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Abstract of the Thesis 

 

Determination of the Monoclinic Properties of Human Tooth Enamel Microstructure by a 

Periodic Three Dimensional Finite Element Model 

 

by 
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in 

Mechanical Engineering 

 

Stony Brook University 

2010 

 

Researchers have reported diverse mechanical properties (Young’s modulus) of human 

tooth enamel from experiments and finite element simulations, because of the complicated 

microstructure, which contains variations in crystal orientations and non-homogeneous 

properties. Although past models have effectively considered the microstructural effects, 

appropriate conditions for introducing crystal orientations within enamel rods and the property 

variations between rods and the interrod enamel are still necessary.   



iv 

 

In this thesis, the micromechanical response of the enamel microstructure is investigated 

using a periodic finite element model to determine the effective monoclinic mechanical 

properties and determine localized effects of microstructure on the stress field. A spherical 

micro-indentation test was conducted on the bulk enamel model and the effective homogeneous 

model. The difference in response to indentation loading between the heterogeneous and 

homogeneous models revealed changes related to the enamel microstructure.  

The model can be used to consider changes in effective properties of enamel based on 

microstructural variations, which can be applied to restorative materials attached or embedded 

within enamel. The study of the influence of microstructure on the damage generation and failure 

modes of enamel can also be accomplished using the model, which may be due to fractures and 

the abrasion-erosion wear process. 
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Chapter 1 Introduction 

Teeth serve an indispensible role in people’s daily life in several aspects, for instance the 

mastication process. An introduction of the structure of human teeth is presented offering an 

overview of the subject building to a detailed discussion of enamel.  

1.1 Human Tooth Structure 

Large physical forces, estimated as 300 N (Fernandes, Glantz et al. 2003) and large 

contact stress which can reach 2.5 GPa (Hayasaki, Okamoto et al. 2004) may occur during the 

mastication process; therefore the human tooth must be mechanically capable to fulfill this 

function in an oral environment. 

Structurally the tooth consists of hard, inert and acellular enamel accommodating the 

hardness, supported by a more resilient but less mineralized connective hard tissue in dentin 

which surrounds the dental pulp (see Figure1.1). This highly mineralized protective layer of 

enamel functions as a shield providing hardness and toughness to withstand masticating forces.  

Only a limited succession of teeth occur in humans where newly generated teeth are 

larger in size due to the growth of the face and jaws. After the succession, the teeth become 

permanent and generally non-regenerative. 

1.2 Enamel 

Human tooth enamel is the outer layer of the tooth which protects dentin and the nerves 

from mechanical and chemical impact. As shown in Figure1.1, the cross-sectional thickness 

varies from less than 1mm (in the crown-root junction) to around 2.5 mm (in the crown surface).  

Enamel has evolved to specifically function as a load-bearing, erosion and abrasion-resistant 

protective coating with properties that develop due to the extremely high percentage of mineral 

content and unique microstructure. 
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Enamel is the most highly calcified tissue in the human body, and consists approximately 

of an inorganic mineral content (96%) and organic matter (4%) by weight (Avery, Steele et al. 

2002). The inorganic component is a crystalline hydroxylapatite (HAp). The organic matrix 

consists of only non-collagenous proteins which likely do not take major responsibilities of 

structural function.  The almost total absence of protein matrix leads to two major issues of 

enamel: first, a high percentage of mineral increases hardness of enamel tremendously but also 

makes enamel brittle; second, the lack of proteins makes the enamel incapable of self-

regenerating.  

Despite the importance of enamel for the function of human teeth, enamel is not 

regenerative due to the mechanism of its formation. The cells called ameloblasts, which is 

responsible in formation of enamel, are lost upon the end of enamel maturation (Nanci and Ten 

Cate 2008). Thus the enamel becomes dead tissue, and cannot be regenerated once failure 

occurs.  

1.2.1 Microstructure 

The primary structural unit of enamel is called a prism with specific mineral crystal 

orientations, and a sheath region which is mainly organic. The acid etched surfaces of enamel are 

shown in Figure 1.2 and Figure 1.3 for the longitudinal and transverse view of prisms. Generally 

the prism grows perpendicular to the surface of dentin thus they can bear extremely large normal 

loads during masticating process by transferring high loads into the softer dentin tissue. The size 

of a single prism is approximately 7 μm  5 μm according to the atomic force microscopy image 

in Figure 1.4.  

The transverse contour of the prisms is shaped like a key-hole with a large circular head 

and a thin tail, periodically repeating in the cross-sectional plane (see Figure 1.5). The prism 
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consists of highly organized and packed hydroxyapatite (HAp) with specific crystal orientations 

shown as dark lines in Figure 1.5, and an organic matrix of proteins surrounding the HAp 

crystals with thickness of 2 nm (Jeng, Lin et al. 2009).  The HAp crystals have cross-sectional 

dimensions of 68 nm by 26 nm (Kerebel, Daculsi et al. 1979) and are believed to be over 100 μm 

in length, even as long as the thickness of enamel (Daculsi, Menanteau et al. 1984; Nanci and 

Ten Cate 2008). The long axes of the HAp crystal composites run in the general direction of the 

longitudinal axis of the prism in the head part and rotate in a perpendicular direction to the prism 

in the tail region. The calcium phosphate that comprises HAp contains a hexagonal crystal 

structure, and results in a hexagonal shaped cross-sectional profile of the crystal, though this 

becomes distorted due to compaction (Nanci and Ten Cate 2008).  

1.2.2 Hydroxyapatite 

Hydroxyapatite (HAp) is a natural form of calcium phosphate salt in the form of 

Ca5(PO4)3(OH) or more often presented as Ca10(PO4)6(OH)2 since it indicates the conceptual 

entity with a least amount of ions. Some substitution may occur by 

fluoride, chloride or carbonate. It crystallizes in the hexagonal crystal system. Besides enamel, 

up to 45% of bone is made up of a modified form of hydroxylapatite (Norman, Vashishth et al. 

1995).  

Young’s modulus of HAp is has been measured as 110-135 GPa (Katz and Ukraincik 

1971; Katz 1985; Weiner and Wagner 1998; Viswanath, Raghavan et al. 2007) and is generally 

treated as an isotropic material (Spears 1997; White, Luo et al. 2001; Shimizu, Macho et al. 

2005; Xie, Swain et al. 2009).  According to White, enamel is 3 times tougher than geologic 

HAp but geologic HAp is much harder than enamel, demonstrating that the inclusion of the 
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protein matrix and the unique structural organization of HAp and protein within enamel provide 

the difference in the mechanical properties of enamel from that of HAp. 

1.2.3 Enamel proteins 

The main components of the proteins surrounding HAp crystals are noncollagenous 

proteins such as amelogenins, enamelin and ameloblastin (Nanci and Ten Cate 2008). In the 

modeling of enamel, there have been different values of the protein modulus used in past work. 

In Spears and Mishizu’s work, a value of 4.3 GPa for the young’s modulus of keratin was 

assigned as the elastic modulus of the enamel proteins, assuming an isotropic material behavior, 

while Xie at el have utilized a much smaller value of 0.1 GPa in their work. Unfortunately, no 

direct measurement of the elastic modulus of enamel proteins has been reported.  

1.3 Significance 

The study of mechanical properties of enamel based on its microstructure can provide 

valuable insights into many aspects, such as mechanisms of wear processes, effects of erosion, 

and the development of restorative materials that imitate the structure and properties of natural 

enamel. 

The effective mechanical properties (Young’s modulus) of human tooth enamel have 

been studied through experiments and finite element simulations, because of the complicated 

microstructure, which contains variations in crystal orientations and non-homogeneous 

properties. The orientation was taken into consideration later in many microscopic tests such as 

nanoindentation tests, but appropriate conditions for introducing crystal orientations within 

enamel rods and the property variations between rods and interrods are yet to be considered.  

The investigation of the micromechanical response of enamel rods through finite element 

modeling using a periodic model is presented in this work to determine the effective mechanical 
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properties for enamel as a monoclinic material, and to determine the effects of microstructure on 

the stress field. Simulation of a spherical indentation in the longitudinal direction of an enamel 

bulk model is also investigated to study the microstructural response during indentation. 

Spherical indentation simulates the natural loading of enamel, thus provides a response related to 

its normal function. 

The model developed in this work has a direct application to dental science. Variations in 

the local enamel properties due to disease, age, environment, or ultrastructural changes can be 

utilized to determine the microscale or bulk properties of enamel. This can aid in predictive 

capabilities for dental restorations and surface treatments of enamel.  
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Figure1.1 Illustration of tooth structure (Nanci and Ten Cate 2008) 



7 

 

 

 

    

Figure 1.2 Optical image of enamel microstructure (axial cross-sectional view) 

after acid etching 

20 μm
Figure 1.3 Optical image of enamel microstructure (occlusal view) after acid 

etching 
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5 μm

7 μm

Prism

Figure 1.5 Schematic illustration of enamel microstructure showing alignment of 

highly packed fiber-shaped HAp (Meckel, Griebstein et al. 1965) 

Figure 1.4 AFM image showing the rod arrangement in occlusal section 

(Habelitz, Marshall et al. 2001) 
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Chapter 2 Modeling of Enamel Mechanical Properties 

The objective of the mechanical modeling is to develop a global constitutive relationship 

of enamel, i.e. stress-strain relationship.  This is achieved using a linear elastic finite element 

model of the enamel microstructure. Detailed information of the microstructural modeling is 

described in this chapter. 

2.1 Meshing 

The first step in building the finite element model of enamel is to understand the 

fundamental repeating shape of the structure and create a mesh that can be utilized in the 

modeling. As shown in Figure 2.1, four identical circles that represent the enamel rods with the 

same diameter of 5 μm were drawn next to each other so their centers would form a square with 

edge length equal to 5 μm. Utilizing the region inside the four circles in conjunction with the 

topmost circle in Figure 2.1, the contours of a keyhole-shaped rod and interrod tail with 

dimensions of 5 μm wide by 7 μm long, which are approximately the dimensions of an enamel 

rod, were obtained. These keyhole-shaped rods can be reproduced in the same routine of drawing 

identical circles in a plane. Extrusion of the two-dimensional contours along the normal direction 

of the surface creates a three-dimensional model of an enamel rod, and completes the 

representation of the repeated keyhole structure.  

When conducting the meshing of the enamel rod, the configuration of the outer and inner 

layers was considered in advance for assigning changes in the material orientation in different 

locations. Each square in Figure 2.1 represents one brick element with uniform properties, which 

is the basic unit of the finite element calculation. Additional consideration was drawn when 

breaking the outer contour into discrete straight lines since the discrete contour has to coincide 

with itself when shifted in plane.  
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2.2 Representative unit cell 

The meshing of the rod is carefully designed so that a representative unit cell (RUC) 

model is established. A RUC is a small material region that can structurally represent the entire 

material by repeating itself infinitely. It can be regarded as an initiating unit of known repeating 

material structure. A unit-cell model is an effective approach frequently used when predicting 

material behavior in the case where the material contains repeated structure in certain patterns. 

In this case, the smallest RUC for enamel could be a single rod. But it would be 

complicated to interpret average stress and strain over the keyhole shape, and difficult to 

implement. Instead, a square domain with four corners at near centers of the rod heads was 

chosen as shown in Figure 2.2, which is exactly equivalent to double the surface area of a single 

rod. The height extruded along the out of plane direction was chosen to be equal to the length of 

the square domain so a uniform cube was obtained to simplify calculation.  

When the periodic unit cell is introduced to study the bulk properties of the material, 

appropriate periodic boundary conditions must be prescribed on the unit cell in order to represent 

the bulk properties in a limited microstructure. The details will be addressed in the periodic 

boundary condition section. 

The RUC model is the dominate model utilized in this work. It contains 240 three-

dimensional (3D) elastic brick elements and 546 nodes. The model is adequate and time-efficient 

to model the mechanical response of a heterogeneous material and linking the microstructure 

with the global properties.  

2.3 Local element properties:  

Locally, the enamel prisms are composed of inorganic mineral-hydroxyapatite and 

organic matrix- proteins with specific orientations. The structure of the hydroxyapatite-protein 
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matrix is similar to that of a fiber reinforced composite, which is axisymmetric in the long 

direction as shown in Figure 2.3. It is suitable to treat the local properties as transversely 

isotropic. The local properties of the elements are modeled as transversely isotropic (with 5 

material constants) and variable orientations of the HAp crystal composite with the elements 

The governing equation for a transversely isotropic material is: 
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In the equation, five constants are listed to define the elastic behavior of the transversely 

isotropic material: EL , ET , νLT , νTT and μLT, where EL and ET are the Young’s moduli with 

respect to the longitudinal direction and transverse direction respectively, μLT is the shear 

modulus, and νLT and νTT  are Poisson’s ratios. 

The transversely isotropic material properties of the local HAp crystal composite are 

determined by the following rules: 

1. The modulus of the longitudinal direction EL is assumed as 100GPa, and the transverse 

Poisson’s ratio as  νTT =0.2; 

2. The other parameters musts follow the relations: 

2
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12
(2.5) 

3. Five groups of material constants for the local elements are acquired by choosing values 

for the moduli ratio, R = ET/EL, as listed in Table 2.1. The groups of material constants 

will be assigned to the RUC model to study the effects of variation of local properties on 

the mechanical response of enamel. 

2.4 Orientations 

The mechanical properties of a transversely isotropic material is anisotropic, thus 

orientation should be introduced in order to complete the material property definition. The 

orientation inside each element varies, so it is necessary to define the orientation for all the 

elements within the repeating keyhole structure.   

Two angles between the symmetric axis of the local longitudinal direction and global 

coordinate system are required to define the transversely isotropic orientation: the xz plane angle 

θ with respect to the global x axis, and the yz plane angle  with respect to the global y axis. 

Orientation inside the rod is illustrated in three normal planes in Figure 2.4. The short solid lines 

represent the longitudinal direction of the HAp-protein composite in the figure. In the inner head 

region of the model, the angle =90 and θ=90. This shows the incorporation of local 

orientation with the rod direction in the head region. In the tail of the rod,  increases gradually 

and reaches 180 as it comes to the interrod region. The variation of orientation angles are 

presented in Figure 2.5. The angles were approximately assigned according to the sketch in 

Figure 1.5. Detail assignment of the angles for each element is provided in Appendix A. 

In the RUC model where the equivalent of two rods is shown, each pair of identical 

elements shares the same local property definition including orientation.  
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2.5 Periodic boundary conditions: 

Periodic boundary conditions (PBC) must be prescribed on the entire perimeter of the 

RUC, e.g., top/bottom (or left/right and front/back) surfaces must deform in the same pattern at 

any instance no matter how the loading conditions are applied. PBC play the most important role 

in connecting the RUC to the global mechanical behavior. To implement, proper constraints 

must be imposed on boundaries of corresponding surfaces of the RUC such that it can deform in 

the periodic pattern so that the deformed RUC can represent the deformed infinite bulk by 

repeating itself in all three dimensions.  

In order to accomplish the PBC, corresponding surfaces need to deform in an identical 

pattern. The following steps are followed to impose this condition (Figure 2.6):  

1. Choose 2 reference nodes (equivalent) A & B; 

2. Pick 2 equivalent nodes A1 & B1; 

3. Set uA1-uA=uB1-uB; 

4. Repeat step 2 & 3 for all nodes on equivalent surfaces SA & SB; 

5. Choose 2 reference nodes (equivalent) C (=A) & D; 

6. Pick 2 equivalent nodes C1 & D1; 

7. Set uC1-uC=uD1-uD; 

8. Repeat step 6 & 7 for all nodes on equivalent surfaces SC & SD; 

9. Choose 2 reference nodes (equivalent) E (=A, C) & F; 

10. Pick 2 equivalent nodes E1 & F1; 

11. Set uE1-uE=uF1-uF; 

12. Repeat step 10 & 11 for all nodes on equivalent surfaces SE & SF; 

13. Remove overlapping equations for corner and edge nodes 
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This method constrains all of the identical vectors starting from the reference nodes to all 

other nodes on the surfaces between the two identical surfaces. If all the equivalent vectors are 

identical, the two surfaces can automatically match each other if the equivalent reference nodes 

coincide. Figure 2.7 shows the deformed configuration of the PBC-prescribed RUC after a shear 

loading. From the figure, the unit cells repeat themselves without any gaps or overlaps. 

2.6 Global rod properties 

In the past, FEM analysis of the effective anisotropic stress-strain relations in enamel 

were assumed as orthotropic (nine independent constants) (Spears 1997; Shimizu, Macho et al. 

2005). However, according to the nature of the microstructure of enamel which consists of 

repeated rods across the transverse plane, enamel only occupies one plane of symmetry, as 

shown in Figure 2.8. The macroscopic effective constitutive relation is more appropriately 

modeled as monoclinic (13 independent constants) as shown in the equation: 
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 (2.6), 

where the stiffness tensor C is symmetric (C=C
T
) and has 13 independent material constants.  By 

determining the values of the 13 constants in the stiffness tensor the effective properties of 

enamel can be evaluated by the stress-strain relationship for any loading condition. 

2.7 Loading conditions 

The RUC model is analyzed with six different loading conditions to determine the 

monoclinic stiffness constants.  This is performed with the local properties assigned according to 

Section 2.4. As shown in Figure 2.9, loadings were executed in six directions on six corner nodes 
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of the RUC with displacement control, while one corner node is fixed.  The loading conditions 

were chosen in a way so such together with the previously defined PBC, simple uniaxial 

stress/shear stress fields were able to be generated.  

2.8 Stress/Strain field generation 

Effective stress fields were able to be generated by dividing the reaction forces of the 

loading nodes F over the surface nominal area A where the load was applied,      , as shown 

in Figure 2.9. 

In each of the 6 loading cases, effective strain fields were generated based on the 

displacements of corner nodes as well as the RUC geometry. As shown in Figure 2.10, 

displacement vectors of nodes 1, 2 and 3 are monitored with node 0 fixed. The equations 

employed to calculate strain components are shown below: 

l

u

l

u

l

u zave

z

yave

y
xave

x
321    ,   ,








    (2.7) 

     xz

ave

zxzy

ave

yzyx

ave

xy uu
l

uu
l

uu
l

312312
2

1
   ,

2

1
   ,

2

1
   (2.8) 

The equations above for computing effective strain fields are independent of loading 

conditions therefore were applied on all loading cases. 

The stress field and strain field calculated based on the deformed shapes of the RUC 

model are presented in Table 2.2 and Table 2.3 for the case where local element properties are 

assigned with R=0.2, in which σ
i
/ ε

i
  are the stress/strain vector of the ith loading case, followed 

by the notation of specific loading conditions. The stress field is presented by the unit of GPa 

while the strain field is unitless. For the other cases with different R values as local properties 

input, the same displacement control loading conditions were applied and the same equations 

were used for calculation of stress/strain fields. 
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2.9 Stiffness tensor 

In order to find the macroscopic mechanical behavior of enamel, 13 independent 

equations were needed to solve for the 13 constants in the monoclinic stiffness tensor of enamel.  

In each loading case for the corresponding strain and stress vectors, ε
i
 and σ

i
, one can 

extract 6 equations. Suppose the total number of loading cases is i, then there are 6i equations 

in all. It’s common that some of the equations were not linearly independent. In order to 

calculate all 13 constants, enough loading cases should be executed and the loading conditions 

should be chosen in a way that all the constants contribute in the equation. In this work, 6 

loading cases were applied. This might lead to overconstraints since there are more than 13 

equations. To overcome the overconstraints, and also to impose absolute symmetry on the 

stiffness tensor, rearrangement of the equations and the singular value decomposition method 

(SVD) are employed.  

The equation σ
i
=C ε

i
 for the i

th
 loading case can be rearranged in the form σ

i
=E

i
C* where  
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 (2.9), 

 TCCCCCCCCCCCCCC 66565544343324232214131211

*   (2.10). 

By combining 6 loading cases, the equation becomes A=BC* where A36x1=[ σ
1T

,… σ
6T

]
T
, 

B36x13=[ E
1T

,… E
6T

]
T
. 

Since B is a non-square matrix, the SVD method (Mottershead and Foster 1991; 

Ramanujam and Nakamura 2007) is necessary to solve the transformed stiffness tensor. It is an 

effective technique to solve or get best estimation of linear least-square problems when matrices 
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that are singular or non-squared are involved. When the matrix, for instance, B, is not square, it 

can be decomposed as B=USV
T
, where U is a column-orthogonal matrix, S is a square diagonal 

matrix, and V is a square orthogonal matrix. Once B is decomposed, the generalized inverse form 

of B can be expressed as VS
-1

U
T
, so C can be calculated by C=VS

-1
U

T
A. Detail information 

about the decomposition of matrix B is provided in Appendix B. 

2.10 Summary 

A periodic representative unit cell with 240 brick elements was established to represent 

the microstructure of the human tooth enamel. Five groups of locally transversely isotropic 

properties and appropriate orientations were assigned to each element in the model. A special 

periodic boundary condition was prescribed on the boundary of the unit cell model.  

Six loading conditions were applied on the unit cell model for each model with various 

local properties. The stress and strain fields were generated according to the reaction forces and 

the nodal displacements.  

The effective mechanical properties of the enamel bulk will be presented in the next 

chapter according to the loading cases on the unit cell model. The effects of local properties 

variations on the effective mechanical properties will be studied as well as the microstructure 

effects.  
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R EL (GPa) ET (GPa) νLT νTT μLT (GPa) 
1 100 100 0.2 0.2 41.67 

0.5 100 50 0.27 0.2 31.25 

0.2 100 20 0.33 0.2 25 

0.1 100 10 0.36 0.2 22.92 

0.05 100 5 0.38 0.2 21.88 

Table 2.1 Local properties of elements with ratios of R = ET/EL  

 

 

 σ
1
x tension σ

2
y tension σ

3
z tension σ

4
yz shear σ

5
xz shear σ

6
xy shear 

    25.61 0 0 0 16.81 14.74 

    0 34.16 0 16.84 0 14.74 

    0 0 50.27 16.84 16.81 0 

    0 0 0 16.84 0 0 

    0 0 0 0 -16.81 0 

    0 0 0 0 0 -14.74 

Table 2.2 Effective stress fields under 6 loading cases with local property ratio R=0.2 

 

 

 ε
1
x tension ε

2
y tension ε

3
z tension ε

4
yz shear ε

5
xz shear ε

6
xy shear 

    1 -0.14 -0.14 -0.16 0.61 0.51 

    -0.11 1 -0.12 0.54 -0.11 0.37 

    -0.07 -0.08 1 0.38 0.29 -0.07 

    -0.06 0.18 0.27 1.07 0.05 0.04 

    0 0 0 0 -1.10 -0.13 

    0 0 0 0 -0.15 -1.11 

Table 2.3 Effective strain fields under 6 loading cases with local property ratio R=0.2 
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Figure 2.1 Illustration of the keyhole-shaped rod and interrod region contour and the mesh development 

(right) 

D=5 μm

W=5 μm
L≈7 μm
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Figure 2.2 The representative unit cell (RUC) of the enamel bulk model shown surrounded by the enamel rods (left), 

and the 3D extruded finite element mesh (right) 

240 elements 
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1 m 0.2m

HAP Fibers within Prism, Jiang et al 

(2005) (SEM image)

Figure 2.3 SEM images of localized HAp-protein composites within an enamel rod (Jiang, Liu et al. 2005) 
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Figure 2.4 Orientation of HAp-protein composites inside the enamel 

rod shown in three normal cut views.  Orientation is described by the 

two angles presented in the figure. 
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Figure 2.5 HAp crystal orientation with respect to relative position within an 

enamel rod, (a) Horizontal cut view through head; (b) vertical cut view through the 

symmetry line.  Spatial positions coincide with Figure 2.4 
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Figure 2.6 Method of prescribing periodic boundary conditions (PBC) to the 

representative unit cell 
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Figure 2.7 Reassembly of deformed RUC with PBC applied on the boundaries, showing the 

matching of boundary deformations. 
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Figure 2.8 Global enamel rod assembly with localized material 

orientation. The structure only occupies one symmetric plane shown by 

a dashed line, represented by a monoclinic stiffness tensor. 
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Figure 2.9 The six loading conditions on the representative unit cell model, showing the applied load and boundary 

condition and the resulting stress direction. 
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xz-shearing 

xy-shearing 

yz-shearing 

F=Fxi+Fzk 

F=Fyj+Fzk 

F=Fxi+Fyj 

σx=Fx/A 

σy=Fy/A 
τxy=Fx/A=Fy/A 

σy=Fy/A 

σz=Fz/A 

τyz=Fy/A=Fz/A 

σx=Fx/A 

σz=Fz/A 

τxz=Fx/A=Fz/A 

Figure 2.9 The six loading conditions on the representative unit cell model, showing the applied load and boundary 

condition and the resulting stress direction. (continued) 
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Figure 2.10 Strain field generation method on the deformed RUC 

model 
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Chapter 3 Results and discussion 

The effective mechanical properties of the enamel bulk determined from the six loading 

cases on the unit cell model are presented, and the effective moduli are compared with 

experimental microindentation data. Simulation of a spherical indentation is performed, where 

the effects of microstructure and the local property variations on the effective mechanical 

properties are studied. 

3.1 Stress concentrations 

Mises stress (a scalar stress value that is computed from the stress tensor or the principal 

stresses), first principal stress and pressure stress contours under six different loading conditions 

with local property ratio of ET/EL=0.2 are presented in Figure 3.1, Figure 3.2and Figure 3.3. 

Stress concentrations are observed on the boundary of adjacent enamel rods. This indicates the 

enamel rod boundary is the most likely spot where micro fracture and erosion would occur under 

critical or repeated loading due to locally high strains which will disrupt the HAp crystal-protein 

composite. 

3.2 Effective stiffness tensor 

The effective stiffness tensor was calculated by generating the effective stress and strain 

fields of the representative unit cell under six loading cases and applying the singular value 

decomposition method.  

Effects of variation in local properties on the effective stiffness tensor were investigated. 

Five different ratios of ET/EL were chosen to vary the local (element-scale) material properties of 

the unit cell model. The variations in ET/EL were achieved by changing ET while EL is fixed as 

100 GPa. Table 3.1 shows the calculated effective stiffness tensors with different ratios of ET/EL. 
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Changes of diagonal components in the stiffness tensor with the variation of ET/EL are 

plotted in Figure 3.4. Larger effects of ET variations on normal stress-strain constants C11, C22 

and C33 were observed. Variation of ET/EL when ET is lower causes greater reduction in C11 and 

C22 components. C11 and C22 are more sensitive to ET changes than C33. The other components of 

the stiffness tensor have mixed behaviors on variation of ET/EL as seen in Figure 3.5.  

3.2.1 Effectiveness of homogeneity 

An effective homogeneous monoclinic model with the identical mesh of the RUC model 

was built with the material properties assigned as the calculated effective stiffness tensor for 

every ET/EL ratio to examine the effectiveness of the homogeneity. For each ET/EL ratio, the 

effective homogeneous monoclinic model was loaded in the same loading condition as the 

original model and analyzed for its resultant strain and stress fields where were compared with 

the original heterogeneous model. The difference is less than 0.0001% for all of the components 

in both strain and stress fields for every ET/EL ratio. The homogeneous model behaves effectively 

identical to the heterogeneous model in terms of the strain and stress fields. 

3.3 Effective Young’s modulus 

Changes in effective young’s modulus in normal directions verses variation of ET/EL are 

plotted in Figure 3.6. Ez>Ey>Ex always. This shows the evidence for the statement that the 

stiffest direction of the enamel is the longitudinal direction in which the rods run. Ex and Ey 

decrease faster than Ez as ET decreases. Thus, changes in the local transverse modulus have less 

effect on the global longitudinal effective modulus than on the transverse ones.  

The constant relation of the effective moduli from the model, Ey>Ex, shows that the in 

plane modulus (xy plane perpendicular to the rod axes) is highest in the y direction which is 

along the keyhole shaped head-tail direction, and least orthogonal to this direction.  This has 
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implications to understanding the structure of the enamel rods in the tooth crown, where the rod 

heads point in the direction of the tooth cusp around the entire circumference of the tooth.  The 

data indicates that the higher stiffness in the direction of the head-tail may allow enamel to 

absorb compressive stresses that are generated due to occlusal contact conditions (such as 

mastication with the primary molars). 

Normalized Ex and Ey over Ez are plotted in Figure 3.7. Compared to Ey, Ex decreases 

faster as ET decreases. This leads to the conclusion that the softest direction is perpendicular to 

the symmetric plane of the enamel. As ET/EL decreases from 1 (locally isotropic) to 0.05 (EL 20 

times larger than ET), Ex/Ez and Ey/Ez drop from 1 (globally isotropic) to 0.2 and 0.35 

respectively. The high local anisotropy leads to high global anisotropy.  

Experimental measurement of a spherical microindentation on the occlusal and transverse 

surfaces of an enamel sample with a radius of 200 μm was conducted. The effective moduli were 

calculated by applying Oliver and Pharr method (Oliver and Pharr 1992) to interpret the 

unloading curves. The modulus of the occlusal surface was measured as Enorm=56.5 ±2.27 GPa 

and the modulus of the transverse surface was measured as Etran=34.5 ±3.84 GPa. The ratio of 

Etran/Enorm is 0.61, and ranges from 0.52 to 0.71 when the standard derivations are considered. 

Similar ratios were found by He et al. (He, Fujisawa et al. 2006), where for shallower 

indentations (contact radius of ~3 μm) a ratio of Etran/Enorm = 0.57 was observed from the data. 

Due to the difficulty of identifying polished sample surface angle, it is difficult to determine the 

direction the ‘transverse’ modulus Etran was measured, but the value of Etran should lie between 

Ex and Ey since the transverse modulus was measured in the xy plane. The ratio of Etran/Enorm 

matches the ratios of Ex/Ez and Ey/Ez well when the local properties ratio ET/EL ranges from 0.1 

to 0.45.  
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Measurement on the local elastic moduli of an enamel sample using Atomic Force 

Acoustic Microscopy shows approximately 40-50% difference between the moduli of local 

properties which approximately correspond to the local property ET and EL in the model (Zhao, 

Cao et al. 2010). The ratio of ET/EL from the AFAM measurement has good agreement with the 

0.1-0.45 range of suitable ratio of ET/EL where the microindentation data agrees with the model 

effective modulus ratio. 

3.4 Effects of model geometry 

Effects of variation of the representative unit cell model geometry on the effective 

stiffness tensor were studied. The model was elongated in the y direction by the factor of 1.5 

from the original size. The calculated effective stiffness tensors of the alternative model and the 

original model were compared in Figure 3.8. The constant C22 has an increase of approximately 

6%. The changes in other constants are not as large as C22.  

The geometry variation of the model has limited effects on the effective stiffness tensor 

of the model. 

3.5 Instrumented indentation 

3.5.1 Stress contours of indented samples 

Mises stress contours for the model with local property ratio of 0.2 are shown in 3 steps 

until the full penetration depth in Figure 3.9. The stresses concentrated on the head region of the 

enamel rods and were transferred in the longitudinal direction where more resilient dentin lies. 

The orientation of HAp-protein composites was more perpendicular to the occlusal surface in the 

rod head region, providing their highest stiffness in this direction. 

3.5.2 Size variation 
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Depth controlled spherical indentation with depth of Δ=1 μm was conducted with 3 bulk 

models on the occlusal surfaces with different number of unit cells (3610, 61215, 61222 

with dimensions of 214210.15 μm, 428429.75 μm, 4284168.00 μm) to determine the 

necessary model size to eliminate boundary effects. The loading curves are plotted in Figure 

3.10.  

In the initial loading stage, the difference of loading forces was not significant with 

varied thickness. As the penetration went deeper, the difference in loading forces became larger 

gradually. Also, with the increase of model size, the final indentation load decreases 

approximately 80%.  

The large difference shows the important effect of sample size on the results of the 

indentation loading curve. If the sample is not large enough, the stress propagates towards the 

bottom as the penetration is in progress. At certain penetrating height, the stress reaches the 

relatively rigid surface on which the sample is placed. Thus a ‘substrate effect’ takes place and 

the rigidity of the substrate increases the loading force considerably. The substrate effect is 

avoidable by increasing the sample size with respect to the indentation depth. From the stress 

contour of the sample bottom at the full loading point, the stress is not significant with the 

thickness layer of 22. The sample thickness is enough to avoid the substrate effect.  The 

indentation depth is ~0.6% of the model thickness. 

The effect of the side constraints on the result accuracy is investigated using the 61222 

model where the circumferential surfaces are fixed. The loading curves for the constrained and 

unconstrained models are plotted in Figure 3.11. The constrained model has a large load 

resistance than the unconstrained model. In a realistic test, the loading curve should lie in 
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between the two curves shown in Figure 3.11 since the true boundary condition of the sides is in 

between free ends and totally fixed.  

3.5.3 Local property ratio variation 

Depth controlled spherical indentation with Δ=1 μm was conducted using 3 bulk models 

on the occlusal surfaces with different local property ratios (ET/EL=0.1, 0.2 and 0.5).  A fixed 

model size of 61222 was used. The loading curves are plotted in Figure 3.12.  

The difference in the loading forces is small for the initial penetration, and becomes 

larger as Δ increases. At the full depth of indentation, the difference in loading forces is 30% 

between ET/EL=0.2 and 0.5 and is 50% between ET/EL=0.1 and 0.5. As ET increases while EL is 

fixed, the sample is more resistant to indentation. 

3.5.4 Comparison of heterogeneous/homogeneous models 

An effective homogeneous monoclinic bulk model, the same size of the heterogeneous 

bulk model, was established using the 13 effective monoclinic property constants listed in Table 

3.1. The model was constructed for local property ratios of ET/EL=0.1 and 0.2 to compare the 

mechanical behaviors of heterogeneous and corresponding homogeneous models under spherical 

micro-indentation.  

The same depth controlled spherical indentation with Δ=1 μm was conducted on the 

homogeneous models and the loading curves were plotted together with the heterogeneous 

models in Figure 3.13. From the plots, the loading curves of the effective homogeneous models 

behave similarly to the heterogeneous models, with slightly smaller loading forces over the entire 

indentation depth range.  

The difference between loading forces are plotted as a percentage with respect to 

penetration depth for each pair of the heterogeneous/homogeneous models in Figure 3.14. The 
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values were calculated by dividing the force difference over the force of the heterogeneous 

model at each penetration depth: ΔF=(Fheter-Fhomo)/Fheter 100%. 

As seen in the plot, ΔF was as large as 15% and 10% for ET/EL=0.1 and 0.2 respectively 

in the initial contact period and dropped rapidly to close to 1% as the penetration depth Δ reached 

approximately 60nm. After the critical depth, ΔF remained almost constant as 1-2%.  

The effect of the specific enamel microstructure of the heterogeneous models accounts 

for the large difference between the heterogeneous and homogeneous models for Δ < 60nm.  

With Δ=60 nm, the theoretical contact radius is a≈5 μm for a rigid spherical indenter with radius 

R=200 μm. Considering the size of one enamel rod is about 57 μm, the indenter is only in 

contact with a fraction of the enamel rod at the initial loading step and gradually the contact area 

increases to the entire enamel rod and possibly covers around 4 rods when Δ reaches 60 nm 

where the effects of the localized microstructure decrease for the larger contact area. The 

microstructure size effects ends after Δ>60 nm, at which point homogenization becomes 

effective. 

Closer inspection of Figure 3.14 also shows undulations in the value of ΔF as a function 

of indentation depth beyond the critical depth.  Peaks in ΔF are observed at 200nm and ~640nm, 

with the 200 nm peak more pronounced and the 640 nm peak broader.  The contact radii at the 

two peaks are ~9 μm and 15 μm, respectively.  These contact radii coincide with the periodicity 

in the enamel microstructure which repeats every ~5 microns.  The peak at 640 nm is less 

pronounced due to the fact that the contact circumference is distributed over more enamel rods 

for the larger radius, which averages out the microstructural effect and mitigates the differences.  

Thus the enamel microstructure is captured in the differences between the homogeneous and 

heterogeneous model at three discrete length scales corresponding to the repeating rods. 
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ΔF is consistently smaller for the model with ET/EL=0.2 compared to that with ET/EL=0.1. 

This indicates the anisotropic local properties, which are regulated by the microstructure, affect 

the indentation loading behavior at the modeled indentation depths. 

3.5.5 Stress contours of homogeneous samples 

From Figure 3.15, the difference is presented for the stress distribution of heterogeneous 

model and effective homogeneous model at full penetration. In the homogeneous model, the 

stresses are sustained beneath the contact area rather than transferred deeper into the sample, as 

in the heterogeneous model. The maximum Mises stress occurred at a depth of 8.47 μm beneath 

the surface for the heterogeneous model. The corresponding depth of maximum Mises stress was 

4.97 μm for the homogeneous model.  Although the loading curves were similar, the stress 

distribution configurations of the original (heterogeneous) model and the effective 

(homogeneous) model are considerably different. From Figure 3.15, the contact stress 

distribution has discrete stress concentrations on the surface for the heterogeneous model which 

correspond to the enamel rod heads.  Due to the distribution of the contact pressure over many 

enamel rods, the maximum contact pressure for the heterogeneous model was lower than the 

homogeneous model (0.96 GPa compared with 1.05 GPa).  This indicates that the 

homogenization cannot illustrate the microstructure effects of the heterogeneous model. 
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ET/EL 

C11 C12 C13 C14 0 0 

C12 C22 C23 C24 0 0 

C13 C23 C33 C34 0 0 

C14 C24 C34 C44 0 0 

0 0 0 0 C55 C56 

0 0 0 0 C56 C66 

1 

111.11 27.78 27.78 0 0 0 

27.78 111.11 27.78 0 0 0 

27.78 27.78 111.11 0 0 0 

0 0 0 41.67 0 0 

0 0 0 0 41.67 0 

0 0 0 0 0 41.67 

0.5 

60.23 14.42 15.00 -0.43 0 0 

14.42 70.02 16.39 -3.63 0 0 

15.00 16.39 78.76 -4.08 0 0 

-0.43 -3.63 -4.08 29.19 0 0 

0 0 0 0 26.55 -1.50 

0 0 0 0 -1.50 25.28 

0.2 

26.35 4.05 3.99 0.41 0 0 

4.05 35.96 5.85 -4.06 0 0 

3.99 5.85 53.02 -5.72 0 0 

0.41 -4.06 -5.72 19.90 0 0 

0 0 0 0 15.52 -1.86 

0 0 0 0 -1.86 13.40 

0.1 

14.41 0.99 0.26 0.93 0 0 

0.99 21.65 2.21 -3.38 0 0 

0.26 2.21 42.11 -5.82 0 0 

0.93 -3.38 -5.82 15.45 0 0 

0 0 0 0 10.76 -1.55 

0 0 0 0 -1.55 8.47 

0.05 

8.01 -0.14 -1.28 1.14 0 0 

-0.14 12.99 0.66 -2.65 0 0 

-1.28 0.66 34.95 -5.47 0 0 

1.14 -2.65 -5.47 12.07 0 0 

0 0 0 0 7.66 -1.13 

0 0 0 0 -1.13 5.32 

Table 3.1 Effective stiffness tensors (GPa) with variation of ET/EL 
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Figure 3.1 Resultant Mises stress contours of the unit cell under 6 loading conditions (ET/EL=0.2) 

Figure 3.2 First principal stress contours of the unit cell under 6 loading conditions (ET/EL=0.2) 
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Figure 3.3 Resultant pressure stress contours of the unit cell under 6 loading conditions (ET/EL=0.2) 
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Figure 3.4 Effects of ET/EL variation on diagonal components of effective stiffness 

tensor  
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Figure 3.6 Effects of ET/EL variation on effective young’s moduli 
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Figure 3.5 Effects of ET/EL variation on 3 non-diagonal components of effective 

stiffness tensor 
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Figure 3.7 Effects of ET/EL variation on effective young’s moduli normalized by Ez 
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Figure 3.8 Changes of stiffness tensor based on variation of unit cell geometry 
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Figure 3.9 Mises stress contour during the indentation for the heterogeneous model with local property ratio of 0.2 
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Figure 3.10 Loading curve of enamel with varied model sizes 



47 

 

 

  

Figure 3.12 Loading curves of enamel with varied local propery ratios 
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Figure 3.14 Difference of indent forces between heterogeneous and effective 

homogeneous model with respect to penetration depth 

Figure 3.13 Comparison of loading curves between heterogeneous and effective 

homogenous model with ET/EL=0.1 & 0.2 
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Figure 3.15 Comparison of Mises stress contours of the heterogeneous 

and homogenized monoclinic models 
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Chapter 4 Conclusions 

This work studies mechanical properties of human tooth enamel based on the complex 

microstructure through a periodic finite element model.  

The main conclusions from the three dimensional finite element model are: 

 A representative unit-cell model, which only contains 240 brick elements and is 

computationally more efficient, was successfully obtained to study the connection 

between microstructure and the macroscopic mechanical behavior.  

 A methodology for applying three dimensional unit-cell periodic boundary 

conditions (PBC) was utilized in the enamel model.  

 Effects of local property variations on the global mechanical properties showed 

that the effective moduli Ez, Ey and Ex drop 70%, 88% and 92% respectively as 

the local property ratio ET/EL decreases from 1 to 0.05. 

 The monoclinic nature of the enamel microstructure was revealed and the 

constitutive law was calculated with 13 independent material constants for the 

effective stiffness tensor. C11, C22 and C33 were the most significant constants, 

representing the three normal directions. The calculated values fell into the range 

of the experimental data from microindentation. 

Simulations of displacement controlled spherical microindentation were conducted on the 

bulk model with the same microstructure as the representative unit cell model. The conclusions 

are: 

 Effects of model size on the loading responses showed that as the size increases, 

the loading forces decrease from over 3 mN to approximately 0.7 mN. At the 



51 

 

model size of 61222, the loading curves became constant and the boundary 

effects were eliminated.  

 The effective modulus in the indentation direction decreased by ~70% as the local 

transverse modulus decreased from 100 GPa to 5 GPa while the local longitudinal 

modulus was held constant at 100 GPa.  

 Effective homogeneous models were established based on the effective stiffness 

tensors calculated in this work. The effects of homogenization were investigated 

in the process of indentation.  

 Differences in the loading forces between heterogeneous and homogeneous 

models drops from 10% to 1%, as the penetration height increases.  With the 

increase in contact area, the homogeneous model begins to show a response 

similar to the heterogeneous model, where a critical indentation depth is observed 

when the loading force difference between the homogeneous and heterogeneous 

models become less than 2% at a penetration depth of ~60 nm. 

 Stress distributions of the indentation models were compared, showing that the 

Mises stress is concentrated in the rod head and extends deep into the enamel bulk 

following the enamel rods for the heterogeneous model. The maximum Mises 

stress occurred at the depth of 8.47 μm beneath the surface for the heterogeneous 

model. The corresponding depth of maximum Mises stress was 4.97 μm for the 

homogeneous model. The homogeneous model had uniformly distributed stresses 

within the bulk for the same load application, revealing the importance of 

considering the microstructure for contact problems.   
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Chapter 5 Future Work 

Recommendations for improvement and future research on the enamel microstructure 

model include: 

 The effects of structural component variations could be studied. People who 

suffer hypomineralization in enamel have less percentage of HAp in enamel. The 

effects can be studied by varying the local properties of HAp-protein composites. 

 The content variations between the rod and sheath region, in terms of volume 

fraction of HAp and proteins, should be incorporated into the mechanical 

properties variations. A layer of sheath region can be modeled along ~3/4 of the 

boundary of the head regions of the rod with softer material properties.  

 The contour mesh could be improved by narrowing the width of the tail region in 

terms of mimicking the actual microscale shape of the enamel rods. 

 Microindentation modeling of the enamel model in the transverse direction could 

be performed to compare directly with experimental observations, and a refined 

mesh in the contact region can be incorporated to allow for smaller indenter radii 

which generate higher strains. 

 Spatially resolved indentation modeling could be performed to ascertain the 

effects of position within the enamel microstructure on the loading results.  

Inclusion of tangential loading forces in the model will allow the analysis of 

contact conditions with friction which may be applied to study abrasion 

mechanisms. 

 Restorative materials can be modeled as it is filled or attached to the enamel in 

terms of its effects on the combination of the mechanical behavior of the mixed 
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structure for different loading conditions. Such work can provide invaluable 

information on the restorative material properties and attachment techniques.   
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Appendix A. The orientation assignment 

The orientation assigned to each element was executed by two angles θ and  as shown in 

Figure 2.5.The values for each element is listed in Table B.1 with the element numbers shown in 

Figure B.1. The left hand side elements orients mirror to the right hand side elements. 

Element # θ  Element # θ  

1 180.0 90.0 31 49.9 38.2 

2 0.0 90.0 32 49.9 39.3 

3 0.0 90.0 33 70.7 37.2 

4 0.0 90.0 34 61.1 37.6 

5 90.0 51.4 35 53.0 37.4 

6 17.3 55.7 36 46.0 36.9 

7 13.5 59.3 37 75.6 37.9 

8 11.0 62.0 38 63.4 39.1 

9 90.0 52.4 39 51.0 39.6 

10 28.6 54.7 40 45.0 40.0 

11 22.8 56.8 41 90.0 41.0 

12 19.7 58.6 42 70.0 42.0 

13 90.0 53.1 43 58.0 43.0 

14 45.4 54.7 44 45.0 44.0 

15 34.3 56.2 45 90.0 45.0 

16 27.3 57.3 46 71.7 46.3 

17 83.5 46.3 47 62.4 47.8 

18 80.3 48.0 48 52.7 49.7 

19 60.4 49.3 49 90.0 49.0 

20 41.8 49.6 50 77.6 50.3 

21 79.4 42.2 51 68.9 51.9 

22 69.6 43.4 52 66.1 53.8 

23 53.7 43.7 53 90.0 53.0 

24 47.8 44.2 54 83.5 54.2 

25 76.1 38.8 55 78.4 55.4 

26 64.0 39.2 56 75.6 56.8 

27 54.5 39.0 57 89.7 57.1 

28 49.3 38.9 58 85.0 58.3 

29 70.5 37.7 59 89.6 59.4 

30 62.6 37.8 60 81.3 61.3 

Table A.1 List of two angles as parameters for element orientation assignment 
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Appendix B. Detail calculation on singular value decomposition method 

The detail effective stiffness tensor calculation steps using the singular value 

decomposition method presented in section 2.9 are shown in quantitative pattern for the model 

with local properties ratio ET/EL=0.2. The methodology for models with different local properties 

ratios is the same. 

The collected strain and stress fields under six different loading cases are listed in Table 

2.2 and Table 2.3. 

After rearrangement of the strain fields, the matrix B is obtained by combining E
1
 to E

6
 

and presented as follow in Table B.1.  

The matrix B is decomposed into three matrices U, S and V as shown in Table B.2, Table 

B.3 and Table B.4. Thus the singular value decomposition of matrix B is completed and C is 

calculated by C=VS
-1

U
T
A. 
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B= 

1 -0.11 -0.07 -0.06 0 0 0 0 0 0 0 0 0 

0 1 0 0 -0.11 -0.07 -0.06 0 0 0 0 0 0 

0 0 1 0 0 -0.11 0 -0.07 -0.06 0 0 0 0 

0 0 0 1 0 0 -0.11 0 -0.07 -0.06 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

-0.14 1 -0.08 0.18 0 0 0 0 0 0 0 0 0 

0 -0.14 0 0 1 -0.08 0.18 0 0 0 0 0 0 

0 0 -0.14 0 0 1 0 -0.08 0.18 0 0 0 0 

0 0 0 -0.14 0 0 1 0 -0.08 0.18 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

-0.14 -0.12 1 0.27 0 0 0 0 0 0 0 0 0 

0 -0.14 0 0 -0.12 1 0.27 0 0 0 0 0 0 

0 0 -0.14 0 0 -0.12 0 1 0.27 0 0 0 0 

0 0 0 -0.14 0 0 -0.12 0 1 0.27 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

-0.16 0.54 0.38 1.07 0 0 0 0 0 0 0 0 0 

0 -0.16 0 0 0.54 0.38 1.07 0 0 0 0 0 0 

0 0 -0.16 0 0 0.54 0 0.38 1.07 0 0 0 0 

0 0 0 -0.16 0 0 0.54 0 0.38 1.07 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.61 -0.11 0.29 0.05 0 0 0 0 0 0 0 0 0 

0 0.61 0 0 -0.11 0.29 0.05 0 0 0 0 0 0 

0 0 0.61 0 0 -0.11 0 0.29 0.05 0 0 0 0 

0 0 0 0.61 0 0 -0.11 0 0.29 0.05 0 0 0 

0 0 0 0 0 0 0 0 0 0 -1.10 -0.15 0 

0 0 0 0 0 0 0 0 0 0 0 -1.10 -0.15 

0.51 0.37 -0.07 0.04 0 0 0 0 0 0 0 0 0 

0 0.51 0 0 0.37 -0.07 0.04 0 0 0 0 0 0 

0 0 0.51 0 0 0.37 0 -0.07 0.04 0 0 0 0 

0 0 0 0.51 0 0 0.37 0 -0.07 0.04 0 0 0 

0 0 0 0 0 0 0 0 0 0 -0.13 -1.12 0 

0 0 0 0 0 0 0 0 0 0 0 -0.13 -1.12 

Table B.1 The rearranged strain matrix B for the six loading conditions of the unit cell model 
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U= 

-0.09 0.10 -0.02 0.02 0 -0.03 0.02 -0.75 0.03 0 0 0.00 0.00 

0.24 -0.20 -0.26 -0.26 0 0.16 0.28 -0.05 -0.06 0 0 0.03 0.05 

0.19 -0.03 0.36 0.22 0 0.20 0.31 -0.02 -0.08 0 0 -0.02 0.06 

0.28 -0.20 0.07 0.08 0 -0.22 -0.42 -0.10 0.15 0 0 -0.02 -0.08 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.24 -0.28 -0.24 -0.30 0 0.10 0.16 0.03 -0.09 0 0 -0.01 0.01 

-0.11 -0.01 0.21 -0.15 0 0.11 -0.28 -0.03 -0.57 0 0 -0.42 -0.29 

-0.21 -0.28 -0.08 0.10 0 -0.42 0.20 0.01 -0.05 0 0 -0.10 -0.24 

-0.23 -0.14 0.27 -0.33 0 0.15 0.02 0.00 0.18 0 0 0.27 0.36 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.20 -0.12 0.40 0.30 0 0.12 0.17 0.07 -0.05 0 0 0.02 0.01 

-0.24 -0.27 0.08 0.07 0 -0.43 0.22 0.02 0.03 0 0 0.14 -0.19 

-0.07 -0.07 -0.18 0.14 0 0.25 -0.26 -0.02 -0.29 0 0 0.69 -0.32 

-0.18 -0.19 -0.22 0.32 0 0.33 -0.03 0.00 0.05 0 0 -0.33 0.32 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.44 -0.42 0.11 0.01 0 -0.04 -0.20 -0.03 0.08 0 0 -0.01 -0.02 

-0.33 -0.27 0.38 -0.31 0 -0.04 -0.12 -0.02 -0.22 0 0 0.05 0.25 

-0.28 -0.38 -0.29 0.37 0 0.06 -0.08 -0.01 -0.19 0 0 0.02 0.28 

-0.30 -0.24 0.08 -0.08 0 0.46 0.00 0.00 0.52 0 0 -0.15 -0.54 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.01 0.03 0.12 0.12 0 0.02 0.07 -0.47 0.00 0 0 0.00 0.00 

0.07 -0.22 -0.14 -0.15 0 -0.04 0.26 -0.03 -0.03 0 0 0.06 -0.03 

0.10 -0.04 0.18 0.19 0 0.22 0.12 -0.02 -0.15 0 0 0.22 -0.07 

0.12 -0.19 -0.03 0.16 0 -0.04 -0.29 -0.07 0.11 0 0 -0.12 0.06 

0 0 0 0 -0.23 0 0 0 0 0.58 0.77 0 0 

0 0 0 0 -0.67 0 0 0 0 -0.05 -0.23 0 0 

0.05 -0.06 -0.11 -0.12 0 0.03 0.08 -0.42 -0.03 0 0 -0.01 0.00 

0.09 -0.12 -0.06 -0.21 0 0.13 0.04 -0.04 -0.28 0 0 -0.17 -0.10 

0.01 -0.14 0.17 0.17 0 -0.06 0.27 0.00 -0.07 0 0 -0.05 -0.08 

0.06 -0.17 0.16 -0.10 0 -0.06 -0.23 -0.06 0.16 0 0 0.10 0.12 

0 0 0 0 -0.67 0 0 0 0 0.12 -0.22 0 0 

0 0 0 0 -0.23 0 0 0 0 -0.80 0.55 0 0 

Table B.2 The column-orthogonal matrix U for matrix B 
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S= 

2.10 0 0 0 0 0 0 0 0 0 0 0 0 

0 1.90 0 0 0 0 0 0 0 0 0 0 0 

0 0 1.82 0 0 0 0 0 0 0 0 0 0 

0 0 0 1.66 0 0 0 0 0 0 0 0 0 

0 0 0 0 1.63 0 0 0 0 0 0 0 0 

0 0 0 0 0 1.51 0 0 0 0 0 0 0 

0 0 0 0 0 0 1.40 0 0 0 0 0 0 

0 0 0 0 0 0 0 1.28 0 0 0 0 0 

0 0 0 0 0 0 0 0 1.13 0 0 0 0 

0 0 0 0 0 0 0 0 0 1.12 0 0 0 

0 0 0 0 0 0 0 0 0 0 1.05 0 0 

0 0 0 0 0 0 0 0 0 0 0 1.01 0 

0 0 0 0 0 0 0 0 0 0 0 0 0.63 

Table B.3 The diagonal matrix S for matrix B 

 

V= 

-0.09 0.11 -0.02 0.02 0 -0.02 0.07 -0.99 0.02 0 0 0.00 0.00 

0.44 -0.45 -0.41 -0.47 0 0.22 0.37 -0.07 -0.15 0 0 -0.01 0.01 

0.33 -0.14 0.62 0.42 0 0.28 0.46 -0.03 -0.13 0 0 0.02 0.01 

0.51 -0.45 0.16 0.10 0 -0.27 -0.60 -0.14 0.21 0 0 -0.02 -0.02 

-0.12 -0.06 0.23 -0.22 0 0.11 -0.29 -0.04 -0.69 0 0 -0.48 -0.27 

-0.35 -0.49 -0.01 0.15 0 -0.64 0.35 0.02 -0.10 0 0 0.00 -0.25 

-0.40 -0.33 0.47 -0.49 0 0.14 -0.07 -0.03 0.13 0 0 0.29 0.37 

-0.07 -0.10 -0.15 0.18 0 0.24 -0.22 -0.03 -0.34 0 0 0.77 -0.35 

-0.30 -0.41 -0.33 0.49 0 0.37 -0.13 -0.02 -0.05 0 0 -0.25 0.42 

-0.20 -0.18 0.04 -0.04 0 0.41 0.00 0.00 0.54 0 0 -0.20 -0.65 

0 0 0 0 0.21 0 0 0 0 -0.59 -0.78 0 0 

0 0 0 0 0.95 0 0 0 0 -0.05 0.30 0 0 

0 0 0 0 0.22 0 0 0 0 0.81 -0.55 0 0 

Table B.4 The square orthogonal matrix V for matrix B 
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