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Abstract of the Dissertation

A Multi-class Classification using Ensembles of Multinomial

Logistic Regression Models

by

Kyewon Lee

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

2010

This research proposes a method for multi-way classification problems using

ensembles of multinomial logistic regression models. A multinomial logit model

is used as a base classifier in ensembles from random partitions of predictors.

The multinomial logit model can be applied to each mutually exclusive subset

of the feature space without variable selection. By combining multiple models

the proposed method can handle a huge database without a parametric con-

straint needed for analyzing high-dimensional data, and the random partition

can improve the prediction accuracy by reducing the correlation among base

classifiers. The proposed method is implemented using R and the performance

including overall prediction accuracy, sensitivity, and specificity for each cat-

egory is evaluated on real data sets and simulation data sets. To investigate

the quality of prediction in terms of sensitivity and specificity, area under the
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ROC curve (AUC) is also examined. Performance of the proposed model is

compared to a single multinomial logit model and another ensemble method

combining multinomial logit models using the algorithm of Random Forest.

The proposed model shows a substantial improvement in overall prediction

accuracy over a multinomial logit model.
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Chapter 1

Introduction

Classification problem is omnipresent. When we are checking our emails

everyday, among numerous emails we want to classify spam mails from other

important messages. When we are ill, we want a doctor to diagnose our

disease from our symptoms. These are all classification problems. In statistics,

classification is a procedure in which individual items are placed into groups

based on quantitative information on one or more characteristics inherent in

the items and based on a training set of previously labeled items. By using

the usual traits of spam mails, spam filter can classify spam and non spam

emails. Spam filter is a sort of classifier. Based on their knowledge, doctors

diagnose patient’s illness as a specific disease from the information obtained

by several medical examinations. The decision made by doctors is also a type

of classification. There are numerous classification algorithms and some of

well-known algorithms are briefly summarized below.

One of the simplest classification algorithms is the k-nearest neighbor algo-

1



rithm (k-NN). The k-NN algorithm uses known samples of size k to determine

the class of a given instance. The given object is assigned to the class of the

most relevant sample of size k. In order to choose relevant k samples, k-NN

uses some metric. A typical metric is Euclidean distance in a multi-dimensional

vector space. If k = 1, then we classify the given object as the class of the most

similar neighbor. The value of k is found by performing cross-validation and

to break ties it is best to use an odd value of k. In 1951, Evelyn Fix and J.L.

Hodges came up with the idea of nearest neighbors[14].

Artificial neural networks (ANN) simulate the structure of biological neural

networks[27]. An ANN consists of artificial neurons or nodes connected together

by different weights, where the connections representing the synapses of a brain.

If there is no hidden layer in the network, ANN reduces to a linear regression

model. If there are one or more hidden layers in the network, then ANN is a

non-linear generalization of the linear regression model. The idea of neural

networks started in the 1940s, and in the 1950s Frank Rosenblatt implemented

the first practical ANN which was a simple feed-forward model known as

perceptron[26]. ANN can be applied in several areas such as classification of

data (medical diagnosis), pattern recognition (identification of faces or object

recognition), and sequence recognition (handwritten text recognition).

Linear classifiers separate objects by the value of a linear combination of their

features. The feature of an object is represented by a vector. There is another

vector to be trained with known observations. This is called weight vector. We
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classify the object with the value of dot product and some threshold. There

are several algorithms in this category such as Linear Discriminant Analysis

(LDA)[13], Support Vector Machines (SVM)[8], and logistic regression[4].

LDA is an algorithm to generate the linear combination of features which

best separates two or more categories of objects. If there are only two features,

the separator between object groups will become a line. If there are three

features, the separator will be a plane and the number of features is more than

three, the separator become a hyperplane. LDA was originally developed by

R.A. Fisher in 1936[13].

SVM is a method to find a separating hyperplane in data space, which

maximizes the margin between the two separated data sets. If the data are

nonseparable in the original feature space, they are transformed to a higher

dimensional space, where the data become linearly separable. SVM was first

introduced by Vladimir Vapnik in 1995[8].

Logistic regression is a model that fits the log odds of the response to a

linear combinations of the explanatory variables. It is used mainly for bi-

nary responses, although there are extensions for multinomial responses as

well. Regression coefficients are determined by maximizing the likelihood func-

tion. Usually the coefficients are estimated by numerical methods such as the

Newton-Raphson algorithm. Logistic regression is known as a robust model for

classification and the model is presented clearly and succinctly, but on the flip

side, it might not be able to produce complex models, leading to underfitting.

Logistic regression is widely used in areas such as medical and social sciences.
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Ensemble methods combine multiple models to improve the performance

of a model in classification. In our daily lives we use such an approach before

making a decision. We want to obtain opinions of a few doctors before agreeing

to a medical procedure. We want to read many reviews before purchasing an

item. After combining the opinions of several experts, we make a final decision.

By doing so, we can reduce the chance of unnecessary medical procedures or

getting a poor product, and then achieve a better result. Ensemble methods

yield better results if there is diversity among the members of the ensemble

system[21]. As an extreme example, if we have the same result from all the

classifiers in an ensemble, there would not be an improvement over a single

classifier. If we have errors in different places from individual classifiers of an

ensemble, then by combining the individual classifiers, the total error can be

reduced. A usual way to get diversity is to use different training data sets

obtained by resampling technique such as bagging or bootstrap.

Bagging, which stands for bootstrap aggregation, is one of the earliest

ensemble based algorithms[5]. Different training data sets are randomly drawn

with replacement from the entire training data set. Each training data set is

used to train a different classifier of the same type. Individual classifiers are

then combined by taking a simple majority vote of their decisions. For any

given instance, the class chosen by a majority of classifiers is the decision of

the ensemble. In bootstrap, the same size of sample is drawn with replacement
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from the original sample. If the size of original data set is large enough, then a

bootstrap sample is expected to have about 63.2% of distinct instances chosen

from the original sample due to duplication. The remaining instances are called

the out-of-bag sample, which is used as a test set.

Boosting is another commonly used ensemble algorithm, which was intro-

duced by Robert E. Schapire in 1990[28]. Boosting combines multiple weak

classifiers to generate a single strong one[19, 29]. A weak classifier is slightly

correlated with the true classification, while a strong classifier is arbitrarily

well-correlated with the true classification. Boosting also uses resampling data

sets to generate classifiers and then they are combined by majority voting.

However, unlike bagging, boosting strategically creates resampling data sets to

obtain the most informative training data. Each iteration of boosting creates

three weak classifiers. The first classifier is trained on a random subset of the

available training data. The second classifier is trained on a training data

only half of which is correctly classified by the first classifier, and the other

half is misclassified. The third classifier is trained with instances on which

the first classifier and the second classifier disagree. These three classifiers are

combined by majority voting. There are many boosting algorithms according

to their training schemes such as AdaBoost, PBoost, TotalBoost, BrownBoost,

MadaBoost, LogitBoost and so on. Among these, AdaBoost is a widely used

algorithm. AdaBoost was formulated by Yoav Freund and Robert Schapire[15].

In each iteration of AdaBoost, a classifier is trained by giving more weight to
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the case which made a wrong prediction on the previous iteration. The final

decision is made by a weighted majority voting among all the classifiers.

Random Forest (RF) uses the result by combining multiple decision trees

using the bagging algorithm[6]. Decision tree is a structure to classify an object

into classes. From the root of a tree, the given object follows the relevant

branches and arrives at a leaf. Branches are features and leaves are classes.

If the number of cases in the original data set is N , a bootstrap sample of

size N is generated as a training set to grow each tree. If there are M input

variables, a number m which should be much less than M is specified, and m

is held constant for the forest thereafter. At each node of a tree, m variables

are randomly selected out of the M variables and the best split on these values

is used to split the node. All trees are grown to their largest extent possible

without pruning. Each tree gives a classification for a new object from an input

vector, and we say the tree votes for that class. The forest chooses the class

having the most votes over all the trees in the forest. Each tree is constructed

using a different training set obtained from the original data set. When a

training set for a tree is selected with replacement from the original data set,

about one-third of the cases are left and not used in the construction of the

tree as explained earlier. This out-of-bag data can be used to get the estimates

of the classification error or variable importance. Hence in RF, there is no

need for cross-validation or a separate test set. RF is known as efficient and

applicable to large data sets like microarray data. Leo Breiman and Adele
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Cutler developed the RF method in 2001[6].

CERP (Classification by Ensembles from Random Partitions)[3] is another

tree-based classification method by ensembles of base classifiers. One of the

most important characteristics of CERP is random partitioning of the feature

space. For each ensemble, the feature space is randomly partitioned with

roughly equal size, and a base classifier is constructed for each subspace.

Through combining these multiple base classifiers, CERP is able to improve the

prediction accuracy compared to a single classifier[6, 30]. All the base classifiers

of an ensemble have the same probability of classification error because they are

constructed on each of the randomly partitioned subspaces with nearly equal

size. This property can enhance the prediction accuracy in an ensemble[3].

Since different combinations of predictors in a different ensemble can give more

information, several ensembles are generated to achieve further improvement.

CERP shows its usefulness clearly when it is applied to a high-dimensional

data set. By partitioning the huge feature space into small spaces, the data set

becomes easy to handle, and allows a variety of models.

LORENS (Logistic Regression Ensembles)[23] uses the logistic regression

model as base classifier instead of tree in the CERP algorithm to classify binary

responses. Although logistic regression is known to be a robust classification

method for binary responses, it requires more observations than predictors.

Thus, in order to apply logistic regression to a high-dimensional feature space,

variable selection is unavoidable. However, in LORENS, each base classifier is
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constructed from a different set of predictors determined by a random partition

of the entire set of predictors, so that there are always more observations than

predictors. Hence the logistic regression model can be used without variable

selection.

Although LORENS is a useful classification method for high-dimensional

data, it is designed for binary responses. Multiclass problems are common,

thus it is necessary to develop a method comparable to LORENS for a multi-

way classification. LORENS is expanded to multiclass problems (mLORENS)

and the performance of the new method is evaluated in this study. The

multinomial logistic regression (MLR) model can be easily implemented and it

is less computer intensive than the tree-based CERP. It was shown that the

prediction accuracy of LORENS is as good as that of RF or SVM using real

data sets and a simulation study[23].

In this study, improvements of LORENS over the logistic regression model

and mLORENS over the multinomial logistic regression model are investigated.

To show the improvement of LORENS over the logistic regression model, data

on detection of allelic expression of imprinted genes are used. To show the

improvement of mLORENS over the multinomial logistic regression model, two

real data sets as well as simulated data are used.

Besides the above comparison, mLORENS is compared to Random Multi-

Nomial Logit (RMNL)[24] which is based on bagging in this research. RMNL

builds an ensemble of multinomial logits instead of tress in the frame of RF

8



using bootstrap samples. The program for RMNL model was implemented in

this study using R and the performance was compared to those of mLORENS

and MLR using real data and simulated data. mLORENS showed better

performance than RMNL in simulated data, but for real data, the two methods

showed similar performance.
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Chapter 2

Methods

2.1 LORENS (Logistic Regression Ensembles)

Based on the CERP algorithm, Lim et al.[23] developed LORENS by using

logistic regression models as base classifiers. To minimize the correlation among

classifiers in the ensemble, the feature space is randomly partitioned into K

subspaces with roughly equal sizes. Since the subspaces are randomly chosen

from the same distribution, we assume that there is no bias in selection of

predictors in each subspace. In each of these subspaces, a full logistic regression

model is fit without a variable selection when the number of subspaces is big

enough. LORENS combines the results of these multiple logistic regression

models by taking the average of the predicted probabilities within an ensemble.

The predicted probabilities from all the base classifiers (logistic regression

models) in an ensemble are averaged and the sample is classified as either 0

or 1 using a decision threshold on this average. Through finding the optimal

10



thresholds from cross validation, the balance of sensitivity and specificity

on unbalanced data sets could be significantly improved compared to other

classification methods without sacrificing the overall accuracy [23].

2.2 mLORENS for Multinomial Logistic Re-

gression Model

2.2.1 Multinomial Logistic Regression Model

Suppose Y is a categorical response variable with J categories. Let {π1, . . . , πJ}

be the response probabilities satisfying
∑

j πj = 1. When one takes n indepen-

dent observations based on these probabilities, the probability distribution for

the number of outcomes that occur as each of the J types is multinomial[2].

If a category is fixed as a baseline category, we have J − 1 log odds paired

with the baseline category. When the last category (J) is the baseline, the

baseline-category logits are

log

(
πj

πJ

)
, j = 1, . . . , J − 1.

The logit model using baseline-category logits with predictor x has the form

log

(
πj

πJ

)
= αj + βjx, j = 1, . . . , J − 1. (2.1)

The model consists of J − 1 logit equations, with separate parameters. By

fitting these J − 1 logit equations simultaneously, estimates of the model

11



parameters can be obtained, and the same parameter estimates occur for a

pair of categories regardless of the baseline category[1]. The estimates of the

response probabilities can be expressed as

πj =
exp(αj + βjx)∑
h exp(αh + βhx)

, j = 1, . . . , J − 1. (2.2)

Although MLR is a robust classification method for a multi-way classifi-

cation, it is not suitable for high-dimensional data, and variable selection is

inevitable. Current software packages do not seem to have variety of variable

selection algorithms for MLR. Selecting an optimal set of variables can be

computer intensive, and there is no guarantee that the best set can be chosen.

MLR can be applied to CERP algorithm without variable selection. We develop

a new method which possesses the nice properties of MLR and simultaneously

inherits all the advantages of CERP handling high-dimensional data sets.

2.2.2 mLORENS

MLR is used as a base classifier of CERP to develop a classification method

for multiclass problems. The procedure of mLORENS is described as follows.

Suppose Θ is the feature space of independent variables. This space is

randomly divided into mutually exclusive K subspaces (θ1, θ2, . . . , θK) with

roughly equal size. The number of independent variables in a subspace should be

small enough to fit a multinomial logit model. The partition size is determined

and this constraint is satisfied. For each subspace, a multinomial logit model is

fitted. That is, J − 1 logit equations (2.1) with
∑

j πj = 1 are simultaneously
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fitted.

Using different sets of explanatory variables, base classifiers are generated

respectively for each of the subspaces discussed above, and then we have a

set of base classifiers, say, {h1, . . . , hK} corresponding to the K subspaces.

The classification error is most reduced in an ensemble whose members make

individual errors in a less correlated manner. Due to the randomness of

the partitioning, we expect that the correlation among the base classifiers is

small[22, 18]. Hence we expect improvement of the prediction accuracy in the

whole ensemble[6]. In other words, the base classifiers are anticipated to have

similar prediction errors, and by combining these weak classifiers we can have

a better classifier using all explanatory variables.

To achieve a further improvement, several ensembles are constructed in the

same manner. Different combinations of predictors are generated, and each

ensemble consists of different base classifiers fitted using those different sets of

predictors. In this study, eleven ensembles are used and hence we have eleven

sets of base classifiers {hi1, . . . , hiK}, where i = 1, . . . , 11.

The predicted values are determined by the method of averaging. In the

base classifier in each subspace of every ensemble, the estimate of predicted

probability for each category is calculated as (2.2). The feature space is

partitioned and the predictors in a subspace of the feature space are used to

construct a base classifier. Hence, the same predictors which are used for fitting

a base classifier are used to get the predicted values of an instnace for a subspace
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of features. By averaging all predicted probabilities from every subspace in

an ensemble (the sum of estimated probabilities divided by the number of

partitions), we obtain the predicted probability for each ensemble, and again all

ensemble probabilities are averaged (the sum of ensemble probabilities divided

by the number of ensembles) to obtain the overall predicted probabilities for

the whole model.

In a binary classification the majority voting method can be used with

threshold to get the predicted values within or between ensembles. For a

multicategory classification, application of threshold is not straightforward.

Fortunately, averaging method works well for the multicategory cases in this

study. It turned out that the averaging worked slightly better for the binary

classification[23]. Through averaging we predict probability πj for each category

j = 1, . . . , J , with
∑

j πj = 1 and the category with the maximum predicted

probability is chosen as the predicted class.

The number of subspaces in a partition is searched through a nested cross

validation. Suppose the sample size of a training set is n. There are several

candidates for the partition size such as n/2, n/3, . . . , n/10 and n/12. In a

learning set a 3-fold cross validation is performed. In each nested learning set

of 3-fold cross validation, all candidates of the partition size are applied one

by one. That is, in each learning set, a mLORENS model is built for each

partition size. The prediction accuracies are evaluated and the partition sizes

yielding the highest accuracy at the corresponding test set is chosen. If n/i is
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chosen for some integer i, i = 2, . . . , 10 or 12, then the next step is to find a

number between n/(i− 1) and n/i, and between n/i and n/(i+ 1) based on

prediction accuracy through an adaptive dual binary search method[3]. After

this step, two candidates are left, and the one with higher accuracy is chosen

as the final partition size.

LORENS is less computer intensive than the tree-based CERP model. It is

easy to implement and performs well[23]. The program for base classifiers in

mLORENS was implemented in R using multinom function in nnet package.

2.3 Alternative Approaches to Multinomial Lo-

gistic Regression Model

A couple of alternative approaches can be tried instead of MLR. Multiple

logistic regression analysis (one for each pair of outcomes) can be considered

as an alternative. One problem of this approach is that each analysis is run on

a different sample. The other problem is that without constraining the logistic

models, we can end up with the probability of choosing all possible outcome

categories greater than 1.

Another approach is nested binary models (NBM)[9]. The categories can be

collapsed to two and then a logistic regression can be applied. For prediction,

the class with the highest estimated response is chosen. This alternative model

was compared to MLR in this research. In simulation experiment 1, NBM

was tried as a base classifier in mLORENS. Along with the variable selection,
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a single NBM was also tried, and the results were compared to MLR and

mLORENS with both of NBM and MLR. Even though it is expected to have

some information loss in this alternative case, the results of NBM were not

significantly worse on these simulation data.

2.4 RMNL (Random MultiNomial Logit)

Prinzie et al.[24] proposed Random MultiNomial Logit model which fits multino-

mial logit models in different bootstrap samples. They borrowed the structure

of RF, and used the idea of bagging. B bootstrap samples are drawn with

replacement from N data instances, and in each bootstrap sample a MLR is fit

with randomly selected m features from total of M features, so that we have B

MLR models. To combine the results of MLR models, two method were used.

One is Majority Voting (MV) which chooses the class with the greatest vote

among B prediction results. The other method is adjusted Majority Voting

(aMV) which is averaging the predicted probabilities from all B MLRs for each

class, and the class with the highest predicted probability is selected as the

predicted class.

In this study pre-fixed B = 100 was used. In RF, the number of variables

randomly selected at each node of a tree is usually square root of the total

number of variables. In this research, the number of selected variables m with

the highest prediction accuracy was chosen in learning phase among several

possible given candidates. The out-of-bag data were used to test the candidates.

For each instance in out-of-bag data of each bootstrap sample, the predicted
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class (MV) or the prediction probabilities for every class (aMV) are obtained

for every candidate of m. The results from the B models are merged according

to the method of combining (MV or aMV) for each candidate of m. The overall

accuracy is calculated for every m, and the one with the highest accuracy is

chosen. The models with the final number of selected variables are used in

testing phase. RF generates diversity by randomly selecting variables in each

node of a base tree. Thus various variables are involved in one tree model.

However, in RMNL, one base classifier is built by only one random selection of

variables.

2.5 Evaluation

In this research, efficiency of the classification methods was evaluated in terms

of ACC (overall accuracy), SENS (sensitivity), SPEC (specificity), and AUC

(areas under the receiver operating characteristic curves).

Overall accuracy was calculated by the total number of correct predictions

divided by total number of predictions. Sensitivity is proportion of true

positive (identified correctly as positive) among actual positives, and specificity

is proportion of true negative (identified correctly as negative) among actual

negatives. Sensitivity and specificity were calculated respectively for each

category as follows. If the number of classes is three, for example, Table 2.1

shows the predicted classification and true classification. The sensitivity is

calculated by a/(a+ b+ c) for class 1, e/(d+ e+ f) for class 2, and i/(g+h+ i)
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for class 3. The specificity is (e+ f + h+ i)/(d+ e+ f + g + h+ i) for class 1,

(a+c+g+i)/(a+b+c+g+h+i) for class 2, and (a+b+d+e)/(a+b+c+d+e+f)

for class 3.

Table 2.1: True class and predicted class

True class
1 2 3

Predicted class
1 a d g
2 b e h
3 c f i

AUC was used to assess the quality of the methods regarding sensitivity

and specificity. There is a trade-off between sensitivity and specificity, and

the receiver operating characteristic (ROC) curve can represent the trade-off

graphically. For a binary classification, AUC can be obtained from the Mann-

Whitney statistic since this statistic is equivalent to the value of AUC[10]. For

multiclass problems, volume should be considered instead of area. However, in

this study, mean AUC was used as an estimate of the extension of AUC. For

each category, AUC was obtained by grouping the data into the given category

and the rest using the Mann-Whitney statistic. The mean AUC was obtained

by averaging these AUC’s[17]. This estimate was shown as one of the best

estimates when the classifiers accompany each prediction with the estimated

probabilities of each class[12].

The significance of the difference in each evaluation category (ACC, SENS,

SPEC) was determined by McNemar’s test. A two-way contingency table was

built using actual and predicted classes of each subject for the classification

methods to be compared. McNemar’s test was performed with this contingency
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table. For overall accuracy, the contingency table was obtained by checking if

the predicted class is the same with the actual class for each subject. Accuracy

for each class was also compared by collapsing the data into two classes (one

and the rest). For sensitivity, a two-way contingency table was built using

the subjects from the actual class. For specificity, the table was constructed

from the subjects which are not from the actual class. If more than two

classification methods are compared on a set of data, then the Bonferroni

correction of significance level can be applied. If n methods need to be tested,

n − 1 pair-wise tests are required (the number of models required to test is

different depending on the data), and thus significance level is changed from α

to α/(n− 1).

2.6 Variable Selection

Variable selection is required for logistic regression or MLR models for high-

dimensional data. BW ratio was selected to use for the variable selection in

this research. BW ratio can be obtained by computing the between-group sum

of squares (BSS) and dividing it by the within-group sum of squares (WSS).

For each variable, this ratio is calculated, and the variables with high BW

ratios are selected. For a particular variable j, BW ratio is defined as

BWratio (j) =
BSS (j)

WSS (j)
=

∑
i

∑
k I (yi = k) (xkj − x.j)

2∑
i

∑
k I (yi = k) (xij − xkj)

2 (2.3)
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where x.j =

∑
i xij

N
, xkj =

∑
I(yi=k) xij

Nk

.

BW ratio was shown as a reliable method for variable selection for high-

dimensional data[11].
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Chapter 3

Applications to Real Data

3.1 Gene Imprinting Data

The improvement of LORENS over a single logistic regression model was inves-

tigated using Gene Imprinting Data[16]. Genomic imprinting is defined as gene

expression dependent on the parent of origin, and it gives rise to numerous

human diseases[31]. Greally[16] described the first characteristic sequence

parameter that discriminates imprinted regions - a paucity of short interspersed

transposable elements (SINEs). This finding has subsequently been confirmed

by other groups. The genomic data collected to study imprinted genes were

from the UCSC Genome Browser (http://genome.ucsc.edu/). Annotation data

were downloaded for the human genome (hg 16, July 2003 freeze). The sequence

features of interest were repetitive elements (chrN-rmsk files), CpG islands

(cpgIsland file), transcription start sites of other genes and the exon count of

each gene (refGene file). Each feature was examined for varying window sizes
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around the transcription start and end sites.

These data have information of 131 samples with 1248 predictors to classify

into imprinted or not imprinted genes. There are 43 imprinted genes and 88

non-imprinted genes. Twenty repetitions of 10-fold cross validation (CV) were

conducted for LORENS and a single logistic regression model. The performance

of the two methods were evaluated by accuracy, sensitivity, specificity, PPV

(positive predictive value: rate of true positives among positive predictions)

and NPV (negative predictive value: rate of true negatives among negative

predictions), and AUC. The partition size in LORENS was determined in the

learning phase according to accuracy. A partition size with the highest accuracy

was selected among several trials using an adaptive dual bisection method[23].

For LORENS an optimal threshold with highest accuracy was searched in the

training phase using nested cross validation[23]. A single logistic regression

model does not search an optimal threshold. Thus, for a fair comparison, two

fixed decision thresholds 0.5 and 0.33 (43/131, the proportion of imprinted

genes) were tried for both methods. To run a single logistic regression model,

variable selection is required. Among 1248 predictors 10, 30, and 50 predictors

were selected in the training phase considering the sample size of 131. Variable

selection was done by BW ratio.

Table 3.1 shows the results for this example, and Table 3.2 represents

the results of McNemar’s test to see the significance of difference between

two methods in accuracy, sensitivity and specificity. LORENS showed better
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performance than a single logistic model for both the fixed thresholds in

accuracy. Among 3 trials with different number of selected variables for logistic

regression model, the one with 30 variables showed the highest accuracy in both

fixed thresholds. In LORENS the partition size was 68 (sd 32) for threshold of

0.5 and 69 (sd 31) for threshold of 0.33. So, the number of variables in each

partition becomes approximately 18. When the logit models with 30 variables

were compared to LORENS, the p-values showed that, in sensitivity, there was

no significant difference between two models when the threshold was 0.5, and

for the threshold of 0.33, specificities were not significantly different. However,

when threshold search was done, LORENS showed better performance than a

logistic model in all the measures. The p-values regarding these comparisons

in accuracy, sensitivity, and specificity were all less than 0.0001. The accuracy

of LORENS improved to 85% from 82% or 80% when threshold search was

performed. In AUC, LORENS showed better performance than a single logistic

model for both fixed thresholds. The AUC of LORENS was 0.74 for threshold

of 0.5 and 0.80 for threshold of 0.33, and it improved to 0.84 when threshold

search procedure was used. Figure 3.1 depicts the accuracies with 1-standard

deviation bars for LORENS with searched and fixed thresholds and logit models

with 30 selected variables, and Figure 3.2 depicts the AUCs for the models.

When the threshold was changed to 0.33 from 0.5, the balance of sensitivity

and specificity improved without sacrificing the overall accuracy, while the

positive and negative predictive values became less balanced. When the

threshold search was conducted for LORENS, the balance of the positive and
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negative predictive values improved from both of the fixed threshold cases, and

the sensitivity and specificity showed better balance than when threshold of

0.5 was used. These results show that the threshold search is successful.
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Table 3.1: Gene Imprinting Data: Performances (SD in parentheses) of
LORENS and logistic regression models. Twenty repetitions of 10-fold
CV were used for each method.

Threshold Model ]var.a ]part.b ACC AUC SENS SPEC PPV NPV
.38(.02)c LORENS all 71.2

(33.4)
.85
(.03)

.83
(.03)

.77
(.04)

.91
(.02)

.81
(.03)

.89
(.02)

.5d LORENS all 67.9
(31.5)

.82
(.02)

.74
(.03)

.49
(.06)

.99
(.02)

.96
(.05)

.80
(.02)

Logistic 10 .69
(.03)

.59
(.03)

.31
(.05)

.87
(.04)

.55
(.09)

.72
(.02)

30 .71
(.04)

.66
(.05)

.53
(.08)

.80
(.04)

.56
(.07)

.78
(.03)

50 .68
(.04)

.64
(.04)

.52
(.06)

.75
(.05)

.51
(.05)

.76
(.03)

.33d LORENS all 68.5
(30.9)

.80
(.02)

.80
(.02)

.82
(.02)

.79
(.04)

.65
(.04)

.90
(.01)

Logistic 10 .66
(.04)

.64
(.04)

.60
(.07)

.68
(.06)

.48
(.04)

.78
(.03)

30 .69
(.05)

.66
(.06)

.58
(.09)

.75
(.05)

.53
(.07)

.78
(.04)

50 .68
(.04)

.65
(.05)

.56
(.09)

.74
(.03)

.51
(.06)

.77
(.04)

a number of selected variables chosen in the training phase
b average number of mutually exclusive subsets of predictors in a partition, chosen

in the trainiing phase
c threshold searched in the training phase
d fixed threshold
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Table 3.2: McNemar’s Test Results of Gene Imprinting Data

Models p-value
LORENSa: Logistic w/0.5th. 30var.b ACC: <0.0001

SENS: <0.0001
SPEC: <0.0001

LORENS : Logistic w/0.33th. 30var.c ACC: <0.0001
SENS: <0.0001
SPEC: <0.0001

LORENS w/0.5th.d: Logistic w/0.5th. 30var. ACC: <0.0001
SENS: 0.1028
SPEC: <0.0001

LORENS w/0.33th.e: Logistic w/0.33th. 30var. ACC: <0.0001
SENS: <0.0001
SPEC: 0.2563

a LORENS with searched threshold
b Logistic regression with a fixed threshold of 0.5 and 30 variables
c Logistic regression with a fixed threshold of 0.33 and 30 variables
d LORENS with a fixed threshold of 0.5
e LORENS with a fixed threshold of 0.33
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Figure 3.1: Accuracies for Gene Imprinting Data
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Figure 3.2: AUCs for Gene Imprinting Data
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3.2 Gastrointestinal Bleeding Data

The first real data set used for comparison of the multi-way classification

methods is data on Acute gastrointestinal bleeding (GIB). GIB is an increasing

health care problem due to rising NSAID (non-steroidal anti-inflammatory

drugs) uses in an aging population[25]. In the emergency room (ER), the ER

physician can misdiagnose a GIB patient at least 50% of the time [20]. While

it is best for a gastroenterologist to diagnose GIB patients, it is not feasible

due to time and constraints. Classification models can be used to assist the

ER physician to diagnose GIB patients efficiently and effectively, providing

scarce health care resources to those who need it the most. Eight different

classification models on a 121 patient GIB database were evaluated [7]. Using

clinical and laboratory information available within a few hours of patient

presentation, the models can be used to predict the source of bleeding, need

for intervention, and disposition in patients with acute upper, mid, and lower

GIB.

To reduce the mortality from acute GIB by an appropriate treatment, it is

important to find the source of bleeding in its early stage. Hence it is required to

predict the source of the bleed within a few hours of patient’s presentation from

the patient clinical data. The bleeding source is classified into three locations:

Upper, Mid, and Lower intestine. The definitive source of bleeding was the

irrefutable identification of a bleeding source at upper endoscopy, colonoscopy,

small bowel enteroscopy, or capsule endoscopy. Twenty variables used to predict
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the source of bleeding include prior history of GIB, hematochezia, hematemesis,

melena, syncope/presyncope, risk for stress ulceration, cirrhosis, ASA/NSAID

use, systolic and diastolic blood pressures, heart rate, orthostasis, NG (Naso

Gastric) lavage, rectal exam, platelet count, creatinine, BUN (Blood Urea

Nitrogen), and INR (International Normalized Ratio). The records of 121 GIB

patients were used in this study. Among 121 subjects, 81 fall in upper, 29 in

lower, and the remaining 11 fall in mid.

For mLORENS, fixed partition size of 2 or 3 was used without conducting

the procedure of partition size searching since there are only 20 variables. About

10 or 7 variables were included in each subspace. For RMNL, 100 bootstrap

samples were drawn, and in each sample MLR was fit. In RF, random variable

selection is conducted at each node, but unlike RF, in RMNL variable selection

should be done before fitting multinomial logit. Hence, the number of variables

with the highest accuracy among pre-assigned numbers was chosen in learning

phase. In this example, the number of variables was searched between 5 and

20. For each candidate number, average accuracy was calculated from the 100

MLR fits, and the number with the highest accuracy was chosen and used for

the test sets. The average selected number of variables for RMNL was about

13 (sd 4). For the comparison of the three models, 20 repetitions of 10-fold CV

were conducted for each model.

The performance of the methods for this example is provided in Table 3.3.

In mLORENS, the results for partition sizes 2 and 3 were almost the same, but
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the mean AUC of partition size 2 was little higher than that of partition size 3.

In RMNL, there was no significant difference between two combining methods:

MV and aMV in all measurements. Table 3.4 shows the results of McNemar’s

test comparing the three methods: mLORENS with partition size 2, MLR,

and RMNL with aMV. In overall accuracy, mLORENS performed better than

a single MLR. The accuracy of mLORENS was 93% and the accuracy of a

MLR was 89%. The difference between the accuracies of mLORENS and MLR

is significant yielding the p-value less than 0.0001. In sensitivity, mLORENS

showed higher performance than a single MLR for the two large classes (Upper

and Lower). In the smallest class (Mid), MLR showed higher sensitivity than

mLORENS, but the difference was not significant since the p-value of the test

was 0.0576. In specificity, mLORENS was better in Lower and Mid classes,

but in the largest class (Upper), the specificity of MLR was significantly better

than that of mLORENS. RMNL also performed better than MLR in accuracy.

RMNL showed higher sensitivity in two large classes (Upper and Lower), and

MLR showed better sensitivity in the smallest class (Mid). In the smallest class,

both of the two ensemble methods using MLR models did not show higher

sensitivity than a single MLR. This finding implies that the ensemble methods

might have a problem of imbalance. When the accuracies of mLORENS and

RMNL were compared, the p-value was 0.01495. In terms of AUC, all three

methods showed high performance. In mLORENS, AUC for partition size

of 2 was higher than that of partition size 3. The balance of sensitivity and

specificity was also better in the case of partition size of 2 specifically in the
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class of Mid. Figure 3.3 (accuracies) and Figure 3.4 (AUCs) are provided to

help comparison among the models.
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Table 3.3: GIB Data: Performance (SD in parentheses) of mLORENS , MLR
and RMNL. Twenty repetitions of 10-fold CV were used for each method.

Model ]Var. ]Part.a ACC AUC b Upper Lower Mid
mLORENS all 2 .93 .90 SENS: .98 (.01) .89 (.03) .68 (.09)

(fixed) (.01) (.02) SPEC: .93 (.02) .97 (.01) .98 (.01)
AUC: .96 (.01) .93 (.02) .83 (.05)

all 3 .93 .88 SENS: .99 (.00) .90 (.02) .52 (.07)
(fixed) (.01) (.01) SPEC: .89 (.02) .96 (.01) .99 (.00)

AUC: .94 (.01) .93 (.01) .75 (.03)
MLR all .89 .90 SENS: .92 (.02) .86 (.04) .75 (.09)

(.02) (.02) SPEC: .97 (.03) .95 (.01) .94 (.01)
AUC: .95 (.01) .90 (.02) .85 (.05)

RMNLc 12.50d .92 .90 SENS: .96 (.01) .91 (.02) .66 (.13)
w/aMV (4.04) (.02) (.03) SPEC: .96 (.03) .95 (.02) .97 (.01)

AUC: .96 (.01) .93 (.02) .81 (.07)
RMNLe 12.50d .92 .89 SENS: .96 (.01) .91 (.04) .61 (.15)
w/MV (4.04) (.02) (.03) SPEC: .95 (.03) .95 (.02) .97 (.01)

AUC: .96 (.01) .93 (.02) .79 (.07)
a pre-determined number of subsets in a partition
b mean of the AUCs from the three classes
c RMNL with the combining method of averaging predictive probabilities
d average number of selected variables in a bootstrap sample to fit a multinomial logit

model, chosen among the numbers from 5 to 20 in the learning phase
e RMNL with the combining method of majority voting
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Table 3.4: McNemar’s Test Results of GIB Data

p-value
Models Overall Upper Lower Mid

mLORENS w/2pt : MLR ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.0152 0.0576
SPEC: <0.0001 <0.0001 <0.0001

mLORENS w/2pt : RMNL w/aMV ACC: 0.0150 0.1334 0.0795 0.0252
SENS: <0.0001 0.0518 0.7119
SPEC: 0.0008 0.0002 0.0081

MLR : RMNL w/aMV ACC: <0.0001 <0.0001 0.0004 0.0002
SENS: <0.0001 <0.0001 0.0117
SPEC: 0.2031 0.2515 <0.0001
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Figure 3.3: Accuracies for GIB Data
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Figure 3.4: AUCs for GIB Data
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3.3 Breast Cancer Data

Another example used for illustrating the multi-way classification is deter-

mination of stromal signatures in breast carcinoma. Two types of tumors

with fibroblastic features, solitary fibrous tumor (SFT) and desmoid-type fi-

bromatosis (DTF), were examined by DNA microarray analysis and the two

tumor types were found to differ in their patterns of expression in carious

functional categories of genes[32]. Their findings suggest that gene expres-

sion patterns characteristic of soft tissue tumors can be used to discover

new markers for normal connective tissue cells. Compared to the GIB data

the breast cancer data are high-dimensional. The data set contains 4148

variables on 57 tumor patients. A classification method can be applied to

classify the data into DTF, SFT, and other types of tumors. Ten cases of

DTF and 13 cases of benign SFT were compared to 34 other previously ex-

amined soft tissue tumors with expression profiling on 42,000 element cDNA

microarray corresponding to approximately 36,000 unique gene sequences.

The data were obtained from the web site http://smd.standford.edu/cgi-

bin/publication/viewPublication.l?pub no=436.

Performance of the three methods were evaluated by conducting 20 repeti-

tions of 10-fold CV for each method, and the result is provided in Table 3.5.

The results of McNemar’s tests are in Table 3.6. Figures 3.5 and 3.6 represent

the accuracies and the AUCs with 1-sd bars. For mLORENS, the partition size

was searched in learning phase by selecting the one with the highest accuracy,
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and the average was 207 (sd 79), which means that the number of variables in

each partition is about 20. To apply the MLR model in this example, variable

selection is necessary because the data are high-dimensional with 4148 predic-

tors and only 57 subjects. By the BW ratio criterion, 10, 20 and 30 variables

were selected in the training phase. For RMNL, 100 bootstrap samples were

used to construct MLR models, and the number of variables having the highest

accuracy was searched from 15 to 30 in the learning phase. The average number

of selected variable was 26 (sd 4) for both of the MV and aMV approaches.

mLORENS outperformed a single MLR in all measurements regardless of

the number of selected variables in MLR models. Among the 3 MLR models

with different numbers of variables, the average accuracy and mean AUC of

the models with 30 variables were higher than those with 10 or 20 variables.

The MLR model with 30 variables was compared to mLORENS. The difference

between the two models in terms of overall accuracy was significantly different

(p-value < 0.0001). mLORENS showed higher sensitivity and specificity than

MLR for all classes. MLR appeared to be more balanced in sensitivity and

specificity in the classes of SFT and other tumors, but the numbers were

lower than those of mLORENS. In RMNL, there was no effect of the method

of combining MLR models. RMNL showed similar results as mLORENS in

all measures with a better performance than MLR models. The p-value in

accuracy between mLORENS and RMNL was 0.4098, and less than 0.0001

for the comparison of RMNL and MLR models. In sensitivity and specificity,
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mLORENS and RMNL showed similar results, but the lowest number among

the sensitivities of three classes for mLORENS was significantly lower than

that of RMNL, and the same thing was found for specificities. From this result,

we can conclude that the balance of sensitivity and specificity was better in

RMNL than mLORENS for this example, and RMNL showed slightly higher

AUC than mLORENS. Consequently, this example showed the advantage of

the ensemble methods in classifying a high dimensional data set. mLORENS

performs significantly better than MLR. The performance of RMNL with

random variable selection was as good as that of mLORENS.

39



Table 3.5: Breast Cancer Data: Performance (SD in parentheses) of mLORENS,
MLR, and RMNL. Twenty repetitions of 10-fold CV were used for each method.

Model ]Var.a ]Part.b ACC AUCc DTF SFT other
mLORENS all 207 .92 .92 SENS: 1.00 (.00) .68 (.08) .99 (.02)

(79) (.02) (.02) SPEC: .99 (.01) 1.00 (.00) .82 (.04)
AUC: 1.00 (.01) .84 (.04) .91 (.03)

MLR 10 .66 .73 SENS: .87 (.15) .43 (.14) .69 (.08)
(fixed) (.07) (.07) SPEC: .93 (.04) .83 (.05) .64 (.12)

AUC: .90 (.07) .63 (.07) .67 (.08)
20 .67 .76 SENS: .84 (.13) .58 (.14) .66 (.09)

(fixed) (.07) (.05) SPEC: .93 (.03) .79 (.06) .73 (.10)
AUC: .89 (.06) .69 (.07) .70 (.07)

30 .69 .78 SENS: .88 (.09) .66 (.12) .65 (.08)
(fixed) (.05) (.04) SPEC: .92 (.04) .79 (.06) .79 (.09)

AUC: .90 (.04) .73 (.05) .72 (.05)
RMNL 25.86d .93 .93 SENS: 1.00 (.02) .75 (.07) .98 (.02)
w/aMV (3.92) (.02) (.02) SPEC: 1.00 (.01) .99 (.01) .86 (.04)

AUC: 1.00 (.01) .87 (.03) .92 (.02)
RMNL 25.86d .93 .92 SENS: 1.00 (.02) .74 (.08) .98 (.03)
w/MV (3.92) (.03) (.02) SPEC: 1.00 (.01) .99 (.01) .85 (.05)

AUC: 1.00 (.01) .86 (.04) .91 (.03)
a number of selected variables chosen in the training phase
b average number of mutually exclusive subsets of predictors in a partition, chosen in the

trainiing phase
c mean of the AUCs from the three classes
d average number of selected variables in a bootstrap sample to fit a multinomial logit model,

chosen among the numbers from 15 to 30 in the learning phase
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Table 3.6: McNemar’s Test Results of Breast Cancer Data

p-value
Models Overall DTF SFT other

mLORENS : MLR w/30var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.5805 <0.0001
SPEC: <0.0001 <0.0001 0.1636

mLORENS : RMNL w/aMV ACC: 0.4098 1.0000 0.4610 0.4098
SENS: 1.0000 0.0068 0.0524
SPEC: 0.6831 0.0026 0.0124

MLR w/30var : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.0133 <0.0001
SPEC: <0.0001 <0.0001 0.0023
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Figure 3.5: Accuracies for Breast Cancer Data
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Figure 3.6: AUCs for Breast Cancer Data
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Chapter 4

Simulation Study

4.1 Simulation Experiment 1

Simulation study was conducted on two different designs. First one is high-

dimensional data, and the second one is relatively small data mimicking the

GIB data. Details of the first design are given in this section. Two data sets,

one for training and the other for testing, with 120 subjects and 500 predictors

were generated. Average performance of 100 pairs of these data were calculated.

The ratio of the classes was given as 40:40:40. The 500 predictors contain 50

significant variables constructed either independently or with correlation from

normal distributions with different means with variance (σ2) of 1 or 4, and the

remaining 450 variables were generated from a normal distribution with the

same mean to serve as noise.

Figure 4.1 displays the data design for the simulation experiment with

independent predictors. Among the 50 significant variables, the first 10 variables
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were generated from N(0, σ2) for class 1, N(1, σ2) for class 2, and N(2, σ2) for

class 3. Next 10 variables were generated from N(0, σ2) for class 1, N(1, σ2) for

classes 2 and 3. Next 10 variables were generated from N(0, σ2) for classes 1

and 2, and N(1, σ2) for class 3. Next 5 variables were generated from N(0, σ2)

for 35 samples in class 1, N(1, σ2) for 5 samples in class 1 and 30 samples

in class 2, and N(2, σ2) for 10 samples in class 2 and all samples in class 3.

Next 5 variables were generated from N(0, σ2) for all samples in class 1 and 10

samples in class 2, N(1, σ2) for 30 samples in class 2 and 5 samples in class 3,

and N(2, σ2) for the remaining 35 samples in class 3. Next 5 variables were

generated from N(0, σ2) for 35 samples in class 1, N(1, σ2) for 5 samples each

in classes 1 and 3, and all samples in class 2, and N(2, σ2) for the remaining

35 samples in class 3. Next 5 variables were generated from N(0, σ2) for all

samples in class 1 and 5 samples in class 2, N(1, σ2) for 30 samples in class 2,

and N(2, σ2) for 5 samples in class 2 and all samples in class 3. The remaining

450 variables were independently generated from N(0, σ2).

For the data with correlated predictors, a correlation matrix was created

before generating the simulation data. The upper diagonal elements of positive

definite correlation matrix were generated from Uniform(0, 0.8). This correla-

tion matrix was applied only to the 50 significant variables, and the remaining

450 noise variables were independently generated from N(0, σ2) like the data

with independent predictors.
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Figure 4.1: Data design for simulation experiment 1 with independent predictors
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The performance of three classification models, mLORENS, MLR and

RMNL, were evaluated using the test data sets to the models fitted from the

learning sets. The average of the 100 test results is provided in Tables 4.1, 4.2,

4.4, 4.5, 4.7, 4.8, 4.10, and 4.11. Tables 4.1 and 4.2 are the results for the data

with independent variables and standard deviation 1, and Tables 4.4 and 4.5

are the results for the data with correlated variables and standard deviation

1. Tables 4.7 and 4.8 are the results for the data with independent variables

and standard deviation 2, and Tables 4.10 and 4.11 are the results for the

data with correlated variables and standard deviation 2. Comparison among

mLORENS, MLR with 10 variables selected in learning phase, and RMNL was

conducted using McNemar’s test for the data with standard deviation 1, and

the results were provided in Table 4.3 for the data with independent variables,

and Table 4.6 for the data with correlated variables. For the data with standard

deviation 2, mLORENS, MLR with 10 variables selected in learning phase,

MLR with 50 variables selected in learning phase, MLR with all 50 significant

variables, and RMNL were compared, and the results are given in Table 4.9

for the data with independent variables and in Table 4.12 for the data with

correlated variables. Figures 4.2, 4.4, 4.6, and 4.8 depict the accuracies and

Figures 4.3, 4.5, 4.7, and 4.9 depict the AUCs for each data design.

In mLORENS, the partition size with the highest accuracy was searched

in learning phase. Some fixed partition sizes were also tried, and as expected,

the result with the search procedure was better than that with a fixed size.

For MLR, variable selection was conducted by BW ratio. Since the number
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of significant variables is unknown in practice, it was pre-assigned as 10, 30,

50 or 70 and the given number of variables were selected in learning phase.

To see how many significant variables were actually selected, the number of

selected variables from the 50 significant variables was counted. Unlike a real

data analysis, the significant variables are known, thus the MLR model with

these 50 significant variables was also tried as an ideal case. For RMNL, 100

bootstrap samples were used to construct a model. The number of predictors

in the model yielding the highest accuracy was searched using a bootstrap

sample in training phase among 10, 16, 22, 28, 34, 40, 46, 52, and 58.

mLORENS showed higher performance than MLR and RMNL in all per-

formance measures. Among the 5 MLR models with different numbers of

predictors, the model with all 50 significant predictors did not show the best

performance, while the model with only 10 predictors was the best in overall

accuracy and mean AUC. When 50 variables were used in MLR, the numbers

of selected variables from the significant predictors were about 49 for the data

with standard deviation 1 and about 39 for the data with standard deviation

2, but the accuracies were similar to the MLR model with the 50 significant

variables. This result might be explained by the structure of the data. Only a

few predictors possess most of the information and the rest of the significant

predictors could be redundant, because the data contain variables from only 8

distinct sets of distributions except for errors. On the other hand, mLORENS

seems to take advantage in dealing with redundancy. The searched partition

size is about 30 to 38, with 13 to 17 variables in each partition. This implies
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that only one or two significant variables may be included in each partition.

Thus it would reduce the chance of redundancy.

Variable selection through BW ratio worked well on these data sets. In

the data with standard deviation 1, almost all the significant variables were

selected, while fewer significant variables were chosen in the data with standard

deviation 2. In RMNL, the overall accuracy for the combining method of aMV

was significantly higher than that of MV in all data designs (p-value was less

than 0.0001) except for the data with independent predictors and standard

deviation 2 (p-value was 0.1817), even though the numbers of selected variables

of aMV were little less than those of MV. In AUC, MV and aMV showed

similar results.

The accuracy of mLORENS was significantly higher than the highest

accuracies of MLR and RMNL. The p-values were less than 0.0001 for all

comparisons in all four different designs. As expected, the results with standard

deviation 2 are poorer than those of standard deviation 1, and the data

with correlated predictors showed poorer performance than the data with

independent predictors. In the data with standard deviation 2, MLR models

with 10, 30, 50 selected variables and all 50 significant variables showed similar

accuracies when the predictors were independent. However, MLR models with

10 or 30 selected variables showed higher accuracies than MLR with 50 selected

variables or all 50 significant variables when the predictors were correlated.

Using more variables in correlated data negatively affected to the accuracy.

Even though the 3 classes in the response were supposed to be balanced, the
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50 significant variables did not fairly predict the 3 classes. We can check from

the data design that the data have much less accurate information for class

2 than for classes 1 and 3. Hence, in all four different data types and all

classification methods, sensitivity of class 2 was lower than that of the other 2

classes. As a result, the sensitivity and specificity became unbalanced in class

2. Hence, it is not easy from examining sensitivity and specificity to determine

which method is better than the others in terms of balance of sensitivity and

specificity. However, the mean AUC of mLORENS was the highest compared

to those of the other methods in all four data types, and the numbers became

lower as the variables of the data became correlated and the standard deviation

became larger.
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Table 4.1: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Independent predictors from normal distribution
with standard deviation 1.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 38.0 .92 .94 SENS: .99 (.01) .76 (.07) .99 (.01)
(7.6) (.02) (.02) SPEC: .94 (.03) .99 (.01) .94 (.03)

AUC: .97 (.01) .88 (.03) .97 (.01)
all 10 .89 .92 SENS: .97 (.03) .76 (.08) .94 (.04)

(fixed) (.03) (.02) SPEC: .92 (.03) .96 (.03) .95 (.02)
AUC: .95 (.02) .86 (.04) .95 (.02)

all 20 .92 .94 SENS: .99 (.01) .79 (.07) .99 (.02)
(fixed) (.02) (.02) SPEC: .95 (.02) .99 (.01) .95 (.03)

AUC: .97 (.01) .89 (.03) .97 (.01)
all 30 .92 .94 SENS: .99 (.01) .78 (.07) .99 (.01)

(fixed) (.02) (.02) SPEC: .95 (.03) .99 (.01) .94 (.03)
AUC: .97 (.01) .88 (.03) .97 (.01)

MLR 10 10 .83 .88 SENS: .89 (.07) .75 (.08) .86 (.08)
with (0) (.04) (.03) SPEC: .94 (.03) .88 (.05) .93 (.03)

variable AUC: .92 (.04) .82 (.04) .89 (.04)
selection 30 29.2 .82 .86 SENS: .88 (.07) .72 (.10) .86 (.08)

(.8) (.05) (.04) SPEC: .90 (.04) .88 (.05) .95 (.03)
AUC: .89 (.04) .80 (.06) .90 (.04)

50 49.2 .74 .81 SENS: .80 (.08) .69 (.08) .74 (.09)
(.8) (.04) (.03) SPEC: .88 (.04) .81 (.05) .91 (.04)

AUC: .84 (.04) .75 (.04) .82 (.05)
70 49.2 .67 .75 SENS: .72 (.09) .63 (.09) .66 (.10)

(.7) (.06) (.04) SPEC: .87 (.05) .76 (.06) .87 (.04)
AUC: .80 (.05) .70 (.05) .77 (.06)

MLR 50 .74 .81 SENS: .80 (.09) .68 (.10) .73 (.10)
w/ signif. (.05) (.04) SPEC: .88 (.05) .82 (.06) .91 (.04)
variables AUC: .84 (.05) .75 (.05) .82 (.06)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.2: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Independent predictors from normal distribution
with standard deviation 1 (continued).

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3
RMNL 25.7e .86 .89 SENS: .96 (.05) .66 (.10) .95 (.05)

w/ aMV (10.9) (.04) (.03) SPEC: .91 (.04) .96 (.04) .92 (.04)
AUC: .94 (.03) .81 (.05) .94 (.03)

RMNL 32.9e .85 .89 SENS: .95 (.06) .66 (.09) .93 (.05)
w/ MV (10.1) (.03) (.03) SPEC: .91 (.04) .94 (.05) .92 (.03)

AUC: .93 (.03) .80 (.04) .93 (.03)
a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the

training phase
d mean of the AUCs from the three classes
e average number of selected variables in a bootstrap sample to fit a multinomial logit model,

chosen among the numbers of 10, 16, 22, 28, 34, 40, 46, 52, 58 in the learning phase
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Table 4.3: McNemar’s Test Results of Simulation Experiment 1: Independent
predictors with standard deviation 1

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS : MLR w/10var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.1756 <0.0001
SPEC: 0.5551 <0.0001 0.0349

mLORENS : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

MLR w/10var : RMNL w/aMV ACC: <0.0001 0.5813 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 0.0003

RMNL w/aMV : RMNL w/MV ACC: <0.0001 0.0987 <0.0001 0.0004
SENS: <0.0001 0.5815 <0.0001
SPEC: 0.4577 <0.0001 0.9600
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Figure 4.2: Accuracies for Simulation Experiment 1: Independent predictors
with standard deviation 1
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Figure 4.3: AUCs for Simulation Experiment 1: Independent predictors with
standard deviation 1

55



Table 4.4: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Correlated significant predictors from multivariate
normal distribution with standard deviation 1.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 37.7 .88 .91 SENS: .98 (.02) .69 (.08) .98 (.02)
(7.9) (.03) (.02) SPEC: .92 (.03) .98 (.01) .92 (.03)

AUC: .95 (.02) .84 (.04) .95 (.02)
all 10 .84 .88 SENS: .95 (.04) .68 (.08) .91 (.05)

(fixed) (.03) (.02) SPEC: .90 (.03) .93 (.03) .94 (.03)
AUC: .92 (.02) .80 (.04) .92 (.03)

all 20 .88 .91 SENS: .97 (.03) .71 (.08) .97 (.03)
(fixed) (.03) (.02) SPEC: .93 (.03) .97 (.02) .93 (.03)

AUC: .95 (.02) .84 (.04) .95 (.02)
all 30 .89 .92 SENS: .98 (.02) .71 (.07) .98 (.02)

(fixed) (.02) (.02) SPEC: .93 (.03) .98 (.02) .93 (.03)
AUC: .95 (.02) .84 (.04) .95 (.02)

MLR 10 10 .76 .82 SENS: .83 (.08) .66 (.10) .80 (.09)
with (0) (.05) (.03) SPEC: .92 (.04) .83 (.05) .90 (.04)

variable AUC: .87 (.04) .74 (.05) .85 (.05)
selection 30 29.2 .75 .81 SENS: .82 (.07) .65 (.09) .79 (.08)

(.8) (.05) (.04) SPEC: .90 (.04) .81 (.06) .92 (.04)
AUC: .86 (.04) .73 (.05) .85 (.05)

50 49.2 .66 .74 SENS: .71 (.09) .58 (.09) .67 (.10)
(.8) (.06) (.04) SPEC: .87 (.05) .74 (.06) .87 (.04)

AUC: .79 (.05) .66 (.05) .77 (.06)
70 49.2 .60 .70 SENS: .63 (.08) .55 (.08) .61 (.10)

(.8) (.06) (.04) SPEC: .85 (.05) .70 (.06) .84 (.05)
AUC: .74 (.05) .62 (.05) .72 (.06)

MLR 50 .66 .74 SENS: .72 (.09) .58 (.10) .68 (.10)
w/signif. (.06) (.04) SPEC: .87 (.05) .75 (.07) .87 (.05)
variables AUC: .79 (.05) .66 (.06) .77 (.06)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.5: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Correlated significant predictors from multivari-
ate normal distribution with standard deviation 1 (continued).

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3
RMNL 24.5e .83 .87 SENS: .94 (.05) .61 (.09) .94 (.05)
w/aMV (9.3) (.03) (.02) SPEC: .90 (.04) .94 (.04) .91 (.04)

AUC: .92 (.03) .77 (.04) .92 (.03)
RMNL 28.8e .82 .86 SENS: .94 (.05) .59 (.09) .92 (.05)
w/MV (8.4) (.03) (.02) SPEC: .89 (.04) .93 (.04) .91 (.04)

AUC: .91 (.03) .76 (.04) .92 (.03)
a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the

training phase
d mean of the AUCs from the three classes
e average number of selected variables in a bootstrap sample to fit a multinomial logit

model, chosen among the numbers of 10, 16, 22, 28, 34, 40, 46, 52, 58 in the learning
phase
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Table 4.6: McNemar’s Test Results of Simulation Experiment 1: Correlated
predictors with standard deviation 1

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS : MLR w/10var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.0017 <0.0001
SPEC: 0.1784 <0.0001 <0.0001

mLORENS : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

MLR w/10var : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 0.0519

RMNL w/aMV : RMNL w/MV ACC: <0.0001 0.0012 <0.0001 0.0119
SENS: 0.2073 0.0444 <0.0001
SPEC: 0.0028 <0.0001 0.7656
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Figure 4.4: Accuracies for Simulation Experiment 1: Correlated predictors
with standard deviation 1

59



Figure 4.5: AUCs for Simulation Experiment 1: Correlated predictors with
standard deviation 1
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Table 4.7: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Independent predictors from normal distribution
with standard deviation 2.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 29.6 .71 .78 SENS: .86 (.06) .40 (.08) .86 (.06)
(8.8) (.04) (.03) SPEC: .84 (.04) .87 (.04) .84 (.04)

AUC: .85 (.03) .64 (.04) .85 (.03)
all 10 .67 .75 SENS: .85 (.06) .40 (.08) .77 (.07)

(fixed) (.04) (.03) SPEC: .80 (.05) .83 (.04) .87 (.04)
AUC: .82 (.04) .62 (.04) .82 (.04)

all 20 .70 .78 SENS: .85 (.06) .41 (.07) .85 (.06)
(fixed) (.04) (.03) SPEC: .84 (.04) .87 (.04) .85 (.04)

AUC: .85 (.03) .64 (.04) .85 (.03)
all 30 .71 .78 SENS: .86 (.06) .40 (.08) .86 (.06)

(fixed) (.04) (.03) SPEC: .84 (.04) .87 (.03) .84 (.04)
AUC: .85 (.03) .64 (.04) .85 (.03)

MLR 10 9.6 .61 .71 SENS: .69 (.08) .46 (.09) .68 (.09)
with (.6) (.05) (.04) SPEC: .83 (.05) .76 (.06) .83 (.05)

variable AUC: .76 (.05) .61 (.05) .75 (.06)
selection 30 20.2 .60 .70 SENS: .68 (.09) .46 (.11) .67 (.09)

(1.9) (.06) (.04) SPEC: .83 (.05) .74 (.07) .84 (.05)
AUC: .75 (.05) .60 (.06) .75 (.05)

50 38.9 .60 .70 SENS: .70 (.09) .50 (.09) .61 (.10)
(2.0) (.04) (.03) SPEC: .82 (.05) .73 (.06) .86 (.05)

AUC: .76 (.05) .62 (.05) .73 (.05)
70 39.5 .55 .66 SENS: .63 (.09) .45 (.09) .56 (.10)

(2.0) (.05) (.04) SPEC: .79 (.05) .70 (.06) .83 (.05)
AUC: .71 (.05) .58 (.05) .69 (.05)

MLR 50 .61 .71 SENS: .70 (.11) .50 (.10) .63 (.10)
w/signif. (.06) (.04) SPEC: .82 (.06) .74 (.07) .86 (.05)
variables AUC: .76 (.06) .62 (.05) .75 (.05)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.8: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Independent predictors from normal distribution
with standard deviation 2 (continued).

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3
RMNL 27.9e .64 .73 SENS: .79 (.08) .38 (.08) .74 (.09)
w/aMV (10.0) (.04) (.03) SPEC: .81 (.05) .81 (.06) .83 (.04)

AUC: .80 (.04) .59 (.04) .79 (.04)
RMNL 31.4e .63 .72 SENS: .77 (.10) .39 (.09) .74 (.09)
w/MV (9.7) (.05) (.03) SPEC: .81 (.05) .80 (.06) .84 (.05)

AUC: .79 (.05) .60 (.05) .79 (.04)
a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the

training phase
d mean of the AUCs from the three classes
e average number of selected variables in a bootstrap sample to fit a multinomial logit model,

chosen among the numbers of 10, 16, 22, 28, 34, 40, 46, 52, 58 in the learning phase
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Table 4.9: McNemar’s Test Results of Simulation Experiment 1: Independent
predictors with standard deviation 2

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS : MLR w/10var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.0185 <0.0001 0.0126

mLORENS : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.0291 <0.0001
SPEC: <0.0001 <0.0001 0.0820

MLR w/10var : RMNL w/aMV ACC: <0.0001 <0.0001 0.2915 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.0025 <0.0001 0.2572

MLR w/10var : MLR w/sig.var ACC: 1.0000 0.4259 0.9152 0.3667
SENS: 0.3714 <0.0001 <0.0001
SPEC: 0.0624 0.0005 <0.0001

MLR w/50var : MLR w/sig.var ACC: 0.1282 0.4148 0.5179 0.0440
SENS: 0.8136 0.5519 0.0857
SPEC: 0.3996 0.7390 0.2652

RMNL w/aMV : RMNL w/MV ACC: 0.1817 0.0079 0.5975 0.9310
SENS: 0.0011 0.1116 0.3187
SPEC: 0.4807 0.0376 0.2955
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Figure 4.6: Accuracies for Simulation Experiment 1: Independent predictors
with standard deviation 2
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Figure 4.7: AUCs for Simulation Experiment 1: Independent predictors with
standard deviation 2
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Table 4.10: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Correlated significant predictors from multivariate
normal distribution with standard deviation 2.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 30.9 .68 .76 SENS: .83 (.07) .37 (.09) .83 (.06)
(8.4) (.04) (.03) SPEC: .82 (.04) .86 (.04) .84 (.04)

AUC: .83 (.03) .62 (.05) .83 (.04)
all 10 .64 .73 SENS: .82 (.07) .37 (.09) .74 (.08)

(fixed) (.04) (.03) SPEC: .78 (.05) .82 (.05) .86 (.04)
AUC: .80 (.04) .60 (.04) .80 (.04)

all 20 .68 .76 SENS: .82 (.07) .38 (.10) .83 (.06)
(fixed) (.04) (.03) SPEC: .83 (.04) .85 (.05) .84 (.04)

AUC: .82 (.03) .62 (.05) .83 (.03)
all 30 .68 .76 SENS: .83 (.07) .37 (.09) .84 (.06)

(fixed) (.03) (.03) SPEC: .82 (.04) .86 (.04) .84 (.04)
AUC: .83 (.03) .62 (.04) .84 (.03)

MLR 10 9.7 .58 .69 SENS: .67 (.08) .42 (.09) .66 (.09)
with (.7) (.04) (.03) SPEC: .81 (.06) .76 (.05) .81 (.05)

variable AUC: .74 (.04) .59 (.05) .74 (.05)
selection 30 19.6 .58 .69 SENS: .65 (.09) .44 (.09) .65 (.09)

(2.4) (.04) (.03) SPEC: .82 (.05) .72 (.06) .83 (.06)
AUC: .74 (.05) .58 (.05) .74 (.05)

50 38.4 .54 .66 SENS: .62 (.10) .44 (.09) .56 (.08)
(2.4) (.05) (.04) SPEC: .78 (.06) .70 (.07) .83 (.05)

AUC: .70 (.05) .57 (.05) .70 (.05)
70 39.0 .49 .61 SENS: .54 (.10) .41 (.09) .51 (.10)

(2.4) (.05) (.04) SPEC: .76 (.05) .67 (.06) .80 (.06)
AUC: .65 (.05) .54 (.05) .65 (.06)

MLR 50 .55 .66 SENS: .64 (.10) .43 (.07) .59 (.09)
w/signif. (.05) (.04) SPEC: .79 (.05) .71 (.06) .83 (.05)
variables AUC: .72 (.06) .57 (.04) .71 (.05)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.11: Simulation Experiment 1: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Correlated significant predictors from multivariate
normal distribution with standard deviation 2 (continued).

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3
RMNL 25.5e .62 .72 SENS: .76 (.09) .36 (.10) .75 (.09)
w/aMV (9.9) (.05) (.04) SPEC: .80 (.05) .81 (.07) .82 (.05)

AUC: .78 (.05) .59 (.04) .79 (.05)
RMNL 31.0e .61 .71 SENS: .73 (.10) .38 (.09) .72 (.09)
w/MV (10.7) (.05) (.04) SPEC: .80 (.05) .78 (.07) .83 (.05)

AUC: .77 (.05) .58 (.05) .77 (.05)
a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the

training phase
d mean of the AUCs from the three classes
e average number of selected variables in a bootstrap sample to fit a multinomial logit model,

chosen among the numbers of 10, 16, 22, 28, 34, 40, 46, 52, 58 in the learning phase
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Table 4.12: McNemar’s Test Results of Simulation Experiment 1: Correlated
predictors with standard deviation 2

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS : MLR w/10var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.0158 <0.0001 <0.0001

mLORENS : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 0.0654 <0.0001
SPEC: <0.0001 <0.0001 0.0004

MLR w/10var : RMNL w/aMV ACC: <0.0001 <0.0001 0.0004 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.1005 <0.0001 0.0969

MLR w/10var : MLR w/sig.var ACC: <0.0001 <0.0001 <0.0001 0.0062
SENS: 0.0002 0.3397 <0.0001
SPEC: 0.0097 <0.0001 0.0153

MLR w/50var : MLR w/sig.var ACC: 0.0232 <0.0001 0.7783 0.1062
SENS: 0.0144 0.1059 0.0015
SPEC: 0.0022 0.3779 0.4602

RMNL w/aMV : RMNL w/MV ACC: <0.0001 0.0056 0.0003 0.0251
SENS: <0.0001 0.0012 <0.0001
SPEC: 0.6150 <0.0001 0.0501
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Figure 4.8: Accuracies for Simulation Experiment 1: Correlated predictors
with standard deviation 2
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Figure 4.9: AUCs for Simulation Experiment 1: Correlated predictors with
standard deviation 2
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The improvement of mLORENS over a single base classifier with variable

selection was shown again through the nested binary model (NBM). As an

alternative model to MLR, NBM was applied in this simulation study. The

program for NBM was coded and implemented in mLORENS as a base clas-

sifier using R. This method was only tested on the simulation data sets with

independent variables. Tables 4.13 and 4.14 and Figures 4.10 and 4.11 show the

results from the data with standard deviation 1, and Tables 4.15 and 4.16 and

Figures 4.12 and 4.13 show the results from the data with standard deviation

2.

Variable selection was performed through BW ratio for a single NBM. In

the data with standard deviation 1, among single NBMs with different numbers

of selected variables, the one with 30 variables showed the highest accuracy

and mean AUC. The accuracy was 84% and it was similar to the accuracy of

NBM with 10 selected variables (p-value is 0.228), but significantly higher than

that with 50 significant variables (p-value is less than 0.0001). When NBM

was applied to mLORENS as a base classifier, the accuracy increased to 87%.

This was significantly higher than that of NBM with 30 selected variables. The

mean AUC also increased to 0.90 for mLORENS with NBM. As for the balance

of sensitivity and specificity in both of the data sets, a single NBM was better

than mLORENS with NBM, even though the sensitivities for classes 1 and 3

of a single NBM were usually lower than those of mLORENS with NBM. The

imbalance was prominent in class 2 for both methods. However, it appeared
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to be more severe in mLORENS with NBM since the sensitivity of class 2

for mLORENS with NBM was significantly lower than that for a single NBM

(with 30 selected variables for the data with standard deviation 1, with the 50

significant variables for the data with standard deviation 2) and the specificity

was significantly higher.

For the data with standard deviation 2, a single NBM with the 50 significant

variables showed the highest accuracy among NBMs. When the variable

selection was performed to select 50 variables, only about 39 significant variables

were selected and the accuracy was 62%. This was significantly lower than

the accuracy (64%) of NBM with all 50 significant variables without variable

selection. This result is different from that of MLR. The accuracy of mLORENS

with NBM was 70% and it was significantly higher than that of a single NBM.

The highest mean AUC among single NBMs was 0.73 and it increased to 0.78

when NBM was applied to mLORENS.
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Table 4.13: Simulation Experiment 1 (NBM): Performances (SD in parentheses)
of mLORENS implemented NBM and NBM. Independent predictors from normal
distribution with standard deviation 1.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 34.3 .87 .90 SENS: 1.00 (.01) .61 (.08) 1.00 (.01)
(NBM) (8.6) (.03) (.02) SPEC: .91 (.03) 1.00 (.01) .90 (.03)

AUC: .95 (.02) .81 (.04) .95 (.02)
all 10 .87 .90 SENS: .98 (.02) .65 (.09) .98 (.02)

(fixed) (.03) (.02) SPEC: .91 (.03) .98 (.02) .91 (.03)
AUC: .95 (.02) .81 (.05) .94 (.02)

all 20 .87 .91 SENS: .99 (.02) .64 (.08) .99 (.01)
(fixed) (.03) (.02) SPEC: .91 (.03) .99 (.01) .91 (.03)

AUC: .95 (.02) .82 (.04) .95 (.02)
NBM 10 10 .83 .87 SENS: .90 (.07) .72 (.08) .87 (.07)
with (0) (.04) (.03) SPEC: .93 (.03) .89 (.05) .92 (.04)

variable AUC: .92 (.04) .81 (.04) .90 (.04)
selection 30 29.2 .84 .88 SENS: .89 (.07) .72 (.09) .91 (.07)

(.8) (.05) (.04) SPEC: .93 (.03) .90 (.05) .93 (.04)
AUC: .91 (.04) .81 (.05) .92 (.04)

50 49.2 .81 .86 SENS: .85 (.07) .71 (.09) .85 (.07)
(.8) (.04) (.03) SPEC: .92 (.04) .86 (.05) .93 (.03)

AUC: .89 (.04) .79 (.05) .89 (.04)
70 49.2 .76 .82 SENS: .80 (.08) .67 (.09) .80 (.07)

(.7) (.04) (.03) SPEC: .91 (.04) .81 (.09) .91 (.03)
AUC: .85 (.05) .74 (.05) .86 (.04)

NBM 50 .81 .85 SENS: .85 (.08) .71 (.09) .86 (.07)
w/ signif. (.04) (.03) SPEC: .93 (.04) .86 (.05) .93 (.03)
variables AUC: .89 (.04) .78 (.05) .89 (.04)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.14: McNemar’s Test Results of Simulation Experiment 1 (NBM):
Independent predictors with standard deviation 1

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS(NBM) : NBM w/30var ACC: <0.0001 <0.0001 <0.0001 0.0036
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

NBM w/30var : NBM w/10var ACC: 0.2280 0.0005 0.3117 <0.0001
SENS: 0.0258 0.7998 <0.0001
SPEC: 0.0086 0.0811 0.0118

NBM w/30var : NBM w/sig.var ACC: <0.0001 0.0001 <0.0001 <0.0001
SENS: <0.0001 0.3160 <0.0001
SPEC: 0.9722 <0.0001 0.1251

74



Figure 4.10: Accuracies for Simulation Experiment 1 (NBM): Independent
predictors with standard deviation 1
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Figure 4.11: AUCs for Simulation Experiment 1 (NBM): Independent predictors
with standard deviation 1
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Table 4.15: Simulation Experiment 1 (NBM): Performances (SD in parentheses)
of mLORENS implemented NBM and NBM. Independent predictors from normal
distribution with standard deviation 2.

]sig.
Model ]var.a varb ]part.c ACC AUCd class 1 class 2 class 3

mLORENS all 29.2 .70 .78 SENS: .87 (.06) .38 (.08) .86 (.06)
(NBM) (8.9) (.04) (.03) SPEC: .84 (.04) .88 (.04) .84 (.04)

AUC: .85 (.03) .63 (.04) .85 (.03)
all 10 .67 .75 SENS: .81 (.07) .40 (.09) .81 (.07)

(fixed) (.04) (.03) SPEC: .84 (.04) .83 (.05) .84 (.05)
AUC: .83 (.04) .62 (.04) .82 (.04)

all 20 .70 .77 SENS: .86 (.07) .38 (.08) .85 (.06)
(fixed) (.03) (.03) SPEC: .84 (.04) .87 (.04) .84 (.04)

AUC: .85 (.03) .63 (.04) .85 (.03)
NBM 10 9.6 .61 .71 SENS: .72 (.08) .40 (.09) .71 (.09)
with (.1) (.05) (.03) SPEC: .81 (.05) .80 (.06) .81 (.05)

variable AUC: .76 (.05) .60 (.05) .76 (.05)
selection 30 20.2 .62 .71 SENS: .69 (.09) .48 (.09) .68 (.09)

(1.9) (.05) (.04) SPEC: .84 (.05) .75 (.06) .84 (.05)
AUC: .76 (.05) .61 (.05) .76 (.05)

50 38.9 .62 .71 SENS: .70 (.09) .47 (.10) .68 (.09)
(2.0) (.05) (.04) SPEC: .84 (.05) .75 (.06) .84 (.05)

AUC: .77 (.05) .61 (.05) .76 (.05)
70 39.5 .57 .68 SENS: .64 (.09) .46 (.09) .62 (.10)

(2.0) (.05) (.04) SPEC: .82 (.05) .71 (.07) .83 (.05)
AUC: .73 (.05) .59 (.05) .72 (.05)

NBM 50 .64 .73 SENS: .72 (.10) .49 (.10) .73 (.08)
w/ signif. (.05) (.04) SPEC: .85 (.05) .76 (.06) .85 (.04)
variables AUC: .79 (.05) .62 (.05) .79 (.04)

a number of selected variables chosen in the training phase
b number of significant variables among the selected variables
c average number of mutually exclusive subsets of predictors in a partition, chosen in the training

phase
d mean of the AUCs from the three classes
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Table 4.16: McNemar’s Test Results of Simulation Experiment 1 (NBM):
Independent predictors with standard deviation 2

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS(NBM) : NBM w/sig.var ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.0097 <0.0001 0.0005

NBM w/sig.var : NBM w/30var ACC: <0.0001 <0.0001 0.0392 <0.0001
SENS: 0.0005 0.6810 <0.0001
SPEC: 0.0097 0.0211 0.0168

NBM w/sig.var : NBM w/50var ACC: <0.0001 <0.0001 0.0100 <0.0001
SENS: 0.0134 0.1582 <0.0001
SPEC: 0.0015 0.0320 0.0165
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Figure 4.12: Accuracies for Simulation Experiment 1 (NBM): Independent
predictors with standard deviation 2
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Figure 4.13: AUCs for Simulation Experiment 1 (NBM): Independent predictors
with standard deviation 2

80



Tables 4.17 and 4.18 represent the results from McNemar’s test to compare

MLR and NBM. For the data with standard deviation 1, the highest accuracy

among single MLRs was 0.83 and it was not significantly different from the

highest accuracy (0.84) among single NBMs. The p-value for this comparison

was 0.41. However, when these two models were applied to mLORENS as

a base classifier, the accuracies became significantly different. The accuracy

of mLORENS with MLR as a base classifier was 0.92 and it is significantly

higher than that of mLORENS with NBM (0.87). For the data with standard

deviation 2, mLORENS showed almost the same accuracy for both of the

base classifiers (0.71 for mLORENS with MLR and 0.70 for mLORENS with

NBM) even though NBM showed higher accuracy as a single classifier than

MLR (0.61 for MLR and 0.64 for NBM). The same pattern was found for

AUC. In conclusion, the improvement of mLORENS in terms of accuracy and

AUC was more prominent when mLORENS adopted MLR as a base classifier.

Figures 4.14 through 4.17 are provided to help understand the comparison

between MLR and NBM.
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Table 4.17: McNemar’s Test Results of Simulation Experiment 1 (MLR and
NBM): Independent predictors with standard deviation 1

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS (MLR) : mLORENS (NBM) ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: 0.0005 <0.0001 0.3017
SPEC: <0.0001 0.0008 <0.0001

MLR w/10var : NBM w/30var ACC: 0.4075 <0.0001 0.3935 <0.0001
SENS: 0.1578 0.0008 <0.0001
SPEC: <0.0001 <0.0001 0.9710

Table 4.18: McNemar’s Test Results of Simulation Experiment 1 (MLR and
NBM): Independent predictors with standard deviation 2

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS (MLR) : mLORENS (NBM) ACC: 0.5729 0.7538 0.7024 0.2073
SENS: 0.0156 0.0003 0.1306
SPEC: 0.1817 0.0013 0.0060

MLR w/10var : NBM w/sig.var ACC: <0.0001 <0.0001 0.0468 <0.0001
SENS: 0.0022 0.0179 <0.0001
SPEC: <0.0001 0.5483 <0.0001
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Figure 4.14: Accuracies for Simulation Experiment 1 (MLR and NBM): Inde-
pendent predictors with standard deviation 1
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Figure 4.15: AUCs for Simulation Experiment 1 (MLR and NBM): Independent
predictors with standard deviation 1
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Figure 4.16: Accuracies for Simulation Experiment 1 (MLR and NBM): Inde-
pendent predictors with standard deviation 2
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Figure 4.17: AUCs for Simulation Experiment 1 (MLR and NBM): Independent
predictors with standard deviation 2
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4.2 Simulation Experiment 2

In order to investigate the performance of methods with a low-dimensional

data set in addition to high-dimensional data, one more simulation study was

conducted. The data design was similar to that of the GIB data. Two data

sets with 20 predictors and 120 subjects were generated: one for training and

the other for testing. There were three classes, and the class sizes were given

as 80, 29, and 11. Among the 20 predictors, 12 predictors were discrete, and

the remaining 8 predictors were continuous. For each class, the means and

variances were taken from the actual GIB data for each variable. For each

variable and each class, data were generated from normal distributions with

means close to the ones from the actual GIB data and two times the actual

standard deviations. Higher standard deviation than that of the actual GIB

data was used in this simulation study to increase uncertainty. To generate

discrete variables, the initial values obtained from the normal distribution were

changed to area under the normal curve to make the values between 0 and 1,

and then these values were assigned into a class according to the proportions

from the real GIB data using the percentile of the initial values. For correlated

variables, correlation between two variables was generated by a random number

from Uniform(0, 0.3). Values higher than 0.3 caused problems in obtaining the

covariance matrix and generating the multivariate normal distribution. One

hundred learning sets and corresponding test sets were generated for evaluation.

Like the GIB data, the search procedure for partition size was not carried out.

The variables were partitioned into 2 or 3 subsets.
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The results of this example are provided in Tables 4.19 through 4.22. The

accuracy and mean AUC of this simulation experiment became lower than

those of the actual GIB data, since the simulation data were constructed by

doubling the standard deviations of the actual ones. In mLORENS, when the

variables were partitioned into 2 subsets, the performance was better than

when the partition size was 3. In RMNL, the number of selected variables was

searched in learning phase among the numbers from 5 to 20 as the same way

as in the actual GIB data. The average number of selected variables was about

12 or 13 and this result is similar to that of the actual GIB data. There was

no difference between the two combining approaches for accuracy and mean

AUC in RMNL.

mLORENS showed better performance than a single MLR in accuracy for

both independent and correlated simulation designs. The p-values were less

than 0.0001. The accuracy of RMNL was also significantly higher than that of

a single MLR. The accuracies of mLORENS and RMNL were similar for the

data with independent variables, but the accuracy of mLORENS was higher

than that of RMNL for the corrected data. In actural GIB data, there was no

significant difference between the accuracies of mLORENS and RMNL.

Regarding AUC, there was no significant difference among the three models

for independent variables, but for correlated variables AUC of MLR was the

highest. mLORENS and RMNL showed high sensitivity in the largest class

(Upper), but for the smallest class (Mid), MLR showed higher sensitivity than
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those of the other two models even though all of the numbers were less than

0.5. Figures 4.18 and 4.20 show accuracies, and Figures 4.19 and 4.21 show

AUCs for this example.
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Table 4.19: Simulation Experiment 2: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Independent predictors.

Model ]Var. ]Part.a ACC AUCb Class 1 Class 2 Class 3
mLORENS all 2 .85 .78 SENS: .97 (.02) .76 (.10) .24 (.14)

(fixed) (.03) (.04) SPEC: .82 (.08) .91 (.03) .98 (.01)
AUC: .90 (.04) .83 (.05) .61 (.07)

all 3 .80 .68 SENS: .99 (.01) .57 (.12) .05 (.08)
(fixed) (.03) (.04) SPEC: .55 (.10) .94 (.02) 1.0 (.01)

AUC: .77 (.05) .76 (.06) .52 (.04)
MLR all .78 .77 SENS: .87 (.05) .64 (.11) .45 (.18)

(.05) (.05) SPEC: .88 (.07) .89 (.04) .88 (.04)
AUC: .88 (.04) .77 (.05) .67 (.09)

RMNL 12.4c .85 .80 SENS: .96 (.03) .76 (.09) .33 (.15)
w/aMV (2.2) (.03) (.04) SPEC: .89 (.09) .91 (.03) .96 (.03)

AUC: .92 (.04) .83 (.05) .64 (.07)
RMNL 12.8c .85 .79 SENS: .96 (.03) .74 (.10) .34 (.16)
w/MV (2.1) (.03) (.04) SPEC: .87 (.09) .91 (.02) .96 (.03)

AUC: .91 (.04) .82 (.05) .65 (.07)
a pre-determined number of subsets in a partition
b mean of the AUCs from the three classes
c average number of selected variables in a bootstrap sample to fit a multinomial logit

model, chosen among the numbers from 5 to 20 in the learning phase
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Table 4.20: McNemar’s Test Results of Simulation Experiment 2: Independent
predictors

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS w/2pt : MLR ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

mLORENS w/2pt : RMNL w/aMV ACC: 0.1518 <0.0001 0.0451 <0.0001
SENS: <0.0001 1.0000 <0.0001
SPEC: <0.0001 0.0024 <0.0001

MLR : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: 0.6207 <0.0001 <0.0001
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Figure 4.18: Accuracies for Simulation Experiment 2: Independent predictors
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Figure 4.19: AUCs for Simulation Experiment 2: Independent predictors

93



Table 4.21: Simulation Experiment 2: Performances (SD in parentheses) of
mLORENS, MLR, and RMNL. Correlated predictors.

Model ]Var. ]Part.a ACC AUCb Class 1 Class 2 Class 3
mLORENS all 2 .70 .59 SENS: .95 (.03) .21 (.09) .20 (.16)

(fixed) (.03) (.04) SPEC: .25 (.08) .96 (.03) .99 (.01)
AUC: .60 (.04) .58 (.04) .59 (.08)

all 3 .68 .53 SENS: .99 (.01) .08 (.06) .05 (.07)
(fixed) (.02) (.02) SPEC: .08 (.05) .99 (.01) 1.0 (.00)

AUC: .54 (.02) .53 (.03) .52 (.04)
MLR all .64 .64 SENS: .76 (.06) .39 (.11) .42 (.19)

(.04) (.05) SPEC: .53 (.09) .85 (.05) .90 (.05)
AUC: .65 (.05) .62 (.06) .66 (.09)

RMNL 11.6c .70 .61 SENS: .92 (.06) .24 (.13) .25 (.20)
w/aMV (3.0) (.04) (.06) SPEC: .32 (.16) .94 (.04) .97 (.03)

AUC: .62 (.06) .59 (.06) .61 (.09)
RMNL 12.3c .69 .61 SENS: .91 (.06) .26 (.13) .26 (.19)
w/MV (3.0) (.03) (.06) SPEC: .33 (.16) .93 (.04) .97 (.03)

AUC: .62 (.06) .60 (.05) .61 (.09)
a pre-determined number of subsets in a partition
b mean of the AUCs from the three classes
c average number of selected variables in a bootstrap sample to fit a multinomial logit

model, chosen among the numbers from 5 to 20 in the learning phase
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Table 4.22: McNemar’s Test Results of Simulation Experiment 2: Correlated
predictors

p-value
Models Overall Class 1 Class 2 Class 3

mLORENS w/2pt : MLR ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

mLORENS w/2pt : RMNL w/aMV ACC: <0.0001 0.9182 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001

MLR : RMNL w/aMV ACC: <0.0001 <0.0001 <0.0001 <0.0001
SENS: <0.0001 <0.0001 <0.0001
SPEC: <0.0001 <0.0001 <0.0001
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Figure 4.20: Accuracies for Simulation Experiment 2: Correlated predictors
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Figure 4.21: AUCs for Simulation Experiment 2: Correlated predictors
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Chapter 5

Conclusion and Discussion

Multinomial logistic regression model was adopted into CERP to handle multi-

class problems. mLORENS showed clear improvement in prediction accuracy

over a single MLR for all data sets used in this study. For high-dimensional data

sets, mLORENS showed higher AUC than MLR in general. In the simulation

study, mLORENS showed better performance than RMNL as well as a single

MLR in terms of prediction accuracy and mean AUC, while mLORENS and

RMNL showed similar performance in all measures for the real data sets.

LORENS was designed for high-dimensional data. Due to the random

partitioning in LORENS, MLR can be fit in each partition without variable

selection. Hence, mLORENS can handle a huge feature space to which a

single MLR cannot be applied without variable selection. Our examples show

that even for low-dimensional data that a single MLR can be used without

variable selection, mLORENS showed a higher prediction accuracy. In these
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examples, the feature space was divided into a fixed number of subspaces, and

in each subspace MLR was fit to smaller numbers of predictors. It means that

combining several MLR models with small numbers of predictors may give

better accuracy than a single fit with all predictors at once. The randomness

of partitioning in mLORENS is one of the reasons for improving the prediction

accuracy, since the correlation among base classifiers could be reduced. Since

randomly selected mutually exclusive subsets of predictors are assigned to each

of the randomly partitioned subspaces, redundancy of the data is reduced. By

integrating these advantages, the accuracy of mLORENS is greatly improved.

While we had improvement in prediction accuracy, mLORENS encountered

difficulties in improving sensitivity and specificity. For balanced data sets

mLORENS performed very well in sensitivity and specificity. The rates were

generally better than those of MLR or RMNL. However, for unbalanced data

sets, the sensitivity of a small class tended to be low. By predicting to a large

class, the overall accuracy increased, while the sensitivity becomes poor. In

LORENS, this problem was solved through adjusting the decision threshold[23].

Decision threshold approach is expected to improve the balance between

sensitivity and specificity when class sizes are unbalanced. In mLORENS it is

not trivial to find an optimal decision threshold due to the high dimensionality

of classes.
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Chapter 6

Future Study

• Comparison with other ensemble methods: We plan to compare our

method with other widely used classification methods including RF,

SVM, Boosting, K-means clustering, and Linear Discriminant Analysis

with high-dimensional data sets.

• Simulation study in unbalanced data and different data design: Only

balanced data sets were studied in the simulation experiment 1 in this

study. We are planning to apply the methods to unbalanced data sets. It

is expected to help understand the trend of the balance of sensitivity and

specificity specifically. In addition to this, different data designs would be

constructed and applied. Results from simulation experiment 1 revealed

that the performance of classification methods depends on the design of

data. Several types of data design would help find the characteristic of

mLORENS and other classification methods.
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• Imbalance of Sensitivity and Specificity: Decision threshold technique

might be complicated and computer-intensive to be applied to multiclass

cases. However, if a method to determine the optimal threshold is devel-

oped, then we anticipate that the method improves the balance between

sensitivity and specificity when class sizes are severely unbalanced.

• Generalized AUC for multi-dimensional cases: In this study, we used an

estimate for AUC in 3 dimensional space, while there is an extension of

ROC curve for multi-dimensional cases. If receiver operating characteristic

surfaces instead of curve are considered, then the generalized AUC for

multi-dimensional cases could be calculated. This is expected to provide

more precise evaluation of the performance of models.

• Other Models for Multiclass Problems: The baseline logit models were

used in this study. It is known as a robust model for multiclass problems.

But to obtain a broad view of multicategory problems, we plan to study

other models and apply these into CERP. It may be compared with

mLORENS as well as other methods.
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