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Abstract of the Thesis
Dynamic Heat Transfer: Effective Heat Capacity of P lanar Thermal Mass
Subject to Periodic Heating and Cooling
by
Peizheng Ma
Master of Science
in
Mechanical Engineering
Stony Brook University
2010
The design-application of thermal mass is a powerful tool foraking temperature
in buildings. Although a large volume of literature on the use of tHemasses in
building applications exists, little quantitative characterizabbrthe performance of a
thermal mass under dynamic heating and cooling can be found. Inh#sss,tthe
performance of planar thermal masses (PTMs) subject toosilalidreating and cooling
is investigated.
Based on the analysis of a semi-infinite PTM under a sinusoidahdéhgave, some
new definitions — penetration depth, effective thickness, effectivae sgrecific heat and
effective heat exchange coefficient are introduced.

Since actual PTMs are not semi-infinite, the dynamic heaisfiea process of

finite-thickness PTMs — one surface is under a sinusoidal themaat and the other



one is specified with three kinds of boundary conditions— are discussed.

When inside air temperature is equal to the mean value of ts&d®wurface
temperature, analytical solutions of the temperature distributith feeat flux in
finite-thickness PTMs are deduced. The effective heat exchavgfécient and, a new
definition, the effective heat storage coefficient of PTMdwiifferent thermo-physical
properties are developed. For PTMs with the boundary condition of theds&md, an
optimal effective thermal mass coefficient at an optithafmal mass thickness is found.
Because of the large effective area specific heat diffa¥, wood is much worse than
concrete for heat storage.

When the inside air temperature is not equal to the mean valbe ofitside surface
temperature, analytical solutions do not exist and numerical methagked to solve the
dynamic heat transfer problem. Three forms of approximated tatnpedistribution are
developed based on numerical calculations. The best one of the appeadxiorats is
used to investigate the heat exchange between finite-thickRddds and the
environment. From the approximated form, time lag and decremetdr fare also
obtained. Last, the comparison of wood and concrete, as exterior ataitiah shows
that wood is a better than concrete due to its lower conductivity.

Keywords. Dynamic heat transfer; Planar thermal mass (PTM); ldapacity; Heat

exchange; Heat storage; Periodic heating and cooling
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Chapter 1: Introduction

1.1 Background and motivation

A thermal mass ™3, which can be in the form of water, earth, rock, wood, brick, or
concrete, has the ability to absorb and store heat energy duwagratime (acts as a
heat sink) and to release it at a cool time later (actsa dseat source). The
design-application of thermal mass is a powerful tool for comgpltemperature and
“appropriate use of thermal mass throughout your home can make differgnce to
comfort and heating and cooling bills.” ([1]: page 114) Theretgxslarge volume of
architectural literature on the use of thermal masses irdibgilapplications.'=*
However, little quantitative characterization of the performanaetbermal mass that go
beyond intuitive rule-of-thumb can be found in these literatures.

Two common measures of the performance of a thermal maseareapacity per
unit mass (i.e.mass specific heat c, [kJ/kg-K]), and heat capacity per unit volume (i.e.,
volumetric specific heat ¢, [kJ/nT-K], which is the product of the densjiykg/m®] and
the mass specific heaf). If a thermal mass system is subject fguasi-staticheating or
cooling, the energy balance equation of the system is:

Q=mgAT=pVeA T= VA F ALgA (1.1)
whereQ [kJ] is the amount of heat energy put into or flowed out of a thermal makg]

is the massy [m?] is the volume, andT [K or °C] is the change in temperaturd.gnd



L—see the following)

A typical building thermal mass is a planar layer of a givrkness. [m] and such
thermal mass can be called Planar Thermal Mass (PTM). lairims, therefore, we are
more interested in the heat capacity per unit surfacefajimd] (Q/(AAT), l.e., thearea
specific heat Caea [kJ/NF-K]) of a building planar material at a given thicknéssThe
Carea Of SUCh mass would equal to the productgfandL, if it is subject to quasi-static
heating or cooling. However, a building thermal mass system/unitpeciedly ones that
is in direct interaction with ambient surroundings — is subjectatalynamic
(time-dependent) heating or cooling, rather than a quasi-static longsch a situation,
Egn. (1. 1) fails to explain why a wood wall of twice or threees, even four-times the
thickness of a concrete wall (considering that the volumetricifspéeat of wood and
concrete are about 705 and 1844 Rkmrespectively) is still a much poorer thermal
mass than the concrete wall.

Therefore, it is necessary to approach this problem of buildingh#tenass as a
dynamic problem. If weather conditions are very similar for sdvaays, the diurnal
temperature variations can be considered approximately aseawsive; the outside
surface temperature of the building envelope (usually includes,walbf and ceiling,
and floor, which can all be treated as PTMs) may be regardedxapptely as a
sinusoidal function with a period of 24 hours (because of the convectaa af the
outside surface, the surface temperature is not equal to the outdieon@erature; later,

the effect will be considered and temperatures will be modifiede dynamic heat
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transfer problem of PTMs can then be idealized in terms obgierheating and cooling
of a diurnal period [s]. In this thesis, theffective heat capacity of planar PTMs under

asinusoidal thermal wave — will be investigated.

1.2 Thesis structure

In Chapter 2, the dynamic heat transfer of a semi-infinite ilMbe investigated.
The temperature distribution and the heat flux in the PTM and théeatexchange
between the PTM and the environment will be deduced. The definitioeffeative
thickness, the effective area specific heat and the eféebgat exchange coefficient will
be introduced.

In Chapter 3, when the inside air temperature is equal to the maan ofathe
outside surface temperature, the dynamic heat transfer td-finckness PTMs under
three kinds of boundary conditions will be investigated. The temperdtstribution in
the PTMs will be deduced. The heat exchange between the PTMbeardvironment
(the effective heat exchange coefficient and the inner eféebeat exchange coefficient)
and the heat storage of the PTMs (the effective heat storage coéffigiebe developed.
The time when the outside surface heat flux is equal to zerahentime when the
amount of heat stored in or released out of the PTMs is maxwilliralso be obtained.
Two examples (the comparison of wood and concrete wall; intBridls) will be given
at the end of the chapter. More new definitions — the dimensioredaéss, the

dynamic Biot number, the optimal thermal mass thickness, the dmffeative thermal



mass coefficient, the optimal dimensionless thickness, the ieffetttermal resistance
and the dimensionless heat flux — will be introduced in Chapter 3.

In Chapter 4, when the inside air temperature is not equal to the vakee of the
outside surface temperature, the dynamic heat transfer @-finckness PTMs will be
investigated. Since analytical solutions do not exist under this amdithe
finite-difference method, one of the most frequently used numeriegthads, will be
used to solve the problem. Later, based on numerical calculation regydteximated
temperature distribution forms will be developed. Then one of the apmpaited forms
will be used to obtain the coefficients of wood and concrete whaddjme-lag effect and
the decrement factor.

In Chapter 5, several main conclusions will be summarized and smgessions for

future work will be given.



Chapter 2: Dynamic Heat Transfer of

a Semi-infinite PTM

2.1 Problem description

Consider the semi-infinite PTM shown in Figure 2.1. The left sutiawgeraturdy
of the PTM is a sinusoidal function with a mean valye The peak amplitude and the
period of Ty are (AT)o andP, respectively. Under the influence of the thermal wave at the
surface, the near-surface temperature of the PTM will changénuously. However,
after a certain depth, the far interior temperature althost not be affected by the
surface thermal wave. We can take the temperature at éalomto benearly a constant
Tin (assumed to be equal T@). This certain depth is callgzenetration depth Lpene [M]
(See [34]: page 320, the definition of penetration depth for the caaestdp surface
temperature variation; in this thesis, we will give another deimiof penetration depth
for the case of a sinusoidal surface temperature variation.). Suppaseall the
thermo-physical properties of the PTM (i.g,, Cy, Cvo, conductivity k [W/m-K], and
thermal diffusivity o [m%s]) to be constants. This problem can be dealt with as a
one-dimensionalxdirection) heat transfer problem. The temperature changes in the PTM
will repeat themselves periodically if the surface temperature warsahave occurred for

a sufficiently long period of time.



kypl C\/Ollcpla A

Temperature, T

v

Time, t
Figure 2.1—Semi-infinite PTM and its surface and far interior temperatures

Since Tp is not constant, it is not a steady-state butyaamic heat conduction
problem (In reference [34], it is also referred togassi-steadyconduction, which “is
meant that the unsteady temperature changes repeat thenssedwbly”. Note: it is NOT
guasi-static conduction). In the absence of internal energy sources/sinkshetie
diffusion equation should be used to calculate the temperature distribution in the PTM:

0T 10T

G.D.E.: y—;a (2. 1)

Boundary Conditions (B.C.s) of the Governing Differential Equation (G.D.E) are:

B.C.s: T(x—>o,t)=T, 2.2)

T(0t)=T,=(AT), sin(%” tj+ T, 2.3)



2.2 Mathematical deduction of the problem

In reference [34]: page 213~218, a smart methodgies to solve the heat transfer
problem just described in last section.

By defining a temperature variable as

o(x.t)=T(x1t)-T, (2.4)

the G.D.E. and B.C.s can be rewritten as

2
GD.E.: %:1% (2.5)
ox~ a ot
B.C.s: (x> o0, t)=T, -T.=0 (2. 6)
0(0,t)=T,-T,=(AT), sin(%[ tj (2.7)

Then introduce an auxiliary problem with the G.Dad B.C.s:

G.D.E. ﬁ/o:l@ (2. 8)
oxX* «a ot

B.C.s: §’(’x—>oo,t)=0 (2.9)
§’(’O,t) =(AT), cos(%rtj (2. 10)

Define a (complex) temperature function as:

6.(xt)=0bx 1) +i0(x1) (2. 11)

where i =+-1. The complex functiond, (x,t) satisfies the following differential

equation and B.C.s:

826’C _1806
x> «a ot

D.E.: 2. 12)



B.C.s: 6,(x—> 0, t)=0 (2.13)

2ix

0,(0,t)=(AT), e? (2. 14)

Assume a product solution in the form

2ix

0,(xt)= X(x) e (2. 15)
and substitute it into Eqn. (2. 12) and get:

d’X 2ir
7S X(%)=0 (2. 16)

The solution of Egn. (2. 16) can be written as
aix, _[27,
9=Cd" s galer @.17
whereC; andC; are constant. Combine Eqn. (2. 15) and Eqn. (.ald the application

of the B.C.s (2. 13) and (2. 14) yieldS, =0 and C, =(AT),. Therefore,

2z 2int (1+i 2 _inzl_ 7 x
0,(xt)=(AT), e \/;e" =(AT), e ‘/‘j € =(A «P (ept “P]

0

= 0,(xt)=(AT), e {co{— t—\/z x]+ isi{% t—\/g)xﬂ (2. 18)

Finally, from the definition (2. 11), the tempenawariation can be obtained as

0(x,t)=(AT), e_\/gxsin(%[ t— %x} (2. 19)

Comparing Egn. (2. 19) with Egn (2. 7), it is clélaat the period of the temperature

variation in the PTM is the same as the perio@iypbut lags by a phase difference:

At==— |— (2. 20)
2\ 7a

and the amplitude decreases exponentially witldistancex:



(AT), =(AT), e e 2. 21)
and the wavelength is:

x, = 2P (2. 22)

2.3 Further discussions

Here we define the penetration depthneas
L pene =V 270P (2. 23)
In fact, the proportion of the amplitude at= L ..=~27za P to that ofTy is:

L - L\/ZzzaP
pere _ o VP

= e ~0.0118= 1.18Y (2. 24)
(AT)

0

which means that the amplitude\T), decreases 98.82% at= L

pene*

With the definition of the penetration depth, E(fh.19) can be rewritten as

e (27zt \/_ZHXJ

O(x,t)=(AT), e "™ sin C

pene

(2. 25)

Hour by hour temperature distribution for a PTMIwa thickness ofL =2L . is

shown in Figure 2.2. Note: the temperature distrdouof a 2L _ -thick PTM is good

pene

enough to represent that of a semi-infinite PTM s> ~ 0.0001<.



Hour-by-hour temperature distribution of a semi-infinite PTM in one period
1 " ? ! The first 6 hours ! The second 6 hours
H : : 1 H :

o 05 1

‘The fourth 6 hours

0, TR Q.5 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PTM thickness x (*'1'.p i e) {m)

Figure 2.2—Hour-by-hour temperature distributions of a semi-infinite PTM in one period

From the Fourier’s Law of heat conduction for a-dimaensional system

q =—kg—1=—k% (2. 26)

the heat fluxq [W/m?] at any distance from the surface can be obtained:

' =—k{(AT) e_fﬁx _Jox co ot _ Ve + Si 2t _Varx
q = 0 L P L P L

pene pene pene
2rx
=g =k(AT), e "™ 27 | 2t _J2ex 7
Lpene P Lpene 4
27rk(AT) *fﬁx (2xt orx «
=q = 0 g e sin| S — = (2.27)
I-pene P Lpene 4
Let x=0, and the heat flux at the surface is given by
. 27k(AT),  (2zt *«
= sin — 2.28
G 1 ( B 4j (2. 28)

pene

10



The surface heat flux is shown in Figure 2.3. Thase lag between the temperature and

the heat flux at the surface iB/8.

— A o A .

o) ( =2
ERAG ]
g f To =
= 8
5 T
o \ /

-
=
5

~

Ve
\

-
-
-
”~
~
~
~1

»
»

Time, t

0

o

Figure 2.3—Surface temperature and heat flux variations

The amount of heat exchanged at the surface cgotlses

t2

. 27K (AT) ot . 2r (AT
%:J't qodt:L)o tsln(E+£jdt:_Mp%aico E_sz
A t pene tl Lpene 272- P 4 tl
t
Q 1 27t 72')1
-—=—pc L _(AT) co§ —+— 2.29
A 277 pene( AT); P 4), ( )

where Qo [kJ] is the net heat exchanged between the sdmiten PTM and the
environment from; to t,.

Thus the amount of net-in or net-out heat per amaa of the PTM in one period is

Q max 1 1
OT - Z'DCP Lpene(AT)o I:l_ (_1)] - ;pcp I‘Dene(A T)o (2. 30)
when t, :%i nP andt, ::%Pi nP, where n=0,1,2,3,...

It means that in one period, the total amount @t heansferred into or out of unit

area of the PTMQ,,., is pc, Lpene(AT)o/ﬂ' (the net heat exchange between the PTM

and the environment is zero in one period). Take period for example, when

11



te(—P/8,3P/8), heat flows into the PTM (Since it is periodidacan also be written as
te(0,3P/8U( 7P/ 8,P); Here, the symbol &” is to be read “belongs to” or, more
formally, as “is an element of the set” and the Bght U” means “the union of” two
sets.); and whert € (3P/8,7P/ 8, heat flows out of the PTM.

From the definitions of mass specific hegtand volumetric specific heat,, we
know that Q=mgAT and Q=V¢,AT, and thus we can define area heat capagity
as Q= Ac,AT. However, it is not very proper to be used in fieéd of architecture
since buildings are usually under dynamic heatingamling conditions. Therefore, in
this thesis, we defineffective thickness L*" [m]:

L
Lef pene _ 20 (2.31)
T

oe

andeffective area specific heat ¢ [kJ/nf-K]:

area

c L
c = pe, Lo = Zp e 2. 32)
VA

andeffective heat exchange coefficient ¢°:

0 _ QOmax
4 = A (AT (aT), (2. 33)

area

For the semi-infinite PTM described abové? is equal to 1.

12



Some definitions of properties, parameters andficgeits are listed in Table 1.

Table 1—Definitions of properties, parameters and coefficients

Parameters Symbols or definitions | Units Egns.
Conductivity k W/m-K
Density p) kg/m®
Mass m kg
Heat transfer coefficient h W/m?-K
" Q
Mass specific heat C,=—— kJ/kg-K 1.1
p P AT g 1.1)
k 2
Thermal diffusivity a=— m°/s
PC,
Penetration depth L pene = V27 P m (2. 23)
Volumetric specific heat Coo = Q. = pC, kJ/n-K (1.1)
VAT
L
Effective thickness [off = —Pene 20P m (2. 31)
V4 T
Area specific heat ren = Q . pc L | kdnf-K
AAT P
- s eff eff IOCp Lpene
Effective area specific hegt_ . = pch =P penet 1 3/nf-K (2. 32)
V4
Effective heat go - Qo max dimensionlesy (2. 33)
exchange coefficient AC. (AT), 1=

13



Thermo-physical properties of some common buildivagerials are listed in Table 2.

Table 2—Thermo-physical properties of some common building materials

Conductivity Density| M_gss Volu_n_1etric Ther_m_al
specific heagpecific heat diffusivity
Materials K - G Cuol =0Cs o = KI(pc)
W/m-K] |[kg/m?]| [kd/kg-K] | [kI/mP-K] [m?/s]
Wood ir, pine or similar soft wood 0.12 510 1.382 704.82  1.7026%1(
Normal-weight Concrete 1.9(¢ 2320 0.795 1844/40  1.0301xj10
Building Brick 0.73 | 1920 0.921] 1768.32  4.1282%1p
Structural lightweight concrete 0.6 16Q0 0.921 1473.60  4.1395%410
Insulating lightweight concrete 0.14 480 1.000 480[00  2.9167410
Face brick 1.30{ 2080 1.000  2080.00 6.2500%30
Mineral fiber (loosefill) 0.048 9.6 0.712 6.84  7.0225%1p
Glass fiberboard (resin binder) 0.042 240 0.712 170.88  2.4579%10
Expanded polystyrene 0.029 35 1.214 42149  6.8251x10
Gypsum board 0.16 800 1.089 871.20  1.8365x]0
Steel 45.30| 7830 0.502  3930.66 1.1525§<1|0

Note: The values of the conductivity, the density and the specific dreatrom

reference [6]: page 4; however, values of the thermal diftysive calculated with the

equation a=k/(pCp) and are a little different from values given by referefGle

(where only two significant figures are left).

14



Values of some definitions of different building teaals are shown in Table 3. Note:

the periodP of the thermal wave at the left surface of the BTi§24 hours.

Table 3—Values of some definitions of different building materials

Penetration dep‘fﬁﬁective thicknegs EﬁeCtiY?
area specific hg
Material LpeneE W Lo = Lpene ju Czrf; =p CpLeff
[m] [m] [kd/m?-K]
Wood ir, pine or similar soft wood 0.3040 0.0968 68.207
Normal-weight Concrete 0.7478 0.2380 439.0837
Building Brick 0.4734 0.1507 266.464
Structural lightweight concrete 0.4740 0.1509 222.357
Insulating lightweight concrete 0.3979 0.1267 60.7197
Face brick 0.5825 0.1854 385.696
Mineral fiber (loosefill) 1.9525 0.6215 4.24B
Glass fiberboard (resin binder) 0.3653 0.1163 19.869
Expanded polystyrene 0.608]7 0.1938 8.2433
Gypsum board 0.315§ 0.100b 87.562
Steel 2.5013 0.7962 3129.528

15



Chapter 3: Dynamic Heat Transfer of
Finite-thicknessPTMsWhen T.

insideair ~—

Tm

3.1 Problem description

Actual building PTMs are not senmfinite. Therefore, in this chapter, we will
discuss the dynamic heat transfer problem of fithitekness PTMs. In these cases, it is
necessary to consider the B.C. at the right susfatehe PTMs. Without considering
heat transfer by radiation, three kinds of B.C.gsteere: prescribed boundary
temperature, prescribed heat flux andheat transfer by convection, which are also
called theboundary condition of the first, second andthird kind, respectively. In this

thesis, we will consider the B.C.s expressed dsvisl

First kind: T(Lt)=T, (3.1)

Second kind: —k(ﬂJ =q (3.2)
oX ),

Third kind: —k(ﬂj =h[T(L )~ Tgeur] (3.3)
8X . nsiae air

where h [W/m?K] is called heat transfer coefficient, film conductance, or film
coefficient. Since thethermal resistance (R-Value) of the indoor air film is typically
R-0.7° (0.1234 M-K/W), it is easy to geth=1/R=8.1037W/m*K. Generally, the

inside air temperaturd.

inside air

is not equal toT,, and T _ ..., IS not constant. However,

if the amount of the inside air is large enoudh,,.., can be considered as constant,

16



except inside air near the building envelope (wharetemperature floats under the
influence of the outside surface thermal wave)eralitively, suppose that there is a
“virtual heat sink/source” in the building, whichart immediately and exactly

absorb/release the same amount of heat transfant@@ut of the inside air, and then

T

sidear WIll be constant. In this thesis, we tred} .., as constant. Under this
assumption, first in this chapter, 18 ..., €qual to T, and deduce the exact solution
of the problem; then in Chapter 4, 1&,.., Not equal toT and get some results by
numerical method.

For actual building PTMs, the B.C. of the third d&iis much more common and also
more important. And note: ih — o, since the temperature gradient at the right sarfa

must be finite, we can ggtT (L,t)—T,ggea | >0 OF T(Lt)>T, and the B.C. of

inside air ?
the third kind reduces to that of the first kinfl; h— 0, the B.C. of the third kind
reduces to the simplest case of the B.C. of th@ngkdkind, that is,q, =0, since
T(L,t)-Togear is finite. Therefore, in this thesis, we will firsolve the problem with

the B.C. of the third kind using the same methastdbed in Chapter 2, and then reduce

it to the other two kinds.

3.2 Mathematical deduction

3.2.1 Basic deduction

When T.

inside air

=T,, since 8(x,t)=T(xt)—-T,, the B.C. of the third kind can be

17



rewritten as

00 h

Using the method described in the previous chaptiereasy to know that

1) The differential equation is the same as Eqnl22 and its general solution is
aix, _[3z,) 2z
ec(x,t):(cle& + Qe\/; J e (3. 5)

2) The B.C. at the left surfaces is still EQn.X2), which yields
Cl+C2=(AT)0 (3. 6)

3) The only change of the problem is Eqgn. (2. &8)ich becomes

00 h
c| =——@ (L,t 3.7
1 2z, _ |3z, 2z Az, _ |2z, 2z
—|c /a—”e@—g ﬂe‘/; @'l =N cer cder| e
aP aP k
L
- 2ir 27 V4 2
:>,/2|—7T Cle\/;L—C;e_J;L __h G Py Q_EL
aP k
= (1+i) /lp(cle(l”) # _ce™ WL]:_E(qé“) a g?é”)J;’LJ
a

From previous definitions, we can g?/(i :@ = \/é ; Let
aP L. LU
JaL
o= T (3.8)

which can be calleBimensionless Thickness, and then we can get

(1+i)§(Cle(l”)5 _ Czé(l+i)5) :_E( G i G ém)s)

18



Leff
V2(1+i) h| s | V2(2+i) h| g J2A i) h|
:{{ IEeff )+E gH)d I(_eff )_E g () Q=(AT)0 2(|_eff )_T< gL
e (AT), _ (AT),
C2(1H)k R (I+i)+e i
: eyl e+
J2(1+i)k —hLe" (1+i)-e
(1-&e+i)
C = . AT 3.9
— (L+e+i)e™™’ +(1 g+|)( ) (3-9)
(L+&+i)e™™”
C.=(AT) -C = A AT 3.10
=C.=(AT),-G (1+g+i)e2(1+')‘)+(1—g+i)( ) ( )
hL*"  hL
where ¢ = =P 3.11
=k 2k G-

which is a dimensionless parameter callgthamic Biot Number in this thesis. Then
1-c+i (141, Fox

( 2T1) ) ~ € \/; .
(I+e+i)e™™ +(1-e+i) 2int

(1+ &+i )e2(1+i)5 e—(l+i)\/al:x
(L+e+i )ez(l”)‘s +(1-&+i)

0. (x.t)=(AT),

+i Vx 2int e —(l+i)\/EX 2izt
l1-c+i)e “e? +(lte+i) g g™ T P

(L+e+i )ez(l”)‘s +(1-g+i)

V2x i[ﬁ+@] 425—‘/_2’(] i[za‘—‘/—z’&ﬁt]
S\ eff e p . Leff Lo p
(1-e+i)e e +(1+e+) e

(L+e+i)e”e® +(1-c+1i)

:Gc(x,t):(AT)O(

= 0.(x,1)=(AT),
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= 0.(x,1)=(AT),

(1- g+|)e'- {
+(1+g+i)e[25 Lfx]{co

Jox

Leff

J’_

o

\/_X 271'tj . 'EZ_
Lo P

2y

I

Lef‘f

Vo _ o

)

P

(1+e+i)e*[coy D)+i sif 2)]+( te+i)

eﬁfX {(1 £)co \I/_;,XJFZ?J S|{\/L:2ffx+2gt1|
+iet" { \gx ZﬂtJ I{\/LE‘XJF?II
+e[2§ L]{(1+5)co \/_X 272"[} ’E \/_ZX 272"[}}
" P P
N R 3]
L P L P
= 0= (AT G (o oo 2)— sif 2)] <1 oob &+( 4) s
zec(x,t)z(AT)ogl:—iﬁz:( 1) (AR A*BZB? (BZA?BI_ AB) (3. 12)
{1 {\/Ex 27ztj {\/_ZX zrtﬂ
£)cog — —+
L L P
where A =
+e[25L] {(l+ g)co{ 2$—\/;fx Zﬂtj sirE 3- \/:2ﬁx+ zﬂtﬂ
L P L P
[ ][ Vox, zﬁt] 2 gﬁx z,rtﬂ
gle D — e co +—
Leff =) Leff P
= A= p p (3. 13)
+\/_[ (6 = ] 2?—\@)(+E+%j+ eTZ“X COE§X+% %}]
2 (J2x  2at (2x | 2nt
e | co TS (e)si e +?
and A =
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{NJ (

+/2 {e[w

and B, =(1+¢)€’ coy &)-

fx]
ff
v sm(

\/Ex 2t
P

et

g

«/_x 21t
L p

& sif 3)+( &

T
e
4]

Leff

£)

Si

= B, =& € coy ¥)- 1+| & cof 8)- & sif &)+ [

% . x/_2x 2rt
Si +—

P

)

Leff

P

Lﬁ \/_ZX 2rt 72'):|
+4

(3. 14)

(3. 15)

and B, =€’ coy &)+( ke) €& sif F)+

25) |+ € cog Z)+ & sif &)+

Then we can get

= B, =¢| & sin( (3. 16)

o(xt)=(AT )AZBL AB

3.17
B2+ B2 (3.17)

3.2.2 Heat exchange between the PTM s and the outside environment

SinceA; andA, are functions ok andB; andB, are not,

aT 00 (AT), ( L0A aaj
=—-Kk—=-k—=-k 3.18
a OX oX B + 3( % O X 5 ( )
where
25-32
& e[ g ]sin %——€X+E—£ +eL" si \/Efx ztz
oA 2 L P 4 L P 4
=T (3.19)
20—% ~2x
+«/§{e( Le]sin[%—\/gfor%]—eLeﬁ \/:2ffx %]]

and
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[25’%] \/EX 2t o« % \/_ZX /A
ele co§ H-——+———|+€ COp——+———
oA 2 " P 4 P 4
e . ., (3. 20)
257—ﬁ 7ﬁx
+V2 e[ g ]co 23——\/%)(+@ ~e" co \/_Zﬁx+E
L® P L® P
Let x=0, and the heat flux at the left surfaces is given b
. AT), [ (o 0
G =~ (2 )02 a[ Azj —(Ea—’*j (3. 21)
B +B°| 0X Jo 0X ),
g{e”sin(?ﬁ+ﬁ—£j+si E—ZH
where (%j _2 P4 P4
ox ), L ‘
X Jo +x/§{e2‘> sin(25+@j— si{@j}
P P
26 5 ; [ 2t
:(O_Aj N [e(e sin25+ €’ cos3+ J+ £ cosP- )} sEnFj
X ) L™ +[g(e25sin25—e25 cosF- J+ 2 sif &)] c szit)
P
:(a—p’[j :\/j Dlsin(ﬁj+ D, CO{EJ (3. 22)
ox ), L P P
g[ez‘s co{ 23+E—£j+ co{ﬁ—zﬂ
and (%j 2 P 4 P 4
ox ), L°f ‘
° +/2 {ez" co{ > +Ej— COEEH
P P
o i _ 2t
[e(ez" sin2s - € cosd- )+ 2 smé!} s(n—j
=(%) - "
0 —[e(e”sin 25+ € cosd+ )+ & cos®- )} céslj
P
:(O—Azj =\/3 Dzsin(ﬁj—D1 co{ﬁj (3.23)
ox )y L P P
where D, =¢(€”sin25+ & cosZ+ J+ & cos®- ). (3. 24)
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and D,=¢(e”sin25 - & cos3- J+ 2 sifi @) (3. 25)

Therefore,

=T o] i 2 0of 2] ] 0.9 2 0, 20|

==t BT (a0, 5 ajsn 22 (a0 Bojeod 21|

_V2(aT), |{(B.D,~B,D)" +(BD+ B,D)’ {22,
Leff Bl2+822 = (7
J2k(AT), [D?+D? .(2ﬂt j
SIin —®,
Lo B + B’ P

=0, =

(3. 26)

=0y =-

B.D, + B,D,

(3. 27)
BlDZ B2 Dl

where tang, =

When q, =0,

=t g =t | BREBD ), P BB B, P (3. 28)
o' ° 21 BD,- B,D, o7 BD,- B,D,)” 2

where n=0,1,2,3,...

Note: In every period, there are two times$=(t,, and t=t,=t,+P/2) that
d, =0. Suppose that heat begins to flow into the PTMmfthe outside environment at
to1, and half period later, a§,, the direction of the heat flow will reverse aneahwill
begin to flow out of the PTMs. See Figure 2.3,tfe case of the semi-infinite PTM.

The amount of heat exchanged frono t; at the left surfaces can be got as

. kAT 2 -
%:ﬂ g dt=— V2 ( D +D? jt (Zﬂ't jdt

A Lo P N
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2

Q, Vk(AT), [D2+D? P _ (2xt
= 0= _ L2 _—_co§ —-¢,
A L° B+B 27 P

_Q _+2 [Di+D;

4

t2

. ot
pC Lﬁ(AT) —P—(Doj

A 4\B+E \
t
Q 2zt ’
- __gg Carea( ) co __¢0j (3 29)
TA T 2% P .
2 2
where ¢°; :ﬂ I;l12+ ';25 (3. 30)
’ +

which is theEffective Heat Exchange Coefficient for certaine ando.

3.2.3 Heat storage of the PTMs

In heating processes, all the heat transferredeatldft surfaces are stored in the
PTMs for cases ofe =0 (thermally insulated), since there is no heat anged at the
right surfaces. However, for other cases, heattsli stored in the PTMs since it is also
transferred into building interior spaces at thghtisurfaces of the PTMs. Detailed
deduction is as follows.

Let x=L in Eqn. (3. 18), and the heat flux at the righfates is given by

\ AT). [
qL=—kB(12+)B°22 a@’tj —B{%H 3.31)

{e SIﬂ(§+E——j +€ sm(5+@—£ﬂ
(aplj 2 P 4 P 4
where | — | =

o o +x/_{e S|n(5+2?j e’su'(5+%ﬂ
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:(O—QJL = \I_E{de (sins + cosy) sirﬁ%j+ 2¢€ ( siod— ca$) cészgj}
= (%)L = \L/eg {Flsin(%}t F, co{%ﬂ (3.32)

({e‘) cos(5+%[t—%j +& co{é+%-%ﬂ
and (%j = Ej
L +\/_{e co{5+2?j g co€5+%ﬂ

(2] el
22

{Ze (sins - cosy) si{%)— 2 ( sin+ cad) cészgj}

(aAZJ \C{F sn(z”tj 3 co{ﬁﬂ (3.33)
OX L P P
where F, =2¢€’ (sins + cosy) (3. 34)
and F, = 2¢€’ (sins — cosy) (3. 35)
Therefore,
q =-k (ZAT)Ozg{B{ Fzsin[EJ— Flco{ﬁﬂ— B{ = sirEE}r F co%ﬁﬂ}
B2+B, L P P P P

= =kl 2 (- g Ry ) (8Fr 8R)cof 22 |
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=q =-

«EuAnmﬂaa—Bfﬁ+(aﬁ+&Efg%?m_wj
P L

Lo B?+B?
. N2k(AT ?
g o YA, |FeF, Sn(Zﬂt ‘/’Lj (3. 36)
L B1 B2 P
where tang, = BhR+BFR (3.37)
BlFZ B2Fl
When g, =0,

t =g = ant| BRFBR L P BEFBR), 0P 5 g
or ' " 21 BF,- B,F, or

The amount of heat exchanged franto t, at the right surfaces can be got as

s o N2Kk(AT), .. (2rt
&:J: g dt=- Ifeﬁ .E ip—(pLjdt

=>——=—
A 4\B+ pr

Q_1. 2t
= %= 3canom,ed oo .39
f F2+F2
where ¢, ;= (3. 40)
‘ B +B,

which can be callethner Effective Heat Exchange Coefficient for certaine ando.

The amount of heat stored in the PTMs frgrto t, can be got as

%:L(q ~q ) dt= I q)dtJ' q dt= Q QAL\
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2

27t | 2xt
Q J2 . (BJ.DZ_ B,D,- BF,+ BzFJ)CO{P j"‘( B,D+ B,D;~ BF- BZF) S”{P)
:> stor — Ce AT
S Zan o, Tl

2

2 2
j%zﬁ\/(Dl_Fl) +(D2_F2) ~eff (AT)OCO{Z_is_(Dstorj

A 4 a2 N Bzz “area

I’}

Qt 1 stor . eff S(Zﬂ-t e
= S = = e (AT), o8 —— g, (3. 41)
A 27 0 P ")
D,—F,) +(D,-F,)
where g;‘g“:%\/( ! 21;(8222 2 (3.42)
' +

which is callecEffective Heat Storage Coefficient for certaine ando in this thesis;

and tang,,_ = BD + B0, - Bf- B (3. 43)
- BlDZ_ Ble_ BlF2+ BZFl

= tyor =£¢sm,=itan‘l 50,+ 5D, BR- BF) 0P (3. 44)
27 2 B,D,-B,D,— BF,+ B,F, 2
When t =t the amount of heat stored in or flowed out of fidVis is maximum.

stor !

3.3 Results and discussions

3.3.1 Effective heat exchange coefficient

From Eqns. (3. 28) and (3. 30), we know that bigtind ¢° are functions 0By, By,
D; andD», which are all functions af ande¢. Therefore, we can change values of these
two parameters to see what will happeiytand £°.

From Eqn. (3. 8)p should be a non-zero finite value. From Egn. (B), When
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h—> o, ¢ >0 and the B.C. of the third kind reduces to thath#f first kind; when
h— 0, ¢ >0 and the B.C. of the third kind reduces to thahefsecond kind.

From Eqn. (3. 28), for certainands, when ¢, =0, the timety is

P g’V -2¢" sin( )~ 1+ 2[ € - 2& cof @)+ |+ &+ E - }1+1:> (3. 45)
° 2z —’[e¥ +2¢” sin( 2)-1- 2[ & + 2& cof @)+ - E- E sph- |1 2

From Eqgn. (3. 29), the net heat gain/loss at tfiestegfaces in one period is

QOmaxSrd BC.— 4/805 Aczf:ea(A T)o (3 46)

where o :\/gz[e“+26”cos( 3)+ 1+ 2[&- 2 sif@)- b - B s+ | (3 47)
“ o\ e’[e¥ 26" cof D)+ I+ 2[ &+ 2 s @)- I+ €+ B cpso+ |

When ¢ - o« (corresponding to the B.C. of the first kind)

P. . €e°-2e"sin(2)-1), nP
t =—-rtan - - +— 3.48
CIBE 2n (—e“" -2¢’sin( »)+ 1 2 (3. 48)
and QOmax 1stB.C.— é/géACZf:ea(AT)o (3- 49)
e” +2€” co &)+ 1
where (0. = 3.50
oo \/e45—2e25 co )+ 1 (3.50)
When ¢ - 0 (corresponding to the B.C. of the second kind)
P. . €°+2&’sin(2)-1), nP
t =—-rtan - +— 3.51
o2ndBe (—e“‘s +26° sin( )+ 1 2 (3.51)
and QOmax 2ndB.C.— 4/%5 Aczfrfea(AT)o (3 52)
e -2’ coy )+ 1
where ¢, = 3.53
S0z \/e45+2e25 coy D)+ 1 (3.53)

to and ¢° againsts of differents are plotted in Figure 3.1 and Figure 3.2. Note:
Since thety and ¢° bands are very narrow asincreases from 6 to positive infinite,

curves are not shown in these two figures.
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Figure 3.1—The time ty when qO":O

From Figure 3.1, it is clear that

(a) Asé increases from zerdy first decreases fronP/2=12 hou to a trough, and
then increases to a crest, and then decrease®tioeartrough, ..., just as a wave. The
“wave” decreases so fast that after the first pgegion (arounds ~ 3), it keeps nearly at
3P/8=9 hour (the maximum difference is less than one minute);

(b) As ¢ decreases from positive infinite to zero, all toeresponding troughs and
crests move “ahead” (to a smaltgr When ¢ — 0, the first trough moves so ahead that
it decreases fromP/2 to P/4 immediately at arounds =0;

(c) It can be considered that the line &f> « (which is corresponding to the B.C.

of the first kind) and the line ok =0 (which is corresponding to the B.C. of the second
kind) are symmetrical relative to the straight line 3P/8.
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Figure 3.2—The effective heat exchange coefficient CO

From Figure 3.2, we know that

(@) If 6 is very small and: is large ¢ <0.2 and £>3), ¢° can be very large
(more than 2, even reach 10);

(b) Whene is small 0.2< ¢ < 2), asé increases from zero{® decreases first, and
then increases, and then decreasealsa like a wave. After the first progression loé t
“wave” (around § = 2), ¢° keeps nearly at a constant 1, which is equal toséthee of
the semi-infinite PTM discussed in Chapter 2;

(c) Whene is smaller ¢<0.5), asé increases from zero/° increases first, and
then decreases, and then increases... After thepfiogiression,c°® also keeps nearly at

the constant 1.
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(d) For ¢ >0, ¢° has the maximum value 1.143 wheh= 6" =1.182E. Since the
right surfaces are insulated in this case, allltbat transferred into the left surfaces is
stored in the PTMs. We call this maximum valuef asOptimal Effective Thermal

Mass Coefficient and denote it as(,; the correspondings is called Optimal

Dimensionless Thickness and

L=51"/J2 (3. 54)

is calledOptimal Thermal Mass Thickness. Therefore, the maximum amount of heat

stored in PTMs withL=L" can be gotten as

Qua( L) =G0 ACEL(AT), (3. 55)

When P = 24 hours, based on the properties listed inef@plvalues ofL’ and

e of some common building materials are figured and listed in Table 8, at the

0 “area

end of this chapter.

3.3.2 Effective heat storage coefficient

From Eqgn. (3. 41), the maximum heat stored in fhgI®in one period is
Quor max= $arg ACh{AT), (3. 56)

tor max

From Eqgn. (3. 44), when the amount of heat stonear iflowed out of the PTMs is

maximum, the timet,,, is

i = tart| BLFBD,- BR- B, 0P (3.57)
2 BlDZ_ Ble— BlF2+ BzF1 2

t... and £ againsts of differents are plotted are plotted in Figure 3.3 and

stor
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Figure 3.4. Note: Since thg,r and £ bands are very narrow asncreases from 6 to

positive infinite, curves are not shown in these figures.
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Figure 3.3—The time tgo, Wwhen Qg IS maximum

Curves in the above figure are very different frimat in Figure 3.1 except the line
when ¢ —» 0. As ¢ increases from zero, all curves increase firshemrathan decrease like
curves in Figure 3.1. However, except this diffeenthe trends are the same das

keeping on increasing. Finally, all curves keepriyest 3P/8= 9 hour.
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Figure 3.4—The effective heat storage coefficient **

Unlike £° in Figure 3.2, in Figure 3.4 increases almost linearly whiers
small (6 <1 for small ¢ PTMs to 6 <2 for large ¢ PTMs), which means that the
amount of stored heat energy increases almostrlynedth the thickness of the PTM
wheng is not large. Generally, it is natural to try hicken a PTM to make it be a better
thermal mass. However, from Figure 3.4, we redliw if we continue to thicken the
PTM after a certain thickness, the heat storechen RTM actually decreases a little.
That's because previously stored energy is trymmfaw out of the PTM and interfaces

the influent heat.
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3.4 Examples

3.4.1 Wood wall and concrete wall

Now, we can answer the question brought forwarntietend of Chapter 1: Why is a
wood wall of twice or three-times, even four-tintae thickness of a concrete wall still a
much poorer thermal mass than the concrete wall?

First, we take the building as a whole, which metina¢ we just consider the heat
exchange at the outside surface of the wall. Is thise, what we need to consider is the
effective heat exchange coefficiedt® of wood and concrete. From Table 8, we know
~4.621 and ¢

that ¢ ~0.718 (normal-weight concrete), and then from Eqn.

wood concrete

(3.6), we can draw out™® of wood and concrete agaimstas shown in Figure 3.5.

—
(o2}

+ Wood £=4.621
—— Concrete =0.718

- Enlarged drawing (1
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Figure 3.5—¢° of wood and concrete against &
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From the figure above, we can find that the minimdrh of a concrete wall is about
0.4923 (at 6 ~ 0.087 and the thickness of the concrete walllis= 5Leﬁ/\/§ ~1.46 cn).
In Table 3, it is shown that the effective areac#peheat of wood and normal-weight

concrete arec®" =68.207 kJ/nf-K and c°"

‘areawood areaconcrete

=439.037 kJ/nf-K, respectively.
When the environment conditions are the same, diowptto the definition of°, if a
wood wall is as good thermal mass as a normal-weaighcrete wall, the effective heat

exchange coefficient ratio of the wood wall and thencrete wall should be

eff
Ratio= Céfffm””em:‘:;gé%s??z 6.437. Therefore, the minimum¢® of the wood wall

areawood

should be about6.437x 0.4923 3.16 (Note: £° EAeﬁQoﬁ), and then from the
C

area 0

curve of wood in the figure above, the dimensiankbsckness of the wood wall should
be less than 0.01, which means that the wood \Wwalllgl be less than 1 millimeters. It is
not applied for such a thin wood wall, and thusmay suppose that a wood wall will
never as good thermal mass as a normal-weight etenarall if we take the building as a
whole.

If building envelope is separated from the outsidd inside environments, what we
need to consider is the effective heat storageficimeft ¢ of wood and concrete.
From Eqgn. (3. 8), we can draw odt™ of wood and concrete againgtas shown in

Figure 3.6.
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Figure 3.6—¢*" of wood and concrete against &

From the figure above, we know that the maximunuealf £ of a wood wall is
about 1.1394 (aty ~2.18 and the wood wall thickness iEzéLe“/«/EzM.Q c).
Therefore, the maximum value of** of the concrete wall should be about
1.1394+- 6.43% 0.17, and then from the curve of concrete in the figab®ve, the
effective thickness of the concrete wall should be less than 0.13, whieans that the
concrete wall should be less than 2.2 cm (0.86B)inthat is to say, if a normal-weight
concrete wall is thicker than 2.2 cm, there is rab@vwall as good thermal mass as the
concrete wall.

The maximum amounts of heat exchange between théroement and a
wood/concrete wall with the increase of thickness lessted in Table 4. The maximum

amounts of heat stored in a wood/concrete wall thighincrease of thickness are listed in

Table 5.
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Table 4—Maximum heat exchange between Table 5—Maximum heat storage of

wood/concrete walls and the environment wood/concrete walls
(h=8.1037 W/MK) (h = 8.1037 W/M-K)
QO max3rd B.C Qstormax3rd B.C
Thickness /A(AT)O Thickness /A(AT)O
L L
[m] [kJ/m?-K] [m] [kJ/m?-K]
Wood | Concrete Wood Concrete
0.02¢ 854 219.1 0.02¢ 241 878
0.0t 618 2451 0.0t 420 1€7.9
0.1 637 3279 0.1 7C.0 3C7.1
0.1¢ 683 4002 0.1¢ 77.1 4101
0.z 685 4406 0.z 74.2 4689
0.2f 68.2 453.] 0.2t 70.2 4901
0.8 682 451.¢ 0.S 68.4 4897
0.3t 68.7 446.( 0.3t 67.¢ 480.¢
0.4 68.7 4417 0.4 679 470.2

To sum up, if a concrete wall is thicker than gaiarthickness (2.2 cm in this thesis),
no matter how thicker than the concrete wall, adveall is always a poor thermal mass

than the concrete wall when subjected to periodatihg and cooling.

3.4.2 Internal PTMs

It is shown that, in Figure 3.2 and Figure 3.4, tm® curves whengs -0
(corresponding to the B.C. of the second kind)theesame. The case when— 0 is
important in our lives. Dynamic heat transfer dfialernal PTMs can be boiled down to
this case.

Consider a PTM (for example, an internal wall orwvaod board of a desk) of
thickness R such that the other two dimensions are very lagyepared to the thickness

2L, as shown in Figure 3.7, in a building. If it iHowed to float, the inside air
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temperature can be treated as a sinusoidal varaflg,,,,, = (AT), sin( 27t/ P)+ T ,,,

where (AT) and T, are the peak amplitude and the mean value ofrisielé air

in
temperature. Therefore, the thermal wave at thiases of the PTM is also sinusoidal

with the same mean valug€, =T_ ., although its peak amplitude will be smaller than

that of the inside air temperature, because ofctitevection heat transfer at the PTM
surfaces. The amount of the amplitude decreasendspmn thermo-physical properties of
the PTM, the temperature variations of the inside and of course the heat transfer
coefficienth (in this thesish = 8.1037 W/m-K is chosen for natural convection heat
transfer inside of buildings; however, actuallyjstalways changing in certain extent).
The convective effect at the outside surfaces eapbtained as follows.

From Egn. (3. 52) or Egn. (3. 56), for internal P§,M

Qrax= 0.5 ACea( AT), (3. 58)

where ¢, can be found out, in Figure 3.2 or Figure 3.4ftemline of ¢ - 0. Then a

Virtual Average Heat Flux can be gotten as

" _Qmax_ A (AT)O _ /\(AT)O 3. 59
Uy = =A = A (3. 59)
P/2 P/2 Ry
eff
O,b‘carea
where R = il Eﬁ (3. 60)

0,5 “area

which can be calle#ffective Thermal Resistance [m? K/W] of thermal mass. Note: For

e—0, &,=C0s=Cgy for other casess,; =¢;,. And also note: when heat flows

into PTM, q,, is positive, and when heat flows out of PTM,, is negative. Since the
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effective thermal resistance of thermal mass aedctmvective thermal resistance are in
series, the smaller the effective thermal resigaot thermal mass, the bigger the
convective effect. Therefore, the maximum effect obnvection occurs when
=06 =1.182% and ¢, =1.143, and the minimum effective thermal resistance dor

certain material is

R = e @ 61)

0 “area

At last, the minimum peak amplitude B can be gotten as

R
AT)  =(AT) ———— 3.62
( )Omm ( )m ]/h+ &ﬁ ( )
Values of R, and the proportion of AT), . /(AT), of some common building

materials are listed in Table 8, at the end of tthiapter. For most common building
materials, the convective effect can not be negtedince the heat transfer coefficiént
in buildings is small. However, at the outside afléngs, it may be neglected since the
heat transfer coefficient is much bigger.

After knowing (AT)O, we can go back to the heat transfer problemtefmal PTMs.
The G.D.E. Egn. (2. 1) or (2. 5) and the B.C. E@n.3) or (2. 7) are still applied for the
problem. Since the thermal as well as the geomsyrametries of the problem, the heat
flux at the virtual mid-surfaces of the PTMs mustzero and thus the other B.C. should

be changed into

oT . 06
K] =g =0and %] -0 3.63
(aij a=san (aij 3. 63)
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Figure 3.7—PTM of thickness 2L

Just consider the left half part of the PTMs. Ascdssed before, in this case, the
effective heat exchange coefficient and the effiechieat storage coefficient for the same

o are identical. Here we call it effective thermalssi@oefficient and denote it a§,. The
curve of ¢, againsto (5:«/§L/Leﬁ) is reproduced and shown in Figure 3.8. We also
know that, whens =6 =1.182E, ¢, =1.142 is called the optimal effective thermal
mass coefficient, which is the maximum value on tiieve. This particular point is

shown in Figure 3.8, too.

T T T T T T T

" B an. "
2 1 oA Optimal . -_ :
E effective thermal mass coefficient §p=1.143,
2 gal wheno=i1825 .
g Enlarged drawing (1) : Enlarged drawing (2)
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= 06 : : 9
® : |
E 1.1 _
£ 04} : 0.998 1
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- e : 0.994 :
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Figure 3.8—The effective thermal mass coefficient ¢,
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The temperature distributions of PTMs with differénfor £ -0 are shown in

Figure 3.9.
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= =
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A qE
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Figure 3.9—Temperature distributions of internal PTMs with different &

Define adimensionless heat flux as

. L .
e 3. 64
qdlm \/Ek(AT)O q ( )

and dimensionless heat fluxes at the surfaces dfisPwith differentd are shown in

Figure 3.10.
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Figure 3.10—Surface heat fluxes of internal PTMs with different &

For any curve in Figure 3.10, the enclosed areavbe¢he curve and above the
straight line g, =0, is the amount of net heat energy absorbed, inpem®d, by the
internal PTM with the correspondirdg and the enclosed area above the curve and below
the straight lineqg, =0, is the amount of net heat energy released. Ofsepince the
amount of absorbed and released heat is equivalemne period, these two areas are

equal for the same curve. Thus we can just consideupper half, which is shown in

Figure 3.11.
"F 15l * =182 | - s  —— —
=3 — &: 04 (step: 0.2) : : :
= ; i
R O O 1o O S SN 9 |
(7]
n
@
§ 05- .
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Figure 3.11—Surface heat fluxes of internal PTMs with different & (upper half)
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In the figure above, since periods are the samegeawnith bigger amplitude encloses
larger area. We can find that the curve with= 5" =1.182F encloses the largest area,
which intuitively confirms the optimal thermal mass thickness
L= SLpene/x/Eﬂzé* 1" /\/2. Of course, for internal PTMs, the optimal thickses

2L ~0.5323___~ 1.6728".

pene ™

The maximum amounts of heat stored in half pami&frnal wood/concrete walls are

listed in Table 6.

Table 6—Maximum heat storage of internal wood/concrete walls (half part)

h=0
QOmaxan B.C
Half thickness /A(AT)O

L/2

[m] [kJ/mP-K]

Wood | Concrete

0.02¢ 35.C 92.2
0.0t 65.C 184.0
0.0¢1 78.0

0.1 758 355.4
0.1t 688 470.:
0.19¢ 501.¢

0.2 679 501.8
0.2t 682 4858

0.2 68.2 4623
0.3t 68.2 446.:

0.4 68.2 438.7

From the table above, it is clear that

(&) When an internal wood wall is thicker than @ 1, it can store less heat energy,
which means that it becomes a worse thermal mass;

(b) When an internal concrete wall is thicker tHaB898 m, it becomes a worse

thermal mass.
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3.5 Summary

In this chapter, whenr

sideair = T the dynamic heat transfer of finite-thickness
PTMs is investigated. The temperature distribufiamction in finite-thickness PTMs is
deduced. The heat exchange between the PTMs areh#r®enment (the effective heat
exchange coefficient and the inner effective heathange coefficient) and the heat
storage of the PTMs (the effective heat storagéficamnt) are developed. The time when
the outside surface heat flux is equal to zerothedime when the amount of heat stored
in or flowed out of the PTMs is maximum are obtaink shows that all the coefficients
and times vary as a decaying wave with the increHséhe thickness. Later, two
examples are given. The first one shows that a waaltlis always a poor thermal mass

than a concrete wall larger than 2.2 cm; and tbers® one gives the optimal thickness of

internal PTMs.
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Some definitions of properties, parameters andficgaits are listed in table 7.

Table 7—Definitions of properties, parameters and coefficients

Parameters Symbolsor definitions Units Egns.
2L 2L T
Dimensionless thickness o= \/; = \/_ = L | dimensionless 3.9
L L pene aP
hes"  hL
Dynamic Biot number &= =P dimensionless| (3. 12
J2k 2k
2.33
Effective heat 0o _ Qb max . . ( )
- Cod St (o dimensionless| (3. 31)
exchange coefficient ACarea(AT)o
(3.32)
Inner effective heat L _ QL mex . . (3. 41)
- Coo = off dimensionless
exchange coefficient ACarea(AT)0 (3.42)
Effective heat é/stor — Qstor max dimensionless (3.43)
storage coefficient & AC. (AT), (3. 44)
5* Leff
Optimal thermal mass thickness L = \/E m (3. 54)
Optimal effective * L
P - ¢o ??a*( ) ~1.143 | dimensionless| (3.55
thermal mass coefficient ACarea(AT)0
Optimal dimensionless thickness S =1.182¢E dimensionless @
P/2 )
Effective thermal resistance Ry = 0 _eff m*-K/W (3. 60)
é,O,ECarea
_ _ _ . P/2 )
Optimal effective thermal resistange Rt === m”-K/W (3.61)
gocarea
. Lef .
Dimensionless heat flux Qim = 7= 77— 0 dimensionless| (3. 64

J2k(AT),

@ The optimal dimensionless thickness is shown in Figure 3.8.
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Values ofe, L', {ycih., Ry and the proportion of AT), . /(AT), of some

area’ in

common building materials are listed in Table 8.

Table 8—Values of some definitions of different building materials

Optimal
Dynamic Optimal P . (AT)Omin
. effective
Biot numberithermal mass (AT)
_ thermal n
@ thickness _ :
resistance | _ R
Material 1.
et o st | R, = P/2 | L +Ry
= —_ ff *
J2k J2 | o |
dimensionle§  [m]  [kI/m*K]| [m%K/W] |dimensionleds

Wood 4.621 0.0809 77.96 0.5541 81.79|%
Normal-weight Concrete 0.718 0.1990 501.82 0.0861 41.10 %
Building Brick 1.183 0.1260| 304.57 0.1418 53.47|%
Structural lightweight concretg 1.418 0.1262 254)15 0.1670 57.91 %
Insulating lightweight concretg 5.184 0.10%9 69.49 0.6217 83.44 %
Face brick 0.817 0.1550 440.81 0.0980 44.24 %
Mineral fiber (loosefill) 74.194 0.5197 4.86 8.8889 98.63|%
Glass fiberboard (resin bindef) 15.863 0.0972 2271 1.8981 93.90 %
Expanded polystyrene 38.286 0.1620 941 4.5909 97.38 %
Gypsum board 3.600 0.084p 100.08 0.4317 77.74 %
Steel 0.101 0.66571 3577.05 0.0121 8.93 %

@ In the dynamic Biot number and the equatior,8.1037 W/rfrK.
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Chapter 4: Dynamic Heat Transfer of
Finite-thicknessPTMsWhen T.

insideair iTm

In the preceding two chapters, analytical methodsisd to solve the dynamic heat
transfer problems of the semi-infinite PTM andti@athickness PTMs when the inside air
temperature is equal to the mean value of outsisitase temperatureT( ... = T.)-
However, “the vast majority of problems encounteredpractice cannot be solved
analytically as they usually involve irregular gesimes with mathematically
inconvenient mixed boundary conditions. In suchesasiumerical and/or graphical
methods often provide the answer.” ([34]. page 283his chapter, the finite-difference
method®*, one of the most frequently used numerical methailsbe used to solve the

dynamic heat transfer problem of finite-thickne3$vB when T ... # T,

4.1 Principle of the finite-difference method

The core idea of the finite-difference method iglaeing the G.D.E. and B.C.s by
algebraic equations. Three kinds of approximateesgions exist for the first derivative

of T(x) at a pointx, as shown in Figure 4.1:

T.,-T

The forward-difference form3| = HlA ‘ (4. 1)
Xl X
- dr| T-T.,
The backward-difference form: | ~ A 4.2
X X

Xj
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z@ (4. 3)
2AX

The central-difference form:(slj—T
X

Xj

where j=0,1,2L J.

v

A
X1 X Xj+1
Figure 4.1—Finite-difference approximation of derivatives

The finite-difference approximation for the secordkrivative of T(x) in

central-difference form is

1) (dT/d), ., ~(dT Y, (Ta=T )/ AT - T /A%

dx® | AX (Ax)*
- d2T| sz+1_2sz+-|}—1 (4. 4)
dx’ " (Ax)

In dynamic heat transfer processes, it is time deaet. By dividingx andt domains
into small intervals ofAx andAt, the finite-difference approximation for the sedarder

partial derivative at poing and timet, is represented as

oT| ~ Tha -2+ 1%

e 4.5
v (o (4.5)

X; 1

where n=0,1,2]. ,N.
The time derivative may also be approximated imgepof forward-, backward- or
central-difference form. By using the forward-diace form, the G.D.E. (2. 1) can be

written as
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Tjrll_szn + -I]rll :1 -Ij-ml_ Tn (4. 6)
(Ax)2 a At
which can be rearranged as
n+l 2 n 1 n n
GD.E. T''= 1—E T +E(Tj+l+ ) (4.7)
2
AX
where ﬂz( ) (4. 8)
aAt

which should be not smaller than 2 in order tosgable solutions. ([34]: page 298)

The B.C. (2. 3) can be used directly in numeriedtwalation:
n . (27
B.C. T, =(AT)OS|n(F§1j+Tm (4.9)

By the finite-difference approximation, the B.C. 8 should be written as

n+1 n+1
TJ — TJ—l

AX

-k = h(T]ml_ insideair) (4 10)

which can be rearranged as

n+l _ 1 n+1
B.C. TJ _E(T\]—l +7Tinsideair) (4 11)
where 72%( (4.12)

and to get stable solutions, it must have
y<p/2-1 (4. 13)
Using Egns. (4. 7), (4. 9) and (4. 11), we canedihe dynamic heat transfer problem
completely by numerical method. Sincanda are materials’ thermo-physical properties,
which should be known in numerical calculation, sfeuld take certain materials as

examples. In this thesis, we will again take wond eoncrete walls for example.
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4.2 Development of approximated analytical solution S

Suppose that the environment is represented by sur@ialy), Las Vegas, NV. The
outdoor air temperature (also be approximated esvtil-outside-surface temperature) is
a sinusoidal function with a period of 24 hoursg éime highest and lowest temperatures
are 105 °F (40.56 °C/313.71 K) and 78 °F (25.5@98/71 K), respectively. That is,

Tom=7.5sir(2—F’ftj+ 33.06° G= 7.55@} 306.01)l (4. 14)

The indoor air temperature is kept at 75 °F (238297.04 K) by a heat pump or

air-conditioning unit, that isT. =297.04 K.

inside air
Before using numerical method to solving the problehen T ... # T, check the

accuracy of the method first. WheR, gq.., = T,,=306.21K, numerical calculation

results of wood walls are shown in Figure 4.2 heafigure,

e, 19
oo = _ CQf?(tZT - (4. 16)
£ = AC?L( ZT - (4.17)
o = X CQﬁL(tZT - (4. 18)
and £9 AcQﬁt(dyAmT) : (4. 19)

where Q... — the total heat flowed into the wall outside swHs in one period,
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Quout max — the total heat flowed out of the wall outsidefaces in one period;
Q..max — the total heat flowed into the wall inside seda in one period,;

QLumax — the total heat flowed out of the wall insidefages in one period,

and Q.qyms — the total heat flowed through the walls in oreiqd if we assume that
T,=T,.
Effective Heat Exchange Coefficient of Wood In Figure 3. 5
16 } T T T T T
T & + Wood .=4.621
T preseillfeeeed : ]
T :
U 1.2 e 1
1 i | ) v H
08 i ] i i i
0 05 1 1.5 2 2.5 3
Dimensionless Thickness &
Analytical results (also shown in Figure 3.5)
1.6
1.4
1.2
~ 1+
=
g
Q
g 08
3
O 06

o
'S

0.2

sl
HH
1

0 05 1 5 2 25
Dimensionless Thickness &
Numerical results

Figure 4.2—Coefficients of wood walls when Tinsige air = Tm

%ut are overlapped, that is,

In the Figure above, the curve @™ and the curve ofZ’
Qo = Qoutma @Nd comparing with the® curve of wood in Figure 3.5, we can

conclude that the numerical method has a grearacgto solve the problem.
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Now let T =297.04 K. From the numerical calculation, the temperature

inside air

distributions (whered(x,t)=T(x t)—T,) of wood walls and concrete walls are plotted

in Figure 4.3 and 4.4, respectively.
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0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
xIL
=% = = *, X
. ‘5—‘f2 T ~): L_Lpene ) 6=0.75V2"n > L-0'75Lpene
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Figure 4.3—Temperature distributions of wood walls (July, Las Vegas, NV)
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Figure 4.4—Temperature distributions of concrete walls (July, Las Vegas, NV)
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Based on numerical results, approximated functghwild be developed to describe
the dynamic heat transfer problem, since numecalgulation needs too much time.

By using the principle of superposition, a linertpghould be added because of the
temperature difference of the wall outside surfacd the inside air. From Eqn. (3. 17),

the simplest form of the temperature distributiBorn 1) is

AB-AB X
9| (X,t) = (AT)OW—i_(Tnsideair_ Tm)_L (4 20)
and plot it in Figure 4.5.
" ‘6=\’2*1|: »‘ L=Lpene i I6=\12*1: %. L=Lpenre”7
- S
3’ =
S 050 e
A é
0 0.2 0.4 0.6 0.8 1
xIL x/L
Numerical results (also shown in Figure 4.3 and Figure 4.4)
i Wos)d, Las V?gas, 6=V?*n - I.=I.‘mme Concrlete, Las Yegas, 5=1\12*1: - L=IL'm"e
0.5 ¥
= 05¢ =
1 2 halra 1 Lo e g o A
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x/L x/IL

Analytical results of Form |
Figure 4.5—Temperature distributions of Form | (July, Las Vegas, NV)

Comparing the figures above, it is easy to find #@m | does not work well.

Now changeT, ..., In Ean. (4.20) toT_ , which is the mean value of the

wall-inside-surface temperature, and the tempegatistribution becomes

9(X¢)=(AT)OM+(TMT) (4. 21)

B + B "

— | x
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The problem here is how we can g&f, .

Treat T, as T, and it becomes a steady-state heat transfer pnoBled then

TmL_Tm _ I—/k _ 1 _ 1 3 1
Tinsideair_Tm Iﬂ/k+]/h 1+ k/ hL :I-‘|'\/§k/5h|_6ff 1+ 156‘

Let T, =T T

insideair ~ 'm

and then Eqn. (4. 21) can be rewritten as (Form II)

_ AB-AB T 2x
ell(x’t)_(AT)o Blz+BZZ +1+]/5€5Leff

Let n=T,/(AT),

and then g, (x,t):(AT)O(Az;: 22232+5+77]/ x/sﬁxj
&

In the case of Las Vegasy, . yegas= 297.04K 306.21K -1.2227.

7.5K

The temperature distributions of Form Il are pldtie Figure 4.6.

(4. 22)

(4. 23)

(4. 24)

(4. 25)

(4. 26)

" . ‘6=\’2*1|: »‘ L=Lpene i It§=\f2*1|: %. L=Lpene
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- ; ; ; ;
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Numerical results (also shown in Figure 4.3 and Figure 4.4)
j Woclnd, Las Ve:gas, 5=\12I*:: = L=Llpene Concrlete, Las Yegas, .5=?12*1: - L=ILpe"e
2 <
E 0
< 0.5
-1 3 = 5 4 7 : 2
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Analytical results of Form I
Figure 4.6—Temperature distributions of Form |l (July, Las Vegas, NV)

Comparing the figures above, it looks that Forwadrks well.

54



There is also a Form Il based on the discussidbhapter 3:

TmL_Tm _ R%ff
Tinsideair_Tm_ Reff+]7/ h (4 27)
_ AB-AB Ri  v/2x
0, (x,t)_(AT)O( B B +7 R 1o Eff] (4. 28)
where R :%.

Form 1l is too complex to be used. Therefore, wi etheck the accuracy of Form I
by other parameters to see whether it is good dntube used.

Take 6 =+/27 (which means thatL=L_.) for example, the time-dependent
temperature variations at several points of thedweall and that of the concrete wall are

shown in Figure 4.7 and Figure 4.8, respectively.

Wood, Las Vegas

I I
{ —— x increases from 0 {(step: 0.025 m) ‘

I :'(M)0

Time £ (hour)

Numerical results

Wood, Las Vegas (Analytical results)

T T
‘ —— x increases from 0 (step: 0.025 m) ‘

g f(AT)o

Time £ (hour)

Analytical results
Figure 4.7—Temperature variations of the wood wall (July, Las Vegas, NV)
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Concrete, Las Vegas

| — xincreases from 0 (step: 0.05 m) \

[ f(AT)o
[=]

o o
K

Time ¢ (hour)

Numerical results

Concrete, Las Vegas (Analytical results)

I I
| —— x increases from 0 (step: 0.05 m) ‘

6/(aT),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Time ¢ {hour)
Analytical results
Figure 4.8—Temperature variations of the concrete wall (July, Las Vegas, NV)

From the temperature function of Form II, the Haat can be gotten as

8 8
Bli_BzA J2n

. 00
=—k—=—-Kk(AT 4. 29
g OX (AT), B+ B i " (5+Ye) ( )
When x=0,
2k(AT 2 2
X :_\/_ (eﬁ )0 D12 + D5 Sin(Zﬂ't _(00)_’_ n (4. 30)
L B + B P o+l

and when x= L,

. N2AK(AT) | [F2+F2  (2at n
q =- e { B7 stn( P_¢Lj+5+]/8 (4. 31)

The surface dimensionless heat fluxeg, (=g Eﬁ/[\/—k(AT) ]) of wood walls

and that of concrete walls are plotted in Figu@ahd 4.10, respectively.
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Dimensionless Heat Flux at the Outside Surface (Wood, Las Vegas)
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Numerical results

Wood, Las Vegas (Analytical results)
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Wood, Las Vegas (Analytical results)
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Analytical results
Figure 4.9—Surface heat fluxes of wood walls (July, Las Vegas, NV)
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Dimensionless Heat Flux at the Outside Surface (Concrete, Las Vegas)
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Figure 4.10—Surface heat fluxes of concrete walls (July, Las Vegas, NV)
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The coefficients of wood walls and that of concretdls are plotted in Figure 4.11

and Figure 4.12, respectively.

Wood, Las Vegas
2.5 T T T T T

-
(5]

Coefficient £

-

0.5

0
0

Dimensionless Thickness &

Numerical results
Note: the amount of heat flowed into the insideis@xactly equal to the steady value whiés the same.

Wood, Las Vegas (Analytical results)
25 T T T T T T T

=
(5]

Coefficient £

0.5

Dimensionless Thickness 3

Analytical results
Figure 4.11—Coefficients of wood walls (July, Las Vegas, NV)
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Concrete, Las Vegas
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Numerical results

Concrete, Las Vegas (Analytical results)
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=
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N R o>

[=}
(=}

Dimensionless Thickness 4

Analytical results
Figure 4.12—Coefficients of concrete walls (July, Las Vegas, NV)

All comparisons of the numerical calculation resudind the results from Form I
show that Form Il has a great accuracy. Therefarthis thesis, we will use Form Il to

get further analytical results.

4.3 Further analysis using Form I

4.3.1 The coefficients

From Eqgn. (4. 30) and Eqgn. (4. 31), we know thait,dertaine andd, the effective
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heat storage coefficient is the same, whether,. ., =T, or T

nsidear 2 Ty SINCE the
linear parts /(5+1/¢)) of d, and q_ are cancelled out.

From the numerical results in Figure 4.11 and Feguf.2, the amount of heat flowed
into the inside air is exactly equal to the stegalyie whery is the same ™" = £ ¥*%);
that is to say, in these two cases, if we just eamthe total heat flowed into the inside air,

T is a sinusoidal function. Four more numerical

out

can be treated a3, although T_,
calculation cases are given as follows.

In Boston, MA, the highest and lowest average \&bfehe outdoor air temperature,
in January, are 36 °F (2.22 °C/275.37 K) and 24-%56 °C/267.59 K), respectively.

Treat the outdoor air temperature as a sinusoishaition:

T, :3.895ir‘(2—gtj+ 271.48 K (4. 32)

When the indoor air temperature is still kept at °F5(23.89 °C/297.04 K), the
coefficients of wood walls and that of concrete lsvare plotted in Figure 4.13 and

Figure 4.14, respectively. (In these two casgg,,,,~6.5707 and the indoor air

temperature is higher than the highest value obtlidoor air temperature.)
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Figure 4.13—Coefficients of wood walls (January, Boston, MA)
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Figure 4.14—Coefficients of concrete walls (January, Boston, MA)

In the two cases above, the amount of heat flowedob the inside air is exactly

equal to the steady value whéis the samed"" =¢***%) and T, can also be treated

ut
as T..

In August, the highest and lowest average valugbeibutdoor air temperature, in
Denver, CO, are 86 °F (30 °C/303.15 K) and 52 °E1(ll °C/284.26 K), respectively.

Again, treat the outdoor air temperature as a sidasfunction:

T - 9.455ir(2—gtj+ 203.7( K (4. 33)

When the indoor air temperature is still kept at °F5(23.89 °C/297.04 K), the
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coefficients of wood walls and that of concrete lsvare plotted in Figure 4.15 and

Figure 4.16, respectively. (In these two casgs,,. ~0.3524 and the indoor air
temperature is between the highest value and thesko value of the outdoor air

temperature.)

23 T T
% 4l)l':l'.-
oL le) 40¢-wl |
o 4Lm
& 4Lout
‘; 150 * fteady i
a2 :
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§
o 1L &g
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0 1 2 e 4 5 8 7 8 8 10

Dimensionless Thickness 4

Figure 4.15—Coefficients of wood walls (August, Denver, CO)
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Figure 4.16—Coefficients of concrete walls (August, Denver, CO)

In the two cases above, whéns large enough, the amount of heat flowed into the
inside air becomes zero, and the amount of heatetloout of the inside air is exactly

equal to the steady valug'(" = &%), and T,, can be treated a¥, ; however, wheid

ut

is small, these two kind of coefficients separatednse of the variation of_, and in

out?
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such circumstancesl,, cannot be treated a§,,.
More calculations show that whenl<n <1, which means that the inside air

T

out

temperature is between the maximum value and themam value of T, cannot

ut?

be treated asT, if ¢ is small. Otherwise, the amount of heat flowed digio walls just
depends on the wall thermal resistantgk().
For wood and concrete walls, some curves of caeffts— ", ¢, ¢ and

¢"—againstd are plotted in Figure 4.17, Figure 4.18, Figuré94and Figure 4.20.

Note: 7<0 means thatT is lower than the

inside air

<T.; n<(-1) means thatT,

inside air

lowest value of the outside surface temperature;0 means thatT,

inside air

>T. n>1

means thatT is higher than the highest value of the outsidéasa temperature.

inside air

Wood, when <0
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Dimensionless Thickness s

Figure 4.17—Coefficients of wood walls when n<0

c%: As 7 increases, . decreases wheb is the same; for certaip, ¢°"

decreases a8 increases and the decrease velocity becomes smdilem o is larger;
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whend is large, ¢°" trends to a constant value near 1 (a little latigjan 1, except when
n=0); however, whery is close to zero and i§ small, £°" decreases first and
increases a little later, which phenomena was desiin previous chapters when=0.

S As 7 increases, %"

increases whe is the same; whem <(-1), for
certaingy, ¢%" increases from zero to near 1 (a little smallemtil) asd increases;
when -1<n<0, ¢ decreases first and increases a little later, tliends to a
constant value near 1.

¢t when 7<(-1), ¢™=0; when -1<5 <0, for certaing, " decreases as
o increases and finally becomes zero whénlarge enough.

S As 5 increases, " decreases whed is the same; for certaip, "
decreases ad increases and the decrease velocity becomes smdilem o is larger;
whend is large, £°" trends to a constant value near zero (a littigeiathan zero).

For =0, ¢ =¢®" and {"" =" whené is the same. For certainandsd,

SO g gt = g0ty sewt which means that in one period, the net heagdtisr zero.
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Wood, when >0
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Figure 4.18—Coefficients of wood walls when n=0

Comparing with Figure 4.17, whehis the same angl is contrary, £°" exchanges

with £, and ¢ exchanges withs ™",

Concrete, when <0
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Figure 4.19—Coefficients of concrete walls when n<0
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Concrete, when 5> 0
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Figure 4.20—Coefficients of concrete walls when n=0

Comparing Figure 4.19 and Figure 4.20 with Figur&74and Figure 4.18, all
corresponding coefficients of concrete walls aralfanthe that of wood walls. However,
this does not mean the amount of heat flowed thraugncrete walls is smaller than the
amount of heat flowed through wood walls. That'sdaese that whed is the same, the

thickness of a concrete wall is larger than that aofwood wall and the ratio:

eff
Caff?concrete — 439037z 6.437 (Note: é/ = ef_meax )
Careawood 68 207 ACarea (A T)o

4.3.2 The time-lag effect and the decrement factor

For external PTMs, the time-lag effect and the edemnt factor (see Eqn. (4. 35)) are
much more important than that for internal PTMs. tlns section, based on the

temperature distribution of Form Il, the time-laffeet and the decrement factor for
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external walls will be investigated.

The definitions® of the time lagy and the decrement factbare as follows:

tTi min _tTe min
=J " ' 4.34
v {tTi,max_tTe,max ( )
T T _
and f =™ .0 (4. 35)
Te,max - Te,min
where t t t and t are the times when the interior/exterior surface

Ti,min? “Ti,max? “Temin Te,max

temperatures research the minimum/maximum valuespectively; andT.

i,min ? |max’

T. . and T are the minimum/maximum values of the interioeiir surface

e,min e,max

temperatures, respectively.

When x=0, the surface temperature i . Therefore, T, .. =—(AT), when
tromn =18 hr, and T, . =(AT), when t, . =6hr.
When x=L, A and A, become
2zt Lz
=2J2¢ co +5j (4. 36)
P 2
2nt &
L =2n2¢ S|n(—+— 5) (4. 37)
P 4
and then
6, (L,t)=(AT), 2\/5 B |n(E+ﬂ+5j BZCO{E+£+5J +—1
B2+ B P 4 P 4 1+ Ve
0
L0, (L)< (aT) | 2L sin( Z T s, j+ 7 (. 38)
°| /BZ+ B2 P 4 1+ 1Yo
where ¢, .| = arctanii nz (where n=0,1,2,3,..) (4. 39)
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For certaine andd, B, and B, are constant. Thusg, ., has maximum values

O eLmax = (AT)O{\/Z\Z/E@ > + 1 Z/& (4. 40)
Bl + B2 + &
when t, :i arctanE+£—5 iﬂj (4.41)
1I,x=L,max 272_ Bl 4 2

)
and ¢, has minimum values, .., ... =(AT), | - 2J2e 41 (4. 42)
' e \/512 +B2 1+Vse

whent, :i arctanE+5—”—5 iﬂj (4. 43)
I, x=L,min 272_ Bl 4 2
Therefore,
tr win —temn=t,  —18 hr=i arctanBiJrS—”—é if— 18 r
’ ’ Il,x=L,min 272. Bl 4 2
»= (4. 44)
tr e —tremax=t, ~ —6 hr=i arctaHB—2+£—5 in—P— 6 hr
’ ’ 11,x=L,max 272. Bl 4 2
T T . 6 -0 : 3
and f = —umax_ imin _ ik max Y i & min _ 2\/59 (4. 45)

Te,max _Te,min (AT )0 _I:_(AT)o} v B.12 + B22
The two equations above show thaaindf are independent af. Thus, let’s change

the value ot ando¢ to see what will happen andf. Some curves af andf are plotted

in Figure 4.21 and Figure 4.22, respectively.
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The time-lag ¢
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Figure 4.21—The time lag

From the figure above, we can find that

(&) Wheno is smaller than about 1 amds the samey increases non-linearly as the
increase ob.

(b) Wheno¢ is the same, as increases from zero to positive infinity, decreases
about 2.5 hours, except whéis smaller than about 1;

(c) Whene is the same, a8 increases from about 1 to about 6 orp7increases
almost linearly to 24 hours (one period);

(d) At about 6 or 7¢ decreases from 24 hours to 0 suddenly, which mestshe
time lags more than one period; and the shift pdétreases asincreases;

(e) The change is very small whers larger than about 5.
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The decrement factor #
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Figure 4.22—The decrement factor

In the figure above, the decrement factor is obwinan-linear. Whea is the same,

ase increasesf decreases. Whentrends to positive infinityf is zero for alb since both

T

i,max

and T

. mn are zero when the inside surface temperature kempstant. Whea is
the same, a8 increasesf decreases from nearly 1 to 0 and the decreaseryssharp
whend is small.

Again take wood and concrete walls for examples,time lag and the decrement

factor are shown in Figure 4.23, Figure 4.24, Fegdi25, Figure 4.26, Figure 4.27 and

Figure 4.28 as follows.
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The time-lag ¢ of wood and concrete walls
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Figure 4.23—The time lag of wood/concrete walls (against &)

In the figure above, whehis the same, the time lag of a concrete wall igdaabout

80 minutes than that of a wood wall, except whénsmaller than about 1.

The decrement factor 7 of wood and concrete walls
1 T . . T ; :
: ] — Wood
Concrete

0 1 2 3 4 5 6 7

Dimensionless Thickness 4

Figure 4.24—The decrement factor of wood/concrete walls (against )

In the figure above, the decrement factor of a wwadll is much smaller than that of

a concrete wall, whefiis the same (especially whérs smaller than about 3).

The time-lag ¢ of wood and concrete walls
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Thickness L {m)
Figure 4.25—The time lag of wood/concrete walls (against L)
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In the figure above, when the real thicknéss the same, the time lag of a wood

wall is much larger than that of a concrete wall.

The decrement factor / of wood and concrete walls

— Wood
Concrete

0.4 0.6 0.8 1 1.2
Thickness L (m)

Figure 4.26—The decrement factor of wood/concrete walls (against L)

In the figure above, the decrement factor of a wwadll is much smaller than that of

a concrete wall, whehis the same (especially whens smaller than about 0.6 m).

The time-lag ¢ of wood and concrete walls
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20 +Concrete
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0 ‘ i i i i i i i
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Thermal resistance L/k (mzKNV)

Figure 4.27—The time lag of wood/concrete walls (against L/k)

In the figure above, when the thermal resistahg¢& is the same, the time lag of a
concrete wall is much larger than that of a woodl.wéowever, the L/k value of a
concrete wall cannot be too large, since wHefk ~ 0.5 nt K/W, the real thickness of
the concrete wall is already about 1m, which isttock to be used in common buildings.
Contrarily, for a typical wood wall, the correspamgl L/k value can be large, since its

thermal conductivity is much smaller than a coremstll (when L/k ~ 4 n?K/W, the
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real thickness of the wood wall is just about 0)5 m

The decrement factor # of wood and concrete walls

— Wood
Concrete

0 05 1 15 2 25 3 35 4 45 5
Thermal resistance L/k (mzKNV)

Figure 4.28—The decrement factor of wood/concrete walls (against L/K)

In the figure above, the decrement factor of a oetecwall is smaller than that of a
wood wall, when the thermal resistansd¢he same (the result is not surprising since the

concrete wall is about 15 times thicker than thedvavall under this condition.).

4.3.3 Correction of some rules of thumb

Some rules of thumb may need to be corrected b@séue investigation above.

Rule of thumb one: “In hot and dry climates, one usually finds massialls used
for their time-lag effect.” ([5]: page 3)

Compared to wood walls, concrete walls are masstosvever, when the thickness
is the same, the time-lag effect of a wood wallaiger than that of a concrete wall as
shown in Figure 4.25. Moreover, the decrement faat@ wood wall is smaller than that
of a concrete wall as shown in Figure 4.26. Thdbisay, for an exterior wall, a wood
wall is much better than a same-thickness conavatk if just considering the time-lag
effect and the decrement factor. Therefore, thesimasvalls usually used in hot and dry
climates may be not because of their time-lag &ffieat because of other reasons, for
instance, wood is rarer in desert regions.
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Rule of thumb two: On page 51 of reference [5], it explains the “iasinlg effect of
mass”. “If the temperature difference across a masmaterial fluctuates in certain
specific ways, then the massive material will acifdé had high thermal resistance.”

In fact, the “higher thermal resistance” insulateffgect of mass never occurs. When
|77| >1, whether the material is massive or nd},, can be treated a$,, and the amount
of heat flowed into or out of the inside air is etta equal to the steady state value, as we
mentioned before (see the cases of Las Vegas astbrBoas shown in Figure 4.11,
Figure 4.12, Figure 4.13 and Figure 4.14). Wﬂehd ando is small, walls seem to act
as if it hadlow thermal resistance because of the outdoor temyerfitictuation (see the
cases of Denver as shown in Figure 4.15 and 4£16; is bigger than s, which
means that more heat flowed into the inside waflase from the inside air; this greater
part of heat flows back later, which is presentgd J3°; combining ¢ and ¢,
the net heat flowed through the inside surfacegaraexactly equal to the steady state
value.) Therefore, based on the investigation is thesis, there is no such “higher

thermal resistance” “insulating effect of mass”.

Rule of thumb three: “Walls with high time lags and small decrementtiéas, give
comfortable inside temperatures even if the outisidery hot” * 1

In fact, this statement is not very exact. For tleerement factor, the smaller, of
course, the better; but for the time lag, it is tin@ higher, the better. For example, a wall

with a one-period time lag seems no time lag atfallall with a half-period time lag and

a very small decrement factor is considered the bes
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4.4 Summary

In this chapter, whenr

sideair T the dynamic heat transfer of finite-thickness
PTMs is investigated. Since analytical method islhia be used under this condition, the
finite-difference method, one of the most frequensed numerical methods, is used to
solve the problem. Later, based on numerical calmn results, approximated analytical

solutions are developed. Then one of the analytscdlitions is used to obtain the

coefficients of wood and concrete walls, the tirag-¢ffect and the decrement factor.
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Chapter 5: Conclusionsand Future Work

In this thesis, the performance of PTMs subjectisidal heating and cooling has

been investigated. Some main conclusions are surmedlaas follows:

1)

2)

3)

4)

5)

6)

7)

8)

9)

For finite-thickness PTMs with certain, ¢° and ¢ both vary as a
decaying wave with the increasedfand finally keep at 1;

After a certain thickness, thickening a PTM makesworse thermal mass;
Because of the large effective area specific hésrence, when subjected to
periodic heating and cooling, a wood wall is alwaysoor thermal mass than a
concrete wall larger than a certain thickness ¢&ndn this thesis);

For a certain material, an internal PTM with theickhess of
L=2L ~0.5323 .~ 1.6728" is the best thermal mass;

For certaire andd, £ is the same, no matter

inside air

=T, ornot;

If 6is not too small, T

out

can be treated a$, and the total heat flowed into
the inside air just depends on the wall thermaktasce;

The time lag and the decrement factor are bothpexdent of the environment
temperature;

For exterior walls, a wood wall is much better ttemsame-thickness concrete
wall, if just considering the time-lag effect am tdecrement factor;

The time lag is not the higher, the better;
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10) The higher thermal resistance insulating effeeghats does not exist.

Some suggestions of future work are listed asidlo

1) Since most walls are multilayered, dynamic heatsier of multilayer PTMs
should be investigated;

2) Dynamic heat transfer should be investigated wheternal thermo-physical
properties are not constant;

3) A dynamic heat transfer model should be built bgnbming building envelop,

internal thermal masses and the environment.
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