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This dissertation describes quantum Hall transport experiments on Fabry-Perot 

electron interferometers fabricated from GaAs/AlGaAs heterostructure material. The 

devices consist of an island separated from the two-dimensional (2D) electron bulk via 

two tunable constrictions. Front gates deposited in etch trenches permit to fine tune the 

device. When tunneling occurs in the constrictions, electrons perform closed orbits 

around the island, producing an Aharonov-Bohm oscillatory signal in the conductance. 

Quantized plateaus in longitudinal and Hall resistances of the device allow us to 

determine the Landau level filling in both the bulk and the constriction. 

A comprehensive experimental characterization of quantum Hall and Shubnikov-

de Haas (SdH) transport is presented in the first interferometer. Application of front-gate 

voltage affects the constriction electron density, but the 2D bulk density remains 

unaffected. Analyzing the data within a Fock-Darwin model, we obtain the front-gate 

bias dependencies of constriction electron density, and, extrapolating to zero magnetic 
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field, the number of 1D electric subbands resulting from the electron confinement in the 

constrictions. 

In the same interferometer, by carefully tuning the constriction front gates, we 

find a regime where interference oscillations with period / 2h e  persist throughout the 

transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In 

our experiment, neither period nor amplitude of the oscillations show a discontinuity at 

half-filling, indicating that only one interference path exists throughout the transition. 

In the second interferometer, etch trench depletion is such that in the fractional 

quantum Hall (FQH) regime, filling 1/3 current-carrying chiral edge channels pass 

through the constrictions and encircle an island of the 2/5 FQH fluid. In this regime, we 

observe magnetic flux and charge periods 5 /h e  and 2e , respectively, corresponding to 

creation of ten / 5e  Laughlin quasiparticles in the island. The observed experimental 

periods are interpreted as imposed by the anyonic statistical interaction of fractionally 

charged quasiparticles. 
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Chapter 1 

Introduction 

This thesis presents a detailed experimental study of quantum transport in 

electronic Fabry-Perot interferometers, throughout both the integer and fractional 

quantum Hall regime. The study traces its history back to one of the most fascinating 

phenomena in solid state physics: the quantum Hall effect, a distinguishing feature of 

two-dimensional electron systems (2DES) at low temperature and strong perpendicular 

magnetic field.  

The integer quantum Hall effect (IQHE) was discovered by Klaus von  Klitzing et 

al. in 1980.1 In the discovery, the Hall resistance of a Si MOS (metal-oxide-

semiconductor) field-effect transistor was reported to have fixed values, which depend 

only on the fine structure constant and the speed of light, and is insensitive to the 

geometry of the device. For this observation, von Klitzing was awarded the 1985 Nobel 

Prize in physics.  

After a short while, the experimental discovery of the fractional quantum Hall 

effect (FQHE) was reported by Tsui, Störmer and Gossard.2 In their work, the quantized 

Hall resistance plateau at 2
XY 3 /R h e=  was reported to occur accompanied with a 

minimum in dissipative longitudinal resistance XXR  in the magnetotransport of high-

mobility and low density GaAs/AlGaAs devices at temperature 5KT < . It was absolutely 

unexpected, since at that time, no theoretical work existed that predicted new structures 

in the magnetotransport coefficients under conditions representing the extreme quantum 

limit, when 2
XY 1 /R h e> . Shortly after, in 1983, Laughlin proposed a variational wave 
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function to explain the FQHE. For their ground-breaking work, Tsui, Störmer and 

Laughlin were awarded the 1998 Nobel prizes in physics. 

Ever since these two intriguing discoveries, considerable efforts have been 

devoted to the investigation of low-dimensional strongly-correlated electron systems, 

both experimental and theoretical. Many review articles3-5 are written for the summary of 

the astonishing experiments, new theoretical understanding, and sophisticated techniques 

followed. 

Most quantum Hall experiments are performed on GaAs/AlGaAs heterostructures. 

Because of the small effective mass m* of the electrons in GaAs [ ( ) ( )* *Si / GaAs 3m m ≈ ], 

the Landau level splitting is larger compared to that in Si and the high-quality of the 

interface results in a high mobility of the two-dimensional electrons. Furthermore, 

graphene is a novel research interest in the study of quantum Hall effect.6-8 

The phenomenon of quantum Hall effect is characterized by plateaus of vanishing 

longitudinal resistance and quantized Hall resistance. Figure 1.1 shows experimental 

longitudinal ( XXR ) and Hall ( XYR ) magnetoresistances plotted as a function of magnetic 

field in a GaAs/AlGaAs heterostructure, where both IQHE and FQHE were observed. 

The longitudinal resistance vanishes at different regions of B , indicating a current flow 

without dissipation. In the same region, Hall resistance develops plateaus with
2

XY /R h fe= , where f  is called “exact filling”, a principle quantum number of the 

quantum Hall state. The unit, Ω= 807.812,25/ 2eh  exactly, is adapted as the standard of 

resistance.  

According to Laughlin,9 the exactness of the Hall conductance quantization is 

understood as a consequence of gauge invariance and the existence of a mobility gap. 

The complete absence of dissipation at zero temperature can be understood by the 

assumption that in the plateau region the Fermi level lies in the localized states in the 2D 

bulk, and the applied current flows only in the extended edge channels at the periphery of 

the Hall bar. The XYR  remains quantized exactly even as Landau Level filling 

/v hn eB= is varied from the exact filling f , because disorder localized extra electrons 

or holes. Changing of the magnetic field moves the Fermi level and when it passes 

through the extended states between the QHE, the transport becomes dissipative. 
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Figure 1.1: Representative experimental longitudinal resistance ( XXR ) and Hall 
resistance ( XYR ) as a function of magnetic field in a GaAs/AlGaAs heterostructure, 
where both IQHE and FQHE were observed. The Landau level filling factor ν  is defined 
as /nh eBν = . (V. J. Goldman and J. K. Wang, 1991, unpublished, with permission) 
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The fractional quantum Hall effect at 1 / (2 1)f p= ± , where 1, 2,3,...p =  is an 

integer, is explained based on Laughlin’s many electron wave function10. In the same 

work, Laughlin showed that quasiparticle excitations of FQHE state at 1/ (2 1)p +  have 

fractionally-quantized electric charge / (2 1)e p + . Halperin,11 Arovas12, Schrieffer12 and 

Wilzeck12 recognized that Laughlin’s quasiparticles could be described by fractional 

statistics. Jain13 developed a particularly transparent generalization of the Laughlin’s 

theory and showed that the fractional QHE at / (2 1)v f i pi≈ = ± can be mapped onto the 

integer QHE at filling i  using composite fermion (CF) theory. 

The first direct measurement of the fractional charge of Laughlin’s quasiparticles 

was reported in 199514 in Goldman’s group at Stony Brook University. The fractional 

charge of Laughlin quasiparticles was observed in resonant tunneling experiments in 

quantum antidot devices. A quantum antidot (QAD) is a lithographically defined 

potential hill created by etching a hole placed in a constriction in a two dimensional 

electron system. Thereafter, QAD devices have attracted more and more interest to 

determine the fractional charge of Laughlin quasiparticles of the surrounding quantum 

Hall condensate15-17. 

The direct demonstration of fractional statistics was reported in 2005 in 

Goldman’s group18-20. In their work, an inverse geometry to quantum antidot was utilized 

to observe the anyon. The novel geometry, called Fabry-Perot Interferometer (FPI), is 

shown in Figure 1.2. The Fabry-Perot Interferometer contains an electron island 

separated from the 2D bulk by two wide constrictions. In the quantum Hall regime, an 

edge channel of the 1/3 fractional quantum Hall fluid encircles an island of the 2/5 fluid. 

The magnetic flux affects the Aharonov-Bohm phase of the encircling 1/3 quasiparticles, 

and creates the 2/5 quasiparticles in the island. The superperiod is understood by the 

anyonic statistical interaction of Laughlin quasiparticles. The devices have attracted 

particular theoretical and experimental interest recently due to predicted signatures of 

fractional11-12, 21-24 and non-Abelian statistics25-27.  
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Figure 1.2: A quantum electron version of Fabry-Perot interferometer. Two wide 
constrictions defined by four metal gates (gold fingers) separate a 2D electron island 
from a bulk 2D electron gas contacted by a series of four electrodes (silver squares). A 
magnetic field quantizes the electron gas, which develops counterpropagating edge 
channels (blue lines with arrow), where quasiparticles can propagate without dissipation. 
When tunneling occurs in the constrictions (blue dots), quasiparticles circulate around 
these channels, and undergo quantum interference, which affects the measured 
conductance of the constrictions. The magnetic flux (Φ) passing through the electron 
island modulates the phase of the quasiparticles as they pass around the ring, and thereby 
how they interfere. As a result, varying this flux gives rise to periodic oscillations in the 
conductance -- known as the Aharonov-Bohm effect. (Nat. Phys. 3, 517 (2007), with 
permission) 
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In the thesis, we present a detailed experimental characterization of electron 

Fabry-Perot interferometers both in the integer and fractional quantum Hall regime. 

These studies are motivated by application of similar interferometer devices in the 

fractional QH regime, where interference of fractionally charged Laughlin quasiparticles 

has been studied.18-20, 28-31 Our approach is to investigate the properties of the devices in 

extremely wide magnetic field range, and study the behavior of the particles in low field 

and high field, including both IQHE and FQHE. Meanwhile, Aharonov-Bohm 

oscillations and fractional statistics are observed and corresponding discussion is 

presented. 

The thesis is structured as follows:  

In Chapter 2, a brief description of quantum Hall effect is given. The two-

dimensional electron systems (2DES) realized in GaAs/AlGaAs heterostructure is 

described. The quantum mechanical treatment of 2DES is reviewed. The basic properties 

of quantum Hall effect, emphasizing the edge states and electron-electron interaction, are 

discussed. 

In Chapter 3, the fabrication process and description of sample devices is 

presented; and the measurement setup and techniques used are discussed in details, 

together with the overview of the edge channel network model to calculate the four 

terminal resistances. 

Chapters 4, 5 and 6 cover the results of the work. They follow, respectively, three 

research papers published in Physical Review B. 

In Chapter 4, experiments addressing the quantum transport in low B − field are 

described. In the experiments, a systematic variation of front-gate voltage, FGV , affects 

the constriction and the island electron density while the bulk density remains unaffected. 

A 1D Fock-Darwin model is employed to analyze the data.  The constriction electron 

density as a function of the front-gate bias was obtained; and also, extrapolating to the 

zero B − field, the number of electric subbands (conductance channels) resulting from the 

electron confinement in the constrictions was obtained. 

In Chapter 5, a study of an apparent feh /  Aharonov-Bohm flux period, where f  

is an integer, is presented. By carefully tuning the constriction front gates, a quantum 

regime was realized, where interference oscillations with period eh 2/  persist throughout 
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the transition between the integer quantum Hall plateaus 2 and 3, including half-filling. 

An analysis of the front-gate dependence of the phase of the oscillating is presented. The 

result is discussed based on a single physical mechanism of the observed conductance 

oscillations: Aharonov-Bohm interference of interacting electrons in quantum Hall 

regime. 

In Chapter 6, a different, not previously measured device is studied, and results in 

both integral and fractional regimes are presented. In the fractional regime, magnetic flux 

and charge periods 5 /h e  and 2e , respectively, are observed. These periods were 

reported before in a much smaller interferometer device. They correspond to creation of 

ten / 5e  Laughlin quasiparticles in the island. The observed experimental periods are 

interpreted as imposed by the anyonic statistical interaction of fractional-charged 

quasiparticles. 

Finally, in Chapter 7 the conclusions of the dissertation and outlook of the future 

developments in the subject are given. 
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Chapter 2 

Basics of Quantum Hall Effect 

2.1 Two-Dimensional Electron Gas in GaAs/AlGaAs 
Heterostructure Material 

A two-dimensional electron systems (2DES) was realized in the 1960’s in the Si-

MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). With the development 

of the fabrication techniques, the quality of 2DES realized was strongly enhanced. In 

1970’s, techniques were developed for growth of III−V semiconductor heterostructures. 

In modulation-doped semiconductor heterostructures, the carriers are spatially separated 

from the dopant atoms to reduce the ionized impurity scattering. In these structures, 

mobility much higher than that in the bulk can be attained. Moreover, because of the 

reduced disorder and scattering, such structures provide a nearly ideal system for 

studying many-body effects, such as the fractional quantum Hall effect, first observed in 

the high-mobility two dimensional electron systems at the interface of GaAs/AlGaAs 

heterojunctions. The realization of high-mobility ( 6 2~ 1 10 cm / V sμ × ) and nearly perfect 

2DES in with low areal densities (around 11 21 10 cm−× ) is of particular interest because it 

provides the means to study a wide regime of the 2DES in the extreme quantum limit. In 

the following, we provide a very brief discussion on the systems where the electron 

layers are created. 
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A schematic description of the cross-section through a wafer consisting of layers 

of GaAs and 1-Al Ga Asx x  is shown in Figure 2.1:(a). The wafer is grown by Molecular 

Beam Epitaxy (MBE), which employs the atomic-plane doping technique as well as 

ultra-thick spacer with graded composition; in this case it produces a nearly perfect 

lattice-matched semiconductor/semiconductor interface. GaAs is a III-V compound, and 

it is tetravalent on average, therefore, it forms a diamond-like crystal, with the cubic zinc 

sulfide structure, where each As atom is surround by four Ga atoms and vice versa. It is 

well known that GaAs is a single-valley, direct gap, isotropic insulator and the Fermi 

level lies between the valence band and conduction band. Substituting a fraction (~40%) 

of the Ga atoms by Al, the resulting 1-Al Ga Asx x  has similar structure as GaAs, but a 

wider band gap. MBE allows growing layers of 1-Al Ga Asx x  on top of the GaAs substrate 

with atomically sharp interface. The lattice constants of GaAs and 1-Al Ga Asx x  are 

almost the same so that the interface is nearly free from any disorder. The corresponding 

band diagram of the heterostructure is shown in Figure 2.1:(b). The dashed line is the 

Fermi energy (roughly defined as the highest energy that electrons can have in 

equilibrium at low T ). The conduction bands (the lowest energy electrons can have) of 

GaAs and AlGaAs are offset from each other, and this allows electrons to collect in the 

GaAs but not in the AlGaAs.  

When silicon is doped into the middle of the 1-Al Ga Asx x  region (shown in red), 

the Fermi level on the 1-Al Ga Asx x  side lies just above the bound state of the donors, 

which lies higher than the bottom of the GaAs conduction band. Therefore, electrons 

from the donors can be excited thermally, or by exposure to light, and move from the 

doped 1-Al Ga Asx x  across the interface into the low-lying band near interface, states of 

the narrower band gap in GaAs; though they cannot go too far away because they are 

attracted back to the positive ions. The electric field due to the charge transfer bends the 

energy bands as shown in Figure 2.1:(c), where there is a triangular "quantum well" at the 

interface, and this goes slightly below the Fermi energy, so that electrons can collect 

there. The electrons are confined to the interface, and thus occupy well defined energy 

levels. 
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Figure 2.1: (a) a schematic description of GaAs/AlGaAs heterostructure. A thin layer of 
silicon, as shown in the red dashed line, is doped in the middle of the 1-Al Ga Asx x  region. 
The two-dimensional electron system (2DES) is realized in the interface of AlGaAs and 
GaAs. (b) Energy levels of heterojunction without donors. EC denotes the conduction 
band, EV denotes the valence band, EF denotes the Fermi energy. (c) Energy levels of 
heterojunction with donors. Electrons (black circles) are collected in the triangular "well" 
at the interface (the red triangle), and confined to move in the plane parallel to the 
interface, and so is quasi two-dimensional, at low T . 
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For a typical doping of 1-Al Ga Asx x  with 0.3x =  and donor concentration of 

order 11 210 cm− , only the lowest quantum well level is occupied, and so the motion of the 

electrons perpendicular to the interface can be ignored at a low temperature 10KT ≤ . 

However, it should be noted that the electron wavefunction in the lowest subband has 

some extent in the direction perpendicular to the 2D plane, which is comparable to 

several effective GaAs Bohr radius 0* 10.2nm
*

ma a
m

ε= = , where electron effective 

mass * 0.067 em m=  and dielectric constant 13ε =  in GaAs. But, the electrons are free to 

move in the plane parallel to the interface, and so is quasi two-dimensional. 

In this structure, two-dimensional electrons are formed at the interface of 

1-Al Ga Asx x  and GaAs, while the doped donors are located several *a  away from the 

heterojunctions. The spatial separation of donors from the 2D electrons reduces electron 

scattering from the ionized donors. Moreover, the atomically sharp interface causes less 

scattering due to interface roughness. This results in a high quality and high mobility 

electron systems, in which the effect of the impurities is weak. In addition, the small 

effective electron mass, gives rise to a larger cyclotron frequency / *eB mω =C , which 

results in a larger separation of Landau levels, and facilitates the observation of quantum 

Hall effect. Low-temperature quantum magnetotransport measurements in these 

structures exhibit unprecedented, well-resolved, and well-developed FQHE states 

confirming the low disorder in these structures. 

The equilibrium electron density of the 2D system is initially determined as the 

crystal is grown. However, it is possible to adjust the density by applying a perpendicular 

electric field to the interface, by applying a metal gate electrode near the interface.  
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2.2 2DES in Perpendicular Magnetic Field 

 For a 2D electron system subjected to a uniform perpendicular magnetic field B , 

ignoring the electron-electron interaction and spin, the Hamiltonian of a single electron is 

expressed as: 

21 ( )2 *
ei Am cΗ = − ∇ += ,            (2.1) 

where *m  is electron effective mass, A is the vector potential which is related to the 

magnetic field B A= ∇× .  

The electron energy is quantized into discrete energy levels. These quantized 

Landau levels have energy spectrum as: 

1( )2n CE n ω= + = ,             (2.2) 

where / *C eB mω =  is the cyclotron frequency, and 0,1, 2,...n =  is a quantum number 

called Landau level (LL) index.  

Considering the spin of electron, each Landau level is split further into two levels, 

which are referred to spin-polarized Landau levels. The separation of the two spin-

polarized Landau Levels that belong to the same Landau level is given by the Zeeman 

energy *B g Bμ , where Bμ  is the Bohr magnetron, and * 0.42g −�  is the effective 

conduction band Laude factor in GaAs. 

The density of states of the 2DES, i.e. the number of states in each the Landau 

level per unit aera, ( )D E  is very important to understand QHE. In the absence of 

impurity, Dirac δ − function is introduced for the discrete quantized Landau level. ( )D E  

is defined as : 

( )( ) eB ED E
h
δ

= .             (2.3) 

Considering the magnetic length 0 / eB≡A = , the density of states ( )D E  can be 

expressed in terms of the magnetic length 0A  as 
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2
0

1( ) ( )
2

D E Eδ
π

=
A

.             (2.4) 

Introducing the magnetic flux BSΦ = , and the flux quantum 0 /h eΦ = , the The 

density of states ( )D E  can be rewritten as 

0

/ /( ) ( )
/

S SD E E
h e

δΦ Φ
= =

Φ
.            (2.5)  

Therefore, the number of spin-polarized electron states in each Landau level is 

understood as the total number of flux quanta per unit area in the external magnetic field.  

In 2D transport measurement, another important parameter is the dimensionless 

electron Landau level filling factor of the Landau level, which is defined as  

0 0

density of
/ density of

nh n e
eB B

ν
−

= = =
Φ Φ

,           (2.6) 

where n  is the electron density in the system. As shown in the expression, the electron 

Landau level filling factor can be understood as the ratio of number of electrons over the 

number of flux quanta for a given area. The number of flux quanta is defined in units of 

the flux quantum 0 /h eΦ = . 

For impurity-free system, the energy spectrum is a sequence of δ − functions, one 

for each discrete spin-polarized Landau level, as shown in Figure 2.2(a). In a more 

general case, in the presence of impurities in the system, Landau levels are broadened 

into bands of extended states separated by tails of localized states, as shown in Figure 

2.2(b). The localized states are in the tails of ( )D E , and the extended states lead to a 

finite conductivity XXσ  and to a contribution to the Hall current in the region of the 

maximum of ( )D E .  
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Figure 2.2: Density of states in a 2D electron system in a strong magnetic field. Cω  is the 
cyclotron frequency. (a) Discrete Landau levels in impurity-free 2DES system. (b) In the 
presence of disorder, Landau levels are broadened into bands of extended states separated 
by tails of localized states. In quantum Hall effect, the plateau appears when Fermi level 
lies in localized states. While Fermi level is located in the extended states, the Hall 
resistance shows a transition between plateaus. 
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2.3 Integral Quantum Hall Effect 

The most conspicuous feature of integer quantum Hall effect is the observation of 

quantized Hall plateaus with values given by the Hall resistance 2
XY Y X/ /R V I h f e= =  

( 1, 2,3,...f = ). When the Hall resistance is quantized, the diagonal resistance 

XX X X/R V I= will approach zero: the sample is in a dissipationless state. 

While the Landau level filling factor /nh eBν = of the 2D electron system is a 

variable and can be changed continuously, the quantum Hall exact filling f  is a principal 

quantum number, defined by the quantized Hall resistance as 2
XY/f h e R= . QH plateaus 

have finite width, that is, a B − region with different ν  has the same .f  In experiments, 

the filling factor ν  can be changed either by changing the 2D electron density via a 

global back gate, or by changing the magnetic field.  

The finite width of a Hall plateau is attributed to the broadening of Landau levels 

due to impurities. In the presence of impurities, the density of states of the 2D electron 

system can be described as in Figure 2.2(b). Each Landau level is broadened with tails 

consisting of localized states. However, there are extended states existing at the center of 

each Landau level. When f  Landau levels are fully filled, the Fermi level is located in 

the gap between the f  and 1f +  Landau levels, where there are only localized states. 

Varying ν  only changes the electron distribution within the localized states, which do not 

carry the transporting current. Therefore the Hall resistance is kept constant when the 

Fermi level resides in the localized states, resulting in the appearance of the characteristic 

plateaus. 

Another point of IQHE that should be pointed out is the exactness of the 

quantization. The quantization of the Hall resistance to 2/h fe  is independent of the 

sample geometry, material, and contact details. Therefore, the origin of the quantization 

must depend on some fundamental properties of the 2D electron system. Laughlin9 first 

proposed a general argument based on gauge invariance to demonstrate the exact 
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quantization of the Hall resistance. According to Laughlin’s approach, the quantization is 

so accurate because it is based on two very general conditions, the gauge invariance of 

the electromagnetic field and the existence of a mobility gap in 2DES. As shown in 

Figure 2.3, a variation of Laughlin’s gedanken experiment considers an annulus of two-

dimensional electrons of areal density n  with quantizing magnetic field B  applied 

normal to annulus. The XY coordinates are chosen as shown in the figure: the X axis is 

along the radial direction and the Y axis is along the circumstance. A magnetic flux Φ  

through the center of the annulus changes at a constant rate. The electron Landau level 

filling is /hn eBν = . At low temperature T , the system of electrons condenses into a QH 

state. Let us consider the case of the integer QHE, where the integer 1, 2,...f =  is the 

number of Landau level occupied by electrons, and the exact filling occurs at fν = .  

Let us see what happens when we change magnetic flux Φ . The magnetic flux Φ  

passes through the center (the hole) of the annulus and does not exist at the 2DES, thus 

the magnetic field an electron on the annulus feels is independent of Φ . However, the 

vector potential of the field affects the motion of electrons. Therefore, a change of the 

vector potential because of the change of magnetic flux Φ  is a gauge transformation, 

/A A A A Lδ δ→ + = + Φ , where L is the circumference of the loop. The electron 

wavefunction is changed according to 

0

exp( ) exp(2 )e yi y i
L L
δ δπΦ Φ′Ψ →Ψ = Ψ

Φ=
.          (2.7) 

In the condition that all the states are localized, the wave function is finite and 

vanishes outside a localization region which is smaller than L, and the memory of the 

phase is lost as the wavefunction vanishes somewhere. In this case, the system will not 

respond to the flux and the energies of localized states are unchanged. 

On the other hand, when the electron states are extended at the edges of the 

annulus, such a transformation must satisfy the condition that 0/δ Φ Φ  is an integer, 

since the wave functions are required to be single-valued. 

Let us consider adding adiabatically one flux quantum 0 /h eΦ =  in the inner hole 

of the annulus. Since the flux is added in the whole, the state of the electron system must 

map identically into itself as that before flux was added (gauge invariance). Therefore, 
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the net result of the adiabatic adding one 0Φ  is that one electron per occupied Landau 

level is transferred between the inner and the outer edges of the annulus (provided they 

are connected by a wire). Thus, in the steady state, we add 0δ Φ = Φ  every tδ , the 

magnetic flux Φ  through the annulus center changes at the rate 0/ /d dt dtΦ = Φ . 

According to the Faraday’s induction law, the azimuthal voltage ( emf ) is Y 0 /V dt= −Φ . 

On the other hand, the radial Hall current is X /I ie tδ= − , the charge transferred in one 

Landau level per tδ  times the number of occupied Landau levels. Thus the Hall 

resistance 2
XY Y X/ /R V I h f e= = . 

To summarize, for the integer quantum Hall effect, the quantum Hall energy gap 

is provided by the energy separation of two successive Landau levels. The relevant 

quasiparticles are just electrons and holes. By varying the filling factor, creation of 

quasiparticles can be achieved by redistribution of electrons to the next empty Landau 

level or by creating holes in the highest filled Landau level. What is important is that 

XYR  remains quantized exactly even as ν  is varied from the exact QH filling f, because 

disorder localize extra electrons or holes, and thus the diagonal resistance XXR  along an 

edge is zero. 
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Figure 2.3: Laughlin’s gedanken experiment to demonstrate the exactness of quantization 
of Hall resistance on a QH plateau. Magnetic flux Φ through the center of the annulus of 
two-dimensional electrons of areal density n  changes at a constant rate thus inducing 
azimuthal electric field YE . The X axis is chosen along the radial direction, and the Y 
axis is chosen along the circumference of the annulus. The loop integral of YE  is YV , 
and it corresponds to the radial Hall current: Y X XYV I R= . 
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2.4 Fractional Quantum Hall Effect 

FQHE is characterized by the fact that the Hall conductance has plateaus 

quantized to certain simple fractions ν  of the unit 2 /e h , and at the same places, the 

longitudinal conductance shows an almost dissipationless current flow. The fact that only 

part of the lowest Landau level is occupied indicates that the non-interacting single 

electron explanation for IQHE is inadequate for FQHE, because the energy gap cannot 

come from the gap between successive Landau levels. The electron-electron interaction 

must be prominent in the FQHE.  

Our understanding of FQHE is based on Laughlin’s many-electron 

wavefunction,10, 32 which provides an excellent description of the primary filling FQH 

sequence 1/f m= (m odd).  The wave function is written as: 

2
2
0

1( ) exp
4

m
m j k l

lj k

z z z
<

⎛ ⎞
Ψ = − −⎜ ⎟

⎝ ⎠
∑∏ A ,         (2.8) 

where  z x iy= +   denotes the complex coordinate of the electrons in the 2D plane. With 

corrections for Landau level mixing, the results of the calculated energy gap agree well 

with experimental data from high-quality 2D electron system.10, 33-34 

The FQHE is understood as resulting from condensation of interacting electrons 

into a highly-correlated incompressible fluid. The elementary charged excitations of a 

FQH condensates are the Laughlin quasiparticles, as predicted from Laughlin’s wave 

function. When the filling factor ν  is not equal to the exact filling, either quasielectrons 

or quasiholes are excited out of the condensate. At such filling, the ground state of a FQH 

fluid consists of the exact filling condensate and the matching density of quasiparticles. 

For the filling 1/f m= , the FQH quasiparticles, quasielectrons and quasiholes, process 

fractional electric charge charge,10, 14, 32, 35 /q e m= −  and /q e m= , respectively, and 

obey anyonic (fractional) exchange statistics, intermediate between the familiar Bose and 

Fermi statistics, thus, they are anyons.11-12, 21-23  
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After the fundamental work of Laughlin, a hierarchical model was proposed by 

Haldane35 and Halperin11 for the general FQHE states, /f n m= , with 1n ≠  an integer 

and m  an odd integer number. It states that the quasiparticles of one parent condensate 

condense into a new fractional quantum Hall state, creating a daughter state. By applying 

this process repeatedly, all possible fractions can be obtained. In addition, it is pointed 

out that for the general filling /f n m= , the charge of the relevant quasiparticles is 

/e m± .  

Another particularly transparent generalization of the Laughlin’s theory has been 

developed by Jain. He showed that the fractional QHE at 
2 1

iv f
pi

≈ =
±

can be mapped 

onto the integer case using composite fermion theory.13, 36 A composite fermion is an 

electron bound to an even number 2 p  ( 1, 2,...p = ) of vortices of the many-particle wave 

function. The binding results from Coulomb interaction between the electrons, and it has 

been shown that the exact FQH ground states are very close to those of the composite 

fermion theory. Also, the composite fermion theory predicts the hierarchy of the FQH 

states observed in nature.37 Since, on the average, in an area, the number of vortices of 

the many-particle wave function is equal to the number of the flux quanta in units of 0Φ , 

in mean field theory, composite fermions can often be thought of as electrons each 

binding 02 pΦ  of applied B . Thus composite fermions experience effective magnetic 

field 02cfB B pn= − Φ , and the filling of the pseudo “Landau levels” of composite 

fermions 0 /cf cfn Bν = Φ corresponds to 0 / / (2 1)cf cfv n B pν ν= Φ = ± . For 1p = , for 

example, the FQHE of interacting electrons at 
2 1

if
i

=
+

 looks like the IQHE of weakly 

interacting composite fermions at cfi i= , with cfi  pseudo “Landau levels” occupied by 

composite fermions. 

Fractionally charged quasiparticles were first observed in quantum antidot 

experiments, where quasiperiodic resonant conductance peaks are observed when the 

occupation of the antidot is incremented by one quasiparticle14, 16, 38. A quantum antidot is 

a small potential hill defined lithographically in the 2D electron system. Complementary 

geometry, where a 2D electron island is defined by two nearly open constrictions, 
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comprises an electron interferometer19, 31, 39-40. In Chapter 6, we report experiments in a 

quasiparticle interferometer where / 3e  quasiparticles of 1 / 3f =  fluid execute a closed 

path around an island of 2 / 5f =  fluid. 

Experiments show that FQHE states are sensitive to disorder. Low-mobility 

samples do not show a FQHE. The FQHE has a characteristic energy scale of only a few 

degree Kelvin. Moreover, there is a tendency for the quantized states with higher 

denominator to exhibit weaker transport features. The last but not the least, higher 

magnetic fields promote the observation of the FQHE. 

In addition, experimental results clearly demonstrated that for the FQHE to occur, 

the odd denominators are favored exclusively. However, there has also been other 

surprise in the FQHE. In the second Landau level, the observation of a fractional Hell 

plateau at 2
5
2XY

h
e

ρ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 was reported,41-42 corresponding to an even denominator 

filling ( 12
2

v = + ). The even denominator states are not discussed here since they involve 

more complex theoretical constructions and are not studied in our experiments. 
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2.5 Edge States in the Quantum Hall Effect  

From the experimental point of view, it is clear that under the quantum Hall 

condition, the edge states play an important role in transport measurements. An electric 

current can flow through a device only when both the source and drain contacts are 

connected by a common edge. Halperin43 pointed out that the current flows along the 

one-dimensional channel at the edge of the two-dimensional layer. The localized states 

do not play any part in the response to a changing flux. If there is a Hall current, there 

must be extended states to respond to the changing flux, and, in particular, the edge states 

at the Fermi energy must be extended. 

Consider a noninteracting electron system confined by a boundary potential. The 

confining potential raises the energy of states near the edge and results in quasi-one-

dimensional extended states along the edge, that is, the edge states. The total energy of a 

Landau level, kinetic energy plus that of a confining potential, is shown in see Figure 2.4. 

It has also been shown that the edge states can survive moderate disorder. On a quantized 

Hall plateau, the current is carried only by edge states, since in the bulk there are only 

localized states near the Fermi level. All edge states belonging to the same edge carry 

current in the same direction, determined by the perpendicular magnetic field B  and the 

gradient of the confining potential. Edge states belonging to a given Landau level are also 

referred to as edge channels, and are typically represented as lines with arrows in a 

diagram.  

When f  Landau levels are occupied, f  quasi-one-dimensional edge channels 

are produced at the Fermi energy on either side of the sample through which 

dissipationless current flows. MacDonald and Streda44 showed that, if Rμ  is the chemical 

potential at the right (positive  y) edge of the sample and Lμ is the chemical potential at 

the left edge, the net current is  

( )R L
efI
h

μ μ= − .             (2.9) 
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This expression shows that edge channels on opposite sides of the sample carry 

current in the opposite directions. A net current is established if there is a difference in 

the magnitude of these opposite flowing currents.  
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Figure 2.4: The energy spectrum of a noninteraction electron system with finite size. The 
boundaries of the 2DES are 1y  and 2y . Landau levels are labeled by f . At low 
temperature T , all electron states below Fermi energy EF are occupied. 
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Chapter 3 

Sample Preparation and Experimental Techniques 

3.1 Sample Fabrication 

Lithography techniques are required to fabricate devices with lower than two 

dimensional electron systems. The basic technique in semiconductor industry is 

photolithography, where patterns are transferred to the sample with the help of masks and 

resists that are sensitive to UV-light. The photolithography resolution is crucially limited 

by the wavelength of the light. In order to achieve even smaller scale design, electron 

beam (e-beam) lithography is employed. It is popular in research because of its relative 

simplicity, as the pattern is written directly onto the resist pixel by pixel, by scanning the 

e-beam around. 

In the fabrication of our devices, first, macroscopic level optical lithography is 

employed o define a large scale mesa structure; then, finer scale front gates were defined 

by e-beam writing. A detailed fabrication process for interferometer geometry devices is 

present as follows. The parameters of a real sample may differ from the values as 

described here.  

The sample is roughly a 4 × 4 mm square cut from the GaAs/AlGaAs wafer. The 

first processing step is the mesa pattern definition. The wafer is processed by 4-cycle 

cleaning, which is done by rinsing the wafer with Trichloroethylene (TCE), Acetone, 

Methanol, and de-ionized (DI) water in ultrasonic bath successively. Then the wafer is 

glued on a glass slide and a thin layer of photoresist is spinned onto the wafer. After 
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baking, the wafer is covered by an optical mask of the mesa pattern and exposed to 

ultraviolet light. After developing, the wafer is etched in 1H2SO4:8H2O2:100H2O solution 

at 1.5 ºC for the desired depth. After etching, the remaining photo resist is removed in 

acetone. This completes the mesa definition. 

Next, four Ohmic contacts at each corner of the sample are prepared by alloying 

with Indium metal at 410 ºC in Hydrogen atmosphere. Then the sample is gradually 

cooled to room temperature. 

Then the gates of the sample are defined. First, the sample is processed by 4-cycle 

cleaning and glued to a macor holder. Then, the sample is coated with a thin layer 

PMMA electron resist and subsequently baked at 170 ºC for 30 min. These front gate 

patterns are defined by electron-beam lithography. After exposure to electron beam, the 

PMMA is developed. The developed sample is baked at 95 ºC and then etched to the 

desired depth in 1H2SO4:8H2O2:100H2O solution at 1.5 ºC. This gate areas defined by 

etching are depleted of electrons even without a bias voltage on them due to the fact that 

they have been etched down beyond the level of dopants. After that, metal deposition is 

processed on the sample with the remaining photoresist on top of it. Then a 5 nm Ti layer 

followed by 45 nm Au is deposited on top of the sample. Subsequently, the sample is 

immersed in acetone for lift-off. Only the metal deposited in the etched front gate area 

will remain, the rest just comes off with the photo resist. This completes the front-gate 

process. 

After the front gate definition, a global backgate is placed under the sample. First, 

a chip of single crystal sapphire is cut with slightly larger size than the sample. Then the 

sapphire chip is coated with a thin layer of Indium metal and heated on a hot plate. The 

sample is placed on top of the sapphire chip, with Indium melted in between. The Indium 

layer now serves the global backgate of the sample, see Figure 3.1. 

At this stage, the sample is ready to cool down for experiments. To measure the 

transport of the sample, the sample is mounted to a header, which is a chip holder with 

pins that can be plugged into the sample probe. As seen in Figure 3.1:, four Ohmic 

contacts, four front gates, and the backgate contacts are connected to the header pins by 

gold wires,  
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Figure 3.1: Top: The optical microscope photograph of the sample mounted on a header. 
The thick wire at the bottom right corner connects the backgate to the header pin. Buttom: 
the illusion scheme of the connection. Ohmic contacts and front gates (FG) are all 
connected to the header pins by gold wires. Indium metal, served as backgate, is spread 
all over the sapphire substrate, with the wafer chip placed on it.  
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3.2 Measurement Techniques 

A Schematic diagram of the apparatus for four-terminal resistance measurement is 

shown in Figure 3.2. The sample is loaded into an Oxford Instruments TLM-400 top-

loading-into-mixture 3He-4He dilution refrigerator. The header (with sample mounted) is 

plugged into the sample probe and inserted into the tail of the mixing chamber, which is 

located at the center of the magnet. During the measurement, the sample is immersed into 
3He-4He mixture.  

The superconducting solenoid magnet surrounding the tail of the mixing chamber 

produces nearly uniform magnetic field at the position where the sample is located. The 

sample is mounted on the probe in the way that the magnetic field is perpendicular to the 

sample. At liquid He temperature ( 4.2 K ), the magnet provides high magnetic field up to 

14 T . With the operation of the λ-plate refrigerator attached to the magnet, a high field up 

to 17 T  can be achieved. The magnet is powered by an IPS-120 power supply. There are 

two operating mode, ramp current mode and persistent current mode, can be easily 

controlled by a computer program.  

The base temperature of the system is about 10 mK  The sample temperature is 

measured by a calibrated Ruthenium Oxide (RuO2) chip resistor placed close to it. There 

is a red LED mounted on the probe, placed close to the sample. The desired 2D electron 

density is achieved by exposing the sample to LED light at 4.2 K .  

One critical issue in the experiment is to filter the electromagnetic noise travelling 

down the measurement wires that heats electrons in the sample, especially the electrons 

in the island. The electromagnetic environment incident on the sample is attenuated by a 

combination of RF-lossy manganine wire ribbons and a series of cold low-pass RC 

network filters with a combined cut-off frequency ~ 50 Hz . Extensive cold filtering cuts 

the electromagnetic “noise” environment incident on the sample to 16~ 7 10 W−× , 

allowing us to achieve an effective electron temperature ~ 15 mK  in an interferometer 

device. 28  
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The excitation current is from the oscillator output of the EG&G model 5302 

lock-in amplifier. The resulting signal from the sample is detected by the same lock-in 

amplifier.  

A schematic diagram of a four-terminal resistance measurement is shown in 

Figure 3.3. Four terminal resistance XXR  and XYR  are measured with lock-in technique. 

The longitudinal resistance XX X X/R V I=  is measured with 5.4 Hz  AC current injected 

at contacts 1 and 4 and the resulting voltage XV , including the Aharonov-Bohm 

oscillatory signal, is detected at contacts 2 and 3; for the Hall resistance XYR , current is 

passed through contacts 1 and 3, and the resulting voltage YV  is detected at contacts 2 

and 4. The sample resistance is measured as a function of magnetic field (with ramp 

current mode) or backgate voltage (with persistent current mode). The four independently 

contacted front gates are connected to a high precision, high stability voltage source 

power. By biasing front gates, we can fine-tune the symmetry of constrictions, and 

change the electron density at the constrictions and the island. The back-gate voltage can 

be swept up or down continuously in the range within 10 V−  to 10 V+  with good 

precision by a ramp generator.  
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Figure 3.2: Schematic diagram of the apparatus for four-terminal resistance measurement. 
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Figure 3.3: Schematic diagram of a four-terminal resistance measurement. XX X X/R V I=  
is measured with 5.4 Hz  AC current injected at contacts 1 and 4 and the resulting voltage 

XV , including the Aharonov-Bohm oscillatory signal, is detected at contacts 2 and 3. The 
Hall resistance XYR  is measured with current injected at contacts 1 and 3 and the 
resulting voltage YV , is detected at contacts 2 and 4. 
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3.3 Edge Network Model 

The sample contains two domains with different filling factors, Bν  in the bulk and 

Cν  in the constriction. Because, in an applied magnetic field B , the Landau-level filling 

factor /hn eBν =  is proportional to the local electron density n , in the depleted regions 

of the sample, Cν  is smaller than Bν . The plateaus appearing in the measurement XXR  

and XYR  allow us to determine both the bulk ( Bν ) and the constriction filling factor ( Cν ). 

The calculation is based on the edge network model,45 as illustrated in Figure 3.4. 

We use jI  to denote the edge current on the thj −  edge; and the corresponding 

chemical potential is symbolized by jμ . The edge currents jI  are related to the chemical 

potentials jμ  by a thermodynamical relation: 

j j j
eI
h

ν μ= Δ ,              (3.1) 

where jνΔ  is the difference of the filling factors on the two sides of the thj −  edge. 

Four Ohmic contacts are labeled by circled numbers. The chemical potentials in 

four Ohmic contacts are labeled 1μ to 4μ . Contacts 2 and 3 are the ideal voltage probes 

that draw no current, therefore, 

1 2I I= ,              (3.2) 

3 8I I= ,              (3.3) 

and contacts 1 and 4 are the current probes with current XI . 

X 4 3 6 1I I I I I= − = − .             (3.4) 

Since 1D chiral edge channels follow an equipotential, the chemical potential 

remains unchanged when the edge current passes through a branch point dividing into 

two branches. Therefore, as shown in Figure 3.4, we get:  

2 7 10μ μ μ= = ,              (3.5) 

4 5 9μ μ μ= = .              (3.6) 



 

33 

According to Kirchhoff’s junction law, the current is conserved as it passes 

through a branch point; therefore, we get the following relations, 

9 4 5 8 7I I I I I= − = − ,             (3.7) 

10 2 7 6 5I I I I I= − = − .             (3.8) 

Since the chemical potentials jμ is related to the edge voltages jV  in the form as 

j jeVμ = ; to determine the voltages on different edges, first we find out the chemical 

potentials on each edge. According to equation (3.1), we write down the equations for the 

system as following, setting 1e h≡ ≡ ,  

1 B 1I ν μ=               (3.9) 

2 B 2I ν μ=             (3.10) 

3 B 3I ν μ=             (3.11) 

4 B 4I ν μ=             (3.12) 

5 C 4I ν μ=             (3.13) 

6 B 6I ν μ=             (3.14) 

7 C 2I ν μ=             (3.15) 

8 B 8I ν μ=             (3.16) 

9 B C 4( )I ν ν μ= −            (3.17) 

10 B C 2( )I ν ν μ= −            (3.18) 

In our experiments, the voltages are detected through contacts 2 and 3 for XXR , 

and through 2 and 4 for XYR , therefore, the important quantities we care about is 3 2μ μ−  

and 4 2μ μ− . We take the following steps to figure out them. 

First, considering equations (3.3), (3.4) and (3.7), we find, 

5 7 4 8 XI I I I I− = − = ,           (3.19) 

Subtracting equation (3.12) from (3.11), and substituted with (3,19), it gives, 

X
4 2

C

Iμ μ
ν

− = ,            (3.20) 

From equations (3.11) and (3.12), we get, 
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X 4 3 B 4 3( )I I I ν μ μ= − = − ,           (3.21) 

Therefore, we obtain 

X
4 3

B

Iμ μ
ν

− = ,            (3.22) 

Now, 4 2 4 3( ) ( )μ μ μ μ− − − gives us the value 3 2μ μ− , expressed as 

3 2 X
C B

1 1( )Iμ μ
ν ν

− = − .          (3.23) 

In our experiments, voltage for XXR  is measured through contacts 3 and 2, and 

voltage for XXR  is measured through contacts 4 and 2. From above discussion, we get: 

3 2
XX 2

X C B

1 1( )V hR
I e ν ν
−= = −           (3.24) 

4 2
XY 2

X C

1V hR
I e ν
−= =            (3.25) 

Therefore, the plateaus appearing in the measurement XXR  and XYR  allow us to 

identify both the bulk ( Bν ) and the constriction filling factor ( Cν ) uniquely. 
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Figure 3.4: Quantum Hall sample containing two different filling factors: the bulk filling 
factor is Bν  and the constriction filling factor is Cν  ( B Cν ν> ). Circled numbers denote 
the Ohmic contacts. The four Ohmic contacts have chemical potentials 1μ to 4μ . 2μ  and 

3μ are the ideal voltage probes that draw no current, and 1μ  and 4μ are the current probes 
with current XI . The current in the edge channels are labeled jI , and the current 
directions are indicated by arrows. 
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Chapter 4 

Quantum Magnetotransport at Low Fields1 

We report systematic quantum Hall transport experiments on Fabry-Perot electron 

interferometers at ultralow temperatures. A systematic variation of the front-gate voltage 

affects the constriction and the island electron density, while the bulk density remains 

unaffected. This results in quantized plateaus in longitudinal resistance, while the Hall 

resistance is dominated by the low-density, low-filling constriction. At lower fields, when 

the quantum Hall plateaus fail to develop, we observe bulk Shubnikov-de Haas 

oscillations in series corresponding to an integer filling of the magnetoelectric subbands 

in the constrictions. This shows that the whole interferometer region is still quantum 

coherent at these lower fields at10 mK . Analyzing the data within a Fock-Darwin model, 

we obtain the constriction electron density as a function of the front-gate bias and, 

extrapolating to the zero field, the number of electric subbands (conductance channels) 

resulting from the electron confinement in the constrictions. 

  

                                                 
1 Published in P. V. Lin, F. E. Camino, and V. J. Goldman, Phys. Rev. B 78, 

245322 (2008). 
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4.1 Motivation 

There has been a continuing wealth of research into the ground state and transport 

properties of confined two-dimensional (2D) electron systems ever since the discovery of 

the integer quantum Hall effect1 (IQHE) and the development of lithographic techniques. 

The IQHE can be understood in terms of transport by one-dimensional (1D) chiral edge 

channels corresponding to an integer number of fully occupied Landau levels.3-4, 32 In this 

picture, near an integer Landau level filling f≈ν , when the chemical potential lies in 

the gap of localized bulk states, the current is carried by dissipationless edge channels 

and the Hall resistance is quantized exactly to 2/h fe . Dissipative transport occurs when 

current is carried by the extended bulk states of the partially occupied topmost Landau 

level, between the plateaus. Such interpretation of the IQHE of non-interacting electrons 

in terms of edge channels is straightforward since for non-interacting electrons the edge 

channels are formed in one-to-one correspondence with the bulk Landau levels. Including 

effects of electron interaction is not so straightforward, but, qualitatively, the concept of 

current-carrying chiral edge channels is till applicable.45-50 

In a constricted geometry, even in zero magnetic field 0=B , an approximate 

quantization of conductance51-52 is understood as resulting from size-quantized nonchiral 

1D conducting channels passing through the constriction.53 In a quantized B , the size-

quantized and the chiral edge channels hybridize, there exists a transitional regime where 

both effects co-exist, and the plateau positions in B depend on both size and Landau 

quantization. Here, the noninteracting electron theory does not provide quantitatively 

accurate description so that effects of interaction resulting in a self-consistent confining 

potential have to be included. In addition, in such constrictions, “backscattering” by 

quantum tunneling between the extended states is possible and leads to a deviation from 

exact plateau quantization. 

In this chapter we present a comprehensive experimental characterization of 

quantum Hall (QH) and Shubnikov-de Haas (SdH) transport in an electron Fabry-Perot 
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interferometer.19, 29, 54 The constrictions are wide: we obtain the zero B−  number of 

conduction channels between 10 and ~ 500. Similar electron interferometer devices have 

been studied by others in the integer QH regime.40, 55-56 Earlier studies of dependence of 

constriction electron density were done in single unetched quantum point contacts 

defined by the split-gate technique, where the number of conductance channels was 

varied between zero (pinch-off) to a dozen.51-53 Indeed, one reason why no similar work 

was feasible earlier is that in our device, the main depletion is provided by etching so that 

the constriction density can be varied in a wide range while maintaining the deice 

geometry. In the front-gate-only device of Ref. 40, changing gate voltage appreciable 

either opens or closed the constrictions completely so that the intended device geometry 

is lost. 

Our experiments on the interferometers in the low-field integer QH regime 

presented here are moreover motivated by application of such devices in the fractional 

QH regime, where interference of fractionally charged Laughlin quasiparticles has been 

reported.18, 20, 28, 30-31, 57 Additional motivation is provided by proposed application of such 

Fabry-Perot interferometers, in conjunction with quantum antidots,14 to detection of non-

Abelian braiding statistics and as a physical implementation of topological quantum 

computation.25, 58-60  
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4.2 Devices and Measurement Techniques 

The interferometer sample was fabricated from a very low disorder double-δ-

doped GaAs/AlGaAs heterostructure.61 The 2D electron system is buried 320 nm below 

the surface. First, Ohmic contacts are formed on a pre-etched mesa. Then etch trenches 

are defined by electron-beam lithography, using proximity correction software for better 

definition of narrow and low gaps between the exposed area. After a shallow 160 nm wet 

etch, 50 nm thick Au/Ti front-gate (FG) metallization is deposited in a self-aligned 

process. Finally, samples are mounted on sapphire substrates with In metal, which serves 

as the global back gate. The interferometer sample studied in this paper is the same as in 

Ref. 30, but on a subsequent cool-down and under different illumination. 

Samples were cooled in the tail of the mixing chamber of a top-loading into 

mixture dilution 3He-4He refrigerator. A bulk 2D electron density 11 2
B 1.16 10 cmn −= ×  

was achieved after illumination by a red light emitting diode (LED) at 4.2 K . All 

experiments reported in this work were performed at the fixed bath temperature of 10 mK , 

calibrated by nuclear orientation thermometry. Extensive cold filtering in the electrical 

leads attenuates the electromagnetic background “noise” incident on a sample, allowing 

to achieve effective electron temperatures of 15mK≤ .28 Four-terminal longitudinal 

XX X X/R V I=  and Hall XY Y X/R V I=  magnetoresistances, see Figure 4.1, were measured 

with a lock-in technique at 5.4 Hz . The excitation current was set so as to keep the larger, 

Hall or longitudinal voltage 5 Vμ≤ .  
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Figure 4.1: A Fabry-Perot electron interferometer device. Optical (two left) and scanning 
electron (SEM, right) micrographs of the interferometer sample. Numbered circles on the 
four corners of the 4 4 mm× mesa show Ohmic contacts to 2D bulk electron layer. Four 
front gates (FG1−4) are deposited in shallow etch trenches, defining a circular island 
separated from the 2D bulk by two 1.2 mμ  wide constrictions. In a quantizing magnetic 
field, chiral edge channels follow an equipotential at the periphery of the undepleted 2D 
electrons. Longitudinal XXR  (current 1−4, voltage 2−3) and Hall XYR  (current 1−3, 
voltage 2−4) resistances are measured. The back gate (not shown) extends over the entire 
sample. 
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4.3 Magnetotransport 

Figure 4.2 − Figure 4.4 summarize experimental longitudinal and Hall four-

terminal magnetoresistance in sample M97Ce, the same as reported in Ref. 30, but under 

different illumination, taken in a range of front-gate voltage FG580 mV 100 mVV− ≤ ≤ + . 

Even at zero front-gate FG 0V =  , the GaAs surface depletion of the etch trenches, which 

remove the doping layer, creates electron confining potential, so that the constriction and 

the island electron densities are less than the 2D “bulk”. Application of a negative FGV  

depletes the constrictions-island region of the sample further. The two constrictions were 

tuned for approximate symmetry by application of a constant 20 mV± differential bias 

between FG1 and FG4, additional to the common front-gate bias given in this paper as 

FGV . Detuning front-gate voltage from symmetry allows us to verify each constriction 

filling separately. 

Because in a uniform applied B  the Landau filling factor eBhn /=ν  is 

proportional to the local electron density, ν  in the depleted region of the sample is 

different from the 2D bulk Bν . While Bn /∝ν is a variable, the quantum Hall exact 

filling f  is a quantum number defined by the quantized Hall resistance as 2
XY/f h e R= . 

Because QH plateaus have finite width, regions with different ν  may have the same f . 

In samples with lithographic constrictions, in general, there are two possibilities: (i) when 

depletion is small and on a wide QH plateau, the whole sample may have the same QH 

filling f ; and (ii) more often, the constriction filling Cf  and the bulk filling Bf  are 

different. As can be seen in Figure 4.2, as the front gates are biased more negative, there 

is a continuous series of well-developed constriction QH plateaus for each Cf , shifting to 

lower magnetic fields, and thus to higher Bf  plateaus. 

The Hall resistance XYR  allows us to determine the filling in the constrictions, the 

plateau positions in B  giving definitive values of Cf . The longitudinal XXR  shows 
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quantum Hall minima and quantized plateaus at 2
XX C B( / )(1/ 1/ )R h e f f= −  when 

plateaus in constrictions and the bulk overlap in B .62 Note the special case: when C Bf f= , 

XX 0R = . Thus, a quantized plateau in XX ( )R B  implies quantum plateaus for both the 

constriction region and the bulk, and a set of quantized XX ( )R B  plateaus provides 

definitive values for both Cf  and Bf . Evolution of several stronger QH constriction and 

bulk plateaus as a function of FGV  is indicated in Figure 4.3. As expected, the 

constriction plateaus are shifted to lower magnetic fields by a negative front-gate voltage, 

while the bulk plateaus are not affected. 

Figure 4.4 shows detail of the magnetotransport data in the range of B  where 

SdH oscillations in the bulk occur, transitioning to the developing QH plateaus. As seen 

in the raw data, SdH oscillations are not shifted in B  by front-gate bias; this is confirmed 

by Fourier analysis, which gives a FGV -independent SdH oscillation frequency 

corresponding to the bulk density. The vertical positions of the bulk SdH oscillations are 

grouped in series corresponding to the number of conduction channels passing through 

the constriction. This shows as a constant resistance plateau in Hall data, and a 
2

C B( / )(1/ 1/ )h e f f−  background, the bulk Hall effect when Cf  is constant, in the XXR  

data. The values of the Hall plateaus and the 0=B  intercept of the negative slope XXR  

background are both 2
C/h f e  , which can be used to ascertain the channel number of the 

constriction series. 
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Figure 4.2: Representative longitudinal ( XXR ) and Hall ( XYR ) magnetoresistance traces 
of the interferometer sample. The front-gate voltage is stepped by multiples of 20 mV  in 
the range FG580 mV 100 mVV− ≤ ≤ + . The zero resistance level is the same for all traces. 
Application of FGV  changes the electron density in the interferometer region, both the 
island and the constrictions, thus shifting the B  positions of the quantized plateaus. The 
smallest filling factor, which in constrictions, determines the Hall signal ( XYR ), while the 
longitudinal signal ( XXR ) depends on filling in all regions of the sample, including the 
2D bulk. 
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Figure 4.3: Color-mapped plot of the magnetoresistance data of Figure 4.2. The Hall XYR  
and longitudinal XXR  plateau regions correspond to the same shade. Note that the 
constriction plateaus are shifted to lower magnetic fields by a negative front-gate voltage, 
while the bulk plateaus are not affected. The absolute resistance values of the XXR  
plateaus allow us to determine both constriction and bulk fillings as a function of 
magnetic field, as shown. The dashed white lines give approximate boundaries between 
consecutive QH plateaus. 
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Figure 4.4: Blow-up of the magnetoresistance data of Figure 4.2 in the region of 
Shubnikov-de Haas oscillations and developing quantum Hall plateaus in the bulk. Some 
traces are shown in thicker red lines to help distinguish individual traces. The lowest 
trace corresponds to the positive bias 100 mV+ , the middle is at 360 mV− , and the top 
(lower electron density) is at 580 mV− . Note that the B  positions of the bulk SdH 
oscillations are not affected by FGV , while superimposed on resistance background 
determined by the number of the conduction channels in the constrictions, which is 
shifted by FGV . This allows us to separate the bulk and constriction features. The zero 
resistance level is the same for all traces.  
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It is not surprising that the QH edge channels pass through both constrictions. As 

can be seen in Figure 4.4, there is a smooth, continuous transition from well-developed 

QH constriction plateaus to the low-field magnetoelectric conduction channel regime for 

each Cf  series formed by various FGV  traces. This means that the whole interferometer 

region, including both constrictions, is quantum-coherent even at 0.1T , and most likely, 

indeed, even at 0=B . If the two constrictions were not quantum-coherent, their 

individual resistances would add, which would be seen as an apparent doubling of the 

constriction channel number as B  is lowered. 

Because a four-terminal XYR  generally contains longitudinal contributions, it may 

not be clear-cut as to what is the true Hall effect. We can ascertain the assignment of 

various features to the bulk or to the constriction by the following two techniques. First, 

we can reverse the direction of the magnetic field, that is, take the corresponding 

magnetoresistance data at both B + , up, and B − , down, (shown in Figure 4.5). The 

XY ( )R B−  data is multiplied by 1− , both the magnetic field and resistance. According to 

Onsager relations for a magnetoconductivity tensor in an inversion-symmetric sample,63 

the Hall contribution changes sign, while the diagonal contributions remain unaffected. 

Thus, the average Hall XY XY
1 [ ( ) ( )]
2

R B R B+ + −  corresponds to the true bulk Hall effect, 

with all longitudinal contributions to resistance, including the effect of constrictions, 

removed (within the experimental accuracy). The thin solid line in Figure 4.5 gives the 

classical Hall slope corresponding to the bulk density 11 21.16 10Bn cm−= × , obtained from 

the B  positions of the FGV -independent QH plateaus in Figure 4.2 and Figure 4.3; as can 

be seen, it matches the +B , −B  average slope well. The difference 

XY XY
1 [ ( ) ( )]
2

R B R B+ − −  has no Hall contribution, and closely follows the raw XXR  data 

at the same front-gate voltage. Such analysis for the low-filling fractional QH regime has 

been reported in Ref. 64. 
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Figure 4.5: Experimental four-terminal Hall XYR  also contain longitudinal contribution. 
The two directly measured traces shown (thin blue lines) are obtained with magnetic field 
up ( +B ) and down ( −B ). The XY ( )R B  trace is shown multiplied by 1− , both horizontal 
and vertical axes. The middle trace (thick red line) is the average XY XY

1
2

[ ( ) ( )]R B R B+ + − , 

which, according to Onsager relations, gives the true bulk XYR  (straight thin line gives 
the bulk density). Likewise, the difference XY XY

1
2

[ ( ) ( )]R B R B+ − −  gives the longitudinal 

XXR , which displays the quantized plateaus, e.g., XX
2R = 0.05h e  ( C 4f = , B 5f = ) at 

0.98TB ≈ . Data taken at FG 260 mVV = − . 
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Figure 4.6: Representative traces illustrating subtraction of experimental Hall and 
longitudinal magnetoresistance at the same front-gate voltage. The lower panel shows the 
difference traces at various FGV , all having true zero level. The subtraction results in the 
bulk Hall resistance (darker central region), with superimposed features due to 
mesoscopic effects and tunneling in the constrictions, different in each individual FGV  
traces. The upper panel shows several individual FGV  traces shifted vertically by 

20.01 /h e  per 20 mV−  of FGV . 
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The second technique is approximate; it is exact in certain bulk-edge network 

models of QH transport,44, 65-67 and is also an approximate semiclassical result in the limit 

of XX XYσ σ<<  in 2D samples.68 For each FGV  in Figure 4.2, we subtract longitudinal 

from the Hall magnetoresistance, XY XX( ) ( )R B R B− , both for +B . When both 

constriction and bulk are on a QH plateau, it is apparent that the difference is 2
B/h f e , 

the bulk Hall effect. However, this technique also subtracts the finite XXσ contributions 

between the plateaus, present both in XYR  and XXR  (as shown in Figure 4.6). 

The fine structure in the traces of Figure 4.2 − Figure 4.6 is attributed to disorder-

assisted tunneling and quantum interference effects. It is particularly visible in the 

difference data of Figure 4.6 (more negative FGV ), since the individual XYR  and XXR  

traces for the same FGV  were taken several days apart, so that the detailed B -positions 

and magnitude of the “mesoscopic features” do not match, and thus do not subtract, due 

to their slow drift as a function of time. Aharonov-Bohm oscillations,19, 29, 40, 53, 55 present 

in some data, have small amplitude ( 23 /104 eh−×≤ ) and are not visible on the scale of 

Figure 4.2−Figure 4.6. 
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4.4 Constriction Electron Density 

The 0=B , 0=FGV  shape of the electron density profile resulting from etch 

trench depletion in the interferometer region of the sample is illustrated in Figure 4.7. The 

interferometer island is large, contains 32 4 10− ×  electrons, and the 2D electron density 

profile is determined mostly by the classical electrostatics, minimizing the energy of the 

electron-electron repulsion, compensated by attraction to the positively charged donors. 

The Fabry-Perot device depletion potential has saddle points in the constrictions, and so 

has the resulting electron density profile. In a quantizing magnetic field edge channels 

form, but the overall electron density profile closely follows the 0=B  profile in these 

relatively large devices, so as to minimized total Coulomb energy. 

Because the in-plane screening by 2D electrons is relatively weak, 46-47, 50 

application of a negative front-gate voltage FGV  decreases electron density throughout the 

interferometer region. The main depletion is provided by the etch trenches; modeling19, 29, 

31 shows that application of a moderate FGV , besides the overall depletion, increases 

effective depletion length by 100 nm/V∼ . Changing magnetic field affects the 

equilibrium electron density profile in the device only weakly, particularly for 4f ≥ , the 

principal effect is to redistribute the electron occupation between various Landau levels. 

In a fixed B , when the density of states in each Landau level in a given area is fixed also, 

application of FGV  changes occupation of these states. 

We model the constriction following the Fock-Darwin model69-71 for non-

interacting electrons as a 1D conductor with a parabolic confining potential with energy 

level (1D subbands) spacing 0ω= . The Hamiltonian for an electron is thus given by: 

[ ]21 ( ) ( )
2 *

H e U y
m

= + +p A r ,           (4.1) 

2 2
0

1( )
2

U y m yω= .             (4.2) 
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Figure 4.7: Illustration of the 2D electron density profile. Four front gates are deposited 
in shallow etch trenches. Depletion potential of the trenches defines the electron island. 
The chiral edge channels follow equipotentials at the periphery of the undepleted 2D 
electrons. Tunneling occurs at the saddle points in the two constrictions. The edge 
channel path is closed by the tunneling links, thus forming the interferometer. The back 
gate (not shown) extends over the entire sample. (duplicated from Fig. 1 of Ref. 30, with 
permission) 
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In a quantizing magnetic field with cyclotron energy Cω= , hybrid magnetoelectric 

subbands with bottom at energy 

2 2
0 C

1( ) ( ) ( )
2nE n ω ω= + += =            (4.3) 

where 0,1, 2,...n = , serve as conduction channels. In GaAs, spin splitting of the subbands 

is small compared with Cω= , and develops only at higher magnetic fields. As C Bω ∝=  

is increased from zero, these magnetoelectric subbands cross the chemical potential, 

become de-populated, and so the number of the constriction conduction channels 

decreases. We use the experimental number of constriction conduction channels, taken as 

Cf  from the corresponding constriction plateau position (the exact filling f=ν ) in the 

magnetoresistance data in Figure 4.2, shown as circles in Figure 4.8 (a). Both XX ( )R B  

and XX ( )R B  data sets yield consistent constriction plateau positions; the horizontal error 

bar represent the uncertainty in the B − position of the centers of the plateaus. 

The number of states in each hybrid magnetoelectric subband per unit aera, ( )D E , 

is express as: 
2 2 1/2
C 0( ) *( ) /D E m hω ω= + .            (4.4) 

The electron density n  is related to the number of occupied hybrid 

magnetoelectric subbands f  as: 

2 2 1/2
C 0( ) *( ) /n f D E f m hω ω= ⋅ = ⋅ +            (4.5) 

For convenience, we introduce two parameters, 1B  and 0f , which are define as: 

1 /B n h e= ⋅ ,              (4.6) 

1
0

0*
eBf

m ω
= .              (4.7) 

Therefore, each set of channel number { , }ff B  points, corresponding to a 

particular FGV , is fitted with 

2
100 )/(1/ BBfff f+=             (4.8) 

where 0f  is the conduction channel number at 0=B , and 1B  is the 1=f  plateau center, 

both refer to constriction. Figure 4.8 shows the { , }ff B  point set and the fit for data taken 
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at FG 500 mVV = − . Figure 4.9 summarizes the fits performed for the data for FGV  

stepped typically by 60 mV; they yield 0f  as the best fit parameter, plotted in Figure 4.10. 

One 3005820 ±=f  for FG 100 mVV = +  is not shown in Figure 4.10. The value 

100~0f  at zero front-gate bias is consistent with the four-terminal sample resistance of 

300Ω∼  at 1.2 K . (At mK  temperature, the 0=B  sample resistance is higher, 1.2 kΩ∼ , 

as can be seen in Figure 4.2, likely due to quantum interference effects in the device). 

The absolute error in 0f  is, unsurprisingly, large for nearly open constriction, when the 

constriction density is only slightly less than Bn . 

The second fit parameter, 1B , gives information on constriction density, 

C 1 /n eB h=  at C 1ν = . Thus obtained constriction density is plotted as a function of FGV  

in Figure 4.11. Since Cn  is derived from the QH transport data, it should correspond to 

the electron density near the saddle point in the constriction, which determines the 

constriction QH filling. We also have determined the constriction density as C /n eB hν= , 

from the raw transport data Hall slope (crossed in Figure 4.11). The classical Hall line is 

forced through zero at 0=B , which results in a systematically larger Hall slope, and so 

underestimate Cn . Roughly, this procedure is equivalent to the Fock-Darwin analysis 

described above, but setting ∞→0f  in Equation (4.8). 

Within the Fock-Darwin model, that is, assuming parabolic constriction 

confinement potential and neglecting electron interaction, we can also estimate the 

constriction width72-73 at chemical potential as 0 F 0 Cπ / 2 / π / 8W f k f n≈ ≈ . The 

resulting width varies in the range 280nm 11000nmW≤ ≤  in the experimental range of 

FGV . The lower value of W is still larger than the tunneling distance of 100 nm , estimated 

from the amplitude of Aharonov-Bohm oscillations.18, 20 The larger value, 11 mμ , is 

much larger than the lithographic constriction width of 1.2 mμ , and thus is not realistic. 

Both assumptions of the model are not realistic, and it is remarkable that some values 

obtained, such as 0f  and Cn  are reasonable, while others, such as W , are not. 
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Figure 4.8: (a) Positions of the constriction plateaus from the XXR  data corresponding to 

FG 500 mVV = −  (blue circles). (b) The fit to the 1D Fock-Darwin model (red line) for 
data at FG 500 mVV = − .  
  

(a) 

(b) 
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Figure 4.9: Positions of the constriction plateaus from the data of Figure 4.2 (circles with 
horizontal error bars) and the fits to the 1D Fock-Darwin model (lines). Each set of points 
and the fit correspond to a particular FGV .  
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Figure 4.10: Zero-field number of conduction channels in the constriction obtained from 
the fits shown in Figure 4.9. 
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Figure 4.11: Constriction electron density obtained from the conduction channel number 
analysis, Equation (4.8), in Figure 4.9 (circles). Also shown is Cn  obtained by 
conventional Hall slop (forced through zero) analysis (crossed). This neglects 
confinement in the constriction, and thus systematically underestimates the density. The 
2D bulk density Cn  is shown by the dashed line. 
  



 

58 

Several words are in order regarding the island center electron density In . Etch 

trench depletion modeling at 0=FGV  gives In  ~ 2 % lower than Bn , and ~ 7 % greater 

than constriction saddle point density Cn  .30, 74 This is consistent with the results shown 

in Figure 4.11, giving C B0.92n n≈  at 0=FGV . While present QH transport experiments 

do not probe In , an analysis of FGV  dependence of the period of the Aharonov-Bohm 

oscillations at lower filling 4≤f  integer QH plateaus has lead us to conclude that Cn  

decreases proportionately less than In , upon application of a negative FGV .29, 31 This 

experimental conclusion is counterintuitive, but can be understood if one considers that 

the front gates have long leads and surround the island, while being only to one side of a 

constriction (Figure 4.1). Accordingly, the island QH edge channels, which follow the 

constant electron density contours with density equal that in the constrictions, move 

inward, towards the island center, the interference path area shrinks, and the Aharonov-

Bohm period increases. 
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Chapter 5 

Aharonov-Bohm Oscillations in Transition between 
Integer Quantum Hall States2 

An apparent /h fe  Aharonov-Bohm flux period, where f  is an integer, has been 

reported in coherent quantum Hall devices. Such subperiod is not expected for 

noninteracting electrons and thus is thought to result from interelectron Coulomb 

interaction. Here we report experiments in a Fabry-Perot interferometer comprised of two 

wide constrictions enclosing an electron island. By carefully tuning the constriction front 

gates, we find a regime where interference oscillations with period / 2h e  persist 

throughout the transition between the integer quantum Hall plateaus 2 and 3, including 

half-filling. In a large quantum Hall sample, a transition between integer plateaus occurs 

near half-filling, where the bulk of the sample becomes delocalized and thus dissipative 

bulk current flows between the counterpropagating edges “backscattering”. In a quantum 

Hall constriction, where conductance is due to electron tunneling, a transition between 

forward and backscattering is expected near the half-filling. In our experiment, neither 

period nor amplitude of the oscillations show a discontinuity at half-filling, indicating 

that only one interference path exists throughout the transition. We also present 

experiments and an analysis of the front-gate dependence of the phase of the oscillations. 

The results point to a single physical mechanism of the observed conductance oscillations: 

Aharonov-Bohm interference of interacting electrons in quantum Hall regime. 

  

                                                 
2 Published in P. V. Lin, F. E. Camino, and V. J. Goldman, Phys. Rev. B 80, 

125310 (2008). 



 

60 

5.1 Background and Motivation 

The Aharonov-Bohm effect demonstrates the primacy of the potentials rather than 

fields in quantum mechanics.75-77 Specifically, for a dilute beam of noninteracting 

electrons propagating in a magnetic field B , the vector potential A  attaches a phase 

factor ∫ ⋅− r rrΑO d
h
ei }')'(exp{  to the electron wave function at position r . For enclosed 

electron orbits, the phase factor is periodic in flux Φ through the area S  enclosed by the 

interference path: ( ) Sd dΦ = ⋅ = ⋅∫ ∫Α r r Β Sv  by the virtue of the Stokes’ theorem; the 2π  

period of the phase corresponds to the 0 2 / /e h eπΦ ≡ ==  flux period. 

Electron interaction usually does not affect the eh /  Aharonov-Bohm flux period 

observed in conductance of normal metal and semiconductor rings with two leads. The 

situation is more complex in quantum Hall devices. An apparent feh /  Aharonov-Bohm 

flux period, where f  is the integer quantum Hall effect (QHE) filling in the constrictions, 

has been reported in quantum antidot78-79 and Fabry-Perot interferometer devices.19, 29, 31 

In quantum antidots, the closed Aharonov-Bohm path follows an equipotential around the 

lithographically defined potential hill in the two-dimensional (2D) electron plane. In 

interferometer devices, the interference path follows an equipotential at device’s edges, 

and is closed by two tunneling links. 

The experiments are done in a uniform magnetic field, so that a well-defined 

interference path enclosing an area is needed to translate the field into flux. This 

Aharonov-Bohm subperiod is accompanied by an e  charge period as a function of a gate 

voltage, and is not affected by the 2D bulk filling outside the device. In quantum antidots, 

previously reported / 2h e  period14, 80 was tentatively attributed to spin-splitting of a 

Landau level. However, subsequent work has concluded that no model of non-interacting 

electrons can consistently explain this subperiod.81-82 On the other hand, it seems 

apparent that the strong intereletron Coulomb interaction, present in nearly all QHE 
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samples, can naturally cause the observed Aharonov-Bohm and charge periods by 

substantially mixing the Landau level electron occupation.79 

An isolated metallic island weakly coupled by tunneling to two electrodes 

displays quasiperiodic conductance oscillations observed as a function of gate voltage. In 

such Coulomb islands,83-84  the net island charge eq( )Q e N N= − −  increments in steps of 

one electron due to the Coulomb blockade which opens a gap of 2 / 2Q C  in the island 

energy spectrum. The island has total capacitance C  to the gate and the electrodes. Here 

N  is the number of electrons in the nearly isolated island, an integer, and the equilibrium 

expectation value eq ion gateN N N= +  is the sum of two terms: the number of electrons 

neutralizing the positively charged background of the fixed ions in the crystal lattice ionN  

and the continuously varying polarization charge gate gateN Vα= −  induced by a gate 

voltage gateV . Under conditions of low temperature and excitation (bias voltage between 

the two electrodes), the net island charge oscillates between 1
2

Q e= −  and 1
2

Q e= , 

conductance peaks occurring at gate voltages when eqN  is an integer and Q is zero, so 

the Coulomb gap vanishes. 

Phenomenological Coulomb blockade models were proposed to evaluate the 

effects of on-site interaction in quantum antidot81-82 and Fabry-Perot geometry.59, 85-88 

Specifically, it has been proposed that two distinct mechanisms producing conductance 

oscillations exist: one being Aharonov-Bohm interference of backscattered electrons, 

another is caused by forward scattering via a “compressible island” subject to Coulomb 

blockade (see Fig. 1 in Ref. 87). The third possibility, the backscattering via a 

compressible island (shown in Fig. 1 in Ref. 20 and as “type ii” in Ref. 87), does not 

conserve angular momentum in the integer QHE regime, and thus is expected to be much 

weaker. Experiments aimed at distinguishing the distinct Coulomb blockade and the 

Aharonov-Bohm mechanisms have been reported.55, 89-90 

However: (i) a compressible island has no well-defined area, so that while 

Coulomb blockade is possible, it does not necessarily lead to B − periodic oscillations as 

a function of a uniform applied magnetic field. (ii) A compressible island, if formed, 

would vary in size and shape from a point at the island center to a ring of maximal radius, 
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when filling is changed in a QHE plateau transition; thus the forward tunneling distance 

and tunneling conductance would vary enormously. (iii) Further, in semiconductor 

heterostructures with ~ 200 nm  2D depletion length, the confining potential has 

considerable radial gradient which results in a discrete island energy spectrum; no strictly 

compressible island is possible in the limit of low temperature. 

The state of affairs is further obscured by the fact that the single-electron 

tunneling dynamics is similar for the discrete electron spectra resulting from Coulomb 

blockade and quantum confinement. In particular, the Schrödinger equation can be solved 

for an electron constrained to move on a circular ring of radius R  enclosing flux Φ. The 

energy is periodic in Φ, 
2

2
02 2 ( )

8
eE n
mRπ

= Φ − Φ ,  where n  is an integer. The lowest 

energy radii correspond to enclosed flux of an integer multiple of 0Φ . If the orbit radius 

is fixed and the applied magnetic field is varied, this Aharonov-Bohm periodic energy 

dependence, consisting of a set of intersecting parabolas, with the ground state switching 

at half-integer values of 0/Φ Φ , is similar to the Coulomb blockade energy 

2
2

eq( )
2
eE N N
C

= − . Thus, the characteristic tunneling conductance “Coulomb blockade 

diamonds” seen in the source-drain bias versus gate voltage plots81, 83  are also expected 

for any size-quantized electron system with a discrete energy spectrum, including an 

Aharonov-Bohm ring. 

Here we report experiments on a Fabry-Perot electron interferometer in the 

regime of transition between 2f =  and 3 QHE plateaus. By fine tuning the two 

constrictions, we have obtained a continuous sequence of the Aharonov-Bohm 

oscillations persisting throughout the transition, including Landau level filling 2.5ν = . 

The half-filling 1/ 2fν = +  separates the high B−  side of the 1f +  plateau and the low-

B  side of the f  plateau.4, 32  The two situations have been interpreted as corresponding 

to backscattering and forward-scattering regimes, respectively.55, 87 We observe 

experimental flux period / 2h e  all through the plateau transition, although a period of 

/ 3h e  is expected for the 3f =  plateau. We also present experiments and an analysis of 

the gate dependence of the phase of the oscillations that shows that the slope of the 
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constant-phase stripes depends on details of the confining potential and device geometry. 

We conclude that all reported experimental results can be understood without invoking 

tunneling via a compressible island. The observed continuous sequence of sub /h e−  

period oscillations argues strongly for a single physical mechanism: the Aharonov-Bohm 

interference of interacting electrons in QHE regime. 
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5.2 Aharonov-Bohm Oscillations between = 2f  and 3 Plateaus 

The Fabry-Perot device, shown in the inset in Figure 5.1, was described 

previously.30, 91 The etch trenches define two 1.2 mμ  wide constrictions, which separate 

an approximately circular electron island from the 2D bulk. Tunneling occurs in the two 

constrictions, thus forming a Fabry-Perot interferometer. The depletion potential of the 

trenches determines the electron density profile, see Figure 4.7. Four Au/Ti front gates 

are deposited in the etch trenches. Front gates are used to fine tune the constrictions for 

symmetry of the tunneling and to vary the overall device electron density, but the shape 

of the electron confinement potential is dominated by the etch trench depletion. The 2D 

density 11 2~ 1 10 cm−×   is achieved by illumination at 4.2 K , there are ~3000 electrons in 

the island. Four-terminal longitudinal XXR  and Hall XYR  resistances (see inset in) were 

measured with 200 or 400 pA, 5.4 Hz  AC current excitation. All data reported here were 

taken at the bath temperature of 10 mK . 

Figure 5.1 shows several XYR  traces, each with slightly different front-gate 

voltage on one side of one constriction. The 2f =  and 3 constriction plateaus are 

connected by a QHE transition region, where the / 2h e  Aharonov-Bohm oscillations are 

superimposed on a varying background. Similar oscillations are also seen in XXR . In 

general, unless the two constrictions are fine tuned, the B −regions with oscillations are 

interrupted, so that the plateau transition does not contain a continuous oscillation 

sequence. In a large 2D sample, a transition between two plateaus displays a smooth, 

monotonic XYR .92 The aperiodic peaks or dips in Figure 5.1, spaced by ~0.03 T, are 

attributed to disorder-assisted tunneling outside the constrictions; similar ubiquitous 

mesoscopic fluctuations are also seen in the same device at lower magnetic fields91 and in 

quantum antidots. That the aperiodic peaks originate outside of the island is evidenced by 

their different response to front gates of the left and right constrictions. 
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By fine tuning the constriction gate voltage, we managed to obtain a continuous, 

uninterrupted oscillation sequence. Figure 5.2 shows a high-resolution XYR  trace 

measured with 200 pA  excitation and the oscillatory conductance Gδ  obtained by 

subtracting a smooth background. Although 200 pA  produces only 2 Vμ  constriction 

Hall voltage at 2.5v ≈ , we still observe non-Ohmic behavior, namely, the oscillatory 

conductance amplitude still increases upon lowering of the excitation at 10 mK  

temperature. This is evidence that the extensive cold filtering employed lowers the 

electromagnetic background “noise” to 2 Vμ≤  at the sample’s contacts. 

Note that the conductance oscillations can be seen, without interruption,                        

of Figure 5.2 shows the magnetic field period of the oscillations. In these data 

B 1.14 mTΔ =  is closely one half of the 2.3mT 1f =  period. Thus we interpret the 

oscillatory data in Figure 5.2 as displaying two oscillations per /h e , the fundamental 

flux period, in agreement with earlier results.26-27, 29, 54-55, 89, 93 The same / 2h e  flux period 

persists in the whole 2↔3 QHE transition region. The weak, systematic variation in BΔ  

as B  is increased is caused by the gradual, secular inward shift of the island circling edge 

channel (interference path area shrinks), so as to maintain a constant /hn eBν =  in the 

local edge-channel electron density n  when B  is changing. The sign of the B /d dBΔ  

slope is consistent with both: forward and backscattering at the saddle point in the 

constrictions. The oscillation amplitude is maximal near half-filling, and falls off toward 

the quantized plateaus, similar to that reported in a Mach-Zehnder interferometer.93 

We discuss these data in terms of a specific edge-channel model below. Here we 

note that the oscillatory behavior in Figure 5.2 is dramatically different from resistance 

peaks and dips in quantum antidots. In quantum antidots, resonant tunneling peaks are 

seen on the low B−  side of a QHE plateau, and dips on the high- B  side of the same 

plateau, both having equal flux period /h fe .79 In particular, for the 2 3ν≤ ≤  transition, 

there are two dips per /h e  below the 2f =  plateau, and three peaks per /h e  above the 

3f =  plateau, separated by a smooth region near half-filling. Such behavior is consistent 

with two distinct tunneling regimes of backscattering and forward scattering in the 
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antidot geometry. The continuous oscillation sequence with a constant flux period is 

consistent with only backscattering occurring in Fabry-Perot interferometers. 
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Figure 5.1: The Hall ( XYR ) and longitudinal ( XXR , lowest trace) resistance of the 
interferometer device between constriction 3f = and 2 QHE plateaus. The successive 

XYR  traces are shifted by 3kΩ  and are labeled by bias of one of the front gates; the other 
three voltages are constant. Inset shows a 4 4 mμ×  AFM micrograph of the central 
region of the device. 
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Figure 5.2: Hall resistance of the interferometer for the 2↔3 QHE plateau transition, the 
Landau-level filling is given at the top. The middle panel shows the oscillatory 
conductance and the upper panel the oscillation period; the red line is the linear fit: 

B 0.104(2.5 ) 1.14 mTνΔ = − + . The oscillations persist uninterrupted throughout the 
transition region, including the half-filling. The inset shows four-terminal measurement 
configuration for XX X X/R V I= ; for XYR  current is passed 1–3, voltage is measured on 
contacts 2–4. 
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5.3 Front-gate Dependence of Aharonov-Bohm Oscillations  

Figure 5.3 shows conductance oscillations at 2.36ν ≈  with the front-gate voltage 

FGV  as a parameter. Here, all four FG1-4V  are stepped by a common bias of 0.01mV , and 

the average FG FG1-4
1
4 jV V= ∑ . The 2D electron density is greater in this cooldown than 

in Figure 5.2 so that equal ν  occurs at a higher B . The fundamental flux period /h e  

contains two conductance oscillations, B / 2S h eΔ = . Stepping FGV  more negative 

reduces the overall island electron density and thus shifts the region of oscillations to 

lower B , see Figure 5.3 (b). The flux period is constant, but FGV changes the interference 

path area S , form stripes spaced vertically by FG 0.7 0.1 mVV = ± . Interpreting FGV  as 

matching the change in the number of electrons within S  by one gives

FGFG( / ) 1.0VS dn dV Δ = , using the experimental 14 2 1
FG/ 7.9 10 m Vdn dV − −= × , obtained 

from the low B−  magnetotransport,91 and 12 2/ 2 1.83 10 mBS h e −= Δ = × , obtained from 

the Aharonov-Bohm period in Figure 5.3. This satisfactory agreement supports validity 

of our interpretation. 

In general, the sign of the constant phase slope depends on details of 

heterostructure material and device geometry and fabrication. For one electron the 

Aharonov-Bohm phase /eγ = − Φ = . In a uniform B , the flux through the interference 

path BSΦ = , and the differential 

/ 2 ( / )( )d e h SdB BdSγ π = − + .           (5.1) 

In the QHE of noninteracting electrons, in the symmetric gauge, each orbital in 

each Landau level is quantized so as to enclose an integer multiple of 0 /h eΦ = ,4, 32 this 

also minimizes the 
2

2
02 2 ( )

8
e n
mRπ

Φ − Φ per electron Aharonov-Bohm energy. Thus, the 

QHE ground-state maximum density electron droplet (a completely filled Landau level)  
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Figure 5.3: (a) Three-dimensional color plot of the Aharonov-Bohm oscillations on the
2f =  plateau 2.36ν ≈ . A negative FGV  is stepped by 0.01mV . The slope of the 

constant oscillation phase stripes is positive, consistent with Aharonov-Bohm effect in a 
QHE interferometer, as discussed in the text. (b) Constriction electron density and 
interference path area dependence on front-gate voltage. Constriction density n  and 
interference S are determined from the B -field position and period of the 2f =  
oscillations ( 2.5ν ≈ ) in several cooldowns. 
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is constructed by filling the Aharonov-Bohm orbitals from the center of the island (the 

minimum of the confining potential) outwards. Likewise, a partially filled Landau level 

contains an integer number of electrons within an Aharonov-Bohm path. Therefore, even 

the orbitals of noninteracting electrons in QHE regime are quantized to enclose an integer 

number of electrons in each Landau level. Invoking Coulomb blockade in ill-defined 

areas to ensure an integer number of electrons is redundant in this open geometry. 

Between the QHE plateaus, at filling 1f fν< < + , when f  Landau levels are 

completely filled, lowering the uniform magnetic field and thus SdB  by /h e  “excites” 

f  electrons. Thus ( / ) eSdB h fe dN− , where eN  is thermal average number of the 

excited electrons (electrons in the 1stf +  Landau level) enclosed by the path. One may 

argue that the excitation of an electron into the partially filled Landau level is likely to 

modulate the conductance via the interference path closed by tunneling and thus result in 

conductance oscillations. This explains why there may be f  conductance oscillations 

within the fundamental /h e  period (or tunneling peaks in quantum antidots), but does 

not explain why the f  oscillations are equally spaced in B  or have equal amplitude.79 

Indeed, for noninteracting electrons the positions of oscillations in B  depend on the 

detail of the confining potential, each oscillation originating in a different filled Landau 

level. For interacting electrons, the many-electron ground states involve occupation of 

higher Landau levels, “Landau-level mixing.” But the basis orbitals, and thus the 

interference paths, are still quantized by the Aharonov-Bohm flux condition. When 

electron-electron interaction is strong, occupation of neighboring Landau levels is similar, 

and the “excited” electrons do not originate in any specific Landau level. Thus, excitation 

of an electron by reduction in B  would result in approximately equivalent oscillations. 

This provides a qualitative model explaining the experimental observations as resulting 

from effects of electron Coulomb interaction on Aharonov-Bohm effect in QHE regime.79 

However, this qualitative model has proven difficult to implement in a formal theory. 

We now turn to consideration of the effect of front gates. For interacting electrons, 

minimization of the ground-state energy requires local charge neutrality for 2D density 

n .4, 32 Thus / 0n B∂ ∂ = , and / /en B ef h∂ ∂ = − . Using B  and a gate voltage V  as two 

independent variables, the differentials edN  and dS  are displayed as: 
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( / ) ( / )e e edN N B dB N V dV= ∂ ∂ + ∂ ∂ ,           (5.2) 

( / ) ( / )dS S B dB S V dV= ∂ ∂ + ∂ ∂ .           (5.3) 

Here, the total number of electrons within the interference path is N nS= , and 

/ / (1 / ) ( / )eN B fBS h f n S Bν∂ ∂ = − + − ∂ ∂ ,          (5.4) 

/ ( / ) (1 / ) ( / )eN V S n V f n S Vν∂ ∂ = ∂ ∂ + − ∂ ∂ .         (5.5) 

Because the fraction of the excited electrons is 1 /f ν− , (1 / )en f nν= − . A gate 

changes the occupation only of the partially filled Landau level: / /en V n V∂ ∂ = ∂ ∂  in a 

fixed B . Combining the terms and defining 2 / 1fβ ν= − , we obtain 

2
fd feS S n Sn dB S n dVh B V V
γ β βπ

⎡ ⎤∂ ∂ ∂⎡ ⎤= − + + −⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦⎣ ⎦
        (5.6) 

For etch trench depletion a good approximation may be the hard confinement: 

/ 0n B∂ ∂ = , / 0n V∂ ∂ = . Then the periods (exciting one electron, 2f γ πΔ = ) are 

/BS h feΔ =  and 1( / )VS n V −Δ = ∂ ∂ . Note that the constB = , constV =  partial 

derivatives in Equation (5.6) are not equal to the experimental slopes in Figure 5.3 (b), 

which correspond to constν ≈ . 

The 0dγ =  stripe slope depends on the signs of the dB  and dV  multipliers in 

Equation (5.6). For electrons, the chief dB  term is always positive. The net sign of the dV 

term depends on the two contributions. Positive gate voltage attracts electrons: /n V∂ ∂  is 

always positive; /S V∂ ∂ is negative for anticonfining (quantum antidots78-79) and positive 

for confining potential (Fabry-Perot devices). Mach-Zehnder devices93-95 have one edge 

with confining and one with anticonfining potential, the net term depends on device 

details. In most experiments 1β ∼ . Thus, the hard confinement model predicts a small 

positive constγ = , /dV dB  slope for Fabry-Perot interferometers and quantum antidots. 

For devices with soft confinement and/or modulation gates the /dV dB  slope can be 

large in magnitude (weak net gate coupling) and its sign depends on device details. A 

small modulation gate may have Sdn and ndS effects different than large gates. 

A Coulomb blockade model of Ref. 87 was used in Ref. 89. It predicts constant 

oscillation phase when the charging energy is constant, e 0dN = . However, the island 

area is assumed fixed for one device, while not so for the larger, very constricted 
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( C B/ 0.4n n = ) device. We see that, in general, there are more terms contributing: gate 

voltage changes flux, too, by affecting the area ( constν =  means / constn B = , not 

/ constN B = ). 
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5.4 Discussion of Edge Channel Structure 

When the interference oscillations are observed, the counterpropagating edge 

channels must pass near the saddle points in the constrictions where tunneling occurs. 

Thus the filling of the relevant edge channels is determined by the saddle-point filling Cν . 

The filling outside the constrictions and at the island center Iν  is greater than Cν , the 

exact profile of the depletion is determined by the heterostructure material, device 

geometry and fabrication, and also by the gate voltage. In this device, I C/ 1.07n n ≈ , thus 

the entire interferometer, including the island center and the constrictions, is on the same 

integer QHE plateau for 8f ≤ .30, 91 

Figure 5.4 shows an illustration of edge-channel configurations used to analyze 

the Fabry-Perot geometry in Ref. 87. In this model, lines represent compressible edge 

channels, where local filling varies 1f fν− < < , that carry edge currents. The 

incompressible (gapped) regions between the lines are at an exact filling fν = ; they do 

not have low-energy charged excitations and so do not carry current, except when 

tunneling occurs. Tunneling through the energy barrier formed by the QHE gap occurs 

over a short distance t ; for 5t > A  the tunneling rate 2exp ( / 2 )t⎡ ⎤∝ −⎣ ⎦A  is exponentially 

small. Here, the magnetic length / eB=A = . Tunneling between different Landau levels 

does not conserve angular momentum, or involves a spin flip, and is expected to be much 

weaker; thus the backscattering via a compressible island (type ii in Ref. 87) is not 

considered here. 

In 2D, a compressible QHE state is formed near half-filling, when the top Landau 

level is half filled.4 However, a confining potential lifts electron state degeneracy and a 

small confined “compressible island” is, in fact, incompressible in the low-temperature 

limit. This fundamental fact and the following detailed considerations seem difficult to 

reconcile with forward scattering via a compressible island as the mechanism of the  
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Figure 5.4: Right: illustration of edge-channel structure in a Fabry-Perot interferometer 
for the 2↔3 QHE plateau transition. The arrowed lines show edge channels connecting 
the Ohmic contacts (squares). Red dots in the constrictions show tunneling. The three 
regimes illustrated correspond to backscattering ( C 3ν ε= − ), forward scattering 
( C 2ν ε= + ) and to half-filling. Left: the corresponding experimental oscillatory 
conductance for the 2↔3 QHE transition, see Figure 5.2 
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conductance oscillations reported in experiments. (i) Conductance oscillations periodic in 

applied uniform magnetic field B  are observed in experiments. Gauge invariance 

requires periodicity in magnetic flux BSΦ = ;77 a well-defined area S  is necessary to 

translate a uniform field into flux through this area. Aharonov-Bohm area is well defined 

but it is not clear what exactly the area of a compressible island is. (ii) As a function of 

Landau-level filling factor /nh eBν = , in a transition between QHE plateaus f  and 1f + , 

the size of the compressible island changes from zero to a maximum value, so that a large 

variation in the B − period would result near half-filling 1
2fν = + . (iii) Even at the 

maximum size, the radius of the compressible island must be less than the outer 

Aharonov-Bohm edge ring by at least 5 120 nm=A at 1.2TB =  (See Figure 5.2). Thus 

one would expect a 30% smaller “compressible ring” area and thus 30% different 

oscillation periods BΔ   if the two distinct mechanisms were involved. This is not seen in 

the experiment, the maximal variation in BΔ  is under 10% (See Figure 5.2).  

Similar conductance oscillations have been observed in devices with variously 

depleted constrictions, relative to the island center, from 5 to 50 %. Different saddle-point 

constriction depletion and filling factor would result in different edge-channel structure in 

the island. In a device with 50% depletion, Landau-level filling 4.5ν =  in constrictions is 

accompanied by filling 9ν =  at island center, so that several concentric compressible 

rings would be expected to form; while in a device with 5% depletion, the island center 

has 1.26ν = when 1.20ν =  in constrictions, when oscillatory conductance has been 

reported, but no compressible island is expected at filling 1.26ν = . Thus widely different 

regimes of constriction versus island center Landau-level fillings ν  result in similar 

oscillatory behavior. 

While pleasingly simple and easy to visualize, the edge channel models, like that 

of Figure 5.4, have certain serious drawbacks. It can be deceptive to imply both tunneling 

rate and the QHE filling by one set of lines, while tunneling is exponentially sensitive to 

distance and thus to detail of constriction. For example, in Figure 5.4, C 2ν ε= + , hole 

forward scattering in the inner 2 3ν< <  edge channels is shown; but electron 

backscattering between the outer 1 2ν< <  channels, over a shorter distance in the 
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perpendicular direction, is also easy to envision. The tunneling rate for forward scattering 

can be extremely different for short and long constrictions, depending on device 

fabrication, while the backscattering rate is about the same. Another drawback is that the 

“compressible island” in Figure 5.4, C 2ν ε= + , is not truly compressible: the electron 

state degeneracy is lifted by the confining potential. These energies can be estimated as 

the increment of the self-consistent (screened) confining potential over the distance 

separating two consecutive island-circling basis orbitals, like in quantum antidots78-79. 

This energy is 60 mK  in the interferometer of Ref. 20, in agreement with thermal 

excitation experiments. In the present device it is slightly lower but still greater than 

temperature or excitation.  

The continuous experimental oscillation sequence in Figure 5.2 is consistent with 

a single physical mechanism, rather than a different mechanism for the different regimes 

in the edge channel model of Figure 5.4 backscattering C( 3 )ν ε= − and forward 

scattering C( 2 )ν ε= + , and also at half-filling ( C 2.5ν = ). Such interpretation has been 

disputed in Refs. 55, 89-90, where two physically different regimes, called “Aharonov-

Bohm” for backscattering and “Coulomb blockade” for forward scattering have been 

proposed. The oscillatory behavior at half-filling has not been anticipated in Ref. 87. 

However, no qualitative discontinuity in the oscillation period or amplitude at half-filling 

is apparent in the data of Figure 5.2, and single physics, the Aharonov-Bohm interference 

of interacting electrons in QHE regime, appears to fit all the regimes.  
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Chapter 6 

Interference of / 3e  quasiparticles encircling 2/5 

fractional quantum Hall island3 

We report experiments in a large, 2.5 mμ  diameter Fabry-Perot quantum Hall 

interferometer with two tunneling constrictions. Interference fringes are observed as 

conductance oscillations as a function of applied magnetic field (the Aharonov-Bohm 

flux through the electron island) or a global backgate voltage (electronic charge in the 

island). Depletion is such that in the fractional quantum Hall regime, filling 1/3 current-

carrying chiral edge channels pass through constrictions when the island filling is 2/5. 

The interferometer device is calibrated with fermionic electrons in the integer quantum 

Hall regime. In the fractional regime, we observe magnetic flux and charge periods 5 /h e  

and 2e , respectively, corresponding to creation of ten / 5e  Laughlin quasiparticles in the 

island. These results agree with our prior report of the superperiods in a much smaller 

interferometer device. The observed experimental periods are interpreted as imposed by 

anyonic statistical interaction of fractionally charged quasiparticles. 

  

                                                 
3 Published in P. V. Lin, F. E. Camino, and V. J. Goldman, Phys. Rev. B 80, 

235301 (2008). 
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6.1 Background 

A system of electrons contained to move in two dimensional (2D) in a strong 

magnetic field exhibits exact quantization of Hall conductance at certain integer and 

fractional Landau level fillings.1-4, 10 While the integer quantum Hall effect can be 

understood as a consequence of Landau quantization of non-interacting electrons, the 

fractional quantization is understood as resulting from condensation of interacting 

electrons into a highly-correlated incompressible fluid. The elementary charged 

excitations of a fractional quantum Hall (FQH) condensate are Laughlin quasiparticles 

possessing bizarre properties: they have fractional electric charge3-4, 10, 14, 96-97 and obey 

anyonic (fractional) exchange statistics,11-12, 20-22, 30 intermediate between the familiar 

Bose and Fermi statistics. 

Upon exchange of two anyons, the quantum state of the system acquires a phase 

which is neither 0 nor π , but can be any value.98 In two dimensions, one particle 

adiabatically encircling another is equivalent to their exchange done twice (exchange 

operation squared).21 This topologically robust property can be used to detect anyons in 

interference experiments, because when either bosons or fermions encircle other particles, 

the system's wave function acquires an integer multiple of 2π  phase difference, which 

does not affect the interference pattern. For anyons, the acquired phase difference is, in 

general, non-trivial, and thus does affect the interference. This nonlocal, topological 

interaction of anyons has lead to several proposals to use braiding of anyons in 2D 

systems for topological quantum computation.25, 58 

Specifically, for charge / 3e  quasiparticles of the filling 1/ 3f =  FQH fluid, an 

explicit calculation shows that the system's wave function acquires an anyonic Berry 

phase contribution when one Laughlin quasihole adiabatically encircles another.12 

Experiments on quantum antidots38 and Fabry-Perot quantum Hall interferometers30 

reported Aharonov-Bohm flux period /h eΦΔ =  for the / 3e  quasiparticles, while for 

fermionic or bosonic / 3e  quasiparticles the expected flux period would be 
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/ ( / 3) 3 /h e h e= . These experimental results were interpreted as evidence that the 

quasiparticles of the 1 / 3f =  FQH fluid are indeed anyons, the "missing" 4 / 3π  phase 

difference supplied by the statistical Berry phase contribution, in agreement with the 

theory of Ref. 12. Experiments19, 29, 39, 55, 57, 89-90, 99 on two-constriction electron Fabry-

Perot interferometer devices in the integer quantum Hall regime, and a chiral Luttinger 

liquid theory24 of such devices in the primary Laughlin states were also reported. 

Less clear theoretically is the situation when different kinds of quasiparticles are 

involved, even for the next simplest case of the / 3e  and the charge / 5e  quasiparticles of 

the 2/5 FQH fluid, which is the simplest hierarchical "daughter state" of the 1/3 fluid.11, 35 

Earlier, we reported experiments on an interferometer where / 3e  quasiparticles of the 

1/3 FQH fluid encircle an island of the 2/5 fluid.18, 20, 28, 31 The interference conductance 

oscillations occur as a function of magnetic field, or the island electronic charge varied 

by a backgate. The flux and charge periods were obtained using the Aharonov-Bohm 

interference area,75-76 which, in turn, was determined either from modeling of the island 

electron density profile,20 or experimentally, via scaling the Aharonov-Bohm period 

dependence on front-gate voltage.31 The reported flux and charge superperiods, 

5 /h eΦΔ =  and 2Q eΔ = , were deduced theoretically using several FQH island models.88, 

100-102 On the other hand, these periods were reported as either "not understood" in a 

Coulomb blockade model,87 or even claimed as not possible in a composite fermion 

model103 of the island. 

Here we report experimental results obtained in a similar Fabry-Perot electron 

interferometer device, but with much larger 2D electron island, see inset in Figure 6.1. 

The integer quantum Hall regime is used to determine the interferometer island area. In 

the FQH regime, the interfering / 3e  quasiparticles execute a closed path around the 

island of the 2/5 FQH fluid containing / 5e  quasiparticles. The 2D electron depletion, 

which largely determines the width of the 1 / 3f =  edge ring, does not depend on the 

device diameter. On the other hand, the enclosed 2/5 island is several times larger than 

before.18, 20, 28, 31 Hence, in this device, most of the island area is occupied by the 2/5 FQH 

fluid under coherent tunneling conditions, so that the directly-measured magnetic field 

period well approximates the flux period. We confirm the previously reported flux and 
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charge superperiods of 5 /h eΦΔ =  and 2Q eΔ = , respectively, both corresponding to 

addition of ten / 5e  quasiparticles to the area enclosed by the interference path. These 

results are consistent with the Berry phase quantization condition that includes both 

Aharonov-Bohm and anyonic statistical contributions.101  
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6.2 Devices and Measurement Techniques 

The electron interferometer device was fabricated from a low disorder 

AlGaAs/GaAs heterojunction crystal with 2D electrons ~ 320 nm  below the surface.61 

The four independently-contacted front gates (FG) were defined by electron beam 

lithography on a pre-etched mesa with Ohmic contacts. After a shallow ~ 160 nm wet 

etching, Au/Ti front-gate metal was deposited in the etch trenches, followed by lift-off, 

inset in Figure 6.1. The etch trenches define two 1.1 mμ∼  lithographic width 

constrictions, which separate an approximately circular electron island from the 2D 

"bulk". Moderate front-gate voltages FGV  are used to fine tune the constrictions for 

symmetry of the tunnel coupling and to increase the oscillatory interference signal. The 

shape of the electron density profile is predominantly determined by the etch trench 

depletion. The depletion potential has saddle points in the constrictions, and so has the 

resulting density profile. For the 2D bulk density 11 2
B 1.0 10 cmn −= ×  there are ~4,500 

electrons in the island. 

The lithographic layout and dimensions of the present device are very similar to 

the device in Refs. 30 and 92, that has the entire island at filling 1/3 in the fractional 

regime. The two significant differences are: (i) the constriction-defining lip of the front 

gates is widened, and (ii) the etch trench depth is greater by ~ 20 nm . These relatively 

small differences combine to yield about three times more depleted constrictions, with 

the saddle point electron density estimated as ~0.78 of the island center density. This 

results in formation of a filling 1/3 edge ring passing through the constrictions, when the 

island and the 2D bulk both have FQH filling 2/5. 

Samples were mounted on sapphire substrates with Indium metal, which serves as 

the global backgate, and were cooled in the tail of the mixing chamber of a 3He-4He 

dilution refrigerator, immersed in the mixture. All data reported here were taken at 

10.3mK  bath temperature, calibrated by nuclear orientation thermometry. The 

electromagnetic environment incident on the sample is attenuated by a combination of 
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RF-lossy manganine wire ribbons and a series of cold low-pass RC network filters with a 

combined cut-off frequency ~ 50 Hz . Extensive cold filtering cuts the electromagnetic 

"noise" environment incident on the sample to 16~ 7 10 W−× , allowing to achieve an 

effective electron temperature 15mK≤  in an interferometer device.28 
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6.3 Aharonov-Bohm Superperiod 

Figure 6.1 shows longitudinal and Hall resistances in the interferometer sample 

with FG 60mVV ≈ , similar to front-gate voltage in the oscillatory regime. Four-terminal 

resistance XX X X/R V I=  was measured with 100 pA  ( 1/ 3f = ) or  200 pA  ( 1f = ) 

5.4 Hz  AC current injected at contacts 1 and 4. The resulting voltage XV , including the 

Aharonov-Bohm oscillatory signal, was detected at contacts 2 and 3. The Hall resistance 

XY 4-2 3-1/R V I=  is determined by the quantum Hall filling Cf  in the constrictions, giving 

definitive values of Cf . The oscillatory Rδ  is obtained from the directly measured XXR  

or XYR  data after subtracting a smooth background. The conductance Gδ  is calculated 

from Rδ  and the quantized Hall resistance 2
XY /R h fe=  as 2

XY XY/ ( )G R R RRδ δ δ= − , a 

good approximation for XYR Rδ � . 

In the range of B  where the interference oscillations are observed, the 

counterpropagating edge channels must pass near the saddle points, where tunneling may 

occur.20, 30 Thus, the filling of the edge channels is determined by the saddle point filling. 

This allows to determine the saddle point density from the XX ( )R B  and XY ( )R B  

magnetotransport; a systematic study of quantum Hall transport and analysis were 

reported for a similar sample in Ref. 91. The local Landau level filling /hn eBν =  is 

proportional to the local electron density n ; accordingly the constriction Cν  is lower than 

the bulk Bν  in a given B . While ν  is a variable, the quantum Hall exact filling f  is a 

quantum number defined by the quantized Hall resistance as 2
XY/f h e R= . 

In this device, the island center density is estimated to be close to the bulk Bn  at

FG 0V = , the constriction vs. island center density difference is ~20%. Thus, the whole 

interferometer can be on the same plateau for strong quantum Hall states with wide 

plateaus, such as 1f =  and 1/3. For example, in Figure 6.1, there is a range of B  when 

both C 1f =  and B 1f = , as seen for 3.6T 4.2TB< < , and both are 1 / 3f =  for 12TB > . 
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The second possibility is an overlap of two plateaus with different filling. For example, a 

quantized value of 2 2
XX C B/ (1/ 1/ ) / 4R h e f f h e= − =  for C 1f =  and B 4 / 3f = , is seen 

at 3.2TB ≈ ; and C 1/ 3f =  and B 2 / 5f = , resulting in 2
XX / 2R h e= , in the range 

11.0T 11.6TB< <  in Figure 6.1. However, C 2f = , B 3f = , e.g., when C B0.67n n≈ , is 

not seen in this sample. 

In the integer quantum Hall regime the Aharonov-Bohm ring is formed by the two 

counterpropagating chiral edge channels passing through the constrictions.19, 29 

Backscattering, which completes the interference path, occurs by quantum tunneling at 

the saddle points in the constrictions. The relevant particles are electrons of charge e−  

and Fermi statistics, thus we can obtain an absolute calibration of the Aharonov-Bohm 

path area and the gate action of the interferometer. Figure 6.2 shows conductance 

oscillations for 1f = ; analogous oscillations for 2f =  were studied in this device, but 

are not reported here. The 1f =  magnetic field oscillation period is 1.06 mTBΔ = . The 

flux period here is /h eΦΔ = , this gives the interferometer path area

2/ 3.91 mBS h e μ= Δ = , the radius Out 1115 nmr = . 

We also observe the interferometric oscillations as a function of magnetic field in 

the FQH regime, when an 1 / 3f =  edge ring surrounds a 2/5 fluid island, Figure 6.2. 

This occurs when the bulk 2/5 plateau and the constriction 1/3 plateau overlap, when the 

longitudinal 2 2
XX / (3 5 / 2) / 2R h e h e= − ≈ . The magnetic field oscillation period in this 

regime is 5.7 0.3 mTBΔ = ± . Assuming the flux period is 5 /h eΦΔ = , this gives the 

interferometer path area 25 / 3.60 mBS h e μ= Δ = , the radius In 1070 nmr = . The 

conductance oscillations in this regime are found to be robust and reproducible, Figure 

6.3, systematically responding to a moderate change of front-gate voltage, as reported 

before for a smaller interferometer device.31 

Classically, increasing B  by a factor of ~3 does not affect the electron density 

distribution in the island at all. Quantum corrections are expected to be small for a large 

island containing ~4,500 electrons.46 Indeed, in experiments on a similar device, the  
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Figure 6.1: The longitudinal XXR  (lower trace) and Hall XYR  magnetoresistance of the 
interferometer. The quantized plateaus (bulk Bf , constriction Cf ) allow to determine the 
filling factor in the constrictions. The fine structure is due to quantum interference effects, 
sharp peaks are due to impurity-assisted tunneling. Inset: electron micrograph of the 
interferometer device. The front gates (light) are deposited in shallow etch trenches 
(dark). Depletion potential of the trenches defines the electron island. The edge channels 
circling the island are coupled by tunneling in the two constrictions, thus forming a 
Fabry-Perot interferometer. The backgate (not shown) extends over the entire 4×4 mm 
sample. 
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Figure 6.2: Representative interference conductance oscillations for electrons, 1f = , and 
for / 3e  quasiparticles in 1 / 3f =  edge channel circling around an island of 2/5 FQH 
fluid. Both are plotted on the same magnetic field scale, the magnetic field period ratio is 
5.4 0.3± . The flux scales are slightly different because the 2/5 island area is ~7% less 
than the 1f =  edge ring area. 
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1/ 3f =  edge ring area was found to equal the integer value, within the ±3% 

experimental uncertainty.30 As in the model of Ref. 20, in the fractional regime, the outer 

1 / 3f =  edge ring of radius Outr  encloses the 2/5 FQH island of radius Inr . The 

difference Out In 45 nmr r− ≈ ( 6≈ A , the magnetic length / eB=A = ) approximates the 

width of the 1/3 incompressible ring. This width can be estimated from the model of Ref. 

46: the incompressible edge "dipolar strip" width is 1 3 50 nma = , where we use the value 

of the electron density gradient [ ] 20 3

Out
/ 3.6 10 mr rdn dr −

=
= ×  from a self-consistent 

island density model,19-20 and the 1 / 3f =  FQH gap of 5K  at 12T . The square of 1 3a  is 

proportional to gap and inversely proportional to the density gradient. Since the FQH gap  

is itself a weak function of B , 1 3a  is more sensitive to the gradient of the self-consistent 

island confining potential. 

The ratio of the magnetic field periods BΔ  for the integer and fractional regime 

oscillations is 5.4 0.3±  in this sample. In interferometers with a smaller island (that also 

had somewhat different lithographic design), we reported the BΔ  ratio 7.15 for a  

Out 685 nmr = , In 570 nmr =  device, and ratio 6.3 0.4± for a Out 920 nmr = , 

In 820 nmr =  device.19-20 Evidently, as the device area increases, the ratio of the magnetic 

field periods approaches 5 because the 2/5 FQH island occupies a larger part of the whole 

island area. Since the fundamental flux period is /h e  in the 1f =  integer regime, we 

conclude that the flux period is indeed 5 /h eΦΔ =  when / 3e  quasiparticles of the 

1 / 3f =  FQH fluid execute a closed path around an island of the 2/5 fluid. 

We use the backgate technique to measure the charge period in the fractional 

regime.14, 16, 20, 30 The backgate action BG/Q Vδ δ , where Q  is the electronic charge 

within the Aharonov-Bohm path, is calibrated with electrons in the integer regime. The 

calibration is done by evaluation of the coefficient α  in 
BG

( / )Q V BαΔ = Δ Δ , setting 

Q eΔ =  in the integer regime. Note that this procedure normalizes the backgate voltage 

periods by the experimental B − periods, canceling the variation in device area, for 

different devices and due to a front-gate bias. We could not calibrate α  directly in the 
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same device since there was a leakage present between the back- and front gates, which 

was observed to increase fast at lower magnetic fields. Instead, we use the coefficient 

7.44 mT / Veα ≈  for the similar interferometer device fabricated from the same GaAs 

heterojunction wafer.30 

Figure 6.4 shows the oscillations as a function of BGV  in the fractional regime, 

and also the corresponding oscillations as a function of B . The front-gate voltage is the 

same for this matched set of complementary data. The periods are 
BG

303 mVVΔ =  and 

5.61 mTBΔ = . Using the interferometer area obtained directly from the Aharonov-Bohm 

data, i.e., taking into account that BΔ  corresponds to five "flux quanta", we obtain 

BG
(5 / ) 2.01Q V B eαΔ = Δ Δ = , equal (within the experimental uncertainty) to the expected 

value 2Q eΔ = . 

In addition, the ratio 
BG

/ 54.1 V / TV BΔ Δ = , multiplied by the calibration 

coefficient / eα , is expected to give the ratio of electrons per "flux quanta", the quantum 

Hall filling f . Indeed, using the experimental periods we obtain 

BG
( / ) 0.403 0.001V Bα Δ Δ = ± , closely matching 2 / 5f =  and significantly distinct from

1/ 3f = . Thus, we conclude that the oscillations in Figure 6.4 have the flux period 

5 /h eΦΔ =  and the charge period 2Q eΔ = , consistent with the prior report.20 Using the 

BG
/V BΔ Δ ratio technique and the matched (vs BGV , vs B ) data sets cancels, to first order, 

the dependence of the BGV  and B  periods on the interferometer area and front-gate bias. 
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Figure 6.3: Representative oscillatory δR traces in the regime of / 3e  quasiparticles 
encircling the 2/5 FQH island. Moderate front-gate FGV  is applied, the Rδ  traces are 
labeled ( FG1, 2,3V , FG4V ); the three voltages FG1, 2,3V  are equal. Successive traces are shifted 
by 1kΩ . A positive front-gate voltage increases the island electron density and shifts the 
region of oscillations to higher B . 



 

91 

 

Figure 6.4: A matched set of interference conductance oscillations in the regime of / 3e  
quasiparticles circling an island of the 2/5 FQH fluid. (a) Magnetic flux through the 
island period 5 /h eΦΔ =  corresponds to creation of ten / 5e  quasiparticles in the 2/5 
fluid, two per /h e . (b) The backgate voltage island charging period 2 10( / 5)Q e eΔ = =  
agrees with incremental addition of ten / 5e  quasiparticles. The ratio of the two periods 
confirms that the interference originates in the 2 / 5f =  FQH island. The interferometer 
device is calibrated using conductance oscillations for electrons, 1f = . 
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6.4 Analysis and Discussion 

Experiments clearly show interference of Laughlin quasiparticles in an edge 

channel of the filling 1/ 3f =  FQH fluid, passing through the constrictions and circling 

an 2 / 5f =  island. Experimental tests establish: (i) the transport current displaying the 

interference signal is carried by the / 3e Laughlin quasiparticles, as evidenced by the Hall  
2

XY 3 /R h e=  and 2
XX 2 /R h e= , in Figure 6.1 and in Fig. 4 in Ref. 20; (ii) the 

interference signal has magnetic flux period 5 /h eΦΔ =  and the corresponding electric 

charge period 2Q eΔ = , see Figure 6.2 and Figure 6.4; (iii) these superperiods originate in 

an island that has the FQH filling 2/5, as is evident from the period ratio and is further 

supported by 2D electron island depletion modeling. These experimental superperiods do 

not violate gauge invariance,76, 104 and can be understood as follows.101 

In an unbounded 2D FQH fluid, changing /hn eBν =  away from the exact filling 

f  is accomplished by creation of quasiparticles; the ground state consists of the fν =  

condensate and the matching density of quasiparticles.3-4, 10, 105 Starting at fν = , 

changing magnetic field adiabatically maintains the system in thermal equilibrium. The 

equilibrium electron density, determined by the positively charged donors, is not affected. 

In present geometry, changing B  changes the flux BSΦ =  through the semiclassical 

area S enclosed by the interference path. At low temperature and excitation, the 

experiments probe the FQH ground state reconstruction within the interference path, in 

the large electron island, and the island is not isolated from the 2D bulk. 

Thus, minimization of the total energy of the electron system by quasiparticle 

excitation in the large island is analogous to that in an unbounded 2D system. This holds 

as far as the Aharonov-Bohm oscillations are involved, which, in the ground state, are 

intimately connected with quasiparticle excitation. Changing filling ν  by quasiparticle 

excitation eventually leads to a transition to the next FQH state. The island confining 

potential causes its edge state structure; this is also true in a large, but not infinite 2D 
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electron system. As a transition from one quantum Hall ground state to another occurs, 

the edge channels move in space. Such effects are however related to transitions between 

neighboring quantum Hall states, change of Landau level filling ν , not to the Aharonov-

Bohm physics. Experimentally, periodic Aharonov-Bohm oscillations once in a while 

exhibit a jump, or a "phase slip". The phase slips [like that at 11.417 TB ≈  in Figure 

6.4(a)] are presumably due to the secular edge channel movement related to changing ν  

that eventually causes the transition to the next quantum Hall plateau. The physics is 

different, however, and can be easily distinguished in a large device as not linked to the 

Aharonov-Bohm period. Note that ν  does not depend on the device area, but Aharonov-

Bohm period does. Thus, in a large area device, there are sequences of many periodic 

Aharonov-Bohm oscillations, occasionally interrupted by a "jump" due to edge channel 

movement on the microscopic scale. 

In the hierarchical construction,11, 105 the exact filling 2/5 FQH "daughter" 

condensate consists of a “maximum density droplet”  of / 3e−  quasielectrons in 

addition to the exact filling 1/ 3f =  condensate. The concentration of the / 3e−  

quasielectrons /3 / 5en eB h− =  is determined by their anyonic statistics. The resulting total 

electron charge density en  corresponds to the 2 / 5f =  exact filling condensate. Thus, 

the 2 / 5f =  island embedded in 1 / 3f =  FQH fluid can be understood as the island of 

/ 3e−  hierarchy quasielectrons on top of the 1 / 3f =  condensate, the 1/3 condensate 

extends beyond the quasielectron droplet and completely surrounds it, see Figure 6.5. 

The elementary charged excitations of the 2 / 5f =  condensate are the / 5e±  

quasielectrons and quasiholes, excited out of the condensate when the FQH fluid filling 

ν  deviates from the exact filling 2/5. The density of the / 5e±  quasiparticles can be 

obtained from conservation of the total electronic charge: /5 5( ) /en f eB hν± = ± − , where 

quasiholes are excited for fν <  and quasielectrons for fν > . In the island geometry, 

deviation of ν  from f  also causes change in the number of the / 3e−  hierarchy 

quasielectrons: /3 /3 / 5e eN n S SeB h− −= =  in the island of area S . The two experimental 

methods of varying filling ν  are: (i) sweeping the magnetic field B , and (ii) changing  
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Figure 6.5: Atomic force (AFM) micrograph of the interferometer device with an 
illustration of the FQH filling profile. The transport current is carried in the 1/3 chiral 
edge channels. The path of the edge / 3e−  quasielectrons is closed by tunneling in the 
two constrictions, and thus encircles the 2/5 island. (b) Illustration of the 2/5 island 
surrounded by 1/3 FQH fluid in the Haldane-Halperin hierarchy. The total 2D electron 
system is broken into three components: the incompressible exact filling 1/3 FQH 
condensate, the incompressible maximum density droplet of hierarchy / 3e−  
quasielectrons (QE), and the excited / 5e  quasiholes (QH), appropriate for the 

2 / 5fν < = situation. A circling / 3e−  QE is shown to the left of the island. 
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electron density n  by sweeping the backgate voltage at a fixed B . In experiments, either 

B  or n  vary very slowly, so that near thermal equilibrium is maintained at any time. 

When B  is varied by a small Bδ , the equilibrium electron density profile 

(determined by the fixed positive background) is not affected except when transition to 

the next FQH state is considered, as discussed above. The island area is fixed by the large 

Coulomb energy, and the flux through the island BSΦ =  is changed by S Bδ . The 

number of the / 3e−  hierarchy quasielectrons in area S is incremented by / 5Se B hδ . 

Concurrently, the 2 / 5f = island condensate electron density changes by /fe B hδ , 

which results in excitation of / 5e−  island quasiparticles, so as to maintain local charge 

neutrality of the total 2D electron system. Therefore, the minimal microscopic 

reconstruction of the island, the period BBδ = Δ , occurs when one / 3e−  hierarchy 

quasielectron is added, / 5 1BSe hΔ = . This is exactly the observed 5 /h eΦΔ =  flux 

periodicity. Within the period, increasing B , one / 3e−  quasielectron is added to the 

island, the 1 / 3f =  condensate charge in area S increases by 5 / 3e− , and ten / 3e+  

island quasiholes are excited. The total island electronic charge remains the same, 

/ 3 5 / 3 10( / 5) 0e e e− − + = , within the unchanged area S . 

This process can be expressed in terms of the Berry phase γ  of the encircling 

/ 3e−  quasielectron, which includes the Aharonov-Bohm and the statistical 

contributions.12, 101 Ref. 12 used the adiabatic theorem to calculate the Berry phase of 

quasiholes in the 1 / 3f =  Laughlin wave function on a disc. When a quasihole 

adiabatically executes a closed path, the wave function acquires a Berry phase. Taking 

counterclockwise as the positive direction, they found the difference between an “empty” 

loop, containing the FQH condensate “vacuum” only, and a loop containing another 

quasihole to be 1/3 4 / 3γ πΔ = , identified as the statistical contribution. 

We define the statistics parameter of the particles Θ  so that upon exchange the 

wave function acquires a phase factor exp( )iπΘ . Then 1/3 1/3−Θ = Θ   is the statistics of 

/ 3e±  quasiparticles of the 1 / 3f =  FQH fluid, and 1/3
2/5
−Θ  is involved when a / 3e−  

quasielectron encircles a / 5e  quasihole of the 2 / 5f =  island fluid, the "mutual 

statistics" of different kinds of quasiparticles.106-107 Ref. 101 derives and solves the Berry 
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phase γ  equation describing the present experimental situation. It obtains Berry phase 

period 2γ πΔ = : 

1/3
1/3 2/5

5 10 12 3
γ

π
−Δ

= − +Θ + Θ = .           (6.1) 

Two concurrent physical processes comprise the period: increase by one in the 

number of island hierarchy / 3e−  quasielectrons, and the excitation of ten / 5e  

quasiholes in the island. Thus, the physics under consideration leads to interpretation of 

Equation (6.1) as two simultaneous equations, each with an integer Berry phase period: 

1/31/ 3 1+Θ =             (6.2a) 

and 
1/3

2/510 2−Θ = .            (6.2b) 

Equation (6.2a) is identical to that obtained when only / 3e  quasiparticles are 

present (no 2/5 island).12, 30, 38 Equation (6.2b) can be understood as sum of two 
1/3

2/55 1−Θ =  equations, one for each of the two kinds of / 5e  quasiparticles of the 2 / 5f =  

condensate (the quantum numbers of the two kinds are expected to be identical). These 

equations are solved by 1/3 2 / 3Θ =  and 1/3
2/5 1/ 5−Θ =  . The value 1/3 2 / 3Θ =  is in 

agreement with the expectation and with recent experiments.14, 30, 38 The value 
1/3

2/5 1/ 5−Θ =  appears to be consistent with what would be obtained in a Berry phase 

calculation similar to that of Ref. 12, by the Cauchy’s theorem, including the charge 

deficiency in the 2/5 condensate created by excitation of an / 5e  quasihole vortex, and 

maintaining the path of the adiabatically encircling / 3e−  quasielectron fixed. Also, note 

that a 2.5 /h e  period (excitation of five island quasiparticles) were possible if 1/3Θ  were 

an integer, that is, if the encircling / 3e  quasiparticles were either bosons or fermions. 

Thus, the observed 5 /h e  superperiod requires both 1/3
2/5
−Θ  and 1/3Θ  are anyonic. The 

relative (mutual) statistics of quasiparticles of the two FQH condensates at different 

filling are meaningful because both quasiparticle kinds are different collective excitations 

of a single highly correlated electron system comprising the parent-daughter FQH fluid 

with different fillings. 
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The same Berry phase equation describes the physically different process of the 

island charging by the backgate.88, 101 Here, in a fixed B , increasing positive BGV  

increases the 2D electron density. The exact filling FQH condensate electron (and charge) 

density is fixed by the fixed B . The period consists of creating ten / 5e−  quasielectrons 

out of the 2/5 FQH condensate within the interference path, while the path area increases 

by 5 /h eB  in the fixed B . Excitation of quasiparticles while the condensate density is 

fixed is possible because the condensate is not isolated from the bulk 2D electron system, 

and the charge imbalance is ultimately supplied from the contacts. Note that there is one 

more / 3e−  hierarchy quasielectron in the 2/5 condensate of increased area 5 /S h eB+ . 

Thus, increasing ν  by charging the island by the uniform electric field of the remote 

backgate is accommodated by creation of / 5e−  quasielectrons and by concurrent 

outward shift of the 1/ 3 2 / 5−  boundary, that is, the interference path. Ten / 5e−  
quasielectrons are excited out of the condensate (or, equivalently, ten quasiholes are 

absorbed into the condensate), the fixed condensate density is restored from the contacts, 

in constant B , the total FQH fluid electronic charge (condensate plus quasiparticles) 

changes by 2e−  per S , the charge period. 

Single-particle theory predicts Aharonov-Bohm flux period 2 / qπΦΔ = =  for 

charge q  particles.75-76 This period is also expected for many-particle systems if the 

particle exchange statistics is integer, Fermi or Bose. In interacting many-electron 

systems, effective low-energy quasiparticles may have charge q e≠ . In the multiply-

connected many-electron system, if a "fluxon" /h e  is added in the region of space from 

which the electrons are excluded (electron vacuum), the added flux can be annulled by a 

singular gauge transformation, leaving the many-electron system in the same state as 

before, and superperiods /h e>  are not possible even when q e< .75-76 In our experiments, 

however, a uniform magnetic field is varied, rather than flux is inserted in the region of 

electron vacuum, and the situation is more subtle. The added flux results from increase in 

the applied magnetic field. The interacting electron system does reconstruct periodically, 

quasiparticles are excited, and the many-electron system is not in the same microscopic 

state as before. Thus, gauge invariance does not preclude superperiods in the Fabry-Perot 

interferometer geometry, where there is no electron vacuum within the interference path.
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Chapter 7 

Conclusions  

In summary, we realized two kinds of novel Laughlin quasiparticle 

interferometers. The central interference region of the interferometer consists of two 

constrictions defined by etch trenches in the two-dimensional electron layer, enclosing an 

approximately circular island. In the quantum Hall regime, currents are carried by 

counterpropagating edge channels at the periphery of the two-dimensional electron 

system. Edge channels are coupled by coherent tunneling in the constrictions, resulting in 

a closed interference path around the electron island, and production interference 

oscillations in the detected magnetoresistance. 

In the first device, we find that application of front-gate voltage affects the 

constriction electron density, while the bulk density remains unaffected. This results in 

quantized plateaus in longitudinal resistance, while the Hall resistance is dominated by 

the low-density, low-filling constriction. At lower field, when the quantum Hall plateaus 

fail to develop, we observe bulk Shubnikov-de Haas oscillations in series corresponding 

to an integer filling of the magnetoelectric subbands in the constriction. From a Fock-

Darwin analysis, we obtain the constriction electron density as a function of the front gate 

bias and, the zero-field number of 1D electric subbands (conductance channels), resulting 

from the electron confinement in the constrictions. 

In the same interferometer, by carefully tuning the constriction front gates, we 

find a regime where interference oscillations with period / 2h e  persist throughout the 

transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In 

our experiment, neither period nor amplitude of the oscillations show a discontinuity at 

half-filling. The continuous experimental oscillation sequence indicates that only one 
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interference path exists throughout the transition. We also present experiments and an 

analysis of the front-gate dependence of the phase of the oscillations. The results point to 

a single physical mechanism of the observed conductance oscillations: Aharonov-Bohm 

interference of interacting electrons in quantum Hall regime 

In the second interferometer, we realize the situation that / 3e  Laughlin 

quasiparticles execute a closed path around an island of the 2/5 FQH fluid. Most of the 

island area is occupied by the 2/5 FQH fluid, so that the directly-measured magnetic field 

period well approximates the flux period. The central experimental results obtained, that 

is, the flux and charge superperiods of 5 /h eΦΔ =  and 2Q eΔ = , are robust and do not 

involve any adjustable parameter fitting to a model. In Section III we presented a 

microscopic model of the origin of the superperiod based on the Haldane-Halperin 

fractional-statistics hierarchical construction of the 2/5 FQH fluid. The superperiod 

comprises incrementing by one the state number of the / 3e− quasielectron circling the 

island and concurrent excitation of ten / 5e  quasiparticles in the island 2/5 fluid. 

Variation of the magnetic field does not affect the charge state of the island. Quantization 

of the Berry phase of the circling / 3e  quasiparticles in integer multiples of 2π  gives 

anyonic statistics 1/3 2 / 3Θ =  for the / 3e  quasiparticles, and 1/3
2/5 1/ 5−Θ = , the mutual 

statistics, when a / 3e−  quasielectron encircles a / 5e  quasihole of the 2/5 fluid. 
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