Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Visual Game Tuning: Integrating Interactive Visualizations into Game
Development

A Thesis Presented

by

Markus Elliot Lacay

to

The Graduate School

In Partial Fulfillment of the

Requirements

For the Degree of

Master of Science

Computer Science

Stony Brook University

December 2010

Stony Brook University
The Graduate School

Markus Elliot Lacay

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend
acceptance of this thesis.

Klaus Mueller — Thesis Advisor, Associate Professor
Computer Science Dept.

Dimitris Samaras, Ph.D. — Chairperson of Defense, Associate Professor,
Computer Science Dept.

Kevin T. McDonnell, Ph.D. — Associate Professor of Computer Science and Chair,
Department of Mathematics and Computer Science, Dowling College

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis

Visual Game Tuning: Integrating Interactive Visualizations into Game
Development

by

Markus Elliot Lacay
Master of Science
in
Computer Science
Stony Brook University
2010

Game development is a rapidly evolving area of study that blends together a
broad spectrum of technical and creative influences. Through their systematic use of
rules, mechanics and multimedia assets, games can be thought of as an increasingly
complex set of multivariate state data. Often, the interactions between these variable
sets and their affect on game behavior are not readily apparent to the system architects
at the time of development. These details can easily be overlooked until much later in
the development cycle, when the refactoring of their implementations can result in
significant overhead. To combat this problem project managers often employ iterative
development, early prototyping, playability heuristics, and user studies. Here, an
analytic approach is applied towards parameter tuning by visually modeling games as
multi-dimensional datasets with respect to other salient game aspects, such as player
preference. The motivation behind this research is to explore the use of interactive
visual analytics as a tool that can assist game designers in modifying and discovering
underlying relationships in their products. It is also hoped that through the use of
interactive visualizations, the cost normally associated with quality assurance and play
testing in games will be reduced.

iii

Dedicated to my wife Sharon.
Thank you for putting up with my interests.

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGMENTS

1. INTRODUCTION
1.1. Motivation
1.2. Drift! - A Game Tuning Scenario

2. RELATED WORK
2.1. Playability Heuristics
2.2. Interactive Visualizations
2.3. Summary

3. VGT: VISUAL GAME TUNING
3.1. Overview of VGT
3.1.1. Test guided tuning
3.1.2. Visually guided analysis
3.1.3. Collaborative tuning
3.2. Summary

4. VGT INTERACTION
4.1. VGT-vis client
4.2. VGT-game client

5. IMPLEMENTATION OF VGT
5.1. Integration Depending on Reflection
5.2. Interactive Frontend
5.2.1. Protovis as Visualization
5.2.2. Unity3D as Game
5.2.3. ActionScript as Middleware

6. DRIFT! REVISITED - MAKING THE CASE FOR VGT

6.1. Conclusion
6.2. Future work
BIBLIOGRAPHY

Vi

VIii

IX

w N

R N0 N

12
12
13
14
16
17

18
19
24

26
28
29
29
30
30

31
35
35

37

List of Figures

Figure 1 - Racing game based of provided Unity3D tutorial

Figure 2 - Unity3D inegrated development environment shown displaying performance graphs 5

Figure 3 - Interactive Dimensionality Reduction uses weighted metrics (left) to determine the information loss
(right) for evaluating the importance of variables and the relative impact of removing them from the
visualization. 8

Figure 4 - SPC depicted showing the concise manner in which it can express clustering and variable relationships

9
Figure 5 — Lark’s interaction technique for creating new visualizations by interacting with existing ones 10
Figure 6 - Overview of the VGT runtime cycle 12
Figure 9 - Conceptual VGT collaboration shown using multiple tablet clients 16
Figure 10 - Overview of VGT's graphical interface 19
Figure 11 — vis client Overview panel showing a scrollable list of in-game parameter histories with colors
denoting which the user selected for analysis. 20
Figure 12 - vis client Zoom & Focus panels shown using a Focus + Context approach using multiple line graphs to
represent datasets 20
Figure 13 — vis client Detail panel shown using temporally indexed parallel coordinate graphs visualizing
scatterplots and metrics between dimensions 21
Figure 14 - vis client Focus panel showing submitted player preference, bug and comment reports 22
Figure 15 - vis client Group panel showing the group of active parameters 23
Figure 16 — vis client Update panel shown allowing users to modify game parameters through slider controls 23
Figure 17 - VGT-game client shown 24
Figure 18 - The three primary components of VGT 26
Figure 19 —Stages of VGT implementation showing the interaction between game (blue), middleware (yellow),
and graph (red) components. 27
Figure 20 - Format of VGT vis client update protocol 28
Figure 21 - Sample set shown of Protovis' graphical capabilities 29
Figure 22 - Racing game example shown with values unmodified by VGT 31
Figure 23 - Selected maximum and minimum turning fields for game example 32
Figure 24 - maximum and minimum turning radius values over time for game example 33
Figure 25 - maximum and minimum turning values for a given time interval in the game example 33
Figure 26 - maximum and minimum turning values for a given time interval in the game example 34
Figure 27 - maximum and minimum turning field for the selected players 34

vi

List of Tables
Table 1 - Sample set of Heuristics for Evaluating Playability (HEP)

vii

Acknowledgments

[would like to thank my advisor Klaus Mueller for pushing me towards excellence in
visualization, and for supporting my curiosity. I would also like to thank Dimitris Samaras
for inspiring others and myself in the pursuit of careers in computer science and game
design. Additionally, I would like to extend my gratitude to the entire Computer Science
Department at Stony Brook University for providing such a wonderful program that
rewards creativity.

The great folks at Applied Visions Inc. helped tremendously by sharing their
experiences and providing the type of feedback I couldn’t have gotten anywhere else. I
especially want to thank Ken Doris and Frank Zinghini for being supportive of my ideas and
helping me grow as a professional. I've been inspired greatly by you both.

Most importantly, I want to extend my deepest gratitude to all of my family and
friends who have always been there for me. Without you all, I would not have been able to

accomplish what I have. Thanks.

<C M NE)>

1. Introduction

The purpose of this thesis is to explore the utility of introducing interactive
visualization elements into the game design and testing workflow. Information
visualization can be an invaluable asset in helping designers identify relationships amidst
high volumes of multivariate data. Using interactive visualizations to modify game state
data in real time, both designers and testers can solve problems more rapidly without
requiring the involvement of development teams. Ideally, one would use interactive
visualizations to guide development and help streamline the performance of the game
development life cycle.

Using the development of a conceptual racing game, Drift!, to guide the examples
presented in Sections 1.2 and 6, we will examine how integrating interactive visualizations
into the game design process will assist designers make better decisions. Visual Game
Tuning (VGT) - a toolkit that combines several analytic visualizations into an interactive
software suite - is an implementation of this concept and will be introduced in the
following Sections 3 and 4.

VGT visualizes relationships in game state data and can modify it to suit design
needs in real time. A user of VGT can monitor an arbitrary set of game parameters while a
player interacts with the game. This allows for a naturally collaborative play testing
approach, and eases the transition of the product from development to production.
Implementation details for VGT can be found in Section 5.

In Section 2, an overview of the related work in gameplay heuristics and interactive
visualization will be presented, in order to provide the background needed for each of the
components used in the VGT toolkit. In the following Section 1.1, an overview of the
motivation behind this research is given followed by a closer look into the development of
Drift! and how it’s development can be improved upon through the use of Visual Game

Tuning.

1.1. Motivation

Typically, there is significant development overhead associated with the testing and
revision phases of the software life cycle. However, these phases are in place in order to
avoid future cost (Rubey, Browning, Roberts, & SofTech Inc., 1989). Because games are
highly specialized types of interactive software, their testing cycles can be more resource
hungry than that of traditional software. As a result, there is a high cost associated with
next generation game development, and some teams have started to look for ways to
reduce this.

Overall, software design methods such as the waterfall model are ill suited for game
development due to their inability to cope with changes to the initial design (Bates, 2004, p.
225). Often we see that successful game development is approached in an agile fashion,
where the presence of iterative prototyping, revision, and quality assurance testing is
critical (Bates, 2004, pp. 218-219). Iterative prototyping suits game design because of its
flexibility, and ability to integrate end-user feedback early on in the development cycle.

On titles developed by major publishers, these activities are usually running in parallel
with the creation of creative assets such as sound engineering, 3D Modeling, 2D artwork
and GUI design. Each of these components contributes significantly to the high cost
normally associated with game development. According to a recent set of studies by
entertainment analyst group M2 Research, the average development budget for a
multiplatform next-gen game is between $18 to $28 million, and development costs for
single-platform projects at an average of $10 million (Crossley, 2010).

Though many in the game industry have embraced agile development in response to
pragmatic concerns, it can also be thought of as a way to combat rising development costs
by producing feedback early on in the development cycle (Kaner, Bach, & Pettichord, 2001).
In doing so, game design teams must cope with producing numerous prototype-builds for
the quality assurance (QA) staff to test for bugs and playability. The QA staff then works
with a software suite to track bugs and make suggestions so that the developers can later

investigate unresolved software quality issues (Bates, 2004, p. 177).

Essentially, in order to change anything about a game’s internal state, the QA team
must depend on the development team’s availability to resolve an issue. This can be a
source of perpetual frustration for both teams not being able to keep up with the demands
of the other. Solutions to this have involved development teams making specialized
debugging user interfaces for the QA staff to tune values to their liking. This process is not
only inefficient and costly, but error prone and very labor intensive.

In order to streamline the workflow of the tuning and revision process, a new
approach must be made that can present multivariate game data and state information in a
way that is both useful and accessible to analysts. The hope is that through the use of visual
analytic tools, game development teams can avoid situations like these and acquire a
deeper understanding of the relationships between seemingly unrelated sets of game state

data.

1.2. Drift! - A Game Tuning Scenario

1.11 | QSetting: Fantasti |

Figure 1 - Drift! racing game based on provided Unity3D tutorial

Drift! has a number of variables that control everything, from a car’s throttle and
turning radius to the value of the environment's gravity and friction coefficients. A
developer could easily modify several of these variables via their development

environment and run the game on their workstation in order to rapidly test the results.

3

Advanced game engine editors like Unity3D let developers modify game state information
in real-time and test the effects on game behaviors. The advancement of debugging tools
geared towards developers has made monumental leaps over the past decade, making
what was once a very time-consuming process now trivial.

For the sake of this example, let us say that the developer of Drift! isn’t the one doing
the QA testing, as it is normally the case in large-scale commercial software development.
The developer must then make a certain set of assumptions regarding what he thinks the
QA team would like to see in terms of play behavior, before shipping it off to them for
testing. Unfortunately, the set of assumptions that the developer may need to make can
often be very specialized. For instance, a developer working on Drift! may need to know
what the most appropriate turning radius would be for simulating the feel of a 1992 Mazda
RX-7. At this point, the developer can make his best guess and wait for response from the
QA staff. The QA staff can then work with a subject matter expert that will ultimately give
them some notion of how “off” their initial results are. QA then logs this information in the
bug-tracking database for the developer to address when he can allocate enough time away
from his other tasks. This cycle will repeat until the correct value is found with the
cooperation of the developer and QA staff. Throughout this process, each step depends on
the last, and each iteration builds upon the knowledge of the last. In this way, it is similar to
the familiar waterfall software design paradigm that was discussed in Section 1.1 and
shown to be quite contrary to successful game development.

One potential solution to the inefficiency in this process would be for the developer to
create a user interface for the QA staff so that they can tune the values in question to their
liking, as was briefly mentioned in Section 1.1. However, this requires that the developer
anticipate which values may be requested for modification, requiring additional QA
resources in order to avoid making superfluous debugging interfaces. To avoid this, the
developer could simply wait for the QA team to request a specific debugging UI, but this
approach also suffers from being time-consuming and labor intensive. Currently, there is
no industry standard in approaching such situations, and each development team handles

how to deal with this individually.

2. Related Work

Games and their effects on players have been studied at length by a number of
individuals that wish to understand the deeper meaning behind player preference, and
how this can guide design decisions. As will be discussed in Section 2.1.1, various
approaches exist for quantifying the player experience in a way that is suitable for analysis.
Starting from this perspective, it is clear that when these models become mature enough,
visualization of their data will be critical in using them to guide design decisions.

The adoption of multivariate information visualization into the software design process
has been on a steady rise with the proliferation of readily available visualization libraries
such as Protovis (Section 5.2.1). Many IDE packages now come with a performance-tuning
tool that affords users the ability to visually inspect software performance via scatterplots,
bar graphs and other statistical visualizations. Using this same approach, there are now
game suites that package informative performance evaluation tools in their editors, as is

done in Unity3D game engine shown in Figure 2 and described in Section 5.2.2.

Figure 2 - Unity3D integrated development environment shown displaying performance graphs
In the following sections, several projects that have greatly inspired the creation of
Visual Game Tuning are presented. We begin with an approach to playability heuristics

followed by a survey of several relevant visualizations.

2.1. Playability Heuristics

“User testing is the benchmark of any playability evaluation, since a designer can never
completely predict user behavior” (Desurvire, Caplan, & Toth, 2004). In the software
productivity industry, heuristics have served as a way to evaluate the usability of user
interfaces with the goal of making them easy to learn, use, and master. In contrast, the goals
of game design can be characterized as “easy to learn, difficult to master (Malone, 1982).”
Drawing the line between what is intuitive to players versus what is complementary to
gameplay is a challenging task that requires knowledge of the systems involved. As a result,
game designers are faced with difficult design decisions that can only be made with the
assistance of play testers. However, the effectiveness of using play testers to guide design is
limited by their ability to express their preferences in a way that is conducive to refining

play models. In the following Section 2.1.1, an approach to this issue is addressed.

2.1.1. Heuristic Evaluation for Playability (HEP)

The HEP method was born out of the need for a standardized way to evaluate game
player feedback by focusing on the relevant concerns of gaming software. It was developed
with the intention of providing an analytic criterion by which designers can evaluate
potential pitfalls early on in the development cycle. Prior to this study, Malone (Malone,
1982), and later Federoff (Federoff, 2003) (Federoff, 2002), compiled a list of game
heuristics for general and educational video games. HEP evaluates playability by defining
four distinct game heuristic categories as the following: “game play is the set of problems
and challenges a user must face to win a game; game story includes all plot and character
development; game mechanics involve the programming that provides the structure by
which units interact with the environment; and game usability addresses the interface and
encompasses the elements the user utilizes to interact with the game (e.g. mouse, key-
board, controller, game shell, heads-up display)” (Desurvire, Caplan, & Toth, 2004, p.
1509).

Heuristic and Description

Game Play - 15 Pace the game to apply pressure but not frustrate the player. Vary the difficulty
level so that the player has greater challenge as they develop mastery. Easy to learn,
hard to master.

Game Story - 5 The Player has a sense of control over their character and is able to use tactics and
strategies.

Mechanics - 1 Game should react in a consistent, challenging, and exciting way to the player’s
actions (e.g., appropriate music with the action).

Usability - 1 Provide immediate feedback for user actions.

Table 1 - Sample set of Heuristics for Evaluating Playability (HEP)

[t is through these game heuristic categories that one can infer correlations between
user preferences and changes to the game. However, this evaluation alone cannot
specifically determine the changes to the design needed in order to fulfill the desired
playability result. For instance, the first usability heuristic can be interpreted in a number
of ways that depend on the player’s preference, designer’s intentions, and other more
complex performance factors. Desurvire’s study found that overall, HEP proved to be a
valuable asset in benchmarking the playability of games. While uncovering many of the
same results, the user study’s findings highlighted specific issues in the design - forming a
complementary pairing of both analytic and empirical methods (Desurvire, Caplan, & Toth,
2004, p. 1512).

HEP provides a valuable example showing how quantitative user preference
analysis can help guide game design. In the example of designing Drift!, HEP could be used
to quantify player feedback in a way that can easily integrate into VGT’s indicator

constructs - described later in Section 4.1.5.

2.2. Interactive Visualizations

Edward Tufte is quoted as having said, “[When] you see excellent graphics, find out
how they were done. Borrow strength from demonstrated excellence. The idea for
information design is: Don’t get it original, get it right” (Tufte, 2001). This is the spirit in
which this thesis approaches the subject of visualization. The visual techniques described
in the following sections were picked precisely because of their concise expressiveness and
applicability to the problem domain described by Section 1.1. The motivation behind Visual
Game Tuning was greatly inspired by the following three studies, as they collectively

represent innovation in quality interactive visual analytics.
7

2.2.1. Interactive Dimension Reduction through User-Defined Combinations of Quality

Metrics (IDR)

I(Yj) = Weorrlcorr (YJ) + Woutlout (Tj) + Welust/clust (Xj) S @

o Information lost (%)

Cluster
Correlation
Outliers

;
> [n)

@

[osse] «~

—_—

Reconuse |

B Cluster
B Corelation
) Outiers
M Combined
Medee |

([cmea]

* Number of displayed variables

Figure 3 - Interactive Dimension Reduction uses weighted metrics (left) to determine the information loss (right)

for evaluating the importance of variables and the relative impact of removing them from the visualization.

IDR uses a combination of parallel coordinate graphs and numeric metric
representation in order to assign importance values to multivariate sets of data. The
motivation behind the study was to find which variables best represented a dataset so that
an analyst can reduce the volume of visual information needed in order to accurately
represent large multivariate datasets (Johansson & Johansson, 2009). The value in this
approach is that an analyst can more easily compare and contrast the effective “importance”
of a single dimension in relationship to the rest of the data set quantitatively by minimizing
the “information loss”.

In the study, three metrics - Pearson Coefficient, Outliers, and Clustering - were chosen
to gauge the importance of a variable. The weighted sum of these values was then
computed and presented to the user in a seamless manner by embedding the metric and
importance values into the parallel coordinate graph. The user is then allowed to
interactively modify which data is visually represented by using the information loss graph
as a guide towards reducing visual clutter, as is depicted in Figure 3. A related approach that
uses correlation metrics to assign variable importance will be used in VGT’s detail panel

between data sets.

2.2.2. Scattering Points in Parallel Coordinates (SPC)

¥ P 5 e T
4 4 e ™ 4ac L4 . L L
e \
N
.
it R .
v B
- I‘ . \
,‘\ J_ . {, Y
A - \/ -
L.“ ‘1' 4 ;. X A. .
. K‘,’ v - X -
. e L“'(. ‘ \: ! - r
* ! "\ 0y . (; , v’ ".- A
[¥ -~ o A . -o:‘
. - y - g, o .
B ko e N, (i B
5 ..' R - . F
.):' ’ N s —J 4
4 -1.04 g8 -5.98 166 -13,. 22

Figure 4 - SPC depicted showing the concise manner in which it can express clustering and variable relationships

When visualizing multivariate data, the dilemma of deciding which data relationships to
emphasize is of paramount importance. For instance, Parallel Coordinate graphs effectively
establish the correlative relationships between a set of dimensions, as they were designed
with this purpose in mind (Andrienko, 2001). However when analyzing Parallel Coordinate
graphs, relationships can be difficult to detect for numerous densely populated datasets -
requiring some metric or numeric analysis to guide inferences. Though when trying to
understand numeric analysis, a scatterplot may be necessary in order to ensure the
integrity of the metric is not being skewed by outlier or clustering effects - as is the case
when using the Pearson Coefficient as a metric (Wilcox, 2005).

Yuan et al. provide an effective visual solution to the dilemmas described above by
integrating scatterplots between the dimensions of a parallel coordinate graphs. In their
approach, an effective means of integrating the two through novel use of Bezier curves on
the parallel coordinates is described (Yuan, Guo, Xiao, Zhou, & Qu, 2009). This approach
has the distinct advantage of being visually compact, relatively easy to analyze, and
expressive of metric accuracy. VGT uses a similar approach in its detail panel in order to

promote more informed analysis.

2.2.3. Lark: Using Meta-Visualizations for Coordinating Collaboration

| _

Strept, 7cus

J
Slreplo?ccus

(a) Data source is touched. (b) Dragging the finger reveals view (c) Releasing reveals view-pane and
and pipeline meta-visualization. scoping buttons.

Figure 5 - Lark’s interaction technique for creating new visualizations by interacting with existing ones

The allure of collaborative visualization concepts is gaining popularity due to its
vision of allowing multiple analysts to work in concert on a dataset. However, most
visualization is not developed with parallel interaction in mind, and so there exists a need
for designing new interfaces that can accommodate collaborative visual analysis. Tobiasz’s
exemplary work on Lark approaches this problem in a novel way that integrates multiple
visualization techniques with advancements in Human Computer Interface (HCI) via a
tabletop interface (Tobiasz, 2010).

The motivation behind creating Lark was to assist small groups engaging in
synchronous co-located collaborative data analysis. By observing non-digital collaborative
processes, Tobiasz highlights what he found to be “three important concepts often found in
mixed-focus collaborative work: scoped interaction, temporal flexibility, and spatial
flexibility” (Tobiasz, 2010, p. 7). He describes it as “the unconstrained spatial organization
and mobility of artifacts in and people in and around the work environment, allowing each
analyst to organize him/herself in the workspace however he/she feels is most

appropriate”, scoped interaction as “the extent of an action’s effects as controlled by the

10

performer of the action”; and temporal flexibility as “the unrestricted temporal ordering of
activities.” (Tobiasz, 2010, pp. 8-10)

Lark was built using a large digital tabletop with these concepts in mind, and took
advantage of interactive visualizations because of their intuitive ability to elaborate
information in a “details on demand” fashion (Shneiderman, 1996). It was found that
because of Lark’s natural interaction and collaborative abilities, it showed potential in
helping a group process become more efficient. In effect, Lark’s success played a large role

in inspiring the creation of Visual Game Tuning.

2.3. Summary

The discovery of gameplay heuristics has made it possible to begin quantifying the
effects that user preferences have on game design. It is through this lens of analysis that we
begin to see the utility of visualizing these quantities in ways that are beneficial to guiding
designs. Advancements in interactive visualizations have made it possible for individuals to
have full command over large sets of high-dimensional data with relatively little expertise.
By starting out with the idea that interactive visualizations can be used to express and
control gameplay, the motivation behind Visual Game Tuning has been established. The
following section begins to explore the viability of integrating interactive visualizations

into the game design process.

11

3. VGT: Visual Game Tuning
VGT is a cross-platform visual toolkit designed to help game developers
interactively discover and modify relationships between variables that dictate game
behaviors. It can be thought of as a “virtual mix board” for game designers who wish to
remotely tune a game’s parameters in real-time without the need for a development

environment. The following Section 3.1 begins with an overview of the VGT toolkit, and

is followed by a description of how it fits in to the overall game design process.

e

Publish Game

3.1. Overview of VGT

Publish
State

Changes

Find
Reationships

Interact 1

Visualize 1

Figure 6 - Overview of the VGT runtime cycle

The VGT toolkit consists of several components that deal with exposing, modifying,
analyzing and visualizing game parameters. VGT is intended for use between two parties:
the first being that of the player who will be driving the games, and the other being that of
the VGT user who will be analyzing and modifying the game environment. Shown in Figure
6 is the flow of VGT’s runtime, which starts with a game publishing its parameter
information to a graphical client. It is here that relationships between variables are
analyzed and presented to the VGT user in the form of multiple visualization and control
panels. Once the VGT user has completed analysis of the game’s current parameters, he can

12

then apply changes to them directly. At this point, the changes are then published back to
the game, where it will update its parameters. Further details on the specific
implementation of this interaction can be found in Section 4. Following here is a

walkthrough of the game design process in relation to VGT.

3.1.1. Test guided tuning

N

eDevelopers make best guess,

W based upon intuition and QA logs

¢A build must be
prepared for the
QA team

ePlay tests are
performed by the QA

“ -

*QA team
logs many
work items

Figure 7 - Typical waterfall QA game test cycle

Test guided tuning, or quality assurance testing, performs the critical function of
ensuring that games are developed in a manner that reduces gameplay inconsistencies and
software bugs. In smaller development teams this process is usually carried out by the
developers themselves, however in high-profile commercial games, full-time QA
departments are used. (Bethke, 2003, p. 52) Often, the testing process can begin as soon as

the first implementations of the game are produced (Bates, 2004, p. 176). At this early

13

stage, the QA team can begin monitoring progress until as late as post-production (Bethke,
2003, p- 53). As mentioned earlier, QA staffs often employ bug-tracking systems that allow
the development team to easily access work items as they are reported. Throughout this
process, a considerable amount of collaborative effort is needed in order to properly
interpret the testing results. Often, there will be an assigned lead tester who meets with the
development and production leads on a daily basis to discuss these issues (Bates, 2004, p.
179).

Visual Game Tuning can act as a basis for a more immediate feedback loop in the
game testing and revision cycle. For example, in the testing process depicted in Figure 7,
there is a layer of separation between the QA staff and the development team. The QA staff
can find a bug, document the circumstances that reproduce it, and submit it for review. The
time spent on this process is usually minimized by use of efficient bug tracking systems,
however it requires the interpretation of developers and their respective project leads. If
one were to assume that game developers have tasks other than fixing software bugs, as is
often the case, patches can be pushed off until later in the development cycle where they
tend to cost more to implement (Rubey, Browning, Roberts, & SofTech Inc., 1989).

Using VGT, QA and design leads can take matters into their own hands by providing
an informative interface into the game state that they can analyze, modify and log for later
fixes. As shown in the following section, VGT allows individual developers to spend less
time interpreting testing results and reduces the ambiguity in which QA teams can express
the desired changes. Interactive information visualizations are the ideal format to allow
game architects and QA staffs to abstractly interact with multivariate game state data in a

way that is both informative and natural.

3.1.2. Visually guided analysis

Capitalizing on recent advancements in information visualization, the capability to
intuitively depict large multivariate data is greater than ever. Tuning the parameters of a
real-time simulation that emulates the behavior of realistic world physics, gameplay, and
narrative elements can be a very complex task due to its multivariate nature. Despite this,

game developers are often tasked with understanding exactly how each of these variables
14

interacts with one another. QA testers also need to be aware of the underlying architecture
in order to provide detailed commentary for developers to assimilate into future builds. In
game testing, this information is often passed along to the development staff in the form of

QA logs and formal reports (Bates, 2004, p. 178).

D

¢ Developers make decisions based
upon intuition and quantative QA

evelop analysis

¢ A build must be
prepared for the
QA team

¢ Analyze
*QA team logs

\/ * Modify
“ | Log
. fewer work

Figure 8 - VGT modified QA game test cycle

Typically, information about bugs, player preferences and comments are processed
in a waterfall manner as was shown in the previous section. Providing insight into
produced work items is left up to the QA staff’s ability to document them in a way that the
development team can use to make design decisions. Developers then use these incident
reports as a guide for what to focus on when refactoring. In many instances, this entire

interaction could have been avoided if the game tester had an intuitive means of accessing

15

game-state information to analyze and modify. This is where interactive visualizations
become key.

Using an interactive visualization a game tester can select multiple parameters to
investigate, compare, and detail what the state of each selected parameter was at a
particular point in time. In the state detail, the visualization can expose numeric analysis
metrics in order to let the tester know that there is a potential relationship between two
parameters should he wish to modify one of them. This metric can be setup to perform
tracking and logging for later analysis if observed to be within a certain threshold. Armed
with this knowledge, a tester can now modify the game-state with some additional insight
and observe results that he can report to the development team. This approach has the
distinct advantage of using interactive visualizations as a way to reduce the communication
burden between QA and development staffs. It is also the goal that through the use of
customized metrics, game developers will become more aware of the systemic effects

independent variable changes will have on the simulated environment as a whole.

3.1.3. Collaborative tuning

Figure 9 - Conceptual VGT collaboration shown using multiple vis clients

16

Tobiasz’s work on his collaborative visualization framework, Lark, showed the value
in retrofitting group processes with visually collaborative techniques (Tobiasz, 2010, p.
123). More specifically, Visual Game Tuning approaches the topic of collaboration with the
vision of multiple game designers being present during playtests with the ability to modify
the same parameters. Using VGT, more than a single individual can take part, allowing QA,
development, and design staffs to cooperate in unison during playtests. This alleviates the
burden that QA and development staffs usually encounter when trying to understand each

other’s workflow.

3.2. Summary

In this section, it has been shown how Visual Game Tuning fits into the overall game
development cycle. It has also been shown that the traditional test guided tuning model has
inherent inefficiencies and may potentially benefit from collaborative visually guided
models. It can be seen that interactive visualizations have the potential to act as intuitive
interfaces into complex game-state data, making it easier to analyze. In the following
Section 4, the specific interactions of the VGT toolkit are detailed within the context of the

topics discussed.

17

4. VGT Interaction

VGT requires that there be a running game providing parameter data to the
graphical frontend. Naturally, this splits a VGT session into two clients: vis and game.

The VGT game client can be as simple as a game environment configured to publish
and receive its parameter information over a network connection. Though developers
can extend this to additional interfaces that can be used to submit preferences, bugs,
and comments as they occur.

The VGT vis client follows Shneiderman’s Visual Information-Seeking Mantra,
“Overview first, zoom and filter, then details-on-demand” (Shneiderman, 1996). It does
this by providing users with a graphical interface that intuitively displays a set of
parameters over time where they can be selected for more detailed analysis and
modification. The vis interface can be broken down into seven parts: Overview, Zoom &
Filter, Detail, Relationship, History, Extract, and Update.

Following this, the VGT-vis client’s interface is presented and broken down by
component. Afterwards, a sample game client is presented exploring the possibilities

for additional interface options.

18

4.1. VGT-vis client

h.htm

h.htmi?farlD=1c649d075fb5c83b3437f49be875ce133ef21b20e93° & | [Qr Google

fa

Car:C: ionRange
Car:Car:suspensionRange 0.08 1) 1 1 1) T U T U T
AN NN AN AL 0.06
Car.Cart:suspensionRange 004
ANNAALNAAMNA A 0.02
000 —x5
Car.Car2:suspensionRange 05:35 Pu» 05:36 PM 05:38 PM 05:39 PM
6]
” " 05:35 PM 05:36 PM 05:37 PM 05:38 PM 05:33 PM
Car:Car3:suspensionRange 5:35:44 PM Eé’?
SAANAVSANA WAL
Car:Car4:suspensionRange r=0.3322 r =0.09360 r=0.1373
0.10 1.9e+4 9.7e43
NAAMAANAAANAAA
Carg c(‘:gr; . Cart Ce
Car.Cars:suspensionRange e e N —— Car _ g
@ o ~ (o3 - . % &
Canz \éDO, Cari - o " Car
Car:Car6:suspensionRange ~ . = Cart S——
[e1<] S S O
AAAMANNAAMAAN VA~ Carté - :
Car10 - acu
Car:Car7:suspensionRange Carls B . X =
AN AAAM AN N~ carz| - - ;__\. cam B
Gar caz
Car:Car8:suspensionRange s =~ -
& . S
WSTINAA_NAMASAANANNY Cars ~ B
Ca65 78 Caq .3e+3
Car:Carg:suspensionRange suspensionRange suspensionSpringFront suspensionSpringRear

VAN ANAN/ A AN

Car:Car10:suspensionRange

SANANN A

Car:Cari 1:suspensionRange

Car:Car:suspensionRange O
] Car:Car2:suspensionSpringFront ===@r——
Car:Cari2:suspensionRange Car:Car:suspensionSpringRear — se————ye—
MERM AR Car:Car:maximumTumn ——

Car:Car6:suspensionRange Or—

Car:Car13:suspensionRange

Figure 10 - Overview of VGT's graphical interface

el

A
v

19

4.1.1. Overview - Visual Parameter Histories

‘Select All) (Clear O

Figure 11 - vis client Overview panel showing a scrollable list of in-game parameter histories with colors
denoting those the user selected for analysis.

This list serves as the starting point for analysis by allowing the user to have some
insight into the available datasets, and select which he is specifically interested in analyzing.
Card, Mackinlay and Shneiderman’s emphasis on starting with an overview as a “general
heuristic of visualization” is underscored in Readings in Information Visualization where
they comment on its ability to reduce search time, improve detection of overall patterns,

and assist the user in choosing their next move. (Card, Mackinlay, & Shneiderman, 1999)

4.1.2. Zoom & Filter - Using combined Focus+Context (F+C) Line Charts

T \ ATV ™ AT) ' W ATA N | \ VA Y T
Ul ¥ ‘l‘f l‘.l,-\l" [\f x\l I“ N’"t“ \/ .I \ "‘l 1B]\| \/ Y " \‘0 l".l,-\n"{,” 1 'I’-' WY lo.., M ‘,\| '~,l,~,_fvl|“ \ I’ \ "“ |/ AN (" '.\] t'-"""l"l‘ ','I l‘ \ ,“‘ |/ "
0.08 Y R AR S SRTAL VAL Ul Y LRSS Ul Y LRSS Ul Y LR SRTAL Ul
0.06
0.04 ‘:.'u'.':nual relation |
maxTurn \
0.02 | Error starting) minTurm [This is too hard!
game. Stopped r=0.05 Try reducing
0.00 Loading. 5 - speeds?
" 05:35 Pr—_g4"1" 05:36 PM 0531 1L 05:38 PM 05:39 PM S —
>
40 B0 B
05:35 PM 05:36 PM 05:37 PM 05:38 PM 05:39 PM
5:35:44 PM EST

Figure 12 - vis client Zoom & Focus panels shown using a Focus + Context approach using multiple line graphs to
represent datasets

Though the most well known F+C approaches use Distortion Techniques (Hinum,
2006, p. 17) the same functionality can be provided in a dual layer line chart where one

chart acts as an overview of the data and the other as the zoomed data in focus. In the Zoom

20

& Focus panels shown in Figure 12, the bottom Zoom panel acts as the overview of the data
and has a “draggable” region that the user can modify in order to control the Focus panel
above it. The focus region takes up a larger potion of the view space in order to let the user
investigate details more accurately. Here, the lines are colored according to the selection
color made in the Overview panel, and labeled above the F+C charts in the Group panel. For
each parameter selected in the Overview panel, one colored line will represent its value
with respect to time. Embedded in the F+C chart, we have an index line that follows the

user’s cursor while hovering. This index line sets up the following Detail panel.

4.1.3. Detail - Using Time-Oriented Information

r =0.3322 r =0.09360 r=0.1373
Q.10 19044 9.7e43

Cari2

Cars

Car

@ R O
ari2 “/ ﬁ 3 mo
O OC Car O

Lan o
a3

e
Car7

Car2
(Garg

Carj5 el
i i TV 7.3e43
suspensionSpringFront S

“0l078

Figure 13 - vis client Detail panel shown using temporally indexed parallel coordinate graphs visualizing
scatterplots and metrics between dimensions

Using a Time-Oriented Information approach (Hinum, 2006, p. 17) the detail panel
uses the temporally indexed focus line, detailed in the F+C panel above, to focus on the
state of selected parameters and their relationships at a given point in time. As shown in
Figure 13, a parallel coordinate graph is shown to the user, displaying what the values of
each parameter dimension were for the time interval selected. This panel is special in that
it will automatically aggregate all other game objects sharing the same field into displayed
values along each parallel dimension. This visualization was inspired by the work of Yuan
et al. where scatterplots are introduced between dimensions in order to give insight into

the relationship between two adjacent dimensions (Yuan, Guo, Xiao, Zhou, & Qu, 2009). The

21

Detail panel defaults to using the left dimension as the vertical axis and the right dimension
as the horizontal axis for each dimension pair. The details of the numerical analysis that

this panel compliments are discussed in the next section.

4.1.4. Relationship - Using Numerical And Visual Analysis

As mentioned in the description of the Detail panel, scatterplots are useful to find
relationships and trending between parameters, however, can also be useful to use metrics
such as the Pearson Coefficient to find linear correlation between potentially similar
datasets (Johansson & Johansson, 2009). This metric becomes especially useful when
inspecting densely populated datasets, such as most multiplayer game states, where
relationships may not be readily apparent by visually looking for trends. To accomplish this,
each dataset automatically computes its own correlation coefficient and displays this value,
denoted by r, between each pair of dimensions. However, r only becomes a useful metric
within a certain threshold that is specific to the problem domain. If the correlation
coefficient, or any other metric, is found to be within a user-defined threshold, alerts can be

presented to the user, as is the case in the following section on using indicators.

4.1.5. History - Using Indicators

| patential relation]
maxTurn (\
Error starting } minTurmn This is lUlf’ hard!
game. Stopped r=0.05 Try reducing
Loading. L _J speeds?
) "1 05:36 PM 05:37 1/ 05:38 PM 05:33 PM S o—
|
0 0
N 05:36 PM 05:37 PM 05:38 PM 05:38 PM

Figure 14 - vis client Focus panel showing submitted player preference, bug, and comment reports

In the Detail panel metrics - such as the Pearson Coefficient - are computed for each
selected time interval. Using a user-defined threshold, the Detail panel alerts the Zoom
panel by using an indicator that will be logged and associated with a timestamp. These
indicators will provide information to the user via icons and cursor-activated tooltips.

As shown in Figure 14, the user is made aware that there is a potential relationship

between two selected parameters at a particular point in the game’s runtime. This time is

22

now permanently catalogued and associated with the relationships between the relevant
parameters.

Indicators need not be restricted to assisting relationship analysis. They can
represent user preferences that are discovered via player input on the game client. Players
can be provided with integrated preference and bug tracking interfaces that make it simple
to share their experiences in the game as they occur. This data can then be compiled and
analyzed alongside other changing parameter information, in order to draw inferences
between player preference and game state variables. The sample interface to acquire this

data can be found in Section 4.2 where the game client’s interaction is detailed.

4.1.6. Extract - Using persistent groupings of data

Save)Car:Car:suspensionRange | Car:Car2:suspensionSpringFront | Car:C: 1sionS Rearl |

Car:Car6:suspensionRange

Figure 15 - vis client Group panel showing the group of active parameters

Using gathered insight into the relationships between variables, one can save
findings for future comparison. To do this, a Save is provided to name a set of parameters
as a focus group. Later on, this focus group can be used to compare with other parameters
and extract new relationship inferences. By analyzing these inferences, one can more
accurately gauge the systematic effect of changing any of the selected parameters. Using
this information, one can then commit desired changes to the game state by using the

Commit panel.

4.1.7. Update - Using standard GUI controls

Apply_

Car:Car:suspensionRange O

Car:Car2:suspensionSpringFront Or

Car:Car:suspensionSpringRear O
Or

Car:Car6:suspensionRange O

Figure 16 - vis client Update panel shown allowing users to modify game parameters through slider controls

23

VGT’s primary functions are to allow game testers to analyze and refine their
models in real time. Because of this focus on real time interaction, the interface to modify
game parameters is a simple set of valued sliders, as many people with minimal computer
literacy feel comfortable using them as a way to manipulate data. This approach is in close
relationship with audio software packages that model their interfaces to mimic physical
mix boards. In this manner, VGT users can very easily manipulate game state values, as
shown in Figure 16. Once the user has adjusted parameter values to his liking, he then

presses the apply button and the vis client will publish changes to the game client.

4.2. VGT-game client

e oo VGTGame.html
[- l -] 4+ | < file:///Users/markus/Development/VGT/AS c] (Q' Google)

Visual Game Tuning Example

VGT Graph Link
Connection to visual game tuner established.

(_Like) (Dislike)

Comment type: @ General O Bug O Voice O Screen

Pt
Submit

Figure 17 - VGT-game client shown

The VGT-game client provides a thin layer of optional interaction between the
game’s players and its designers. In the implementation example shown in Figure 17, the
player is presented with the game paired with a very simplistic preference, comment, and
bug-reporting interface. This GUI will allow the user to submit their preferences, in the
form of a like or dislike, button in addition to bugs and comments as they happen in the

game. Should the developers want to support faster reporting, hotkeys can be assigned to
24

game actions that will perform these functions. The motivation behind providing players
with preference controls is to facilitate the creation of preference statistics that can be
assimilated in real-time side by side with usage information. Through dynamic analysis of
user preferences, developers can make more informative decisions about a game’s design
on the fly. The game client’s web-interface is optional and only provides an interface to
scripting elements. As will be seen in the following Section 5, the implementation of VGT
relies on a variety of technologies working together, but does so in a way that is non-

intrusive to the game development pipeline.

25

5. Implementation of VGT

Visualization

Middleware Game

Figure 18 - The three primary components of VGT

VGT consists of three primary components that stand independently of a game in
order to monitor it. This interaction depends on the cooperation of a number of
technologies. To keep the implementation simple, a web-based approach using the Protovis
(Section 5.2.1) visualization library was used for the vis client (depicted in Figure 18 as
red) while the Unity3D game engine (Section 5.2.2) was used for the game client (depicted
in Figure 18 as blue). For communication between these two components, the middleware
used (depicted in Figure 18 as yellow) was a rudimentary peer-to-peer connection using
RTMP and ActionScript (Section 5.2.3). Ideally, one would implement this component as a
managed TCP connection to a database server designed for this purpose but this was
unnecessary as a proof of concept.

The stages involved in each of the three components are presented in Figure 19.
Following this figure, the specifics of how each stage is implemented are detailed in the

following sections.

26

Unity

Pass objects as String

A4

JavaScript

\/

ActionScript
(RTMP)

\VZ

Protovi

ActionScript
(RTMP)

\VZ

JavaScript

V4
Unity

Update Parameters

Figure 19 -Stages of VGT implementation showing the interaction between game (blue), middleware (yellow),

and graph (red) components.

27

5.1. Integration Depending on Reflection

The game client’s need for a generic means of enumerating objects and their fields
causes VGT to depend on programming languages that support computational reflection
(Cantwell Smith, 1982). Computational reflection exposes data type information for all
variables, allowing them to be queried in a general way. Languages that support this type of
construct include both JavaScript and C#, both of which the Unity3D game engine supports.
The advantage in relying upon object reflection rests in the fact that a developer wishing to
use VGT only needs to attach a script or plugin to a game’s runtime, without requiring
much other implementation.

VGT uses a script that will query the game for objects with fields fitting some
criteria, such as being a writable number. This script then packages this information into
update messages and shares them with other VGT components. These messages are
compiled on regular intervals for user-defined game objects and are sent to the vis client
for further analysis. The vis client then parses this information and updates its display
accordingly. Below is a sample diagram of an update message from Drift! used to inform the
vis client about the state of variables.

“ Object Name Field / Value Pair Field / Value Pair
| . |
. .
* 0.1 * 15 @

o 1:29:46 « Player s Carl i Turn * minimumTurn

Field / Value Pair
@ 10

o

Figure 20 - Format of VGT vis client update protocol

The game client receives update messages from the vis client in a similar fashion.
When received, a script will parse an update message and refresh the values of any
objected specified in the message. This requires the game client’s cooperation. Below is a
diagram of an update message for Drift! used to inform the game of changes to its variables:

“ Group/Object/Field Info Group/Object/Field Info Group/Object/Field Info

* 1:29:46 « Car:Carl:suspensionRange « Car:Car2:suspensionRange « Car:Carl:suspensionRange
0.1

.02 e o o .01

Figure 9 - Format of VGT game client update protocol

28

5.2. Interactive Frontend

Two parts comprise VGT’s interactive frontend: the vis and game clients. The vis
client is written in JavaScript using the Protovis library, and is where all of the analysis and
modification of the game state takes place. The web-based Unity3D game client serves as a
rudimentary feedback interface for game testers wishing to share comments, bug and
preference data. An overview of each is provided with context about how they fit into the

VGT framework.

5.2.1. Protovis as Visualization

233378:233833241
-~
- =
SEEEEEEEEEE 0
o H EEE EEEEN
M " onE oopan
E EEE EEEEEEEER
’ ne SEEEE EEEEEEN
\ - L o SN EEEEER
./n f SEEEEN EEEEN
{ 'e % mmsmas-aass
J, © ‘ a . Bl (s} ’ ¢ ; EEEEEEEERE EER
: t8se g R FEEEEEEEEE =R
i §82 g5 e i H SENEEEEN N
2 3 &5:1 @ cheioup - = sEEEn
3 A FLE L 9 O e A -
Arc Dagrams Force-Drected Layouts Matrx Dagrams

Figure 21 - Sample set of Protovis' graphical capabilities

As described by the developers of Protovis, “Protovis composes custom views of
data with simple marks such as bars and dots. Unlike low-level graphics libraries that
quickly become tedious for visualization, Protovis defines marks through dynamic
properties that encode data, allowing inheritance, scales and layouts to simplify
construction (Stanford Visualization Group).” In addition, Protovis uses a declarative
syntax that helps abstract implementation details. As a result of using protovis, the full

implementation of VGT’s frontend was condensed into well under 1,000 lines of code.

29

5.2.2. Unity3D as Game

Unity3D is a cross-platform, high-performance game engine and toolkit (Unity3D
Development Team). Its rich feature set includes an integrated editor, live debugger,
performance monitor and an extensible Ul. The primary motivation behind using Unity3D
was its robust support for high-level scripting languages and web technology. Because of
this, exposing Unity3D game parameters to third-party clients requires much less
infrastructure than would be necessary if using other languages that lack high-level
abstraction. Generally speaking, one can easily interface VGT to a Unity3D game using a
couple of scripts that monitor and update the game state accordingly. Implementing the
game as a web-based plugin has several advantages such as being able to rapidly define
new user interactions for preference sharing as was described in Section 4.2. A higher
performance alternative to this implementation would be to build a native plugin that acts
as the only intermediary between the VGT game and vis clients. As a proof of concept, the

implementation described here follows the former approach.

5.2.3. ActionScript as Middleware

In order to avoid the need for the creation of more-complex systems, the web-based
language, ActionScript provided an excellent intermediary between the vis and game
clients. Using ActionScript as the middleware allowed unique and persistent peer-to-peer
connections between multiple clients to be easily established, using the Real Time
Messaging Protocol (RTMP) designed by Adobe Systems Incorporated (Adobe Systems
Incorporated, 2009). Using this approach makes collaborating between multiple clients
seamless, as RTMP provides each with a unique key that enables both individual and global
messages to be received by the appropriate party. In future revisions of VGT, establishing
an intermediary server to intercept these messages may prove to be useful for more-robust

analysis and logging.

30

6. Drift! Revisited - Making The Case for VGT

Figure 22 - Drift! - racing game shown with values unmodified by VGT

Here we revisit the notional game Drift! first presented in Section 1.2 where a developer,
QA team, and subject matter expert are assessing the drivability of a simulated 1992 Mazda
RX-7. In the original example, the developer made his best guess and waited for a response
from the QA staff. The QA staff then worked with a subject matter expert to assess their
accuracy. The QA team then logged this information in their bug-tracking database for the
developer to address when he can allocate enough time to fix the issue. This cycle of game
tuning is repeated until the correct values are found.

In the previous approach, the potential solutions provided were both labor intensive
and time-consuming. VGT offers an alternative lightweight solution that involves relatively
little setup, and can integrate easily with most modern game environments. Below follows
the development and QA parties in approaching this scenario using VGT.

In Figure 22, we see an early development build Drift! provided by the developer. At
this stage, the QA team is once again working with a subject matter expert with, the
exception that they now will use VGT to assist them. As they test Drift!, they observed that
the vehicle shown has poor handling capabilities because it turns too slowly on corners -

causing the player to crash into road barriers. According to the subject matter expert
31

working with the QA team, this does not reflect the handling of the Mazda RX-7, a high-
performance sports car. To rectify this, the QA team does not have to immediately put in a
report describing the behavior, but will start customizing the values in question.

To begin, the QA team will play and observe game behaviors just as before, but now an
additional member of the staff will stand on the side just observing; using VGT to analyze
what is going on in the game. The subject matter expert tells the testers that the car doesn’t
turn well enough, and that it should be more sensitive. The VGT user takes this into account

and selects the maximum and minimum turn parameters for the players in question, as

CarCari4:maximumTum

CarCari5:maximumTum

W M YWY A MW

shown in Figure 23.

CarCari6:maximumTum

Car.CarminimumTum

CarCart:minimumTum

Figure 23 - Selected maximum and minimum turning fields for game example

The VGT user now has a display of all involved players and the values of their
turning radius fields over time. He took note of the specific time that the subject matter
expert observed that the turning radius was off, and investigates around this timeframe via

the VGT Zoom & Focus panel, shown in Figure 24.

32

02:03 AM

02:04 AM

02:03 AM

2:03:29 AMEST

02:04 AM

Figure 24 - maximum and minimum turning radius values over time for game example

While focused in on this timeframe, the VGT user notices that the values are varying
too narrowly, and so he decides to investigate the systemic effects of modifying either of
the values. To accomplish this, he then draws his attention to the Detail panel, which
currently displays the value information for the maximum and minimum turning fields for

all players at the time interval selected via the red index line in Figure 24. The Detail focus

is shown in the following Figure 25.

ca
"2
maximumTum

r=-0.1918

10

Caro

Cest
a2

cagtd

Car3
Car0
Cari4
Caerg

Cars

Cart
s
minimumTum

Figure 25 - maximum and minimum turning values for a given time interval in the game example

33

The VGT user notices that the maximum and minimum turning values are within a
relatively close range, their domains ultimately differ, as is denoted by the maximum and
minimum observed values. Furthermore, the Pearson Coefficient denoted by r, shows that
there is no linear relationship between the two because it is not lower than our defined
threshold of 0.05. The VGT user then goes through this evaluation process for any other
values that he sees as relevant. After this analysis, he then concludes that it is safe to
change individual player values for maximum and minimum turning fields, because they
are independent of any other game fields and only affect themselves. Next, he moves onto
increasing the sensitivity range for some players and observing its effects on playability, as

shown in the Update panel in Figure 26.

(Apply)

Car:Car:minimumTumn O

Car:Carl 5:maximumTumn O
O

Car:Carl4:maximumTumn Or

Figure 26 - maximum and minimum turning values for a given time interval in the game example

Both the QA team and the subject matter expert observe the results of such changes
and will continually repeat this process until the desired game behaviors are achieved.
When done with this cycle, the VGT user then wants to log the current items in focus for

later analysis. This is accomplished via the Group panel shown in Figure 27.

Lo D — . c . ~ - e
(Save)Car:CarrminimumTurn | Car:Carl 5:maximumTurn | | Car:Carl4:maximumTum

Figure 27 - maximum and minimum turning field for the selected players

When both the QA team and the subject matter expert are satisfied with the
performance of the vehicles, the QA team will log the results just as they did in the previous

scenario where they did not have the assistance of VGT. Using this information, the

34

developers can now make more-informed decisions about which parameters will affect the
player’s experience, preference, and expectations.

Aside from detecting the bugs and game behaviors in Drift!, VGT enables the players
to give additional feedback. While the primary VGT user was focused mostly on correcting
vehicle steering parameters, players were busy driving and compiling their own bug,
comment, and preference submissions. Doing so via the VGT game interface was very easy
for them because of its integrated interface. Prior to playing, they were instructed to press
the “Like” button every time they felt compelled to express their in-game enjoyment, and to
press the “Dislike” button every time they observed something they felt negatively about.
Some players provided additional details via the optional comment and bug submission
box. Use of these controls resulted in the VGT user seeing where the players reported the
most bugs, enjoyment, and dissatisfaction. Now armed with a deeper understanding of
what the players wanted most, the VGT user notes these observations in his reporting of
the maximum and minimum turn fields, so that the developer can make the best
assessment about what should change. The indicators used in this scenario are the same

used in Section 4.1.5 in Figure 14.

6.1. Conclusion

The goals of visual game tuning are to provide an intuitive means for the designers of
games and other interactive media to configure their products in a manner that promotes
informative collaboration. Through advancements in user experience heuristics and
information visualization, there is the potential that we will realize a more generalized

approach for visually tuning interactive games.

6.2. Future work

Interesting challenges lie ahead in designing a general VGT infrastructure that can
support multi-modal visually collaborative workflows in a common operating environment.
At present, the majority of VGT’s computational analysis is done on the clients themselves,
which can lead to poor performance when many objects are being tracked simultaneously.

Early in VGT’s design there was an expressed desire to support mobile platforms because

35

of their collaborative capabilities; however, due to the current limitations on mobile
performance and VGT’s peer-to-peer infrastructure, this wasn’t feasible to implement.
Beyond these shortcomings, and perhaps more importantly, robust collaboration solutions
don’t require that collaborators are local to one another - something VGT wasn’t originally
intended to address as it was developed with small co-located groups in mind.

Some individuals reviewing VGT have suggested that there is potential for its use to
negatively impact QA team performance by placing an additional burden on their workload.
This could potentially increase cost if not addressed adequately. While there is more initial
overhead, it has yet to be seen whether or not VGT will yield better overall testing
performance. Though informal trial runs showed that VGT sped up the debugging process
in a small testing environment.

Such issues ultimately limit the impact that Visual Game Tuning can have for practical
applications until further development and testing is performed. To overcome these
limitations, more robust middleware solutions must be explored. Development of a
database server as the intermediary between the vis and game client will be critical in this
endeavor. Doing so could have great potential to keep clients lightweight and provide
richer computational analysis. Logging of high-bandwidth multimedia assets then becomes
feasible, and makes adding new layers of dynamic information possible. Having the ability
to stream player video captured alongside temporal game-state and preference data has
the potential to be very useful in identifying the impetus behind player choices and
preference. Through tightly integrated game and interactive visualization technologies,
there is a great potential to completely revolutionize the way we analyze interactive media

and its user studies.

36

Bibliography

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Unity3D Development Team. (n.d.). Unity3D. Retrieved December 1, 2010, from
http://unity3d.com/

Wilcox, R. R. (2005). Introduction to robust estimation and hypothesis testing. Academic
Press.

Yuan, X,, Guo, P., Xiao, H., Zhou, H., & Qu, H. (2009). Scattering Points in Parallel
Coordinates. IEEE Transactions on Visualization and Computer Graphics, 15 (6), 1001-
1008.

Adobe Systems Incorporated. (2009). Real Time Messaging Chunk Stream Protocol
version 1.0. Specification.

Andrienko, G. A. (2001). Constructing Parallel Coordinates Plot for Problem Solving.
Proceedings Smart Graphics (pp. 9-14). New York: ACM Press.

Bates, B. (2004). Game Design (2nd Edition ed.). Thomson Course Technology.

Bethke, E. (2003). Game Development and Production. Wordware Publishing, Inc.
Cantwell Smith, B. (1982). Procedural Reflection in Programming Languages. PhD,
Massachusetts Institute of Technology, Electrical Engineering and Computer Science.
Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in Information
Visualization: Using Vision to Think. San Diego, CA: Academic Press.

Crossley, R. (2010, January). Average dev costs as high as $28m. Retrieved from Develop
Online: http://www.develop-online.net/news/33625/Study-Average-dev-cost-as-high-
as-28m

Desurvire, H., Caplan, M., & Toth,]. A. (2004). Using Heuristics to Evaluate the
Playability of Games. CHI Conference on Human factors in Computing Systems, 1512.
Federoff, M. (2003, June). User Testing for Games: Getting Better Data Earlier. Game
Developer Magazine .

Federoff, M. (2002, December). Heuristics and Usabiilty Guidelines for the Creation and
Evaluation of FUN in Video Games. Thesis at the University Graduate School of Indiana
University .

Hinum, K. (2006). Gravi++ An Interactive Information Visualization for High Dimensional,
Temporal Data. PhD, Vienna University of Technology.

Johansson, S., & Johansson,]. (2009). Interactive Dimensionality Reduction Through
User-defined Combinations of Quality Metrics. Visualization and Computer Graphics,
IEEE Transactions on, 15 (6), 993-1000.

Kaner, C., Bach, |., & Pettichord, B. (2001). Lessons Learned in Software Testing: A
Context-Driven Approach. Wiley.

Malone, T. (1982). Heuristics for designing enjoyable user interfaces: Lessons from
computer games. In J. C. Thomas, & M. Schneider (Eds.), Hman Factors in Computing
Systems. Norwood, NJ: Ablex Publishing Corporation.

Microsoft. C# Language Specification Version 3.0. Specification.

Shneiderman, B. (1996). The Eyes Have le: A Task by Data Type.

Standord Visualization Group. (n.d.). A Graphical Approach to Visualization. Retrieved
December 1, 2010, from Protovis: http://vis.stanford.edu/protovis/

37

21.Rubey, R,, Browning, L., Roberts, A., & SofTech Inc., F. 0. (1989). Cost effectiveness of
software quality assurance. Proceedings of the IEEE 1989 National Aerospace and
Electronics Conference. 4, pp. 1614-1620. Dayton, OH: IEEE.

22.Tufte, E. (2001, April). Ask E.T.: Graphing Software. Retrieved December 1, 2010, from
The Work of Edward Tufte: http://www.edwardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=00000p

23.Tobiasz, M. A. (2010). Lark: Using Meta-visualizations for Coordinating Collaboration.
Thesis, University of Calgary, Computer Science, Calgary, Alberta.

38

