
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 

 

On Microstructure Evolution in Fiber-reinforced        

Elastomers and Implications for Their 

Mechanical Response and Stability 

 

 

A Thesis Presented 

by 

Zhiyun Li 

to 

The Graduate School 

in Partial Fulfillment of the 

Requirements 

for the Degree of 

Master of Science 

in 

Mechanical Engineering 

Stony Brook University 

May 2010 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Copyright by 
Zhiyun Li 

2010



ii 
 

Stony Brook University 

The Graduate School 

Zhiyun Li 

 

We, the thesis committee for the above candidate for the 
 

Master of Science degree, hereby recommend 
 

acceptance of this thesis. 
 

 

 

 

Oscar Lopez-Pamies – Thesis Advisor 

Assistant Professor – Department of Mechanical Engineering 

 

 

 

Robert Kukta – Chairperson of Defense 

Assistant Professor – Department of Mechanical Engineering 

 

 

 

Chad Korach – Member of Defense 

Associate Professor – Department of Materials Science and Engineering 

 

 

This thesis is accepted by the Graduate School 

 

 

 

Lawrence Martin 

                                                                                              Dean of the Graduate School



iii 
 

 

Abstract of the Thesis 
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Lopez-Pamies and Idiart [Lopez-Pamies, O., Idiart, M.I., 2010, Fiber-reinforced 

hyperelastic solids: A realizable homogenization constitutive theory. Journal of 

Engineering Mathematics, doi:10.1007/s10665-009-9359-y.] have recently put forward a 

homogenization theory with the capability to generate exact results not only for the 

macroscopic response and stability, but also for the evolution of the microstructure in 

fiber-reinforced hyperelastic solids subjected to finite deformations. In this thesis, we 

make use of this new theory to construct exact, closed-form solutions for the change in 

size, shape, and orientation undergone by the underlying fibers in a model class of fiber-

reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these 

results we then establish connections between the evolution of the microstructure and the 

overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In 

particular, we show that the rotation of the fibers may lead to the softening of the overall 

stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we 

show that this geometric mechanism is intimately related to the development of long-



iv 
 

wavelength instabilities. These findings are discussed in light of comparisons with recent 

results for related material systems. 
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1. Introduction 

Elastomeric materials reinforced by a single family of aligned cylindrical fibers 

constitute an important class of technological and natural material systems. A classical 

example is that of tires, and prominent examples of more recent interest include nano-

structured thermoplastic elastomers [1, 2], as well as biological tissues [3, 4]. It is by now 

well recognized that at finite deformations the mechanical response and stability of these 

materials depend critically on the underlying evolution of microstructure. However, the 

strong material and geometric nonlinearities inherent to finite deformations have thus far 

hampered a rigorous and thorough analysis of this phenomenon. 

In this thesis, our main objective is to construct exact results for the change in 

(relative) size, shape, and orientation of the underlying fibers in fiber-reinforced 

elastomers that are subjected to arbitrary 3D finite deformations. Further, we aim at 

understanding the effect that such an evolution of microstructure has on the mechanical 

response and stability of these material systems. To this end, we will make use of the 

iterative homogenization theory recently put forward by Lopez-Pamies and Idiart [5]. A 

key feature of this theory is that in addition to its principal capability of providing the 

exact homogenized (or macroscopic) response for large classes of fiber-reinforced 

hyperelastic solids, it does also grant access to information on the local fields within each 

constituent (i.e., the matrix and the fibers). It is precisely this feature that will allow us to 

establish exact relations for the change in size, shape, and orientation of the fibers along 

arbitrary loading paths.  

While the theory proposed in [5] applies to fairly general classes of materials, in 

this work we will focus on the case of fiber-reinforced elastomers made up of a Neo-

Hookean matrix reinforced by a transversely isotropic distribution of stiffer Neo-

Hookean fibers. As it will become apparent further below, this case is general enough to 

illustrate the fundamental connections between the evolution of microstructure and the 

macroscopic behavior of fiber-reinforced elastomers while permitting, at the same time, 

explicit mathematical treatment.  

The outline of the thesis is as follows: Section 2 lays out the basic equations that 

characterize the mechanical response, macroscopic stability, and microstructure evolution 
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in fiber-reinforced elastomers. Section 3 summarizes the main results of the iterative 

homogenization theory of Lopez-Pamies and Idiart [5]. In Section 4, we make use of the 

results of Section 3 to solve the equations presented in Section 2. In particular, we work 

out closed-form solutions for the macroscopic response, stability, and the change in size, 

shape, and orientation of the fibers in fiber-reinforced elastomers made up of a Neo-

Hookean matrix reinforced by a transversely isotropic distribution of stiffer Neo-

Hookean fibers. The analytical solutions put forward in Section 4 are then examined in 

detail in Section 5 for various loading conditions, fiber-to-matrix heterogeneity contrasts, 

and initial volume fractions of fibers in order to illustrate the main geometric mechanisms 

by which the evolution of the microstructure affects the macroscopic mechanical 

behavior of fiber-reinforced elastomers. Finally, in Section 6, some concluding remarks 

are presented. 

 

Publications that resulted from this thesis work: 

Lopez-Pamies, O., Idiart, M.I., Li, Z. 2010. “On Microstructure Evolution in Fiber-

reinforced Elastomers and Implications for Their Mechanical Response and Stability” 

Journal of Engineering Materials and Technology. In press. 
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2. Problem formulation 

Consider a fiber-reinforced solid made up of a continuous matrix phase reinforced 

by a random distribution of aligned cylindrical fibers that are perfectly bonded to the 

matrix. The characteristic size of the cross section of the fibers is assumed to be much 

smaller than the size of the solid and the scale of variation of the applied loads. It is 

further assumed that the random microstructure is statistically uniform, ergodic, and 

transversely isotropic. We denote by Ω0 the volume occupied by a representative 

specimen in the undeformed (reference) configuration, and by the unit vector N the 

orientation of the fibers in the undeformed configuration. Upon deformation, the volume 

occupied by the specimen is denoted by Ω. A material point is identified by its initial 

position vector X in Ω0, and by its current position vector x in Ω (see Fig. 1). 

The constitutive response of the matrix (r = 1) and fiber (r = 2) materials is 

described in terms of stored-energy functions W(r) that are objective, non-convex 

functions of the deformation gradient F. The local constitutive relation can then be 

conveniently written as 

 

                                                                                                                                            (1)                      

 
where S is the first Piola-Kirchhoff stress tensor and the characteristic function  χ0 

describes the initial microstructure (i.e., the size, shape, orientation, and location of the 

fibers in Ω0), taking the value 1 if X is in a fiber, and 0 otherwise. Because of the 

assumed random distribution of the fibers, the dependence of χ0 on X is not known 

precisely, and the microstructure can only be partially defined in terms of the n-point 

statistics of the system [6, 7]. Here, use will be made of information up to two-point 

statistics in order to be able to take advantage of the theory developed in [5]. 

Under the above-stated hypotheses, we follow Hill [8] to define the effective 

stored-energy function1 of the fiber-reinforced elastomer as 

            

                                                                                                                                (2) 
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where Қ* is a suitably defined set of admissible deformation gradients F (see Section 2 in 

[5]). Physically, W  represents the total elastic energy stored in the entire solid when 

subjected to an affine displacement boundary condition that is consistent with the average 

deformation condition 
0

1
0 d


  F X F . 

Having formally defined  W , the macroscopic (or homogenized) constitutive 

relation for the fiber-reinforced elastomer can be written as 

                                                                                     

                                                                                                                                (3) 

where S  denotes the average stress over (i.e., 
0

1
0 d


  S S X ) The effective stored-

energy function (2) also contains information about the macroscopic stability of the 

material. In particular, it follows from the work of Geymonat, MÄuller, and 

Triantafyllidis [10] that the loss of strong ellipticity of W  denotes the possible 

development of long-wavelength instabilities. That is, geometric instabilities with 

wavelengths that are much larger than the average fiber diameter may develop whenever 

the condition 

                       || || || || 1
m in 0i j ijkl k lB a b a b
 

 
a b

F FL                      (4) 

ceases to hold true for some applied deformation F . In this expression, 

    22W /  F F FL  is the effective incremental modulus characterizing the overall 

incremental response of the material. 

The above analysis makes use of a Lagrangian description of the kinematics. The 

evolution of the microstructure resulting from the finite changes in geometry is thus 

already accounted for in the homogenized stored-energy function W . However, even if 

not necessary to determine the macroscopic constitutive behavior (3) and stability (4), it 

is still of interest to have direct access to variables characterizing the microstructure 

evolution, as they provide deeper insight into the homogenized behavior. For 

“particulate” material systems like the ones considered here, the microstructural variables 

of most interest are the volume fraction, average shape, and average orientation of the 

fibers, all of them in the deformed configuration [11, 12]. Within the context of the 

 W



S F
F
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homogenization theory to be utilized in this work, it is possible to write down explicit 

expressions for such variables (see Section 4 in [5] and Section 5 in [12]). Indeed, the 

volume fraction of fibers in the deformed configuration is simply given by 

                                            

 2

0

det

det
c c

F

F                                                             (5) 

where c0 is the volume fraction of fibers in the undeformed configuration and 

 
      2

0

2 2
0 d


  F F X   — with F and  2

0  denoting, respectively, the minimizing field 

in (2) and the volume occupied by the fibers in the undeformed configuration — stands 

for the average deformation gradient in the fibers. On the other hand, the average shape 

and average orientation of the fibers are characterized by the principal semiaxes and the 

principal directions of the Eulerian ellipsoid 

                                            
  1TE |  x x Z Z x

                                                    (6) 

where the second-order tensor Z is defined by                                 

                                         with                                                                                (7) 

and it is recalled that the unit vector N indicates the orientation of the cylindrical axis of 

the fibers in the undeformed configuration. More specifically, the symmetric second-

order tensor ZTZ has two non-zero eigenvalues, z1 and z2, that serve to define the average 

elliptical shape of the cross section of the fibers in the deformed configuration. The third 

eigenvalue, z3, is zero indicating that the fibers remain cylindrical (i.e., infinitely long) 

along any loading path. The eigenvectors v1, v2, and v3 of ZTZ associated with the 

eigenvalues z1, z2, and z3 characterize the transverse and cylindrical principal directions 

of the fibers in the deformed configuration (see Fig. 2). From a computational point of 

view, it is also worth remarking that the evolution of the volume fraction, average shape, 

and average orientation of the fibers, as characterized by relations (5)-(7), require only 

knowledge of the average deformation gradient tensor 
 2

F  in the fibers. 

In summary, the above-laid-out equations formally characterize the constitutive 

response, macroscopic stability, and evolution of microstructure of a large class of fiber-

reinforced elastomers. It is important to emphasize, however, that the computation of W  

and 
 2

F  is, in general, a hopelessly difficult task because of the non-convexity of W(1) 

   12

0



Z Z F
0   Z I N N
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and W(2), and the randomness of the distribution of fibers, as characterized by χ0. Over the 

past 10 years, substantial progress has been made in the development of variational 

techniques to construct robust approximate solutions (see, e.g., [12, 13, 14, 15] and 

references therein). More recently, Lopez-Pamies and Idiart [5] have worked out an 

iterative homogenization method that is actually capable of generating exact solutions for 

W  and 
 2

F . In the next section, for convenience and clarity, we summarize the basic 

elements of this theory that are needed for our purposes. 
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3. The iterative homogenization method 

In order to generate exact solutions for W  and 
 2

F , Lopez-Pamies and Idiart [5] 

have proposed a “realizable” strategy. Roughly speaking, the idea is to construct a special, 

but yet sufficiently general, family of random microstructures that permit the exact 

computation of the resulting homogenization problem. The strategy comprises two main 

steps: i) the first step [16] consists of an iterated homogenization procedure (or 

differential scheme) that provides an exact solution for W  in terms of an auxiliary dilute 

problem; ii) the second step [17] (see also [18]) deals with the auxiliary dilute problem 

which consists in the construction of suitable classes of sequential laminates. The 

combination of these two steps (see Section 3.3 in [5]) leads to an explicit framework for 

generating solutions for the total elastic energy W  and the local fields, including 
 2

F , 

directly in terms of W(1) and W(2), the one- and two-point statistics of the random 

distribution of fibers, and the applied loading conditions F . To conclude these brief 

introductory remarks, it is appropriate to point out that because of the iterative 

construction process, the microstructures that this method generates contain fibers with 

cross-sectional areas of infinitely diverse sizes. 

 For the transversely isotropic fiber-reinforced elastomers of interest in this work, 

the iterated homogenization result for the effective stored-energy function W  = W ( F , c0) 

is implicitly determined by the following first-order nonlinear partial differential 

equation (pde): 

                                                                                                                  

                                                                                                                                (8) 

subject to the initial condition 

                                                                                                                                (9) 

Similarly, the average deformation gradient 
 2

F  = 
 2

F  ( F , c0) in the fibers is implicitly 

determined by the following linear pde: 

                       

                                                                                                                              (10) 

where  is the maximizing vector in (8), subject to the initial condition 

     21W , WF F
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2

0 0
0

1
d 0

2
ij ij
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kl
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c
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
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
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                                                                                                                              (11) 

In the above expressions, ξ1 = cosθ, ξ2 = sinθ, ξ3 = 0, Latin indices range from 1 to 3, the 

usual summation convention is employed, and all of the vector and tensor components 

are referred, without loss of generality, to a coordinate system ei (i = 1; 2; 3) with N = e3 

(see Fig. 1). 

For a detailed description of the derivation and of the various quantities involved 

in the above relations, we refer to [5]. In the present context, it is appropriate to mention 

that the nonlinear first-order pde (8) corresponds to a Hamilton-Jacobi equation where the 

fiber concentration c0 and the macroscopic deformation gradient F  play the role of 

“time” and “space” variables, respectively (see, e.g., Chapter 14 in [19]). Due to the 

prominent role of Hamilton-Jacobi equations in physics, a substantial body of literature 

exists on efficient techniques for solving this type of equations (see, e.g., [19, 20]). Hence, 

in spite of its generality, expression (8) is fairly tractable and thus expected to be 

extremely useful for generating analytical results. A similar comment applies to the 

linear first-order pde (10) for 
 2

F , which could be solved by a variety of techniques, 

such as for instance the standard method of characteristics. 
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4. Closed-form solutions for fiber-reinforced Neo-Hookean 

elastomers 

The results presented in the preceding section are valid for any behavior of the 

matrix and fiber phases, as characterized by the stored-energy functions W(1) and W(2). 

The aim of this work is to make use of these results for the first time to investigate the 

effect of microstructure evolution on macroscopic behavior and stability. In this regard, 

attention will be restricted to a specific case that is general enough to contain all 5 of the 

essential features of the problem and that, at the same time, leads to closed-form solutions. 

Thus, in this section we will concentrate on the class of fiber-reinforced elastomers made 

up of an incompressible Neo-Hookean matrix phase reinforced by a transversely isotropic 

distribution of incompressible stiffer Neo- Hookean fibers. The stored-energy functions 

characterizing both phases are given by 

                                                                                                                       

                                                                                                                              (12) 

(r = 1, 2), where the positive material constants (1) and (2) correspond to the shear 

moduli of the matrix and fibers in the ground state, and I1 = F F  stands for the first 

principal invariant associated with F. 

Within a slightly more general context, the specialization of equation (8) for W  to 

the case of Neo-Hookean phases (12) has already been worked out in Section 6 of [5]. In 

the sequel (subsection 4.1), we recall the relevant results from that work and utilize them 

to write down closed-form expressions for the corresponding overall constitutive 

response (3) and macroscopic stability condition (4). In subsection 4.2 further below, we 

construct a closed-form solution of equation (10) for 
 2

F  when specialized to Neo-

Hookean matrix and fiber phases (12). This solution is in turn utilized to construct 

explicit expressions, with the help of relations (5)-(7), for the change in volume fraction, 

shape, and orientation of the underlying fibers in fiber-reinforced Neo-Hookean 

elastomers along arbitrary loading paths. We conclude this section by further specializing 

the solutions derived in subsections 4.1 and 4.2 to the practically relevant case of nearly 

rigid fibers (i.e., (1) � (2)). 

   
 

 
r

r
1 3

2
W I


 F
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4.1. Overall constitutive behavior and stability 

Because of the isotropy and incompressibility of the local constitutive behaviors 

(12), together with the transversely isotropic distribution of fibers, it is first helpful to 

recognize that the effective stored-energy function W  for fiber-reinforced Neo-Hookean 

elastomers depends on F  and N only through a set of 4 invariants. In this work, we will 

use the following “canonical” set [21]: 

                                                                                                                             

                                                                                                                                          (13) 

where it is emphasized that the third invariant det 1J  F  due to the incompressibility 

of the matrix and fibers. 

Next, given the linear dependence of (12) on I1, it is straightforward to compute 

(see Appendix C in [5]) the maximizing vector  in (8). In turn, it is possible to carry out 

the orientational integral in (8) and to finally solve the pde for W  (see Section 6 in [5]). 

The solution reads as follows 

 

      

                                                                                                                              (14) 

where 

                                

                                                                                                                              (15) 

Here, it is worth emphasizing that the effective stored-energy function (14) is of 

the separable form W = W iso( 1I )+ W fib( 4I ) — a functional form which has been 

assumed in the literature on a purely phenomeno-logical basis (see, e.g., [22, 23, 24] and 

references therein) — and that it does not depend on the second 2I  nor fifth 5I  invariants. 

Having generated the explicit expression (14) for W , the overall stress-strain 

relation for fiber-reinforced Neo-Hookean elastomers can then be readily worked out as 

 

                                                                                                                              (16) 
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where the scalar p  is an arbitrary hydrostatic pressure associated with the macroscopic 

incompressibility constraint det 1F . Similarly, the corresponding incremental modulus 

tensor can be easily computed to take the form (in indicial notation) 

                                                               

                                                                                                                        

 

                                                                                                                              (17)  

Upon direct use of (17) and some algebraic manipulation, the macroscopic stability 

condition (4) can be shown to simplify to 

 

 

                                                                                                                              (18) 

where the unit vectors a and b are required to satisfy the (incremental) incompressibility 

constraint 
T

0


 a F b . With the help of the generic results put forward in Section 5.4 of 

[5], it is not difficult to show that: along an arbitrary loading path with starting point F  = 

I, the macroscopic stability condition (18) first ceases to hold true at critical deformations 

crF  with 

            

                                                                                                                              (19) 

As discussed in Section 6.1 of [5] (see also [25]), the critical condition (19) has a direct 

physical interpretation. Indeed, the fourth invariant 4I  is a measure of the applied stretch 

along the fiber direction. Since   , condition (19) plainly states that macroscopic 

instabilities may develop in fiber-reinforced Neo-Hookean elastomers whenever the 

compressive stretch along the fibers reaches the critical value  2 3
4 1 1

cr /
I /    . 

4.2. Microstructure evolution 

Expressions (16) and (19) provide rigorous results that completely characterize 

the macroscopic constitutive response and stability of fiber-reinforced Neo-Hookean 

elastomers subjected to finite deformations. In this subsection, with the aim of gaining a 
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more fundamental understanding on the behavior of these materials, we work out results 

describing the evolution of the volume fraction, shape, and orientation of the underlying 

fibers along arbitrary loading paths. 

We begin by solving equation (10) for the average deformation gradient in the 

fibers 
 2

F . For the case of Neo-Hookean constituents (12), the vector  in (10) takes a 

relatively simple form that allows to compute the integral in (10) analytically (see the 

Appendix). Once all of the coefficients (i.e., 
2

0
1 2 dk l/


    ) are known explicitly, the 

linear pde (10) can be solved in closed-form. The solution reads as follows 

 

                                                                                                                              (20) 

where 

                                                                                                                                          (21) 

1 is a scalar function of the principal invariants 1I , 4I , 5I  given by 

                                                                                      

        

                                                                                                                                          (22) 

and 

                                                                                            

                                                                                                                                          (23) 

Here, it is fitting to remark that (20) is, of course, a transversely isotropic function of F  

with symmetric axis N, namely, 
 2

F  ( F QN, c0) = 
 2

F  ( F , c0) QN for all proper 

orthogonal tensors QN such that QNN = N (see, e.g., [26]). Note also that det 
 2

F  ( F , c0) 

= 1 for all applied deformations F  (with det 1F ) and initial volume fraction of fibers c0, 

as a consequence of the incompressibility of the fibers. 

We are now in a position to utilize the solution (20) in the general equations (5)-

(7) to establish rigorous relations for the evolution of microstructure in fiber-reinforced 

Neo-Hookean elastomers. Because both the matrix and fibers are incompressible, det F  

= det 
 2

F  = 1 and therefore equation (5) reduces trivially to c = c0. That is, the volume 
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fraction of fibers in the deformed configuration remains identical to the volume fraction 

of fibers in the undeformed configuration for the case of interest here. 

On the other hand, the second-order tensor Z introduced in (7) can be shown to 

specialize to 

  

 

                                                                                                                                          (24) 

Given (24), it is not difficult to deduce that the eigenvalues of the symmetric second-

order tensor ZTZ defining the Eulerian ellipsoid (6) are given by 

       

 

 

 

                                                                                                                                          (25) 

where 

                                    

 

 

                                                                                                                              (26) 

are principal transversely isotropic invariants of 
 2

F . The eigenvectors vi (i = 1; 2; 3) of 

ZTZ associated with the above eigenvalues zi can in turn be readily computed. They may 

be written as 

                              

 

 

                                                                                                                              (27) 

In these last expressions, it is recalled that the vector u is given by (21), the vector 

  u N u  has been introduced to ease notation, and the angles   are given by 
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A few remarks regarding the physical significance of the above results are now in order: 

 The fact that ZTZ has a zero eigenvalue (z3 = 0), as already mentioned in Section 2, is a      

general result that applies to any fiber-reinforced elastomer, not just to the fiber-

reinforced Neo-Hookean elastomers under investigation here. Physically, z3 = 0 implies 

that the initially cylindrical fibers remain cylindrical (i.e., infinitely long) in the deformed 

configuration (see Fig. 2). Moreover, the result (27)1 for the associated eigenvector v3, 

which characterizes the average rotation of the cylindrical axes of the fibers along 

arbitrary loading paths, is also a general result that applies to any fiber-reinforced 

elastomer. As a direct consequence of its generality, note that v3 depends on the initial 

microstructure via N (but not c0) and the macroscopic deformation gradient F , but not on 

the constitutive behavior of the phases. 

 In connection with the previous remark, it is also interesting to recognize that, in the 

direction of their long axes, the fibers behave as macroscopic material line elements. 

Indeed, according to the eigenvector (27)1, the direction N within an undeformed fiber 

gets mapped to F N in the deformed configuration. This rigorous result obtained from 

homogenization therefore supports the popular assumption adopted in phenomenological 

theories to treat fibers as material line elements (see, e.g., the classical work of Spencer 

[27]). 

The eigenvalues z1 and z2, which serve to describe the average (elliptical) shape of the 

cross section of the fibers in the deformed configuration, are seen to depend rather 

intricately — as opposed to z3 — on the initial microstructure, via N and c0, the 

macroscopic deformation gradient F , as well as on the constitutive behavior of the 

phases (1) and (2). A similar comment applies to the corresponding eigenvectors v1 and 

v2, which describe the principal directions of the average shape of the cross section of the 

deformed fibers (see Fig. 2). 

4.3. The case of nearly rigid fibers 

The above-presented results correspond to general heterogeneity contrast between 

the matrix and the fibers. In practice, however, actual fibers in reinforced soft materials 
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are usually several orders of magnitude stiffer than the matrix phase (i.e., (2)�(1)). In 

this regard, let  21 /    be a small parameter and expand expressions (14), (16), (19) 

and (20) for the effective stored-energy function, overall stress-strain relation, stability 

criterion, and average fiber deformation, respectively. The expansions are 

 

 

 

 

                                                                                                                                          (29) 

  

                                             

                                                                                                                                          (30) 

 

                                                                                                                                          (31) 

       

  

                                                                                                                                          (32) 

In the limit of rigid fibers as 0 , the physical requirement that the energy and 

stress above remain finite restricts the set of possible deformations to those such that 4I  

= FN FN = 1, namely, deformations that do not involve the stretching of the fibers. For 

  = 0, the above expressions then simplify to 

                                                                                                             

                                                                                                                                          (29) 

                                                                                                                                          (30) 

 

                                                                                                                                          (31) 

                                                                                                                                          (32)   

                   

Several comments are in order. First, the scalar  in (34) is the Lagrange 

multiplier associated with the macroscopic kinematical constraint 4I  = FN FN = 1. 
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Second, the critical stretch along the fibers 4
cr

I  reduces identically to 1. This does not 

imply, however, that macroscopic instabilities in rigidly-reinforced elastomers will 

develop for all applied deformations F  with 4I  = FN FN = 1, which include, for 

example, the undeformed configuration. Instead, whether macroscopic instabilities do 

develop in the limit of rigid fibers depends ultimately on the applied stresses (no 

instabilities occur, of course, at zero stress), and requires therefore further analysis which, 

for conciseness, we will not report here. Third, the average deformation gradient in the 

fibers reduces to a proper orthogonal second-order tensor 
 2

R , as expected physically, 

since the fibers can only undergo rigid body rotations in this case. Consequently, the 

tensor ZTZ characterizing the average shape and orientation of the fibers in the deformed 

configuration also simplifies significantly in the rigid-fiber limit. It is easy to show that 

                                                                                                                              (37) 

From this result, it is evident that the eigenvalues of ZTZ are equal to those of Z0
TZ0 = (I 

- NN). This implies that the shape of the fibers will remain fixed upon deformation — 

that is, z1 = z2 = 1 and z3 = 0 — which is, of course, consistent with the fibers being rigid. 

On the other hand, the rotation tensor 
 2

R  serves to fully characterize the reorientation of 

the principal axes of ZTZ with respect to those of Z0
TZ0 = (I - NN). 
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5. Sample results and discussion 

In order to provide more insight into the analytical solutions of the previous 

section, we next present illustrative results for specific loading conditions F , initial 

orientation of fibers N, values of fiber-to-matrix heterogeneity contrast    2 1t /  , and 

initial volume fraction of fibers c0. Of special interest is to bring out the interplay 

between microstructure evolution and macroscopic constitutive response and stability. 

Motivated by possible comparisons with experiments, we consider applied axisymmetric 

compressive deformations F  of the form 

                                                                                                                              (38) 

where   is a loading parameter in the range 0 1   that takes the value 1 in the 

undeformed configuration. 

Moreover, the initial orientation of the cylindrical axes of the fibers is henceforth 

parameterized as 

                                                                                                                              (39) 

with the angle 0   [0, 90  ] (see Fig. 3(a)). Thus, the case 0  = 90   corresponds to 

uniaxial compression along the fibers, while 0  = 0 corresponds to a type of transverse 

uniaxial compression with tensile load being applied along the fibers. Given (38) and (39), 

the scalar overall stress d dS W /   , (which, in this case, proves easier to visualize 

than the effective stored-energy function W  and the individual components of S ) is 

given by 

 

                

                                                                                                                                          (40) 

and the macroscopic stability criterion (19) specializes to 

                                     

                                                                                                                              (41) 

with the critical stretch cr  determining the deformation at which long-wavelength 

instabilities may first develop along axisymmetric loading paths (38). Furthermore, the 

average fiber orientation (27)1 in the deformed configuration reduces to 
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                                                                                                                                                                            (42) 

where 

                                                                            

                                                                                                                              (43) 

as depicted in Fig. 3(b). The evolution of the remaining microstructural variables (z1, z2, 

v1, v2) are of lesser importance in the present context of axisymmetric loading conditions 

and will not be detailed here for conciseness. 

We begin by examining the angle of rotation of the fibers   as a function of the 

applied deformation  . Results are shown in Fig. 4 for various initial fiber orientations 

( 0 = 0, 10  , 35.3  , 60  , 80  , 89.9  , and 90  ). Recall that fiber rotation was found to 

be independent of matrix and fiber constitutive response, and of fiber volume fraction. It 

is seen that fibers rotate away from the axis of applied compression and towards the axis 

of applied tension as deformation progresses (i.e., 0   as 0  monotonically for all 

0   [0, 90  )). For the smaller orientations 0 , fiber rotation evolves gradually with 

deformation. As 0  approaches 90  , however, fiber rotation is initially negligible but 

drops rapidly after a certain deformation level. Finally, in the limiting case of 0  = 90   

fibers do not rotate, as dictated by the symmetry of the problem. It will be seen below 

that the ability of the fibers to undergo large and rapid rotations plays a critical role in the 

macroscopic response and stability of fiber-reinforced elastomers. 

The macroscopic response, as characterized by relation (40), is shown in Fig. 5. 

Part (a) displays the overall stiffness 1
d dS / |

 in the small-deformation regime as a 

function of the initial fiber orientation 0 , for various fiber-to-matrix heterogeneity 

contrasts (t = 5, 20, 50) and a moderate volume fraction of fibers (c0 = 30%). In this 

regime where no evolution of microstructure takes place, it is seen that the overall 

stiffness is highest when the fibers are perfectly aligned with the compressive axis of 

loading ( 0  = 90  ) and is lowest when the fiber orientation is 0  = Arcos35.3   

regardless of contrast. These angles do not depend on fiber concentration either. In fact, 

maximum stiffness along the fibers is a universal feature of fiber-reinforced solids, while 

minimum stiffness at 0 = 35.3   can be shown to be a feature shared by all transversely 
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isotropic reinforced solids with effective stored-energy functions independent of the 

invariant 5I , which is the case here. 

As deformation progresses (  decreases) into the large-deformation regime, the 

constitutive response turns out to be strikingly different as a result of the underlying 

microstructure evolution. Fig. 5(b) displays the overall stress S  as a function of applied 

deformation   , for the choice t = 20, c0 = 30%, and the various initial fiber orientations 

considered in Fig. 4. While at small deformation levels large fiber orientations ( 0  = 60  ,  

80  ) lead to stiffer responses than small orientations ( 0  = 10  , 35.3  ) in accordance 

with Fig. 5(a), at large deformation levels they lead to softer responses. The limiting case 

0  = 90  , however, remains the stiffest regardless of deformation level. This highly 

nonlinear dependence of stress on initial fiber orientation is a manifestation of fiber 

rotation. Small initial orientations induce gradual fiber rotations, leading to parabolic 

responses. Large orientations, by contrast, induce rapid fiber rotations within a small 

deformation range, leading to S-shaped responses with inflexion points precisely where 

fiber orientations   exhibit a sudden drop, cf. Fig. 4 and Fig. 5(b). This strongly suggests 

that fiber rotation acts as a significant geometric softening mechanism, an interpretation 

that is consistent with the intuitive notion that a rigid rotation of fibers serves to 

“accommodate” at a microscopic length scale — part of the imposed macroscopic 

deformation at no energy expense. 

The symbols “o” in Fig. 5(b) denote points at which the fiber-reinforced solid 

becomes unstable, as dictated by the criterion (41). Loss of stability is seen to occur for 

the large fiber orientations only ( 0  = 60  , 80  , 90  ). This behavior can be linked as 

well to the rotation of the fibers. The critical stretch cr at which macroscopic instabilities 

are first encountered under axisymmetric compressive loadings are displayed in Fig. 6. 

Part (a) shows, cr  for various fiber-to-matrix heterogeneity contrasts (t = 5, 20, 50) and 

fiber volume fraction c0 = 30%, as a function of the initial orientation of the fibers 0 . 

Part (b) shows, cr  for 0  = 90   and fiber volume fractions c0 = 10, 30, and 50%, as a 

function of the contrast t. A key point to remark from Fig. 6(a) is that fiber-reinforced 
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Neo-Hookean elastomers are more stable for smaller values of 0 . In fact, there is a 

threshold (depending on the contrast t) in 0 , beyond which the response remains stable 

for all applied deformations. Physically, as already mentioned at the end of Section 4.1, 

these results entail that the onset of macroscopic instabilities is governed by the amount 

of compressive deformation applied along the cylindrical axes of the fibers. Indeed, under 

loading conditions of the form (38),  0  = 90   corresponds to the case at which 

maximum compression is being applied along the fibers. Decreasing the value of 0  

effectively decreases the amount of compression in the fiber direction. The other major 

point to recognize from Fig. 6(a) is that increasing the contrast between the two phases, 

as measured by the parameter t, renders the material more unstable, irrespectively of the 

volume fraction of the fibers c0. This is even more clearly seen in Fig. 6(b). 

In connection with all of the results presented in Fig. 6, it is also important to 

remark that macroscopic stability is consistently lost through the softening of the 

effective incremental shear response perpendicular to the direction of the cylindrical axes 

of the fibers. For instance, for the perfectly aligned case of 0  = 90  , the material loses 

macroscopic stability because of the vanishing of 1313L  at cr  (see equation (4)). This 

type of “failure” mode is consistent with the development of kink bands, which have 

been observed to appear in various types of fiber-reinforced materials (see, e.g., [28]). To 

better understand these stability results we turn once more to Fig. 4, where we notice that 

the more the fibers can potentially rotate — that is, within the present context, the larger 

the angle 0  — the more unstable fiber-reinforced Neo-Hookean elastomers become. 

Physically, this behavior is in accord with the idea that if the fibers — and in particular, 

the stiff fibers — rotate away from the direction of applied compression, the effective 

incremental shear response of the material in the perpendicular direction to the fibers 

softens. It is because of this geometric softening that fiber-reinforced Neo-Hookean 

elastomers may become macroscopic unstable, in spite of the fact that they are made up 

of matrix and fibers (12) that are locally stable (i.e., strongly elliptic). 

 

 

 



21 
 

6. Concluding remarks 

By exploiting the capability of the theory of Lopez-Pamies and Idiart [5] to 

generate results for the local (stress and deformation) fields in fiber-reinforced 

hyperelastic solids, we have been able to derive rigorous closed-form expressions for the 

evolution in (relative) size, shape, and orientation of the underlying fibers in a 

representative class of fiber-reinforced elastomers under arbitrary 3D loadings. Exact 

results of this sort had hitherto been restricted to layered materials (see, e.g., [29]) — the 

simplest class of composites and a crude 2D idealization of fiber-reinforced solids. The 

usefulness of these expressions is that they provide a means to identify microscopic 

mechanisms that govern the macroscopic properties and stability of fiber-reinforced 

elastomers. In this work, the results have indicated that the rotation of the fibers — which 

depends critically on the relative orientation between the loading axes and the fiber 

direction — can act as a dominant geometric softening mechanism. More specifically, it 

was found that the long axes of the fibers tend to rotate away from the axis of maximum 

compressive loading towards the axis of maximum tension. A direct consequence of this 

behavior is that loadings with predominant compression along the fibers lead to larger 

rotation of the fibers, which in turn lead to larger geometric softening of the constitutive 

response, and in some cases — when the heterogeneity contrast between the matrix and 

the fibers is suffciently high — also to the loss of macroscopic stability. Akin 

microscopic mechanisms have recently been identified [30, 31] in various classes of 

fiber-reinforced elastomers subjected to shear deformations.  

We conclude by remarking that the results of this work can help understanding 

the behavior of many other solids with oriented microstructures, besides fiber-reinforced 

elastomers. Indeed, soft modes of deformation and instabilities akin to those reported 

here have been observed, for instance, in thermoplastic elastomers with lamellar 

nanostructures under certain types of compressive loadings [32]. Elastomers reinforced 

with aligned ellipsoidal particles have also been found to exhibit distinctively softer 

mechanical properties when compressed along the long axes of the particles [33, 34]. 

And perhaps even more interestingly, the rapid rotation of aligned mesogens in smectic 
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elastomers has been identified as a key mechanism behind the complex macroscopic 

properties of this class of liquid crystal elastomers [35]. 
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Appendix 

In this appendix, we provide explicit expressions for the coefficients 

2

0
1 2 dk l/


     (k, l = 1, 2, 3) that appear in the pde (10) for 

 2
F  when specialized to 

the case of fiber-reinforced Neo-Hookean elastomers. Without loss of generality, we 

write these coefficients in a coordinate system ei (i = 1, 2, 3) where the initial orientation 

of the fibers N is aligned with the coordinate basis vector e3 (see Fig. 1): 
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where the notation 
T

C F F  has been used for convenience, and it is recalled that the 

effective constant    and principal invariants 1I ,  4I , and  5I  are defined, respectively, 

by equations (15)2 and (13) in the main body of the text. 
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Figure 1: Schematic illustrating a fiber-reinforced elastomer in the undeformed (Ω0) and 

deformed (Ω) configurations. Note that, for convenience, the initial orientation of the 

fibers N has been aligned with the coordinate basis vector e3. 
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Figure 2: Schematic representation of the evolution of microstructure in a fiber-

reinforced elastomer along a loading path with macroscopic deformation gradient  F . (a) 

In the undeformed configuration, a typical fiber has circular cross section (i.e., semiaxes 

2 2
1 2z z 1   ) and its cylindrical axis (with semiaxis  2

3z    ) is aligned with the N = 

e3 direction. (b) In the deformed configuration, the orientation of the fibers evolves to v3, 

the eigenvector associated with the zero eigenvalue (z3) of ZTZ. In addition, the initial 

circular cross section evolves into an elliptical cross section with semiaxes and principal 

directions that are characterized by the eigenvalues z1 and z2, and corresponding 

eigenvectors v1 and v2, of ZTZ (see equations (6) and (7)). 
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Figure 3: Pictorial representation of the applied loading conditions (38), and the resulting 

evolution of the orientation of the fibers, as determined by relations (42) and (43). 
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Figure 4: Angle of rotation of the fibers    (given by expression (43)) in fiber-reinforced 

Neo-Hookean elastomers subjected to axisymmetric compression (38) for various initial 

fiber orientations  0 , as a function of the applied macroscopic stretch   . Note that the 

results are completely independent of the constitutive behavior of the matrix and fibers, 

as well as of the volume fraction of fibers. 
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Figure 5: Overall constitutive response (see equation (40)) of fiber-reinforced Neo-

Hookean elastomers subjected to axisymmetric compression. Part (a) shows results for 

the stiffness d dS /   in the ground state (   = 1) for fiber-to-matrix heterogeneity 

contrasts t = (2)=(1) = 5, 20, 50 and volume fraction of fibers c0 = 30%, as a function of 

the initial fiber orientation 0 . Part (b) shows results for the overall stress S  for 0  = 

10  , 35.3  , 60  , 80  , 90  , t = 20, and c0 = 30%, as a function of the applied loading  . 
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Figure 6: Onset of macroscopic instabilities (see equation (41)) in fiber-reinforced Neo-

Hookean elastomers subjected to axisymmetric compression. Part (a) shows results for 

the critical deformation cr  at which instabilities may first develop for fiber-to-matrix 

heterogeneity contrasts t = (2)/(1) = 5, 20, 50 and volume fraction of fibers c0 = 30%, as 

a function of the initial fiber orientation 0 . Part (b) shows results for cr  for  = 90   

and c0 = 10, 30, 50%, as a function of t. 

 


