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Abstract of the Dissertation

Analysis of Interacting, Under-Expanded,

Rarefied Jets

by

Wenhai Li

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2010

A numerical study, using the Direct Simulation Monte Carlo (DSMC) approach, of

the interaction effects between two identical sonic under-expanded nitrogen jets under rar-

efied conditions is reported. In this study, the effects of the jet stagnation Knudsen num-

ber (), the ratio of the stagnation-to-background pressure (), and the distance

between the jet orifices () were investigated for a range of these parameters. The

"primary-secondary" shock-cells structure has been successfully reproduced when flow is

in the near continuum flow regime. The response of the system to various combinations

of , , and , is reported with a focus on the shock structures as well as the

rarefaction effects. It shows that the background pressure has a very significant effect on
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the physics of flow, and the interactions between the two jets affect the location of the

Mach disks for both the primary and secondary jets. When flow is rarefied, a study of

the rotational-translational non-equilibrium showed large deviations between the transla-

tional and rotational temperatures in the vicinity of the orifice plate. It is also found that

the background gas helps to reduce the translational-rotational non-equilibrium effects in

the secondary jet.
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Chapter 1
Introduction

In this chapter, we present the motivation, choice of simulation method, and the objec-

tives of the thesis work.

1.1 Motivations of the Study

Although the thesis work includes both single and dual jets, it is the latter that is of practical

application, with the former providing important foundation and baseline.

The interaction between rarefied free jets has received some attention in recent years

because of the relevance to rockets and other space vehicles [1–3]. For rockets, two or more

nozzles are used in order to provide a large impulse and stability [4]. Because of the high

altitude, the pressure is low, which causes the plumes from each nozzle to have a large ra-

dial extent. Therefore, an interaction between the neighboring plumes may occur. Another

example is the spacecraft’s Orbiter Reaction Control System (RCS) [5–7], which always

comprises of many primary and vernier engines. The RCS can provide the thrust for al-

titude maneuvers and for small velocity changes along the orbiter axis by firing selected

engines. If adjacent engines are fired simultaneously, an interaction between the two jets

can occur. The jet interaction phenomena can also be seen in the satellite’s Altitude Con-

trol System (ACS), which is used to control the altitude of a satellite [8]. This system is

generally formed by an array of small thrusters. Because the size of the satellite is small
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and the plume size is large in high altitude, interaction between the adjacent plumes can be

significant.

Recently, the interaction between multiple plumes has become more and more impor-

tant with the development of microspacecraft [9]. Many designs of micro-propulsion sys-

tems involve the use of thruster arrays for orbital maneuvers, such as attitude control and

orbit rising. The thruster arrays can be batch-fabricated using Microelectromechanical Sys-

tems (MEMS) techniques. The thruster array can increase the flexibility for microspace-

craft since thrusters can be fired in specific sequences, or simultaneously, to obtain de-

sired impulse profile and thrust level for a particular maneuver. The distance between the

thrusters in an array is always very small. Therefore, the interaction between the plumes

may occur.

Another popular application of the interacting jets is in the plasma-aided materials

processing technique [10]. A particular example is expanding thermal plasma (ETP) thin

film decomposition, which can deposit thin films or coating on the materials. Schaepkens

[11] has found that in the ETP process, a properly optimized dual-source system can deposit

a uniform thick coating of abrasion-resistant material across a width of 30 cm of substrate

in one pass. Autric [12] also reported experimental data on the dual-source crossed beams

pulsed laser deposition technique for the production of cryolite thin films.

The interaction between jets can have several effects on spacecraft operation, such as

changes in the thrust impulse profile, the dynamic of jet impingement, the heat flux and

pressure force on the spacecraft surfaces, the contamination, stability performance, and

noise generation [13, 14]. These phenomena can cause a lot of difficulties in the design
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of a spacecraft. For example, when the interaction effects are strong, there is a backflow

region generated in the interaction region [15]. The backscattering molecules can enhance

contamination and can also lead to relatively high heat flux and surface forces that exceed

the fatigue failure limit for metallic aircraft structures. Another example is for acoustic

generation. It has been observed that twin jets in jet engines reduce noise [16–18].

Rapidly expanding plumes at high altitudes involve the entire range of flow regimes,

from continuum flows near the nozzle exit to transitional and then free molecular flow at

large distances from the nozzle. Furthermore, for flight at different altitudes, the plumes

from the spacecraft exhaust may be expanded into a background with finite pressure for

the flight in the earth’s atmosphere, or into vacuum for flight in outer space. Therefore,

rarefaction effects could become an important issue for multiple jets. If the jets expand into

vacuum, only the interactions between the molecules of the two jets need be considered. If

the interaction is strong, oblique shocks wave are formed, as shown in Figure 1.1(a). The

interaction region, which is surrounded by the oblique shocks, looks like another jet plume

and will be referred to as the "secondary jet." If the jets expand into a background with finite

pressure, the interactions between the molecules of the jets with those of the background

gas become important. If the interaction is strong, barrel shocks and jet boundaries, which

take on concave curvature, are formed. Together with the normal shock waves (Mach

disks, for both primary and secondary jets) and the oblique shocks, a well-known "primary-

secondary" shock-cell structure is formed (Figure 1.1(b)).
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1.2 Choice of Simulation Method

Experimental investigation of high speed jet flows is expensive and involves practical dif-

ficulties, such as the need for non-intrusive flow measurements at high speed. The number

of experimental studies is limited but includes those in [19] and [20]. Numerical analysis is

an attractive option that is pursued in this thesis. For the flow in the rarefied regime, the di-

rect simulation Monte-Carlo (DSMC) method has proven to be a very powerful technique

[33]. Since the method statistically solves the Boltzmann equation, the DSMC method is

theoretically applicable to the simulation of gas flows in all regimes: continuum, rarefied,

and transition. Also, the DSMC method can accurately simulate the relaxation process be-

tween the translational and internal energies, and between the different modes of internal

energy. Therefore, the thermal and chemical non-equilibrium effects can be calculated by

DSMC [21, 22].

Many researchers have used the DSMC method for the dual interacting jets expanding

into vacuum, such as Zhu and Dagum [5–7], Ketsdever [9], and Wu [23]. The numer-

ical investigation of jets expanding into a background with finite pressure is extremely

challenging for numerical methods, including the DSMC approach. For interacting jets ex-

panding into a background with finite pressure, the density in the flow field is much higher

than that for jets expanding into vacuum. Therefore, more simulated particles are needed.

Since the problem is fully three-dimensional, the computation is very expensive. Also, the

implementations of the downstream boundary conditions, where, depending on the prob-
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lem, background pressure and temperature are specified, pose additional difficulties for the

DSMC method. The traditional pressure boundary condition handling method, which usu-

ally includes a huge pressure reservoir in the computation, is very expensive. Recently, the

"particle conservation" method was developed to address this problem [24–26]. With the

flow velocity calculated at the downstream boundary and background pressure and tem-

perature specified, correct stream boundary conditions can directly be applied in DSMC

without using a pressure reservoir. The method has been used successfully by Wu [27]

and the author [28] in single under-expanded jet calculations. However, the procedure has

not been used for calculating interacting rarefied jets. The exception is Usami [29], who

numerically simulated dual interacting jets expanding into a region with finite pressure

by using DSMC and successfully captured the "primary-secondary" shock-cell structures.

However, he assumed zero velocity at the downstream boundary which is problematic [27].

A more detailed investigation of the interaction between nitrogen jets under rarefied con-

ditions is undertaken for both cases when the background region is either vacuum or has

finite pressure.

1.3 Objective of the Research

In this projects, we want to achieve the following objectives:

(1) Develop, implement, and validate a robust three-dimensional parallel DSMC code

for simulating flow at all Knudsen number regimes.
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(2) Simulate, as the benchmark problem for interacting jets, the single under-expanded

jets. Test the "particle conservation" method for implementing the pressure

background boundary conditions. Reproduce the "shock-cell" structures. Investigate

translational-rotational non-equilibrium effects in nitrogen under-expanded jets.

(3) For dual interacting jets, study the two situations where the jets expand into vacuum

and into a region of finite pressure. Reproduce the ’primary-secondary’ shock-cell

structures when the dual interacting jets exhaust into a finite background pressure.

Analyze the interactions between the molecules of the two jets and those of the jets’

molecules with the molecules of the background gas.

(4) Investigate the response of the system to various combinations of the jet stagnation

Knudsen number , the under-expanded jet pressure ratio , and the

separation between the two orifices , with a focus on the shock structures as

well as the rarefaction effects. The location of the Mach disk in the secondary jet

will be analyzed. The thermal non-equilibrium effects in the secondary jet will also

be studied.

This dissertation is organized as follows: In Chapter Two, we present an overview of

rarefied gas dynamics and the implementation of the DSMC method. In Chapter Three,

the DSMC code is first validated with a one-dimensional normal shock wave problem. The

problem of a two-dimensional hypersonic flow past a cylinder is also simulated for the
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validation purpose in Chapter Four. In Chapter Five, the single rarefied under-expanded

jet problem is investigated. The dual, interacting jets are studied in Chapter Six. Chapter

Seven contains the concluding remarks.
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Figure 1.1. Shock structure of dual interacting jets in continuum flow regime: (a) flow

expanding into vacuum; (b) flow expanding into a background with finite pressure
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Chapter 2
Numerical Approach

In this chapter, we introduce the basic concepts of rarefied gas dynamics and a summary

of a Direct Simulation Mote Carlo (DSMC) procedure.

2.1 Overview of Rarefied Gas Dynamics

When the averaged distance traveled by the gas molecules between collisions (the mean

free path) is comparable to the characteristic length of the flow field, the continuum fluid

approximation breaks down and the particle nature of the gas must be taken into consider-

ation. This behavior can be characterized by the Knudsen Number:

 =



, (2.1)

where  is the mean free path and  is the characteristic length. Often,  is taken as the

length scale of a macroscopic scale, given by [30]

 =
¯̄




¯̄ , (2.2)

where is a suitable macroscopic quantity, such as density, temperature, or velocity. There-

fore, the flow can be said to be "rarefied" either when  is large (low density) or when  is

small (large flow gradient). It can also be shown that the Knudsen number  is related to
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Figure 2.1. The flow regimes in gas dynamics

the Mach number  and Reynolds number Re by

 ≈

r


2



Re
, (2.3)

where  is the gas specific heat ratio.

For different Knudsen numbers, the flow field can be divided into four regimes [31] as

shown in Figure 2.1:

• When   0001, the flow is said to be in the continuum regime. The flow field is

governed by the Navier-Stokes equations. This regime is used in the classic kinetic

gas dynamics.

• When 0001    01, the flow is said to be in the slip-flow regime (also called

near-continuum regime). At the surface boundary, particle effects, such as velocity

slip and temperature jump, are significant.
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• When 01    10, the flow is in the transition regime. The molecular mean free

path  and the characteristic length  are approximately of the same order. In this

regime, rarefaction effects play an important role in the whole flow field.

• When   10, the flow is said to be in free-molecular regime. The molecular

mean free path is much larger than the characteristic length scale of the flow field

and there is no intermolecular collision. In this regime, the flow can be accurately

solved by molecular gas dynamics.

Rarefied gas flows are governed by the Boltzmann equation, which can be expressed as

[33]




+ c·

r
+ F·

c
=

Z +∞

−∞

Z 4

0

(∗∗1 − 1) Ωc1 , (2.4)

where  is velocity distribution function,  is time, r is position vector, c is velocity vector,

F is field force vector,  is relative speed,  the collision cross-section, and Ω the solid

angle. The superscript ‘∗’ implies post-collision values and subscript ‘1’ implies a reference

to the particle collided with. The left-hand side of the equation represents the change of the

velocity distribution due to the motion of the molecules. The right-hand side is the change

of the velocity distribution due to the collisions between the molecules.

There are several ways to solve the Boltzmann Equation. In general, there are two

approaches: analytical methods and numerical methods. Analytical solutions are difficult
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Figure 2.2. The different kinds of fluid models

to obtain. It is only in a few cases that an analytical solution of the velocity distribution

exists. One example is the Chapman-Enskog theory. The method assumes the deviation

of the velocity distribution function  from the Maxwellian distribution is small and it

can be treated as a perturbation. Using the Chapman-Enskog approximation to expand

the Boltzmann equation, we obtain the Euler equations, the Navier-Stokes equations, and

the Burnett equations, which are, respectively, the zeroth order, first order, and second

order solutions of the Boltzmann equation [34]. It is important to note that the Boltzmann

equation applies equally to the transition and continuum regimes.

Molecular simulation is the most popular way to numerically solve the Boltzmann

equation. Two typical methods, molecular dynamics (MD) and direct simulation Monte

Carlo (DSMC) are frequently used. Both methods solve the Boltzmann equation by using

simulated particles to statistically model the molecular motions and intermolecular colli-

12



sions in real gas flows. The MD method is deterministic and whether or not two molecules

will collide depends on the distance between them. On the other hand, the DSMC method

is statistical and it uses a collision probability to judge if two particles will collide. Also,

in DSMC, simulated particles, which can be regarded a group of real molecules, are used.

Therefore, the DSMC calculation is less expensive than the MD method. However, the

statistical scattering error is introduced into DSMC. Figure 2.2 gives a summary of the

different fluid models.
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2.2 The Procedure for the Sequential DSMC Code

A parallel, three-dimensional direct simulation Monte Carlo (DSMC) program has been

developed for the present study, using procedures similar to those in Bird [32,33]. A review

of the advances in the DSMC method in fluid mechanics has been presented by Oran et al

[30]. The typical sequential DSMC procedure can be summarized by the following steps:

(1) Initialization of cells and particles: In DSMC, the calculation of inter-molecular

collisions and the sampling of macroscopic properties is based on the computational

cells. Therefore, the computational cells are first generated. The position, velocities,

and internal energies of the simulating particles are also initialized.

(2) Movement of the particles: For each time step, when the inter-molecular force is

negligible, the trajectories of the particles is simply computed by Newton’s law:

4 = 4 .

(3) Interaction with the boundaries: Particles which cross the boundary of the simulation

domain are either removed from the simulation or reflected back to the domain.

Removal occurs when a particle reaches the inflow or outflow boundaries. Refection

occurs when a particle hits the wall surfaces or crosses the lines of symmetry.

(4) Sorting and indexing: When a particle arrives at its new position, it needs to be

sorted and grouped into the corresponding computational cell. This is required for
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the collision calculation and result sampling. This step is typically computationally

expensive.

(6) Calculation of inter-molecular collisions: The inter-molecular collisions are

calculated cell-by-cell, by the following steps:

a. A potential collision pair is randomly selected in a cell.

b. A collision probability is calculated to check if the selected pair will collide.

Bird [33] proved that the collision probability is only decided by the molecular

total collision cross-section  and the relative velocity between the pairs, . The

collision probability is decided by  ∝  . An acceptance-rejection algorithm

is used to decide if the pairs collide with the computed  . First,  is normalized

by its maximum value, max. Then, the normalized value max is compared

with a random number  , which is uniformly distributed between [0 1]. If

max   , the collision occurs. If max   , the collision does not

occur and the collision pair needs to be re-selected.

c. When collision occurs, for elastic collision, the magnitude of the post-collision

velocity of the collision pair is calculated based on momentum and energy

conservation. The post-collision velocity of each particle is dependent on the

selection of the molecular model in DSMC. If the molecules have internal

degrees of freedom, inelastic collisions need to be considered and the total
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collision energy will be re-distributed between the degree of freedom. This

calculation depends on the selection of the inelastic collision model in DSMC.

d. The collision calculation in time will continue until the total number of

inter-molecular collisions in the current time step has a value that complies with

the real physics. There are several methods to decide when the computed number

of collision is sufficient for a time step and will be discussed in the next section.

(7) Repeat steps (2) through (6) for the next time step until flow reaches steady state and

obtain enough number of samplings.

(8) Sampling of microscopic properties and output of macroscopic results: The

macroscopic properties are calculated by averaging the properties of all the

molecules in a computational cell based on the kinetic theory. The results include

an error due to the statistical scatter. Better results require a larger sample size. It

has been shown that the magnitude of statistical fluctuations varies according to the

inverse square root of the sample size [33]. Therefore, it is necessary to perform

time averaging for the steady flows and ensemble averaging for the unsteady flows,

in order to obtain smooth results.

Figure 2.3 is a flow chart for the current sequential DSMC code.

16



No

Yes

Start

Inialization

Enter New Particles

Data Input

Move Particles

Check Boundary
Interaction

Sort Particles

Collide Particles

Sample Flow Field

Sufficient
Sampling?

Output Result

Reset Sampling

No

Yes

End

Sufficient
Iteration?

Steady
Flow?

Yes

No

Figure 2.3. Flow chart for a sequential DSMC code

17



2.3 Models for DSMC

To calculate the inter-molecular collision, several kinds of molecular models have been

implemented in the present work:

(a) the Variable Soft Sphere (VSS) molecular model [33] is used for the binary

molecular collision;

(b) Bird’s "no-time counter" (NTC) algorithm [33] is used to control the collision

mechanics;

(c) the Borgnakke-Larsen phenomenological model [36] is used to calculate the internal

energy relaxation process.

The details of each model are provided in the following subsections.

2.3.1 Models for Elastic Collisions

In the calculation of binary elastic collisions, the relationship between the deflection angle

 and the miss-distance impact parameter , and that between the effective cross-section

 and the relative velocity  need to be modeled (Figure 2.4). Several phenomenological

models are available for this purpose.

The hard sphere (HS) molecular model [33] is the simplest model. The collision cross-

section is a constant and is computed by  = 2, where  is the diameter of the molecule.

The model has a very simple scattering relation  = 2 cos−1 ().
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The shortcoming of the HS model is that it does not account for the cross-section

change with different values of . This led to the creation of the variable hard sphere

(VHS) molecular model [33], which combines the scattering simplicity of the HS model

with a variable cross-section based on the effective cross-section in the inverse power law

molecular model. The molecular diameter is proportional to the relative collision velocity

raised to the power . This leads to a viscosity coefficient  proportional to temperature

to power  =  + 12. The coefficient  is chosen to fit the viscosity coefficient in real

gas. Therefore, the "" in the expression for the collision cross-section is computed as

 = ()
−12. The calculation of the deflection angle is the same as in the HS

model.

Although the VHS model can reproduce the viscosity coefficient, it does not lead to

the correct diffusion coefficient . This led to the development of the variable soft sphere

(VSS) model [33]. The model introduces an additional power-law parameter  into the

hard sphere expression for the deflection angle. The parameter  can be computed by the

Schmidt number, with the relation  =
2+

(35)(7−2) . Therefore, the deflection angle is

computed as  = 2 cos−1
n
()

1
o

. The calculation of the cross-section is the same as

in the VHS model.

In this project, the VSS model is used. The value of the post-collision velocity is

computed by

⎧⎨⎩ c∗1 = c
∗
 +



1
c∗

c∗2 = c
∗
 +



2
c∗

. (2.5)
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From the momentum and energy conservation, we obtain⎧⎨⎩ c = c
∗


|c| = |c∗|
, (2.6)

where c ≡ 1c1+2c2
1+2

is the velocity of the center of mass of the pair of molecules

and  ≡ 12

1+2
is called the reduced mass. The superscript "∗" implies post-collision

condition. The subscripts ’1’ and ’2’ indicates particle 1 and particle 2, respectively, in the

colliding pair. The relative velocity of post-collision is ∗ = ∗ and the unknown direction

=(1 2 3)
 is calculated as⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 = cos1

2 = sin1 cos2

3 = sin1 sin2

, (2.7)

where deflection angles 1,2 are determined by

cos1 = 2 ∗1 − 1 and 2 = 2 . (2.8)
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(a)

(b)

Figure 2.4. Illustration of the impact parameters in binary collisions: (a) 2D frame; (b) 3D

frame.
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2.3.2 Collision Counting Model

Three models were developed to determine the number of collisions that need to be calcu-

lated in a given time step 4: the time counter (TC) method [33], the null collision (NC)

method [35], and the no-time counter (NTC) method [33].

The TC method, which was developed by Bird, consists of following three operations:

(a) retain the randomly chosen pair if ( )  ( )max   ; (b) for each pair retained,

compute  = 2 ( ); and (c) collide pairs while  1 +  2 +  3 + · · · ≤ 4. In step

(b),  represents number density and  represents the number of particles in a cell.

Koura [35] found that the collision number computed by TC tends to be larger than the

expected value. Therefore, he developed the NC method by introducing the null collision

concept. The key idea is to replace the  in the TC method with max =  + , where

the null collision cross-section  corresponds to null collision which does not change

the velocity of the collision pair.

Bird developed the NTC method which avoids the problems with the TC method with-

out any loss of computational efficiency. The method also has the advantage of easy vec-

torization of the collision procedure. In the NTC method, in the time interval4, the total

collision number  is given by

 =
1

2
 2−2 4 , (2.9)
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where the sign ‘—-’ implies averaging. In NTC method, the collision computation is re-

peated until the number of collisions in a time step is equal to . The NTC method is used

in this thesis work.

2.3.3 Inelastic Collision Model

For the inelastic collisions, models need to be used to judge when the inelastic collision

occurs and how the energy is distributed between the degrees of freedom. The Borgnakke-

Larsen (BL) model [36] is the most commonly used model for inelastic collision calcula-

tion. In BL model, the inelastic collision happens only for a fraction  of the total particle

collision. This is computed by  = 1, where  is called the relaxation number for the

internal mode . The post-collision values of each kind of internal energy (rotational en-

ergy, vibrational energy, etc.) are simply sampled from the known equilibrium distribution

functions and are equally partitioned between the degrees of freedom of the mode . The

relaxation process is governed by Jean’s equation [33]:




=

 − 

 
=

 − 

 · 

, (2.10)

where  is the equilibrium temperature,  is the collision time, and   =  ·  is the

relaxation time for the internal energy mode . A correct value of  must be used in the

phenomenological model and it has been shown that  may be a function of temperature.

We need to note that the collision number DSMC
 defined in the DSMC is different

with the collision number CONT
 defined in the continuum simulations [37]. In continuum
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simulations, the collision number is defined as CONT
 =   , where   is mean collision

time and   is the characteristic relaxation time for the -th internal energy. Lumpkin [42]

developed the relation between DSMC
 and CONT

 as

CONT
 =

µ
1 =




¶
DSMC
 , (2.11)

where   is the number of degrees of freedom for the internal energy .

The Translational-Rotational Relaxation

The Borgnakke-Larsen phenomenological model is used for the rotational-translational

(RT) relaxation process in this investigation, whereby, the rotational relaxation is quan-

tified in terms of a characteristic rotational collision number , which is approximately

the reciprocal of the number of collisions required to reach equilibrium between the trans-

lational energy and rotational energy. The procedures for the Borgnakke-Larsen method

applied to translational-rotational (TR) energy exchange can be described as follows [33]:

(a) After the colliding pairs are randomly selected by DSMC, the acceptance-rejection

method is employed to judge whether or not an inelastic collision has taken place. The

TR energy exchange takes place if 1   .

(b) If a TR energy exchange has taken place, the rotational and translational energies of

the colliding pairs are distributed according to the equilibrium energy distribution

function for a specified number of degree of freedom, which is given by



µ




¶
=

Γ (52−  + )

Γ (52− )Γ ()

µ




¶32− µ




¶−1
, (2.12)
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where 
³



´
is the probability of the occurrence of the energy distribution,

 =  +  is the total collision energy of the colliding pair, which is known and

conserved during the collision.  and  are the rotational and relative translational

energies of the colliding pair,  is the temperature exponent of the coefficient of

viscosity in VHS model and 52 −  is the number of translational degrees of

freedom contributing to the inelastic collision,  is the number of rotational degrees

of freedom,  is the Boltzmann constant, and  is the temperature. The distribution

function can be normalized by its maximum value:



max
=

½
 + 12− 

32− 

µ




¶¾32− ½
 + 12− 

 − 1
µ
1− 



¶¾−1
. (2.13)

To sample from this distribution, the following acceptance-rejection procedure is

used. First, a uniformly distributed random number 1 is employed to sample

 = 1 and  =  − . Then  and  are used to compute max. The

resulting max is used to compare with another uniform distributed random number

2. If max  2,  and  need to be re-calculated. If max  2, the

energy distribution is successful.

(c) Note that the post-collision rotational energy includes the rotational energy of each

particle in the collision pair,  = 1 + 2. The quantities 1 and 2 are the respective

rotational energy of particle 1 and particle 2 in the collision pair, which need to be

25



sampled from the equilibrium distribution function:



µ
1


¶
=

Γ
¡
1 + 2

¢
Γ
¡
1
¢
Γ
¡
2
¢ µ 1



¶1−1µ
1− 1



¶2−1
, (2.14)

where 1 and 2 are the rotational degrees of freedom of particle 1 and particle 2,

respectively. Note the relation  =
¡
1 + 2

¢
2. The distribution function can also

be normalized by its maximum value:



max
=

½
1 + 2 − 2
1 − 1

µ
1


¶¾1−1½1 + 2 − 2
2 − 1

µ
1− 1



¶¾2−1
 (2.15)

The same acceptance-rejection method in step (b) can be used to sample the value of

1 and 2 from the given distribution function.

(d) The post-collision translational energy of the collision pair is distributed between the

two particles by using the elastic collision calculation described in subsection 2.3.1.

In most cases, the rotational collision number  is considered to be a constant. How-

ever, this is not correct when temperature profile varies significantly in the flow field. Parker

[38] gave an approximate expression for the relation between  and  :

 =
()∞

1 + (322) ( ∗ )12 + (24 + ) ∗
, (2.16)

where  ∗ is the characteristic temperature of the intermolecular potential and ()∞ is the

limiting value. For the DSMC method, Parker’s expression may be used to evaluate a single

value for all collisions within a computational cell of local translational temperature . But

Hass [39] argued that it can be computationally expensive to calculate, which may itself

be ill-defined in nonequilibrium flows. Boyd [40, 41] developed an expression for  that
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is dependent on the relative energy of individual collisions and that reproduces Parker’s

expression when integrated over all collisions at equilibrium. The expression is


()∞


= 1 +
Γ (2− )

Γ (32− )

µ
2 ∗

2

¶12
32

2
+

Γ (2− )

Γ (1− )

µ
2 ∗

2

¶µ
2

4
+ 

¶
,

(2.17)

where  is the translational collision number which is usually taken as unity in DSMC

calculations. It was shown that the model can provide better results for the calculation of a

standing shock wave [41] and the shock wave thickness for a range of Mach numbers [42].

However, it is found that it fails to achieve the equipartition of the thermal modes, or fail to

achieve detailed balance. That is, the equilibrium state can not be kept at equilibrium when

this scheme is applied. Abe [43] developed a new model which employs the instantaneous

probability and obeys the principle of detailed balance. He modified the BL model to



µ




¶
=

 ()

max

Γ (52−  + )

Γ (52− )Γ ()

µ




¶32− µ




¶−1
, (2.18)

where max is a value larger than any possible  ().

The Translational-Vibrational Relaxation

In the classical BL model, the vibrational energy is considered to be continuous [33].

If the vibration follows the simple harmonic oscillator (SHO) model, the specific vibration

energy associated with a mode having a characteristic vibrational temperature Θ is

 =
Θ

exp (Θ )− 1 . (2.19)
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Therefore, the effective number of degrees of freedom at temperature  is

 =
2Θ

exp (Θ )− 1 . (2.20)

In the inelastic collision calculation, the total collision energy  is first distributed

between the translational energy  and the internal energy  = + by following the

procedures similar to TR translation. The only difference is to use  = + to substitute

for . Then the equipartition of the rotation energy  and vibration energy  is decided

by using acceptance-rejection method for the following expression:



max
=

½
 +  − 2
 − 1

µ




¶¾−1½ +  − 2
 − 1

µ




¶¾−1
. (2.21)

Because the vibrational spectrum of real gas molecules is characterized by large gaps

between the neighboring energy levels, the continuity of the vibrational energy mode as-

sumed in the classical BL model is obviously too approximate. The quantum effects need

to be considered. This is true especially for low-temperature flows. A discrete version

of the BL model was developed [44, 45]. For level  of a particular mode, the harmonic

oscillator model gives the vibrational energy of that mode as

 = Θ . (2.22)

The Boltzmann distribution of the energy level can be written as

 ∝ exp
µ
−



¶
 ( − Θ) . (2.23)

The distribution function for a particular combination of  and  is given by



µ




¶
∝ ( − )

32−
 ( − Θ) exp

µ
−



¶
. (2.24)
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The maximum probability is for the ground state  = 0. Therefore, max can be calcu-

lated as



max
=

µ
1− Θ



¶32−
. (2.25)

The detailed procedures used in DSMC are described as follows:

(a) Calculate the maximum possible level by

max = INT

µ


Θ1

¶
, (2.26)

where Θ1 is the characteristic temperature of level 1.

(b) Randomly select the post-collision vibration level as

 =  max . (2.27)

(c) Calculate max and use the acceptance-rejection method to decide whether or not

this energy exchange can occur.

The vibrational relaxation probability is also dependent on the collision temperature or

energy. Boyd [46] developed the expression that is dependent on energy and agrees with

the vibrational relaxation time given by Millikan and White [47]. He assumed that the

probability has the form

 =
1

0
3+2 exp

µ−∗


¶
, (2.28)
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where 0 is constant and ∗ is a characteristic velocity.  is the relative velocity of the

colliding pair. Hash and Hassan [48] developed the expression that is dependent on the

temperature based on Millikan and White’s vibrational relaxation time.

Chemical Reaction

Although the chemical reaction is not included in this study, the author would still like

to introduce the chemical reaction models in DSMC for possible implementation in future

research.

In DSMC method, most reaction models try to convert the continuum chemical reac-

tion rate equations into chemical collision cross-sections. The chemical collisions occur as

part of the collision process with the probability equal to the ratio of the chemical colli-

sion cross-section to the elastic cross-section. Several models, like Total Collision Energy

(TCE) model [49], Vibrationally Favored Dissociation (VFD) model [50, 51], Generalized

Collision Energy (GCE) Model [52], and Threshold Line (TL) Model [53] were devel-

oped and implemented in some chemical reactions in DSMC simulations. These models

were evaluated by comparing the numerical results with the available experimental results

[54–58].

2.4 Computational Parameters

Several important simulation parameters are introduced in this section.
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Particle Weight

Each computational particle in DSMC represents a large number of real molecules.

The number of real molecules represented by a computational particle is termed as particle

weight . Smaller values of  result in a larger number of computational particles in

the simulation. Since the statistical fluctuation is determined by the sampling size. Larger

number of computational particles can provide more accurate result. However, due to the

restriction of the computational resource and computation time, the number of computa-

tional particles should be restricted to a proper number. For DSMC simulation, the number

of the particles per cell should be more than 10.

Time Step

A finite time is used to decouple the movement of particles from collisions. To com-

ply with the dynamic theory, this requires the time step must be a smaller value than the

molecular mean collision time  . For a single species gas using VSS model,  is [33]

 =

√


2

4 (5− 2) (7− 2)
512 (+ 1) (+ 2)

³ 

2

´ 


. (2.29)

Generally, the time step can be chosen as a fraction of  . In this study, ∆ = 08 .

Grid Cell Size

The size of the computational cells is limited by the constraints of physical accuracy

and computational efficiency. In DSMC, the particles are grouped cell-by-cell, and the

collision calculation is computed cell-by-cell. In a real gas, the average distance travelled
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by a particle between collisions is termed as the mean free path . For a single species gas

using VSS model,  is [33]

 =
4 (5− 2) (7− 2)
512 (+ 1) (+ 2)

r


2




. (2.30)

Because the collision pairs are randomly selected in a cell during the collision calculation,

to comply with real physics, the size of the grid cell should be smaller than . On the

other hand, the number of particles in a cell should maintain in a number level to retain

the accuracy. Smaller grid cells require more particles in the simulation, which lower the

computational efficiency. Therefore, the size of the cell should be selected to a proper value

to optimize both the physical accuracy and computation efficiency. In this study, ∆ = .

Number of Iterations

One way to judge if the calculation has reach the steady state is to monitor the overall

number of particles in the computational domain. If the total number of particles is almost

unchanged, the flow can be considered to be steady. To obtain the steady state results and

further reduce the scattering error, another several thousands time steps of calculation are

required after the flow reaches the steady state to obtain enough number of samplings. The

steady state results are obtained by performing time-averaging on these samplings.
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2.5 Boundary Conditions for DSMC

In this section, we will discuss how to implement different kinds of boundary conditions in

DSMC.

Stream Boundary

For a specified stream enters across the inlet boundary with a velocity  , the number of

particles ̇ entered per unit time per unit boundary area is computed by [33]

̇


=

 {exp (−2) +
√
 [1 + erf ()]}

2
√


, (2.31)

where  =
√
2 is the most possible velocity, and  is the molecular speed ratio which

is given by

 =




cos  . (2.32)

 is the area of the boundary surface element,  is the gas constant, erf is the error function,

and  is the angle between the stream direction and the normal direction of the normal

direction of the surface (Figure 2.5). The velocities of the entering particles are sampled

from the Boltzmann distribution with the mean stream velocity and temperature.

Wall Surface

Phenomenological approaches are used to compute the collision between gas molecules

with a solid surface.
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(1) Specular model [45]: A specular reflection occurs when molecules collide with the

surface without exchanging energy with the surface. The reflected velocity only

depends on the pre-collision molecular velocity.

(2) Diffusion model [33]: In diffuse reflection, the molecules accommodate with the

surface totally in the transient collision. The reflected velocity is independent of the

initial velocity and can be sampled by the Maxwellian distribution using the surface

temperature.

(3) Cercignani-Lampis-Lord (CLL) model [59]: The CLL model is a combination of

specular model and diffusion model. The model implementation allows the normal

energy, rotational energy and tangential momentum accommodation coefficients to

be specified independently.

Plane of Symmetry

When particles strike a plane of symmetry All molecules striking the boundary are specu-

larly reflected.

Vacuum Interface

No molecule enters the flow and all molecules striking the boundary are removed from the

computational domain.
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2.6 Implementation of the Background Boundary Conditions

The specified pressure boundary condition can not be directly applied to DSMC due to the

particle nature of the method. The pressure at the boundary needs to be converted into the

velocity, density, and energy for the particles at the boundary cells. This always requires

the definition of a secondary stream, which is the stream that flows into the computational

domain from the background. Several works have been done for the pressure boundary

condition implementation in DSMC method by using an "particle conservation" iterative

flux method [24–26]. The present approach follows the "particle conservation" procedure

in Wu [26]. In this method, an implicit iterative scheme is used to introduce the background

particles entering into the flow region at the boundaries between the background and the

region of the flow. In this procedure, the mean velocity, , and the average number of

particles leaving the computational domain, ̇+, are first obtained from the calculations

in the previous time step for each boundary cell "" (Figure 2.6). Then, the number of

particles ̇− entering each boundary cell in the current time step is calculated by applying

the conservation of particle fluxes under the specified pressure and temperature boundary

conditions:

()


 =

³
̇ 
+ − ̇

−4
−

´


, (2.33)

where  is the area on a downstream boundary cell, and the downstream number density

 is calculated as

 =



, (2.34)
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where  and  are the pressure and temperature at the downstream boundaries. Thus, for

each boundary cell, the particles entering the flow region from the background are intro-

duced by sampling from a Maxwellian distribution with the calculated mean flow velocity

 and the background temperature..

Although Cai and Boyd [60] argued that this method could cause statistical error in the

flow field, the method has been successfully used for the several simulations. In this study,

to further reduce the statistical error, the calculated mean flow velocities in the boundary

cells are averaged over time.

2.7 Parallel Implementation

The DSMC method is always computationally expensive, especially for 3D problem. Im-

proved performance can usually obtained through parallel execution. Because of the par-

ticle nature, the DSMC algorithm is readily parallelized through domain decomposition.

Computational grid is built for each domain and the particle movement and collisions are

calculated in each domain. Parallel communication occurs only when particles cross do-

main boundaries. Figure 2.7 is a typical flow chart for a parallel DSMC code.

2.7.1 Parallel Efficiency

High parallel efficiency can be achieved if communication is minimized and the compu-

tation load is evenly distributed between processors. To minimize communication, the

domain boundaries should lie along the streamlines of the flow field. This is always hard
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to achieve. Proper load-balancing can, to first order, be achieved by using an equal num-

ber of particles on each processor. The number of collisions occurring per processor has a

second order effect on computational load. The number of cells assigned to each processor

does not have a significant effect on efficiency.

2.7.2 Dynamic Domain Decomposition

When the flow does not reach the steady state, the particle resolution is changed during the

computation. To equally distributed the computational load to each process, the decompo-

sition of the domain should be changed during the calculation. A simple dynamic domain

decomposition technique is going to be used. In the simulation of interacting jets, if the jets

are exhausting in -direction, the domain is only be decomposed in - and - directions to

reduce the communication as shown in Figure 2.8. Firstly, the computational domain is de-

composed in -direction. The block boundaries are selected so that the particles are equally

distributed to each block. Then for each block decomposed in the first step, the block is

again decomposed in -direction to ensure the particles are equally distributed. After the

domain is decomposed, the computational cell in each sub-domain is re-created and the

particles are re-sorted. The particles which are not in the current block will be transferred

to the corresponding sub-domains.
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2.7.3 Adaptive Mesh

In DSMC, the grid cell size should be smaller than the local mean free path. For the

case of jet simulation, the local mean free path is significantly varied in the flow field.

Therefore, adaptive mesh should be used to increase accuracy and efficiency. A simply

2-level structure adaptive mesh will be applied in the code (Figure 2.9). The simulation

starts from a coarse 1st-level cells until the simulation reaches the steady state. The local

mean free path length in each cell can be calculated. Then, a number of 2nd-level grid cells

is created in each 1st-level grid. The size of the 2nd-level grid cell should be a fraction of

the local mean free path calculated in the 1st-level cell. By using this method, the grid will

be automatic refined for the region where the density is high. This grid refinement process

can be executed several times in the simulation.
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Chapter 3
One-Dimensional Shock Wave

For the one-dimensional normal shock wave, because of the sharp gradient of the flow

properties in a very small region (small values of  in Equation (2.1)), high local Knudsen

numbers can occur in strong shock waves at all gas densities. It has been proved that the

traditional Navier-Stokes method can not resolve the detail shock wave structure if the

shock wave Mach number 1  16 [33]. There are many experimental data available

for the structure of normal shock wave [61–64], and therefore, this flow become a very

important test case for the theoretical [65–67] and numerical studies [68–71] of rarefied gas

dynamics. For monotonic gas ( = 53), as 1 becomes larger, the shock wave thickness

becomes smaller and the parallel temperature || (calculated by the thermal velocity in

the direction of shock propagation) deviates from the normal temperature ⊥ (calculated

from the thermal velocity in the normal direction of the shock propagation) [33, 72]. For

diatomic gas ( = 75), additional rotational degree of freedom needs to be considered.

The breakdown of the thermal equilibrium between the translational and rotational degrees

of freedom is also observed [73–76]. There is a significant lag of the rotational temperature

 profile to the translational temperature  profile. If the 1 is high, the distribution of

the rotational energy also becomes non-maxwellian [77].

The one-dimensional normal shock wave was used as a benchmark because of its rele-

vance to the Mach disk formed in the under-expanded jet problem. Upstream Mach number
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1 values in range of 15 to 100 are simulated for argon and nitrogen. The upstream tem-

perature 1 is 273 K and pressure 1 is 50 mtorr. The downstream boundary condition is

set as a specularly reflecting wall moving with the Rankine-Hugoniot speed. The domain

runs from −20 to 20, after being normalized by the upstream mean free path 1, which is

calculated as [33]

1 =
16

5

µ
1

21

¶12
 (3.1)

Table 3.1 summarizes the conditions used for the DSMC calculation for argon (1 = 9)

and nitrogen (1 = 10).

Table 3.1. Parameters for the DSMC calculation of normal shock wave

Parameter Argon Nitrogen

Mach number of shock wave (1) 90 100

Number of particles after steady 34 050 36 653

Number of cells 400 400

Upstream number density (1) 161× 1020 161× 1021

Upstream Temperature (1) 300K 300K

Upstream mean free path length (1) 109319mm 101453mm

Reference Temperature ( ) 273K 273K

Reference Viscosity ( ) 2117× 10−5N·s/m2 1656× 10−5N·s/m2

Temperature exponent  for  =  ( )


081 074

Exponent in VSS model () 140 136

Rotational collision number () N/A 5

Time step size (4) 075× 10−6s 075× 10−6s

Time steps to reach steady 40 000 40 000

Time steps for sampling after steady state 60 000 60 000
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3.1 Argon Normal Shock Waves

Because there is no internal degrees of freedom, the normal shock wave structure for a

monotonic gas was carefully studied. Several analysis were developed based on the ap-

proximate solution of Boltzmann equation. Mott-Smith [65] used the moment method by

assuming a bimodal velocity distribution function and found the density profile as

− 2

1
− 

2

=
1

1 + exp { (1)} , (3.2)

where  is a function of shock Mach number 1 and the subscripts "1" and "2" represent

values in upstream of downstream of the shock wave. Figure 3.1 compares the DSMC-

generated density distribution for 1 = 9 argon shock wave with that from the experimen-

tal results by Alsmeyer [68] and data calculated by Mott-Smith’s approximation (Equation

(3.2)). Agreement is evident although the DSMC result shows a slight dissipation. Be-

cause the velocity difference between the -direction and normal direction components

of the thermal velocity, the parallel temperature  (based on -direction thermal veloc-

ity) deviates from the normal temperature  (based on the thermal velocity on - and

-directions). Figure 3.1 also plots the distributions of , , and the overall tempera-

ture  . The strong nonequilibrium between  and  is observed due to the high shock

wave Mach number. While  reaches a maximum value that is almost one-fifth higher

than downstream temperature 2,  approaches 2 monotonically.
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Figure 3.2 shows the reciprocal shock wave thickness (1) for the argon shock waves,

where  is defined as

 =
(2 − 1)

()max
 (3.3)

The DSMC results are compared with several experimental data. Excellent agreement is

evident for Mach numbers less than 3, with visible dissipation at the higher Mach numbers.

Even then, the computed results for these high Mach number cases compare well with the

data from Camac [63].
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3.2 Nitrogen Normal Shock Waves

For nitrogen shock wave, which is diatomic, the additional rotational degrees of freedom

must be considered. Since the rotational collision number   1, the rotational temper-

ature  must lag behind the translational temperature . In Figure 3.3, the density and

rotational temperature obtained from the present DSMC calculations of nitrogen normal

shock (using  = 5) are compared with the experimental data from Robben and Talbot’s

[73] for 1 = 171, 7, and 129. Compared with 1, ∗ =  ( ∗)  is used as the ref-

erence length, where the superscript “∗” represents values at sonic speed ( = 1). The

conversions between ∗ and 1 in the current calculations are given by ∗1 = 040463,

048075, and 061325 for 1 = 171, 70, and 129, respectively. Also The agreement

between the numerical results and the experimental data is quite good. The translational

temperature  obtained from the calculation is also shown to illustrate the nonequilibrium

between  and . It shows that even for a smaller shock Mach number (1 = 171), 

profile lags to  profile and even lags slightly to the  profile. When the shock Mach num-

ber is large (1 = 7 and 129.), the  profile lags to the  profile and the gap between the

two temperature curves becomes larger as 1 increases.

Figure 3.4 shows the reciprocal shock wave thickness (1) for the nitrogen shock

waves. Good agreement with experimental data is evident.
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Figure 3.3. Normalized density and temperature distribution in nitrogen normal shock

waves: (a) 1 = 171; (b) 1 = 70; (c) 1 = 129.
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Chapter 4
Two-Dimensional Hypersonic Flow Past a

Cylinder

A two-dimensional hypersonic nitrogen flow past a cylinder is also simulated for the

purpose of validating the DSMC program. Figure 4.1 shows the computational domain.

The calculations are made for a freestream Knudsen number ∞ = ∞ = 01 and

Mach number ∞ = 20, where  is the cylinder diameter and ∞ =
¡√
22∞

¢−1
.

Both the upstream and cylinder temperature are fixed at 300 K. The cylinder is assumed

to be a diffuse surface and the downstream boundary condition is assumed to be vacuum.

The cell size is 800 × 250. Note that vibrational relaxation is important in this problem

because of the high Mach number. Table 4.1 summarizes the parameters used to calculate

the vibrational relaxation in DSMC.
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Figure 4.1. Computational domain for hypersonic flow past a cylinder

50



Figure 4.2 shows the normalized density, translational temperature, rotational temper-

ature, and vibrational temperature contours for the flow. Very high temperature can be

observed in the region just upwind of the cylinder. Therefore, the relaxation of the vibra-

tional mode become very important. In Figure 4.3, our results are compared with Koura’s

[78] DSMC simulation results for the transverse distribution of density, translational, rota-

tional, and vibrational temperatures at an axial distance of  = 1. The two calculations

are in close agreement, with the exception of the vibrational temperature distribution. It

shows that the vibrational temperature of the current calculation is somehow lower than

Koura’s results in the region close to the cylinder. This might be due to the fact that a sim-

plified vibrational relaxation model, which only considers one active vibration mode is used

in our code, compared with the more comprehensive EITFITS (extended improvement to

forced oscillator, impulsive transfer semiclassical) model used by Koura for the vibrational

relaxation in the region where temperature is very high. However, the under-expanded jet

simulations in the present study is at room temperature and vibrational relaxation will be

negligible. Figure 8 shows the contour maps of normalized number density, translational,

rotational, and vibrational temperatures.
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Table 4.1. Parameters used for the calculation of vibrational relaxation in nitrogen flows

Parameter Value

The number of active vibration mode 1

Characteristic vibrational temperature (Θ v ) 3371K

Vibrational collision number Zv  C1 /T expC2T−1/3  C1  9. 1, C2  220. 0

Figure 4.2. Normalized (a) density; (b) translational temperature; (c) rotational tempera-

ture; (d) vibrational temperature for a hypersonic nitrogen flow past a cylinder (∞ = 2 /0,

∞ = 01).
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Figure 4.3. Results from the present calculation compared with Koura’s [78] DSMC results

for hypersonic flow past cylinder (∞ = 20, ∞ = 01): (a) density; (b) translational

temperature; (c) rotational temperature; (d) vibrational temperature. Note that results are

shown as functions of the transverse coordinates () where longitudinal coordinate () is

equal to .
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Chapter 5
Single Under-Expanded Jet

In this chapter, single under-expanded jets are studied by using DSMC approach. Both

of jets issuing into vacuum and into a background with finite pressure are simulated. The

stagnation pressure () and temperature () of the jet are 30 torr and 293 K. The back-

ground temperature () is set to the source stagnation temperature. A constant value of

 = 4 is used for nitrogen jets. Several values of stagnation-to-background pressure ra-

tios (): 20, 50, 100, 200, and values that approach infinity are investigated. Each case

runs for three different values of the stagnation Knudsen number () of 005, 0005,

and 0002, respectively. Therefore, the under-expanded jets in both the rarefied and near-

continuum flow regimes are studied.

Figure 5.1. The computational domain for the DSMC calculation of under-expanded jets

in this paper, showing a quarter of the full domain, assuming symmetry.
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The geometry of the simulated region is shown in Figure 5.1. Only a quarter of the full

physical domain is simulated based on the assumption of symmetry. The jet flow exhausts

through a circular orifice located at the x=0 plane. The boundary conditions are set as

follows:

(a) For the x=0 plane, sonic conditions are used for the particles entering through the

orifice and the orifice plate is set to be a fully diffusive wall with a temperature value

equal to the background temperature;

(b) Symmetry boundary conditions are imposed on both the  = 0 and  = 0 planes;

(c) The "particle conservation" method, which is introduced in Section 2.6 is used to

specify the background pressure  and temperature  for all outflow boundaries.

Note that, to correctly specify the downstream boundary conditions, the size of the

computational domain needs to be sufficiently large so that the influence of the jet plume is

negligible at the downstream boundaries. Figure 5.2 shows the typical grid configurations

for the DSMC calculations. Note that the sub-domains in Figure 5.2 are not equally-sized,

as an automatic, adaptive domain decomposition is used to obtain parallel load balancing.

The number of particles, not the physical size of the domain, determines the computational

loads and hence the load balancing. For example, block 1 in Figure 5.2 contains the orifice

where the density is large and hence, the number of simulated particles is large, whereas

block 16 is in a more rarefied region where the number of particles is relatively small. The

number of the simulated particles and grid cells used for each simulation are also shown in

Table 5.1.
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Table 5.1. Case studies for the DSMC simulation of single under-expanded jets

Case Kns Ps/Pb CPUs Orifice Diameter (m)  (
dynes
cmK ) Size of Domain Particle Weight No. of Particles No. of Cells

1 0. 05  16 2. 73957  10−5 0. 0000 25D  6D  6D 1. 302  104 4, 149, 620 484, 652

2 0. 05 200 16 2. 73957  10−5 0. 0253 25D  6D  6D 2. 170  104 6, 465, 380 542, 346

3 0. 05 100 16 2. 73957  10−5 0. 0357 25D  6D  6D 4. 894  104 8, 787, 720 605, 248

4 0. 05 50 16 2. 73957  10−5 0. 0505 20D  6D  6D 8. 684  104 10, 450, 762 663, 736

5 0. 05 20 16 2. 73957  10−5 0. 0799 18D  5D  5D 2. 605  105 14, 256, 128 727, 352

6 0. 005  36 2. 73957  10−4 0. 0000 25D  6D  6D 8. 680  105 17, 443, 800 758, 426

7 0. 005 200 36 2. 73957  10−4 0. 2527 25D  6D  6D 1. 736  106 20, 201, 509 841, 730

8 0. 005 100 36 2. 73957  10−4 0. 3574 25D  6D  6D 8. 681  106 17, 818, 486 809, 932

9 0. 005 50 36 2. 73957  10−4 0. 5055 20D  6D  6D 8. 681  106 35, 391, 399 1, 608, 670

10 0. 005 20 36 2. 73957  10−4 0. 7922 18D  5D  5D 2. 171  107 34, 868, 988 2, 328, 034

11 0. 002  36 6. 83991  10−4 0. 0000 25D  6D  6D 1. 953  107 12, 124, 814 1, 348, 216

12 0. 002 200 36 6. 83991  10−4 0. 6318 25D  6D  6D 6. 510  107 25, 142, 704 2, 285, 702

13 0. 002 100 36 6. 83991  10−4 0. 8935 25D  6D  6D 9. 766  107 32, 296, 781 2, 691, 398

14 0. 002 50 36 6. 83991  10−4 1. 2637 20D  6D  6D 5. 208  107 93, 928, 219 6, 261, 882

15 0. 002 20 36 6. 83991  10−4 1. 9980 18D  5D  5D 1. 563  108 78, 154, 987 5, 086, 774

Figure 5.2. A typical grid for the DSMC simulation running on 16 CPUs
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5.1 Single Jet Expanding into Vacuum

A supersonic jet expanding into vacuum is a fundamental test case for rarefied gas dynam-

ics. The free rapid expansion results in a fast decay of density (large values of ) and the

local Knudsen number becomes larger as the jet flow propagating. There are many experi-

mental and analytical studies available [79–83]. In the region close to the orifice, the flow

density is still high and both density and temperature profiles follow the isentropic rela-

tions. When the distance from the orifice  becomes large, both curves deviate from the

isentropic ones and the density profile continuously decays as 12 due to the conserva-

tion of mass. While the circumferential direction temperature ⊥ continuously decreases

due to the decrease of density, the radial direction temperature || decreases to a terminal

value ||∞ and remain unchanged [84–90]. This is the so-called "super cooling" effects.

If the gas is not monotonic, the rotational temperature  also deviates from translational

temperature  when  is large [91–101]. It was also noticed that the distribution function

of the internal rotational modes may become non-maxwellian [102–105].

5.1.1 Rarefaction Parameter

For free jets expanding into vacuum ( −→ ∞) from a sonic orifice, the only flow

parameter is the jet stagnation Knudsen number , which is also related to the Reynolds

number at the orifice exit, ∗:

 =



=

√
22

· 


=

1

Re∗

r


2
·
µ

2

 + 1

¶ 1
−1

 (5.1)
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Therefore, for a free jet expanding into vacuum at a fixed temperature ,  (∗) is

determined only by the product of  and . This quantity (), with units of torr×mm,

is frequently used in experiments to characterize sonic jet expansion.

Several researchers developed approximate asymptotic solutions for the jet density dis-

tribution, which is of the form [106–108]




= 

µ
2



¶2
·  ()  (5.2)

where  is the radial distance from the orifice and  () is the angular distribution function,

which has the form

 () = cos2
µ


2
· 

max

¶
 (5.3)

and  and  are -dependent constants. For  = 14,  = 0345 and  = 952◦

[15].

5.1.2 Results and Validation

Marrone [92] and Mori [105] experimentally measured the centerline properties of free jets

for the case where =torr×mm. The detail experimental conditions are shown in Table

5.2. This provides validation data for the present effort. In Figure 5.3, the density contours

from the developed DSMC code and from AEROFLO [109] on the  = 0 symmetry

plane are compared. Excellent agreement is evident. AEROFLO is a compressible Navier-

Stokes based multi-disciplinary CFD code that is based on high-order discretization in

space and time. Since the vacuum boundary condition is not valid in AEROFLO, a very
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large computational domain (compared with the computational domain used in DSMC)

is used for the AEROFLO model and Neumann boundary conditions are applied at the

downstream boundary.

Table 5.2. Summary of the experiments of single jet expanding into vacuum

No. Author Year Gas Ps (torr) D (mm) Ts (K) Re
D
* Kns M* Method

1 Mori 2005 N2 30 0. 50 293 280 2. 736  10−3 1. 0 Resonantly Enhanced Multiphoton Ionization

2 Marrone 1967 N2 3 5. 0 293 280 2. 736  10−3 1. 0 Electron Beam Fluorescence

In Figure 5.4, the density distribution along the jet centerline that is calculated with

the DSMC code is compared with Marrone’s experimental data, an asymptotic relation

(Equation (5.2)), the isentropic relation, and the result from AEROFLO. The isentropic

relation can be expressed as



=




=

µ
1 +

 − 1
2

2

¶ 1
−1

. (5.4)

where  is the Mach number distribution within the expansion core, which can be approx-

imated by [110]

 = (22)
−1
2 [ ( − 1)]− −1

4

µ
 + 1

 − 1
¶+1

4

()
−1

 (5.5)

Two DSMC calculations are shown: (a)  = 3 torr,  = 5 mm; and (b)  = 30 torr,

 = 05 mm. According to Equation (5.1), these two calculations should give essentially

the same results because the product  is the same. We can see in Figure 5.4 that this

is indeed the case. Moreover, the Navier-Stokes simulations as well as the asymptotic
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distribution and the isentropic relation give the same density profile. The experimental

data also agrees with these results for  . 12, with deviations further downstream.

We believe the deviations are due to the inability to obtain perfect vacuum conditions in

the experiment, whereas the various calculations had no difficulties enforcing an infinite

value for . Note, however, that the magnitude of the error in the measurement is

exaggerated in Figure 5.4 because of the use of a log scale.

Figure 5.3. Density contour map on the Z=0 symmetry plane ( → ∞,  = 15

torr×mm) from the present DSMC calculations and from AEROFLO
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Figure 5.4. Comparison of calculated and measured density distribution along the cen-

terline. The data comes from Marrone’s experiments and continuum calculations from

AEROFLO. Also shown are the DSMC results, the asymptotic distribution (Eqn. (5.2)),

and the isentropic relation (Eqn.(5.4)). Two DSMC results with different flow conditions

are shown.

61



5.1.3 Thermal Non-Equilibrium Effects

Figure 5.5 compares the DSMC results for translational temperature with the Navier-Stokes

(AEROFLO) calculations and the isentropic relations, both of which are based on the con-

tinuum hypothesis. The isentropic relation can be expressed as




= 1 +

 − 1
2

2 . (5.6)

We see that the two DSMC calculations with different  and  values but with the same

values of  give identical results. We also observe that the continuum calculations

(AEROFLO and isentropic relation) give progressively poorer results as  increases,

due to increasing non-equilibrium effects downstream.

To evaluate the translational-rotational non-equilibrium effects, a simple model for pre-

dicting the axial decay of the rotational temperature, , is developed below, starting from

Equation (2.10). The equilibrium temperature  and number density  can be evaluated

assuming isentropic conditions. Since  À 1 for most free jets when   1, we can

write the equations for  and  as follows:

1

Φ

⎡⎣ 



⎤⎦ =
⎡⎣  0

0 

⎤⎦⎡⎣ ¡¢−2(−1)¡



¢−2
⎤⎦ = 1

Φ

⎡⎣ 0378318× 
¡



¢−08
00880324× 

¡



¢−2
⎤⎦ 

(5.7)

where

Φ =

µ
 − 1
2

¶
(22)

−1
[ ( − 1)]−−1

2

µ
 + 1

 − 1
¶+1

2

 (5.8)
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If we assume an adiabatic speed limit, max, of [33]

max =

µ
2

 − 1
¶12

(5.9)

and the departure from equilibrium is small [95], we can estimate




' 


= max




= −138747× 107 ()

−18
 (5.10)

using the conditions in Marrone’s experiment and the temperature distribution in Equation

(5.6). We further assume that  can be given as

 =
 ( )

4
=

 ( )

4
 (5.11)

Equating Equations. (2.10) and (5.10), we can express  as

 = 0378318×  × ()
−08

+ 7096326× ()
0408 ×  (5.12)

Note that we have used the power law relation between the dynamic viscosity and tem-

perature,  =  ()
074, where  = 1656 × 10−5 N·s/m2 at  = 273 K

[33].

A model for the rotational collision number  as a function of the translational tem-

perature  is needed in order to evaluate  in Equation (5.12). Advantage is taken of

previous relevant work in order to close the  model. Parker [38] developed the equation

 =
∞

1 + (322) ( ∗)
12
+ ( + 24) ( ∗)

 (5.13)

with ∞ = 157 and  ∗ = 800 K for nitrogen. When the experimental results of Lordi

and Mates [111] are used to fit this equation, the coefficient values are ∞ = 230 and
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 ∗ = 915 K. This expression was subsequently corrected by Brau and Jonkman [112]:

 =
∞

1 + (322) ( ∗)
12
+ (2 + 24) ( ∗) + 32 ( ∗)

32
 (5.14)

with ∞ = 252 and  ∗ = 1185 K. These expressions are plotted in Figure 5.6 for

temperatures up to 500 K.

In Figure 5.7, the DSMC results for the rotational temperature distribution along the

jet centerline are compared with the experimental data and the prediction from Equation

(5.12). Both the DSMC calculations and Equation (5.12) are carried out for  = 2 and 5.

Good agreement with the experimental results is evident for  = 2. This is due to the fact

that the value of  depends on temperature (the higher the temperature, the larger value of

). Since the flow temperature drops rapidly and  ≤ 100 K when   1,  = 2 is

a more reasonable value for the experiments and, therefore, the numerical calculations, is

evident from the translational temperature values, vis-a-vis, the  distributions in Figure

5.6.

It is also interesting to study the so called "super cooling" effects, which refers to the

non-equilibrium between the components of the translational temperature in different direc-

tions. It has been observed that, for a free jet expanding into vacuum, while the circumfer-

ential direction temperature ⊥ continuously decreases due to the decrease of density, the

radial direction temperature || decreases to a terminal value ||∞ and remain unchanged.

Figure 5.8 plots the centerline temperature distributions of the argon jet flow and it does

show this non-equilibrium behavior. There are several analysis of this non-equilibrium ef-
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fects by using a sudden freeze model. It can be shown that the ||∞ and decay rate of is ⊥

a function of  (or ).
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Figure 5.5. Comparison of translational temperature distribution along the centerline from

DSMC simulation and continuum calculation using AEROFLO. The isentropic expansion

relation is also shown, as are DSMC results with different flow conditions.
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Figure 5.6. Plot of nitrogen rotational collision number  as a function of temperature.
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Figure 5.7. Comparison of calculated DSMC rotational temperature distribution along the

centerline with Marrone and Mori’s experimental data, and with the simple rotational tem-

perature decay model (Eqn. (5.12)). Note that both DSMC and Eqn. (5.12) are calculated

for  = 2 and  = 5
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( = 15 torr×mm)
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5.2 Single Jet Expanding into a Region with Finite Pressure

Rather than expanding into vacuum, when the jet expands into a region of finite ambient

pressure, a more complicated flow structure results due to the interaction between jet flow

and the background gas. Because the jet exhausting conditions could vary for different

pressure levels (such as rocket exhaust at different altitudes) [113], and applications could

vary from very large scales (such as a power plant) [114] to very small scales (such as a

micro-jet in MEMS device) [115], under-expanded jets may be observed in the entire flow

regimes, i.e., from the free molecular regime to the continuum regime.

Figure 5.9. The shock structure from an under-expanded sonic jet issuing from an orifice

At high levels of the background pressure () and small values of the jet stagnation

Knudsen number (), the plume is in the continuum flow regime. In this case, the

plume expands around the orifice exit to form an inertia-dominated region of isentropic
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high Mach number flow, which is sometimes called expansion core. Due to the strong

interaction between the jet and the background gas, a normal shock wave (Mach disk) and

barrel shocks, which take on a concave curvature, are formed. This “shock-cell” structure

is shown in Figure 5.9.

There have been many analytical and experimental studies on under-expanded jets, and

most of them focus on the shock structures in the continuum flow regime. The method

of characteristics [79–81, 106–108] was used to predict the inviscid jet boundary. The

location and size of the Mach disk were also extensively measured in experiments [110,

116–124]. Empirical correlations for the location and diameter of the Mach disk were

given by Ashkenas [118] and Crist [120]:

 = 067 ()
12 (5.15)

and

 = 024 ()
12

 (5.16)

Electron beam fluorescence method [125] was firstly used to measure the density and tem-

perature distributions along the centerline of the jets. The Raman [126] or Rayleigh scat-

tering [127] technique have been widely used in later studies. Recently, Venkatakrishnan

[128] and Kolhe [129] made a complete density mapping of the jets by using background-

oriented Schlieren and miniature rainbow schlieren deflectometry technique, respectively.

Naik [130] also measure the pressure, density, and velocity along the jet centerline by us-

ing Planar laser-induced fluorescence imaging. There are also many numerical simulations
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of the under-expanded jets in continuum regime by solving the Navier-Stokes equations

[131–141].

When background pressure  is smaller and jet stagnation Knudsen number  is

large, the plume becomes rarefied. The thickness of the shock waves increases and the

mixing zone is enlarged. Since the plume contains both supersonic expansion region (ex-

pansion core) and shock waves (Mach disk, barrel shock), the thermal non-equilibrium

effects become more complicated. Although there are many studies of under-expanded jets

in continuum flow, only a few of studies analyzed the under-expanded jets in rarefied flow

regimes. Muntz [142] used the electron beam fluorescence method to show the differences

of the flow structures in different flow regimes. The penetration of the background gas into

the jet flow were also studied theoretically by Brook [83, 143, 144]. Several researchers

also used the DSMC method to study the rarefied under-expanded jets [27, 29, 145–148].

There are also other numerical methods to calculate the under-expanded jets in all flow

regimes. Ivanov [149] proposed a hybrid approach that combines the DSMC method with

Navier-Stokes equations for different parts of the flow field. Wang and Boyd [150] and

Ladeinde et al. [21, 22] have also reported on hybrid methods for rarefied flows. However,

all of these studies focused on how the flow shock structures are changed due to rarefaction

effects rather than the thermal nonequilibrium effects in rarefied under-expanded jets. To

the author’s knowledge, the quantitative studies of the thermal nonequilibrium effects for a

rarefied under-expanded jet is still scarce. Therefore, this study focuses the analysis of the

nonequilibrium effects for rarefied under-expanded jets.
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5.2.1 Rarefaction Parameter

The interaction between the jet molecules and the molecules of background gas were stud-

ied for single under-expanded jets by Muntz [125]. A rarefaction parameter  was proposed

as

 =  ()
12

  (5.17)

to characterize this interaction. It can be shown that this parameter is inversely proportional

to the square root of the pressure ratio  and stagnation Knudsen number :

 =
√
22

· 1

()
12


=

√
22

·
r
2


·
µ
 + 1

2

¶ 1
−1

· Re∗
()

12
 (5.18)

Therefore, the rarefaction effects for the jets expanding into vacuum depend on two para-

meters:  and .

In addition to the rarefaction parameter  defined in Equation (5.17), we can introduce

a new parameter, , the background molecular penetration Knudsen number, to evaluate

the penetration of the background gas into the jet flow. It is defined as (shown in Figure

5.10):

 ≡ 

∗
 (5.19)

where  is the background molecular penetration length (measured from the source),

which is given by

 =
2max

∗2

40
 (5.20)
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and ∗ is a characteristic plume dimension, which is given by

∗ = [() (max
∗) 2]12  (5.21)

Note that  is actually the minimum axial distance from the orifice to where a background

molecule can be found.  is the jet thrust calculated as

 =
∗ (∗)2 2

4
 (5.22)

where ∗ is the velocity at the orifice exit and  is the orifice diameter. 0 is the thermal

velocity of the background molecules:

0 =
2√


p
2  (5.23)

This allows us to write  as

 =
322

4 ()
12

µ
 + 1

 − 1
¶14µ

2

 + 1

¶ 1
2(−1)

·   (5.24)

It shows that  reproduces the rarefaction parameter , which indicates that  is indeed

a measure of how far the background gas can penetrate into the jet flow.
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Figure 5.10. Scales used in the definition of  = 
∗, where  is the background

molecular penetration distance (measured from the orifice) and ∗ is a characteristic plume

dimension.

Figure 5.11 shows the contour maps of the normalized density, translational tempera-

ture, rotational temperature, and the Mach number when the jet has the parameters  =

0002,  = 50. Compared with the Figure 5.3, the existence of the background gas

significantly changes the flow structure. In this case, although the flow is still rarefied

and the shock structure is much dissipated, the "shock-cell" structure (Figure 5.9) can still

be observed from these figures, especially in the Mach number and temperature contours.

Slight difference can also be observed in the translational and rotational temperature con-

tours. This translational-rotational non-equilibrium is expected since the inter-molecular

collision frequency is too low to balance the translational and rotational temperature.
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Figure 5.12 presents the same contour maps for  = 0002,  = 100. The

effects of  can be seen by comparing with Figure 5.11. The most obvious observa-

tion is the significant difference in the transverse () scale of the shock structure, with the

larger pressure ratio case ( = 100) showing the larger size. This is consistent with

the experimental observation that the diameter of the Mach disk scales with the square root

of the pressure ratio. According to Equation (5.16), this length scale in the large pressure

ratio should be
√
2 times greater than the smaller, which is consistent with the observa-

tions in these figures. Also, with higher value of , the Mach disk is located further

downstream of the plume.

Figure 5.13 also presents the same contour maps but for  = 005,  = 50.

Compared with Figure 5.11, a larger value of  indicates that the plume is much more

rarefied and the interaction between the molecules of the jet and the background gas mole-

cules could be neglected. Therefore, no shock waves are formed. Also, significant non-

equilibrium between the translational temperature and rotational temperature fields can be

observed.

Figure 5.14 shows the contour maps of normalized density in the  −  plane for

 = 0005,  = 20 and  = 10, 20, 60, and 120. The location  = 10

is very close to the jet exit, with a solution field that is similar to the uniform distribution

specified at the orifice. The location  = 20 is in the isentropic core, where the

density is relatively low because the flow there is supersonic. The location  = 60 is
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downstream of the Mach disk ( ' 3). The density becomes higher because the flow

becomes subsonic. This trend continues at  = 120.

Figure 5.11. The contour maps of single under-expanded jet at the  = 0 symmetry plane

for  = 0002,  = 50: (a) normalized density; (b) Mach number; (c) normalized

translational temperature; (d) normalized rotational temperature.
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Figure 5.12. The contour maps of single under-expanded jet at the  = 0 symmetry plane

for  = 0002,  = 100: (a) normalized density; (b) Mach number; (c) normalized

translational temperature; (d) normalized rotational temperature.
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Figure 5.13. The contour maps of single under-expanded jet at the  = 0 symmetry plane

for  = 005,  = 50: (a) normalized density; (b) Mach number; (c) normalized

translational temperature; (d) normalized rotational temperature.
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Figure 5.14. The contour maps of normalized density in the  −  plane at various 

locations for flow at  = 0005,  = 20: (a)  = 10; (b)  = 20; (c)

 = 60; (d)  = 120
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5.2.2 Effects of  and 

Figures 5.15 through 5.17 are the normalized density, pressure, translational temperature,

and rotational temperature distributions along the jet centerline for different pressure ra-

tios when  = 005 (Figure 5.15), 0005 (Figure 5.16), and 0002 (Figure 5.17). When

 = 005, the flow is very rarefied and no shock wave is formed. As shown in Figure

5.15(a) and 5.15(b), when  is finite, both the density and pressure distributions are

monotonically attenuated to the background values, which are higher for lower  val-

ues. The DSMC simulation clearly predicts the correct trend of uniform presence in the

plume as  approaches unity. Figure 5.15(c) shows that the translational temperature

quickly decays downstream but then gradually increases to the background temperature.

Compared with the translational temperature, the rotational temperature distribution (Fig-

ure 5.15(d)) asymptotes to background temperature at a significantly slower rate (in ).

This is consistent with the fact that the relaxation of the rotational mode is slower than the

relaxation of the translational mode ( =    1) when the rarefaction effect is strong.

As shown in Figure 5.16, because of the smaller  value ( = 0005), the flow

could still be in the transitional flow regime when  is small. In Figure 5.16, we can

clearly observe the spatial oscillations in the density, pressure, and temperature fields for

small values of . Although it is much dissipative, this is an indication of the waves

associated with the "shock-cell" structures.

The interaction between the jet and background gas becomes even stronger when 

is further reduced to 0002. Increased waviness in the centerline distributions can be

80



observed in Figure 5.17, which means that not only has the "shock-cell" structure been

formed, but also that the structure is replicated downstream, which is indeed the expected

physics when the jet is expanded in the near continuum regime.
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Figure 5.15. Additional centerline results for  = 005: (a) ; (b) ; (c) ;

(d) .
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Figure 5.16. Additional centerline results for  = 0005: (a) ; (b) ; (c) ;

(d) .
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Figure 5.17. Additional centerline results for  = 0002: (a) ; (b) ; (c) ;

(d) .
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5.2.3 Thermal Non-Equilibrium Effects

The nonequilibrium between the translational and rotational temperatures for nitrogen under-

expanded jets are shown in Figures 5.18 through 5.22. Figures 5.18 plots the differential

behavior of the centerline translational and rotational temperatures at different  values

when  = 50. The dependence of translational-rotational non-equilibrium on the 

is shown. At the highest  value ( = 005), the flow is in the rarefied flow regimes,

and the deviation between the translational temperature and rotational temperature is large

in all of the expansion core, Mach disk (is weak and thickened), and flow downstream of

Mach disk (until  = 10). When  becomes smaller, while  is unchanged, the

gap between the profiles of the two temperatures becomes smaller while the deviation can

still be observed until  = 10. Figure 5.19 plots the same temperature profiles but for

different  values when  = 0002. It can be found that although the location of

the Mach disk is changed for different  values, the maximum gap between the two

temperatures in expansion core is almost unchanged, while as  is smaller, the non-

equilibrium effects can reach further locations of downstream of Mach disk. From these

two figures, it can be seen that, in the expansion core, the deviation between the rotational

and translational temperatures are more likely decided by the jet’s Knudsen number, 

and not affected by . This is consistent with the fact that the background gases are

excluded from the expansion core by the Mach disk and the flow in the expansion core

is only affected by . However, the rotational-translational nonequilibrium effects in

the downstream of Mach disk (including the Mach disk region) are affected by both 
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and  and how far the rotational-translational nonequilibrium effects can reach in the

downstream of Mach disk are more sensitive to the pressure ratio .

Figures 5.20 and 5.21 plot the profiles of translational and rotational temperatures at

different  locations when  = 0005,  = 50 and  = 0002,  =

50. Four values of  = 15, 35, 48, and 70 are selected to show the translation-

rotation nonequilibrium in the transverse direction for flow close to the orifice, flow in

the expansion core, flow around the Mach disk, and the flow downstream of Mach disk,

respectively. For smaller  ( = 15), the existence of barrel shock waves are

observed, which results in a large gap between the translational and rotational temperature

curves. When becomes large, the effects of barrel shock vanishes due to the fast decay

of flow density, and the translation-rotation non-equilibrium effects is significant in the jet

boundary only when  is relatively large ( = 0005). Figure 5.22 plots the profiles

of translational and rotational temperatures at different  locations when  = 0005,

 = 100. Compare with Figure 5.20, it also can be found that the increase of 

value results in a large gap between the translational and rotational temperatures in the jet

boundary.

The non-equilibrium between the translational temperature in the jet propagating direc-

tion  and the translational temperature in the direction normal to the jet propagating direc-

tion  for an under-expanded jet are also tested. Figure 5.23 shows the  and  profiles

along the jet centerline for an argon under-expanded jet for  = 005 and  = 50,

 = 0005 and  = 50, and  = 0005 and  = 100. Significant deviation
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between the two temperatures can be found only when  is large ( = 005). When

the jet flow is not very rarefied ( = 0005),  only slightly lags to  in the expansion

core and the flow downstream of Mach disk and these differences are almost negligible.
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Figure 5.18. Differential behavior of translational (lines) and rotational (dots) temperatures

as a function of  for  = 50: (a)  = 005; (b)  = 0005; (c)  = 0002.
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Figure 5.19. Differential behavior of translational (lines) and rotational (dots) tempera-

tures as a function of  for  = 0002: (a)  = 20; (b)  = 50; (c)

 = 100; (d)  = 200.
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Figure 5.20. The profiles of translational (lines) and rotational (dots) temperatures at dif-

ferent  locations: (a)  = 15; (b)  = 35; (c)  = 48; (d)  = 70

when  = 0005,  = 50.
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Figure 5.21. The transverse profiles of translational (lines) and rotational (dots) tempera-

tures at different  locations: (a)  = 15; (b)  = 35; (c)  = 48; (d)

 = 70 when  = 0002,  = 50.
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Figure 5.22. The transverse profiles of translational (lines) and rotational (dots) tempera-

tures at different  locations: (a)  = 15; (b)  = 35; (c)  = 48; (d)

 = 70 when  = 0005,  = 100.
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Figure 5.23. Temperature distribution along the jet centerline in an argon under-expanded

jet: (a)  = 005 and  = 50; (b)  = 0005 and  = 50; (c)  = 0005

and  = 100.
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5.2.4 Location of the Mach Disk

A simple theoretical model is also developed to support the experimental correlation in

Equation (5.15) describing the location of the Mach disk. The flow in the vicinity of the

nozzle exit and in the isentropic core is in continuum, with the consequent assumption of

isentropic conditions. By using the Rankine-Hugoniot relations, the density just behind the

Mach disk can be estimated as

0 ≈ 
 + 1

 − 1Φ
− 1
−1

µ




¶−2
 (5.25)

where Φ has been defined previously (Equation (5.8)). The mean free path length of the jet

molecules in the background gas 0 is [33]

0 =
0

0
=

2√


√
2

 () ()
2 · 2 ·

³
2
−1

´12 = 2
q
1− 1



 () 322
· 


·
µ




¶2


(5.26)

where 0 =
2√


√
2 is the mean thermal velocity of the background molecules,  =

2 is the collision cross-section area between the jet and background molecules, and 

is the relative velocity between the jet molecules and background molecules. Here, we still

assume the jet molecule has reached its adiabatic speed limit ( = max =
³
2
−1

´12
). The constant  () is defined as

 () =

µ
 + 1

 − 1
¶
Φ
− 1
−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0623 for  = 1667

0528 for  = 1400

0488 for  = 1286

 (5.27)
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The background gas cannot affect the isentropic core, and in the zone downstream of the

Mach disk, the jet flow can mix with the background gas. Therefore, the mean free path

length of the jet molecules moving into the background molecules just behind the Mach

disk should be comparable with the mean free path length of the background molecules

(0 ∼ ), where  can be calculated as [33]

 =
√
22

· 


 (5.28)

Therefore

√
22

· 


∼ 2
p
1− 1

 ()322
· 


·
µ




¶2
 (5.29)

or




∝  ()

µ




¶12
 (5.30)

where

 () =

Ã
 ()

√


232
p
1− 1

!05
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0786 for  = 1667

0787 for  = 1400

0805 for  = 1286

 (5.31)

Equations. (5.30) and (5.31) show that the location of the Mach disk is proportional to the

square root of  and  () is fairly independent of  This simple model provides an

explanation for the experimental results pertaining to the location of the Mach disk.

Figure 5.24 shows the location and diameter of the Mach disk predicted by the DSMC

program and shows good agreement with the empirical relations given by Equations (5.15)

and (5.16). In the current study, the location and size of the Mach disk is defined by the

position where the local Mach number has the maximum slope. The error bars are shown

in the figure.
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Figure 5.24. Location (a) and diameter (b) of the Mach disk as a function of pressure ratio.
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In summary, a numerical study of a single under-expanded jet under sonic conditions

using the DSMC calculations is reported for flow in both rarefied and near continuum

regimes, within a stagnation Knudsen number, , range of 0002 ≤  ≤ 005 and the

ratio of the stagnation-to-background pressure, , between 10 and values that approach

infinity. The downstream boundary conditions have been successfully implemented by

using the "particle conservation" method.

The thermal nonequilibrium effects for rarefied under-expanded jets were studied. For

the jet expanding into vacuum, an approximation expression was derived to predict the ro-

tational temperature distribution along the jet centerline. For nitrogen under-expanded jets,

the rotational-translational thermal nonequilibrium effects are found to be significant for all

of the flows in the expansion core, around the Mach disk, and in downstream of Mach disk

even when  and  is relatively small. In the expansion core, the deviation between

the rotational and translational temperatures are more likely determined by and not af-

fected by . The rotational-translational nonequilibrium effects in the downstream of

Mach disk (including the Mach disk region) are affected by both and . However,

how far the rotational-translational nonequilibrium effects can reach in the downstream of

Mach disk is more sensitive the pressure ratio .

The location of the Mach disk was also studied by the DSMC results and by a simple

theoretical analysis. The predicted Mach disk locations and diameters compare well with

the empirical correlations.
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Chapter 6
Dual Interacting Jets

The physics of dual, interacting jets were investigated with the DSMC procedure after

establishing the accuracy of the numerical approach for the current type of problems. The

physical problem of interest is as in Figure 1.1, with the computational domain in Figure

6.1. With the assumption of symmetry, only a quarter of the three-dimensional model is

simulated. The model is similar to that for the single under-expanded jet, except that the

orifice is now located at (0 0 2), where  is the separation between the two orifices. The

settings of the boundary conditions are also same with those used for single under-expanded

jets. The values of the stagnation Knudsen number, , chosen for the study are 002,

0005, and 0002, and the separation between the orifices are within 10 ≤  ≤ 80. The

stagnation-to-background pressure ratios  = 50, 100, 200, and values that approach

infinity are used. The domain is chosen to be sufficiently large so that the influence of

the interacting jets does not reach the downstream boundary. The stagnation pressure and

temperature of the jet flow are  = 870 Pa and  = 285 K, respectively. The simulation

cases are given in Table 6.1.
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Figure 6.1. Computational model for the DSMC calculation of interacting jets

Table 6.1. Case studies for the DSMC simulation of interacting jets

Case Kns Ps/Pb L/D Orifice Diameter (m)  ( dynes
cm K

) Knp,min Size of Domain No. of Particles

1 0. 002 220 1. 0 3. 0  10−3 0. 6024 0. 0478 35D  7D  8D 27, 962, 359

2 0. 002 220 2. 0 3. 0  10−3 0. 6024 0. 0956 35D  7D  8D 28, 315, 263

3 0. 002 220 3. 0 3. 0  10−3 0. 6024 0. 1434 35D  6D  8D 25, 651, 298

4 0. 002 220 6. 0 3. 0  10−3 0. 6024 0. 2867 30D  6D  9D 20, 395, 871

5 0. 002 220 8. 0 3. 0  10−3 0. 6024 0. 3823 30D  5D  10D 21, 745, 141

6 0. 002  3. 0 3. 0  10−3 0. 6024 0. 1434 35D  6D  8D 15, 363, 830

7 0. 005  3. 0 3. 0  10−3 0. 0000 0. 3584 35D  6D  8D 12, 104, 632

8 0. 005 200 3. 0 1. 18908  10−3 0. 2527 0. 3584 35D  6D  8D 20, 194, 251

9 0. 005 100 3. 0 1. 18908  10−3 0. 3574 0. 3584 30D  6D  8D 22, 325, 751

10 0. 005 50 3. 0 1. 18908  10−3 0. 5055 0. 3584 30D  6D  6D 21, 146, 486

11 0. 02  3. 0 1. 18908  10−3 0. 0000 1. 4336 30D  6D  8D 6, 372, 875

12 0. 02 200 3. 0 3. 0  10−4 0. 0632 1. 4336 25D  6D  8D 10, 325, 459

13 0. 02 100 3. 0 3. 0  10−4 0. 0894 1. 4336 25D  6D  8D 10, 698, 869

14 0. 02 50 3. 0 3. 0  10−4 0. 1264 1. 4336 25D  6D  8D 12, 326, 652
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6.1 Interacting Jets Expanding Into Vacuum

For the two identical sonic interacting jets expanding into vacuum, only the interactions

between the molecules of the two jets need to be considered. When the interaction is

strong, oblique shock waves are formed and the interaction region looks like another jet,

which is called "secondary jet". This flow structure is shown in Figure 1.1(a).

6.1.1 Rarefaction Parameter

The interaction between the molecules of the two jets was first studied by Dankert and

Koppenwallner [8, 15]. They introduced a parameter , which is called Penetration

Knudsen number, to describe the interaction:

 ≡ 


, (6.1)

where  is the penetration mean free path of one plume molecules moving through another

plume flow field and  represents the characteristic length of the flow, which is chosen

as the distance from the symmetry plane to the centerline of the plume, as shown in Figure

6.2. It can be shown that  is a function of the jet’s stagnation Knudsen number ,

the orifice separation distance , and the interaction angle , which can be expressed

as

() =
2
√
2√


r
1 +

1


·


· 

· 1

() sin2 
=
2
√
2√


r
1 +

1


·


· 

· () , (6.2)
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where

 () =

∙
cos2

µ


2
· 

max

¶
sin2 

¸−1
and  and  have been defined previously (Equation (5.2)). The interaction between

the two jets can be characterized by , which is the value of  when () attains

its lowest value, which occurs when  ≈ 39◦.

Figure 6.2. Definition of  for dual interacting jets, showing the penetration mean free

path , the reference length  , and the interaction angle .

Using min as a parameter, plume-plume interaction can be classified as follows

(Figure 6.3) [8]:

(1) When min À 1, the interaction is in the free molecular regime. In this case,

the collision between the molecules of the two jets can be neglected, so that no shock

wave is created in the flow field. The flow field can be considered as the summation of the

movements of the two classes of molecules – the molecules from the two jets. In particular,
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for the case of  →∞, the flow is totally collisionless and the number density profile of

the flow field can be accurately evaluated as the sum of the number density of every plume

such that

 = 1 + 2 , (6.3)

where , 1 and 2 are the total number density, number density of jet 1 and

number density of jet 2, respectively

(2) When min ∼ 1, the interaction is in the near free molecular regime. Here, few

collisions will occur, and the shock waves can still be neglected. The molecules emanating

from every jet have a finite penetrating mean free path  as compared to the collisionless

flow. Different from the flows in the free molecular regime, the molecules from one jet

cannot completely penetrate the flow field of the other jet and are blocked by the molecules

from the other jet, thereby compressing the molecules in a finite region. As a result, the

number density in the interaction region is larger as  becomes smaller.

(3) When min  1, the interaction is in the near continuum regime. In this regime,

the collision effects between the two jets are significant. With smaller Knudsen numbers,

the flow will gradually acquire the Rankine-Hugoniot characteristics. The interaction of

the two jets located with a distance  from each other is mathematically equivalent to the

interaction of one jet with a specular plane located at a distance 2 from the source orifice.

As in the case of an interaction with a plane, an oblique shock wave will be formed near

the symmetric plane of the two jets. The region surrounded by the oblique shock waves

100



is called the interaction region. Due to rarefaction effects, the oblique shock wave is thick

and weak in this regime.

(4) When min ¿ 1, the interaction is in the continuum regime and a strong oblique

wave front is formed. The stream velocity behind the shock front is completely parallel to

the symmetry plane. The penetration effects between the two plumes can be neglected in

the limiting case of min → 0.
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Figure 6.3. The possible plume interacting regimes for interacting jets expanding into vac-

uum.
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Figures 6.4 and 6.5 show the contour maps of the normalized density, translational

temperature and rotational temperature on the  = 0 and  = 0 symmetry planes for

 = 0002,  = 3, and  → ∞. In this case, min = 01434 and flow is

in the near continuum regime. The interaction between the two jets is strong and we can

clearly observe an interaction region that is formed, especially in the temperature contours.

Since the collisions between the molecules of the two jets nullify the −velocity component

of the molecules and the kinetic energy is converted into thermal energy, it is clear that

the secondary jet has higher temperature than the primary jets. Figure 6.5 shows that the

secondary jet expands at a faster rate in the −direction. Because of low density in the

secondary jet, the secondary jet is very rarefied and it is expected to observe significant

differences between the translational and rotational temperature contours in the secondary

jet. We also can observe that the maximum points for the density and temperature profiles

on the x-axis are not at the same position. In this case, the density has a maximum value

at  ≈ 3, while the translational and rotational temperatures have a maximum value at

 ≈ 1.

Figures 6.6 shows the normalized density, translational temperature and rotational tem-

perature contours on the  = 0 symmetry plane for  = 002,  = 3, and  →

∞. Compared with Figure 14, the flow is more rarefied due to the larger  value

(min = 14336). In this case, the secondary jet is not evident in the density con-

tour, but is more pronounced in temperature contours. Also, larger deviations between the

translational and rotational temperatures can be observed.
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Figure 6.4. Density (a), translational temperature (b), and rotational temperature (c) con-

tours on the  = 0 symmetry plane for  = 0002,  = 3, and  →∞.
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Figure 6.5. Density (a), translational temperature (b), and rotational temperature (c) con-

tours on the  = 0 symmetry plane for  = 0002,  = 3, and  →∞.
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Figure 6.6. Density (a), translational temperature (b), and rotational temperature (c) con-

tours on the  = 0 symmetry plane for  = 002,  = 3, and  →∞.
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6.1.2 The Effects of 

To show the effect of , Figure 6.7 shows the density profiles along the ( 0 0) sym-

metry axis for different values of  when  = 30. It clearly shows that when 

becomes smaller, the interaction between the two plumes becomes more significant, which

results in the increase of the density in the interaction region. We can also notice that as

 decreases, the position of the maximum point on the density profile moves toward

right. This is due to the fact that, when  is small, the oblique shock waves are formed

and likely to change the direction of the flow streamlines to the -direction in the secondary

jet.

In Figure 6.7, a prediction from the asymptotic model (Equation (5.2)) for the case

 → ∞ is also plotted. When  → ∞, the flow is in the free molecular regime,

as shown in Figure 6.8, the density profile along the ( 0 0) axis can be computed by the

addition of the density profiles of the two jets:

 = 1 + 2 = 2 . (6.4)

Substituting Equation (5.2) into Equation (6.4), we can obtain the expression for the density

profile along the ( 0 0) axis as

()


= 2

µ


2

¶2
·  () = 2∗

µ




¶2
· sin2  · cos2

µ


2
· 

max

¶
(6.5)
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Figure 6.7. Normalized density profile along the ( 0 0) axis for different values of 
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Figure 6.8. Interacting jets for  →∞

107



6.1.3 The Effects of 

Figure 6.9 shows the normalized density distributions along ( 0 0) symmetry axis for

different values of  when  = 0003. As expected, when the value of  is

smaller, the interaction between the two plumes is stronger and higher density field in the

secondary jet can be observed. The effects of  can also be estimated from Equation

(6.5). It can be seen that the density  is proportional to 1

()2
and for a given value of ,

the position  is proportional to :

 = tan−1
µ
1

2





¶
≈
1

2




. (6.6)

Therefore, Zhu [7] observed a scaling law for the density distribution along the ( 0 0)

axis. He found that if  is scaled by ()2 and  by ()−1, the curves shown in

Figure 6.9 should be overlapped. This is shown in Figure 6.10. However, small deviations

can be observed from different scaled curves. This is due to the fact that Equation (6.5)

is developed based on the assumption that there is no interaction between the two plumes

( →∞). When the value of  is smaller, the interaction of the two jets are stronger,

which results in higher density in the secondary jet.
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6.1.4 Thermal Non-Equilibrium Effects

Figure 6.11 plots the translational and rotational temperature profiles along the ( 0 0)

symmetry axis for  = 0003 and different values of  when the interacting jets

are expanding into vacuum. Large deviation between the two temperatures can be found

when  is small (  5) and for larger value of , this deviation becomes

even larger. This may be due to the low density in the region close to the orifice plate

and a rapid temperature increase in the secondary jet due to the interaction of the two

jets. Since the density is small, there are not enough number of inter-molecular collisions

to balance the translational and rotational temperatures. Since rotational relaxation is a

much slower process than the translational mode, therefore, large deviation between the

two temperatures can be observed. When  is large, the density in the region close to

the orifice plate becomes even smaller and the peak value of the translational temperature

moves further downstream, thus the non-equilibrium effects between the two temperatures

become more significant.

Figure 6.12 plots the translational and rotational temperature profiles along the ( 0 0)

symmetry axis for  = 3 and different values of  when the interacting jets are

expanding into vacuum. Since the value of  is same, the peak value of the translational

temperature is all located around  ≈ 1. When  is smaller, the interaction between

the two jets are stronger and the peak value of the translational temperature also increases.

It is as expected that for larger  value, larger deviation between the two temperatures

can be observed since the flow is more rarefied.
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Figure 6.11. Translational Temperature (lines) and rotational temperature (dashed lines)

distributions along the ( 0 0) symmetry axis for  = 0003 with different values of

 when  →∞: (a)  = 15; (b)  = 30; (c)  = 60
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Figure 6.12. Translational Temperature (lines) and rotational temperature (dashed lines)

distributions along the ( 0 0) symmetry axis for  = 3 with different values of 

when  →∞: (a)  = 0003; (b)  = 003; (c)  = 03; (d)  = 3

112



6.2 Interacting Jets Expanding Into a Background with Finite
Pressure

When interacting jets exhaust into a region with finite pressure, both the interaction be-

tween the molecules of the two jets and that between the jet gas molecules and the back-

ground gas molecules need to be considered. The barrel shocks, jet boundaries, and Mach

disks in both of the primary and secondary jets are formed. This "primary-secondary"

shock-cell structure is shown in Figure 1.1(b).

6.2.1 Rarefaction Parameter

As mentioned earlier, the interaction between the jet gas molecules with the background

gas molecules depends on  and  (Equation (5.18)) and the interaction between

the molecules of the gases of the two jets depends on  and  (Equation (6.2)).

Therefore, the three parameters: , , and  characterize the overall rarefac-

tion effects when interacting under-expanded jets exhaust into a background with finite

pressure.

The same parameter  defined in Equation (5.17) will also be used here to characterize

the overall interaction between the primary jets and the background gas (primary) and the

interaction between the secondary jet and the background gas (secondary). The two cases

→ 0 and →∞ are of interest:

1) When  → 0, the primary and secondary jets overlap. The flow is identical to

that of a single under-expanded jet with the jet stagnation pressure increased to 2.
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2) When  → ∞, the two jets do not affect each other and their respective

stagnation pressure remains distinct at .

Note that  ∝ ()
−12, and primary and secondary can be expressed as

 =  · ( · )
12

 (6.7)

where  depends on :

primary =

⎧⎨⎩ 1
√
2 for → 0

1 for →∞
(6.8)

and

secondary =

⎧⎨⎩ 1
√
2 for → 0

∞ for →∞
(6.9)

Soga [19] experimentally measured the density and rotational temperature in interacting

jets when  = 0002 and  = 220 for several values of . This provides

additional validation data for the present effort. The details of the conditions are shown in

Table 6.2.

Figure 6.13 shows the density, translational temperature, and rotational temperature

contours at the  = 0 symmetry plane for  = 3,  = 0002, and  = 220.

Compared with the results of the jets expanding into vacuum (Figure 6.4), it can be seen

that the existence of the background pressure greatly changes the flow structure. Although

the flow is sill rarefied and the shock structure is much dissipated, the primary and sec-

ondary shock-cell structure as shown in Figure 1.1(b) can still be observed, especially in

the temperature contours. Figure 6.14 shows the same contours but for  = 0 symmetry
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plane. The results in Figure 6.14 should be contrasted with those in Figure 6.5. In the fig-

ure, a shock-cell structure is also evident at the  = 0 plane, whereas no such structure can

be observed in the latter.

Table 6.2. Details of Soga’s experiment

No. Ps D Ts L/D Kns Pb M* Purpose Method

1 870 Pa

3 mm 285 K
0, 1.2, 2, 

3, 6, 8,    .  

1.95142×10-3 4.0 Pa

1.0

Density 

measurement Electron beam 

fluorescence
2 650 Pa 2.61190×10-3 3.1 Pa

Temperature 

measurement


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Figure 6.13. Density (a), translational temperature (b), and rotational temperature (c) con-

tours in  = 0 plane for  = 30,  = 0002, and  = 220
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Figure 6.14. Density (a), translational temperature (b), and rotational temperature (c) con-

tours in  = 0 plane for  = 30,  = 0002, and  = 220
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The calculated results are compared with Soga’s experimental data in Figure 6.15,

which shows the density distribution along the ( 0 0) symmetry axis. Note that two sets

of DSMC results are presented:  = 220 and  → ∞. The monotonic decay of

density after the first peak for the case  → ∞ is expected based on the results from

the previous section. Dagum also simulated this problem using DSMC, but he assumed that

the jet expanded into vacuum. It is therefore not surprising that his result only compared

well with Soga’s data [19] when   10. Other investigations using a similar back-

ground condition (vacuum) in their simulation do not show results for  ≥ 10 in their

comparison with Soga’s experiments, suggesting inaccurate results in this region. In our

simulation, the correct background conditions ( = 220) is used and our predictions

compare well with experimental data at all  values. Figure 6.16 shows the rotational

temperature distribution along the ( 0 0) axis. Since the experimental data for this vari-

able is available only for   80, both the two cases  = 220 and  → ∞

agree well with experimental data.
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Figure 6.15. Density distribution along the ( 0 0) axis showing comparison with Soga’s

experimental data for  = 30,  = 220, and  = 0002. The case  →∞
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Figure 6.16. Rotational temperature distribution along the ( 0 0) axis showing compari-

son with Soga’s experimental data for  = 30,  = 210, and  = 00027. The

case  →∞ (vacuum background) is shown as a reference.
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6.2.2 Effects of 

The effects of  are further shown in Figures 6.17 through 6.20. Figures 6.17 and 6.18

show the density, translational temperature, and rotational temperature contours at  = 0 as

in Figure 6.13, but with different values of  (15 and 60, respectively). Compared with

Figure 6.13, in which  = 30, the effects of the separation distance  are shown.

Smaller values of  lead to stronger interaction between the two jets, and to a better

defined secondary jet, especially in the temperature contours. When  is increased to

60, the interaction between the two jets is much weaker.

Figure 6.19 shows the density distribution along the ( 0 0) axis for  = 0002,

 = 220. It can be seen that increasing  values leads to smaller peaks, or weaker

interactions between the two jets. Although the Mach disk is weak and dissipated in the

secondary jet, it can be found that, for all  values (except  = 80), the location of

the Mach disk in the secondary jet do not differ significantly (secondary ≈ 13). This

may be due to the large  value used ( = 220). When  is large, the position

of the Mach disk in the secondary jet can be expected to be large (Equation (6.7)). When

 is large, based on the definition of () (Equation (6.2)), the plumes from the two

jets becomes much rarefied and the interaction region can be regarded as the fully mixing

zone of the flow of the two jets. Note that the interaction angle  can be calculated as

 = tan−1
³
1
2





´
, which means that when  is large, a small change in the value of

 does not greatly affect the value of . Therefore, under these conditions, coupled with
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large values of ,  only has a mild effect on the location of the Mach disk in the

secondary jet.

Figure 6.20 shows the density distribution along the ( 0 2) axis (symmetry axis of

primary jet) for  = 0002,  = 220, and different values of . The plot clearly

shows that the primary jet is also affected by the interaction between the two jets, especially

when  is small. When the interaction effects are stronger, due to the existence of the

strong oblique shock waves, the jet is less likely to cross the symmetry plane, leading to

larger velocities (from decreasing cross-sectional area). Thus, the location of the Mach

disk in the primary jet moves further downstream.
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Figure 6.17. Density (a), translational temperature (b), and rotational temperature (c) con-

tours on the  = 0 plane for  = 15,  = 0002, and  = 220
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Figure 6.18. Density (a), translational temperature (b), and rotational temperature (c) con-

tours on the  = 0 plane for  = 60,  = 0002, and  = 220
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Figure 6.19. Density distribution along the ( 0 0) symmetry axis for  = 0002,

 = 220, with  = 15, 20, 40, 60, and 80.
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Figure 6.20. Density distribution along the ( 0 2) axis for = 0002,  = 220,

with  = 15, 20, 40, 60, and 80.
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6.2.3 Effects of 

The effects of  are shown in Figure 6.21, which plots the density distribution along

the ( 0 0) symmetry axis for  = 200,  = 30, and different values of .

As expected, it can be seen that reducing  values increases the interaction between the

two jets (higher peaks). When  is relatively large ( = 002), the flow is strongly

rarefied and there no Mach disk is formed in the interaction region. From Figures 6.19,

6.25, and 6.21, we can observe that the location of the Mach disk in the secondary jet

depends on the values of the three parameters , , and . This should be

contrasted with the single jet case, where the Mach disk location depends only on 

(Equation (5.15)).

6.2.4 Effects of 

The effects of  are shown in the density plot of Figure 6.22 with the parameters

 = 0005,  = 30, and different values of . Since the value of  is same,

the location of the peak values is almost same (around  ≈ 3). As expected, reducing

 strengthens the interaction between the secondary jet and the background gas. When

 is small, stronger Mach disk is formed in the secondary jet and its location moves

toward upstream. It can be seen that the existence of the background pressure significantly

modifies the secondary jet flows, even when  is small. This is not the case for the

primary jets, where the background gas does not significantly affect the expansion core.

The reason may be due to the relatively small density values in the secondary jet, so that
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the flow in the secondary jet is more rarefied than the flow in the primary jets. Therefore,

the molecules of the background gas can more easily penetrate into the secondary jet flow.
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Figure 6.21. Density distribution along the ( 0 0) symmetry axis for  = 200,

 = 30, with  = 002, 0005, and 0002.
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Figure 6.22. Density distribution along the ( 0 0) symmetry axis for  = 0005,
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6.2.5 Thermal Non-Equilibrium Effects

The thermal non-equilibrium effects in the interacting jets are also investigated. Figures

6.23 and 6.24 show the translational-rotational non-equilibrium effects along the ( 0 0)

symmetry axis. Because the secondary jet is more rarefied, significant deviation between

the translational and rotational curves are observed. Figure 6.23 shows the translational

and rotational temperature profiles along the ( 0 0) symmetry axis for  = 0002,

 = 220, and different values of . When  is small, the interaction region

is strong and, similar to the case of single under-expanded jets, large deviation between

the two temperatures can be found in the expansion core (expansion before the Mach disk)

and in the vicinity of the Mach disk. Large deviation between the two temperatures are

especially evident in the vicinity of the orifice plate ( is small). This is due to the very

low density in this region. When  = 80, the interaction between the two jets is of

course weak and the non-equilibrium effects are not as significant as for the small 

cases.

Figure 6.24 plots the translational and rotational temperature profiles along the ( 0 0)

symmetry axis for  = 0005,  = 30, and different values of . It shows the

manner in which the background gas affects non-equilibrium in the secondary jet. Specifi-

cally, the figure shows that the smaller values of , the smaller the deviation between

the two temperatures. This agrees with the observations shown in Figure 6.22, which shows

that the existence of the background gas increases the density in the secondary jet. That
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is, when the background pressure is high, the density in the secondary jet is also large and

non-equilibrium effects are inhibited.
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Figure 6.23. Translational Temperature (lines) and rotational temperature (dashed lines)

distributions along the ( 0 0) symmetry axis for  = 0002,  = 220 with differ-

ent values of : (a)  = 15; (b)  = 30; (c)  = 60; (d)  = 80
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Figure 6.24. Translational Temperature (lines) and rotational temperature (dashed lines)

distributions along the ( 0 0) symmetry axis for  = 0005,  = 30 with different

values of : (a)  = 50; (b)  = 100; (c)  = 200; (d)  →∞.
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6.2.6 Location of the Mach disk

For single under-expanded jet, the Mach disk location  ∝ ()
12. Using the similar

approach as in Equation (6.7), the location of the Mach disks in both the primary and

secondary jets can be expressed as

 =  · 067 ()
12 (6.10)

where  is also a function of :

 primary =

⎧⎨⎩
√
2 for → 0

1 for →∞
(6.11)

and

 secondary =

⎧⎨⎩
√
2 for → 0

0 for →∞
(6.12)

Figure 6.25 shows the location of the Mach disks in the primary and secondary jets

obtained from the DSMC calculations compared with data from Soga’s experiment [19].

Although some deviations can be observed, the trends agree.
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Figure 6.25. The location of Mach disk in both of the primary ( = 0) and secondary

( = 2) jets, showing comparison with Soga’s experimental data
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Chapter 7
Conclusions

A parallel 3D DSMC code was successfully developed and validated. The dynamics of

rarefied single jets and dual, interacting jets expanding into vacuum and into a background

with finite pressure have been investigated.

The study of single under-expanded jet focuses on the shock structure and the thermal

nonequilibrium effects when 0002 ≤  ≤ 002 and  is between 20 and values

that approach infinity. When  and  are relatively small, the "shock-cell" structure

in experiments has been reproduced and the calculated location and size of the Mach disk

compare well with the empirical relations. Other contributions include:

(1) For a single jet expanding into vacuum, a simple approximate expression was

derived to evaluate the decay of the rotational temperature along the jet centerline

and this compared well with the DSMC results and experimental data.

(2) For nitrogen under-expanded jets, the rotational-translational thermal nonequilibrium

effects are found to be significant for the flows in all of the expansion core, Mach

disk, and downstream of Mach disk, even when  and  is relatively small.

(3) In the expansion core, the deviation between the rotational and translational

temperatures are more likely determined by the jet’s Knudsen number, , but are
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not affected by the values of . The rotational-translational nonequilibrium

effects downstream from the Mach disk are affected by both  and .

The dual interacting jets were simulated for 0002 ≤  ≤ 002, 15 ≤  ≤ 80,

and  values between 50 and infinity. The "primary-secondary" shock-cell structure

has also been reproduced when the flow is in the near-continuum regime. The following

observations were made:

(1) Compared with the density field, the interaction effects between the two jets are

more significant in the temperature field. The interaction contributes to the creation

of a high thermal nonequilibrium in the interaction region; this nonequilibrium

decays at a fast rate downstream.

(2) For interacting jets expanding into a background with finite pressure, unlike the

primary jets, in which the background gas cannot affect the expansion core, the

existence of the background pressure significantly modifies the secondary jet flow.

(3) The value of  affects the locations of the Mach disk in both the primary and

secondary jets. But when  is relatively large (such as  = 220) and 

is relatively small ( ≤ 60), the separation distance  has only a mild effect

on the location of the Mach disk in the secondary jet.

(4) The secondary jet tends to be much more rarefied than the primary jet, and thermal

non-equilibrium effects are significant in the secondary jet, especially in the vicinity
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of the orifice plate. It is also found that the existence of the background gas helps to

reduce the translational-rotational non-equilibrium effects in the secondary jet.
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