

(3.14)

Single Signature Case

When there is only one signature, we have K = k = 1. We use the identity,

Ix(a, b) =
a+b−1∑
j=a

(a + b− 1)!

j!(a + b− 1− j)!
xj(1− x)a+b−1−j . (3.15)

When a = k = 1 and b = K + 1− k = 1,

Iγm(1, 1) = γm =
m∑

j=1

αj (3.16)

Then, Iγm(k) − Iγm−1(k) =
∑m

j=0 αj −
∑m−1

j=0 αj = αm. Since X(1) is uniformly dis-

tributed, when K = 1, E[X(1)|Am] = (γm + γm−1)/2. Also, (γm + γm−1)/2 − γm =

(γm − γm−1)/2 = αm/2. Substituting these results into (3.7),

E[Y1] =
M∑

m=0

αm

(
αmwmTcp

2
+ Sm

)

=

M∑
m=0

αm

(
αmwmTcp + 2Sm

2

)

=

M∑
m=0

αm

(
Tfinish + Sm

2

)
,

(3.17)

where Tfinish denotes the time when the computation finishes and is given as Tfinish =

αmwmTcp + Sm. The expected time of single signature search time is found as the
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weighted average of midpoints of the processing times of each processor. This special

case confirms the result presented in [1].

Time to find the last signature

The distribution of the position of the last signature is given as,

X(K) ∼ B(K, 1). (3.18)

The standard form of the PDF of the Beta distribution is given as,

f(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, (3.19)

where B(a, b) is the Beta function with the parameters a and b. When k = K, a =

K, b = K + 1− k = 1, fK,K(x) = f(x; K, 1) = 1
B(K,1)

xK−1. Also, from (3.15),

Ix(K, 1) = xK (3.20)

Using these with (3.11),

E[X(K)|Am] =

∫ γm

γm−1

x
f(x; K, 1)

γN
m − γN

m−1

dx

=

∫ γm

γm−1

x
xK−1

B(K, 1)

1

γN
m − γN

m−1

dx

=

∫ γm

γm−1

xK

B(K, 1)

1

γN
m − γN

m−1

dx

=
K

K + 1

γK+1
m − γK+1

m−1

γK
m − γK

m−1

,

(3.21)
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where we use B(K, 1) = 1
K

. With (3.5) and (3.20),

E[YK ] =

M∑
m=0

((
K

K + 1

γK+1
m − γK+1

m−1

γK
m − γK

m−1

− γm−1

)
wmTcp + Sm

)

∗ (γK
m − γK

m−1).

(3.22)

In [1], the expected search time of the last signature is derived using the concept

of an equivalent processor for the uniformly distributed case. Here, a closed form

solution with a general distribution is derived.
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Figure 3-5: Linear daisy chain network: time to find the last signature versus number
of processors, K signatures, w = 1, z = 0.2, Tcp = 1, Tcm = 1

Fig. 3-5 shows the search time for the last signature when there are K signatures.

The dotted line at the top is the finish time when the processors do not stop processing

after the last signature is found. When there are multiple signatures, adding more

processors gives better speed up (compared to using only one processor) than when

there is only one signature. However, as shown in the plot, as more processors are

added the expected signature search time is slightly increasing after the speed-up is
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Figure 3-6: Linear daisy chain network: time to find the kth signature versus number
of processors, 10 signatures, wi = 1, zi = 0.2, Tcp = 1, Tcm = 1

saturated. While the speed-up through parallel processing is not increased because of

the communication overhead, when calculating the expected value of signature search

time, the residual probability mass of finding signatures on the processors that are

added after the saturation contribute to increasing the expectation value albeit in a

negligible way.

Fig. 3-6 shows the search time for the kth signature when the number of signatures

is fixed to K = 10. It can be observed that before the speed up saturates, the order

of expected time to find the signature changes as shown in the figure.

1st 2nd 10th

3rd

7th

P0

P1

S0

S1
Tfinish

0 1

1/11 2/11 10/11

Load with 10 
signatures

Timing 
diagram

Figure 3-7: Load with uniformly distributed 10 signatures and mini timing diagram
for two processors, w = 1, z = 0.2, Tcp = 1, Tcm = 1

The reason for this can be explained with Fig. 3-7. In the figure, the upper part

describes the normalized load with size 1 with 10 uniformly distributed signatures of
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those expected locations are shown as vertical lines. With the same system parameters

for generating the plot for Fig. 3-6, when there are two processors the load distribution

is given as {0.52381, 0.47619}. The bottom part shows a mini timing diagram when

the load is distributed with this proportion and the expected location of signatures.

As shown in the timing diagram, the expected time to find 7th signature is smaller

than the expected time of 3rd signature because of parallel processing. Although this

diagram is not exact as it uses the expected positions, it explains why the order of

expected search time may be switched as shown in Fig. 3-6. A similar effect is also

pointed out in [1].

This all assumes a linear load is mapped continuously and sequentially into each

load fraction for each processor. The signatures are not necessarily detected in the

original order they appear in the original data flat file. In the case of signature

searching if the original flat file is indexed by time, there may be some concern that

signatures spanning two sides of a load partition are correctly detected. This can

be handled by some overlapping of data fragments near partition boundaries. If this

can be handled, then the original load could conceivably be multiplexed into each

processing node sequentially and repetitively so that signatures are more likely to be

detected in their original order if that is important.
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3.4 Load Distribution Strategy For Minimizing Search

Time

3.4.1 Load Classification based on Starting Time

P0

P1

Pm

P2

m
mwmTcp

0w0Tcp

1w1Tcp

2w2Tcp

Pm-1
m-1wm-1Tcp

S0 S1 S2
Sm-1 Sm Tfinish

(a) Sequential Load Distribution
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(b) Load Distribution Based on Starting Time

Figure 3-8: Comparison of Load Distribution Scheme

Fig. 3-8(a) shows the timing diagram of the computation time of distributed

load for a linear daisy chain network and a single level tree network. The load is

distributed in sequential order as it has been assumed in the literature of divisible

load theory, where the position of the fraction has not been considered. In sequential

load distribution, once αi, the fraction for Pi is determined, P0 gets the first part of

load and P1 receives the next part of load. The ranges of the fractions inside the total
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load are [0, α0] and [α0, α0 + α1], respectably, for P0 and P1.

However, when the likelihood of finding signatures are not uniform, by computing

earlier the fractions of load with a higher likelihood of finding the signatures, the

expected time of finding the signature will be shown to be reduced. Fig. 3-8(b)

shows the classification of load based on their starting time of computation. Here

βi denotes the fraction of load which is computed between Si and Si+1. Since β0 is

processed at the earliest time, it should contain the fraction of load that has highest

probability of containing signatures. The fraction, β1, having the highest probability

excluding β0 is processed between S1 and S2. Since both P0 and P1 process their

fraction during that time period, β1 is separated into two fractions, α1
0 and α1

1, where

αi
j denotes the fraction of load distributed to Pj from βi. We assume that βi is from

one contiguous region of load and later this assumption will be relaxed. Note that

βi is divided into i + 1 fractions because there are i + 1 processors computing their

fraction between Si and Si+1. Also, each processor, Pj, receives the load from m− j

different βi. For example, P0 computes its fraction from S0 to Tfinish so it receives

the fractions from all βi.

In DLT literature, αi usually means the size of the fraction of the load and its

position in load is not considered. Since βi and αi
j are from different parts of total load,

their position needs to be taken account as well as their size. For their size, we use |βi|

and |αi
j | and l(·) and u(·) for the boundary of the range of fractions. For notational

consistency we also use |αi| to denote the size of fraction of load distributed using the

usual sequential distribution although αi means the same quantity. For summary, our

notation βi and αi
j consist of pairs of values, (|βi|, l(βi)) and (|αi

j|, l(αi
j)), respectively,
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and u(·) = u(·) + | · |.

The values of {|αi
j|} and |βi| can be obtained from |αi| which can be obtained from

well-known solutions of the literature of divisible load theory and can be calculated

using recursive equations presented in Section 3.2.

From {|αi|}, {|αi
j|} is calculated with the following equations

|αj| =
m∑

i=j

|αi
j |, j = 0, . . . , m (3.23)

with a constraint,

|αi
0|w0Tcp = · · · = |αi

j|wiTcp, i = 0, . . . , m, j = 1, . . . , m (3.24)

and,

|βi| =
i∑

j=0

|αi
j|, i = 0, . . . , m. (3.25)
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From (3.23),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|α0|

|α1|
...

|αm|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
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(3.26)

Here, the second equality is from (3.24).
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Taking the inverse of the (m + 1) ∗ (m + 1) matrix,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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|α1
0|
...

|αm
0 |

⎞
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=

⎛
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w0
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w0
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w0

wm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|α0|

|α1|
...

|αm|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.27)

Once {|α0
0|, |α1

0|, . . . , |αm
0 |} is found, other {|αi

j|}, j 
= 0 and |βi| follows from (3.24)

and (3.25).

|αi
j | = |αi

0|
w0

wj
(3.28)

The range for βi is yet to be determined.

When the probability distribution function for the location of signatures is mono-

tonically increasing or decreasing as shown in Fig. 3-9, for all βi, one contiguous

fraction suffices to give the optimal range. In the next subsection, we will give a mo-

tivational example with the probability distribution shown in the figure and discuss

for the case of general shapes of distributions in the subsequent subsections.

3.4.2 Motivational Example

In this example, a linearly increasing probability density is considered. We describe a

more efficient processing of the load based on the shape. Consider Fig. 3-9. It shows

that the probability mass of the position of signatures linearly increases toward the

end of the load. In the usual sequential load distribution, the load is partitioned
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Figure 3-9: A comparison between the load distribution schemes

in sequence as shown in Fig. 3-9(a). The load distributed to α0 is chosen from

the beginning of the whole load of which computation begins at S0. Fig. 3-9(b)

is a distribution scheme based on the timing diagram of Fig. 3-8(b), where the

fraction of the load containing the larger mass of probability of finding the signature

is distributed to P0 and processed between S0 and S1, during the earliest time. The

grayed area of the figures identify the portion of load distributed to P0. In the figure,

the load from multiple ranges contribute to α0, the load distributed to P0. Note that,

as probability mass monotonically increases, the range of βi is continuous and each

βi, i > 0 is partitioned for multiple processors.

The probability distribution function of the position shown in the figure is given
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as

fx(x) =
x

2
, 0 ≤ x ≤ 1 (3.29)

m 0 1 2 3 4
|αm| 0.299 0.229 0.181 0.152 0.139
Sm 0 0.0701 0.117 0.146 0.160

Table 3.3: αm and Sm for Linear Daisy Chain Network with w = 1, z = 0.1, Tcm =
Tcp = 1

For a linear daisy chain network with 5 processors, the {|αm|} and {Sm} is cal-

culated using recursive equations presented in section 3.2 and TABLE 3.2. The

calculated values are shown in TABLE 3.3.

i 0 1 2 3 4
|αi

0| 0.0701154 0.0472423 0.0290935 0.0138541 0.138541
|αi

1| 0.0472423 0.0290935 0.0138541 0.138541
|αi

2| 0.0290935 0.0138541 0.138541
|αi

3| 0.0138541 0.138541
|αi

4| 0.138541
|βi| 0.0701154 0.0944847 0.0872806 0.0554162 0.692703

Table 3.4: αi
j, Linear Daisy Chain Network with w = 1, z = 0.1, Tcm = Tcp = 1

In TABLE 3.4, the size of the fraction of the load distributed to Pj from βi, {|αi
j |}

are calculated using (3.27) and (3.28). Although the sizes are determined for αi
j and

βi, with the aid of the DLT solution, the range of the fractions of load still needs to

be determined. In Fig. 3-9(b), the shaded area indicates the fractions of load that

need to be distributed to P0. Here, the load distributed to P0 are from multiple parts

of the load based on their their probability mass. Now α0
0 which is processed between

S0 and S1 is taken from the part of load with highest probability mass. The fraction
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of load processed between Sm and Tfinish, βm, is taken from the beginning part of

the load because of their small probability mass. Since all the processors process

the fraction the load during that period, βm is partitioned and distributed to all the

processors. As the range of fraction is dispersed in the load, the position of each

fraction needs to be obtained. First, the range of βi needs to be obtained and then

the position of αi
j is calculated.

l(β4) l(β3) l(β2) l(β1) l(β0)
0 0.692703 0.748119 0.8354 0.929885

Table 3.5: Lower boundary of βi with Linear Daisy Chain Network with w = 1,
z = 0.1, Tcm = Tcp = 1, u(βi) = l(βi) + |βi|

In this example with a monotonically increasing distribution, the range of βi can

be obtained in a straightforward manner with known |βi| as we can take βi from

the end of the load toward the beginning sequentially as shown in 3-9(b) and the

calculated values are shown in TABLE 3.5. The table shows the lower boundary of

βi, but the upper boundary can be easily derived with |βi|: u(βi) = l(βi)+ |βi|, where

u(·) denote the upper boundary of the load fraction.

i 0 1 2 3 4
l(αi

0) 0.929885 0.8354 0.748119 0.692703 0
l(αi

1) 0.882642 0.777213 0.706557 0.138541
l(αi

2) 0.806306 0.720411 0.277082
l(αi

3) 0.734265 0.415623
l(αi

4) 0.554164

Table 3.6: Lower boundary of αi
m, l(αi

m) with Linear Daisy Chain Network with
w = 1, z = 0.1, Tcm = Tcp = 1, u(αi

m) = l(αi
m) + |αi

m|

The lower boundary of {αi
m} is shown in TABLE 3.6. Inside the range of βi,
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we partition the βi in the order of the processor index for simplicity. Therefore,

l(α1
0) = l(β1) and l(α1

1) = l(β1) + |α1
0| and other lower boundaries are obtained

similarly. Other ways of partitioning βi are possible but are not considered in this

paper.

In order to find the expected signature search time for this distribution scheme,

(3.5) can be re-written as

E[Y] =
∑

{(m,i):αi
m∈{αi

m}}
E[Y|Ai

m]Pr(Ai
m) (3.30)

where Ai
m denotes an event when the signature is found in αi

m. Similarly to (3.7),

Y|Ai
m = gm((X)|Ai

m)

= (X|Ai
m − l(αi

m))wmTcp + Sm

(3.31)

where l(αi
m) denotes the starting position of αi

m in load.

Taking expectation of Y|Ai
m gives

E[Y|Ai
m] = (E[X|Ai

m]− l(αi
m))wmTcp + Sm. (3.32)

The conditional expectation of the location of the signature given that it is dis-

tributed to Pm and from βi,

E[X|Ai
m] =

∫ u(αi
m)

l(αi
m)

xfx(ζ)dζ∫ u(αi
m)

l(αi
m)

fx(ζ)dζ
. (3.33)
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Also, the probability of the event Ai
m is,

Pr(Ai
m) =

∫ u(αi
m)

l(αi
m)

fx(ζ)dζ. (3.34)

Finally, substituting the above equations into (3.30),

E[Y] =
∑
(m,i)

⎛
⎝
⎛
⎝∫ u(αi

m)

l(αi
m)

xfx(ζ)dζ∫ u(αi
m)

l(αi
m)

fx(ζ)dζ
− l(αi

m)

⎞
⎠wmTcp + Sm

⎞
⎠

∗
∫ u(αi

m)

l(αi
m)

fx(ζ)dζ

(3.35)

When probability distribution is given as (3.29), we have,

∫ u(αi
m)

l(αi
m)

xfx(ζ)dζ =

∫ l(αi
m)+|αi

m|

l(αi
m)

x2

2
dx

=
3|αi

m|2l(αi
m) + 3|αi

m|l2(αi
m) + |αi

m|3
6

(3.36)

and

∫ u(αi
m)

l(αi
m)

fx(x)dx =

∫ l(αi
m)+|αi

m|

l(αi
m)

x

2
dx

=
2|αi

m|l(αi
m) + |αi

m|2
4

.

(3.37)

By using the calculated values from the above tables, we plot the expected search

time using usual the sequential distribution in the DLT literature and when the load

is classified by probability mass in Fig. 3-10. As shown in the figure, when the load

is classified by the probability mass and scheduled with consideration of the starting

time of each processor the expected time to find signatures is significantly faster. The
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Figure 3-10: Comparison of expected time to find a single signature between sequen-
tial distribution and distribution based on load classification based on the probability
distribution on single level tree network, wi = 1, zi = 0.2, Tcp = 1, Tcm = 1

finish time of computation is shown in the plot for comparison.

3.5 Load Rearrangement for Speeding-up Signa-

ture Search Time

3.5.1 Load Rearrangement Procedure

In this section, we present a streamlined procedure to distribute load based on the

distribution of the signatures as introduced in the previous section. We assume that

the probability distribution of the locations of the signatures is known. In this ap-

proach, the load is rearranged first in order of the likelihood of finding the signature.

Fig. 3-11 describes the procedure. As shown in Fig. 3-11(a), the load is sliced into

equal size bins. We denote B the total number of bins and, therefore, the size of each

bin is 1/B. In the next step, shown in 3-11(b), the probability mass of each bin is
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Figure 3-11: Rearrangement of Loads based on Ranking

calculated as,

Fn =

∫ bn

bn−1

fx(x)dx, (3.38)

where Fn denotes the probability mass of nth bin and bn = n ∗ 1
B

. Once the mass of

each bin is calculated the load is sliced and rearranged in the order of the decreasing

magnitude of the probability mass as shown in Fig. 3-11(c). We call this the sorted

load.

β0 β1 β2 β3 β4

|βi| 0.0701154 0.0944847 0.0872806 0.0554162 0.692703
u(βi) 0.0701154 0.1646 0.251881 0.307297 1

Table 3.7: |βi| and Upper boundaries of βi with Linear Daisy Chain Network with
w = 1, z = 0.1, Tcm = Tcp = 1

Finally, the load is distributed according to pre-calculated {βi}. Once the load is
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sorted according to the probability mass in the previous step, the range and the size

of {βi} does not vary for a given network model with the same system parameters

independently from the probability distribution of signatures. For example, the size

and the range of {βi} can be calculated for the linear daisy network with w = 1, z =

0.1 and Tcm = Tcp = 1 as shown in TABLE 3.7. The size of βi are obtained using

(3.23), (3.24) and (3.25). The range of βi is taken from the beginning of the sorted

load. Therefore, the lower boundaries shown in TABLE 3.7 are the values in the

sorted load, not in the original load.

3.5.2 Approximation of Expected Signature Search Time

Fig. 3-11(d) shows the procedure for obtaining approximated value of expected sig-

nature search time. The approximated value of the expected time of signature search

time is given as,

Ê[X] =
n∑

i=1

Si−1 + Si

2
∗ F̂ i (3.39)

where F̂i denotes the approximated probability mass calculated for {βi}.

F̂i = F(k)(bk − l(βi)) +

l∑
i=k

F(i) + F(l)(u(βi)− bl) (3.40)

when bk−1 ≤ l(βi) ≤ bk and bl ≤ l(βi) ≤ bl+1.

Intuitively, this equation shows that the approximated expected signature search

time is the weighted sum of the mid points of processing time of {βi} with their

approximated probability masses.
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3.6 Evaluation and Analysis
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Figure 3-12: Rearrangement of Loads based on Ranking

When the distribution of the location of signature time is given as a truncated

normal distribution on the range [0, 1] centered at the 1/2, it can be written as,

f(x; μ, σ, a, b) =
1
σ
φ(x−μ

σ
)

Φ( b−μ
σ

)− Φ(a−μ
σ

)
, (3.41)

φ(·) is the probability density function of the standard normal distribution, and Φ(·)

is its cumulative distribution function. Also, a and b denote the range of truncation,

and μ denotes the average and σ is the standard deviation value. With a = 0, b = 1

and μ = 1/2.

f(x; 1/2, σ, 0, 1) =
1
σ
φ(x−1/2

σ
)

φ( 1
2σ

)− φ(− 1
2σ

)
, (3.42)
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This distribution is shown in Fig. 3-12(a). Following the procedure presented

in the previous section, the load is sliced into bins as shown in Fig. 3-12(b) and

rearranged based on the probability mass of the bins as shown in Fig. 3-12(c). The

figures are based on when 30 bins being used. Finally, the approximated probability

mass of βi is plotted in Fig. 3-12(d).
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Figure 3-13: Performance improvement(%) through load rearrangement for various σ

Fig. 3-13 shows the expected signature search time with and without load ar-

rangement procedure with various standard deviation, σ. Fig. 3-13(b) shows the

performance improvement in terms of percentage. As shown in the figures, as the

probability of finding a signature is concentrated in a smaller area (lower σ value) the
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performance gain increases.

3.7 Conclusion and Future Work

In the first part of this work, closed form solutions of the expected search time of the

kth signature is derived. In the latter part, with a prior knowledge of the distribution

of signatures, it is shown that expected time of finding a single signature can be

improved and a procedure to speed up the signature search time and its simulation

result is presented. With highly concentrated distributions, the improvement in the

speed of finding a signature is shown to be significant. As an extension of this work,

we will examine how database operations can be mapped to divisible load scheduling

and how a prior knowledge of input data affects the performance and investigate how

it can be used to make distribution strategies to improve performance.

The trend in data processing is the use of parallel processing to speed executing

even to the level at a single machine (i.e. multicore architectures). Thus for radar and

sensor data processing, the use of divisible load theory leads to a better quantitative

understanding of processing performance and processing options. Thus the result in

this paper should be of interest for quite some time.

60



Chapter 4

Analysis of Distributed Join

Operation with Divisible Load

Theory

4.1 Introduction

4.1.1 Distributed Join Algorithm

Join is an essential operation in relational database system as it usually precedes all of

the operations relating two relations. Distributed join algorithm has been developed

for a loosely-coupled distributed systems such as high speed local area networks. In

the literature of database operations, two relations in a join operation are called R

and S where the number of tuples in R is assumed to be smaller than S. Here, R and

S are called the inner relation and the outer relation, respectively. In the following,
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we introduce several versions of typical join operations on distributed environments.

Sort-Merge Join In Sort-Merge Join, the relations R and S are partitioned using

a hash function h. The hash function takes the join attributes of a tuple as its input

and give an index as its output. The hash function is applied to each tuple in the

relation and the tuples with the same hash output is processed separately. First, the

fraction of relations R and S with same hash output is sorted separately. The sorted

relation is merged to find the matching join attribute to produce the join results.

Optionally join condition can applied to filter out the join results.

Hash Join In join operation with hash table, the inner relation R is used to build

a hash table using a hash function. For each tuple of the outer relation, S, its join

attributes are hashed using a same hash function used for building the hash table.

The hashed value of each tuple of S is used to look for tuples of R that where already

loaded in the hash table - this process is called hash probing.

Grace hash and Hybrid hash join In both cases, the hash table is used for

the join operation. However, before the join operation, both relations, R and S, are

partitioned into N buckets using a hash function. Usually a bucket is partitioned into

multiple disks for I/O efficiency.

4.1.2 Divisible Load Theory

Large sets of structured data such as database records can be modeled as divisible

loads when the size of record is small enough compared to the total size of records

under consideration. Divisible load theory was introduced by [29] and [30] and, also
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independently in [31] as “large-grained parallelism”. Ever since its introduction di-

visible load theory has served as effective modeling tools for data-intensive applica-

tion [48] [49] [50] [7] [32] [3] and a large amount of work has been published for various

network structures including linear networks [33], bus networks [34], single and multi

level tree-networks [35] [36] [37], mesh networks [38] [39], hypercubes [40] and ar-

bitrary graphs [41] with different constraints such as different release times, buffer

constraints [42], communication start-up costs and time-varying network capacity.

Also, various distribution strategies have been studied including multi-installment of

load distribution [43]. In [44], [45] and [46], scheduling strategies without knowledge

of network resources are examined.

4.1.3 Related Works

In [47] the modeling of the join operation as scheduling divisible tasks is verified

by experiment in a cluster of workstations. In this work the relative error between

the measurement from experiment and theoretical value from modeling decreases

with sufficient size of data as transient irregularity of the computing and network

environment such as the access time of network decreases. Other experimental work

using divisible load theory has been studied. In [51] aligning biological sequences

on distributed bus networks is presented. Divisible load analysis of computer vision

and image processing was considered in [52] and [53]. In [54] handling of large-size

discrete wavelet transform is studied in network-based computing systems. Large

matrix-vector computation both in bus network is considered in [55] and [56].
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4.1.4 System Model

p2p1 p3 pm

S

Figure 4-1: Model of Bus Network with Common Communication Links.

p1 p2 p3 pm

l1
l2

lm

S

l3

Figure 4-2: Model of Single Level Tree Network with Communication Links.

Fig. 4-1 and Fig. 4-2 describes a bus and a single level tree network model,

respectively, used in our analysis. In the figures, there are m processors denoted by

p1, p1, . . . , pm. In both network models, a scheduler, S, has access to a file system

which stores relations and is responsible to calculate the size of fractions of relations

to be distributed to each processor for distributed join operations. In the single

level tree network model, S is connected to pi with links li, i = 1, . . . , m. In the

bus network model, processors share a same bus channel. The inverse speed of each

process is denoted by wi and the inverse speed of each link is denoted by zi. For the

64



bus network model, zi = z for all i.

pi Fraction of entire processing load as-
signed to ith processor

li Fraction of entire processing load as-
signed to ith processor

wi Constant that is inversely proportional
to computation speed of ith processor

zi Constant that is inversely proportional
to communication speed of ith link

Tcp Computation intensity: time taken to
process a unit load on ith processor
when wi = 1.

Tcm Communication intensity: time taken
to communicate a unit load over link li
when zi = 1

αi Fraction of entire processing load as-
signed to ith processor

R,S Input Relations of a join operation
‖R‖,‖S‖ Number of tuples in relations

ρ Selectivity parameter of join operation
β Ratio between the size of two relations

|R|/|S|

Table 4.1: Summary of notation for Divisible Load Theory

TABLE 4.1 summarizes the notation used throughout this paper. It is assumed

that the relations used in the operation are available on S, and each processor starts

computing only when the transfer of the load is finished. Also, the scheduler engages

in communication to only a single link at a time.
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4.2 Divisible Load Analysis of Distributed Join Al-

gorithm

4.2.1 Cost of Operations

A distributed operation consists of four phases. In the first phase, with a given size of

a load, the size of the fractions of load to be distributed to each processor is decided

by the scheduler in a scheduling phase. The next phase is is communication phase

where the fractions of load are transfered to processors. Each processor applies the

operation on its fraction in a computation phase. When the results of operation need

to be reported back for further processing report phase follows. In join operations,

the result is another relation which almost always needs to be presented to the user

of the system or saved for further operations such as another join. Therefore, we

consider the report phase explicitly in the following formulation. We denote two

input relations as R and S which contain the tuples, the records consists of the values

of multiple fields.

We assume that a selection operation is applied before distributing relations so

that only the fields that appear in the result of the operation is distributed. We

further assume that the aggregate size of fields from each relation is same so the

size of the relations are only expressed in terms of number of tuples in the relations.

Without loss of generality, we assume the size of R, denoted as ‖R‖ is smaller than

the size of S, ‖S‖. The smaller relation R is called inner relation and S is called
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outer relation. We denote the ratio of these two sizes as β.

β = ‖R‖/‖S‖, 0 < β ≤ 1 (4.1)

For the report phase, we define a selectivity factor, ρ, which is defined as the ratio

of the number of tuples that satisfy the join condition to the number of tuples in the

Cartesian product of two relations.

We describe the cost function for each phase for pi in terms of the number of

tuples of two relations scheduled in the phase. We ignore the time in scheduling

phase which is negligible compared to the actual communication and computation

phases. Actual cost depends on the join types and distribution strategy as well as

system parameters such as the communication channel speed and the computation

speed of each processor.

1. Distribution cost, Di(‖Ri‖, ‖Si‖)

2. Computation cost, Ci(‖Ri‖, ‖Si‖)

3. Report cost, Mi(‖Ri‖, ‖Si‖)

The cost function described above gives the number of tuples as its output and

communication and computation time is linearly proportional to them.

1. Distribution communication time

Di ∗ zi ∗ Tcm (4.2)
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2. Computation time of ith processor, pi

Ci ∗ wi ∗ Tcp (4.3)

3. Join result communication time

Mi ∗ zi ∗ Tcm (4.4)

Here, zi denotes the inverse speed of communication speed of link from p0 to pi and

wi denotes the inverse speed of computation speed of pi both in terms of time for a

tuple.

BCU

P1

Pm

P2

Pm-1

Tfinish

D1 z1Tcm D2z2Tcm

C1w1Tcp

C2w2Tcp

DmzmTcm

Cm-1wm-1Tcp

CmwmTcp

mzTcm 1zTcm

Load Distribution Result Report

Figure 4-3: Timing Diagram of Distributed Join Operation

Fig. 4-3 shows the timing diagram including communication from processors to

scheduler with joined tuples. Besides communication time that force the processors

to be idle, all the processors are fully utilized. Using the diagram, the following

recursive equations can be derived. With a single level tree network, the general form
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Figure 4-4: Timing Diagram of Distributed Join Operation with Broadcasting Sup-
port

of recursive equation is given as,

CiwiTcp = Di+1zi+1Tcm + Ci+1wi+1Tcp + Mizi+1Tcm

i = 1, 2, . . . , m− 1

(4.5)

Fig. 4-4 shows initial broadcasting phase when the inner relation is communicated

to all the processors, which is only available for bus networks.

A bus network can be considered as a special form of a single level tree network

where zi = z for li.

CiwiTcp = Di+1zTcm + Ci+1wi+1Tcp + MizTcm

i = 1, 2, . . . , m− 1

(4.6)

Note that cost functions, Ci,Di and Mi depends on the size of the fractions of two

relations, ‖Ri‖ and ‖Si‖, which is expressed as the fraction of the total number of

tuples in the relations, αi‖R‖ or αi‖S‖. The optimal set of {αi} can be obtained
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using the recursive equations above along with the normalization equation,

m∑
j=1

αi = 1 (4.7)

From Fig. 4-3 the finish time of operation without broadcasting of the inner-relations

is obtained as,

Tfinish = D1z1Tcm + C1w1Tcp + M1z1Tcm (4.8)

This is because the finish time of total operations for a single-level tree network is

the same as when the first processor, P1, finishes

In the following subsections, specific join algorithms will be examined and the

optimal distribution of relations are obtained using divisible load theory.

4.2.2 Distributed Inner Loop Join

When the inner loop is used for the join operation, the smaller relation, R, has to be

shipped to each processor while the bigger relation can be partitioned into m fractions

for parallel processing. With a bus network, the inner relation can be broadcast

to each processor before the joining operation on each processor if broadcasting is

supported by the communication medium. In an inner loop styled join, each tuple in

one relation is compared with all the tuples of another relation. Therefore the cost

of operation on ith processor is given as,

Ci = ‖R‖ ∗ ‖Si‖ = βαi‖S‖2 (4.9)
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For cost of reporting back the result of join operation is proportional to the mul-

tiplication of the size of two relations on each processor and to the selectivity factor,

ρ. Therefore,

Mi = ρ‖R‖ ∗ ‖Si‖ = ρβ‖S‖ ∗ αi‖S‖ = ρβαi‖S‖2 (4.10)

The cost of distribution is given as,

Di = ‖R‖+ ‖Si‖ = β‖S‖+ αi‖S‖ = (β + αi)‖S‖ (4.11)

When broadcasting of inner relation is supported,

Di = ‖Si‖ = αi‖S‖ (4.12)

with time to broadcasting the inner relation R before the parallel joining operations

added to the total timespan.

Single Level Tree Network

With a single level tree network, the inner relation R as a whole is distributed to

each processor sequentially along with the fraction of the outer relation S. From

the timing diagram in Fig. 4-3 and using (4.5),(4.9),(4.10) and (4.11), the following
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recursive equation can be obtained:

αiβ‖S‖2wiTcp = (αi+1 + β)‖S‖zi+1Tcm

+ ραi+1β‖S‖2zi+1Tcm + αi+1β‖S‖2wi+1Tcp,

i = 1, . . . , m− 1,

which can be re-written to

αiβwiTcp = αi+1(
zi+1Tcm

‖S‖ + ρβzi+1Tcm + βwi+1Tcp)

+
βzi+1Tcm

‖S‖ , i = 1, 2, . . . , m− 1

(4.13)

or

αi = αi+1fi+1 + ξi+1, i = 1, . . . , m− 1 (4.14)

where

fi+1 = (
zi+1Tcm

‖S‖ + ρβzi+1Tcm + βwi+1Tcp)/βwiTcp

=
wi+1 + zi+1δ

wi
, i = 1, 2, . . . , m− 1

(4.15)

with

δ =

(
1

‖S‖β + ρ

)
Tcm

Tcp

(4.16)

and

ξi+1 =
zi+1Tcm

‖S‖wiTcp
, i = 1, 2, . . . , m− 1. (4.17)
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Each fraction can be expressed in terms of αm,

αi = αmKi + Li, i = 1, . . . , m− 1 (4.18)

where

Ki =
m∏

j=i+1

fj , i = 1, . . . , m− 1 (4.19)

and

Li =

m∑
k=i+1

ξk

(
k−1∏

j=i+1

fj

)
, i = 1, . . . , m− 1 (4.20)

Note that above derivation in terms of αm follows the analysis presented in [53],

where communication start-up cost is considered. In our case, communication cost

to transport inner relation R can be considered as a fixed start up cost in equations.

With the normalization equation, (4.7), we have,

αm =

(
1−∑m−1

i=1 Li

1 +
∑m−1

i=1 Ki

)
(4.21)

or

αm =

(
1− η(m)

Ω(m)

)
(4.22)

where, following the notation in [53],

η(m) =
m−1∑
i=1

m∑
k=i+1

ξk

(
k−1∏

j=i+1

fj

)
(4.23)
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and

Ω(m) =

(
1 +

m−1∑
i=1

m∏
j=i+1

fj

)
, (4.24)

In [53], η(m), is referred as overhead factor because it gives a necessary and sufficient

condition for the existence of an optimal load distribution using all the m processors

when m processors are available for parallel processing.

The condition is given as,

η(m) < 1 (4.25)

which is derived from αm > 0.

To be precise, since the number of tuples allocated to a processor cannot be less

than 1. From

‖R‖αm = ‖R‖
(

1− η(m)

Ω(m)

)
≥ 1 (4.26)

η(m) ≤ 1− Ω(m)

‖R‖ (4.27)

From (4.8), (4.9), (4.10) and 4.11 the finish time of the operation can be obtained

as,

Tfinish = βα1|S|2w1Tcp + (β + α1)‖S‖z1Tcm + ρβα1‖S‖2z1Tcm (4.28)

Since η(m) increases as m increase as shown in Fig. 4-5, there is an m∗ satisfying

(4.25) where m∗ ≤ m for a fixed sequence. Adding more processors beyond m∗ would

not decrease the finish time as the optimal solution does not exist.

Once m∗ is found, for a fixed sequence of distribution, {α1, α2, . . . , αm∗}, gives

the optimal solution as it fully utilizes all the processors and links as shown in Fig.
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Figure 4-5: Overhead Factor η(m)

(4-3). If all the sequences are considered, finding the subset of processors giving

optimal solution is conjectured to be an NP-hard problem in [57], where a fixed cost

of communication start-up cost was considered. In our case, the time to transport |R|

to each processor (β|S|zi+1Tcm) can be considered as a start up cost for communication

although it varies with the communication speed, zi. Finding an optimal sequence

amounts to searching m! space which is not practically tractable. In [53], a greedy

algorithm is suggested, which makes use of a maximal set of processors in the order

of their decreasing computation speeds, Fast Sequence, while satisfying the overhead

factor condition, (4.23). In the following analysis, we adopt this greedy algorithm

as it gives a good suboptimal solution. For more detailed discussion, the reader is

referred to [53] and [7].

When the whole load is processed by only one processor, with α1 = 1 in (4.28),

T 1
finish = β|S|2w1Tcp + (β + 1)‖S‖z1Tcm + ρβ‖S‖2z1Tcm (4.29)
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Speed-up, Γ is the value to quantify the advantage of parallel processing and

defined as the ratio between finish time with parallel processing to the finish time

when the whole load is processed by only one processor.

Γ =
T 1

finish

Tfinish

(4.30)

The computation speed of the first processor is used under assumption that the load

distribution is in the order of decreasing speed, so p1 is the fastest.

Bus Network with broadcasting support

When a bus network is used, we can have same the solution as (4.21) with zi = z for

all i. When broadcasting is supported, the inner relation R, can be communicated to

all of the processors concurrently. After the inner relation is broadcast, the fraction

of outer relation is distributed to processors sequentially.

The recursive equation for the part of distributing the outer relation is given as,

αiβ|S|2wiTcp = αi+1|S|zi+1Tcm + ραi+1β|S|2zi+1Tcm+

αi+1β|S|2wi+1Tcp,

(4.31)

which can be reduced to

αi = αi+1fi+1, (4.32)

where fi+1 is given in (4.16).
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The closed form solution can be obtained as,

αi = αmKi (4.33)

where Ki is given in (4.19).

The closed form of the fraction for the last processor is given as,

αm =
1

Ω(m)
(4.34)

where Ω(m) is from (4.24). The last fraction is always greater than 0. However, it

should be true that ‖S‖∗αm > 1, since the number of tuples less than 1 is meaningless.

Therefore, for a fixed sequence, m should be chosen to satisfy,

‖S‖ > Ω(m) (4.35)

The finish time includes the time to broadcast the inner relations, R.

Tfinish = ‖R‖zTcm + α1β‖S‖2w1Tcp + α1ρβ‖S‖2z1Tcm (4.36)

The speed-up is given as,

Γ =
‖R‖zTcm + β‖S‖2w1Tcp + ρβ‖S‖2z1Tcm

‖R‖zTcm + α1β‖S‖2w1Tcp + α1ρβ‖S‖2z1Tcm
(4.37)
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‖R‖ = 10, 000, ‖S‖ = 100, 000
m = 25, zi = 10−5, Tcp = Tcm = 1
β = 10, ρ = 2 ∗ 10−6

wi(i = 1, . . . , 25) =
{0.272, 0.546, 0.802, 0.816, 0.823,
0.935, 1.52, 2.43, 2.58, 2.77, 2.99,
3.24, 3.36, 3.73, 4.9, 4.98, 5.49,
5.61, 6.48, 8.11, 8.43, 9.27, 9.66, 9.7, 9.72}(10−9)

Table 4.2: Summary of parameters for evaluation of distributed inner-loop join

Evaluation

The evaluation is based on the standard Wisconsin Benchmark [58]. In joinABprime,

a 1,000,000 tuple relation is joined with a 100,000 tuple relation and produces a

100,000 tuple result relation, T . β = ‖S‖/‖R‖ = 1000000/100000 = 10 and ρ is

calculated as ρ = ‖T‖/(‖R‖ ∗ ‖S‖) = 100000/(1000000 ∗ 100000) = 2 ∗ 10−6. We

choose Tcm = Tcp = 1 and z = 10−5 for all pi. TABLE 4.2 summarizes the parameters

used in our evaluation.
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Figure 4-6: The Comparison of Finish Time against the Equal Allocation Scheme

Fig. 4-6 and Fig.4-7 compare the finish time and the speed up of four cases. In

the figure, DA stands for the allocation based on divisible load analysis presented in
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Figure 4-7: Speed Up

the previous section while EA stands for the equal allocation scheme. For each allo-

cation scheme, the availability of the support of broadcasting of inner relationship is

considered. As shown in the figure, when broadcasting is supported, the performance

is better in both DA and EA. For DA with broadcasting, the maximum number of

processors that can be utilized is limited and shown as m∗. For the equal allocation

scheme, the allocation is in the order of decreasing speed of the processors. For the

report phase, the processor that finishes the computation early has a priority to send

back the result to the BCU. In [59], the analysis of equal allocation scheme is pre-

sented. There also exists the maximum number of processors that can be utilized

with the equal allocation without broadcasting support.

4.2.3 Distributed Sort-Merge Join

In distributed sort merge join operation, the same hash function is applied to both the

inner and the outer relations to find the processor to where the relations is distributed.

Fig. 4-8 describes the process of partitioning the inner relation, R, into m fractions.
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Figure 4-8: Distributed Sort Merge Process

The same process applies to the outer relation, S, as well. A hash function is chosen to

take the join attributes of the relation and gives an integer value in [1, m]. This index

is used to find the process id. The tuples with attributes having the same hashed

values are accumulated in local buffers. When all the tuples are processed, they

are distributed to the corresponding processor in one message. Since each processor

receives the tuples with the same hash attributes, the result of join operations can

be fully obtained at each processor and can be combined without any intermediate

communication between the processors. When the values of join attributes exhibits

uniformity, which is good assumption as described in [27], the number of tuples to be

distributed to each processor will be approximately the same as a good hash function

gives uniformly distributed hash values. However, when the communication cost is

not negligible such as in local network environments, equal load distribution does
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not give an optimal time span [7]. For the case where the capacity of processor and

communication link is not known for optimal allocation, in [59] the equal allocation

scheme of divisible load is studied. In this paper, we assume that we have the full

knowledge of computation speed of each processor and communication speed of each

link, so the optimal allocation can be calculated. Once the optimal allocation is

calculated, the hash function should be designed to produce an optimal allocation.

Once the fraction of relations is distributed to each processor, the local operation

involves the sorting of two fractions of relations and merging operation which is a

linear scan of two partial relations. In the merge operations, the matching tuples

from each relation become the output of the join operations. We assume that both

relations are already in sorted order. It is a plausible assumption as sorting needs to

be required only once and other typical operation such as inserting, deleting etc. for

the sorted relation can gain significant performance gain. Therefore, in the following

analysis the cost for sorting tuples will not be considered.

Assuming that the join attributes in both relations R and S exhibit a uniform

distribution, the size of tuples allocated to each processor will be the same size. In

the following derivation, we will derive the optimal fraction of relations based on

the DLT optimal criterion and will show a procedure to modify the hash process to

accommodate the optimal allocation instead of equal allocation. We have

‖Ri‖ = αi‖R‖, ‖Si‖ = αi‖S‖ (4.38)

The computation cost on each processor consists of sorting and linear merging
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phases. Since sorting of tuples needs to be done only once and is not required in

subsequent process, we only consider the computation cost linear merge operation:

Csm
i (Ri, Si) = ‖Ri‖+ ‖Si‖ = αi‖R‖+ αi‖S‖ = αi(β + 1)‖S‖ (4.39)

The distribution and report cost are given as,

Dsm
i = αi(β + 1)‖S‖

Msm
i = ρ‖Ri‖ ∗ ‖Si‖ = ρβα2

i ‖S‖2
(4.40)

Using (4.5) with the above cost functions, the following recursive equation can be

obtained,

αi‖S‖(β + 1)wiTcp = αi+1‖S‖(β + 1)zi+1Tcm+

αi+1‖S‖(β + 1)wi+1Tcp + ρβα2
i+1‖S‖2zi+1Tcm+

i = 1, 2, . . . , m− 1,

(4.41)

which can be rewritten to,

αi = αi+1
zi+1Tcm

wiTcp
+ αi+1

wi+1

wi
+

α2
i+1

ρβ‖S‖zi+1Tcm

(β + 1)wiTcp

= αi+1ξi+1 + α2
i+1

ρβ‖S‖
β + 1

σi+1

i = 1, 2, . . . , m− 1,

(4.42)
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where ξi+1 = σi+1 + ηi+1 and

σi+1 =
zi+1Tcm

wiTcp
and ηi+1 =

wi+1

wi

i = 1, 2, . . . , m− 1.

(4.43)

With the above recursive equation and the normalization equation given in (4.7),

we can setup the following matrix equation,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

...

αm−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
ρβ‖S‖
β + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σ2 0 0 . . . 0 0

0 0 σ3 0 . . . 0 0

0 0 0 σ4 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 σm

0 0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2
1

α2
2

α2
3

α2
4

...

α2
m−1

α2
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ξ2 0 0 . . . 0 0

0 0 ξ3 0 . . . 0 0

0 0 0 ξ4 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 ξm

1 1 1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

...

αm−1

αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.44)
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This simultaneous non-linear eqaution can be solved using standard iterative numer-

ical methods. One of them is Newton-Raphson Method used in our analysis [60].

The above simultaneous equation can be rewritten to in an implicit form:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

...

αm−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σ2 0 0 . . . 0 0

0 0 σ3 0 . . . 0 0

0 0 0 σ4 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 σm

0 0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2
1

α2
2

α2
3

α2
4

...

α2
m−1

α2
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ξ2 0 0 . . . 0 0

0 0 ξ3 0 . . . 0 0

0 0 0 ξ4 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 ξm

1 1 1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

...

αm−1

αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(4.45)

or

Fi =

⎧⎪⎪⎨
⎪⎪⎩

αi −Kσi+1α
2
i+1 − ξi+1αi+1 i = 1,. . . ,m-1

1− (α1 + · · ·+ αm) i = m

(4.46)
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where K = ρβ‖S‖
β+1

.

The Jacobian matrix is given as

Jij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 i = j

−ξj − 2αjKσj i = j-1

−1 i = m

(4.47)

using

Jij =
∂Fi

∂αj
(4.48)

With an initial estimation vector ᾱ, new estimation can be obtained using,

ᾱnew = ᾱold + δᾱ (4.49)

where the correction vector can be obtained as,

δᾱ = J−1 · −F (4.50)

The last row of the matrix equation incorporates the normalization equation and

the other rows are the matrix form of (4.42). The solution can be found standard

iterative method by inserting initial estimation of {αi} to the right hand side and

obtain the new vector in the left hand side. This process is known to iterate to

convergence.

From (4.42),

dαi

dαi+1

= ξi+1 + 2αi+1Cσi+1 > 0 (4.51)
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when αi+1 >= 0, where C = ρβ‖S‖
β+1

> 0. Therefore {αi} monotonically decreases.

The iterative procedure can stop when αm ∗ β ∗ |R| < 1 or the difference between the

result of current step and the previous step is less than a specified constant, whichever

comes first. In (4.51), C is a value greater than 0.

Finish time and speed up is given as,

Tfinish = α1(β + 1)‖S‖w1Tcp, (4.52)

and

Γ =
1

α1

, (4.53)

respectively.
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Figure 4-9: The comparison of the Finish Time of the Distributed Sort Merge Join
operation

Fig. 4-9 and Fig. 4-10 shows the finish time and the speed-up of distributed sort

merge process. The inverse speed of the processors are chosen randomly from the

range of 0.8 ∗ 10−51̃.2 ∗ 10−5 and the inverse speed of communication z is chosen from
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Figure 4-10: Speed up of distributed sort merge

the range of 0.8 ∗ 10−61̃.2 ∗ 10−6. Other parameters follow TABLE 4.2. The figures

show the allocation based on the divisible analysis and equall allocation. For each

allocation scheme, the fast sequence is compared the against the random sequence.

The sequence of operation following the order of the decreasing speed of processors

shows the persistent improvement over when the sequencing is arbitrary. The perfor-

mance of the allocation based on divisible load analysis is shown to be better than

that of equal allocation. For the computation of finish time of the equal allocation

scheme, we use the first come first served policy for the report phase.

4.3 Conclusion

We applied divisible load theory to the area of distributed database systems. We con-

sider the distributed join operation for various distributed algorithm and showed that

by allocating tuples with consideration of communication cost will give an optimal

solution in terms of minimal operation time. We compared our result with an equal
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allocation scheme. Database technology is an essential component of modern com-

puter systems. The type of analysis presented in the paper allows both performance

prediction and the development of efficient database algorithms. The work discussed

here is very fundamental so the results should be of interest for some time.
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Chapter 5

Multiple Mobile Robot Dispatch

Strategy for Cooperative

Applications

5.1 Introduction

Delivery applications for multiple mobile robots find great importance in hospital

or factory environments where specimen or parts need to be delivered by interac-

tive requests. In such environments, timely delivery of items is the most important

requirement while avoiding unnecessary robot movement to minimize the impact of

battery charging time and increase overall life span of the mobile robots. In such

environments, the robots follow well-defined paths such as corridors in a building or a

guided line on the factory floor which allows a path based model of robot movement

that allows the effective computation of planning of robot movement. In this work we
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propose path based mobile robot dispatch strategy for delivery request between two

static locations. In the next section, an application model and problem description is

described. In the following section, path based cost analysis that is used for making

dispatch decision is introduced. In the section 5.3.4 dispatch strategy is proposed and

it is evaluated in the section 5.4. Lastly, in the section 5.5 the conclusion is made

with future directions of our work.

5.2 Application Model and Problem Description

5.2.1 Application Model

Charging
Station

G

F

E D

C

B

A

16 m

6 m

4 
m

12
 m
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 m

5 m 8 m 7 m
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Staging
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(a) Floor Map

A
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C

DE

F

G

X S

(b) Path Model

Figure 5-1: Floor map of multiple offices and its path view. Locations or offices are
modeled as nodes in the path view. Two paths form the office C to F are shown in
the path view.

We consider a delivery application with multiple robots delivering items between

offices in a building environment. In Fig. 5-1 an actual floor plan and its path model

of the map are shown. In path model for each pair of locations a unique path is
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determined with the distance between them. A path is defined with a sequence of

locations where the distance of between each location is given.

Three different kinds of locations are shown. First, task locations are where items

are picked up from of drooped off for delivery, A ∼ G, in the figure. Second, charging

station is a place where a robot charges its battery, indicated as X in the figure.

Third, staging area, S, where the robots are staged in the beginning of the system.

A delivery task request dynamically arrives to the dispatch system and each of

which is defined with a unique pick-up and drop-off location. It is assumed that the

pick-up and the drop-off locations are known to the dispatch system when the request

is made.

Tn

Tn

Tn

tdeadline

tpickup-deadline

tdelivery-deadline

Tn(1)

(2)

(3)

(4)

pickup drop-offtreq
n

Figure 5-2: Illustration of three types of deadlines

For each delivery request, we consider three types of deadline for the delivery as

shown in Fig. 5-2. In the first case, (2) in the figure, the deadline is specified between

when the request is made and when the delivery is made. In the second case, the only

pick-up dead line is specified where the item needs to be picked up by the specified

deadline. In the final case, the delivery deadline limits the time between when the

item is picked-up and when the drop-off is made. We also assume that when a robot

picks up or drops off an item at a location, the robot stays at the location for a

variable but bounded service time.
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Depending on the application a capacity of robot is limited to one or multiple

items can be carried by a robot. Multiple items can be picked up and dropped off

at multiple locations and can be redirected to pick-up new requested delivery while

being dispatched for the previously assigned task. When multiple items are picked

up and dropped off at one location, we assume that the service time at a location

is independent of number of items. Also, we assume that the service time is not

interruptible in that the robot cannot be redirected for new task while they stay at a

location.

The total travel distance is limited by battery capacity. The battery model is

introduced in the next subsection.

5.2.2 Mobile Robot Battery Model

We employ simple energy consumption model.

Emotion(d) = d ∗ cmotion (5.1)

for when a robot is in motion, and

Eidle(t) = t ∗ cidle (5.2)

when a robot is not in motion, where t and d are time and distance respectively.

As a system parameter, the capacity of robots is given as Ecapacity and the charging
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rate of batter, rcharging is given.

tcharging =
E

rcharging
(5.3)

where E is the amount of energy to be charged.

When multiple robots are required to charge at the same time, with single charging

station, the robots have to wait their turn to charge. This overhead renders robot

not operational longer than necessary to charge its battery and effectively reduces

the operational number of robots. Therefore, reducing battery charging overhead is

an important factor to be considered in this paper.

5.3 Path-based cost analysis for dispatch decision

5.3.1 Characteristic of a Delivery Request and a Delivery

Path

tnreq request time

pn pick-up location
dn drop-off location

tndeadline deadline

Table 5.1: A valid sequence of locations to visit by a robot Rj for two tasks

A delivery request, n, is defined by two locations, pick-up and drop-off locations,

pn and dn, respectively. Depending on the application one of three deadlines discussed

in the previous section is specified. In TABLE 5.1 notations used in the followings

are summarized for a delivery request n. Its pick-up and drop-off locations, pn and
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dn takes one of the specified locations.

pn dn

Qn a b c d

Table 5.2: A pick-up and drop-off location of a new delivery request n is mapped to
a path

When a robot is assigned to a single delivery request, a path, a sequence of lo-

cations, is decided. Even there are multiple paths between two locations, in the

following discussion, the shortest distance is chosen for the path for the new request.

In TABLE 5.2, the shortest path, a sequence of location, is mapped from the pick-up

and the drop-off locations.

p1 d1 p2 p3 d2 d3

Pj a b c d e f c

Table 5.3: A remaining locations to visit by robot Rj is mapped to a static path

When a robot is assigned with more than two delivery tasks, a delivery path

consists of multiple pick-up and drop-off locations as shown in TABLE 5.3, where

three tasks are assigned to the robot. In the table, pi and di stand for pick-up and

drop-off location of a delivery request i. In the second row, the actual path the robot

follows where the pick-up and drop-off locations are mapped to actual locations in

the map. Note that in the actual path can contain same locations more than once.

With assumption that the service time at each location is independent of the

number items to drop-off or pick-up at that location, with k locations with drop-off

or pick-up tasks in a path the remaining time for the robot to finish the current path
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can be obtained with current location of the robot.

tjpath =
∑

k

tservice + tjtravel, (5.4)

where tjdispatch is the remaining travel distance to complete the current path and given

as,

tjtravel =
dj

travel

vj

, (5.5)

where dj
travel is the distance the robot travel to finish the current path and vj is the

speed of the robot. For a robot, not assigned with any task, the length of path,

tpath = 0 and ttravel = 0. The location of robot and tpath and ttravel for the currently

assigned path is known to the system at every sampling time. It is assumed that at

every stop at pick-up or drop-off locations tservice time is not known but its upper and

lower bound is known. In the following discussion, it is assumed that tservice time is

randomly chosen between its upper bound and lower bound.

5.3.2 Analysis with path

a db c
treq

n

e

Figure 5-3: Remaining path for a Robot

Suppose that the distance of a path from the new request is dp and upper bound

of completion time of a path is tp.

In this subsection we discuss robot’s travel distance contributed when a new re-
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tservice
e tservice

a
treq

n

Ts

interval

Figure 5-4: Robot is considered in between location e and a when the new request
arrives after finishing service at e and before starting service at a

x y

Figure 5-5: The path for a new request starting at x and ending at y.

quest is assigned to a robot that already has a scheduled path of locations to visit.

Also, the affected tasks due to the new request in terms of additional delay is ana-

lyzed. In the following analysis it is assumed that a robot is heading to location a and

the reaming path is [a b c d]. The pick-up and drop-off locations of a new request is

shown as x and y in the following figures. Although only starting and ending position

is shown for the new path is shown, it is also applicable when there are multiple

locations between in the new path.

The first case we consider is when the path of new requested task is included in

the path of a robot as shown in Fig. 5-6. There are three sub-cases depending on the

direction of the new path and the sequence of completing tasks. In the first sub-case

in Fig. 5-6(a) the direction of the new path and the current path coincides. In this

case there is no robot travel distance is generated by a new request if the request is

assigned to the robot as long as the deadline condition is satisfied. In Fig. 5-6(b)

and Fig. 5-6(c), the new path is in reverse direction. When this new path is assigned

to the robot, either the robot is finished the new path before completing the current

path or finishing the current path before the new path. Newly generated robot travel
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a d

x=b y=c

b c

(a) Current path in-
cludes a new path with
same direction.

a d

y=b x=c

b c

2*dn

dn

(b) Current path
includes a new path
with reverse direction.
Newly generated travel
distance: 2 ∗ dn.

a d

y x

b c

dn+ A＇

A＇

dn

(c) Current path
includes a new path
with reverse direction.
Newly generated travel
distance: dn + A′

Figure 5-6: Case I: The remaining path for a robot includes the path for new task.
Dashed line is newly contributed travel by the new task.

distance is shown as the dashed line. When dn > A′ case (c) is chosen but, otherwise,

(b). Here, A′ is the distance between the pick-up location and the last position of the

existing path following on the robot’s current path. When the remaining path of Rj

is Pj and the path from a new request is given as Qn, the condition for this case is

given as

Case I : pn, dn ∈ Pj (5.6)
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Algorithm 2: Generated travel distance, dg, determination for Case I

if exist path(Pj, p
n, dn) = true then

dg = 0 (Case I(a))

else

if 2 ∗ |Qn| < |Qn|+ dist(Pj.last loc, dn)) then

dg = 2|Qn| (Case I(b))

else

dg = dist(Pj.last loc, dn)) (Case I(c))

end

end

In Algorithm 2 the generated distance for Case I is determined. A predicate exist subpath(p, x, y)

gives true value if there is a path from x to y in the path p. |Qn| is the distance of

the request path.

a

y

d

x

b c

B2*R

(a) Current path is in-
cluded by a new path
with same direction.

a

x

d

y

b c

B＇dn

(b) Current path is in-
cluded by a new path
with reverse direction

Figure 5-7: Case O: When the current path for a robot is included by a path for new
task. Dashed line is newly contributed travel by the new task.

In Fig. 5-7, a case O, where new request includes the existing remaining path of

a robot. The condition for this case can be tested with,

Case O : pn, dn /∈ Pj ∧

(pn  (Pj)s  dn ∨ dn  (Pj)s  pn)

(5.7)
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where pn  (Pj)s signifies the pick-up location is located before the current path and

(Pj)s is the static path mapped from the current dynamic path of the robot.

Algorithm 3: Determine the relative location of pick-up or drop-off location

relative to the remaining path

Input: x = pn or dn

if path(lj, x) contain path(lj, Pj.last loc) then

Pj  x

else

x Pj

end

In Algorithm 3, for a given pn or dn how its relative location is obtained.

For R, the shortest between the current location of robot and the location of

pick-up location of the new request is used.

R = dist(lj , Pj.first pos) (5.8)

where lj is the location of robot j.

The distance from the last position of the current path to the pick-up and drop-off

locations are given as,

B = dist(Pj.last pos, dn)

B′ = dist(Pj.last pos, pn)

(5.9)
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Algorithm 4: Calculation of travel distance generated in Case O

In Case O:

if pn  (Pj)s  dn then

d = 2 ∗R + B

else

d = B′ + |Qn|

end

a

y

d

x

b c

B

(a) Current path over-
laps with a new path
in the same direction at
the end of the current
path.

a

x

d

y

b c

B＇ + dn

B＇

(b) Current path over-
laps with a new path in
the reverse direction at
the end of the current
path.

a

y

d

x

b c
2*R

(c) Current path over-
laps with a new path
in the same direction
at the beginning of the
current path.

a db c

xy

2*dn- R＇

(d) Current path over-
laps with a new path
in the reverse direction
at the beginning of the
current path.

Figure 5-8: Cases when the current path for a robot is overlapped with a path for
new task. Dashed line is distance newly contributed by the new task.

In Fig. 5-8, four cases are illustrated when new path is partially overlapped with

current remaining path for the robot.

Case PO : (pn ∈ Pj ∧ dn /∈ Pj) ∨ (pn /∈ Pj ∧ dn ∈ Pj) (5.10)
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Algorithm 5: Calculation of travel distance generated in Case PO

In Case PO:

if pn ∈ Pj then

if Pj  dn then

d = B (Case PO(a))

else

d = 2 ∗ |Qn|′ (Case PO(d))

end

else

if Pj  pn then

d = B′ + |Qn| (Case PO(b))

else

d = 2 ∗R (Case PO(c))

end

end

R′ = dist(Qn, lj , p
n) (5.11)

a db c xy

yx

xy

yx

2*R＇ D＇+dn

D+dn

(a)

(b)

(c)

(d)

2*R

Figure 5-9: When the current path for a robot and a new path from the new request
does not contain any common locations

In Fig. 5-9 the new path from the request does not overlap with the remaining

path of the robot. As it can be shown in the figure the travel distance increases as the

distance between two paths. The case when a robot is not assigned with any tasks
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so does not have any remaining path is lower-right case in the figure where the travel

distance generated is distance from the robot’s location to the drop-off location of

the task. This case is tested with,

Case S : pn, dn /∈ Pj ∧ (pn, dn  Pj ∨ Pj  pn, dn) (5.12)

The distance between the last position and the pick-up and the drop-off locations

are given as,

pn  dn  Pj → 2 ∗R′

dn  pn  Pj → 2 ∗R

Pj  pn  dn → B′ + |Qn|

Pj  dn  pn → B

(5.13)

In TABLE 5.4 all possible cases between a new request and the remaining path of

of robot is summarized. In all cases, when the direction of the path of a new request

is as same direction as an existing path, the generated distance is smaller. For a given

robot with its remaining path and a new task, the case can be determined and the

generated distance can be calculated. The only ambiguity is between the case I(a)

and I(b) in the table, where dn and A needs to be compared.
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Case Sub-cases Distance
I (a) 0

(b) 2 ∗ dn

(c) dn + A′

O (a) 2 ∗R + B
(b) R′ + B′

PO (a) B
(b) dn + B′

(c) 2 ∗R
(d) 2 ∗ dn

S (a) 2 ∗R′

(b) 2 ∗R
(c) B′ + dn

(d) B

Table 5.4: Summary of distance generated from a new request with an existing path.
I: included case, O: included case, PO: partially overlapped case and S: separated
case

d1p1 p2 d2
t1

t2

(a) The affected range of locations
when pick-up deadline is specified

d1p1 p2 d2
t1

t2

(b) The affected range of locations
when overall deadline is specified

d1p1 p2 d2
t1

t2

(c) The affected range of locations
when delivery deadline is specified

Figure 5-10: Different affected range of locations when different types of deadlines
are specified
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5.3.3 Path Deadline

In Fig. 5-10, the affected range of nodes are shown when different types of deadlines

are given. When a new request modify the existing path for a robot, the deadline

conditions for each node needs to be checked. For each location, the system maintains

a set of tasks that are either pick-up or drop-off point on that location.

task Robot request time deadline deadline type
pa i tareq tadeadline p, o

pb j tbreq tbdeadline p, o

dc k tcreq tcdeadline d

Table 5.5: Node Table

For every node in the affected range of path, when a new request modifies the

existing path, for a new path from the robot to the node, the path time is estimated

with (5.4). With treq, tdeadline and tcurrent time, the remaining deadline is calculated

and which should be larger than estimated path time for the new path to be a valid

one.

The remaining deadline of its task is calculated when a new task is requested. If

additional time generated by a new task that is assigned to the current path of a

robot
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Algorithm 6: Shortest new travel based dispatch for a new request, n

Input: {Pj}: the remaining paths for all robots

Input: Qn: path for a new request, n

foreach Pj do

Decide case and calculate generated travel distance(dj)

Check deadline condition for the new and existing tasks

end

Choose robot with minimum dj without deadline miss

5.3.4 Enhancement to shortest travel dispatch strategy

In this section we introduces two enhancements to the basic mechanism. In Fig. 5-

a d

y x

b cRj

(a) A new task is assigned to Rj

y

b c

x

new req.

Rk

(b) Before Rj reaches the pick-up
location of the new request another
robot Rk can be assigned with the
task with shorter generated travel
distance

Figure 5-11: Case where delayed scheduling can generate less travel distance

11(a), robot Rj is assigned with a new task which generates shortest travel distance.

However, before the robot pick up the item at location c, other request can be gen-

erated which generates even shorter travel distance contributed by the new task. In
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order to exploit this advantage the task of which item has not been picked up is kept

in pending state with calculated travel distance. In circular topology the only possi-

ble case that will make generated travel distance is shorter is by the robot moving in

reverse direction.

Delayed start strategy: related to pick-up location request.

5.3.5 Battery-level aware dispatch strategy

As additional constraint when assigning a new task to a robot, the battery level of

the robot is enough to go back to the charging station. Battery usage of a path is

given as,

Epath = dtravel ∗ cmotion + tpath ∗ cidle (5.14)

Ri

Rj

tb twait

tcharging

tcharging

Figure 5-12: Delay at charging station with uncontrolled charging station access

In Fig. 5-12 when robot Rj arrives to the charging station Ri is being charged

and Rj is forced to wait until its turn. The objective is minimize twait by allowing

robots to charge battery before its exhaustion in a controlled way. Another value

to minimize is the distance that a robot has to travel to charge the battery without

executing tasks.

When a new path is generated the following condition should be hold with inclu-
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a xb dc

Figure 5-13: Valid path with battery level consideration

sion of travel to the charging station,

Epath < Ecurrent battery level (5.15)

a xb dcx

detour path

Figure 5-14: Alternative path with charging between task execution

In Fig. 5-14 the alternative path for a robot to execute a path where the robot

recharges battery between visiting path locations. The alternative path should not

break existing deadline conditions. Total time to detour is given with,

tdetour = twait +
ddetour

vr

+ tcharging =
dtour

vr

+
E

rcharging

, (5.16)

where E, the amount of energy to be charged, is enough for the remaining path to

be completed including come back to the charging station. The twait depends on the

current scheduled battery charges of the charging station.

5.4 Simulation & Evaluation

In this section the proposed dispatch strategy, the shortest travel distance dispatch

strategy(ST), is compared with a basic dispatch strategy where a robot is chosen for
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Number of Locations 8
Request Rate 0.5 ∼ 15.0 (requests/min)
Number of Robots 8
Distance between Locations 10 (meter)
Robot Speed 2 (m/s)
Service Time 120 (sec)
Request Deadline 1000 (sec)

Table 5.6: The summary of parameters used in the evaluation

a task where the initial dispatch distance from the robot’s location and the pickup

location is minimum - First Robot Dispatch(FR).

In TABLE 5.6 the parameters used in the evaluation is summarized. Where the

topology is chosen circular as shown in Fig. 5-1(b). In the evaluation the arrival

rate is varied and the performances of the strategy, average delay, travel distance and

block rate, are compared with deadline specified and without deadline. The likelihood

of task arriving at each node is assumed to be uniform. The number of items a robot

can carry is assumed to be unlimited.

In Fig. 5-15, the average delay and the total travel distance of robots are compared

when shortest travel dispatch strategy(ST) and first robot dispatch strategy(FR) is

used. With FR as the rate of tasks increases both the delay and travel distance is

linearly increased. However with ST, the delay and the travel distance are not affected

with the increasing incoming tasks. It is due to that with more requests there are

more tasks that can be combined with existing travel path of the robot.

In Fig. 5-16 the average delay, the blocking rate of the requested tasks and

the travel distance of the robots are compared when the shortest travel dispatch

strategy(ST) and the first robot dispatch strategy(FR) is used. In Fig. 5-16(a) the
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Figure 5-15: Comparison of shortest travel distance dispatch strategy(ST) and first
robot dispatch strategy(FR) when deadline is not specified

109



0

200

400

600

800

1000

1200

0.
00

83
3

0.
01

66
7

0.
02

5
0.

03
33

3
0.

04
16

7
0.

05
0.

05
83

3
0.

06
66

7
0.

07
5

0.
08

33
3

0.
09

16
7

0.
1

0.
10

83
3

0.
11

66
7

0.
12

5
0.

13
33

3
0.

14
16

7
0.

15
0.

15
83

3
0.

16
66

7
0.

17
5

0.
18

33
3

0.
19

16
7

0.
2

0.
20

83
3

0.
21

66
7

0.
22

5
0.

23
33

3
0.

24
16

7
0.

25

ST

FR

(a) Average Delay (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
00

83
3

0.
01

66
7

0.
02

5
0.

03
33

3
0.

04
16

7
0.

05
0.

05
83

3
0.

06
66

7
0.

07
5

0.
08

33
3

0.
09

16
7

0.
1

0.
10

83
3

0.
11

66
7

0.
12

5
0.

13
33

3
0.

14
16

7
0.

15
0.

15
83

3
0.

16
66

7
0.

17
5

0.
18

33
3

0.
19

16
7

0.
2

0.
20

83
3

0.
21

66
7

0.
22

5
0.

23
33

3
0.

24
16

7
0.

25

ST

FR

(b) Blocking Rate

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0.
00

83
3

0.
01

66
7

0.
02

5
0.

03
33

3
0.

04
16

7
0.

05
0.

05
83

3
0.

06
66

7
0.

07
5

0.
08

33
3

0.
09

16
7

0.
1

0.
10

83
3

0.
11

66
7

0.
12

5
0.

13
33

3
0.

14
16

7
0.

15
0.

15
83

3
0.

16
66

7
0.

17
5

0.
18

33
3

0.
19

16
7

0.
2

0.
20

83
3

0.
21

66
7

0.
22

5
0.

23
33

3
0.

24
16

7
0.

25

ST

FR

(c) Travel Distance (10−1 meter)

Figure 5-16: Comparison of shortest travel distance dispatch strategy(ST) and first
robot dispatch strategy(FR) when deadline is specified to 1200 (sec)
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average deadline is limited with specified deadline 1200 (sec) when FR is used. The

average delay of the tasks when ST is used increases with the incoming request rate

but it increases much slowly as shown in Fig. 5-16(a). In Fig. 5-16(b), it is shown

that task blocking rate increases rapidly with FR. The total travel distance by robots

with FR also limited because of the specified deadline, but ST it increases slowly.

5.5 Conclusion and Future Work

The path based cost analysis for scheduling decision making in multi robot dispatch

environment is presented and an effective dispatch strategy for delivery requests are

proposed. It is shown that a predefined path dispatching strategy, considering pickup

and delivery locations of the new task and the existing path of the robot, is highly

effective. The on-going work is to extend this path based analysis to the application

of dispatching to dynamically moving objects and dispatch strategy in such environ-

ments.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This dissertation contains work using divisible load theory in multiple areas. The first

topic deals with a practical situations when large amounts of data are generated from

experiments or the simulation of large scientific projects and such data needs to be

processed without storing it. We derive the capacity of a computing site composed of

many computing processors connected with a bus network. The derivation is based

on the optimal criterion of divisible load theory. The numerical example is simulated

and presented. The second topic deals with an operation point of view of divisible

loads. Flat file databases are assumed to have the divisible load property and the

closed form solutions of the expected search time of kth signature is derived. With

prior knowledge of the distribution of signature location, a procedure to speed up the

signature search time is presented. Based on the proposed procedure, a simulation

result is presented.
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6.2 Future research

In the second chapter of this report, signature search time in flat files is examined,

where data is modeled as divisible load and no further assumption is made on data

except the distribution of the location of signature in the load. In practical environ-

ment, after initial processing of raw data, the data is usually sorted or/and indexed for

speeding up the operation that may be performed later. For example, large amounts

of structured data of such database records are well indexed in relational database

system. Also, in most cases, instead of matching a single signature in data, relations

between the data is sought, a join operation for example. When such operations need

to be performed on a distributed computing processor, the characteristic of opera-

tion and the characteristic of arrangement of data records will significantly impact

the performance of the operation because of the communication cost incurred by the

non-negligible size of the intermediate or the final result.

As a motivational example, we consider the join operation of typical relational

database systems. When a single record needs to be found from a database table and

a field that ought to be matched is indexed, it can be considered as a special case

where the distribution of the location of signatures is known as presented in Chapter

2. When the field to be searched are the combination two fields from different tables,

they need to be joined and need to be scanned. The basic approach of such operations

is an inner-loop styled operations. In the inner-loop join operation, each record from

one table is combined with all the records from the other table, and the combination

of the two fields are matched against. When the number of data records in a table
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is very big compared to the size of individual record, we can model the records from

two database tables as two divisible loads. In such an operation, which is different

from the single load case, one load needs to be transferred to each processor while the

other load can be partitioned. When the number of records of two tables are of the

size of M and N , the operation time of the inner-loop join operation takes O(MN)

time. When there are K processors, the total time of operation will be reduced to,

O(M ∗ N/K), when communication time is ignored. However, when a distributed

system connected with a communication channel is considered, this maximum speed-

up cannot be achieved. Moreover, as the large literature of DLT has shown, a naive

approach to distribute the load will diminish the advantage of multiple processors in

a significant way. Also, when the communication cost is not negligible in networked

environments, the strategy as to which load to distribute will depend on the relative

size of the load and when multiple records need to be selected, as in typical database

operations, the report time also affects the finish time. In the future work, the

operation time and load distribution strategy will be examined in such an operation.

Once the basic analysis for the join operation using divisible load theory is estab-

lished, the work can be further extended to more complicated operations. For exam-

ple, modern database system incorporates hashed join operation to avoid repeated

heavy computational cost of the inner join operation. Several such typical operations

can be examined and analyzed using divisible load theory for distributed computing

environment with non-negligible communication cost. In [61], several database oper-

ations are described. The operations can be categories in two dimension. The first

dimension of categorization consists of sequential sub-operations where the result of
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the one stage of sub-operation is used in the subsequent sub-operation so that parallel

processors cannot be utilized to shorten the operation time. The second dimension

is where the load can be partitioned into parallel sub-operations, where parallelism

of multiple processors can be explored to speed up the operation time. In this cat-

egorization, the communication cost plays a significant role at two points. Firstly,

when the result of one sub-operation is subsequently used by another operation, com-

municating the intermediate result can be significant and needs to be considered

when distributing the loads to be processed. Secondly, when partitioning the load for

parallel processing, without a smart scheduling strategy, the communication cost to

deliver the partial load to the processors can be reduced by taking the distribution

of the records into account. In our future work, through the analysis and simulation,

general guidelines of distributing strategy will be attempted to be established. Such

guidelines are expected to be dependent upon the statistics of the data records, the

size of the final or intermediate result and, most importantly, the characteristic of the

operation.
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